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Referat
Diese Dissertation befasst sich mit Modellrechnungen zur Dynamik vom photoinduzier-
ten Elektrontransfer und Exzitontransfer in Systemen mit vielen Freiheitsgraden. Außer-
dem trägt diese Arbeit zu einigen theoretischen und numerischen Aspekten der Redfield-
Theorie bei. Betrachtet werden der ultraschnelle Elektrontransfer im Farbstoff Betain-30,
die Elektroninjektion von einem Chromophormolekül Perylen ins Leitungsband vom Halb-
leiter TiO2, sowie die Exziton-Ausbreitung in einem modellhaften ringförmigen System
mit 18 Lokalisierungszentren.

Zuerst wurde der Einfluss der elektronischen Kopplung auf die Dissipationsterme der
Redfield-Gleichung untersucht. Es wurde gezeigt, dass bei bestimmten Potenzialkonfi-
gurationen die Vernachlässigung der elektronischen Kopplung (die s.g. diabatic damping
approximation, DDA) dazu führt, dass das System nicht in das thermische Gleichgewicht
mit dem Wärmebad relaxiert. Jedoch verliert die DDA ihre Gültigkeit nicht für kleine
elektronische Kopplung in einer ganzen Reihe von Fällen, z.B. in der Marcus inverted regi-
on. Die Transfermechanismen, welche jenseits dieser Näherung auftreten, werden mit Hilfe
der Störungstheorie erster Ordnung in der elektronischen Kopplung detailliert untersucht.
Solche Betrachtung in diabatischer Darstellung beseitigt viele der Nachteile sowohl der
DDA als auch der exakten Formulierung in adiabatischer Darstellung. Weiterhin wurden
direkte Verfahren zur genauen numerischen Lösung zeitlokaler Mastergleichungen (bzw.
der Redfield-Gleichung) implementiert und getestet. Die Effizienz dieser Methoden wurde
am Beispiel von einem eindimensionalen Elektrontransfer-Modell bestimmt. Desweiteren
wurde noch ein neues stochastisches Verfahren zur Propagation von Dichtematrizen ent-
wickelt und in den Simulationen verwendet.

Der ultraschnelle photoinduzierte Elektrontransfer in Betain-30 wurde sowohl mit einer
einzelnen Reaktionsmode als auch mit zwei Reaktionsmoden modelliert. Anhand der
reduzierten Dichtematrix ließ sich die Gesamtpolarisation berechnen und somit war es
möglich, ein Pump-Probe-Experiment zu simulieren. Die Rechenergebnisse wurden dann
mit experimentellen Daten verglichen.

Die Anpassungsfähigkeit der Dichtematrix-Theorie an physikalisch sehr unterschiedli-
che Modelle hat auch ermöglicht, Exzitontransfer in biologischen Systemen und Elektron-
transfer an Oberflächen zu untersuchen. Das Studium des letztgenannten Systems stellt
eine neue Anwendung der Dichtematrix-Methode dar.

Schlagwörter
Elektrontransfer, Exzitontransfer, dissipative Quantendynamik, reduzierte Dichtematrix,
Redfield-Theorie, stochastische Wellenfunktion, Dissipation, Pump-Probe-Spektroskopie,
Betain-30
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Chapter 1

Preamble

Quantum dynamics of complex molecules or molecules in a dissipative environment has
attracted a lot of attention during the last years. In particular, the effort of numerous
scientists in the last two decades has been focused on the theoretical description of elec-
tron transfer (ET) which has been regarded as a key process in many chemical reactions
in gaseous and condensed phase. ET can be generally defined as a transition between
two microscopic states whereby an electron changes its spatial location moving from a
donor site to an acceptor site. Since the middle of the twentieth century the theoret-
ical research on ET has greatly advanced as the first quantitative description for ET,
the theory of Marcus, appeared [72]. Based on the classical transition state theory the
electron was considered as a classical particle moving in an effective potential along the
reaction coordinate and possibly passing over a barrier. The main result of this classical
approach is the rate law with maximum at the configuration where the reorganization
energy equals the change of the free energy of the reaction. A second issue concerns the
so called inverted region whose existence was experimentally confirmed for intramolecular
ET in organic radical anions [17] and in betaine dyes [51]. The predicted rate dependence
was in excellent agreement with the experimentally determined rates of many systems [17]
except for some systems in the inverted region like the betaine dyes [51,117] for which the
rates are strongly underestimated by Marcus theory. As the electronic coupling between
the donor and the acceptor groups in the betaine dyes is very strong the quantum effects
like tunneling and resonances predominate in the overall mechanism and hence increase
the measured rates. On the other hand the dynamic solvent effects were not taken into
account in Marcus theory. The solvent can change not only the energy of the electronic
states but also, playing the role of a dissipative environment, can take part in the reac-
tion dynamics. Further attempts to account for the quantum effects as well as for the
dynamic solvent effects resulted in other rate theories [113, 48]. Recently, path integral
methods [119,70], semi-classical approaches [36] and semi-group methods [20,59,54] were
applied to ET problems. Nearly all quantum approaches use the reduced density matrix
(RDM) formalism in order to proceed with only those degrees of freedom of the total
system which are relevant for the ET dynamics. In contrast to the rate theories the RDM
approach allows for a physically correct formulation of the quantum dynamics on very
short time scales. Several RDM studies based on or derived from the Redfield theory suc-
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ceeded to treat ET in the normal [76,47,25,23] and in the inverted region [122,27,103,23].
The Redfield theory was originally established in the research area of nuclear magnetic
resonance [98]. Compared to path integral methods the Redfield theory is advantageous
to approach systems with ever increasing complexity. The path integral methods are still
limited for simple and sometimes trivial systems since they, implemented numerically, are
computationally very demanding. Progress in this respect was done by Makri et al. [71]
who applied their numerical path integral technique to ET in bacterial photosynthesis
using a simple three-state model. More recently a very promising quantum-classical it-
erative hybrid method was developed [109, 118] which allows for a numerically accurate
treatment of highly complex systems (e.g. polyatomic molecules in solution) at reasonable
computational costs. The iterative hybrid method was successfully tested on the spin-
boson model for ET [116]. The remarkably rapid progress of ET theories was, among
others, reviewed by Barbara et al. [5] and more recently by Bixon and Jortner [8].

This thesis presents novel numerical simulations of carrier transfer in three different
systems with use of Redfield theory as well as certain advance in some purely theoretical
and numerical aspects of the Redfield approach.

Chapter 2 gives a brief introduction to the RDM theory. A microscopic model for
ET shall be introduced and the limits of several approximations for the Redfield master
equation for this ET model shall be examined. It will be shown that for certain potential
configurations and electronic coupling strengths the Redfield theory must be applied in
a strict way without further approximations. In the next Chapter 3 a large selection
of established methods for the numerical solution of QME is tested and their numerical
efficiency is verified on the example of the ET model with one reaction coordinate. A new
stochastic wave function method is proposed and its applicability for solving the Redfield
QME is proven.

The next three chapters include applications of the introduced theory, models and nu-
merical methods to experimentally relevant systems. Chapter 4 reports on photoinduced
ET in betaine-30 in solution. The classical Marcus theory and the quantum mechanical
golden rule fail to predict the rate because of the large value of the donor-acceptor elec-
tronic coupling. In order to be successful one has to elaborate the model so that dynamic
solvent effects as well as multi-mode internal vibrational energy redistribution during the
ET transition with the participation of a low-frequency mode can be considered. All
these peculiarities of betaine dyes make their quantum dynamical treatment a very de-
manding task. In the introduction of Chapter 4 the state of the art in this research area
will be overviewed. Then a donor-acceptor model comprising two reaction modes will be
constructed. First, the ET rates are computed and compared with the rates calculated
with the single-reaction-mode model as well as with the rates predicted by other theories
and measured in experiment. Next, using again the RDM approach in the framework of
Redfield theory and a two-mode model for ET, transient emission-absorption spectra with
high frequency and time resolution are simulated. The simulated spectra are compared
with recent experimental data, discussed and conclusions about the ET mechanism are
done.

The treatment of photoinduced ET from a chromophore molecule attached to the sur-
face of a semiconductor represents an additional challenge for the theory as the conduction
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band of the semiconductor has to play the role of an acceptor. Such an acceptor can be
modeled with a quasi-continuum of diabatic states. The system of choice, a covalently
attached perylene chromophore to the surface of porous TiO2, was recently studied in
pump-probe experiments [13]. Chapter 5 gives an extension to the existing theory [95]
and numerical simulations [96] by taking the vibrational dissipation into account.

In addition to open spin systems and ET systems Redfield theory allows for treatment
of other physically different problems such as exciton transfer. Chapter 6 deals with
exciton dynamics in biological chlorophyll aggregates. The system Hamiltonian describes
a single exciton propagating in a model ring structure. The simulation takes into account
static disorder in the local energies of the ring sites as well as the dynamic disorder induced
by the thermal bath. The experimentally measured quantity is here the anisotropy of
fluorescence which is numerically simulated. Furthermore, non-Markovian effects in the
short-time exciton transfer dynamics are considered. The influence of non-Markovian
effects is estimated by comparing with the results obtained by Redfield theory. Finally,
all results from the whole work are summarized and conclusions are given in Chapter 7.



Chapter 2

Redfield theory and models for
electron transfer

2.1 Introduction

Besides classical and semi-classical descriptions of dissipative molecular systems several
quantum theories exist which fully account for the quantum effects in dissipative dynam-
ics. Among the latter are the reduced density matrix (RDM) formalism [9, 74, 20, 59, 54]
and the path integral methods [119,70]. The basic concept in all these theories is the sepa-
ration of the total system into relevant system and thermal reservoir (bath) as sketched in
Fig. 2.1. All considerations and calculations in this thesis shall be done in the framework
of Redfield theory [98], in which one has to solve a quantum master equation (QME) for
the RDM. It is obtained from the Liouville-von Neumann equation1

∂σ

∂t
= −i [H, σ] (2.1)

which describes the time evolution of the density matrix σ of the total system by per-
forming a second-order perturbation treatment in the system-bath coupling as well as
restricting the calculation to the Markovian limit. In this approach the quantum dynam-
ics of an “open” system, e.g. the irreversible loss of coherence with time and the exchange
of energy with the thermal bath, can be described. The unidirectional energy flow into
the environment (the bath) is called dissipation. Within this theory it is possible e.g.
to simulate the dissipative short-time population dynamics usually detected by modern
ultrafast spectroscopy experiments.

To be rigorous in applying Redfield theory, the operators describing the time evolution
have to be expressed in eigenstate representation (ER) of the relevant system as has been
done in the original paper [98]. For electron transfer this was performed in part of the
literature (see for example [25, 90, 45, 46]), while in another part [77, 75, 62, 27, 121, 122]
diabatic (local) representations (DRs) have been used.

While in ER the dissipative term is evaluated exactly, in DR the influence of the
coupling between the local subsystems on dissipation is neglected. As a consequence

1Atomic units will be used for the equations, i.e. h̄ = 1.
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BathRelevant system

Figure 2.1: System-bath separation.

the relaxation terms do not lead to the proper thermal equilibrium of the coupled system
[20,105]. Only the thermal equilibrium of each separate subsystem is reached which can be
quite different from the thermal equilibrium of the coupled system. In the following it will
be shown that even for a very small intercenter coupling a completely wrong asymptotic
value can be obtained.

Although possibly leading to the wrong thermal equilibrium the local DR has advan-
tages. For large problems it may be difficult to calculate the eigenstates of the system.
These are not necessary in the DR. There one only needs the eigenstates of the sub-
systems. The quantum master equation can be implemented more efficiently in DR in
many cases [77, 123, 104, 55]. Moreover, almost all physical and chemical properties of
transfer systems are expressed in the DR. For example, to determine the transfer rate one
often calculates the population of the diabatic states and obtains the rate from their time
evolution.

Using the semi-group methodology and a simple model of two fermion sites, DR and
ER have been compared already [20]. The curve-crossing model, used in the present work,
requires a more complicated treatment. Here DR and ER will not only be compared but
it will be shown how the relaxation term can be written more precisely in DR for small
intercenter coupling.

2.2 Reduced density matrix formalism

The total system under consideration is divided into a relevant system (S) and a heat
bath (B) (Fig. 2.1). Therefore the total Hamiltonian consists of three terms – the relevant
system part HS, the bath part HB, and the system-bath interaction HSB:

H = HS +HB +HSB. (2.2)

As already introduced, the full description of the whole system can be reduced using a
RDM (in the following ρ) which depends only on the degrees of freedom of the relevant
system. In the trivial case of vanishing HSB such a reduction is straightforward because
the total density matrix simply factorizes. The treatment of cases with finite values of HSB

requires more special formal approaches, such as the path integral method or perturbation
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theory in HSB. The former method provides an exact description for arbitrary values
of HSB. In contrast, perturbation theory makes sense only for sufficiently small HSB.
Moreover, it is not easy to answer a priori the question of how small HSB has to be. This
can be answered only when one has derived closed equations of motion for the RDM. The
first-order expansion in HSB of the Liouville-von Neumann equation for the full system
(2.1) leads to the so called mean field correction to the system dynamics [74]. The only
physical meaning of this correction is a shift of the energy scale of HS which gives no
relaxation behavior of the dynamics. Therefore one has to expand Eq. (2.1) to second order
in HSB making use of a special projector formalism (Nakajima-Zwanzig formalism) which
i) allows for factorization of the total density matrix and ii) ensures exact summation of
the perturbation series to arbitrary order. This formalism is performed in the interaction
picture and its application to derive a closed QME for the RDM is thoroughly described
in Ref. [74]. On the way of derivation the following additional assumptions are made.

1. The bath stays in thermal equilibrium for any time scale of the dynamics of the
relevant system and its macroscopic state is given by a canonical distribution

ρB ≈
e−βHB

tre−βHB
(2.3)

where β = 1/(kBT ) is the inverse temperature.

2. The initial full density matrix factorizes as σ(t0) ≈ ρ(t0)ρB. According to Eq. (2.3)
the density matrix of the bath ρB does not depend on the RDM ρ(t0). Thus, the
factorization of σ(t0) means that initial correlations between the relevant system
and the bath are not taken into account.

3. The system-bath interaction is modeled by bilinear terms containing relevant sys-
tem operators Km acting only in the state space of the relevant system and bath
operators Φm acting in the state space of the bath

HSB =
∑
m

KmΦm. (2.4)

In contrast to the first two items, this assumption does not present a restriction
of the second-order perturbation theory. It is sufficiently general and is done for
convenience. Redfield theory was originally derived without this assumption. It has
also to be noted that in some cases the index m in Eq. (2.4) counts up to 1 (only one
term is considered), in other cases to more than 1, depending on the microscopic
model.

The resulting time-nonlocal QME with omitted first-order mean-field term reads [74]

∂ρ

∂t
= −i [HS, ρ]−

∑
m,n

t−t0∫
0

dτ
{
Cmn(τ)

[
Km, e

−iHSτKnρ(t− τ)eiHSτ
]

−C∗mn(τ)
[
Km, e

−iHSτρ(t− τ)Kne
iHSτ

] }
. (2.5)
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The first term on the right-hand side of this integro-differential equation describes the
coherent dynamics of the relevant system. The other nonlocal terms give rise to dissipa-
tion. Characteristic for Eq. (2.5) is that the RDM at time t depends explicitly on its own
history ρ(t− τ). This memory introduces a strong nonlinearity into the QME and makes
the direct integration of Eq. (2.5) infeasible. The quantity Cmn(τ) is the bath correlation
function which establishes a connection between the fluctuations of the operators Φm and
Φn around their equilibrium values 〈Φm〉, respectively 〈Φn〉, at different times

Cmn(τ) = 〈Φm(t)Φn(0)〉 − 〈Φm〉〈Φn〉. (2.6)

The bath correlation function is characterized by a correlation time τc, giving the time
scale on which Cmn(τ) decays to zero. If τc is short compared to any other characteristic
time scale of the system then Cmn(τ) can be approximated by cmnδ(τ). Using such an
assumption Eq. (2.5) is reduced to its Markovian limit. Since the operators Φm and Km

can be chosen to be Hermitian [33,32] the matrix cmn can then be diagonalized by means
of a unitary transformation c = U †κU and Eq. (2.5) can be cast into a special symmetric
form, which is called Lindblad form

∂ρ(t)

∂t
= −i [HS, ρ(t)] +

∑
n

[
Lnρ(t)L†n −

1

2
ρ(t)L†nLn −

1

2
L†nLnρ(t)

]
, (2.7)

where Ln =
√
κn
∑
m UnmKm. The Lindblad QME (2.7) has been extensively used in the

quantum optics community (see e.g. [19,29,35,30,89]) because by construction/generation
it keeps the RDM Hermitian, normalized, and positive semidefinite. The last property
ensures that all eigenvalues of the RDM (the populations) stay non-negative which is
important for the physical interpretation of the populations as probabilities. As it will
be shown later the Lindblad form of QME is obtainable on other levels of approximation
as well. This means that κn, which can be viewed as generalized diffusion coefficients
(or rates), may hold quite different physical information depending on how Eq. (2.7) is
obtained.

It is very difficult, and sometimes even impossible, to model a real system with a δ-
correlated bath. Thus, one is naturally motivated to search for another approach to bring
the memory kernel in Eq. (2.5) into a time-local form, i.e. to ignore the memory effects.
Let us suppose that the integrand in Eq. (2.5) does not change significantly within the time
interval [0; τm], whereby the memory time τm is related but not necessarily identical to the
bath correlation time τc. Under this assumption one can invoke the Markov approximation
by substituting ρ(t− τ) with ρ(t). This implies that the continuous time axis t (the axis
of the solution ρ(t)) has a coarse mesh size ∆t > τm and hence the upper integral limit
can be extended to infinity. Technically the Markov approximation is applied within
the interaction picture in which the fast oscillating off-diagonal elements in the RDM
vanish [74]. As result, one has to plug ρ(t− τ)→ eiHSτρ(t)e−iHSτ into Eq. (2.5). Making
use of the compact notation

Λm =
∑
n

∞∫
0

dτCmn(τ)KI
n(−τ), (2.8)
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where KI
n(−τ) = e−iHSτKne

iHSτ is the operator Kn in the interaction representation, the
final form of the desired Markovian QME reads [91,74]

∂ρ

∂t
= −i [HS, ρ] +

∑
m

{ [
Λmρ,Km

]
+
[
Km, ρΛ†m

] }
. (2.9)

This is the Redfield equation expressed in terms of the operators Λm and Km acting in
the Hilbert space. For historical reasons one should mention that the original Redfield
equation [98, 9] is written in terms of the Redfield tensor R instead. The latter is acting
on the RDM like the Liouville superoperator L

∂ρ

∂t
= −i[HS, ρ] +Rρ = Lρ. (2.10)

A unique relation between R, Km and Λm can be obtained after some algebra in arbitrary
representation. The action of the Redfield tensor can be expressed in state representation
as

〈i|Rρ|j〉 =
∑
k,l

Rij,klρkl . (2.11)

If the indices m and n are suppressed for simplicity the matrix elements of the Redfield
tensor read

Rij,kl = KljΛik + Λ†ljKik − δlj
∑
r

KirΛrk − δik
∑
r

Λ†lrKrj . (2.12)

In the original paper [98] it is proposed that some terms of R can be regarded as pertur-
bations and can be ignored if Rijkl � |ωij − ωkl|. Here ωij are the transition energies for
|i〉 → |j〉. All remaining terms, the so called secular terms, enter two decoupled equations
of motion. The first one involves the off-diagonal elements of ρ (the coherences) and has
an analytical solution

ρij(t) = ρij(0)e−iωijteRij,ijt . (2.13)

The second one is the Pauli master equation for the diagonal elements of ρ (the popula-
tions) [74,23]

∂ρii
∂t

=
∑
j 6=i

Rii,jjρjj(t) +Rii,iiρii(t) . (2.14)

According to Redfield [98] this approximation, known as secular approximation (SA) has
to be applied with caution for systems with resonances and should not be applied for
systems with degeneracy. A special case in which the SA is known to fail is if a strong
resonant field is applied [98]. Further in Sec. 2.6 the SA will be numerically compared
with other levels of approximation when applied to a simple ET model.

Summing up, let us first answer the question about the range of validity for the second-
order perturbation theory (also known as the second Born approximation). Looking at
the right-hand side of Eq. (2.5) one can extract the magnitude of the contribution of
the first-order and of the second-order term, respectively 〈HS〉 and τm〈HSB〉2 [74]. The
perturbation expansion is justified only if the latter quantity is smaller that the former
one.
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The Markovian approach with the use of the Redfield equation succeeds especially in
treating excitation/relaxation of nuclear spins in molecules in strong magnetic fields (e.g.
in NMR spectroscopy) [98,9,18]. In these systems the environment has much shorter cor-
relation times than the times for which the spin states evolve. However, there exist many
physically relevant situations in which the environment correlation time is comparable
or even longer that the evolution time scale of the relevant system and the Markovian
description fails. In particular, for very low temperatures the bath fluctuations become
relatively rare events. This leads to a very slow decay of the bath correlation function
Cmn(t) while the system relaxation has still very short characteristic times (e.g. ET be-
tween centers in frozen media). In addition to the necessary quantal description the
memory effects have to be taken into account in this case.

2.3 Electron transfer in a two-center system

As far as the aim of this work is to approach systems with ET the next step has to be
modeling the relevant system and the bath in an appropriate way. In most ET systems one
can distinguish at least two terminal states. In the first one the particle (the electron) is
localized at a center (group of atoms) which is called donor and the state is conventionally
denoted as DA state. If the particle is localized at the center known as acceptor the state of
the system is denoted as D+A− state. For all cases of intramolecular ET this basic concept
seems to be sufficient. For instance, in betaine-30 the first electronically excited state S1

can be identified as DA state and the ground state S0 as D+A− state. Nevertheless,
there are models for ET (applied e.g. to porphyrin-quinone complexes, DNA and other
biological systems) in which the electron can occupy intermediate (bridge) centers, i.e.
there exist other local states involved in the ET process. Being virtually unoccupied,
such states can, however, strongly influence the dynamics of the transition from DA to
D+A− and vice versa. This interesting phenomenon is known as superexchange which
will not be investigated here. The model for the Hamiltonian of the relevant system
HS, which will be described below, has already been widely used, e.g. most recently in
Refs. [77, 62,25,27,47,122,23,52], and will be applied with no further modifications.

In every chemical reaction, the transitions between DA and D+A− cause certain re-
organization of the nuclei in the molecular system along a reaction path in the potential
energy surface (PES). An effective description of the reaction path can be done either by
selecting representative normal vibrational modes of the molecule or by modeling the PES
along a so-called effective reaction coordinate. Since for most ET reactions the modes
under reorganization are diabatically coupled to the electronic states of DA and D+A−

two crossing diabatic PESs provide a suitable representation. As first approximation the
PESs can be considered harmonic as sketched in Fig. 2.2. The stable points (for harmonic
PESs the minima) of the PESs correspond to the relaxed geometries of DA and of D+A−.
In this Chapter it is not yet necessary to specify which state, DA or D+A−, has lower
energy. All parameters that completely determine a two-center system with one reaction
coordinate are the oscillator frequencies ω1 and ω2, the reorganization energy λ, and the
change of the free energy ∆G, as depicted in Fig. 2.2. Note that in the following the
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λ

∆G

ω0

Reaction coordinate q

∆q

Figure 2.2: Sketch of the model with one effective mode.

frequencies for both diabatic states are assumed to be equal and designated by ω0. The
definition of the reorganization energy reads

λ =
1

2
Mω2

0(∆q)2 =
1

2
ω0∆2 (2.15)

where ∆q is the coordinate shift and ∆ the dimensionless coordinate shift of the upper
state relative to the ground state andM is the reduced mass. Alternatively, an equivalent
parameterization is done in terms of the electronic-vibrational coupling κ which is defined
as the gradient of the potential of the upper state along the dimensionless coordinate at
the minimum position of the ground state. Thus, it reads κ = ω0∆. Important to note
is which different configurations can be considered in the framework of this model. The
case λ > |∆G| is called normal region in which the model particle has to overcome a
(classical) barrier. This particular configuration of the model PESs is depicted in Fig 2.2.
The configuration with λ = |∆G|, e.g. the ground-state PES intersects the upper PES at
its minimum, represents the regime of maximal back-transfer rate in the classical Marcus
theory [72,73]. λ < |∆G| defines the strongly exothermic Marcus inverted region. In this
case the minimum of the upper PES is located between the crossing and the minimum
of the ground-state PES with respect to the reaction coordinate. Finally, configurations
with λ = 0 (no crossing of the diabatic PES) physically represent vibronically decoupled
electronic states.

The harmonic potentials are coupled by an electronic coupling v12 assumed here to be
coordinate-independent for simplicity. Thus, the Hamiltonian of the uncoupled system is
then given by

H0 =
∑
i=1,2

[
Ui +

(
a†iai +

1

2

)
ωi

]
(2.16)

and the coupling by

V =
∑
i,j

∑
M,N

(1− δij)vijf(i,M ; j, N)|iM〉〈jN | . (2.17)
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The first index in each state vector |iM〉 denotes the diabatic PES while the second labels
the vibrational level. ai and a†i are the boson operators acting in state i, and f(i,M ; j, N)
is the Franck-Condon factor which measures the overlap between the vibronic states |iM〉
and |jN〉. All Franck-Condon factors can be calculated with the use of the eigenfunctions
ϕi,M(q) of the harmonic oscillator

f(i,M ; j, N) = 〈iM |jN〉 = 〈iM |
{ ∫

dq|q〉〈q|
}
|jN〉 =

∫
dqϕi,M(q)ϕj,N(q) . (2.18)

This was all necessary to model the relevant system and sufficient for the definition of HS

HS = H0 + V . (2.19)

In order to use the Redfield QME (2.9) one needs to know K and Λ. Bilinear system-
bath coupling (2.4), that was already assumed, allows a variety of ways to define Km

and Φm. A very natural approach is expanding the PES of the total system around the
global minimum into a series, restricting oneself to second order terms (all first order
terms vanish automatically). Then the total PES splits into pure harmonic components
which give rise to HS described above and HB (harmonic bath), and a presumably small
coupling term proportional to

∑
k qZk where q is the coordinate operator of the relevant

system and Zk are the bath coordinate operators. Taking only one term from Eq. (2.4)
and comparing it with

∑
ξ qZξ one can set K = q and Φ ∝ ∑ξ Zξ. Thus, K reads

K = q =
∑
i

∑
MN

(2ωiM)−1/2
(
a†i + ai

)
|iM〉〈iN | (2.20)

where M is the reduced mass of the relevant system and

Zξ = gξ
(
b†ξ + bξ

)
. (2.21)

The rest of the total Hamiltonian is the bath of harmonic oscillators

HB =
∑
ξ

ωξ
(
b†ξbξ + 1/2

)
. (2.22)

Here one may decide to simplify the system-bath coupling model introducing the rotating
wave approximation (RWA) [115,119,74]. It means that all terms in HSB proportional to
aibξ and a†ib

†
ξ will be neglected. They give rise to elementary transitions in which an exci-

tation (deexcitation) occurs simultaneously both in the relevant system and in the bath.
Such events are very unlikely and the RWA can be reasonably applied for weak system-
bath coupling. Nonetheless, this brings no special advantages from a computational point
of view except for a few special cases like the damped harmonic oscillator [53,120] or the
present ET model with additional approximations [122, 124, 23] (see Sec. 2.5). In both
cases the Redfield QME (2.9) turns into a Lindblad QME (2.7).

In order to obtain relevant physical information about the ET dynamics one has
to calculate the expectation values of certain observables. Most commonly used are the
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populations (occupation probabilities) of the diabatic states which are calculated by means
of a partial trace over the vibrational levels

Pi =
∑
M

ρiMiM . (2.23)

For the case of propagating the RDM in the basis of diabatic states |iM〉 (i.e. in the DR)
this is convenient. Using other representations one has to transform the RDM back to the
DR in order to apply Eq. (2.23) which requires two matrix-matrix multiplications. In such
cases it is advantageous to use the projection operator of the ith diabatic state Oi = |i〉〈i|
instead, whose matrix is initially transformed to ER, to calculate the populations

Pi = tr (ρOi) . (2.24)

This is numerically less expensive because only one matrix-matrix multiplication has to
be done. The populations demand little effort for calculation and provide a clear insight
into the overall dynamics as well as into the mechanisms of the ET reaction. In addition,
the RDM enables the simulation of experimentally detectable transient spectra, of course
with more computational costs and considerable sophistication of the models. Then the
relevant quantity is the total polarization that measures the response of the system to the
action of external fields. The expectation value of the total polarization is necessary for
these simulations and will be used in Chapter 4.

2.4 Electron transfer model with multiple reaction

coordinates

As already introduced, the Redfield formalism allows arbitrary models for the relevant
system. It is possible that one can subsequently take strongly coupled degrees of freedom
from the bath and put them into the relevant system part. This will effectively reduce
the system-bath coupling and hence make the application of the Redfield theory itself
more reasonable. Multi-mode modeling of ET reactions (including systems in the inverted
region) has been done in Ref. [121,122,23] with similar argumentation. On the other hand,
there is experimental evidence for the participation of multiple modes in the ET transition
in some systems (discussed in detail in Chapter 4). Correspondingly, the relevant part of
the total ET system can be modeled with a treatably small set of R reaction coordinates
{ql}. For this purpose one may select a set of representative harmonic normal modes from
the molecule and from its environment (e.g. solvent or crystal lattice). Since all normal
modes are completely decoupled one can use the single-mode operators (2.16), (2.17), and
(2.20) to calculate the matrix elements of the necessary operators in the full diabatic basis
|iM1 . . .MR〉. The matrix element of the Hamiltonian reads

〈iM1 . . .MR|HS|jN1 . . . NR〉 = δijU
(0)
i +

R∑
l=1

HiMl,jNl

∏
p6=l

δMpNp (2.25)
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where

HiMl,jNl = δijδMlNlωi,l(Ml +
1

2
) + (1− δij)vijf(i,Ml; j, Nl) (2.26)

is the matrix element of the partial Hamiltonian for mode l in a single-mode basis. The
ωi,l denote the eigenfrequencies of the oscillators, vij the electronic coupling, and U

(0)
i the

minimum energy of the i-th diabatic state. The Franck-Condon factors f(i,Ml; j, Nl) are
calculated with the use of Eq. (2.18).

For R reaction coordinates the expression for HSB includes R terms linear in each
coordinate ql. The matrix element of the latter reads

〈iM1 . . .MR|ql|jN1 . . . NR〉 = αi,lδij

(
δMl+1,Nl

√
Ml + 1 + δMl−1,Nl

√
Ml

)∏
p6=l

δMpNp (2.27)

The prefactor αi,l =
√
ωi,l/2λl∆ql establishes the connection between ωi,l, the coordinate

shift ∆ql and the reorganization energy λl.
The multi-mode model can be easily reduced to the previously defined effective single-

mode model by means of an orthogonal transformation of HS [87, 115]. After this proce-
dure all R normal modes are transformed to a finite bath with R − 1 modes bilinearly
coupled to the effective mode and the coupling energy appears at the expense of the
reduced reorganization energies of the modes. Thus, the reduction from a multi-mode
to a single-mode model extends the bath and enlarges the system-bath coupling. The
addition of modes to the relevant system can reduce the system-bath coupling and result
in a larger total reorganization energy.

2.5 Perturbation expansion of the relaxation opera-

tor

Assuming a quantum bath consisting of harmonic oscillators the time correlation function
of the bath operator is given as [90]

C(τ) = 〈Φ(τ)Φ(0)〉 =

∞∫
0

dωJ(ω)n(ω)(eiωτ + eβωe−iωτ ) . (2.28)

Here J(ω) denotes the spectral density of the bath [90], n(ω) = (eβω − 1)−1 the Bose-
Einstein distribution, and β = 1/(kBT ) the inverse temperature. If Φ is Hermitian the
Fourier transform C(ω) of the correlation function (2.28) has the property [90]

C(ω) = e−βωC(−ω) (2.29)

which is a necessary but not sufficient condition for the relevant system to evolve to
thermodynamic equilibrium.

The Hamiltonian HS of the system we are interested in can be separated according
to Eq. (2.19). Two canonical bases can be constructed for such a Hamiltonian. The DR
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is based on the eigenfunctions of H0. It is often called a local basis because the basis
functions of the diabatic PESs are located at the specific subsystems. Latin indices such
as |m〉 are used below to designate the DR basis states. The other basis diagonalizes
the system Hamiltonian HS. So it consists of eigenstates of HS and is called adiabatic
basis which has been mostly used in nuclear magnetic resonance [98,18] as well as in ET
studies [47]. These ER basis states will be denoted by Greek indices such as |µ〉. As
discussed in the introduction, Redfield theory is defined in ER but for transfer problems
DRs have some conceptual and numerical advantages.

Here one first calculates the dissipation in the DR for small intercenter coupling V .
In this basis the matrix elements of Λ are given by

〈n|Λ|m〉 =

∞∫
0

dωJ(ω)n(ω)

∞∫
0

dτ(eiωτ + eβωe−iωτ )〈n|KI(−τ)|m〉 . (2.30)

To evaluate the matrix element of K we have to use perturbation theory in V because the
diabatic states |n〉 are not eigenstates of HS but of H0. Some details of the determination
of 〈n|Λ|m〉 are given in Appendix A. Using the real part of the Fourier transform of the
correlation function (2.28)

C(ω) = 2π[1 + n(ω)][J(ω)− J(−ω)] , (2.31)

and denoting the transition frequency between diabatic states |m〉 and |n〉 by ωmn the
final result can be written as

〈n|Λ|m〉 =
1

2
C(ωmn)〈n|K|m〉 − 1

2

∑
j

〈n|K|j〉〈j|V |m〉
ωjm

[C(ωmn)− C(ωjn)]

− 1

2

∑
i

〈i|K|m〉〈n|V |i〉
ωni

[C(ωmn)− C(ωmi)] . (2.32)

This first-order result DR1 can be split into a zeroth-order contribution DR0 independent
of V and a first-order contribution proportional to V . Taking the DR0 term

〈n|Λ|m〉 =
1

2
C(ωmn)〈n|K|m〉 (2.33)

only is equivalent to a complete neglect of the influence of the intercenter coupling V on
dissipation. This assumption has been used earlier [77,75,62,27,121,122] and is sometimes
called the diabatic damping approximation (DDA) [23,52]. In this approximation only the
states |n〉 and |m〉 contribute to the matrix element 〈n|Λ|m〉. In DR1 all states contribute
to each of these matrix elements. As a consequence the spectral density of the bath is not
only probed at the transitions of the uncoupled subsystems as in DR0 but at many more
frequencies.

As long as the bath has constant temperature the system has to relax, after a certain
time, to the thermal equilibrium with the bath. This physical requirement is fulfilled if
the detailed balance condition [90] for the microscopic rates Rµµ,νν is satisfied

Rµµ,νν = exp (−βωµν)Rνν,µµ . (2.34)
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This principle is valid only if |µ〉 and |ν〉 are eigenstates of the relevant system. If we use
the diabatic states |m〉 and |n〉 instead of |µ〉 and |ν〉 and substitute the DR0 expression
for Λ (2.33) into Eq. (2.12) and then plug the resulting rates Rmm,nn into Eq. (2.34) we
arrive exactly at Eq. (2.29) but the thermodynamic equilibrium will not always be reached
as will be shown numerically in Sec. 2.6.

The ER result for the matrix elements of Λ can easily be deduced from the DR result
by replacing the diabatic states by adiabatic ones and setting V = 0 in Eq. (2.32):

〈ν|Λ|µ〉 =
1

2
C(ωµν)〈ν|K|µ〉 . (2.35)

This result is of course correct for arbitrary intercenter coupling strength.
In the DR0 expansion (2.33) the system can emit or absorb only at transition frequen-

cies ωmn. The spectral density of the bath J(ω) is effectively reduced to discrete values
J(ω) =

∑
ξ γξδ(ω − ωξ). The advantage of this approach is the scaling behavior of the

CPU time with the number N of basis functions which results from the simple structure
of the Λ matrix (2.33). It scales like N 2.3 as will be shown numerically in Chapter 3. This
is far better than the N 3 scaling of the DR1 approximation (2.32). In DR1 the spectral
density is probed at many more frequencies. One needs the full frequency dependence of
J(ω) which we take to be of Ohmic form with exponential cutoff

J(ω) = ηΘ(ω)ωe−ω/ωc . (2.36)

Here Θ denotes the step function and ωc the cutoff frequency. The normalization prefactor
η is determined such that the spectral densities in DR and ER coincide at ω0. Eq. (2.36)
together with Eq. (2.31) yields the full correlation function.

If the system Hamiltonian HS is diagonalized and the resulting ER basis is used to
calculate the elements of the operators in Eq. (2.9), there will be no longer any convenient
structure in K or Λ, so that the full matrix-matrix multiplications are inevitable. For this
reason the CPU time scales as N 3, where N is the number of eigenstates of HS. There
appears to be a minimal number N0 below which the diagonalization of HS fails or the
completeness relation for |µ〉 is violated. Nevertheless, the benefit of this choice is the
exact treatment of the intercenter coupling. It is straightforward to obtain the matrices
for ρ and K (see for example Ref. [25]).

2.6 Population dynamics in a two-center system

It is worthwhile to summarize and compare the various approximations introduced in the
foregoing section. To do this, we solve Eq. (2.9) using a model with two harmonic diabatic
PES with equal curvature along a single reaction coordinate q as depicted in Fig. 2.3. The
corresponding model parameters are listed in Table 2.1. A Gaussian wave packet in the
upper diabatic state (the excited state) |1〉 is prepared by a δ-pulse excitation from the
lowest vibrational level of the ground state |g〉 of the system

ρ1M1N(t = 0) = 〈1M |g0〉〈g0|1N〉. (2.37)
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Table 2.1: Parameters used in Chapter 2 for the one-mode model. The configuration
labels according to Fig. 2.3 are marked by bold letters.

Parameter Used value(s)
System frequency, ω0 0.1 eV (≈ 800 cm−1 )
Change of the free energy, |∆G| 2ω0 (a, c), 2.5ω0 (b, d)
Reorganization energy, λ 3ω0 (a, b), 14ω0(c, d)
Intercenter coupling, v12 0.1ω0, 0.5ω0, ω0

Damping rate, Γ = πJ(ω0)/Mω0 0.1ω0

Bath cutoff frequency, ωc ω0

Bath temperature, kBT ω0/4 (295 K)

The coordinate shift of |g〉 with respect to |1〉 is chosen such that mainly the fourth and
fifth vibrational levels of the excited state |1〉 are populated. No coupling to the ground
state after the preparation of the initial state is assumed. The initial wave packet starts
moving on the PESs of |1〉 and |2〉, and spreading. The relevant system part begins losing
energy to the bath and dephasing. The population of |1〉 starts decaying. So the motion
of the initial wave packet along the coordinate models the ET dynamics between the
centers.

First, let us compare the population dynamics with RWA, SA and DDA, and the
dynamics calculated without all these approximations. Very similar and more detailed
comparison has been done only with RWA in a recent study by Egorova et al. [23].
Figure 2.4 shows such a comparison of the population decay of the upper state with
strong intercenter coupling V in configuration (a) (see Fig. 2.3). Typical for the DDA is
the wrong long-time behavior of the dynamics which is in agreement with the conclusion
in Ref. [23]. In contrast, the SA results in deviations for short times. The simultaneous
use of DDA and SA keeps the features of both approximations. Showing no qualitative
difference from the pure case of DDA the application of DDA with RWA results in a
slightly smaller deviation from the correct population dynamics. This strange effect can
be regarded as a case of error cancelation.

In the following we compare the population dynamics in the two-center electron trans-
fer system using three different intercenter coupling strengths V and four different config-
urations of the two harmonic PESs. Beginning our analysis with the weak coupling case
v12 = 0.1ω0 it is expected that a perturbation expansion in V yields almost exact results.
This is the reasoning why the DR0 term, which is easy to implement, has been used in
earlier work [77,75,62,27,121,122].

In configuration (a) the eigenenergies of the two diabatic PESs are in resonance. For
example, the first vibrational eigenenergy of the first center equals the third vibrational
eigenenergy of the second center. It is important to note that in this configuration no
vibrational level of the first center is below the crossing point of the two PESs. The cal-
culations using ER and DR0 as well as DR1 give almost identical results, see Fig. 2.5 (a).
For long times DR0 deviates a tiny bit. Redfield theory in ER is known to give the correct
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a

b

c

d

Figure 2.3: The four different configurations of the two diabatic harmonic potentials |1〉
and |2〉 as discussed in the text, with the vibronic energy levels in DR.
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Figure 2.4: Comparison of various approximations in the framework of the Redfield
theory. The population of the upper state calculated with no approximations is drawn in
thick solid line. Dashed line shows SA, dotted line DDA; thin solid line is drawn for DDA
together with SA, and dot-dashed for DDA with RWA.
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Figure 2.5: Time evolution for small intercenter coupling and for the four different
configurations. The results in ER are shown by the solid line while the results in diabatic
basis are shown by dotted (zeroth-order) and dashed (first-order) lines. The results for
ER and DR1 are indistinguishable for small intercenter coupling. Note the logarithmic
time scale.

long-time limit (up to the Lamb shift).

Configuration (b) differs from the first one by shifting the first PES up by ω0/2. As
shown in Fig. 2.5 (b) the ER and DR1 results again agree perfectly. On the other hand,
the DR0 results are a little bit off already at early times and the equilibrium value departs
from the correct value much more than in the first, on-resonance configuration.

Shifting the PESs further apart than in (a) yields configuration (c). The energy levels
are again on resonance but this time two vibrational levels of the first center are below
the curve-crossing point, i.e. there is a barrier for low-energy parts of the wave packet. As
shown in Fig. 2.5 (c) DR1 and the ER results agree perfectly once more. The DR0 results
are terribly off. The long-time population of the first center which should vanish for the
present configuration stays finite. If we increase the energy of the first PES by ω0/2 to
obtain configuration (d) DR0 fails again while DR1 gives correct results in comparison to
the ER, see Fig. 2.5 (d).

To understand the large difference between DR0 and DR1 let us have a closer look at
the final result for the matrix elements of Λ, Eqs. (2.32) and (2.33). The DR0 contribution
(2.33) is independent of the intercenter coupling V . The system part of the system-bath
interaction K allows only for relaxation within each center. So there is no mechanism
in the dissipative part which transfers population from one center to the other. This
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Figure 2.6: Time evolution for medium intercenter coupling.

transfer has to be done by the coherent part of the master equation. But the coherent
part cannot transfer components of the wave packet with energy below the crossing point
of the PESs. As tunneling is almost completely suppressed, those components of the wave
packet cannot leave their center anymore although the corresponding PES might be quite
high in energy. This results in the failure of DR0 for the configurations with barrier: Parts
of the wave packet get trapped in the two lowest levels of the left center. From Eq. (2.32)
one can explain why in the on-resonance case the DR0 results are in better agreement
with the correct results than in the off-resonance case. In this configuration some of the
DR1 terms are very small and so the DR1 correction is smaller.

Now we discuss the medium coupling strength v12 = 0.5ω0 (see Fig. 2.6). The results
for configurations (a) and (b), i.e. without barrier, look quite similar. In both cases the
ER and DR1 results agree very well for short and long times. At intermediate times there
is a small difference. The DR0 results already deviate at short times and for long times
there is too much population in the left (higher) center. For configurations (c) and (d),
i.e. with barrier, again the ER and DR1 results coincide for small and long times. DR0
is off already after rather short times and the long-time limit is again wrong.

For strong coupling v12 = ω0 (see Fig. 2.7) the behavior of the results is quite similar
to the medium coupling. For configurations (a) and (b) the difference at intermediate
times is a little larger, so is the deviation of the long-time DR0 limit. For configurations
(c) and (d) with barrier there is also a discrepancy for DR1 already at short times and the
correct long-time limit is not reached exactly. But the disagreement is surprisingly small
for the strong coupling. Overall DR1 still looks quite reasonable while the DR0 results
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Figure 2.7: Time evolution for strong intercenter coupling.

are completely off.

2.7 Transfer mechanisms within the first-order ex-

pansion of the relaxation operator

As already noted most physical quantities, e.g. the population of a diabatic state, are ob-
tained by projecting the RDM onto the diabatic basis. Therefore, one can take advantage
of the analytical result for the DR1 contribution in the relaxation operator Λ in order to
analyze the limits of validity of DDA.

Inspecting Eq. (2.32) one can see that all diabatic levels contribute to each matrix
element of Λ, i.e. all diabatic levels can mediate population transfer between donor and
acceptor. This is not the case in the DR0 term (2.33) where only two levels give rise merely
to population decay (damping) within one diabatic state. Thus, the only mechanism for
population transfer in DDA arises from the coherent term in Eq. (2.9).

The contribution of the DR1 term in the relaxation operator Λ can be viewed as a
sequence of two one-quantum processes. The first can be thermal activation from a level
|n〉 due to the bath (Fig. 2.8 a). According to the selection rule ∆M = ±1 a neighboring
vibronic level |j〉 from the same diabatic state is virtually occupied. After that the
population is transfered coherently to such a level |m〉 in the other diabatic state with
which the Franck-Condon overlap is sufficiently large. Alternatively, as seen in Eq. (2.32)
the backward sequence is possible as well, i.e. coherent transfer from |n〉 to |i〉 followed
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Figure 2.8: Schematic representation of the mechanisms for population transfer within
DR1.

by damping down into the next |m〉 (Fig. 2.8 b). Besides these two possibilities there can
be two other routes not shown in Fig. 2.8. These are thermal deexcitation from a higher
lying |n〉 to |j〉 and then a coherent transfer according to case (a). Respectively, there
can occur excitation of |i〉 to a higher |m〉 in case (b).

In addition Eq. (2.32) allows for classification of cases for various configuration pa-
rameters of the relevant system and for a rigorous determination of the validity limits of
DDA. In particular, one has to regard cases in which the coherent transfer mechanisms
are hindered, e.g. low levels with inefficient Franck-Condon overlap.

2.7.1 Configurations with barrier in the normal region

This is the case in which λ � |∆G0|. The lowest levels in the upper diabatic state have
no Franck-Condon overlap with the levels of the lower diabatic state. Thus, after very
fast vibrational relaxation (damping) taking about 10 vibrational periods the lowest level
of the upper state is predominantly occupied and in this way the population is trapped
before significant coherent transfer has taken place. This short-time phenomenon is less
pronounced for larger intercenter coupling whereby coherent mechanisms start to domi-
nate over damping, and hence over trapping at early times of the dynamics (Fig. 2.6 c, d).
If the DR1 term is taken into account the trapped population can be transfered to the
donor state on a much larger time scale via thermally assisted channels as already dis-
cussed above in this section. Regarding the latter two statements, note the plateau-like
feature after 10 vibrational periods when coherent mechanisms become slower and DR1
starts to prevail (Fig. 2.6 c, d).

A very interesting situation occurs if the diabatic levels of the donor and of the acceptor
states are not in resonance. With DDA such a detuning can influence only the coherent
term, and as seen in Fig. 2.5 (c, d) and Fig. 2.6 (c, d), no major difference between the
in- and off-resonance cases can be detected. Nevertheless, the dynamics with inclusion
of DR1 differs due to the factors C(ωmn) − C(ωjn) and C(ωmn) − C(ωmi) in Eq. (2.32)
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Figure 2.9: Population dynamics of the upper localization center for different values of
the reorganization energy and weak intercenter coupling (v12 = 0.1ω0) calculated with
DDA (dotted lines) and without DDA (solid lines). The first and the third configurations
are identical with cases (c) and (a) respectively from Fig. 2.3 and the last configuration
is in the Marcus inverted region (λ = 0.5ω0).

some of which vanish in case of resonance, i.e. |m〉 and |j〉 or |n〉 and |i〉 respectively, have
equal energies, and do not contribute in the transfer process. It can thus be concluded
that DDA is better behaved in the case of resonance configurations.

To sum up, the population dynamics in systems with potentials with barrier in the nor-
mal region show a good time separation between early coherent and later DR1-dependent
transfer mechanisms. Tunneling (regarded as slow coherent motion) can only be efficient
for more specific configurations in which non-vanishing overlap between the levels below
the curve-crossing is present.
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2.7.2 Barrierless configurations and configurations in the in-
verted region

Exploring a selection of configurations in the normal and in the inverted region (Fig. 2.9)
it was possible to verify that the DDA is valid not only in the inverted region but also
in the normal region without barrier. In both cases the configurations are characterized
by a very strong Franck-Condon overlap between the diabatic levels in the donor and
the acceptor states. This enables very fast coherent population transfer. Evidence for
the dominating coherent motion are the multiple revivals of population on the donor
(Fig. 2.6 a, b). Provided that the damping in the acceptor state is present, the system
approaches its equilibrium state before the coherences have completely decayed and before
the DR1 term has contributed substantially. This is the reason why in this regime the
transfer rate is determined by the damping rate. In addition, the distinction between
the cases in- and off-resonance has no relevance to the transfer mechanism either. For
sufficiently small value of the intercenter coupling the DR1 and higher order terms give
minor contribution and the DDA (2.32) is valid. However, for large intercenter coupling
the perturbation theory and particularly DDA fail and one cannot separate and examine
contributions in Λ in this manner.

2.8 Summary

In addition to the approximations in Redfield theory, i.e. second-order perturbation expan-
sion in the system-bath coupling and Markov approximation, we have applied perturbation
theory in the intercenter coupling. It has been shown for two coupled harmonic surfaces
that the zeroth-order approximation DR0, which is equivalent to DDA, can yield wrong
population dynamics even for very small intercenter coupling. These artifacts disappear
using the first-order theory DR1.

For configurations without barrier it is possible to use DR0 for weak to medium in-
tercenter coupling. This of course depends on the accuracy required especially for the
long-time limit. In all other cases one should either use the exact ER or DR1. Although
the first-order results are not exact for medium and strong intercenter coupling these
calculations have at least two advantages. First of all, one does not need to calculate the
eigenstates and eigenenergies of the full system Hamiltonian HS. For small systems like
two coupled harmonic surfaces on one reaction coordinate this calculation is of course easy.
But if one wants to study larger systems like molecular wires [20, 25] and/or multi-mode
models [121, 122, 123] this is no longer a trivial task. The second advantage is related
to the fact that in all transfer problems one is mainly interested in properties which are
defined in a local basis, e.g. the population in each subsystem at any moment in time.
If one uses the ER one has always to transform back to the DR in order to calculate
these properties. So for large-scale problems using a DR together with the first-order
perturbation in V should be advantageous.

In a sense the present study is an extension of the investigation performed by Davis
et al. [20]. They compared ER and DR for a two-site problem. Here we looked at a more
general multilevel system and also calculated the first-order perturbation. In their model
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they do not have a reaction coordinate and therefore no barrier. Their findings correspond
more to cases (a) and (b) discussed previously. Besides the agreement in the case of small
intercenter coupling they also found good agreement in the high-temperature limit. Using
our model this statement could not be confirmed for a general configuration, although
there might be configurations where it would be true.

In Ref. [127] the authors followed a strategy different from the present work. They
also studied two coupled harmonic oscillators modeling two coupled microcavities, but
only one cavity was coupled to the thermal bath directly. This should not effect the
questions studied here. With a transformation to uncoupled oscillators they effectively
reduced the intercenter coupling to zero. The result [127] is then exact for arbitrary V .
The disadvantage of this strategy is that it is not easy to extend to larger systems. The
advantage of the presently developed first-order expansion in V is its general applicability
to problems of any size.



Chapter 3

Numerical methods

3.1 Introduction

An analytical solution of the Redfield QME is possible only for a limited number of trivial
problems, e.g. the damped harmonic oscillator or a single spin in an environment. Mod-
eling real systems one has to approach the solution numerically. Already for moderately
large systems this task becomes computationally very demanding or even intractable, and
therefore requires efforts in reducing the numerical complexity of the RDM propagation.
Straightforward diagonalization of the Liouville superoperator can be used in case of a
time-independent Hamiltonian. In this way the rates, i.e. the characteristic inverse times
of an exponential decay of the occupation probability of the excited states, can be ob-
tained. Such an approach involves a huge number of floating point operations and the
overall computational effort will scale as N 6 where N is the size of the basis of vibronic
states. Furthermore the direct diagonalization can be numerically unstable, but neverthe-
less has been successfully used [47]. Another strategy [38] suggests solving N 2 ordinary
differential equations and requires products between the Liouville superoperator and the
RDM which scale as N 4. This is still a very expensive method for simulation of multi-level
systems.

Assuming a bilinear system-bath coupling the numerical effort can be reduced consid-
erably by rewriting the Redfield equation in such a form (2.9) that only matrix-matrix
multiplications are needed [91] rather than applying a superoperator onto the RDM.
Hence, a computational time scaling of N 3 and a storage requirement of N 2 is achieved.
In what follows, all approaches based on the latter scaling will be referred to as direct
propagation methods.

Using stochastic wave function methods a significant reduction of the scaling of the
numerical effort with increasing number of basis functions can be achieved. These methods
prescribe certain recipes for unraveling of the QME and substitute the RDM by a set of
wave functions which evolve partially stochastically in time. The method has the typical
scaling of the well developed and optimized wave function propagators, i.e. N 2. Between
the direct and the stochastic methods to solve the Redfield equation the accuracy differs
especially because direct RDM integrators are numerically “exact” while the stochastic
wave function simulation methods have statistical errors. For small and medium size
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problems direct propagators can be prefered. Simulations based on the Lindblad QME
(2.7) with use of both direct and stochastic methods have already been compared [102,11].

When using stochastic methods for wave function propagation one has to solve
Schrödinger-type equations with a non-Hermitian Hamiltonian. For that purpose the
same algorithms of the direct propagators can be used. In this sense the direct methods
are also of importance for solving Redfield equations by means of stochastic wave function
methods. Stochastic unraveling methods will be discussed in detail in Sec. 3.5 and used
for some applications in Chapter 4.

The present studies are restricted to state representation. Grid representation of the
stochastic wave function is especially useful for complicated or unbound potentials. Then
one can take advantage of another propagator, the split operator [31]. This approach
can be advantageous for the following reasons. First, its performance does not depend
on the spectral range of the Hamiltonian or Liouville superoperator. Second, the most
demanding fast Fourier transformations (FFTs) scale with the basis size as N lnN , i.e.
less than N 2 for the methods in state representations. Typical drawback of this approach
is that it cannot be applied with Hamiltonians which have mixed terms in coordinate and
momentum operators.

More recently the multi-configuration time-dependent Hartree method has been es-
tablished to treat density matrix operators [94]. This method might be favorable for
multi-dimensional problems, especially dynamics of chemical reactions.

3.2 Scaling properties of the Redfield quantum mas-

ter equation

The representations introduced in Chapter 2 allow us to consider the numerical effort for
a single computation of the right hand side of Eq. (2.9), respectively of Lρ(t) in Eq. (2.10).
In the DR its computation can be approached using two different algorithms. It is possible
to perform matrix-matrix multiplication only on those elements of K and Λ which have
nonzero contributions to the elements of Lρ(t) (Fig. 3.1, solid line). This is advantageous
because of the tridiagonal form of K in diabatic representation and shows the best scal-
ing properties, namely N 2.3. In the same representation but with the full matrix-matrix
multiplications in Eq. (2.9) (Fig. 3.1, dashed line) the performance is slightly worse than
the same operation in adiabatic representation (Fig. 3.1, dotted line) although the scal-
ing behavior is the same, i.e. N = 2. This is due to the non-diagonal Hamiltonian HS

in the former case that requires an additional matrix-matrix multiplication for the com-
puting of the coherent term in Eq. (2.9). Below we will perform the full matrix-matrix
multiplication to evaluate Lρ(t) in both representations. We do this to concentrate on
the various propagation schemes, not the unequal representations. Nevertheless, there
are performance changes in the different representations because of the disparate basis
functions and forms of the operators in these basis functions.
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Figure 3.1: Scaling behavior of the product Lρ(t). Solid line – tridiagonal form of K
in diabatic representation, dotted line – adiabatic representation, dashed line – diabatic
representation with full matrix-matrix multiplications. The CPU time is scaled so that it
is equal to 1 for N = 50 in diabatic representation.

3.3 Direct reduced-density-matrix propagators

In the present section a variety of numerical schemes for solution of the Liouville-von
Neumann equation will be tested and compared. The performance of the well-known
Runge-Kutta (RK) scheme is studied in two different implementations: as given in the
Numerical Recipes [93] and by the Numerical Algorithms Group [84]. In addition to these
general-purpose solvers there are more special algorithms which have been applied previ-
ously to the time evolution of wave packets and density matrices. For density matrices
these are the short-iterative-Arnoldi (SIA) propagator [91,90], the short-time Chebyshev
polynomial (CP) propagator [38], and the Newtonian polynomial (NP) propagator [7, 4].
The latter propagator is also used as a reference method because of its high accuracy.

Next, a symplectic integrator (SI), which was originally developed for solving classical
equations of motion and extended to wave packet [37] and density matrix propagation [49],
is tested.

A possible alternative to the Chebyshev scheme is the application of Legendre polyno-
mials [58]. Both types of polynomials are special cases of the more general hypergeometric
polynomials (Jacobi polynomials) which gives the hint that the latter can be used for in-
terpolating time propagators as well. Legendre and Jacobi polynomials are not applied
in the current work.
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3.3.1 Runge-Kutta method

The RK algorithm is a well-known tool for solving ordinary differential equations. Thus,
this method can be successfully applied to solve a set of ordinary differential equations
for the matrix elements of Eq. (2.9). It is based on a few terms of the Taylor series
expansion. In the present work we use the FORTRAN77 implementation as given in the
Numerical Recipes [93] which is a fifth-order Cash-Karp RK algorithm and will be denoted
as RK-NR. As alternative the RK subroutine D02PDF from the Numerical Algorithms
Group [84] which is based on RKSUITE [10] was tested. It will be referred to as RK-NAG.
Both RK-NAG and RK-NR involve terms of fifth order and use a prespecified tolerance
τ as an input parameter for the time step control. The tolerance τ and the accuracy of
the calculation are not always simply proportional. Usually decreasing τ results in longer
CPU times.

In Ref. [104] a time step control mechanism different from those used in RK-NAG and
RK-NR was tested. Discretizing the time derivative in Eq. (2.9) and requiring∣∣∣∣∣ρ(ti+1)− ρ(ti)

∆t
+ Lρ(ti)

∣∣∣∣∣ < τ (3.1)

one only has to call the propagation subroutine once and to store the previous RDM.
In addition one has to calculate the action of the Liouville superoperator L onto the
RDM but the numerical effort for this is small compared to a call of the propagation
subroutine. It was shown in Ref. [104] that this time step control is the most efficient for
propagation with the coherent terms in Eq. (2.9) only but disadvantageous for problems
with dissipation. This is the reason why we do not include this algorithm in the present
study.

3.3.2 Short iterative Arnoldi propagator

The SIA propagator [91, 90] is a generalized version of the short iterative Lanczos prop-
agator [66] to non-Hermitian operators. With the short iterative Lanczos algorithm the
wave function can be propagated by approximating the time evolution operator in Krylov
space, which is generated by consecutive multiplications of the Hamiltonian onto the wave
function. In analogy the Krylov space within the SIA method is constructed by recursive
applications of the Liouville superoperator onto the RDM ρn = Lnρ(t). In this way it is
tailored to the RDM at every moment in time. The Liouville superoperator, denoted by
l in Krylov space, has Hessenberg form

L ≈ V lV T , (3.2)

where the orthogonal transformation matrix V is constructed iteratively using the so-
called Lanczos procedure [91]. The Krylov representation l can be easily diagonalized to
L with the help of a transformation matrix S:

eLt ≈ V SeLtS−1V T . (3.3)
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Since the diagonalization is performed in the Krylov space the numerical effort depends
on its dimension which can be chosen small in practice. Having thus derived a diagonal
operator eLt the calculation of ρ(t) is straightforward.

3.3.3 Symplectic integrator

The SIs were originally developed for solving classical equations of motion [101]. The time
evolution of a classical Hamiltonian system can be viewed as a canonical transformation
and SIs are sequences of canonical transformations. Recently it was shown that the time
evolution of wave packets [37] and density matrices [49] can also be performed using SIs.
In order to rewrite the Redfield equations in the form of coupled canonical variables that
are analogous to classical equations of motion one defines the functions [49]

Q(t) = ρ(t) , (3.4)

P (t) = ρ̇(t) , (3.5)

the operator

W = −L2 , (3.6)

and the Hamiltonian function

G(Q,P ) =
1

2
[P TP +QTWQ] . (3.7)

Doing so one obtains equations of motion analogous to the classical ones

d

dt
P (t) = −∂G(Q,P )

∂Q
= −WQ(t) , (3.8)

d

dt
Q(t) =

∂G(Q,P )

∂P
= P (t) . (3.9)

Rewriting this into the SI algorithm of order m yields [49]

Pi = Pi−1 + bi∆tL2Qi−1 (3.10)

Qi = Qi−1 + ai∆tPi (3.11)

for i = 1, . . . ,m. Different sets of coefficients {ai} and {bi} are given in the literature.
Here we choose the McLachlan-Atela fourth-order method [79]. The coefficients for this
method are listed in Ref. [37]. A comparison of the McLachlan-Atela fourth-order method
with the McLachlan-Atela third-order method [79] and Ruth’s third-order method [101]
for RDM propagation has been given elsewhere [49].

3.3.4 Newton polynomial scheme

Another way to solve Eq. (2.9) is by a polynomial expansion of the time-evolution opera-
tor. Such methods are well established and approved for wave-function propagation [66,4].
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Figure 3.2: Spectrum of the scaled Liouville superoperator L̃ for the model of electron
transfer (see the text below Eq. (3.13)). Approximate eigenvalues obtained in the Krylov
subspace are plotted as dots. Open squares denote the interpolation points λj for the NP
scheme.

Recently the Faber [43] and NP [7] algorithms have been applied to propagate density
matrices and it has been shown that they behave very similarly [43]. The main idea
of the NP method is the representation of the Liouville superoperator by a polynomial
interpolation

eLt ≈ PNp−1(L) ≡
Np−1∑
n=0

anρn =
Np−1∑
n=0

an
n−1∏
j=0

(L − λj) (3.12)

of order Np where the ρn are computed recursively and an are the nth divided differences.
The interpolation points λj can be chosen to form a rectangular area in the complex plane
(see Fig. 3.2) which contains all eigenvalues of L. This interpolation scheme is uniform,
i.e. the accuracy in energy space is approximately the same in the whole spectral range
of L. This is in contrast to schemes such as the SIA propagator which are nonuniform
approximations. A consequence of this property is the very high accuracy which can be
achieved with uniform propagators. This is why we take a high-order NP expansion as
reference solution. Since the quality of the approximation of the time evolution operator
is equivalent to a scalar function with the same interpolation points λj, one can, before
performing the actual calculation, check the accuracy on a scalar function. For the cal-
culation with the NP propagator we set the truncation limit of the expansion to 10−15,
i.e. the sum in Eq. (3.12) is truncated when the residuum fulfills an||ρn|| < 10−15 [4].

3.3.5 Chebyshev polynomial scheme

As a last contribution to the present study we will examine the CP propagator. Recently
it was studied by Guo et al. [38] for density matrices. The Liouville superoperator is
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approximated by a series of CPs Tk(x). Generally the CPs diverge for non-real arguments.
For propagators of the kind e−iHt it has been shown [4] that the CPs may tolerate some
imaginary part in the eigenvalues of H. The stability region has the form of an ellipse with
a center at the origin and a very small half-axis in imaginary direction [4]. In contrast,
the eigenvalues of the Liouville superoperator are spread over the negative real half of the
complex plane and symmetrically with respect to the real axis (see Fig. 3.2). The real
components for the system that we consider are one order of magnitude smaller than the
imaginary components. This is why we make the expansion along the imaginary axis and
use an expression similar to that already applied to wave function propagation [66]:

eLt ≈ eL
+∆t

Np−1∑
n=0

(2− δn0)Jn(L−∆t)Tn(L̃) . (3.13)

Here the expansion coefficients Jn are the Bessel functions of the first kind, and L̃ is the
appropriately scaled Liouville superoperator: L̃ = (L − L+)/L−, where L− and L+ are
the half span and the middle point of the spectrum of L. Since the spectrum is symmetric
with respect to the real axis, L+ = 0. The time evolution of ρ is given by

ρ(t+ ∆t) ≈
Np−1∑
n=0

(2− δn0)Jn(L−∆t)ρ̃n . (3.14)

The Chebyshev vectors ρ̃n are generated by means of a recurrence procedure:

ρ̃n = 2L̃ρ̃n−1 + ρ̃n−2, ρ̃0 = ρ(t) and ρ̃1 = L̃ρ̃0 . (3.15)

For the CP and NP methods one has to adjust the values of the spectral parameters
L− and L+. One can obtain some knowledge about the spectrum of L by an approximate
diagonalization, e.g. by Krylov subspace methods. For instance, Fig. 3.2 shows an approx-
imate spectrum of L appropriately scaled so that all eigenvalues lie within the rectangle
formed by the Newtonian interpolation points.

3.4 Performance of the direct propagators

The aim of this section is to compare the different numerical methods described above for
propagating the RDM in time. The calculations were performed for both RK methods
with different tolerance parameters τ and for the SI as well as the NP, CP, SIA propagators
with different time steps. The number of interpolation points Np in NP and CP propaga-
tors is 170 and 64, respectively. The summation terms in Eq. (3.12) and in Eq. (3.13) are
truncated if their contribution is less than 10−16. The dimension of the Krylov space for
the SIA method was set to 12 because smaller as well as larger values are less efficient for
the example studied here. All computations were made on Pentium III 550 MHz personal
computers with intensive use of BLAS and LAPACK libraries. The code was compiled
using the PGF90 Fortran compiler [88]. For estimation of the computational error of all
methods the NP algorithm with 210 interpolation points was chosen as a benchmark.
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Figure 3.3: PESs for a model electron transfer system. Diabatic PESs are plotted on
the left side, and the PES of the adiabatic excited state |e〉 on the right side.

A one-dimensional model of a system with two charge localization centers (m = 1, 2)
as presented in Fig. 3.3 is considered. The vibronic coupling of these two centers can
be strong while the coupling to the bath degrees of freedom is assumed to be small.
Transitions between the centers model the main physics of an electron transfer reaction.
A more detailed description of the model was already given in Sec. 2.6. The temperature
T = 298 K is used. The displacement of the PES of the ground state |g〉 with respect to
|1〉 corresponds to a reorganization energy λ = 1.1ω0 where ω0 is the system frequency.
All other parameters are the same as for configuration (c) in Table 2.1 and for strong
intercenter coupling, i.e. v12 = ω0. A basis size of 16 vibrational levels per center, i.e. a
density matrix with N ×N = 32×32 = 1024 elements, satisfies the completeness relation
and presents no difficulties during the diagonalization of HS. Using Eq. (2.9) the Redfield
tensor R needs not be constructed explicitly. A typical computation till the equilibrium
is reached takes a few hours of CPU time on the above described computers (see below
for details).

In all cases the RDM was propagated for a total time period of 3 × 105 a.u. which
is sufficient for complete relaxation to equilibrium. It was compared to the RDM ρref

evaluated by the NP algorithm at the same points in time. The relative error ε(t) of each
method at a certain moment in time t has been estimated using a formula similar to that
proposed for wave functions by Leforestier et al. [66]:

ε(t) =

∣∣∣∣∣1− Tr (ρ(t)ρref(t))

Tr (ρ2
ref(t))

∣∣∣∣∣ . (3.16)

As the error ε we define the maximum value of ε(t) over the total propagation time. For
more details we refer to Ref. [104]. Other error measures (see for example [86,38]) can be
used as well but they will have the same qualitative behavior.

As an index for the numerical effort two possibilities were explored. The first one
is a direct measurement of the CPU time of the total propagation (Fig. 3.4). It may
look quite different on other computer architectures or even on the same architecture but
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Figure 3.4: Numerical performance of different numerical propagators. Results obtained
in the diabatic (adiabatic) representation are shown in the left (right) plot. The arrows
represent the numerical performance for the NP propagator with 50 interpolation points
and time step 100 a.u.

under changed operation conditions. An evidence of the performance (Fig. 3.4) will be
expressed by means of CPU time versus the error ε.

Another approach to describe the numerical effort has been proposed [38] and is called
efficiency factor. It is defined as the ratio between the time step ∆t and the number
of operations Lρ(t) within this time step. Because of the definition it is a machine
independent quantity. The larger the efficiency factor, the better the performance of
the algorithm. Because the RK algorithms propagate with variable time step we cannot
directly use the definition of the efficiency factor. Instead we define a quantity α as the
total number Nc of Lρ(t)-evaluations divided by the total time for the propagation:

α = Nc/(Ns∆t) . (3.17)

Here Ns denotes the total number of time steps. The inverse of α will have the meaning
of an efficiency factor for an averaged time step ∆t. We should point out that Nc does not
take into account the effort for summation of the different contributions. In particular in
the case of the NP method the summation of the different terms in the polynomial expan-
sion (3.12) can be non-negligible. This can be seen in the different relative performance
of the propagators shown in Figs. 3.4 and 3.5. We consider both the CPU time and the
quantity α as measures of the numerical effort.

Contributions from the algorithm to calculate Lρ(t) also influence the CPU time. As
discussed above, in all computations represented in Figs. 3.4 and 3.5 the full matrix-matrix
multiplications in Eq. (2.9) were performed. The performance of the CP, NP, SI and SIA
methods is only influenced very little by the choice between diabatic and adiabatic repre-
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Figure 3.5: Numerical effort of different numerical propagators as defined in Eq. (3.17)
in the diabatic (adiabatic) representation shown in the left (right) panel. The arrows
represent the numerical performance for the NP propagator with 50 interpolation points
and time step 100 a.u.

sentation. Both RK implementations are less efficient in the adiabatic than in the diabatic
representation, though the RK-NAG scheme has still the best performance besides the
NP algorithm. The RK-NR scheme has an advantage for computation in diabatic rather
than in adiabatic representation especially for medium precision requirements. In that
range the performance curves of the RK methods exhibit a shoulder for the adiabatic case
which seems to result from a numerical artifact.

Because the error of the SIA algorithm is not uniformly distributed in energy space [57]
we could expect some difference in its performance in diabatic and adiabatic represen-
tation. But because the coupling v12 chosen here is not very large, the eigenstates of
the coupled system are just slightly disordered (see Fig. 3.3, right plot) and hence the
performance of the SIA algorithm is almost not changed.

The uniformity, stability and high accuracy of the CP propagator for wave functions
is well known [66,57,86]. The CP approach to density matrix propagation was introduced
by Guo and Chen [38]. Using a damped harmonic oscillator as model system and starting
from a pure state they established that the relative error can reach the machine precision
limits (10−15) for sufficiently small stepsize. However, for the system of coupled harmonic
potentials studied here and using an initial RDM with non-zero off-diagonal elements the
error saturates at ε ≈ 10−8 (see Fig. 3.4). It was not possible to decrease this saturation
limit neither by increasing the order of the CP nor by decreasing the time step. This limit
seems to depend strongly on the imaginary part of the eigenvalues of L. For large time
steps the CP method loses its stability and one needs to estimate the efficiency range of
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Np, ∆t and L−. Turning off the dissipation we could reach much higher accuracy with
the CP propagator as expected.

The SI is easy to implement. The expansion coefficients are fixed and can be taken
from literature. At the same time the fixed coefficients seem to limit the accuracy. For not
too high accuracy the performance of the SI is as good as that of the other propagators
in adiabatic representation. In diabatic representation its performance is a little worse.
But we were not able to achieve very high accuracy with this method. This might be
due to the special version, the fourth order McLachlan-Atela method, which we chose. It
is also important to note the relatively bad stability limit (ε ≈ 10−6) of the present SI
propagator. It is known [37] that the second order Leapfrog symplectic method is stable
even for large time steps resulting in very low accuracies. Higher order SI methods, like
the fourth order McLachlan-Atela method, are designed to achieve higher accuracy at
relatively low costs rather than to explore a broad stability range. Extensive studies of
the accuracy and stability of various SI methods have been reported [37,49].

As already highlighted [43] the NP scheme is very stable for arbitrary spectral prop-
erties of L. The only restriction is that the spectrum must be confined within the area
formed by the interpolation points. In our investigation the NP propagator performs with
a good accuracy for Np = 170 and time steps of 1500 a.u. which is 10 times larger than
the step size of the CP scheme. Higher order expansions might be even more efficient but
the numerical implementation gets tricky and easily unstable. For time steps of 100 a.u.
with Np = 50 the NP algorithm is already numerically exact but computationally very
expensive (see the arrows in Fig. 3.4 and Fig. 3.5). For problems with time-dependent
Hamiltonians (e.g. non-stationary external fields with relatively small amplitude) the RK
and SIA methods will be more efficient with small time step.

At the end we should point out that there exists no ultimate method to determine the
performance of a certain numerical approach which could be valid for different platforms.
Tuning and optimization features are generally not portable and this may cause even
different scaling behavior and hence a different method of preference. That is the reason
why the generality of the results is limited to similar computation platforms and even to
systems with similar properties of the corresponding Liouville superoperator. But on the
other hand this study can give hints on the performance of the different algorithms in
general.

3.5 Stochastic wave function methods

Stochastic unraveling (sometimes also called Monte Carlo wave function method) is an
efficient numerical tool for solving QMEs. This method allows to simulate very large and
complex systems with many degrees of freedom. Instead of propagating the RDM which
describes a mixed state of the relevant system one considers an ensemble of pure states,
the so called quantum trajectories. Each pure state, described by a wave function, expe-
riences fluctuations in the bath and hence evolves stochastically in time. Formally, the
time evolution of every single quantum trajectory is governed by a stochastic Schrödinger
equation (SSE). Averaging of a infinitely large ensemble of quantum trajectories yields
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exactly the deterministic RDM. The stochastic approach might provide physical interpre-
tation of experiments detecting macroscopic fluctuations (e.g. photon counting) in various
quantum systems [89] where ensemble descriptions based on RDM fail.

The unraveling schemes originate from the quantum optics community [19, 29, 35,
30, 121, 89] but they have been successfully applied to ET problems [121, 122, 123] as
well. These schemes have been restricted to QMEs of Lindblad form (2.7) that ensures
that the RDM stays Hermitian, normalized and positive semidefinite at all times and
for any system parameters or initial conditions. The increasing interest in descriptions
beyond the Lindblad class such as the quantum Brownian motion [112,111], the Redfield
formalism [74], non-Markovian schemes [80,12], etc. resulted in various efforts to develop
new stochastic wave function algorithms. Strunz et al. [112, 111] extended the QME for
Brownian motion to a non-Markovian QME and then applied a quantum state diffusion
algorithm. A similar approach was also proposed by Gaspard and Nagaoka [32]. Very
recently Stockburger and Grabert [110] developed a method on how to exactly represent
the RDM of a system coupled to a linear heat bath in terms of SSEs. The numerical
properties of this approach need to be explored. Breuer et al. [12] extended a scheme,
which they had used to calculate the multitime correlation functions [11], to the unraveling
of QMEs. Their technique is based on doubling the Hilbert space. Instead of a single
stochastic wave function |ψ〉 one has a pair of them, i.e. (|ψ〉, |φ〉) [12]. The RDM is
reconstructed by means of the ensemble average ρ = M [|ψ〉〈φ|]. One problem of this
scheme is that the Hermiticity of the RDM is conserved only on an average and not for
every single trajectory. Thus, the deviation from Hermiticity is a quantity with statistical
error and one has to perform a huge number of realizations in order to achieve a good
convergence. Since stability and efficiency are crucial issues for unraveling algorithms we
propose in Subsec. 3.5.2 an alternative approach that fulfills these criteria.

3.5.1 Unraveling of Lindblad quantum master equations

The RDM can be replaced by an ensemble average of pure states |ψ〉, i.e. ρ = |ψ〉〈ψ|. If
ξk(t) are possibly complex noise variables characterized by their average [28]

dξk = 0, dξ∗kdξl = δkldt (3.18)

the relevant SSE reads
d|ψ〉 = D|ψ〉dt+

∑
k

Sk|ψ〉dξk, (3.19)

where D and Sk are linear operators which may depend on |ψ〉 and explicitly on time.
Evaluating the differential change of the quantity |ψ〉〈ψ| [108] using Eq. (3.19), keeping
terms up to first order in dt with the assumption that ensemble averages always factorize,
and after comparing the result with Eq. (2.7) one notices that the operators Sk must be of
the form Sk = Lk − αk with arbitrary scalar functions αk. Having the latter identity one
can find that D = −iH − 1

2

∑
k(L

†
kLk − 2α∗kLk + |αk|2) [22]. Substitution into Eq. (3.19)

yields

d|ψ〉 = −iHS|ψ〉dt−
∑
k

[
1

2

(
L†kLk − 2α∗kLk + |αk|2

)
|ψ〉dt+ (Lk − αk)|ψ〉dξk

]
. (3.20)
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According to Ref. [22] the last equation describes a quantum diffusion process if the
leading terms in dξk are first order in

√
dt. When dξk get finite number of values, e.g.

±
√
dt, the process results in continuous trajectories but random within each infinitesimal

time interval dt (for dt→ 0 the trajectories become smooth but still stay noisy). Diffusion
methods will not be considered in the present work. However, if the leading terms in dξk
have finite values of order unity, i.e. zeroth order in

√
dt, Eq. (3.20) leads to so called

quantum jump methods which produce trajectories that are deterministic during finite
time intervals connected by discontinuous transitions (jumps). If the jumps are specified
by their jump rates pk one can introduce the relation [22]

dξk =
dnk − pkdt√

pk
eiϕ (3.21)

which obeys condition (3.18). Here dn = 1 indicates the occurrence of a jump. For dn = 0
Eq. (3.20) becomes a deterministic Schrödinger equation. Incorporating Eq. (3.21) into
Eq. (3.20) gives the relation αk =

√
pk exp(−iϕ). One can set ϕ = 0 without physical

consequence. Thus one obtains the final form of the SSE

d|ψ〉 = −iHS|ψ〉dt−
∑
k

[
1

2

(
pk − L†kLk

)
|ψ〉dt+

(
Lk√
pk
− 1

)
|ψ〉dn

]
. (3.22)

So far the jump rates pk remain free parameters. They can be adapted for every single
trajectory so that the wave function |ψ〉 is normalized, i.e. pk = 〈L†kLk〉. The numerical
algorithm of this standard quantum jump method is itemized in Appendix B. It will be
used for reference when comparing with the newly developed quantum jump method in
Subsec. 3.5.2 and in the pump-probe simulations in Chapter 4.

3.5.2 A new unraveling scheme for generalized quantum master
equations

In the following let us consider the solution ρ(t) of a generalized time-local Hermiticity-
conserving QME

dρ(t)

dt
= A(t)ρ(t) + ρ(t)A†(t) +

M∑
k=1

{Ck(t)ρ(t)E†k(t) + Ek(t)ρ(t)C†k(t)} (3.23)

with the total number M of dissipative channels and arbitrary operators A(t), Ck(t), and
Ek(t). Examples for these operators are given below. Here, the operators are restricted
in such a way that the norm of the solution stays conserved. For readability the time
arguments shall be omitted in the following.

In order to approach the problem let us define a state vector (|ψ〉, |φ〉)T spanning a
doubled Hilbert space as proposed in Ref. [12]. In contrast to Ref. [12] the RDM shall be
reproduced by an ensemble average (denoted by overbars) of outer products of the vectors
|ψ〉 and |φ〉

ρ = |ψ〉〈φ|+ |φ〉〈ψ| . (3.24)
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A particular realization (trajectory) of the stochastic process will be denoted by the
pair (|ψ〉, |φ〉) and the averaging is performed over all trajectories possibly including a
weighted sum over pure initial states. An advantage of this averaging is the conservation
of Hermiticity for every single trajectory in contrast to Ref. [12].

For the SSEs let us consider 2M independent possibly complex noise variables ξik(t).
The superscripts i = 1, 2 denote which of the two terms from the Hermitian pair in
the sum in Eq. (3.23) is taken and subscripts denote the various dissipative channels.
All stochastic differentials dξik(t) are assumed to have zero mean, to be normalized and
uncorrelated [28]:

dξik = 0, dξi∗k dξ
j
l = δijδkldt . (3.25)

Next, as an ansatz one constructs a SSE which propagates the pair (|ψ〉, |φ〉)

d|ψ〉 = D1|ψ〉dt+
M∑
k=1

2∑
i=1

Si1k|ψ〉dξik , (3.26)

d|φ〉 = D2|φ〉dt+
M∑
k=1

2∑
i=1

Si2k|φ〉dξik . (3.27)

The operators D1 and D2 govern the deterministic and the operators Sijk govern the
stochastic part of the evolution. In general, they may depend on the state vector and
explicitly on time. After differentiating Eq. (3.24), neglecting all terms of higher than
first order in dt, and assuming that ensemble averages always factorize [22] one obtains

dρ =
[
D1|ψ〉〈φ|+D2|φ〉〈ψ|

]
dt+

M∑
k=1

[
S1

1k|ψ〉〈φ|S
1†
2k + S2

2k|φ〉〈ψ|S
2†
1k

]
dt+ H.c. (3.28)

Comparing with Eq. (3.23) one notes that S1
1k has to equal S2

2k and S1
2k has to equal

S2
1k. Moreover, one can see that S1

2k = Ck + α1
k and S2

2k = Ek + α2
k with α1

k and α2
k

being arbitrary scalar functions of (|ψ〉, |φ〉)T and possibly of time. Making the latter
substitutions in Eq. (3.28) yields the constraint

D1 = D2 = A−
M∑
k=1

(
α2∗
k Ck + α1∗

k Ek + α1
kα

2∗
k

)
. (3.29)

Any quantum jump method is specified by jump rates pik which have to be real scalar
functions of (|ψ〉, |φ〉). If nik(t) is the number of jumps in channel k due to term i up
to time t, the probability for nik(t) to increase by one, i.e. the expectation value of both
dnik and (dnik)

2, is equal to pikdt during the infinitesimal time interval dt. Thus, the noise
variables ξik obeying the conditions (3.25) are related to dnik(t) as [22]

dξik =
dnik − pikdt√

pik
eiϕ . (3.30)

The phase factor eiϕ leads merely to a phase shift in the wave vectors and cancels within
each realization. So we can choose ϕ = 0 without loss of generality. Substituting Eq. (3.30)
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into Eqs. (3.26) and (3.27) one finds that αik = −
√
pik. So the SSEs for our quantum jump

method read

d|ψ〉 =

(
A+

M∑
k=1

p1
k + p2

k

2

)
|ψ〉dt+

M∑
k=1

 Ek√
p1
k

− 1

 dn1
k +

 Ck√
p2
k

− 1

 dn2
k

 |ψ〉, (3.31)

d|φ〉 =

(
A+

M∑
k=1

p1
k + p2

k

2

)
|φ〉dt+

M∑
k=1

 Ck√
p1
k

− 1

 dn1
k +

 Ek√
p2
k

− 1

 dn2
k

 |φ〉. (3.32)

The jump rates p1
k and p2

k still remain as free parameters. In the statistical limit their
values have no influence on any averaged physical quantity. Nevertheless, it turns out
that they can strongly influence the convergence behavior of the jump algorithm, i.e.
they determine the statistical error of the observables calculated. A detailed discussion of
this influence and utilization of such free parameters can be found in Ref. [24]. Another
freedom is that Eq. (3.23) is invariant with respect to a gauge transformation of the kind
Ck → κCk, Ek → Ek/κ if κ is a real, scalar function of time. Each single realization,
and hence the stochastic process, is independent of this gauge transformation. However,
usage of the latter offers us no further advantages.

To ensure an efficient scheme with fast convergence one has to require that the norm
of every single trajectory is constant in time. Asking for 〈φ|φ〉, 〈ψ|ψ〉, etc. being constant
in time does not create a stable scheme but the condition of norm preservation of |ψ〉〈φ|+
|φ〉〈ψ|

tr

{
d

dt
[|ψ〉〈φ|+ |φ〉〈ψ|]

}
= 0 (3.33)

does. Unfortunately, applying this condition does not lead to positive values of the jump
rates pik for all trajectories at all times. However, since the pik are arbitrary real functions,
they can be replaced by their absolute values. The price to pay is that we have to introduce
an additional weight factor for the trajectories which jumps between one and minus one.
In addition, there is a small deviation of the norm from unity because in the regions where
the pik are replaced by their absolute values norm conservation is no longer guaranteed.
However, in all our tests this deviation was far below 1% and neither affected numerical
stability nor efficiency. The negative weights are actually needed to reconstruct RDMs
which are, in general, not positive semidefinite. If the RDM stays positive semidefinite
during its entire time evolution the negative weights of some trajectories are not needed,
i.e., all trajectories can be normalized to unity and represent physically relevant pure
states of the open quantum system. In the examples below the RDM can exhibit negative
populations. This unphysical situation could probably be cured by applying an initial
slippage to the initial state [33]. We note that these physically unreasonable RDMs occur
because of unphysical initial states or because the QME is not physically correct or is
applied in a parameter region where it is not valid. Nevertheless an unraveling scheme
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Figure 3.6: Time evolution of the third excited state of the harmonic oscillator in the
quantum Brownian motion model for γ = 10−3ω, kT = 4.5ω. The direct integration
of the QME (thick solid line) is compared to the results of the quantum jump method
with 1 trajectory (dot-dashed line), average of 100 (thin solid line) and 1000 (dotted line)
trajectories.

has to be able to mimic also this unphysical behavior of the QME because in the ensemble
average both should fully coincide.

The condition (3.33) applied to the QME (3.23) results in the additional constraint

A+ A† = −
M∑
k=1

(
E†kCk + C†kEk

)
(3.34)

and if applied to the deterministic parts of the corresponding SSEs (3.31) and (3.32) it
yields the total jump rate

p = −〈φ|A+ A†|ψ〉+ 〈ψ|A+ A†|φ〉
〈φ|ψ〉+ 〈ψ|φ〉

. (3.35)

All partial jump rates can be found subsequently making use of Eqs. (3.34) and (3.35):

p1
k =

〈φ|C†kEk|ψ〉+ 〈ψ|E†kCk|φ〉
〈φ|ψ〉+ 〈ψ|φ〉

, (3.36)

p2
k =

〈φ|E†kCk|ψ〉+ 〈ψ|C†kEk|φ〉
〈φ|ψ〉+ 〈ψ|φ〉

. (3.37)

The numerical algorithm of the new quantum jump method, which is slightly different
from the standard one introduced in Subsec. 3.5.1, is summarized in Appendix B.

Let us briefly show how the proposed method can be applied to two typical physical
problems: the quantum Brownian motion and dissipative electron transfer within Redfield
theory. In both cases the systems are described by Markovian QMEs which do not have
Lindblad structure. The model of Brownian motion [119] describes a particle with mass
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Figure 3.7: Relaxation of the donor population for the electron transfer model. The
solid line shows the exact solution of the QME, the dashed line one arbitrary trajectory,
the dotted line an average over 500 trajectories.

m, coordinate q, momentum p, and Hamiltonian HS interacting with a thermal bath. In
the high-temperature limit of a bath of harmonic oscillators the relevant QME has the
form

dρ

dt
= −i [HS, ρ]− iγ

2
[q, {p, ρ}]−mγkT [q, [q, ρ]] , (3.38)

where γ is the damping rate. Comparing with Eq. (3.23) one finds the operators of the
jump algorithm (M = 2)

E1 =

√
γ

2
q, C1 = −i

√
γ

2
p, (3.39)

E2 =
√
mγkTq, C2 = E2, (3.40)

A = −iHS +
iγ

2
qp−mγkTqq. (3.41)

Modeling the particle as a harmonic oscillator with eigenfrequency ω one can compute
the population dynamics depicted in Fig. 3.6. The initial state of the oscillator is the pure
state ρ33 = 1. As can be seen, the agreement of the results using our stochastic method
and a direct integration of the QME is already quite good for one thousand samples.

As a next test for the present quantum jump method we shall demonstrate the stochas-
tic unraveling of the Redfield QME (2.9). Let us consider the model for electron transfer
in which the system includes a single reaction coordinate with the Hamiltonian [52]

HS = H1|1〉〈1|+H2|2〉〈2|+ v12(|1〉〈2|+ |2〉〈1|) (3.42)

where H1 and H2 are the Hamiltonians of two coupled harmonic oscillators with equal
frequency ω0. We choose a potential configuration in the normal region with no barrier
between the two harmonic potentials with strong electronic intercenter coupling. All
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Figure 3.8: Occurrence of the expectation values of the population on the donor state
produced by the new unraveling scheme for the Redfield QME (dotted line) and the
standard normalized jump method for the Lindblad QME (solid line) at time ωt/(2π) = 3,
both with 5000 trajectories.

model parameters are the same as for case (a) in Sec. 2.6 (see Table 2.1 and Fig. 2.3).
After rearrangement of Eq. (2.9) one can easily identify the operators involved in Eq. (3.23)
(M = 1):

C1 = K, E1 = Λ, A = −iHS −KΛ. (3.43)

A Gaussian wave packet located at the donor state |1〉, having energy slightly above
the crossing of the harmonic potentials was chosen as initial state. The numerical
simulation with about 1000 trajectories provides sufficiently converged and accurate
results. Figure 3.7 shows the relaxation of the ensemble averaged donor population
P1 = 〈ψ|1〉〈1|φ〉 + 〈φ|1〉〈1|ψ〉. A widely discussed property of the Redfield equation is
that it does not strictly conserve positivity of the RDM [53]. Although P1 is always posi-
tive the tiny negative fraction in Fig. 3.8 is evidence for the existence of single realizations
with negative P1. In contrast, the simulation of the same system with the Lindblad QME,
i.e. with DDA, by means of the standard quantum jump method [19, 29, 35, 30, 89] keeps
all values of P1 well confined between 0 and 1.

Besides the numerical efficiency, another benefit of the quantum trajectories is the bet-
ter insight into the quantum mechanisms underlying the overall dynamics of the ensemble.
Though it is impossible to give direct physical interpretation of every single trajectory
one can extract information from the ensemble statistics. As we can see in Fig. 3.8 the
distribution of the individual expectation values of the population is skew and comprises
several modes. This is better seen in the phase space (Fig. 3.9). Several modes give rise
to distinct pathways of the process as numbered in Fig. 3.9. The letter M stands for the
main mode which disappears slowly with time to the advantage of three satellites denoted
by S1, S2 and S3. At certain time all modes coalesce to a single bell-like distribution which
continues propagating in phase space while its maximum is approaching the equilibrium
values 〈p〉t→∞ and 〈q〉t→∞. The variance of the final distribution indicates the presence
of thermal fluctuations in the sample at finite temperature.
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Figure 3.9: Contour plot of the correlated distribution of the expectation values of
momentum 〈p〉 and position 〈q〉 for the electron transfer model at time ωt/(2π) = 3 with
5000 trajectories.

Considering the efficiency of the stochastic method it is convenient to look at the
relation between numerical effort and achieved accuracy. When the DDA is invoked
together with RWA in the system-bath coupling one can obtain the Lindblad form (2.7)
which can be solved by the standard quantum jump method [19, 29, 35, 30, 89] as well
as by the new one. Thus, the numerical efficiency of both methods can be compared.
The expectation values of most observables (like the population) are dispersed around
the ensemble mean in a complicated distribution (Fig. 3.8). The standard deviation
from the mean can be used as a measure for the statistical error, and hence for the
accuracy. Figure 3.10 shows the accuracy of the new method applied to the Lindblad
QME and to the Redfield QME and the accuracy of the standard quantum jump method
applied to the Lindblad QME. Both methods are equally accurate for the Lindblad QME.
However, solving the Redfield QME with the new method is less accurate with the same
number of realizations. Thus, for well converged calculations one needs a much larger
number of trajectories. Furthermore, each time step in the implementation of the new
method requires 4M+9 matrix-vector multiplications versus only 5 for the standard jump
algorithm which means a significantly higher computational effort.

3.6 Summary

In this Chapter an estimation of the numerical efficiency of several methods for density
matrix propagation has been given. The example of ET in a two-center system has been
used for this purpose. A specific measure of the numerical effort has been introduced in
order to compare methods with fixed time step and such ones with time step control (RK).
Besides the method of reference (NP) the RK-NAG approach shows best performance for
both cases of ER and DR. The advantage of the SIA propagator is that the accuracy
improves with decreasing the time step in both representations and provides a reasonable
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Figure 3.10: Standard deviation from the ensemble mean value of the population of
the upper diabatic PES for 5000 trajectories. Dotted line and dashed line designate the
accuracy of the new method applied to the Redfield QME and to the Lindblad QME
respectively, and the solid line the standard quantum jump method for the Lindblad
QME.

ratio between accuracy and numerical effort. That is not the case with the CP propagator
which exhibits a saturation of accuracy and is therefore not convenient for very small time
steps. The easy-to-implement SI gives reasonable performance for not too high accuracy.
The present SI seems to be limited in accuracy due to the fixed coefficients.

The stochastic unraveling of QMEs is not constrained to Lindblad form anymore
and opens new large fields of application for stochastic methods. This progress became
possible with the use of the wave–function pair in the doubled Hilbert space and the
derivation of stable, almost normalized SSEs. An efficient first-order quantum jump
algorithm was proposed. The efficiency is determined by the behavior of the norm of
every single trajectory. In this sense the jump rates were used as parameters to influence
the efficiency.

Occurrence of negative population for single trajectories is by no means a problem of
the proposed unraveling scheme. Rather it is related to the fact that the QMEs (3.23,
2.9) do not preserve the RDM positive semidefinite. It is known [33] that the negative
eigenvalues of the RDM in the Redfield theory arise from the inconsistency between the
initial RDM and the bath state, i.e. due to neglected initial correlations in the Born-
Markov approximation. Satisfactory resolution of this problem is the slippage of the
initial conditions as derived by Gaspard et al. [33]. In this method the so called slippage
superoperator takes into account the short-time bath correlations. Applied to the initial
RDM it introduces the necessary correlations into the initial state. This manipulation of
the initial state ensures propagation of positive semidefinite RDM at any further moment
of time.

The new stochastic method was successfully tested for a simple ET model using the
Redfield QME and for quantum Brownian motion and should allow for better quantum
dynamical simulation of large systems. It is also capable to unravel non-Markovian QMEs
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when they are in a time-local form like in the time-convolutionless formalism [12] or in
methods using auxiliary density matrices to include the memory effects [80].



Chapter 4

Intramolecular electron transfer in
betaine-30

4.1 Experimental and theoretical background

Betaine-30, also known as Reichardt’s dye [99], is an organic compound whose color
strongly varies with the polarity of the solvent in which it is dissolved. Thus, its long
wavelength absorption band, assigned to the S0 → S1 transition, is shifted over 10 000
cm−1 on going from non-polar (e.g. ethers) to polar solvents (e.g. water). This property
is called solvatochromism. The transition S1 → S0 represents back ET as an electron
moves from the pyridinium ring, the donor, back into the phenoxide moiety, the acceptor
(Fig. 4.1). No fluorescence has been observed which means that this transition proceeds
via radiationless mechanisms, i.e. fast internal conversion. Not only the position of the
band is solvent dependent but also its width and shape. This means that the solvent
environment influences both the free energy gap ∆G and the Franck-Condon gap |∆G|+λ
between the PESs of S0 and S1. Polar solvents have stronger dipole-dipole interaction with
the large dipole of the ground state, shift the ground state energy down and hence make
the back-ET reaction more exothermic.

The full absorption band comprises a number of broadened single peaks arising from
internal molecular vibrations and solvent motion. Such internal and external modes which
undergo reorganization give rise to the effective reaction coordinate. Analyzing the band
shape in various solvents all single-coordinate parameters were determined [51]. Further-
more, it was found [51] that the potential configurations were in the Marcus inverted
region. Another peculiarity, which makes the theoretical treatment of betaine-30 more
difficult, is the large intercenter coupling. Its value is comparable with the energy of
the fastest molecular mode. It was shown [117] that in this case the classical theory of
Marcus [72] failed to give meaningful rates. Nevertheless, Marcus theory was verified
in the inverted region for systems with small electronic coupling [17]. Transient spec-
troscopies [2, 1, 117, 61] showed that reorganization of low frequency internal modes and
solvation take place on the same very short timescale as the back ET itself. The ET
rates in a variety of solvents as well as the reorganization energies arising from internal
and solvent modes were determined with the help of transient spectra. Beard et al. [6]
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Figure 4.1: Left plot: schematic representation of the photoinduced ET transition from
the excited DA state to the ground D+A− state in betaine-30. Right plot: relaxed three-
dimensional structure of betaine-30 in ground state.

measured directly the intramolecular ET in betaine-30 in chloroform by means of the
emitted electromagnetic wave after pulse laser excitation in strong electric field. They
succeeded to extract two characteristic times, 300 fs and 1.5 ps. Concurrently, Hogiu et
al. [42] observed the population in S1 mode-selectively by picosecond time-resolved anti-
Stokes Raman spectroscopy and showed that the rise times of the vibronic populations
of several relevant modes correspond to the back-ET time. Other researchers employed
resonant Raman spectroscopy [126,125] and found a set of Raman-active internal modes
coupled to the electron transition. However, their estimated internal reorganization en-
ergy (170 cm−1 with 9 internal modes and 120 cm−1 with 19 internal modes, respectively)
is in disagreement with band-shape analysis (2499 cm−1) [117] as well as with pump-
probe spectroscopy (3370 cm−1) [61]. On the other hand, the estimate for the solvent
reorganization energy λs for acetonitrile in Refs. [126, 125], (6000 cm−1 and 4500 cm−1,
respectively) is much larger than the respective value in Ref. [117] (2221 cm−1) or than
theoretical calculations [68, 81] (3625 and 4260 cm−1, respectively). As far as these pa-
rameters enter the quantum model for ET which is used in the current work it is very
important to set their values carefully. Despite these discrepancies all authors have agreed
that at least three modes play significant roles – a high frequency quantal internal mode, a
low frequency classical internal mode and a solvent mode. Kovalenko et al. [61] estimated
the characteristic time of the early stage involving solvation of S1 and reorganization of
the low-frequency mode to about 100 fs in acetonitrile. Another experimental finding,
which also would concern the choice of a model, is the transient long-wavelength dark
state absorption observed in different media [61]. The nature of the dark state is not
clear yet. The authors of Ref. [61] suppose that the dark state is the conformationally
relaxed excited state. Such a hypothesis is not supported by the low energy of the dark
state absorption. In fact, the Franck-Condon gap between S1 and the next optically ac-
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cessible state S2 is 19600 cm−1 and significantly larger than the maximum of the dark
state absorption band, 12380 cm−1. This ratio is very weakly solvent dependent. This is
why the dark state might be more reasonably assigned to a non-relaxed configuration of
the ground electronic state S0. Since the decay time of the dark state absorption is quite
long (1.2 ps in acetonitrile) the relaxation could be due to a slow low-frequency molecular
mode. The theoretical confirmation of the latter hypothesis as well as the re-examination
of the proposed two stage mechanism [61] are some of the goals of the present work.

The existing theoretical approaches to ET in betaine-30 can be divided into three
types: i) the classical and semi-classical rate theories of Sumi-Marcus and Jortner-Bixon
applied to betaine-30 [2, 1, 117], ii) quantum chemistry and molecular dynamics methods
[44,67,68,81], and iii) the RDM theory with use of a single reaction coordinate [27,103].
All methods in the first group use system models comprising only two diabatic states
(DA and D+A−). However, there are models involving a third mediator (bridge) state [8].
In the present investigation only a two-state model will be used. The RDM method
allows for fully quantum-mechanical simulation of the short time ET dynamics, i.e. the
spectroscopic signals can be calculated with sufficient time resolution in a straightforward
manner.

In the present work the previous studies, which involve one-mode models and base
mainly on the analysis of the population dynamics, are extended. A two-mode model is
developed and solved accurately with use of RDM theory. In Sec. 4.2 the rates of ET in
two media (acetonitrile and acetone) will be calculated using the two-mode model and
compared with existing experimental data. Then the pump-probe spectra are computed
with the two-mode model, compared with existing experimental spectra and discussed
(Sec. 4.3). For these simulations two different parameter sets will be used. In the first
parameter set, used in Sec. 4.2, a high-frequency internal mode and a solvent mode are
considered basing on estimates by Walker et al. [117]. The rates, with which the present
results will are compared, are taken from the same reference. In the second set, taken from
Ref. [61] and used in Sec. 4.3, a low-frequency internal mode and a high-frequency internal
mode are considered. Nevertheless, the parameters for the high-frequency internal mode
differ in these two references. Two different parameter sets are prefered in the present
work since the results have to be compared with two different experiments.

4.2 Population dynamics and electron transfer rates

As discussed in Sec. 2.4 the application of Redfield theory is more reasonable and accurate
if multiple modes are included in the relevant system. On the other hand, recent pump-
probe [61] and transient Raman [42] spectroscopies revealed the multi-mode nature of the
back-ET transition. Staying in the limits of the Redfield theory it is not possible to test
directly the accuracy change with employment of multi-mode models. Comparing the ET
rates it is at least possible possible to verify the physical relevance of such an extension
and this is the subject of this Section.

There is certain freedom in the construction of a two-mode model if deduced from
the one-mode model. This is due to the fact that one can set arbitrarily large number of
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Table 4.1: Parameters for the ET models of betaine-30 in two solvents. All values are
given in cm−1 unless otherwise specified.

ω1 ω2 ωeff λ1 λ2 λeff −∆G V Γ T , K
acetonitrile 2900 1600 1800 2014 1264 3145 11645 2500 10 298
acetone 1700 1600 1633 1813 1178 3096 10954 2500 9 298

Table 4.2: Rates of ET in betaine-30 in acetonitrile and in acetone.

kET, ps−1

method acetonitrile acetone
DDA1 0.034 0.061
ER1 0.19 0.13
ER2 0.32 0.26
Sumi & Marcus [117] 10−4 2×10−5

Jortner & Bixon [117] 0.28 0.22
Walker et al. [117] 1.8 1.2
Experiment [117] 0.50 (2.0) 0.43 (1.4)

combinations of mode frequencies which satisfy the relation between the effective mode
and modes in the two-mode model [122,115]. This is why we assign the reorganization en-
ergies of the solvent mode and of the internal mode, as well as the effective reorganization
energies, approximately the same values as given in Ref. [117] (see Table 4.1). However,
the reduction of a multi-mode model to the one-mode model is unique.

Using the parameters for betaine-30 listed in Table 4.1 all matrices that enter the
Redfield equation (2.9) were constructed according to their multi-mode definitions as de-
scribed in Sec. 2.4. Then Eq. (2.9) was solved numerically by means of direct propagation
of the RDM. The population of the DA state was calculated applying the projection op-
erator of this state to the RDM: P1(t) = Tr(ρ(t)|1〉〈1|). Extracting the slowest decay
exponent the ET rate kET was found. In Figs. 4.2 and 4.3 the population decay in the
initially populated upper electronic surface is shown as a function of time for betaine-30
in acetonitrile and acetone, respectively. Three different versions of the RDM calculation
are shown. First, the population is calculated with the DDA, introduced in Chapter 2, in
a model with one effective mode (DDA1). This is compared to the results in the one-mode
model with exact treatment of the intercenter coupling in ER (ER1). As can be seen in
Table 4.2 the rate differs quite a bit from the earlier investigations [52] as was expected. In
the two-mode model (ER2) the transfer rate becomes even larger and comparable to the
rate calculated in the theory of Jortner and Bixon [48,117]. The rate calculated in Sumi-
Marcus theory [113,117] is off about four orders of magnitude. This must be expected in
the inverted region for systems with large electronic coupling v12 � ω0 where quantum
effects prevail. The integral pump-probe signals were fitted by Walker et al. [117] to a
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Figure 4.2: Population decay of the DA state of betaine-30 in acetonitrile for the one-
mode model with diabatic damping approximation (DR0, circles), for the one-mode model
with exact Λ (ER, triangles), and for the two-mode model with exact Λ (ER, rhombs).
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Figure 4.3: Population decay of the DA state of betaine-30 in acetone. See Fig. 4.2 for
explanation of the symbols.
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bi-exponential form. Though in that reference the faster component was declared to be
the rate (given in parentheses in Table 4.2) it is compared here to the slower long-time
exponent because the back-ET rate is determined by the slowest decaying process. It
should be noted that the uncertainty in the experimental determination of kET is about
15 % [117].

4.3 Pump-probe spectroscopy

The recently developed techniques for ultrashort (femtosecond) pulse generation enabled
the direct observation of molecular dynamics on the timescale of nuclear motion. There-
fore, the physical processes as intramolecular vibrational energy redistribution, vibrational
decoherence and relaxation can be detected in real time. As introduced, the transient ab-
sorption spectra have revealed many details about the mechanisms involved in the ET
dynamics in betaine-30. In such an experiment (sketched in Fig. 4.4) a short laser pulse
(pump pulse, E1(t)) is shot through the sample. If the carrier frequency of the pulse is
close to resonance with the S0 → S1 transition energy the probe will absorb light and
a wave packet (coherent superposition of vibronic states) will be created on S1. With a
second pulse (probe pulse, E2(t)) the current state of the system is probed after a cer-
tain time delay T2− T1. The non-linear transient emission-absorption signal contains the
response of the system in direction k2 in which the probe pulse is propagating. It can
be either decomposed by a polychromator [69,60,61], which results in frequency resolved
spectrum, or immediately integrated [2, 1, 117].

Preparation time Acquisition time

Pump Probe

Delay

Figure 4.4: Sketch of a pump-probe pulse sequence abstracted from the details of the
actual experimental setup [69].
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4.3.1 Description of the method

First, one needs to model the field-matter interaction. The field applied can be generally
written as

E(r, t) =
2∑
j=1

ej
[
Ej(r, t) + E∗j (r, t)

]
=

2∑
j=1

[
ejEjeiΩjt−ikj ·r + c.c.

]
(4.1)

where ej is the polarization vector, kj the wave vector, Ωj the carrier frequency, and Ej
the pulse envelope of pulse j. In what follows, the vector notation will be omitted because
the sample is assumed to be homogeneous, isotropic and optically thin. Using Ej(r, t)
the Hamiltonian of the system-field interaction can be expressed in dipole approximation,
provided that the field is not very strong,

HSF(t) = − [|0〉µ01〈1|+ |1〉µ10〈0|] E(r, t) (4.2)

where µ01 is the dipole operator of the transition S0 → S1. In this model the external
field becomes a part of the relevant system as HSF(t) has to be incorporated into HS. As
previously discussed in Redfield theory one has to use the representation, in which HS is
diagonal. Here, this will not be done because one can assume that HSF is a perturbation
in HS with lower order contributions than the other off-diagonal parts of HS such as the
intercenter coupling V .

A simulation of a pump-probe experiment can be conveniently done with the help of
the RDM ρS. The total polarization P(r, t), which measures the response of the system
in all directions and contains contributions of higher order with respect to the external
field, can be calculated in terms of the quantum mechanical mean

P(t) = tr {ρ(t) [|0〉µ01〈1|+ |1〉µ10〈0|]} . (4.3)

Under the experimental conditions the detected signal in k2 direction is proportional
only to a distinct component P

(3)
k2

(t) of the total polarization P. This is why one has
to separate all contributions in the calculated P. Besides perturbative approaches for
calculation of various orders and directions of the polarization [92,60,107,83] an alternative
technique was developed [106,21] and later used for calculation of pump-probe spectra of
ET-systems [124,123] and photon echoes [82]. In the non-perturbative approach the total
polarization P(r, t) is decomposed into Fourier series

P(r, t) = P (r, t) + P ∗(r, t) =
∑
m,n

[
Pm,n(t)ei(mk1+nk2)·r + c.c.

]
. (4.4)

In order to obtain the pure third order from P (t) one has to extract the linear terms
first. This is done by calculating P (t) without pump pulse, then without probe
pulse and then subtracting these from P (t) with both pump and probe pulse, i.e.
P̃ = P(pump on) − P(pump only) − P(probe only). The infinite number of directions is restricted
under certain assumptions, discussed in more detail in Refs. [106,82]. Here is only a short
overview
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Table 4.3: Parameters for the two-mode model used for simulation of the pump-probe-
spectra of betaine-30 in acetonitrile (units cm−1).

mode, m frequency, ωm reorg. energy, λm
1 1350 1430
2 209 1940

effective 1152 1216

1. The symmetry of a two-state system leads to the condition m+n = ±1, ±2, ±3, etc.

2. The weak field limit constrains the order of the decomposition (4.4) to 3, i.e. |m|+
|n| = 1, 3.

3. Finally, the condition for resonance excitation imposes the additional relation m+
n = 1.

Applying these restrictions to Eq. (4.4) one is able to identify that the remaining directions
are k1, k2, 2k1 − k2, and 2k2 − k1. Calculating P̃ for four values of the phase difference
ϕ1 − ϕ2 = k1 · r − k2 · r and solving a system of four linear equations one is able to
determine the desired component [106]

P
(3)
k2

(t) =
1

2
Re
{
P̃ (ϕ1 = 0) + P̃ (ϕ1 = π/2) + P̃ (ϕ1 = π) + P̃ (ϕ1 = 3π/2)

}
(4.5)

where ϕ2 = 0 in all cases for simplicity. For this purpose the QME (2.9) must be solved
numerically once for each value of ϕ1 with and without probe. The total number of RDM
propagation runs is nine including the run with probe pulse only. After the Fourier trans-
forms P

(3)
k2

(t,∆t) → P
(3)
k2

(ω,∆t) and E2(t,∆t) → E2(ω,∆t), the normalized differential
signal can be eventually calculated as [107,92,60]

∆D(ω,∆t) = −
2ωIm

[
E∗2(ω,∆t)P

(3)
k2

(ω,∆t)
]

|E2(ω,∆t)|2
. (4.6)

4.3.2 Results

The first problem, concerning the two-mode model for betaine-30, that has to be solved
is the selection of two ET-relevant modes. In a recent transient Raman study [42] it was
found that three high frequency modes (1603, 1360 and 1245 cm−1) mainly take part in
the vibrational energy redistribution during the back-ET transition. They were assigned
to collective stretching motions of that pyridinium ring which has three phenyl rings
in its vicinity. In addition, the authors suggested that the low frequency mode at 133
cm−1 (torsional motion between the pyridinium and phenoxide planes) plays a significant
role as well. The signature of a fast relaxing high frequency mode (1350 cm−1) was
uncovered also by Kovalenko et al. [61] as an initial detuning of the stimulated emission
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Table 4.4: Parameters for the pulses used for simulation of the pump-probe spectra.

pulse carrier frequency Ωj, nm fwhm τj, fs rel. energy, Aj delay Tj, fs
E1 (pump) 637 30 1 0
E2 (probe) 637 5 0.25 300

peak from the excitation wavelength. Thus, the choice of representative modes as well
as reorganization energies, shown in Table 4.3, was facilitated by the latter work. In
the room-temperature regime the low-frequency mode can be treated classically. In fact,
some authors [117, 67] used two different types of hybrid quantum-classical models and
called the mode and the corresponding reorganization energy classical. This is why its
spectroscopic value (133 cm−1) is replaced here by kBT which is 209 cm−1 at 300 K. The
electronic coupling between the diabatic states v12 was taken 2800 cm−1 [117] and the
free energy gap ∆G 10940 cm−1 [61]. The cutoff frequency of the bath spectral density is
inversely proportional to the bath correlation time τc identified here with the relaxation
time of acetonitrile which is τs = 0.5 ps for room temperature [117]. Just one parameter,
namely the system-bath coupling strength, remained free. An important point to note is
that the corresponding effective single-mode model with the parameters in Table 4.3 yields
population dynamics many times slower than the dynamics of the two-mode model. This
is why considering a reduced one-mode model is meaningless and hence not performed
here.

In order to achieve frequency resolution over a large spectral region an elaborate
supercontinuum probing technique was used in the experiment [60,61]. It was shown that
the supercontinuum is equivalent to a chirped probe pulse [60]. For the sake of simplicity,
the present simulation is restricted to non-chirped pulses. Considering a Gaussian pulse
shape, characterized by its relative amplitude Aj and full width at half maximum (fwhm)
τj

Ej(t) =
Aj

σj
√

2π
exp

[
−1

2

(t− Tj)2

σ2
j

]
where σj = τj/

√
8 ln 2 , (4.7)

the width of the probe pulse τ2 has to be at least 10 fs to cover the spectral region between
500 and 900 nm for the laser wavelength of 637 nm. The optimal value has been found
to be even shorter, τ2 = 5 fs in order to obtain a neat normalization in Eq. (4.6). All
parameters of the external field are collected in Table 4.4.

It turned out that the calculation of a single pump-probe spectrum of betaine-30 using
the model parameters in Table 4.3 is already an extremely demanding computational task.
In particular, for the low frequency mode one needs a large number of basis functions
(about 30 diabatic levels). On the other hand, to get high-quality Fourier transforms
the acquisition time, respectively the propagation time, has to be very long. The larger
the pump-probe delay the longer is the acquisition time required. Thus, the method
for density matrix propagation is CPU-time-critical. This is why the simulation had to
be done with resort to DDA and RWA in order to propagate the RDM by means of
stochastic wave functions with use of the standard quantum jump method (see Sec. 3.5.1



4.3. Pump-probe spectroscopy 63

0 1000 2000 3000 4000
Time, fs

−1.5

−0.5

0.5

1.5

2.5

3.5

Figure 4.5: Decay of the total polarization. The system is probed 300 fs after the pump
pulse.

and Appendix B) although the electronic coupling is very strong. The stochastic algorithm
was parallelized with use of Message Passing Interface (MPI) [26] and the computations
were carried out on a PC cluster with 48 nodes. The propagation time was limited to 4
ps. One thousand trajectories gave reasonable convergence.

Figure 4.5 shows the total polarization calculated with pump pulse centered at t = 0
and probe pulse at 300 fs. Coherent motion is prominent in the early evolution and is
not seen after 1.5 ps. The revival periods exactly match the period of the low frequency
mode at 209 cm−1. The polarization decays with characteristic time of about 4 ps. One
can hardly establish unique relations between these times and the times determined by
Kovalenko et al. [61], 100 fs (solvation and low frequency mode reorganization) and 1.2
ps (back ET) respectively. However, the characteristic time of 4 ps is consistent with
the ET-rate already calculated in Sec. 4.2. Again, the use of DDA in the case of strong
electronic coupling can give rise to wrong rates. Apart from this slight differences, this
result is in good qualitative agreement with the previously determined back-ET rate [117]
and also with the concept of a two-stage mechanism [61]. In Chapter 2 it was noted that
in the inverted region for strong electronic coupling the back-ET rate is determined by
the damping rates. One can use the freedom of the present dissipation model and fit
the damping rates so that the ET rate matches the experimental value. A better idea is
either to develop a self-consistent model for the dissipation or to use a spectral density
from molecular dynamics (MD) simulations.

To compare the simulated frequency-resolved transient emission/absorption spectrum
with experiment one has to note that many details of the real system are not included in
the model. In particular, the second excited state S2 of betaine-30 is not taken into account
in the model and hence the excited-state absorption detected in the blue region [61] is
not supposed to show up in the simulation results. The experimental and the simulated
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Figure 4.6: Comparison between the experimental (upper graph) and the simulated
(lower graph) disperse spectrum in acetonitrile. The dashed curve is a running average
of the simulated signal with length of one oscillation period. The experimental data were
taken from Ref. [61].

frequency-resolved spectra are shown in Fig. 4.6. The sign convention in Eq. (4.6) is
such that negative signal means emission, positive – absorption. The absolute intensity
of the simulated spectrum is arbitrary in this simulation, so it was scaled into the range
of the experimental one. The overall oscillatory structure of the simulated spectrum has
apparently no physical meaning. This is very likely due to the insufficient acquisition time.
Single tests with longer acquisition times gave weaker oscillations. The three doublets,
marked with asterisks, may indicate the high frequency mode at 1350 cm−1. If this is the
correct interpretation of these patterns then the high frequency mode should not have
relaxed 300 fs after the pump pulse. This is again a problem arising from the insufficient
model for the spectral density. The splitting constant of the doublets, which is about
360 cm−1, cannot be attributed to the low frequency mode at 209 cm−1. Averaging the
simulated spectrum with length of one oscillation period yields a representation which
can be easily compared with the experimental spectrum. Both maxima of the stimulated
emission and of the non-linear absorption at 660 and 780 nm respectively are in good
quantitative agreement with the experiment. The transient non-linear absorption is very
weak due to low occupation of the higher vibrational levels in the ground electronic state
S0. As already mentioned the absorption band between 500 and 600 nm should not appear
in the simulation and in fact it does not.

A very essential point in the interpretation of the simulation results concerns the
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concept of a two-stage mechanism proposed in Ref. [61] in which one can distinguish
between internal ET and back ET. Probing at delay of 300 fs after pump excitation
should reveal the crossover between these two stages. The ultrafast vibrational relaxation
of high-frequency modes within 10 fs is not resolved and not included as a particular stage.
Therefore the faster stage of the proposed mechanism with characteristic time of about
100 fs [61] corresponds to the decay of coherent motion in the simulation as discussed
above. Then the slower back ET to S0 occurs by radiationless internal conversion with
time 1.2 ps. This is the period of increase of the dark state absorption at 780 nm in the
experimental spectra. In the present model absorption is possible only from the ground
state S0. Since the dark state absorption in the simulated spectrum is present at the same
time and wavelength as in experiment the decay of the dark state should rather be related
to the backward rearrangement in S0. Summing up, the simulation results are conform
with the scenario from Ref. [61] except for the interpretation of the dark state.

4.4 Summary

This numerical study was inspired by the recent advance in the femtosecond spectroscopy
of betaine-30 and further motivated by the need of a better understanding of the photo-
physics of ET in this dye. By simple modeling of the system with one or two reaction
modes and accurate quantum-mechanical treatment with use of the Redfield theory it was
possible to approach the complicated physics of this system. The population dynamics
was calculated using both the one-mode model and the two-mode model for two solvents,
acetonitrile and acetone. The rate of ET was extracted from the slowest exponent in the
population dynamics of the excited state and then compared with the rates from other
theories and with the experimental rates. The rate predicted by the two-mode model is
in better agreement with the experimental rate than the rate resulting from the one-mode
model.

The simulation of the frequency-resolved transient spectra using the two reaction
modes showed that the proposed modeling of the problem is capable to cover the essential
mechanisms uncovered in recent experiments. In contrast, the minimal model involving
one reaction mode fails for certain parameter sets. Both nonlinear absorption and stim-
ulated emission maxima in the simulation are in very good quantitative agreement with
experiment.

The question to which extent the use of DDA has influenced the results of the sim-
ulation ought to be posed in the conclusion. It cannot be answered uniquely until full,
and hence very expensive, simulations are done without the use of DDA. The profound
analysis of the behavior of this approximation in Chapter 2 has shown that in the con-
figurations without barrier as well as in the inverted region the population dynamics
is influenced only in the long-time limit even in the case of strong electronic coupling.
Thus, it is rather expected that the future reference calculations with no resort to DDA
will introduce qualitatively nothing new but certainly will improve the overall physical
consistency of the results.

Future studies on this subject should follow a more precise modeling of the system-
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bath interaction, possibly in a self-consistent manner. For instance, the model can be
coupled to MD simulations which provide more detailed and system-specific information
about the spectral density of the bath.



Chapter 5

Photoinduced electron injection

5.1 Introduction

In recent years ET between molecular adsorbates and semiconductor nanomaterials and
surfaces has been subject of much research [3]. The injection of an electron into the con-
duction band is a prototype reaction for a lot of electrochemical and photo-electrochemical
interfacial processes such as photography, solar energy conversion, quantum dot devices,
etc. [3]. Interfacial ET between discrete molecular levels and a conducting surface is the
simplest of all surface reactions: it involves only the exchange of an electron, and so no
bonds are broken.

The ultrafast nature of the charge injection from various adsorbed molecules to the
conduction band of the semiconductor was shown in recent experiments [13, 16, 40]. The
theoretical description of such experiments requires an adequate treatment of the ET
dynamics and consideration of ultrashort time-scale phenomena such as coherences. This
can be done using the RDM approach.

In previous studies Ramakrishna et al. [96] described the electron injection from a
surface-attached chromophore to the conduction band of a semiconductor using the time-
dependent Schrödinger equation, thus neglecting dissipation processes. With use of the
same model pump-probe signals were calculated by means of the third-order polariza-
tion [95]. In a more recent work [97] the influence of the PES configuration of the donor
on the decay of the donor population as well as the effect of varying the density of states
of the quasicontinuum were investigated in detail. It was shown that the recurrence time,
for which the electronic population of the donor state is recovered, is inversely propor-
tional to the energy spacing between the electronic PES in the quasicontinuum. In the
limiting case of an ideal continuum no recurrences can occur only after infinite period
of time. This implies that the population of the donor state can decay irreversibly into
the continuum without dissipative mechanisms. In addition the experimental studies on
the system perylene-TiO2 seem to support such an idea [13,40]. Performing pump-probe
spectroscopy with perylene-TiO2 a vibrational wave packet, composed of the perylene nor-
mal modes, is initially prepared. Before substantial vibrational relaxation and dephasing
have taken place the electron is injected into the TiO2 conductance band within 150 fs
after the pump pulse. Furthermore, the decay time shows no temperature dependence.
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Figure 5.1: Scheme of the model PES for the excited state of the chromophore |φe〉 and
for the quasicontinuum states |φk〉. Only four of all 31 quasicontinuum states are shown.

However, all these facts do not exclude the possibility that other dissipative mechanisms
(not just vibrational relaxation and dephasing) might have significant contribution to the
ET dynamics. In chromophores other than perylene faster vibrational relaxation and in-
ternal vibrational-energy redistribution can superimpose the coherent electron injection.
The electron injection can even proceed from a thermalized excited donor state by means
of a sequential mechanism being not so fast and efficient if it would start from a state
with vibrational coherences. Alternative theoretical descriptions assume fast intramolec-
ular redistribution [39, 114, 65]. In the present study vibrational relaxation is included
employing Redfield theory without any restrictions concerning decoherence time, so that
electron injection in more general cases can be treated. However, the calculation shall be
limited to one PES configuration and one value of the system-bath coupling.

5.2 Model

The present study is based on the Hamiltonian (2.2) with system-bath separation and on
the Redfield equation (2.9). The bath is treated quantum-mechanically and consists of
uncoupled harmonic oscillators. The system-bath interaction is taken to be linear in the
reaction coordinate as well as in the bath coordinates. Neither the RWA nor the SA are
invoked.

The peculiarity of the model is the way how the conduction band is formulated as part
of the system Hamiltonian HS. It will be discretized by means of a manifold of vibronically
uncoupled harmonic diabatic states to which we refer as quasicontinuum. The ground and
the excited state of the chromophore are modeled by displaced diabatic potentials. The
excited state of the chromophore is coupled to all states in the quasicontinuum through
a single effective reaction mode. So, the Hamiltonian modeling the relevant system reads

HS =
∑

i=g,e,k

Hi|φi〉〈φi|+
∑
k

(Vke|φk〉〈φe|+ Vek|φe〉〈φk|). (5.1)

Here g stands for the ground state, e for the excited state (donor state), and k for the
quasicontinuum. As in Ref. [95] we choose the frequency of the reaction mode to be
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ω0 = 0.1 eV. The electronic coupling between the excited state φe and the quasicontinuum
states φk is assumed to be constant: Vek = 0.1 eV. The Hamiltonian HS is diagonalized
and the RDM is propagated in the eigenstate representation (ER) so that the DDA is not
performed. A box-shaped uniform density of states is used, i.e. the diabatic states of the
quasicontinuum are equidistant. Instead of modeling the excitation from the ground state
explicitly a δ-pulse will be assumed. The excited state PES is shifted with reorganization
energy 0.67ω0 along the reaction coordinate with respect to the ground state PES. This
choice results in an initial vibrational wave packet on the excited state with significant
population in the lowest 5 vibrational states. The shift between the excited state PES
and the quasicontinuum parabola corresponds to a reorganization energy 2.7ω0. A quan-
tum model for the thermal bath is employed considering uncoupled harmonic oscillators.
The bath is characterized by its spectral density which is taken to be of Ohmic form
with exponential cutoff as defined in Eq. (2.36). Again, the normalization prefactor η is
determined in such a way that the spectral densities in DR and ER coincide at ω0 (see
Chapter 2). The damping rate equals Γ = ω0/10 in the present simulation.

To be able to study the effects of dissipation we do not model the quasicontinuum with
such a large number of electronic states as in Ref. [95]. In that work a band of width 2 eV
was described using an energy difference of 2.5 meV leading to 801 electronic surfaces.
These calculations are already demanding using wave function propagation but almost
impossible using direct density matrix propagation. For treating such a large system one
would have to use the stochastic wave function scheme as described in Chapter 3. We
use a much simpler model and describe only that part of the conduction band which
really takes part in the injection process. The total width of the conduction band may be
significantly larger. In the following, a band of width 0.75 eV is treated with 31 electronic
surfaces. In each of these electronic states five vibrational states are taken into account.
The energy difference between the lowest state of the quasicontinuum and the minimum of
the excited-state PES of the chromophore is equal to one half of the band width. We are
aware that this is only a minimal model but hope that it catches the effects of vibrational
dissipation on the electron injection process.

5.3 Results

Two different populations arising in the process of electron injection can help us uncover
the influence of vibrational dissipation. The time-dependent population of the electronic
states in the conduction band is calculated as the sum over the vibrational levels of each
electronic surface P (k, t) =

∑
n Pk,n(t) =

∑
n ρkn,kn(t). As a second quantity we look at

the time-dependent population of the vibrational levels of the excited molecular state
Pe(m, t) = ρem,em. These two probability distributions give some hints on the effect of
dissipation.

Figure 5.2 shows the electronic population for the quasicontinuum, i.e. the probabil-
ity distribution of the injected electron, versus the energy of the conduction band. As
described above, the four lowest vibrational states are populated significantly at t = 0.
The structure arising in the left panel of Fig. 5.2 was already explained by Ramakrishna
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Figure 5.2: Probability distribution of the injected electron P (k, t) without dissipation
(left panel) and with dissipation (right panel).
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Figure 5.3: Population of the vibrational levels of the excited molecular state Pe(m, t)
without dissipation (left panel) and with dissipation (right panel). The lowest vibrational
state is populated most at t = 0. The higher the vibrational quantum number the less
populated is the level.
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et al. [95]. Using the golden rule it can be estimated as

P (k, t) ∝
∑
m,n

Pe(m, t = 0)|〈χem|χkn〉|2δ(E0 +mω0 − Ek − nω0) (5.2)

where |χem〉 and |χkn〉 are the vibronic parts of the wave packet in the excited and qua-
sicontinuum states, respectively. The energy E0 denotes the center of the band. One
can see that the probability distribution of the injected electron is nothing else but a
Franck-Condon progression with peaks that are separated by ω0 and broadened according
to the electronic coupling with the donor state. The amplitudes of the peaks depend on
the Franck-Condon factors f(em; kn) = 〈φem|φkn〉. All vibronic populations of the donor
state Pe(m, t) undergo a monotonous decay close to exponential at equal decay rates as
shown in Fig. 5.3, in the left plot. They decay practically completely before the time
at which the first recurrence starts, i.e. before 2πh̄/(0.75/30) = 165 fs1. This situation
corresponds to a decay in the wide band limit [97].

Turning on the dissipation the following effects can be seen. The vibrational popula-
tions in the excited state of the chromophore are not only transfered into the quasicon-
tinuum states but also relax within the excited state (see right plot in Fig. 5.3). Note
that the population of the lowest vibronic level is initially increasing due to damping of
higher levels but later (after 15 fs) decaying into the quasicontinuum. Oscillatory features
in population decay become well pronounced with dissipation. The decay rates for all
populated vibronic levels are different in contrast to the case without dissipation. As a
result, the population distribution of the injected electron in the conduction band be-
comes narrower with the inclusion of dissipation as shown in Fig. 5.2 in the right plot.
The recurrence of population from the quasicontinuum states is inhibited with dissipation
due to damping and to dephasing in the quasicontinuum states. Only those parts of the
wave packet which are still high enough in energy and interfere constructively with their
counterpart in the chromophore can return to the donor state.

To summarize, we extended the work by Ramakrishna, Willig, and May [95] by in-
cluding relaxation processes into the description of electron injection into the conduction
band of a semiconductor. This will, at least, become important for modeling electron
injection from a donor state with ultrafast vibrational relaxation or in the presence of a
fluid surrounding the attached molecule (fast solvation). A variation of configuration pa-
rameters of the chromophore states and of the quasicontinuum, an inclusion of more than
one reaction modes as well as applying various spectral densities of the bath are possibili-
ties that the present model for dissipation offers but which are not explored in this study.
It would be interesting to find the parameters which constitute the crossover between the
regime with dominant coherent mechanism and the regimes with strong influence of the
vibrational dissipation. Using the time evolution of the RDM the third-order polarization
in a pump-probe experiment can be simulated and thus the pump-probe signal can be
calculated, e.g. as was done for betaine-30 in Chapter 4.

1This simulation was carried out up to 120 fs only.



Chapter 6

Exciton transfer in biological systems

6.1 Introduction

Plants, algae, and some bacteria collect and transform the energy of sunlight into chemi-
cal energy with remarkably high efficiency. First, the light from a broad spectral range is
absorbed by the antenna systems. The excitation is then transfered in a number of steps
to the reaction center where a charge transfer takes place. This creates a non-equilibrium
potential which drives reactions of synthesis. The antenna systems have very compli-
cated supramolecular structure containing mainly chlorophyll molecules, carotenoids and
proteins. In some bacterial photosystems, like Rhodopseudomonas acidophila, the arrange-
ment of the peripheral light-harvesting antenna (LH2) is characterized by a symmetric ring
structure. Recently, X-ray studies [78] found that the LH2 of these bacteria is composed
of nine identical units each of which is formed of two proteins with bound bacteriochloro-
phylls. The units are located in space in such a way that a ring with radius about 2.5 nm
of 18 chlorophyll molecules is sandwiched between the protein subunits. The structure
can be also viewed as a ring with 9 dimers as shown in Fig. 6.1. Each chlorophyll molecule
is coupled stronger to its partner in the dimer than to the molecules in the neighboring
dimers. The nonrigid environment of the protein gives rise to static and dynamic disorder,
i.e. local deviations in the spectral properties of every single chlorophyll molecule. If the
fluctuations of the protein environment have much shorter correlation time compared to
the characteristic timescale of the excitation transfer the disorder is regarded as dynamic.
In the opposite limiting case static disorder is considered.

As the chlorophyll sites in the ring are coupled by dipole-dipole and exchange interac-
tions the excitation can be delocalized over the ring and the dynamics of the system can
be modeled by propagating a particle (exciton) in the ring structure. In the presence of
disorder the dynamics of the exciton motion has incoherent relaxation behavior. Recent
femtosecond spectroscopies provided a clear insight into the dynamics of energy transfer
and relaxation in bacterial photosystems [85]. They detected a ultrafast decay of the
anisotropy of fluorescence which is an experimental evidence for the incoherent behavior
of the exciton dynamics.

The first theoretical approach to the coupled coherent and incoherent motion of exci-
tons developed by Haken, Strobl and Reineker is based on the stochastic Liouville equa-



6.2. Model 73

Figure 6.1: Sketch of the model ring structure. The dimers are depicted by large circles
and the sites with single chlorophyll molecules by small circles.

tion (see Ref. [100] for a review). The coherent dynamics is described by a Hamiltonian
containing the excitation energies at all sites (e.g. chlorophyll molecules) and the trans-
fer matrix elements which model the Coulomb and exchange interactions between sites.
The vibrations of the environment, parameterized as fluctuations of the excitation en-
ergies and of the transfer matrix elements, give rise to incoherent motion. Averaging
over the fluctuations results in the stochastic Liouville equation for the density matrix.
In another method [50] the incoherent exciton dynamics is described by the generalized
master equation which has been applied to this problem without Markov approximation
as well. Recently, Redfield theory was set up to describe the exciton propagation in a
model ring structure with 18 chromophore molecules each described by a two-level sys-
tem [41]. Taking into account the simultaneous influence of static and dynamic disorder
this study gave an extension to the investigation by Kumble and Hochstrasser [63] who
included only the effects of static disorder. One of the conclusions [41] was that the simu-
lated time-dependent anisotropy of fluorescence is in agreement with experiment for lower
values of the static disorder than in Ref. [63] due to the inclusion of dynamic disorder.
There seem to exist different sets of microscopic parameters (especially with variation of
static and dynamic disorder) which agree with experiment. Thus, there are still open
questions concerning which physical effects and mechanisms are relevant for the behavior
observed in experiments. In addition to dynamic disorder non-Markovian effects, related
to the system-bath interaction, will be taken into account in the present work. For this
purpose the time-convolutionless formulation of the QME of Čápek [14] will be used and
numerically compared to Redfield theory.

6.2 Model

The total Hamiltonian of the model system reads [41]
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H = H0
ex +Hs +Hph +Hex−ph (6.1)

where

H0
ex =

∑
m,n

Jmna
†
man (6.2)

Hs =
∑
m

εma
†
mam (6.3)

Hph =
∑
ξ

ωξb
†
ξbξ (6.4)

Hex−ph =
1√
NB

∑
m,ξ

Gm
ξ ωξa

†
mam(b†ξ + b−ξ). (6.5)

The first term H0
ex describes the transfer of a single exciton from one site of the ring to

another. Operator a†m creates an exciton at site m while operator an destroys the exciton
at site n. The non-diagonal elements of Jmn are transfer integrals and the diagonal
elements are the local energies of the sites. The second term in Eq. (6.1) takes into
account the fluctuations εm of the site energies Jmm assuming a Gaussian distribution
with standard deviation ∆. The decay time of the time-correlation function of these
fluctuations is assumed to be sufficiently long compared to the timescale of the exciton
dynamics. Thus, the term Hs is regarded as static disorder. The next term, Hph describes

the phonon bath and the operators b†ξ and bξ create and annihilate a phonon, respectively.
The exciton-phonon coupling term Hex−ph is assumed to be site-diagonal and linear in the
lattice displacements, i.e. it has the bilinear form (2.4). Dynamic disorder in the system
is related to the exciton-phonon interaction Hex−ph, i.e. the dissipation. The first two
terms of the total Hamiltonian (6.1) are regarded as a relevant part (see Eq. (2.2)) whose
dynamics is described by an exciton RDM.

Considering a symmetric ring with NS sites each with the same local energy Jmm and
coupling only between neighboring sites, i.e. Jmn = J(δm,n+1+δm,n−1), the diagonalization
of H0

ex leads to the eigenstates (Frenkel excitons)

|α〉 =
1√
NS

NS−1∑
n=0

e2πikn/NS|n〉 (6.6)

with the eigenenergies Eα = −2J cosα, where α = 2πk/NS, k = 0, ±1, ±2, . . . , ±NS/2.
For a symmetric coplanar arrangement of site transition moments µα dipole-allowed tran-
sitions populate only the degenerate k = ±1 levels of the ideal ring. When static disorder
of the site energies is present (∆ 6= 0) the eigenstates |a〉 of the Hamiltonian H0

ex + Hs

correspond to mixtures of |α〉 and an excitation will prepare a superposition of the |α〉
states.

The dipole strength µα of state |α〉 of the ideal ring µa and the dipole strength of
state |a〉 of the ring with static disorder read

µα =
NS∑
n=1

cαnµn, µa =
NS∑
n=1

canµn, (6.7)
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where cαn and can are the expansion coefficients of the eigenstates of the ideal and disordered
rings, respectively, in site representation. Kumble and Hochstrasser [63] concluded, that
in the case of pump-pulse excitation the dipole strength is simply redistributed among
the exciton levels due to disorder. So the amplitudes of site excitations and the phase
relationships in the initial state are necessarily identical to that of an equal superposition
of k = ±1 excitons of the ideal ring. Thus, the excitation with a pump pulse of sufficiently
wide spectral bandwidth will always prepare the same initial state, irrespective of the
actual eigenstates of the real ring. This initial state is entirely determined by the selection
rules of the ring without static disorder. After pulse excitation from an external field with
polarization ex the initial condition for the RDM is given by [85]

ραα′(t = 0; ex) =
1

A
(ex · µα)(ex · µ′α) . (6.8)

where
A =

∑
α

(ex · µα)(ex · µα) . (6.9)

The time-dependent anisotropy of fluorescence

r(t) =
〈Sxx(t)〉 − 〈Sxy(t)〉
〈Sxx(t)〉+ 2〈Sxy(t)〉

(6.10)

is a measure for the survival time of the exciton. It arises from the difference of the
fluorescence signal upon pumping and probing with x- and y-polarized pulses and is
experimentally detectable. The angular brackets in Eq. (6.10) denote the ensemble average
as well as the average over the direction of the laser pulses with fixed relative directions
ex and ey. The signals Sxy(t) can be calculated with use of the exciton RDM [41] as

Sxy(t) = A
∫
dω

∑
a,a′

ρaa′(t)(ey · µa′)(ey · µa)[δ(ω − ωa′0) + δ(ω − ωa0)] . (6.11)

The Hamiltonian (6.1) allows the use of Redfield theory provided that the exciton
dynamics is not very fast and its coupling to the bath is weak. The dynamical problem
can be then formulated by constructing the Redfield relaxation tensor R which enters the
Redfield QME (2.10). Alternative description for the the dissipative exciton dynamics
was proposed by Čápek [14] who derived a convolutionless master equation for the exciton
RDM

d

dt
ρ(t) = −i[H, ρ(t)] + iδΩ(t)ρ(t). (6.12)

It turned out [41] that for t→∞ the time-dependent relaxation tensor iδΩ(t) is identical
with the Redfield tensor R. Furthermore, it was shown [15] that the SA commonly used
in the Redfield method can distort the correct short time evolution of physical quantities
calculated by means of the RDM for exciton transfer problems. This is why SA will not be
used in the present work. In order to take into account the non-Markovian effects the full
time dependence of δΩ(t) [14,56] has to be used rather than its long time approximation
Eq. (2.10). Here we refer to the original work [14] for the derivation and for a detailed
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Figure 6.2: Decay of the anisotropy of fluorescence for a symmetric ring of 18 chro-
mophore sites calculated with the Redfield equation (solid line) and with the non-
Markovian QME (6.12) (dashed line). All units are relative to the transfer integral J12.
For example t = 1 corresponds to 21.1 fs for J12 = 250 cm−1. The results presented are for
temperature T = 1 which is about 300 K for J12 = 250 cm−1, static disorder ∆ = 0.2J12

and dynamic disorder j0 = 0.4J12.

discussion on Čápek’s equation. Keeping the notation from Ref. [14] the tensor elements
of δΩ(t) read

iδΩnm,qp(t) = −δnqδApmn(t)− δmpδAq∗nm(t), (6.13)

where

δApmn(t) =
1

NB

t∫
0

dτ
∑
ξ

ω2
ξ (G

m
−ξ −Gn

−ξ)
∑
r

Gr
ξ

[
(1 + n(ωξ)) e

iωξτ + n(ωξ)e
−iωξτ

]
×
∑
aa′
〈r|a〉〈a|m〉〈p|a′〉〈a′|r〉eiωaa′τ (6.14)

and n(ω) = 1/(eβω−1) is the Bose-Einstein distribution function. It should be noted that
Eq. (6.12) is local in time although the relaxation tensor (6.13) contains a second-order
kernel. The non-Markovian effects contained in δΩ(t) vanish within a short memory time
τm. However, τm can influence strongly the dynamics at the early stage as shall be shown
below.

The parameters in the present calculations are taken from Ref. [41]. As introduced,
one has to distinguish the coupling between sites within one dimer by using the intra-
dimer transfer integral J12 which is used as energy unit for all other parameters. The
respective inter-dimer transfer integral was taken J23 = 0.7J12. The bath is extended to a
bath with infinite number of uncoupled harmonic oscillators, i.e. NB →∞, with spectral
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density

J(ω) = Θ(ω)j0
ω2

2ω3
c

e−ω/ωc (6.15)

where Θ(ω) is the step function and ωc the cut-off frequency. In this calculation
ωc = 0.2J12 and j0 = 0.4J12. The static disorder ∆ and the temperature T are varied.

Figure 6.3: Difference between the non-Markovian and Markovian results of the
anisotropy of fluorescence r for a symmetric ring at different times t and for different
values of the static disorder ∆ displayed for low (a), middle (b) and high temperatures
(c).

For numerical time propagation of the density matrix ρ, i.e. for solving of Eq. (6.12),
the SIA method [91] was used. This method was applied to an electron transfer problem
with a stationary relaxation superoperator R [55] but it can be applied very successfully
in the case of weak time dependence of R as well. It was pointed out that the advantage
of the SIA method with respect to the standard RK scheme is the low computational
costs for moderate accuracy [55]. Furthermore, the expansion coefficients are adapted at
each time to a fixed time step with a prespecified tolerance in contrast to the RK scheme
in which the time step has to be adapted. A uniform time grid is important for the
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averaging of various realizations at the same time points without interpolation. In order
to reduce the computation time the code was parallelized by means of MPI [26] and the
computation was performed on a cluster of 192 Pentium III nodes. Thus, only a sequence
of 52 realizations of the static disorder had to be run on one node instead of all 9984
realizations in the case of serial implementation.

6.3 Results

We have used the non-Markovian dynamical equations for the exciton RDM ρ in Čápek’s
form Eq. (6.12) to express the time dependence of the optical properties of the model LH2
ring of BChls in the femtosecond time range. The simulated anisotropy of fluorescence
is shown in Fig 6.2. It can be immediately seen that the non-Markovian correction
gives rise to retardation of the decay even in this high temperature case. For long times
(t > 10) Markovian and non-Markovian results converge to the same equilibrium value.
In Ref. [63], the anisotropy of fluorescence of the LH2 ring decreases from 0.7 to 0.3−0.35
and subsequently reaches a final value of 0.4. One needs a strength of static disorder of
∆ ≈ 0.4− 0.8J to reach a decay time below 100 fs.

In the previous calculation [41] dynamic disorder (in addition to the static one) was also
considered using Redfield theory. It led to faster decay during the initial stage. Smaller
values of ∆ than predicted in Ref. [63] would be sufficient to guarantee the decrease of the
anisotropy r(t) during the first 100 fs. The same is true if we use Čápek’s non-Markovian
equations [14]. According to our results (Fig. 6.3) the non-Markovian effects play a larger
role at higher temperatures in which case the decay of anisotropy of fluorescence becomes
slower. The time at which the anisotropy of fluorescence drops to 0.4 becomes longer
by up to 50 %. So non-Markovian effects are by no means small at higher temperatures.
There is a possible explanation of this finding. In Chapter 2 it was noted that the memory
time τm, which is characteristic for the magnitude of non-Markovian effects, is system-
specific as well [74]. In particular, initial correlations in ρ(t = 0), which are neglected in
this numerical simulation, can strongly influence the memory time. Their interplay with
dynamic disorder and temperature can diversely change the memory time. Thus, initial
correlations have to be taken into account in future studies.
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Conclusion

In this dissertation multilevel Redfield theory was used to numerically approach three
different transfer problems. In addition, a few theoretical aspects concerning the modeling
of coupled diabatic states in the framework of Redfield theory as well as numerical methods
for solution of the Redfield QME were considered.

Of special interest was the influence of the intercenter coupling on the dissipation the
neglect of which leads to the DDA. This issue is relevant not only for the ET model
considered here but also for all microscopic models containing coupled diabatic states.
With the help of first-order perturbation expansion in the electronic coupling it became
possible to find an analytical expression for the relaxation operator Λ in DR. The popu-
lation dynamics of a model two-center ET system in the case of the zeroth order of this
perturbative treatment DR0, which is equivalent to DDA, was then compared with the
dynamics adding the first order contribution (DR1) and using the exact formulation for
Λ in ER. The DDA yields wrong population dynamics even for very small intercenter
coupling in configurations with barrier as well as in the cases in which the energy levels
of both diabatic states are not in resonance. Taking the first order contributions into ac-
count gave surprisingly good results — in the case of weak electronic coupling (v = 0.1ω0)
they completely converged to the exact ER results. In these favorable cases the use of the
DR1 rather than the ER formulation for Λ is advantageous due to the following reasons.
First, one does not need to diagonalize the Hamiltonian of the relevant system HS which
for problems of high dimension and (or) large basis size is a tough, and sometimes, infea-
sible numerical task. Second, the populations are calculated by simple tracing which is a
cheaper operation than matrix-matrix multiplication in the case of ER. Third, the per-
turbative approach allows one to separate the contributions from DR0 and DR1 at each
moment of time and make conclusions about the mechanisms involved in the specific case.
Benefiting from the latter feature different potential configurations of the ET model were
analyzed by numerical comparison between DR0 and DR1. Small, moderate and strong
electronic coupling and four representative potential configurations were considered. It
was found that in the configurations with barrier, in which at least one level of the ex-
cited state lies below the crossing point of the diabatic potentials, the thermally assisted
transfer mechanisms in DR1 predominate the purely coherent mechanism within DR0,
particularly in the long-time limit. In contrast, in the case of configurations without bar-
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rier and in the Marcus inverted region, the coherent mechanisms contribute exclusively
to the transfer dynamics. The role of the dissipation in the latter cases is reduced to
damping within each diabatic state. Moreover, the damping rate determines the ET rate
provided that the former is much smaller than the electronic coupling. For configurations
within these limits and for small electronic coupling the DDA is by all means justified.

Further on, various numerical solving schemes for time-local QMEs were tested for
their efficiency. The first group of direct propagation methods for the RDM included two
versions of the Runge-Kutta method (RK), the short-iterative-Arnoldi (SIA) propagator,
the Chebyshev polynomial (CP) propagator, the Newtonian polynomial (NP) propagator,
and the symplectic integrator (SI). The Redfield equation was solved for a two-state single-
coordinate ET model in DR and in ER. Apart from the highly accurate NP, which was
used as a benchmark, the RK method from NAG exhibits the best performance both in
DR and in ER. The other RK implementation, of the Numerical Recipes has a much worse
performance in ER than in DR. The CP has limited accuracy of ε ≈ 10−8 even for very
large numerical effort. A reasonable trade-off between numerical effort and accuracy is
achieved using SIA with almost no change going from DR to ER.

Besides direct RDM propagators the stochastic wave function method was also imple-
mented. This method allows to approach problems with very high dimensions or with a
requirement for a large basis set. For a long time the approach had been limited to QMEs
of Lindblad form. As the Redfield equation is not in Lindblad form we were motivated to
develop a new stochastic unraveling scheme for generalized time-local QMEs. The new
jump method is based on a doubled Hilbert space in which the state of the system is
described by a pair of wave functions. Using the new method the QME for quantum
Brownian motion and the Redfield QME for ET were successfully solved. However, the
performance of the method has still to be verified with such an initial RDM for which no
negative eigenvalues occur in time. This can be done with use of slippage of the initial
conditions.

A real system with photoinduced ET in the inverted regime was also considered in the
present studies. The system investigated here, betaine-30, is known to be very difficult
due to the strong electronic intercenter coupling and to the low frequency mode relevant
for the ET dynamics. In spite of this, the fully quantum-mechanical treatment based on
the RDM with a model comprising two reaction modes yields rather meaningful results.
First, the rates obtained in the two-mode model are in better agreement with experiment
than the rates evaluated with the one-mode model. In addition, the recently proposed
concept of two-stage mechanisms of ET in betaine-30 could be confirmed by the simulated
pump-probe spectra. The nonlinear absorption and the stimulated emission maxima in
the simulated transient at delay time of 300 fs are located exactly at the same wavelengths
as those in the experimental spectra. In the future simulations without use of DDA will
be carried out in order to revise the present conclusions. The expectations are that they
will bring minor quantitative novelties as the long-time dynamics only is supposed to be
affected by the use of DDA. Both the rate calculations and the simulated pump-probe
spectra of betaine-30 showed that a more accurate, possibly self-consistent model for
the spectral density is necessary for quantitatively correct results. A possibility in this
respect is offered by molecular dynamics simulations. This remains outside the scope of
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the present thesis.
Extending the work by Ramakrishna, Willig, and May vibrational dissipation was

included into the description of photoinduced electron ET between a surface-attached
chromophore (perylene) and a semiconductor (TiO2). The conduction band of TiO2,
acting as acceptor, was modeled with a quasi-continuum of discrete diabatic states. Using
the Redfield QME this specific ET model was solved numerically. The structure of the
electronic populations in the conduction band, found previously by Ramakrishna et al.
by solving the time-dependent Schrödinger equation, was reproduced here in the case of
coherent dynamics. Turning on the dissipation this distribution becomes narrower because
of vibrational relaxation within the excited state of the chromophore. Furthermore, due
to dephasing and damping in the electronic states of the quasi-continuum the population
recurrences in the excited state of the chromophore become weaker with time. Thus,
the relaxation effects (damping and dephasing), already known from simple ET models,
modify the dynamics of the injected electron in a specific way.

The formulation of Redfield theory allowed to treat also other transfer processes such as
photoinduced exciton transfer in a ring of 18 coupled two-level subsystems each modeling
a bacteriochlorophyll molecule. The new issue in the current work is the inclusion of
non-Markovian effects using a time-convolutionless QME for the RDM. They give rise to
significant retardation of the decay of the anisotropy of fluorescence. It was found that
non-Markovian effects influence the dynamics stronger for higher temperatures. This can
be only due to the fact that the memory time τm, for which the memory kernel decays, is
dependent on but not necessarily identical with the bath correlation time τc. The memory
time depends also on the choice of the initial RDM. Initial correlations can play a decisive
role in the characterization of non-Markovian effects. This is why they have to be taken
into account in future studies.



Appendix A

Calculation of Λnm

The purpose of this appendix is to show some more details for the evaluation of 〈n|Λ|m〉.
To calculate

〈n|KI(−t)|m〉 =
∑
i,j

〈n|e−iHt|i〉〈i|K|j〉〈j|eiHt|m〉 (A.1)

the operator identity [64]

e−i(H0+V )t = e−iH0t

1− i
t∫

0

dt′eit
′H0V e−it

′(H0+V )

 , (A.2)

which can easily be proven by multiplying both sides with eiH0t and differentiating with
respect to t, is used iteratively. It yields

〈n|e−iHt|i〉 = 〈n|e−iH0t[1− i
t∫

0

dt′eit
′H0V e−it

′H0 ]|i〉+O(V 2)

= e−iEitδni − ie−iEnt〈n|V |i〉
t∫

0

dt′ei(En−Ei)t
′
+O(V 2)

= e−iEitδni −
〈n|V |i〉
En − Ei

(e−iEit − e−iEnt) +O(V 2) (A.3)

assuming that En 6= Ei. Here and in the following we only give the general expressions
for the matrix elements. If a singularity can appear due to coinciding frequencies the
appropriate expression can be obtained by taking the proper limit.

Thus the matrix element (A.1) is given by

〈n|KI(−t)|m〉 = eiωmnt〈n|K|m〉

−
∑
j

〈n|K|j〉〈j|V |m〉
ωjm

(eiωmnt − eiωjnt)

−
∑
i

〈i|K|m〉〈n|V |i〉
ωni

(eiωmit − eiωmnt) +O(V 2) . (A.4)
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This result is inserted into Eq. (2.30). One has to evaluate integrals of the kind

∞∫
0

dte−εte−i(ω−ωmn)t =
−i

ω − ωmn − iε
(A.5)

which contain a convergence parameter ε. Using the well known Plemelj identity

lim
ε→0

1

x± iε
= PV

1

x
∓ iπδ(x) (A.6)

one gets for the first term of the matrix element of Λ

〈n|Λ|m〉 =
π

1− e−βωmn
[J(ωmn)− J(−ωmn)]〈n|K|m〉+ (Lamb shift) + . . .

The Lamb shift is the imaginary part of the matrix element of Λ and leads to an energy
shift in the quantum master equation. This term is a small correction [34] and is neglected
in Redfield theory. The other terms of the matrix elements are calculated in the same
fashion yielding

〈n|Λ|m〉 =
π

1− e−βωmn
[J(ωmn)− J(−ωmn)]〈n|K|m〉

−
∑
j

〈n|K|j〉〈j|V |m〉
ωjm

{
π

1− e−βωmn
[J(ωmn)− J(−ωmn)]

− π

1− e−βωjn
[J(ωjn)− J(−ωjn)]

}
−
∑
i

〈i|K|m〉〈n|V |i〉
ωni

{
π

1− e−βωmn
[J(ωmn)− J(−ωmn)]

− π

1− e−βωmi
[J(ωmi)− J(−ωmi)]

}
. (A.7)
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Stochastic wave function algorithm

B.1 The standard quantum jump method

This algorithm gives the numerical solution of the SSE (3.22). The initial density matrix
ρS(0), describing in general a mixed state, is represented by a set of ket-vectors |ψi,s(0)〉
such that

ρS(0) =
Ne∑
i=1

wi
1

NS

NS∑
s=1

|ψi,s(0)〉〈ψi,s(0)| (B.1)

where wi are the eigenvalues of ρS(0) and NS is the number of trajectories (stochastic
realizations) which for simplicity is chosen the same for each pure state (eigenvector of
ρS(0)). Next, using the Lindblad operators from Eq. (2.7) one defines an effective non-
Hermitian Hamiltonian

Heff = HS +
i

2

∑
k

L†kLk . (B.2)

Starting at t = 0 the following procedure runs independently for each trajectory |ψi,s(t)〉

1. store/send |ψi,s(t)〉 for averaging

2. calculate pk = 〈ψi,s(t)|L†kLk|ψi,s(t)〉

3. extract a random number ε ∈ (0, 1)

4. if ε > dt
∑
k pk then

∗ find |ψi,s(t+ dt)〉 solving d|ψi,s(t)〉/dt = −iHeff |ψi,s(t)〉
∗ let t = t+ dt

∗ renormalize |ψi,s(t)〉
∗ go to step 1

else

∗ perform a jump using the probabilities pkdt: |ψi,s(t)〉 → Lk|ψi,s(t)〉/
√
pk

∗ go to step 2
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Either at the end of the time propagation or at each step during the propagation the solu-
tion ρS(t) of the Lindblad QME (2.7) is obtained by averaging over all single realizations
|ψi,s(t)〉 taken from step 1

ρS(t) =
Ne∑
i=1

wi
1

NS

NS∑
s=1

|ψi,s(t)〉〈ψi,s(t)| . (B.3)

One does not need to recover the RDM in order to compute the ensemble-averaged ex-
pectation value of an observable A. In this case it is numerically advantageous to use the
wave functions directly:

〈A(t)〉 =
Ne∑
i=1

wi
1

NS

NS∑
s=1

〈ψi,s(t)|A|ψi,s(t)〉 . (B.4)

B.2 The new quantum jump method

This algorithm gives the numerical solution of the SSEs (3.31) and (3.32). The wave
functions |ψi,s(0)〉 and |φi,s(0)〉 are constructed so that

ρS(0) =
Ne∑
i=1

wi
1

NS

NS∑
s=1

[|φi,s(0)〉〈ψi,s(0)|+ |ψi,s(0)〉〈φi,s(0)|] . (B.5)

and propagated jointly (as pairs) as follows starting with t = 0

1. store/send |ψi,s(t)〉 and |φi,s(t)〉 for averaging

2. calculate p1
k and p2

k according to Eqs. (3.36) and (3.37)

3. extract a random number ε ∈ (0, 1)

4. if ε > dt
∑
k(p

1
k + p2

k) then

∗ find |ψi,s(t+ dt)〉 and |φi,s(t+ dt)〉 solving
d|ψi,s(t)〉/dt = A|ψi,s(t)〉 and d|φi,s(t)〉/dt = A|φi,s(t)〉 respectively

∗ let t = t+ dt

∗ renormalize |ψi,s(t)〉 and |φi,s(t)〉
∗ go to step 1

else

∗ if ε ≤ dt
∑
k p

1
k then

– jump with probability p1
kdt:

|ψi,s(t)〉 → Ek|ψi,s(t)〉/
√
p1
k and |φi,s(t)〉 → Ck|ψi,s(t)〉/

√
p1
k

else
– jump with probability p2

kdt:

|ψi,s(t)〉 → Ck|ψi,s(t)〉/
√
p2
k and |φi,s(t)〉 → Ek|ψi,s(t)〉/

√
p2
k
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∗ go to step 2

The ensemble-averaged expectation value of an observable A is calculated as

〈A(t)〉 =
Ne∑
i=1

wi
1

NS

NS∑
s=1

[〈ψi,s(t)|A|φi,s(t)〉+ c.c.] . (B.6)

Both methods (Sec. B.1 and Sec. B.2) can be parallelized using MPI [26]. In such
an implementation every single stochastic trajectory is propagated by a different process.
Only the averaging operations (B.4) and (B.6) are done at certain times by means of
collective communications. In this way the task can be efficiently distributed on a cluster
of PCs.
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Thesen zur Dissertation

• In allen Konfigurationen wird bei starker elektronischer Kopplung das Langzeitver-
halten der Populationsdynamik von der diabatischen Dämpfungsnäherung (DDA)
beeinflusst. Je stärker die Kopplung ist, desto größer ist die Abweichung vom ther-
mischen Gleichgewicht mit dem Wärmebad bei t→∞.

• Die DDA kann zu falscher Populationsdynamik führen, auch wenn die Kopplung
genügend klein ist. Dies passiert im Falle von Potenzialkonfigurationen mit Bar-
riere, wobei zumindest ein vibronisches Niveau im angeregten Zustand unter dem
Kreuzungspunkt der diabatischen Potenziale liegt. Bei schwacher elektronischer
Kopplung in den barrierelosen Potenzialkonfigurationen, sowie im Marcus’schen in-
vertierten Bereich, ist die DDA durchaus gerechtfertigt.

• Mit Hilfe der Störungstheorie erster Ordnung in der elektronischen Kopplung ließ
sich das Matrixelement des Relaxationsoperators Λ in diabatischer Darstellung ana-
lytisch bestimmen. Somit wurde der Einfluss der elektronischen Kopplung auf die
dissipativen Mechanismen berücksichtigt.

• Der einzige Mechanismus in der DDA, der zur Transferdynamik beiträgt, ist
kohärenter Transfer zwischen Niveaus mit großer Franck-Condon-Überlappung. Die
dissipativen Terme führen lediglich zu einer Dämpfung innerhalb jedes Potenzials.
Dissipative Transfermechanismen treten erst mit Berücksichtigung der ersten Ord-
nung des Relaxationsoperators auf.

• Verschiedene numerische Methoden zur Propagation von Dichtematrizen wurden
implementiert und auf ihre Effizienz geprüft. Abgesehen vom hochgenauen New-
tonschen Polynom-Verfahren zeigt die Runge-Kutta-Methode von NAG die beste
Leistung in beiden diabatischer und in adiabatischer Darstellungen der Dichtema-
trix. Der short-iterative-Arnoldi-Propagator zeigt ein relativ günstiges Verhältnis
zwischen Aufwand und Genauigkeit.

• Zur effizienten Lösung allgemeiner zeit-lokaler Mastergleichungen, die nicht auf die
Lindblad-Form beschränkt sind, wurde ein neues stochastisches Entfaltungsschema
entwickelt. Die numerischen Teste an zwei Beispielsystemen (Brown’sche Bewegung
und Elektrontransfer) haben gezeigt, dass die neue Methode schon bei 1000 Reali-
sierungen eine genügende Konvergenz ergibt, obwohl diese Simulation im Vergleich
mit dem üblichen Quantensprung-Verfahren aufwendiger ist.



• Die Lage des Absorptionsmaximums im simulierten frequenz- und zeit-aufgelösten
Spektrum von Betain-30, sowie des Emissionsmaximums, stimmen mit den experi-
mentell aufgenommenen Spektren quantitativ überein. Die Resultate bestätigen die
Erkenntnis, dass der Elektrontransfer-Übergang vom S1- zum S0-Zustand in Betain-
30 ein mehrstufiger Prozess ist.

• Zwei Stufen sind beim Elektrontransferprozess in Betain-30 zu unterscheiden. Die
erste schließt die Solvatatisierung des angeregten Zustandes S1 und die Umordnung
der niedrigfrequenten Mode ein. Die zweite ist ein strahlungsloser Übergang zum
Grundzustand S0 und langsame Relaxation (Abkühlung) im Grundzustand.

• Die Verwendung von Modellen für Elektrontransfer mit zwei Reaktionsmoden hat
Elektrontransferraten ergeben, die besser mit dem Experiment als die Raten vom
Modell mit einer einzelnen Mode, sowie besser als die Vorhersagen anderer Theorien,
übereinstimmen.

• Die Behandlung der nicht-Markovschen Effekte beim ultraschnellen Exzitontransfer
erfordert die Berücksichtigung der Anfangskorrelationen in der reduzierten Dichte-
matrix.
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An dieser Stelle möchte ich mich recht herzlich bei allen bedanken, ohne die meine Pro-
motion gar nicht möglich gewesen wäre.

Zuallererst danke ich Herrn Prof. Dr. Michael Schreiber, der mich in seine Arbeitsgruppe
sehr freundlich aufgenommen hat. Er hat mir das interessante Forschungsthema vorge-
schlagen und hat mich während meines ersten Gastaufenthalts in Chemnitz sowie weiter
während meiner Promotionszeit stets betreut und unterstützt.

Mein besonderer Dank gilt Herrn Dr. Ulrich Kleinekathöfer. Er war mein unmittelbarer
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