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Abstract 
Motivated by the structure of the normal surface stress of the extended Hertzian approach [1] 

given due to terms of the form r2n(a2-r2)1/2 (n=0, 2, 4, 6…) it seems attractive to evaluate the 

complete elastic field also for shear loadings of this form. The reason for this lays in the 

demand for analytical tools for the description of mixed loading conditions as they appear for 

example in scratch experiments. 

[1] N. Schwarzer, "Elastic Surface Deformation due to Indenters with Arbitrary symmetry 

of revolution", J. Phys. D: Appl. Phys., 37 (2004) 2761-2772 

Aim of the paper 
Thus, the aim of this paper is to derive the complete potential functions for surface shearing 

loads of the type: 
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with arbitrary constants c. The evaluation for n=0,2,4,6 has been explicitely performed by the 
author and is given in this paper. However, it should be noted here, that by following the 
instructions of the mathematical procedures given also complete potential functions for even 
higher n can be derived rather easily. 

Stress and Displacement in a Transversal Isotropic Half-Space 
In this chapter we will represent the principle equations for the potential function formulation 
for transverse isotropy. We use the notation of Fabrikant [2] and take the z axis as the axis of 
material symmetry. The following stress strain relations may be given than 
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Here u, v and w are the displacements in x-, y- and z-direction and A11, A13, A33, A44, A66 are the 

elastic constants of the transversal isotropic medium. Further the symbols σxx, σyy, σzz denote the 

normal and τxy, τxz, τyz the shearing stress components. 

We define the following operators 
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For practical purpose it is useful to choose cylindrical co-ordinates, so we may rewrite these 

operators in cylinder co-ordinates using 
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and obtain with 
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the following results: 
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as well as 
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The solution for the equilibrium condition of the theory of elasticity in the transversal isotropic 

case ([2], p. 72) 
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may be given now as follows 

 ( )
z
Fm

z
FmwiFFFuivu c

∂∂
2

2
1

1321 ; ∂
+

∂
=++Λ=≡+ . (9) 

The functions F1, F2, F3 satisfy the Laplacian-like relation 
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While γ3 is given through γ3
2=A44/A66 the γk (k=1, 2) have to be obtained from  γk

2=nk, whereas 

nk denote the two (real or conjugate complex) roots of the equation 
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The constants mk (k=1, 2) are related to the γk as 
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In addition we define the constant H as 
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In order to simplify the stress field Fabrikant [2] used the following combinations

 σ1=σxx+σyy=σrr+σϕϕ, σ2=σxx-σyy+2iτxy=e2iϕ (σrr-σϕϕ+2iτrϕ), τz=τxz+iτyz=eiϕ (τrz +iτϕz). 

Thus, one is able to rewrite the stress strain relations as 
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and, by using the identity (10), obtains finally  
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A very good discussion about the formulae presented as well as the properties of the constants 
they obtain was given by Hanson and Wang [3].  

The Point Force Solution For the Transverse Isotropic Half-Space z ≥ 0 

Again we follow here the results of Fabrikant [2], pp. 77 – 79. A concentrated force with the 

components T (T=tx+ity) and P shall be applied at the point N0(x0, y0, z=0)= N0(r0, ϕ0, z=0). 

The field of stresses and displacements in the elastic half-space may be evaluated from the 

following potential functions: 
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with 
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where R is given as 
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respectively in cylinder co-ordinates 
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Calculation of the Potential Function 

In order to obtain a variety of potential functions for different indenter shapes also in the case 
of tangential loading, we start with the following “extended Hertzian” approach for a 
singularity free shear load distribution below the indenter: 
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where the following normalisation condition needs to be satisfied: 
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The resulting potentials then can be calculated from equation (22) with P=0 and 
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To solve the double integral we make use of Fabrikant’s method [2] and replace the terms 
containing R after differentiation with respect to z and obtaining 1/R by an integral 
representation of the form: 
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where 
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Integration with respect to ϕ0 yields: 
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Because the process of further calculation would become relatively cumbersome for odd 
numbers of n we here consider only even n. The second integration results in: 



  (31) 

where we have set g=g(x) and 2F1 stands for the hypergeometric function defined as: 

 . 
In order to avoid expressions of hypergeometric and gamma functions, the further evaluation 
will be performed for concrete even n up to n=6. This would give us the opportunity to use 
approaches as: 
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for the shearing traction below the indenter. The results are given below. 
If T=tx+ity gives the total force the necessary normalisation for the tangential stress 
distribution on the surface is determined due to equation (26) with the result: 
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where we have set all codd=cτn>6=0 and cτ0=1. 

Substitution of (31) into (30) leaves us with one remaining integration to obtain the first 
derivative of Ψ with respect to z. For n=0 the calculation has been first performed by 
Fabrikant [4], Appendix A (normal load) and Hanson [5] (tangential load). For other n we 
give the results of the integration below. Here the function Φ can be obtained due to 
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 with respect to z provides us with the complete 

function Ψ already given in [1]. The latter potential is also necessary for the extended 
Hertzian approach with pure normal loading. 

n=2: 
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n=6: 

 



 
Other derivatives of the complete function Ψ necessary to calculate the elastic field of stress, 
strain and displacement yield rather long and cumbersome formulae. It can be obtained and 
simplified from our formulae by using the results of Fabrikant [2], p. 324. In addition, the 
equations are also woven into software packages ([6] and [7]), which can be tested for free 
and allow the examination and application of the new potential functions. 

Application 
As a demonstrating example we consider a hypothetical load-depth-curve of a so called 
ACCU-Tip nanoindentation [8] into a very thin film of only 50nm (Young’s modulus 
450GPa, Poisson’s ratio 0.2) on silicon (Young’s modulus 165GPa, Poisson’s ratio 0.223). 
The ACCU-tip shall be of a rather non-spherical shape (fig. 1). 



 
Fig. 1:  Example for Indenter (ACCU-Tip) with rather non-spherical shape function within 

the contact zone. The shape function can be given due to 
z(r)=r2/0.05µm+1012*r4/(µm)3. 

 
The normal load applied shall be 20µN resulting in a contact radius of a=10,24nm and figure 
2 show the resulting load depth curve assuming that the penetration is completely elastic. 
Now an additional lateral laod shall be applied, thus scratching the indenter over the surface 
in order to induce plastic surface damge. Assuming that plastic flow is responsible for the 
damage the analysis of the critical lateral and normal load requires the evaluation of the von 
Mises stress. Figure 3 shows the von Mises stress on the surface around the contct area. 
In addition it might be interesting also to investigate the normal stress in moving direction of 
the indenter because here high tensile stresses behind the indenter could lead to mode I 
fracture (figure 4). Also intersting could be the distribution of work due shape-change within 
the stressed surface (figure 5). 



 
Fig. 2:  Load-depth-curve for the ACCU-tip of fig. 1 pressed into a coating-substrate-

compound with a maximumload of 20µN. 
  

 
Fig. 3: Resulting von Mises stress for the maximumload shown in fig. 2. The figure shows 

the stress in the surface, where due to the lateral loading the maximum is to be 
found. 



 
Fig. 4: Resulting normal stress in x-direction for the maximumload shown in fig. 2. The 

figure shows the stress in the surface, where due to the lateral loading the maximum 
is to be found. 

 
Fig. 5: Resulting work due to shape changing for the maximumload shown in fig. 2. The 

figure shows the stress in the surface, where due to the lateral loading the maximum 
is to be found. 
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