Theoretische Physik III: Elektrodynamik

Übungsaufgaben: Serie 6

Dr. E. Fromm & Frank Löcse

22.-26.11.2004

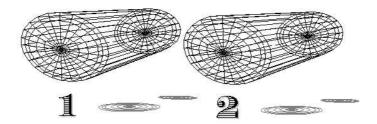
HA: 3207 / 4802

e-mail: fromm@physik.tu-chemnitz.de, f.loecse@physik.tu-chemnitz.de

Quelle: http://www-user.tu-chemnitz.de/ \sim floe/Lehre/ED_Uebung_WS04_05/start.html

6.1 (PHYS/CSB) Im Mittelpunkt einer leitenden Kugelschale mit dem Radius R_2 und der Ladung Q_2 befindet sich eine metallene Kugel mit dem Radius R_1 und der Ladung Q_1 . Berechnen Sie die Kapazitätskoeffizienten C_{nm} und die gewöhnliche Kapazität C. Zeigen Sie den Zusammenhang dieser Kapazität mit der eines Plattenkondensators für große Radien R_1 und R_2 (groß gegen $d = R_2 - R_1$).

6.2 (PHYS) Es sein die unten abgebildete Leiteranordnung gegeben mit: $Q_1 + Q_2 = 0$ und $\Delta \varphi = \varphi_1 - \varphi_2$ Dann gelten die folgenden Beziehungen: $Q_1 = C \cdot \Delta \varphi$ und $W = \frac{Q_1^2}{2 \cdot C} = \frac{C \cdot \Delta \varphi^2}{2}$ Leiten Sie für beide Gleichungen den Zusammenhang zwischen der Kapazität C und den Influenzkoeffizienten $(C^{-1})_{nm}$ her!



 ${\bf 6.3~(PHYS)}$ Berechnen Sie das Dipolmoment eines unendlich dünnen Stabes der Länge Lmit der Ladungsdichte

$$\varrho(r) = \begin{cases} q \cdot \left(\frac{2 \cdot z}{L}\right)^n & \text{für } -\frac{L}{2} \le t \le \frac{L}{2} \\ 0 & \text{sonst} \end{cases}$$

in Bezug auf den Koordinatenursprung. Welche Dimension hat q?

6.4 (CSB) Lösen Sie mit Hilfe der Methode der Finiten Differenzen die Differentialgleichung eines eindimensionalen harmonischen Oszillators mit der Wellenzahl k=1 und den Randwerten f(0)=0 und $f(\frac{\pi}{2})=5$. Vergleichen Sie mit der analytischen Lösung des Problems! Was bedeutet die Vorgabe der Randwerte physikalisch?

6.5 (CSB) Erstellen Sie eine Programmbibliothek zur Vektoralgebra in kartesischen Koordinatensystemen. Definieren Sie einen geeigneten Datentyp. Implementieren Sie Funktionen für Vektoraddition, Betrag eines Vektors, Skalarprodukt, Kreuzprodukt und Spatprodukt. Gegeben seien die Vektoren $\vec{A} = (3, 3, 2)$, $\vec{B} = (3, 5, 4)$ und $\vec{C} = (2, 4, 8)$. Berechnen Sie unter Benutzung

$Dr.\ E.\ Fromm\ \&\ Frank\ L\"{o}cse$

der Bibliotheksfunktionen:

- a) die Länge l der Strecke in Abb. (a),
- **b)** die Fläche F des Parallelogramms aus Abb. (b) und
- c) das Volumen V des Parallelepipeds der Abb. (c).

