ALD of Copper and Copper Oxide Thin Films for Applications in Metallization Systems of ULSI Devices

Thomas Waechtler a, Steffen Oswald b, Nina Roth c, Heinrich Lang c, Stefan E. Schulz a,d, and Thomas Gessner a,d

a Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09107 Chemnitz, Germany
b Leibniz Institute for Solid-State and Materials Research (IFW), 01069 Dresden, Germany
c Institute of Chemistry, Chemnitz University of Technology, 09107 Chemnitz, Germany
d Fraunhofer Research Institution for Electronic Nanosystems (ENAS), 09126 Chemnitz, Germany

Contact: thomas.waechtler@zfm.tu-chemnitz.de
Outline

• Goals of the work
• Our approach for Cu ALD
• ALD results on Ta, TaN, Ru and SiO₂
• Reduction of ALD films
• Summary

4", single-wafer, vertical flow reactor used for ALD / CVD
Why copper ALD?

- Seed layer for Cu damascene process
- Metallization of narrow holes and trenches, e.g. through-silicon vias (TSV)
- Conformally coating 3D nanostructures (porous materials, nanowires, CNTs, ...)

Requirements for the seed layer:

- Highly conformal in aspect ratios of 4 to 5 and lines of 15 to 20 nm width (ITRS projection for 2020)
- Must grow on diffusion barriers
- Continuous and sufficiently conductive for ECD
- Good adhesion to diffusion barrier

Goals of the work

see for example:
Our approach for Cu ALD

Non-fluorinated, liquid Cu(I) β-diketonate precursor

- Fluorine free
- Liquid under standard conditions → liquid delivery for ALD

ALD processes

- Temperature < 160°C
- ALD of oxidic copper films on Ta, TaN, Ru, and SiO₂
- Wet O₂ as oxidizing agent
- Subsequent reduction

Vapor pressure 14.5 mTorr at 98°C
Our approach for Cu ALD

Process Flow

- Precursor Pulse: 3 to 8 seconds
- Argon Purge: 5 seconds
- Oxidation Pulse: 5 to 11 seconds
- Argon Purge: 5 seconds

ALD cycles

Reduction after ALD
Results

ALD on Ta and TaN

TaN, 125°C:

TEM cross section of ALD film on TaN. Ellipsometric thickness: 3.6 nm.

TaN, 135°C:

TEM cross section (Ellipsometric thickness of ALD film: 4.9 nm)

→ Smooth, continuous films on TaN
→ Tendency to form clusters on TaN as temperature increases
→ Cluster formation even more pronounced on Ta

Ta, 135°C:

SEM top view with partially etched ALD film
Results

ALD on Ta and TaN

- CVD effects on Ta above 125°C due to high reactivity towards metal-organics ([E. Machado et al., Langmuir 21, 7608 (2005)])
- TaN less reactive – less CVD effects – ALD window up to ~130°C
- Degree of nitridation of the TaN important for ALD growth
- Nearly saturated growth on TaN at 135°C
Results

XPS of ALD films on TaN

- Composites of metallic and oxidic Cu
- Increased metallic fraction with increased processing temperature (→ beginning CVD growth modes)
- Increased metallic fraction on stronger metallic TaN
- Generally good adhesion of the films (tape test)

ALD process temp.:
- 115°C (purple)
- 125°C (light blue)
- 135°C (red)
- 145°C (dark blue)
- 155°C (green)
Results

ALD films on Ru and SiO\textsubscript{2}

- Smooth, adherent films obtained both on Ru and SiO\textsubscript{2}
- GPC on SiO\textsubscript{2} even lower than on TiN, higher GPC on Ru
- ALD window at least up to 135°C on SiO\textsubscript{2} and 125°C on Ru
- Composition similar to films on TaN (Cu/Cu\textsubscript{x}O composites)

AFM image of 3 nm ALD film on SiO\textsubscript{2}. RMS roughness: of 0.25 nm (SiO\textsubscript{2}: 0.21 nm)
Possible methods:

• Thermal treatment in H₂
 - High process temperature required
 - No effective reduction
 - Agglomeration of the films

• Hydrogen plasma

• Thermal treatment with organic reducing agents
 - Isopropanol
 - Formic acid
 - Aldehydes

Initial state after ALD on Ta:
Continuous film with clusters

After reduction in H₂ for 30 min:
Strong agglomeration
Possible methods:

- Thermal treatment in H$_2$
- **Hydrogen plasma**
- Thermal treatment with organic reducing agents
 - Isopropanol
 - Formic acid
 - Aldehydes

Reduction of oxygen content obtained (EDX)

- Tendency of agglomeration although processing at lower temperature (plasma effect?)
- Disadvantages of plasma reduction processes compromise benefits of thermal ALD
Possible methods:

- Thermal treatment in H2
- Hydrogen plasma
- Thermal treatment with organic reducing agents
 - Isopropanol
 - Formic acid
 - Aldehydes

- Reduction of oxygen content obtained both with IPA and formic acid
- Elevated temperature required for effective IPA treatment → increase of sheet resistance
- More promising results obtained with formic acid already at temperatures < 120°C
Reduction of oxidic ALD films

Formic acid treatment – most promising method so far

- No agglomeration on TaN up to 150°C
- More severe cluster formation on Ta
Reduction of oxidic ALD films

Formic acid treatment of ALD films on TaN

XPS analysis:

- Significant enhancement of metallic Cu content after treatment with formic acid
- Some oxidized Cu detected – possible re-oxidation after reduction due to air exposure (~ 7 weeks between reduction process and XPS analysis)

Blue curve = after ALD and 25 weeks storage in air

Red curve = status of blue curve + reduction and 7 weeks storage in air
Summary

Thermal ALD of Cu/CuₓO composites on Ta, TaN, Ru and SiO₂
- Smooth, adherent films at least up to 135°C on TaN, Ru and SiO₂
- Saturated growth confirmed on TaN – further study on other substrates
- ALD window at moderate temperatures of ≤ 130°C

Reduction processes under study to form metallic Cu on Ta and TaN
- Different approaches investigated
- Formic acid treatment most promising
 - Strong agglomeration tendency of films on Ta during reduction treatment
 - No agglomeration of ALD films on TaN up to 150°C

Outlook
- Ongoing study of ALD on Ru and SiO₂
 - Possibility of direct reduction of the precursor, especially on Ru
- Further work on reduction processes
- Application of ALD films as seed layers for Cu electroplating
- Functionalization of CNTs
Summary

TEM analyses: Anastasia Moskvinova and Dr. Steffen Schulze, Solid Surfaces Analysis Group @ TU Chemnitz (Prof. Michael Hietschold)

Vapor pressure measurements:
Dr. Aslam Siddiqi, Department of Thermodynamics, Univ. Duisburg

Funding:

German Research Foundation – International Research Training Group "Materials and Concepts for Advanced Interconnects"
Thank you for your attention!