

Low Overhead Ethernet Communication for Open MPI on

Linux Clusters

Torsten Hoefler Mirko Reinhardt Torsten Mehlan Frank Mietke

Wolfgang Rehm

Technical University of Chemnitz,

Department of Computer Science,

09117 Chemnitz, GERMANY

{htor,rmir,tome,mief,rehm}@cs.tu-chemnitz.de

July 20, 2006

Abstract

This paper describes the basic concepts of our solution to improve the performance
of Ethernet Communication on a Linux Cluster environment by introducing Reliable
Low Latency Ethernet Sockets. We show that about 25% of the socket latency can be
saved by using our simplified protocol. Especially, we put emphasis on demonstrat-
ing that this performance benefit is able to speed up the MPI level communication.
Therefore we have developed a new BTL component for Open MPI, an open source
MPI-2 implementation which offers with its Modular Component Architecture a nearly
ideal environment to implement our changes. Microbenchmarks of MPI collective and
Point-to-Point operations were performed. We see a performance improvement of 8%
to 16% for LU and SP implementations of the NAS parallel benchmark suite which
spends a significant amount of time in the MPI. Practical application tests with Abinit,
an electronic structure calculation program, show that the runtime of be nearly halved
on a 4 node system. Thus we show evidence that our new Ethernet communication
protocol is able to increase the speedup of parallel applications considerably.

1 Introduction

The recent Top 500 List, released in November 2005, states that the Ethernet Network [9]
is still a widely used interconnect architecture. The largest share of nearly 50% of all listed
systems are connected with Gigabit Ethernet. Even though this network was not designed

1

1.1 Related Work 1 INTRODUCTION

as a High Performance Computing (HPC) interconnect, positive factors like availability,
robustness and the price make it to a reasonable alternative to expensive high performance
networks like InfiniBand [13].

Most Ethernet systems (including cluster computers) use the TCP/IP [15, 14] protocol
suite that was designed for Wide Area Networks (WAN) for data transmission. The vast
majority of Ethernet connected cluster systems are not WANs but rather concentrated in
a Local Area Network (LAN). In LANs, the flexibility as well as some special features of
TCP/IP are not needed and introduce an additional overhead. TCP/IP offers routing,
fragmentation and reassembly, congestion control, port multiplexing, in order delivery and
reliability to the user. Features like routing or a WAN optimized congestion control are
simply not necessary for Ethernet only networks.

An interesting development in the Top 500 List is the spreading of Linux based systems.
The percentage of Linux based systems increased dramatically over the last years and
reached today’s level of more than 75%. It is not surprising that many projects aim at
optimizing message passing systems for Ethernet based Linux systems. The following
Section lists some of these projects.

1.1 Related Work

Although several implementations that try to reduce latency and increase bandwidth for
Ethernet systems are available today, many of this systems are not actively developed
anymore. U-Net [16] was intended to provide user-level access to the network hardware.
This approach limited the applicability to several network adapters because driver changes
were necessary. The industry standard VIA with its implementation M-VIA [4] superseded
U-Net. However, the limitation to specific Network Interface Cards (NICs), the neccessity
of adapting the NIC drivers, and the requirement to follow each kernel version limit its
availability to older kernels. Bobnet [3] aimed at providing zero copy mechanisms for
message passing but a fully MPI-2.0 compliant library is not available. Gamma [2], which
supports only a small number of network interfaces, used the active message approach to
eliminate the use of data copies and EMP [12] modified a single NIC driver to achieve zero
copy message passing. Commercial approaches proposed by SCALI and Par-Tec are not
taken into consideration because their design is not open.

Each of these projects is limited to specific combinations of NIC and Linux kernel version.
Most of these approaches include changes at the device driver layer in Linux. This makes
it hard to follow kernel or driver updates and to perform the installation. Due to this
problems, most of these projects are not active anymore.

2

1.2 Main Goals 2 RELIABLE LOW LATENCY ETHERNET SOCKETS

1.2 Main Goals

The main project goals are to present a viable alternative to TCP/IP which achieves the
highest performance with the simplest and most portable solution. The huge number of
different Ethernet manufacturers and Chips requires a hardware-independent solution, the
steady development and change of the Linux kernel enforces the smallest possible interface
to the kernel, and the ease of use is ensured by the avoidance of kernel patches and the
use of a kernel module.

The following section describes our Low Latency Ethernet Sockets as alternative to the
traditional TCP/IP stack in detail and provides microbenchmarks of the current imple-
mentation. Section 3 describes the incorporation into the Open MPI framework; it is
followed by a detailed performance comparison of the MPI implementation in Section 4.
The last section concludes the research and points out further directions.

2 Reliable Low Latency Ethernet Sockets

We use a kernel module which registers the new protocol family PF_ENET to the kernel. It
connects through the internal socket and the Virtual File System (VFS) interface to the
application and through the network device deriver interface to all ethernet drivers. The
general architecture is depicted in Figure 1. The kernel module works with every Ethernet
NIC supported by Linux. The new protocol family offers two protocols to the socket layer,
the Ethernet Datagram Protocol (EDP) and the Ethernet Streaming Protocol (ESP). EDP
is like UDP that is an unreliable datagram protocol which is only used to ’ping’ other
hosts (for details refer to [11]). ESP offers port multiplexing, ensures reliable in order
transmission, and provides segmentation and reassembly. These features are implemented
in kernel space to keep the overhead low because only a single system call per message is
needed. Normal Ethernet addresses are used to identify endpoints because the addressing
scheme in a flat LAN network does not need to be hierarchical. All these features lead to
a simplified protocol which requires only a small header compared to TCP/IP. The header
hosts only necessary information for LAN communication and is compared in Figure 2 to
TCP/IP. EDP uses only 13 bytes of additional header information per Ethernet Packet
where TCP/IP uses 20 or 40 bytes.

The state machine of the sockets to implement channel semantics is similar to the TCP
mechanism and thus not described here. The data reliability is ensured with a simple
acknowledgement protocol. Each packet is marked with a sequence number and buffered
at the sender to enable retransmission. Received packets are acknowledged TCP-like by
sending the next expected sequence number back to the originator. This enables the

3

2.1 Microbenchmarks 2 RELIABLE LOW LATENCY ETHERNET SOCKETS

Network Device Driver

E

R

U

K

E
R
N
E
L

MPI Application

MPI Library

C Library

System Call Interface

Socket Interface Virtual File System

UDP

Internet Protocol Family (PF_INET)

TCP

IP

ESP EDPRAW Packet

Protocol Family

(PF_PACKET) Ethernet Protocol Family

(PF_ENET)

S

Figure 1: Kernel Architecture Overview

sender to keep track of the last successfully received in-order fragment and to flush all
buffered packets with lower sequence numbers. A retransmission occurs if a single packet
(identified by sequence number) cannot be deleted in a certain time period. The protocol
allows backpacking of the acknowledgement number to normal packets sent by the user.
It tries to wait a specified time before sending the explicit acknowledgement to enhance
the possibility of backpacking. An explicit acknowledgement is sent if this time goes by
without a message transmission to the target host.

2.1 Microbenchmarks

We conducted several benchmarks on two Cluster Systems. Cluster 1 (C1) consists of 4
1.4 GHz dual Athlon MP nodes with Syskonnect SK-98xx V2.0 Gigabit Ethernet NICs
and Cluster 2 (C2) of 4 2.4 GHz dual Xeon nodes with Intel Corporation 82544GC Gigabit
Ethernet NICs. Figure 3 shows the average single packet latencies (left image, measured
without pipelining effects) and the socket blocking times (right image) compared between
TCP/IP and ESP. The socket blocking time is the time that a send call to the socket needs
to return. This is only a rough estimation of the CPU overhead of a network protocol.
We see a latency decrease on both systems of nearly 25% for small messages and the send
call blocking time could be reduced by up to 50% (see Figure 3).

4

3 IMPLEMENTATION IN OPEN MPI

TCP/IP nth Fragment

destination address

source address

packet type

destination address

source address

packet type

6

6

2

>20IP Header

TCP Header >20

TCP/IP 1st Fragment

destination address

source address

packet type

destination port

source port

ack seqence

data length

sequence

flags

6

6

2

2

2

2

2

1

2

ESP Packet

6

6

2

>20IP Header

Figure 2: ESP and TCP/IP Header Comparison

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 500 1000 1500 2000

La
te

nc
y

(u
se

c)

Message Size (bytes)

C1-ESP
C1-TCP
C2-ESP
C2-TCP

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000

S
oc

ke
t B

lo
ck

in
g

T
im

e
(u

se
c)

Message Size (bytes)

C1-ESP
C1-TCP
C2-ESP
C2-TCP

Figure 3: Single Packet Latencies and Socket blocking Times for TCP/IP and ESP

3 Implementation in Open MPI

Open MPI [5] is an open source MPI-2 implementation which offers with its Modular
Component Architecture (MCA) a nearly ideal environment to implement our approach.
Open MPI hosts several frameworks which define distinct tasks. A component can be
implemented to perform these tasks and a runtime instance of a component is called
module. Some frameworks can have many active modules at any given time (e.g. the device
layer may support many interfaces simultaneously). Important parts of the architecture
of Open MPI are depicted in Figure 4. We analyze the performance of two commonly
used frameworks, the collective framework (COLL) to perform a collective operations and
the Point-to-Point Management Layer (PML) to perform point to point communication.
Both layers need to communicate data by accessing the lowest layer, the communication

5

4 PERFORMANCE COMPARISON

Hardware

B
T
L

B
T
L

B
T
L

COLL

BML

PML

MPI Layer

MPI Application

Operating System

Figure 4: Open MPI Architecture (simplified)

hardware, directly or through the operating system. The coll framework is free to access
the hardware directly or to use normal point to point semantics with the PML. The PML
administers all low level device drivers which are implemented in a framework called Byte
Transport Layer (BTL).

We implemented a BTL component called ETH to support our Low Latency Sockets.
The design of our ETH BTL component is identical to the TCP BTL because we are
using the same socket semantics. The only differences are that we use a special EDP ping
to determine node reachability at the beginning of each run and that we use Ethernet
Adresses instead of IP adresses.

4 Performance Comparison

We conducted several benchmarks to compare the performance of our approach with the
standatd TCP/IP implementation. We used Microbenchmarks, the LU and SP implemen-
tations of the NAS parallel benchmark suite [1] as well as a precisely analyzed quantum
mechanical application to show the performance benefits of our new protocol.

4.1 Microbenchmarks

Microbenchmarks of MPI collective and Point-to-Point operations were performed with
the Pallas MPI-1 Microbenchmarks [10]. We compared the performance between the TCP
and the ETH module. The environment was identical for both runs, the only difference was

6

4.2 Compute Kernel Benchmarks 4 PERFORMANCE COMPARISON

”btl=eth” to enforce the ETH BTL or ”btl=tcp” to enforce the TCP BTL in the MCA-
Parameters. The benchmarked results on cluster 2 for PingPong, Alltoall, Allgather and
Allreduce are shown in Figure 5.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y

(m
se

c)

Message Size (MB)

PingPong, ETH
PingPong, TCP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y

(m
se

c)

Message Size (MB)

Alltoall, 4 nodes ETH
Alltoall, 4 nodes TCP

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y

(m
se

c)

Message Size (MB)

Allgather, 4 nodes ETH
Allgather, 4 nodes TCP

 0

 200

 400

 600

 800

 1000

 1200

 0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y

(m
se

c)

Message Size (MB)

Allreduce, 4 nodes ETH
Allreduce, 4 nodes TCP

Figure 5: Pallas MPI-1 Benchmark Results

4.2 Compute Kernel Benchmarks

We used the LU and SP implementations of the NAS parallel benchmark suite as a compute
kernel which spends a significant amount of time in the MPI library. LU performs a LU
decomposition and sends a large number of very small messages while SP solves three
sets of uncoupled systems of equations. We see a performance improvement of 8% (TCP:
1312.24 Mop/s vs. ETH: 1432.46 Mop/s) for LU and a performance improvement of 16%
for SP (TCP: 606.45 Mop/s vs. ETH: 723.88 Mop/s) on 4 nodes.

7

4.3 Application Benchmarks 5 CONCLUSION AND FUTURE WORK

4.3 Application Benchmarks

We chose the electronic structure calculation program Abinit to perform benchmarks with
our new protocol. Abinit [6] has been well analyzed with regards to its parallel running
time [8]. We use the new parallelization scheme introduced and analyzed in detail in [7]
which performs a conjugate gradient based minimization and a 3D-FFT in parallel. The
main communication operations are MPI Allreduce of single double values (16 byte) to
perform dot-products and MPI Alltoall for the 3D-FFT. Both operations were significantly
enhanced by our ETH implementation (see Figure 5). Figure 6 shows the runtime and
scaling results for the calculation of a small SiN system with 14 atoms on cluster 2. The
parallel runtime of Abinit could nearly be halved on a four node system.

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1 1.5 2 2.5 3 3.5 4

R
un

tim
e

(s
)

Number of Processors (nproc)

Abinit, ETH BTL
Abinit, TCP BTL

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.5 2 2.5 3 3.5 4

S
pe

ed
up

Number of Processors (nproc)

Abinit, ETH BTL
Abinit, TCP BTL

Figure 6: Runtime and Speedup of Abinit for a 14 Atom SiN system

5 Conclusion and Future Work

We show that it is possible to enhance the performance of Ethernet networks in HPC
systems by simplifying the communication protocol. We show a device independent Linux
kernel module to implement a reliable Ethernet communication subsystem with the socket
interface. A BTL component for Open MPI enables MPI programs to use this accelerated
Ethernet subsystem. The raw latency benefit is about 25% in comparison to TCP and the
CPU overhead can be decresed by nearly 50%. MPI level Microbenchmarks show that the
MPI point to point and collective performance can be significantly enhanced. Application
tests with Abinit showed the positive influence to practical applications. The runtime of
Abinit could be nearly halved on a 4 node system. Future work includes the addition
of a proper flow control algorithm as we see a slight performance degradation for larger
messages.

8

REFERENCES REFERENCES

References

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel benchmarks. The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[2] Giovanni Chiola and Giuseppe Ciaccio. Gamma: Architecture, programming interface
and preliminary benchmarking, 1996.

[3] C. Csanady and P. Wyckoff. Bobnet: Highperformance message passing for commod-
ity networking components, 1998.

[4] D. Cameron and G. Regnier. The Virtual Interface Architecture, 2002.

[5] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Im-
plementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004.

[6] X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas,
F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y. Raty,
V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C.
Allan. A brief introduction to the ABINIT software package. Z. Kristallogr., 220:558,
2005.

[7] Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm. Analyzing the parallel scal-
ing of teter’s conjugate gradient based minimization for ab initio calculations. In
Submitted to the Europar 2006 Conference, 2006.

[8] Torsten Hoefler, Rebecca Janisch, and Wolfgang Rehm. A performance analysis
of abinit on a cluster system. In Karl Heinz Hoffmann and Arnd Meyer, editors,
Parallel Algorithms and Cluster Computing. Lecture Notes in Computational Science
and Engineering, 2006. accepted to be published.

[9] IEEE Computer Society. 802.3 IEEE Standard for Information technology, 2002.

[10] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part MPI-1. Technical report, Pallas
GmbH, 2000.

[11] Mirko Reinhardt. Optimizing Point-to-Point Ethernet Cluster Communication. Mas-
ter’s thesis, TU-Chemnitz, 2006.

9

REFERENCES REFERENCES

[12] Piyush Shivam, Pete Wyckoff, and Dhabaleswar Panda. Emp: zero-copy os-bypass
nic-driven gigabit ethernet message passing. In Supercomputing ’01: Proceedings of
the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages 57–57, New
York, NY, USA, 2001. ACM Press.

[13] The InfiniBand Trade Association. Infiniband Architecture Specification Volume 1,
Release 1.2. InfiniBand Trade Association, 2003.

[14] University of Southern California. RFC 791: Internet Protocol, 1981.

[15] University of Southern California. RFC 793: Transmission Control Protocol, 1981.

[16] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: a user-level network interface
for parallel and distributed computing (includes url). In SOSP ’95: Proceedings of the
fifteenth ACM symposium on Operating systems principles, pages 40–53, New York,
NY, USA, 1995. ACM Press.

10

