
Simulation of Weakly Correlated Functions
and its Application to Random Surfaces

and Random Polynomials∗

Benno Fellenberga, Jürgen vom Scheidtb and Matthias Richterb
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Abstract

The paper is dedicated to the modeling and the simulation of random pro-
cesses and fields. Using the concept and the theory of weakly correlated
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cesses will be derived. Special applications will be given with respect to
the simulation of road surfaces in vehicle dynamics and to the confirmation
of theoretical results with respect to the zeros of random polynomials.
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1 Introduction

The concept of so-called weakly correlated functions fε(x, ω), x ∈ Rn and
ω ∈ Ω, as random functions ”without distant effect” can be used for the
modeling and simulation of random variables, processes and fields. In this
paper this will be explicitely demonstrated for random surfaces, e. g. of
roads, as well as for random coefficients of algebraic polynomials.

Weakly correlated functions are zero-mean random functions fε(x, ω)
having decomposition properties with respect to all their stochastic moments
〈fε(x1)fε(x2) . . . fε(xk)〉 , k = 2, 3, . . ., (cf. [3]). Especially, the values at two
points x and y do not influence each other if the distance |x − y| exceeds
the so-called correlation length ε > 0, i. e. the correlation function R(x, y)
vanishes if |x−y| > ε. A typical example of a correlation function of weakly
correlated processes is given by the following hat-like function

R(x, y) = 〈fε(x)fε(y)〉 =

{
σ2(1 − |x−y|

ε
) for |x − y| ≤ ε ,

0 otherwise .
(1)

Firstly, in section 2 a general model for smooth weakly correlated pro-
cesses fε(x, ω) is described which can be easily used for simulation and be
extended to fields fε(x1, ..., xn, ω). A subsequent analysis provides necessary
stochastic characteristics for fitting the model to real data.

Considering additionally linear functionals of the form

f(t, ω) =

∫

D(t)
G(t, x)fε(x, ω)dx (2)

the field of application will be extended in section 3 to the modeling and
simulation of random surfaces which can be used e. g. in random vibration
systems (cf. [4]) and in section 4 to the solution of algebraic equations

a0(ω) + a1(ω)z + ... + an(ω)zn = 0 ,

where especially the accuracy of theoretical approximations of the distribu-
tion of the zeros (cf. [2]) will be verified by simulation. Thereby, the following
limit theorem proved in [3]

lim
ε↓0

1

εn
〈f(t1)f(t2)〉 =

∫

D(t1)∩D(t2)
G(t1, x)G(t2, x)a(x)dx (3)

with the so-called intensity a(x) of fε(x, ω) and expansions of the distribu-
tions play an essential rule.

2



2 Modeling of weakly correlated functions

The simplest way to model weakly correlated processes fε(x, ω), x ∈ [α, β] is
given by a random step function on the decomposition {Ii}i=0,1,...,n−1 of the
interval [α, β] in equidistant and disjoint intervals Ii = [ai, ai+1) of length
h = (β − α)/n, where fε(x, ω) = ξi(ω) for x ∈ Ii with independent zero-
mean random variables ξi(ω), i = 0, 1, . . . Obviously, the so defined process
is weakly correlated with correlation length ε = h but not stationary in the
(wide) sense (i. e. R(x, y) 6= r(x − y)). Its correlation function for x ∈ Ii is
given by

R(x, y) = 〈fε(x)fε(y)〉 =

{
< ξ2

i > for y ∈ Ii,
0 otherwise .

But, considering an ”averaged version” of the correlation function on Ii

R̄(τ) =
1

h

∫

Ii

R(x, x + τ)dx =< ξ2
i > (1 − |τ |

ε
)

it can be stated that the averaged correlation function corresponds for
< ξ2

i >= σ2, i = 0, 1, ... to a wide-sense stationary process with correlation
function (1).

Now, we generalize this model to smooth processes of any given order
K > 0, where we in the following suppose that the random variables ξi,
i = 0, 1, . . . , n are identically distributed with variance σ2. Putting

fε(x, ω) = gi(x)ξi(ω) + hi(x)ξi+1(ω) for x ∈ Ii , (4)

where gi(x) = p
(

ai+1−x
h

)
, hi(x) = 1−gi(x) and p(·) are polynomials in [0, 1]

with p(0) = 0, p(1) = 1, p(m)(0) = p(m)(1) = 0, m = 1, 2, . . . ,K, a weakly
correlated process with correlation length ε = 2h and a. s. differentiability
of order K is obtained. In Fig. 1 trajectories of fε(x, ω) are drawn with uni-
formly distributed ξi(ω) on [−1, 1]. Moreover, the structure of the polyno-
mial p(x) introduced above results in a pointwise convergence (for K → ∞)
of the trajectories of fε(x, ω) to the trajectories of a step function l(x, ω)
with correlation length h (cf. Fig. 1).

To fit such models to real data stochastic characteristics as intensity,
variance, (averaged) correlation function and spectral density with respect
to the corresponding stationary process are determined. For example, the
variance function is given by

〈
f2

ε (x)
〉

= (g2
i (x) + h2

i (x))σ2 for x ∈ Ii.
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Figure 1: Trajectories of a weakly correlated process fε(x, ω) for K = 0, 1, 2
in comparison with the trajectory of l(x, ω)

Some averaged correlation functions are plotted in Fig. 2, the spectral den-
sity e. g. for K = 0, where p(x) = x, is determined as

S̄(α) =
1

π

ε∫

0

cos(ατ)R̄(τ)dτ =
8σ2

πα4ε3

(
cos(αε) − 4 cos(

αε

2
) + 3

)

and the intensity is for every K given by the constant value

a = lim
ε↓0

1

ε

ε∫

−ε

R(x, x + τ)dτ = σ2/2 .

Further it can be stated that for the derivatives f
(j)
ε (x, ω) , j = 1, 2, . . .,

the usual relations

R̄j(τ) = (−1)jR̄(2j)(τ) and S̄j(α) = α2j S̄(α)

are fulfilled with respect to the averaged functions R̄j and S̄j of the deriva-
tives.

Finally, several extensions of the described model are possible, e. g.
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Figure 2: Averaged correlation functions for K = 0, 1, 2 in comparison with
the correlation function R̄l of l(x, ω)

• different distributions of the weakly correlated process fε(x, ω) by sim-
ulating different distributions of ξi(ω),

• non-stationary processes h(x)fε(x, ω) by multiplying by a determinis-
tic non-constant shape function h(x),

• superpositions hε(x, ω) = fεf
(x, ω) + gεg (x, ω) with different correla-

tion lengths εf and εg,
• random fields, e. g.

fε(x1, x2, ω) = g1i(x1)g2j(x2)ξij + g1i(x1)h2j(x2)ξij+1

+h1i(x1)g2j(x2)ξi+1j + h1i(x1)h2j(x2)ξi+1j+1

using the same ideas with respect to a grid decomposition of a rectan-
gular domain of R2.
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3 Random surfaces

Considering the linear functional (2) in the form

f(t, ω) =

t∫

−∞
e−γ(t−x)fε(x, ω)dx (5)

with a weakly correlated process fε(x, ω) having a constant intensity a the
limit theorem (3) results in

〈f(t1)f(t2)〉 ≈ εa

∫ min(t1,t2)

−∞
e−γ(t1+t2−2x)dx =

εa

2γ
e−γ|t2−t1| (6)

for small values of ε. The obtained approximation is often used as model of
random road surfaces (cf. [1]) with the spectral density

S(α) =
εa

2π(γ2 + α2)
.

To simulate (5) the infinite integral is truncated and determined as a finite
series, i. e.

f(t, ω) ≈
∫ t

α
e−γ(t−x)fε(x, ω)dx =

m−1∑

i=0

cie
−γ(t−ai) + cm(t)e−γ(t−am)

where α has to be chosen such that the error of truncation is neglectably
small. Further, the values ci as well as cm(t) depend on fε(x, ω) according
to (4) and m is given by t ∈ [am, am+1]. To obtain sufficiently smooth real-
izations of f(t, ω) the case K = 1 is recommended. To simulate derivatives
of f(t, ω), which are necessary in mathematical models of random vibration
systems we have for instance

f̈(t, ω) = ḟε(t, ω) − γfε(t, ω) + γ2

t∫

−∞
e−γ(t−x)fε(x, ω)dx

and the simulation procedure is obviously. A large variety of concrete models
and applications to vehicle dynamics can be found in [4]. The property of
(5) to be a solution of the differential equation

ḟ(t, ω) + γf(t, ω) = fε(t, ω)

opens another possibility to use the model (4) directly in simulating dynamic
systems.
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4 Random algebraic polynomials

A random algebraic polynomial of degree n is a random function of the form

Pn(z, ω) = a0(ω) + a1(ω)z + . . . + an(ω)zn, z ∈ C, (7)

where the coefficients ai(ω), i = 0, 1, . . . , n, are random variables with
P(an(ω) 6= 0) = 1. Such polynomials arise in various applications, for exam-
ple as characteristic polynomials of random matrices and random difference
equations.

Under the condition that the first and second order moments of the
random coefficients ai(ω) are known,

〈ai〉 = ai0 and 〈aiaj〉 = σij , i, j = 0, 1, . . . , n, (8)

the aim consists in the approximation of the distribution of the zeros of (7).

The averaged polynomial associated with the random polynomial (7) is
the function

Pn0(z) = a00 + a10z + . . . + an0z
n, (9)

which is obtained by substitution of the random variables ai(ω) by their
expectations. The zeros of (9) are denoted by zk0, k = 1, . . . , n, and we
consider here only the case of simple real zeros of the averaged polynomial.

To avoid large deviations of the zeros zk(ω) of (7) from the zeros zk0 of
(9) it is usefull to demand

n∑

i=0

(ai(ω) − ai0)
2 ≤ γ2 a. s.

for a sufficiently small γ. Under these assumptions it is possible to find an
enumeration of the zeros in the sense of

n∑

k=1

|zk0 − zk(ω)| → min a. s.

To approximate the moments and the distribution of the random zeros
the coefficients of the polynomial (7) are substituted by functionals of a
weakly correlated process so that the first and second order moments of the
original coefficients are kept; i. e. we investigate a substitution polynomial

P̃n(z, ω) = ã0(ω) + ã1(ω)z + . . . + ãn(ω)zn, (10)
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where ãi (ω) = ai0 +
1∫
0

Fi(x)fε(x, ω) dx i = 0, 1, . . . , n

〈ãi ãj〉 = σij i, j = 0, 1, . . . , n.
(11)

Using (3) it is possible to choose the non-random functions Fi(x),
i = 0, 1, . . . , n, in such a way, that (11) and subsequently (8) can be ap-
proximately fulfilled for small values of ε (an example is given below).

Applying the theory of weakly correlated functions it is a well-known
result, that the normalized differences 1√

ε
(zk(ω)− zk0) between the random

zeros and the corresponding zeros of the averaged polynomial are Gaussian
distributed as ε ↓ 0. Expansions (cf. [3]) of probability densities pk(u) of
(zk(ω)−zk0) with respect to the correlation length ε > 0 lead to the following
2nd order approximation (cf. [2])

pk(u) ≈ dk√
2π

exp

(
−d2

k

2
u2

)[
1 +

(
−dk1 H1(dku) +

1

2
dk2 H2(dku)

−1

6
dk3 H3(dku) +

1

24
dk4H4(dku) +

1

720
dk6 H6(dku)

)]
, (12)

where the values of dk, dk1, dk2, dk3, dk4 and dk6 for k = 1, . . . , n
can be computed from the given first and second order moments (8) and
Hm(·), m = 0, 1, . . . , denote the Chebyshev-Hermite polynomials of order m.
It should be noted that the approximation (12) is the better the more the
coefficients are Gaussian distributed. Now, we verify the described substi-
tution and approximation by simulation.

Example: Let n = 2

P2(z, ω) = z2 + a1(ω)z + a0(ω) (13)

with Gaussian distributed coefficients a0(ω) and a1(ω):
(

a0(ω)

a1(ω)

)
∼ N

((
3

−4

)
,

(
0.0100 0.0025

0.0025 0.0050

))

Then, the corresponding averaged polynomial has the zeros z10 = 1, z20 = 3
and we consider here explicitely the probability density function p1(u) of
the difference (z1(ω) − 1).

Firstly, simulation results of p1(u) with respect to the original polynomial
(13) are compared with simulation results of the probability density p̃1(u)
of the corresponding substituted polynomial

P̃2(z, ω) = z2 + ã1(ω)z + ã0(ω) (14)
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with ã0(ω) = 3 +

1∫

0

F0(x)fε(x, ω) dx and ã1(ω) = −4 +

1∫

0

F1(x)fε(x, ω) dx .

∧

>

p̃1(u) − p1(u)

u−0.1−0.2
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Figure 3: Difference function p̃1(u) − p1(u)

Thereby, the parameters of fε(x, ω) are chosen as K = 0, ε = 0.02 and
σ2 = 0.0625, the deterministic functions F0(x) and F1(x) are determined
according (11) with

F0(x) =
0.2√
εσ

sin(2πx) and F1(x) =
1√
εσ

(0.05 sin(2πx) + 0.1323 sin(4πx)) .

The small values of the plotted differences in Fig. 3 confirm the described
substitution method (see also the absolute values in Fig. 4).

∧
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Figure 4: Approximations of the probability density function of (z1(ω)− 1)
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In addition, in Fig.4 the theoretical approximation (12) of the probability
density function p1(u) is confirmed by simulation of the linear functionals.

In summary it may be said that the substitution method leads to a
sufficiently accurate approximation of the probability density function of
the zeros of the considered random polynomial.
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