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Abstract

The electron transport through a molecular wire under the influence of an external
laser field is studied using a reduced density matrix formalism. The full system is
partitioned into the relevant part, i.e. the wire, electron reservoirs and a phonon
bath. An earlier second-order perturbation theory approach of Meier and Tannor
for bosonic environments which employs a numerical decomposition of the spectral
density is used to describe the coupling to the phonon bath and is extended to deal
with the electron transfer between the reservoirs and the molecular wire. Further-
more, from the resulting time-nonlocal (TNL) scheme a time-local (TL) approach
can be determined. Both are employed to propagate the reduced density operator
in time for an arbitrary time-dependent system Hamiltonian which incorporates the
laser field non-perturbatively. Within the TL formulation, one can extract a current
operator for the open quantum system. This enables a more general formulation
of the problem which is necessary to employ an optimal control algorithm for open
quantum systems in order to compute optimal control fields for time-distributed tar-
get states, e.g. current patterns. Thus, we take a fundamental step towards optimal
control in molecular electronics. Numerical examples of the population dynamics,
laser controlled current, TNL vs. TL and optimal control fields are presented to
demonstrate the diverse applicability of the derived formalism.
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Chapter 1
INTRODUCTION

Nowadays semiconductor industry is already working towards 65 nanometer and
smaller scales [INT] in order to fabricate commercially used integrated circuits. After
40 years, it is questionable whether Moore’s law, i.e. a doubling of the number of
transistors in a given space every 12 months [Moo65] (later corrected to every 24
month), will still describe the grade of miniaturization over the next decades. By
reaching the physical limits of atomic structure engineers face tough challenges like
quantum tunneling and excessive heat generation.

Thus, a completely new type of technology is required and different major ap-
proaches have been pursued over the years. For instance, the broad field of spintron-
ics utilizes an additional physical quantity of the electron, namely the spin, to store
and manipulate information within the conventional semiconductor environments
[WAB*01, ZFSO4]. Another possibility is to replace the "top-down” engineering
of todays semiconductor heterostructures by a ”bottom-up” approach which leads
one directly to the field of molecular electronics [NR0O3, GDDNO04]. It was the
idea of Aviram and Ratner published in their milestone paper [AR74] to construct
molecular rectifiers in addition to common p-n structures. A complex molecule con-
sisting of tetracyanoquinodimethane (TCNQ) and tetrathiofulvalene (TTF), which,
if connected to each other by methylene (C'H;), act as electron acceptor and donor,
respectively, should be placed between two metal leads and work as an rectifier due
to its asymmetric electrical properties and the internal tunneling barrier.

Since then, the general goal of the field has been to realize electrical circuits by as-
sembling and arranging single molecules in the desired way. First steps were to mea-
sure experimentally and to describe theoretically the electrical conductance prop-
erties of a metal-molecule-metal junction. Early experiments utilized the scanning-
tunneling microscope (STM) technique to measure the distance-current character-
istics of a single Cgy molecule at room temperature [JGSC95]. Also, xylyl-dithiol
(XYL) molecules on a gold film were bounded to nanometer size Au-clusters real-
izing a gold-dithiol-gold junction for which the voltage-current characteristics was
measured with an STM tip and estimates for the resistance of a single XYL molecule
were obtained [DGO7'95]. In a similar way, an atomic force microscope was used
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for measurements of the conductivity of octanedithol molecules within an isolating
monolayer on a gold surface bound to gold nanoparticles [CPZT01]. The experi-
ment proved that a chemical bond between the molecule and the metallic contacts
is required to approach intrinsic molecular properties. Later STM experiments em-
ploying a self-assembled monolayer of xylyl-dithiol and phenyl-dithiol molecules on
a metallic surface showed a good agreement between the measured and theoreti-
cally calculated I-V curves of a junction realized by a small number of molecules
[TDH*98]. The disadvantage of the STM approach is a lack of long-term stabil-
ity of the junction. The current-voltage characteristic depends beside the intrinsic
electronic structure of the molecule also on the properties of the vacuum barrier
separating the tip and the sample. Furthermore, the tip establishes only a weak
contact situation.

The second major experimental branch employs mechanically controllable break
junctions (MCB) [RZM197, SNU'02, ROW102, KBP*99], where a piezo element
controls the distance between two electrodes with a large reduction factor between
its elongation and separation of the contacts. The break junctions can be fabricated
using electron-beam lithography to structure a gold film [ROW'02] or by just us-
ing a notched gold wire [RZM*97]. Breaking the junction mechanically engenders
sharp gold contacts which then form a stable and adjustable tunneling junction.
Molecules in a solution can enter the region between the contacts and realize the
desired metal-molecule-metal junction. With this method it was possible to measure
the current-voltage characteristic of benzene-1,4-dithiol molecules at room temper-
ature [RZM*97] and of an ensemble of bisthiolterthiophene molecules [KBP199].
By comparing symmetric and asymmetric molecules with thiol end groups, it was
possible to reproduce spatial (and therefore intrinsic) properties of molecules from
a measured I-V characteristic [ROW™02]. Also, an inorganic hydrogen molecule
was used to realize single channel conductance at low temperatures [SNUT02] which
unambiguously proves the feasibility of single molecule junctions.

On the down-side, the specific details of the geometry of the break junction are
unknown and it is generally hard to verify unambiguously whether only one molecule
contributes to the current within the junction. Beside the discussed examples, there
exist a broad variety of promising candidates for molecular wire system. Important
criteria are self-assemblance and chemically controllable fabrication as well as elec-
tronic properties which qualify the system to act as a current rectifier, switch or
gate. Thus, the prospect of using DNA strings as molecular wires is intriguing since
they have the potential for self-assemblance [YPF*03], but whether they provide
the necessary electrical properties is still subject to scientific discussion [WWRO05].
Also carbon nanotubes [Iij91], especially single-wall nanotubes, have been considered
to act as molecular wires and transport measurements showed excellent electrical
properties [TDD*97]. For instance, coherent electron transport between two leads




with a distance of 140 nm was realized by utilizing almost one-dimensional conduc-
tion modes. Furthermore, the proposal to use single-walled nanotubes as chemical
sensors [KFZ100], e.g. measurements showed a dependence between resistivity and
exposure to different gas molecules, leads to applications beyond current switches
and rectifiers. However, on the contrary to DNA, carbon nanotubes have poor man-
ufacturing properties which have to be improved if one wants to complement todays
semiconductor technology.

For a sufficient description of the metal-molecule-metal junction, theorists face
a variety of theoretical challenges. First, one has to deal with the constraint of the
macroscopic electron reservoirs which are defined on a completely different scale
as the molecule. Therefore, a description of a quantum open system is required.
Similar to experiments where little is known about the molecule-metal bridge, one
formally has to deal with the electron transfer between the wire and the lead in
a different way than with the intrinsic charge transport in the molecule. Also, a
realistic model of the intrinsic electron transfer mechanism requires a simulation
of the molecular orbitals as well as an understanding of the involvement of the
vibrational effects due to an additional phonon-bath coupling. Furthermore, the
problem also necessitates a nonequilibrium kinetic approach, since the coupling to
the leads, bias voltages and especially external laser fields can cause dynamical
effects which are not approachable by a simple description of the equilibrium state
of the system.

While calculations of the conductance spectrum [TDH™98, MKR94, Nit01,
GGS02] employing different methods indicate a good agreement with the experimen-
tal data, dynamical aspects are harder to treat theoretically. Several communities
have started to approach the problem with methods related to their field of study
and were able to cover the problem to a certain extent. But a transport formalism
which describes these kinds of system without making inconvenient assumptions
or approximations is still demanded. A powerful tool in mesoscopic physics is the
Landauer-Biittiker scattering formalism [Lan57, BILP85, Bue86, Dat95] and con-
densed matter physicists could calculate with it especially regimes governed by a
strong wire-lead coupling, e.g. through thiol groups. Especially in the case of steady
state currents, the results for the conductance spectrum of these kinds of strongly
coupled molecules were successful [TDH198], despite the rough approximation of
the quantum open system. The infinite gold contacts were approximated by only
a few gold atoms and additional self-energy functions. The approach employed an
extended Hiickel method [Hof63] to compute the density of states of the LUMO and
HOMO band of the molecule. Within the Landauer-Biittiker formalism, coherent
transport is seen as transmission [IL99] attenuated by elastic scattering processes.
Its original phenomenological derivation could later be proven by linear respone the-
ory [BS89], which adds another physical restriction namely small bias voltages. In its




original form, the formalism is unable to address dynamical time-dependent effects
within the system and despite recent extensions to oscillating fields [DA92, WIJM93],
the non-equilibrium kinetic aspects of the problem are still hard to cover.

Density functional theory (DFT) as an atomistic level description has been very
successful to describe the electronic properties of molecules as well as the band
structure of bulk structures. In combination with non-equilibrium Greens functions
(NEGF) it was possible to address time-dependent transport through molecular
systems [KSA*]. NEGF calculations are formally embedded within the vast area
of transport theory [GDDNO04], since it can be shown that they are conform with
the Boltzmann formalism in the case of band-like transport and also reduce to a
Landauer-Biittiker description in the absence of dephasing processes, i.e. inelas-
tic scattering. Despite the advantage, that the energetic levels within the wire are
modeled in a realistic way, the initial Greensfunctions are constructed from sin-
gle particle DFT calculations and many-body effects are only approximated. In
reference [EWKO04] it is pointed out that approximations made to account for the
particle-exchange are not valid in a weak wire-lead coupling regime. Another chal-
lenge within the formalism is to take environmental effects, e.g. vibrational coupling
to a photon bath, into account as well as to find a description that extends it beyond
semi-finite electron reservoirs. A more recent approach based on DFT is the time-
dependent current-DFT [UV02], but it still fails to respect the important system
conditions implied by the metallic leads.

On the contrary to DFT based studies, empirical tight-binding descriptions
model general physical situations and are not apriori related to specific examples
like a certain molecule. Thus, it is not possible to make computations that can
be directly compared to a measurement. But by employing a tunneling model
Hamiltonian with the corresponding tight-binding parameters one can identify ma-
jor physical phenomena which then might be observable in an attenuated form in
molecular systems. For instance, the effect of current induced light emission [GN]
could be demonstrated by using NEGF calculations. Early works using a mas-
ter equation approach to study electrical currents in quantum dots [BS93, BBS97]
showed its potential in respect to describe the quantum open system, the coupling
to an external field and time-dependent transport. Approaches based on Floquet-
states proved quite applicable to the case of periodic laser fields, since the periodic
time-dependence of the field is already included by defining rotating eigenstates and
expressions are derived within the theoretical framework of their static counterparts.
This led to impressive results for the electron transport in periodically driven systems
within scattering approaches [KARMO02] and methods based on a master equation
description [LCKHO03, LKHN03, LKMH04, KLH05, LKHN02, CKH04, CLKHO03,
LLY*05, CLSY]. For instance, conductance resonance [KARMO02], current rectifiers
[LKHNO03, LKHNO2], electron pumps [BS93, BBS97], and coherent current control




[LKMHO04, LCKH03, RSK™] were demonstrated. Furthermore, results for highly dy-
namical effects like current fluctuations [KCST04, CKH04, CLKHO03] were obtained.
The advantage of the master equation description is that the vibrational coupling
is usually addressed in a similar way as the coupling in the electron reservoirs. One
only has to apply different statistics, namely Bose statistics and Fermi statistics re-
spectively, and different operators to each process [LKMHO04]. In general, coupling
to a much larger dissipative environment engenders quantum decoherence in the sys-
tem since it reduces the entanglement of the system states. The quantum properties
of the system are no longer measurable and the system evolves into its ”classical
analog”. In terms of transport theory, this corresponds to a transition from a purely
coherent transport regime, where transport is realized by transport channels, to an
incoherent regime dominated by a sequential nearest neighbor hopping process.

Only very little is known about effects caused by arbitrary time-dependent fields
which cannot be treated by methods based on Floquet states and only a few ap-
proaches were published in this field [ON05, KSA™, YX05], recently. The broad
field of dissipative quantum mechanics includes sophisticated methods to deal with
arbitrary time-dependent Hamiltonians within a dissipative environment. Here, the
influences of monochromatic laser fields [Dak94, GKS95, GPM96, CDM97, GH9S]
or short laser pulses [SM98, MT99| on molecular systems are also widely studied.
Thus, we adopt a method developed by Meier and Tannor [MT99] which is based
on the time-nonlocal (TNL) Nakajima-Zwanzig identity [Nak58, Zwa61] and modify
it to account for the electron transfer between an electron reservoir and a molecular
wire which is described by an empirical tight-binding Hamiltonian. Furthermore,
we will directly apply their method to realize the vibrational coupling of the wire
to a phonon bath. It was shown [XY02, Kle04] that the approach of Meier and
Tannor can be extended to derive similar equations in a time-local (TL) scheme,
something we utilize to rewrite the presented formalism into a TL picture. Similar to
other master equation approaches, the wire lead coupling is treated in second-order
perturbation theory while the laser field is included non-perturbatively.

In order to describe relaxation on ultra-short time scales correctly, one needs to
incorporate memory effects [MT99, XY02, Kle04]. To be able to apply the Marko-
vian approximation, i.e. the neglect of memory effects onto the relaxation, one has
to assume that the correlation times of the environment are much larger than the
time scales of the internal dynamics in the wire. The approach of Meier and Tan-
nor avoids the Markov approximation which allows the formalism to deal with the
influence of the electrical field on the current in the wire on a femto-second scale.

Once having a formalism at hand to compute time-dependent currents on ultra-
short time scales, one can approach the next challenging step, namely to derive an
applicable method to optimize the external laser fields which are supposed to control
the current dynamically. Previous numerical works on time-dependent currents in




molecular wires applied time-periodic fields with special amplitude to frequency ra-
tios to cause the previous mentioned effects [LCKH03, LKHN03, LKMH04, KLHO05,
LKHNO02, CKH04, CLKHO03]. Since typical molecular energies are in the region of
eV, the prospective of an active control of chemical reactions with ultra-short laser
pulses in chemistry spurred major theoretical and experimental efforts. In the feed-
back control algorithms utilized in experiments, a computer analyzes the data from
a previous measurement by employing an evolutionary algorithm to optimize the
parameters of the control field which is then applied in the following measurement
procedure [JR92|. Thus, a self-learning loop is defined.

First theoretical investigations of the control problem resulted in the pump-dump
molecular control scheme of Tannor, Kosloff and Rice [TKR86] and the optimal
control theory (OCT) of Rabitz et al. [SR90]. In general, OCT optimizes a control
functional under defined constraints and due to this generality, it was successfully
applied to a variety of different systems in physics and chemistry [Yan93, SVR99,
OZR99]. Furthermore, recent publications could successfully extend OCT to the
field of dissipative quantum mechanics [MMO01, MKM02, Oht03, XYO104].

Here, we adopt an optimal control mechanism for dissipative systems based on a
reduced density matrix approach [MMO01, MKMO02] and modify it to derive optimal
laser pulses controlling electrical currents in molecular wires. Many situations in
molecular dynamics have the defined control goal to excite the system into a certain
state for a short moment in time in order to cause a chemical reaction or physical
process. But the optimization of the electrical current towards a defined value at
a single moment in time would not be of much interest in molecular electronics,
where a certain current pattern as a function of time, e.g. a Gaussian current spike,
is required to process information. Recent formal extensions to control states that
are distributed in time [KM05b, KM05a| suggest a way to treat the time-dependent
current phenomena and to obtain optimized current patterns as a function of time.
Thus, we will combine both approaches and propose the first step leading to optimal
control of molecular electronics by deriving an optimal control formalism for the laser
driven wire.

This thesis is organized as follows. In chapter 2, we give a short introduction to
the density operator formalism and derive an equation of motion (EOM) by applying
the Nakajima-Zwanzig identity and second-order perturbation theory to the reduced
density operator coupled to a dissipative environment. In chapter 3, we deal with
the description of a more specific model for the system, e.g. the molecular wire, and
its environment consisting of the electron reservoirs and a phonon bath. In chapter
4, the derived EOM is transformed into a set of equations that can be numerically
propagated in time by utilizing a decomposition of the spectral density. Starting
from the EOM of the reduced density operator, a current equation is derived in TNL
and TL form, before we present the corresponding numerical results in chapter 6.




The current equation in TL form enables one to derive a current operator. This
gives one the generality required to apply optimal control theory to the problem as
presented in chapter 7. The thesis is concluded with a final summary and outlook.
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Chapter 2

DENSITY OPERATOR FORMALISM AND
NAKAJIMA-ZWANZIG IDENTITY

2.1 The statistical operator

A quantum mechanical state |¥(¢)) does not refer to a physical situation in the
same way as the classical concepts of coordinates and momenta of mass points or
electromagnetic fields since it represents a set of probability distributions [Bal98].
For each state |¥(¢)) a unique statistical operator can be postulated as

p(t) = W))W (). (2.1)

The corresponding space of state |¥(¢)) is spanned by the denumerable and orthog-
onal basis |¥(t)) = X, an(t)|#n). The conventional normalization of |¥(¢)) directly
implies a normalization of the statistical operator tr{p(t)} = 1. The density op-
erator formalism is an elegant description of quantum mechanics since it addresses
the statistical aspects involving statistical ensembles of states as well as the subtle
concepts of measurement and entanglement of states [EPR35] in a convenient way.
The expectation value of the observable (Q) is given by

(@) = tr(p@), (2.2)

where @ is a self-adjoint operator defined in the Hilbert space of p(t). This leads
directly to a second restriction on p(t), namely that

p(t) = p'(t) (2.3)

in order to ensure that observables of the system (the quantum mechanical coun-
terparts of the classical concepts) have real values. The property of the statistical
to be nonnegative is proven by

(6ulo()|6n) = lan(t)]* > 0. (2.4)

Applying its normalization, one can derive for the statistical operator defined in Eq.
(2.1) the following equality

(1) = [T(ONT O[T L ()] = (1) (2.5)
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2.2. TIME EVOLUTION OF STATISTICAL MIXTURES

Within the framework of the density operator formalism, property (2.5) is usually
employed to differentiate between pure states and statistical ensembles for which
the relation tr{p?(¢)} < tr{p(t)} = 1 applies. The statistical operator for statistical
ensembles or statistical mixtures is defined by

= 3 W[ () (1) (2.6)

Here, we have a situation where the system manifests itself in a number of different
states | U, (t)) with corresponding probability W,,. The normalization of p(t) implies
the restrictions 1 > W, > 0 and >, W,, = 1. The physical situation described by
a statistical ensemble is a preparation of a system several times in a similar way
resulting in a probability distribution over a mixture of states. Furthermore, the
diagonal elements of p(t) are the probability to find the system in a certain state,
while the off-diagonal elements are the coherences containing the phase information
of the system. Thus, the off-diagonal elements distinguish between a quantum
mechanical situation, where one observes effects due to different phases of states,
and a classical situation described within the framework of quantum mechanics,
without any phase relation between independently prepared states. The concept
of decoherence describes the transition between both. Concerning semantics, we
will also refer to the statistical operator as density operator since it describes a
distribution of probabilities or density matrix once a set of basis vectors for the
system is defined.

2.2 Time evolution of statistical mixtures

The time evolution from the initial time ¢y to time ¢ of the quantum mechanical
state |W(t)) for a time-dependent Hamiltonian H(t) is given by the solution of the
Schrodinger equation

W(8) = Te o ™0 g (1)), (2.7)

T is the time ordering operator in positive time direction. For a statistical mixture
described by the density operator, Eq. (2.7) becomes

p(t) = Te ™0 y(40)et Fo T8O _ 171 1) (1) (2.8)

and the time evolution operator U(t, ) is defined as
Ut t) = Te 4750 (2.9)

Writing Eq. (2.8) in its differential form results in the Liouville-von Neumann
equation
Ip(t)

S0 = L 1H (), p(0)] = 7 L) (2.10)
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2.3. NAKAJIMA-ZWANZIG IDENTITY AND REDUCED DENSITY MATRIX
APPROACH

The Liouville operator £(t) is defined as a commutator with the Hamilton operator.
From now on, we set A = 1 to simplify the notation.

2.3 Nakajima-Zwanzig identity and reduced density matrix approach

In general, the EOM of the complete density operator p(¢) including the wire
and the leads is given by the Liouville-von Neumann equation. In a situation,
where a small quantum mechanical system is coupled to a much larger environment
describable in terms of statistics, the information of interest is limited only to the
inner (or relevant) system part and contained in the reduced density operator pg(t).
In this section, we shortly present the derivation of the Nakajima-Zwanzig operator
identity [Nakb8, Zwa61l, Zwa64] and utilize it to couple a dissipative environment
to the relevant system.

environment

Figure 2.1: The relevant system and its environment.
One can define a projection operator P, with P? = P, which acts on an arbitrary
operator A defined in the Hilbert space of the complete system
PA =Btrg{A}. (2.11)

B is an operator defined in the environmental part only, with trg(B) = 1. Applying
the projection operator to the density operator of the full system leads to

Pp(t) = pp tra{p(t)} = pp ® ps(?). (2.12)
Thus, the EOM for the complete system can be written as

p(t) = —iL(t)p(t) = Pp(t) + (1 = P)p(t) = —iL(t)Pp(t) —iLQp(t)  (2.13)
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2.3. NAKAJIMA-ZWANZIG IDENTITY AND REDUCED DENSITY MATRIX
APPROACH

which can be interpreted as the evolution of the projected part Pp(t) plus the
evolution of its orthogonal complement Qp = (1 — P)p. Furthermore, applying the
projection operator to the Liouville-von Neumann equation and to its orthogonal
complement leads to

Pp(t) = —iPL(t)Pp(t) — iPL(t)Qp(t) (2.14)
and

Qp(t) = —iQL(t) Pp(t) — 1QL(1)Qp(1), (2.15)

respectively. Integrating the differential equation of the orthogonal complement
part (2.15) and applying it to Eq. (2.14) results in the Nakajima-Zwanzig operator
identity

Pp = —iPL{)Pp(t) — iPL(t)Te JoTPED (1 _ pyp(ty)
t o .t
+PL(t) /t dt' Te i Ju drO-PILD (1 _ P)£(#)Pp(t)) (2.16)

which is valid for arbitrary time-dependent Hamiltonians. Since all the operators
are chronologically ordered in time, the literature refers to this time-nonlocal (TNL)
approach often as chronological time ordering prescription (COP)[MOR78, RBN97,
Yan98] or time convolution approach [BKP99]. We will refer to this approach as
TNL to point out that the dissipation term includes the memory of the system
contained in the density operator p(t').

One can further simplify this expression by tracing out the environmental part of
the density matrix employing the property of the projection operator trg{Pp(t)} =
ps(t) in order to derive

ps(t) = ~iLs(t)ps(t) — ites{Lsnps} + [ t AWK pst) +Int)  (217)
where the Kernel K (¢,t') reads
K(t,¢') = —trp{Lsp(t)Te Jr TGPED (1 _ P)(Lu(t') + Lon(t')ps)  (2.18)
and the initial value term is given by
I(t) = —itrp{Ls(t)Te " o "D 1 p)pee)). (2.19)
Here, we have assumed that the Liouville operator of the system depicted in Fig. 2.1

can be formally separated into terms describing the evolution within the relevant
system Lg, the environment Lp and the interaction Lgg between both.
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2.3. NAKAJIMA-ZWANZIG IDENTITY AND REDUCED DENSITY MATRIX
APPROACH

Up to this point, all transformations are exact in the sense that we did not employ
any algebraic approximations. But in order to derive an applicable method to solve
Eq. (2.17), we utilize second order perturbation theory [Haa73, Blu96, MT99] by
assuming that (1— P)Lgp ~ 0 or Lsg ~ PLsp, what implies for the Kernel K(¢,t")
that

e*i(lfp)ﬁt — e*’i(lfp)(ﬁs-f-LB-FﬁsB)t ~ e*i(l*P)(l:s—FﬁB)t' (220)

Therefore, we demand that the coupling between the environment and the relevant
system is weak, or in other words, that the dissipation process is slower than the
internal dynamics of the relevant system. The technical advantage of assumption
(2.20) is that we will able to separate the relevant system parts from the environment
terms in the Kernel K (¢,#'). One could also realize a straightforward expansion of
e 1-P)Lsst hyt this would lead to inapplicable summations in the dissipation term.
Without presenting a proof, we can further simplify Eq. (2.17) by making use of
the following algebraic exact relations:

EBPB = 0,

PLsppp =0,
efi(lfP)Ct =P+ (1 _ P)efilit’
tIB{£SBPC} =0
for an arbitrary operator C. Finally, neglecting the initial value term (2.19) in the

evolution of the reduced density matrix results in the Liouville equation with a
dissipation term in a TNL regime

ps(t) = —iLs(t)ps(t) — tra{Lsn(t) /t : dt'Ussn(t, 1) Lsp(t)p(t)} (2.25)

In the next chapter we will define a specific model for the relevant system and its
environment and then employ Eq. (2.25) to realize the coupling. For the system, we
will employ a tight-binding Hamiltonian which already includes the time-dependent
external laser field. Thus, the environment of the wire consists of the electron
reservoirs and a thermal phonon bath.

16






Chapter 3

DESCRIPTION OF THE WIRE AND ITS
ENVIRONMENT

3.1 The molecular wire and the coupling to the electron reservoirs

The system of interest, depicted in Fig. 3.1, can be represented in a very general
form by the time-dependent Hamiltonian

H(t) =Hs(t)+ Hr + Hsr (3.1)

which consists of the time-dependent part describing the relevant system Hg(t), an
Hamiltonian describing the electron reservoirs Hp, acting in the presented study
as electronic leads, and a coupling term Hgg between the relevant system and the
reservoirs. The orbital description of the wire consists of its electronic sites n which
are coupled to each other by a hopping parameter A. In second quantization, this
orbital tight-binding description of the molecular wire reads

Hg(t) = ZHnn’ (t)C:[LCnI (32)

nn'

where ¢, annihilates and ¢! creates an electron at site n. The fermionic properties
of the electrons are reflected in the anticommutator relations

[c;ru cn’]-l— = 5n,n’ (33)
and
[Cn, e]y = [, el ] = 0. (3.4)

In the present study the time-dependence of Hg(t) is only due to the irradiation of
the system by an external time-dependent electromagnetic field that manipulates
the on-site energies E,, with a time-dependent on-site potential U, (¢). By neglecting
possible influences of the external field on the tight-binding hopping parameter A,
the matrix elements H,,(t) can be decomposed into

H,. (t) = _A(5n+1,n’ + (5n,n’+1) + (En + Un(t))5nnl (35)
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3.1. THE MOLECULAR WIRE AND THE COUPLING TO THE ELECTRON
RESERVOIRS

Since we do not include any spin effects, the wire Hamiltonian does not take correla-
tion between electrons with opposite spin into account. Furthermore, the Coulomb
repulsion of the electrons is also neglected. Both exchange mechanisms lead to im-
portant effects in certain regimes and more detailed future investigations will include
them.

E E
U@
E) I(E)
\' NIRINEN R
T TG T a—_— E
E, E, .. Ey g

Figure 3.1: We study a multi-site system with the two outermost sites attached to
electron reservoirs in thermal equilibrium with their respective Fermi
energies Ep; and Ep,. The coupling of the outermost sites to the
corresponding lead is described by a spectral density function Jg(w).
The sites are connected to each other by a hopping element A. The
on-site energies E, for (n = 1,..N) of the wire can be manipulated
with a time-dependent external electrial field U(t).

The environment of the wire consists of two electronic leads that are modeled
by two independent electron reservoirs in thermal equilibrium. For each lead, the
Hamiltonian Hg in second quantization is given by

Hg = qucch (3.6)
q

with c} and ¢, creating and annihilating an electron in the corresponding bath mode
l¢) with mode energy w,. Due to the assumed thermal equilibrium of the electron
reservoirs, the occupation expectation values of the bath modes are determined by

tr{CECq'P} = np(wg — Ep)dey, (3.7)

where ng is the Fermi function and Er the Fermi energy. The left and the right elec-
tronic leads are coupled to the first site and to the last site of the wire, respectively.
To keep the notation simple, we will only refer to the left lead in further derivations
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3.2. THE COUPLING TO A DISSIPATIVE PHONON BATH

but the formalism has to be applied to the right lead as well. The coupling of the
left electronic lead with the first site of the wire reads in second quantization

Hggp = Z(‘/;]CJ{C(I + V,I*cflcl) (3.8)

q

with a system-lead coupling strength V, for each bath mode ¢. In general, these
coupling values are determined by the the electronic bands of the contacts that
couple with the energy levels of the wire and by the occupation level of these bands
with electrons given by the Fermi function and energy.

3.2 The coupling to a dissipative phonon bath

Besides the coupling to the electronic leads, the wire can also be subject to a
thermal phonon-bath, as it is depicted in Fig. 3.2. Phonons are quantized vibrations
of a rigid lattice which is in the presented study represented by the one dimensional
wire. The Hamiltonian of the whole system reads

H(t) = Hs(t) + Hr + Hsr + Hpp, + Hspp- (3.9)
The free phonon bath Hamiltonian is given by

Hpp =) eqa};aq (3.10)
q

and a};, a, create and annihilate a phonon in bath mode ¢ with mode energy ¢,
respectively. Since phonons are bosonic particles, their creation and annihilation
operators obey the corresponding commutator relations [a,, ay] = [a};, az,] =0 and
[aq, az,] = §,,¢- If a system is in thermal equilibrium, the occupation distribution of
the phonon bath can be obtained within the framework of Bose statistics as

tr{a};aqu} = ng(€;)dyq, (3.11)

where np(¢,) is the Bose function. In general, the wire phonon-bath coupling Hamil-
tonian reads

N
Hspn =Y Xwchica Y. Tolag +al). (3.12)
n q

Here, the phonon position operator a, -|—af1 interacts with either the electron number
operator c} c, of site n, if n = n’, or the intersite hopping operator, if n # n’. Both
are parameterized by the bath-wire coupling strength T,. On the contrary to the
wire-lead hopping Hamiltonian (3.8), Hamiltonian (3.12) does not describe a particle
but an energy exchange. Thereby it determines the regime of electron transfer in the
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3.3. THE MANY-BODY FOCK SPACE

wire [LKHN(02, LKHN03]. We will also assume that each site n couples to exactly
one of identical sets of bath modes, i.e.

The algebraic structure of Hamiltonian (3.12) is also similar to coupling terms be-
tween a phonon bath and a system described by electronic excitations [KBH*03],
despite the fact that the underlying physical processes are different.

Figure 3.2: Same physical situation as in Fig. 3.1 but with an additional phonon
bath applied to the wire.

3.3 The many-body Fock space

In order to realize a numerical investigation of the problem, one has to choose an
appropriate basis for the Hilbert space of the relevant system which is described by
its reduced density operator (2.25). We will use an orbital representation consisting
of a geometric arrangement of wire sites and every single site can be in two distinct
states. Either it is occupied by an electron |1) or unoccupied |0). Thus, the quantum
mechanical state vector of the wire site n is formed by the superposition

Xn) = an|0) + Bal1), (3.14)

where «,, and [, are the corresponding coefficients. A possible representation of the
two state description is given by the vectors

1) = ( (1) ) (3.15)




3.4. THE DIPOLE OPERATOR

which imply the following matrices for the annihilation and creation operators

c;;:<(1)8>, cn:(g(l)). (3.16)

A total state vector |¥), for the relevant system can be constructed from the set of
site state vectors of the wire connected by the tensor product

(W)e = X1, X255 XW)¢ = ([X1) ® [X2) @ ... @ [x)), (3.17)

All the employed operators, e.g. the reduced density matrix, the annihilation and
creation operators, are defined in the many-body Fock space spanned by the set
of state vectors (3.17) An effective way to construct their matrices is to consider
them as superpositions of the form |[¥).(¥|~. For instance, in the case of a two
site system ¢; = [0, 1)(1,1| 4 |0,0)(1,0|. Since it is defined as a projector in Fock
space, the reduced density matrix contains all possible local and global states of the
wire. Due to its fermionic algebra which has its foundations in the proper choice of
the on-site annihilation and creation operators (3.16), the Fock space is intrinsically
symmetrized and includes the Pauli exclusion principle. Since the vectors (3.15) are
normalized, the state vectors of the Fock space (3.17) are normalized as well. We
will not have to find an algebraic representation for the electron reservoirs and the
phonon bath because they are treated statistically in our model. The disadvantage
of the Fock space is that it scales with 2V, what makes it numerically inapplicable
for larger and higher dimensional systems.

3.4 The dipole operator

The external field can cause a manifold of effects within the molecule and the
environment, depending on its amplitude and frequency. For instance, it could heat
the electron gas and cause mechanical expansions of the leads which would alter the
lead-wire coupling strength. Due to formal reasons, we sometimes have to separate
the Hamiltonian of the system into a tight-binding part Hy, including the on-site
energies and the sequential hopping, and a field part H,(t), which includes all the
interactions with the electric field

Because we want to define a simple model to study fundamental effects, we limit
the interaction of the field with the system to a single dipole operator x modulated
by an arbitrarily time-dependent field strength A(t):

H,(t) = A(t)p. (3.19)




3.4. THE DIPOLE OPERATOR

In some calculations, we also employ the Liouville dipole operator given by
£,(t)e = [Hy (), o] = A(t)[1 0] = A(t)L,0 (3.20)

Similar to recent studies [LIH02, LKHN03, LCKH03, LKMH04, LKHN02, KLH05,
KCS*04] and in conformance with the empirical description of the molecular wire,
we also pursue the idea of a dipole-like operator

p=e> T (3.21)

where the scaled position of site n is defined as

N+1-2
%clcn. (3.22)

Ty =
This simply corresponds to a situation of an asymmetric modulation of the on-site
energies and neglects any intra-molecular dipole moments one would find in realistic
molecules. Possible field enhancements caused by the presence of the metallic leads
[JDHD98] which would attenuate the observability of effects which depend on a
certain field strength are also neglected.
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Chapter 4

TIME EVOLUTION OF THE REDUCED DENSITY
MATRIX

The evolution of the reduced density operator is determined by three compo-
nents: the intrinsic evolution determined by the wire Hamiltonian, the coupling to
the electron reservoirs and the coupling to the phonon bath. By employing the
Nakajima-Zwanzig identity and second-order perturbation theory (2.25), the three
components of the full system can be decomposed into the following parts

ps(t) = —Zﬁs(t)ps(t) + DSR(t, to) + Dsph(t, to). (41)

This chapter is dedicated to the derivation of EOM for the operators realizing
the coupling to the electron reservoirs Dgg(t,ty) and to the thermal phonon bath
Dgspp(t,to). In general, these operators are given by the coupling term of Eq. (2.25)
and therefore include the memory of the system.

4.1 The coupling to the electronic leads
4.1.1 Factorization of the system-reservoir coupling

The influence of the coupling to the electron reservoirs on the EOM of pg(t) can
be extracted from Eq. (2.25) and reads

t
ps(t) = —iLs(t)ps(t) — trr{Lsr(t) /t dt'Usir(t, 1) Lsr()p(t)}  (4.2)

0
where we applied Eq. (3.8) as the transfer Hamiltonian between relevant system
and environment. The annihilation and creation operators of the system and the

environment are defined in different Hilbert spaces which makes it possible to rewrite
the coupling Hamiltonian in Eq. (3.8) as
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4.1. THE COUPLING TO THE ELECTRONIC LEADS

with @ = 3, Ve, @2 = 32, V;]*c:; and K; = c]{, K5 = ¢q. In order to evaluate Eq.
(4.2) one has to take the following steps. After applying Eq. (4.3) to Eq. (4.2), the
time-evolution operator Us, g is separated into a system part and a reservoir part

Usir(t,t') = Us(t, t')Ur(t, 1) (4.4)
with the evolution operator of the relevant system given by
= i e
Us(t, ') = Te~r Judrls(m), (4.5)

Furthermore, one can use the definition of the time-independent reservoir Liouville
operator Lg to integrate the evolution operator of the reservoir

Un(t, ')e = To—t Judrlrg — o~iHR(t—V) o SiHR(t—) (4.6)

Thus, a non-Markovian quantum master equation in the Schrodinger picture can be
obtained [MKO00, LLY 05, Kle04]

pslt) = —iLs(tpslt) - [ At ra{( K, 9 0.,

U, (t, t)e TR S Ky @ By, ps(t 1)) ™20} (47)

.:C,

A rearrangement of the summation over z and z' simplifies Eq. (4.7) to

ps(t) = —iLs(t)ps(t) (4.8)
t . ’ . ’
— [t S trad (Ko, Us(t, )e™ 1K@, ps(t o)1),
to

Tz’

After writing out the two commutators in this dissipation term, one can summarize
the trace over the reservoir degrees of freedom and all the reservoir operators into
the following reservoir correlation functions

Coo (t) = Cru(—1) = trg{er D e 7D, pp} (4.9)
which contain all the intrinsic information about the reservoir. For the system of
interest, these correlation functions decay in time thereby causing a memory loss in
the dissipation term of Eq. (4.8). Due to the thermal equilibrium condition of the
electronic leads, two of the four functions are zero,

Cp = Cyy = 0. (4.10)

This reduces the summation over x and z’ to the pairs (zz') = (12) and (zz') = (21).

*

By using the property of the reservoir correlation functions, i.e. Cyy(t) = Ck(—t),
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4.1. THE COUPLING TO THE ELECTRONIC LEADS

and rearranging the terms of Eq. (4.8), we can write the master equation in terms
of the correlation functions

ps(t) = —iLls(t)ps(t) — / Lt Ky, Us(t, ) Kaps()]Con(t — ) (4.11)

0 Y

+[Us(t, ") ps(t') Ky, KOk (t —1'). (4.12)

Furthermore, one can define the following auxiliary operators

t
A;m/ (t) == dt’sz (t - t,) US (t, t,)Kzl pPs (tl) (413)

to

R t
R () = /t AU (6 = 1)Us(t, 1) ps (1) Ko (4.14)

to simplify Eq. (4.11). These auxiliary operators incorporate the memory of the
system and weight the time-dependent electron transfer between the wire and the
lead. Writing the quantum master equation (4.11) in terms of Eqgs. (4.13, 4.14), we
get the final expression

pg( ) = —2[,5 Z[Kx, Amx’ —_ Azzl(t)] (415)
for the master equation of the reduced density operator at time t. In the next
subsection, we will deal with the derivation of EOM for the auxiliary operators
(4.13, 4.14).

4.1.2 Spectral decomposition of the electron reservoir correlation func-
tions

In analogy to methods recently developed for systems coupled to a bosonic bath
[MT99, LLY*05, Kle04], we develop EOM for the auxiliary operators defined by
Egs. (4.13, 4.14) using a numerical decomposition of the spectral density J(w) to
decompose the reservoir correlation functions. Solving the trace in Eq. (4.9) and
making use of Eq. (3.7), the nonvanishing bath correlation functions read

012()—trR{ZVVTCq “wlel pr} = Z|V\2np( wy + Ep)e e (4.16)

qq

Can(t) = trR{Z ViVycte®cgpr} =Y |VolPnr(wg — Er)e™e. (4.17)
aq’ q
All the external properties of the fermionic lead are described by a single quantity,
namely the spectral density J(w) which can be generated by a superposition of
weighted delta functions

Jr(w) =D 7|Ved(w — w,). (4.18)

q
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4.1. THE COUPLING TO THE ELECTRONIC LEADS

Eq. (4.18) becomes a smooth function for a dense spectrum of the reservoir modes.
Employing the properties of the ¢ function to transform the summation over ¢ into
an integral over w, Eqgs. (4.16, 4.17) can be written as

021 (t) = /000 d% JR(LL)) np(w — Ep)eth (419)
Cia(t) = /OOO d?w Jr(Ww)np(—w + Ep)e™ ™" (4.20)

To solve these integrals, we employ a method based on the same mathematical
principles as the approach of Meier and Tannor [MT99] for bosonic systems (which
is presented in the next section to account for the phonon bath).

On the contrary to the coupling to a phonon bath, we have to deal with two reser-
voir correlation functions since Hamiltonian (3.8) consists of two physically distinct
processes, namely an electron enters the wire or an electron leaves the wire. Thus,
the two algebraic distinct functions C13(t) and Cy (t) account for these two pro-
cesses. Furthermore, the single bath correlation function (for further detail please
notice references [MT99, Kle04] and section 4.2) which describes the phonon bath
has integral limits reaching from —oo to oo due to the algebraic form of the vi-
brational coupling Hamiltonian (3.12) consisting of only one distinct phonon bath
operator, i.e. the position operator a' + a. In fact, if one would add the two reser-
voir correlation functions (4.19) (4.19) and assumes an asymmetric spectral density
Jpn(w) = —Jpp(—w), the sum would equal the single bath correlation function
appearing in the phonon bath coupling term.

Here, the trick is to extend the lower limits in Egs. (4.19, 4.20) to —oo by
assuming that
Jr(w) = 0 for w <0, (4.21)

since we need an improper form of the integrals to solve them by employing the
theorem of residues later on. Thus, we derive our final integral equations for the
reservoir correlation functions as

)= [~ d?“’ () (e — Er)e™ (4.22)
Cia(t) = /_o:o dw Jr(w)np(—w + Ep)e ™. (4.23)

A numerical decomposition that obeys condition (4.21) can be constructed by em-
ploying a single Lorentzian (instead of the two Lorentzian in the phonon bath case
[MT99, Kle04))

1

" Dk
Jr(w) = ,
r(w) ,;zmk (w— Q)2 + T2

(4.24)
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4.1. THE COUPLING TO THE ELECTRONIC LEADS

with the real fitting parameters pi, {); and ['y, which must be chosen with respect to
condition (4.21),i.e. € > 0 and Q4 < T'x. This decomposition is not restricted to a
certain shape of the spectral density and can therefore be used to approximate com-
plicated band structures. This enables one to avoid the assumption of the wide-band
approximation [LIH02, LKHN03, LCKH03, LKMH04, LKHN02, KLH05, KCS*04]
and to take influences of the band structure on the electron transfer between the
wire and the lead fully into account. With the complex roots of the Fermi function
and of function (4.24), the theorem of residues applied to Eqs. (4.22, 4.23) results
in

Cia(t) = Y, 450’} np(—=SQ + Ep)e %! — ZJR vp)e Wit (4.25)
k=1 kl Kk

Ont) = 3° L@ — Bp)e® — 230 1o (ue)eint (4.26)
i (01 B
k=1 k

with the abbreviations Q;f = Qg +ily and Q = Qp—iT; and vy, = im%—i-EF. The
vy, terms have the same mathematical origin as the Matsubara frequencies (4.44) but
are related to the Fermi function and we technically refer to them as Fermi function
residue (FFR) values. Egs. (4.25, 4.26) determine the coefficients necessary to finally
write the correlation functions as a superpostion of weighted exponential functions:

m~+m'

012 Z aq 6712t (427)
m~+m/'

021 Z (1, 6721 (428)

Rigorously, the sum over the FFR values Would be infinite but it can be truncated
at a finite value depending on the temperature of the system 7 and the spectral
width of Jg(w).

4.1.3 Propagation of the auxiliary density matrices and the reduced
density operator

Since Eqs. (4.27 4.28) give us a representation of the reservoir correlation func-
tions where the time argument is limited to the exponent, a set of differential equa-
tions for the auxiliary density operators can be derived by evaluating the total time
derivative of Eqgs. (4.13, 4.14), viz

SR () = (a:zfx)*mt) Ko — ilHs(t) ml<>1+(w) RE(0), (430)
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4.2. THE VIBRATIONAL COUPLING

with Aggr(t) = X0E™ Ak (1) and Ay (t) = S7H™ Ak, (t). These equations can be
solved numerically using a simple Runge-Kutta method without the need of diago-
nalizing the Hamiltonian. Together with Eq. (4.15), one now has a complete set of
differential equations describing the population dynamics in the wire coupled to an
electric lead in second-order perturbation theory for an arbitrary time-dependent
wire Hamiltonian. Regarding the right lead, one just needs to add a second dis-
sipation term to the master equation (4.15) with differently defined K, operators,
i.e. acting on the last wire site /N, and a second corresponding set of differential

equations for the auxiliary operators.

4.2 The vibrational coupling
4.2.1 Factorization of the system-bath coupling

In order to couple the phonon bath to our system, we also utilize the techniques
applied in the last section to describe the electron transfer. Furthermore, since
the method we modified in the last section has its origin in the field of dissipative
quantum mechanics where it was developed to account for bosonic environments
[MT99, Kle04], we can apply it here without making any major modifications. The
only difference is that in the case of the molecular wire, the phonon bath couples to
different electronic sites instead to a multi-level harmonic oscillator, a fact we took
already care of by the defintion of the phonon-wire coupling Hamiltonian (3.12).
Following the notation of the last section, we can write the Hp,g as

N
Hpps =) K,®® (4.31)

by defining ® = 3°, Tq(aq + a};) and K, = c/c,. Here we also used approximation
(3.13). Employing again EOM (2.25) to account for the additional term Dgpp(t) in
Eq. (4.1) caused by the influence of the phonon bath, i.e. Eq. (4.31), leads to the
dissipation term

t N . ] ; !
Dspp(t) = _/t Aty trpn{[K.®, Us(t, e PRI & p(t, tg)]etrn =11},
0 n

(4.32)
One can summarize the trace over the bath degrees of freedom into a single phonon-
bath correlation function

C(t) = C*(—t) = trpp{e'rride Hrrigpp, 1 (4.33)

which contains the intrinsic information of the phonon bath. After solving all the
commutator relations in Eq. (4.32) and defining the auxiliary operators

Ou(t) = [ AFC(t — ) Us(t, ) Kops (' o) (4.34)

to
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4.2. THE VIBRATIONAL COUPLING

~ t
O,(t) = t dt'C*(t — ") Us(t, ) ps(t', to) Ky, (4.35)

which contain the memory of the system, the dissipation term can be expressed as

Disen(t) = = 3K, Oalt) = Ou(t)]. (4.36)

4.2.2 Spectral decomposition of the phonon bath

The bath correlation function can be computed by inserting the definitions of the
operators into Eq. (4.33), tracing out the expectation values by applying the thermal
equilibrium condition of the phonon bath (3.11) and the commutator relations of
bosonic creation and annihilation operators. This results in

C(t) = trpy {Z T Yy (e ag + ale™)(aq + a:g)pph} (4.37)

qq

=3 T[> (1 + np (&) e + np(ey) e’ (4.38)
q

The spectral density can be represented by a sum over the phonon bath modes

Ten(e) = 30 574 Pd(e — ). (4.39)

q

The interaction of each bath mode with the wire is given by its coupling strength
T,. Using the properties of the §-function to extend the limit of the integral to —oo
while assuming

Jph(é) = —Jph(—é), (4.40)
one can transform the sum into the integral
> de i€t
C(t) = /_ ?Jph(e)ng(e)e : (4.41)

This is just a mathematical trick to extend the limit of the integral to —oo. The
numerical decomposition of Meier and Tannor[MT99]

—~ Dk 1 1
J = - 4.42
(9 =2 40, ((e S0 AT (e+9k)2+rg> (4.42)

respects the antisymmetric restriction made for negative frequencies and is not re-
stricted to a special form of spectral density. The spectrum of the phonon bath
Jpn(€) can be approximated by an Ohmic spectral density of the form J(w) =
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4.2. THE VIBRATIONAL COUPLING

nwexp(—w/w.) with exponential cutoff [Kle04], which can numerically be repre-
sented by a superposition of Lorentzians as given by Eq. (4.42).

The time-integration in Eq. (4.41) is solved analytically by using the kernels
residues, what leads to

o) = 3 45):Fk (1 + nip(Q — ily)) e (4.43)

o 2
+’I’LB(Qk + iFk)eZ(Qk“F’“)t) + EIL Z Jph (Z'I{k)e_nkt.
k

ki are the Matsubara frequencies of the Bose function ng given by

K;_@
k ﬁ

This equation determines the coefficients to write the bath-correlation function as
a superpostion of weighted exponential functions

(4.44)

m+m/

C(t)= > bre™. (4.45)

Eq. (4.45) determines the coefficients of the set of differential equations for the
auxiliary operators (4.34) (4.35)

0

579 (8) = bKnps (1) = i[Hs (1), ©5(8)] + axOp (1) (4.46)
9.0k (1) = bips (1)Ko — ilHs(0), O5(1)] + a1 1) (4.47)

These equations are propagated in time along with Eq (4.15), (4.29), (4.30) and
(4.32). For the auxiliary terms in Eq. (4.32), one has to sum up the set of differential
equations over the coefficients of the bath-correlation function at every time step of
the propagation

0. =S Ok (1), (4.48)
O,(t) = mf Ok (t). (4.49)
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4.3 Alternative time-local approach

Since we started with the Nakajima-Zwanzig identity to derive the EOM for the
population dynamics the final expressions are in a time-nonlocal (TNL) form. In
this section, we shortly present their time-local (TL) counterparts without giving an
extended comparison of both approaches [Kle04]. In the literature, the time-local
(TL) approach is also known as time-convolutioness formalism [BKP99]|, partial
time ordering prescription [MOR78, RBN97, Yan98] or Tokuyama-Mori approach
[Cép94]. Using the Tokuyama-Mori identity instead of the Nakajima-Zwanzig iden-
tity, one gets in second-order perturbation theory for the wire-lead coupling the
following equations for the population dynamics of the wire

ps(t) = —ils(t)ps(t) R (4.50)
- Z[Kza Agwr () ps(t) — ps(t) Agar ()]

- Z[Kna Gn(t)pS(t) - pS(t)én(t)]

with the modified corresponding auxiliary operators for the wire-lead coupling

A(t) = tt At/ (t — ) Us(t, ) Ky (4.51)
Ao (t) = tt dt'C, (t — t)Us(t, t) Ky (4.52)
and for the coupling to the phonorol bath
Onlt) = t: At — ) Us(t, #)K, (4.53)
6.(t) = [ drCt — ) Us(t, K. (4.54)

to

One can also derive these equations by just applying the substitution

p(t') = Ud(t,t)p(t) (4.55)

to the corresponding set of TNL equations [Kle04] neglecting the influence of dis-
sipation during the time propagation of the density operator within the integral.
Formally, this is in contradiction to the definition of a non-Markovian process which
requires to respect memory effects in the relaxation process. It depends strongly on
the coupling parameters whether TNL or TL is favorable [Kle04, YX05]. Within
the parameter regime important for the our numerical investigations, TL and TNL
calculations show almost identical results.
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4.3. ALTERNATIVE TIME-LOCAL APPROACH

The derivation of Egs. (4.15, 4.29, 4.30, 4.32, 4.46, 4.47) (as well as the related
TL equations) is the first major formal result of this thesis. It was especially difficult
to derive a correct decomposition for the spectral density of the electron reservoir
and to find an operator basis, which accounts for the orbital description of the wire
as well as for the algebraic structure of the coupling terms.

In the next chapter, this theoretical groundwork is utilized in order to derive a
current equation for the system.
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Chapter 5
THE ELECTRICAL CURRENT

5.1 The current equation

An intuitive approach to the electric current equation is to consider the rate of
change of the number of electrons, with elementary charge e, inside the lead. This
can be formulated utilizing a density matrix approach [BS93, LKHN02, LLY 05,
ONO05, LIH02, LCKH03, LKHN03, LKMH04, CKH04, KLH05, KCS*04] as

(1) = e tr {Nip(t)}. 6.1)
Here, Ny =3, cgcq denotes the electron number operator of the left fermionic lead.
The summation is taken over all reservoir modes ¢. Similar to the last sections, all
calculations refer to the left lead only but are also valid for the right lead by adding
the corresponding terms to the final set of differential equations. The trace and the
density operator p in Eq. (5.1) are defined in the Hilbert space of the full system
consisting of wire plus electron reservoir. Applying the Liouville equation (2.10) for
the time derivative of the density matrix and using the cyclic properties of the trace
results in
I(t) = —ietr {[Ny, H()]p(t)} - (5.2)
By using the properties of the electron creation and annihilation operators it can be
shown that the only non-vanishing commutator of N, with the Hamiltonian (3.1) is
given by the coupling term

[N, H(t)] = [N1, Hsr]. (5.3)
Evaluating Eq. (5.3) and making extensive use of Egs. (3.3, 3.4) leads to
= —e Z tr{(V CyCqC 01 V;lcicqc};cq) p(t)} (5.4)
which can be further simplified to
L(t)y=—e)_ tr {V;I*clc};p(t) — V(p]{cqp(t)} . (5.5)
q
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5.1. THE CURRENT EQUATION

The second term is the conjugate of the first one and we can therefore execute the
subtraction. This results in

L(t) = —2e > Imtr {chJ{cqp(t)} : (5.6)

Because the trace is invariant under a transformation into the interaction picture,
we can transform Eq. (5.6) into

L(t) = —2¢ Y Imtr {V,&l (1)&,(6)p(1) }, (5.7)

by employing A(t) = Ug(t,%,)A for an arbitrary operator A defined in the Hilbert
space of the full system.

Switching into the interaction picture and inserting the integrated form of the
Liouville equation for the full density operator in the interaction picture

pt) = plta) i [ A [Hsn(t), 5(0)], 68)

into the corresponding Liouville equation provides another method to derive a quan-
tum master equation [LKHNO02, LLY 05, LIH02, LCKH03, LKHN03, LKMHO04]. It
also respects the coupling to the environment in second-order perturbation theory
and maintains the important phase information between the operators in the trace.
Applying Eq. (5.8) to Eq. (5.7) leads to

1) = 2eRe XVt {el (06,(0) [ d [Hsalt). 52} (5.9

Solving the commutator and arranging the operators with respect to system and
reservoir results in

ht) =2eRe S|V [ dt e (el ()6 (¢)6,(0)2)(¢)5(0)

—& (el (£)eh (1)e, (8) (1) } - (5.10)
One can separate the full density operator (2.12) and collect the reservoir operators

by comparing the resulting terms with the definition of the reservoir correlation
functions (4.9). Thus, one finds

Cra(t — 1) = S |Vil? trg {&,(t)ch (¢) pr } (5.11)

ot — ) = 3 [Vl trre {c ()2, (0)p} - (5.12)
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5.1. THE CURRENT EQUATION

A backward transformation into the Schrodinger picture proves the equality of Eqs.
(5.11, 5.12) with definition (4.9). The current equation therefore simplifies to

L(t) = 2eRe /t t dt' (trs {el (& ()ps(t)} Cralt 1)
~trs {&(t)d (0s() ] Cai(t 1) (5.13)

The current information is partly contained in the temporal phase relation between
the annihilation, creation and density operators and can be incorporated into a single
time evolution operator Ug, defined in the Hilbert space of the relevant system. This
corresponds to a transformation into the Schrodinger picture. After using the cyclic
properties of the trace, we can write Eq. (5.13) as

t
L(t) = 2¢ Re (trs {5{ A UL (e, 1) caps (t’)} Cro(t — 1)

to

1
—trg {c{ dt' ULt 1) ps (t')cl} C(t — t')) . (5.14)

to

Performing the steps leading from Eq. (5.6) to Eq. (5.14) in the Schrédinger
picture (non-interaction picture) would lead to a physically inconsistent dissipation
term. This is due to the fact, that the internal dynamics governed by the wire
Hamiltonian is lost when the Schrédinger picture counterpart of Eq. (5.8) is applied
to Eq. (5.7) (notice Eq. (5.3)). Within the interaction picture, the information
of the internal dynamics of the wire is contained in the phase information of the
operators and therefore maintained. It appears again in form of the time evolution
operator Ug(t',t) in Eq. (5.14). One should also notice, that we assume (Eq. (5.11),
(5.11)) that the electron reservoir stays in thermal equilibrium in order to trace out
the reservoir modes. This is in contradiction to the initial ansatz (5.1), where we
measured the current by counting the change of the electron number in the lead. The
approach survives this contradiction due the properties of the interaction picture.
One should imagine the presented computations as an attempt to install an electron
counter around the reservoir instead of counting the electrons inside the reservoir.

The integrals in Eq. (5.14) have the same structure as the auxiliary density
matrices defined in the last section and can be expressed in terms of Aj5(¢) and
A1o(t). Thus, we get the final equation for the time-dependent current between the
left lead and the first site of the wire

I(t) = 2eRe (trs {c[Asa(t) — cfAra(t)}) . (5.15)

Similar to the master equation (4.15), all the information about the interaction
of the system with the reservoir is stored in the time-dependent auxiliary matrices
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5.2. THE CURRENT OPERATOR

(4.13) and (4.14) weighting the corresponding system operator. It is valid within the
framework of assumptions we have to make in order to derive Eq. (4.15) and allows
to compute the time resolved current in systems with arbitrary time-dependence.
The EOM for the required auxiliary operators are already given by Eq. (4.29, 4.30).
Thus, a complete set of differential equations consisting of Eqgs. (4.29, 4.30, 4.46,
4.47), the master equation (4.15) together with the phonon bath dissipation term
(4.36) and the current equation (5.15) provides a formalism to compute the current
and the population dynamics for a wide range of systems. The same set of equations
has to be applied to the last site of the wire as well to describe a wire enclosed by two
leads, as shown in Fig. 3.1. Furthermore, the potentiality of the formalism to define
any desired number of leads makes it possible to realize driven current switches with
an arbitrarily complicated configuration.

The TL analog of Eq. (5.15) can be derived by applying the substitution (4.55)
and reads

I(t) = 2eRe (trs {c] Ara(t)ps () — clps(t)Ara(t)}) (5.16)

In section 6.2, we present a short numerical comparison of TL and TNL current
equations.

5.2 The current operator

Without simplifying the substraction in Eq. (5.5) and performing the steps lead-
ing from Eq. (5.6) to Eq. (5.15), we derive the current equation

L(t) = etrs {c{ Asa(t) — clAra(t) + c1har (t) — c1Ann (t) ] (5.17)

which also includes its conjugate part within the trace. This conjugate part is not
interesting for the expectation value of the current and Eq. (5.17) is numerically not
as effective as Egs. (5.15, 5.16) since it requires twice as many matrix operations.
But we need it to derive a Hermitian current operator. First we have to transform
Eq. (5.17) into a TL form by applying substitution (4.55)
Ii(t) = etrs {C{Am(t)ﬂs(t) — clps(t)Asa(t) + 1A (D) ps (t) — ClPS(t)/A\zl(t)} :
(5.18)
By rearranging the operators using the cyclic properties of the trace, we can extract
a time-dependent current operator for the electronic lead in the TL approach. Thus,
a generic expression

Ii(t) = etrs {Zy(t)p(t)} (5.19)

for the dissipative current is derived by defining the current operator Z;(t)

Ti(t) = i Aia(t) — Apa(t)el + Aoy (£)er — e Mg (2). (5.20)
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5.2. THE CURRENT OPERATOR

This time-dependent operator consists of the same auxiliary operators as the dis-
sipation term of the TL master equation (4.50) and is therefore propagated along
with the reduced density matrix. One could also derive the current operator by just
symmetrizing the expression in the trace of Eq. (5.16) but we want to point out the
relation to the dissipation term of the master equation (4.50). The existence of a
generic Hermitian current operator for the electron transfer in our system enables
a more formal treatment of the current within the operator framework of quantum
mechanics. This important step is the foundation of the derivation of an optimal
control formalism for the molecular wire.
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Chapter 6
NUMERICAL EXAMPLES

The systems depicted in Fig. 3.1 and Fig. 3.2 represent simple configurations
which already allow studies of a variety of transport phenomena. All numerical
results are expressed in terms of the tight-binding hopping parameter A, where
A = 0.1 eV is a reasonable value for molecular systems [LKHN02, LIH02, LCKHO03,
LKHNO03, LKMH04, CKH04, KLHO05]. Despite the fact that it would be possible,
we do not simulate a realistic coupling spectrum between the leads and the wire
and restrict our coupling spectrum to a single Lorentzian. For example, a realistic
gold s-band would be a superposition of different Lorentzians forming a variety
of band edges. Taking only one Lorentzian into account corresponds to a rough
approximation of only one band edge, but this makes the system and the underlying
processes easier to understand. We apply this restriction also to the phonon bath
spectral density.

Due to the weak coupling requirement, the spectral density of the reservoir should
be about one order smaller than the internal dynamics. Thus the peak of the
Lorentzian J(w) is set to 0.1A, which is guaranteed by the condition

pr = 0.1 (4A0,TY). (6.1)

Reasonable values for the bandwith parameters [’y are in the region of 10 eV. With
the chosen energy settings, an unit time in the system corresponds to 0.66 fs in real
time what enables one to resolve time-dependent effects on a femtosecond scale. The
resulting current unit can be extracted from Eq. (5.15) and is equal to a macroscopic
value of 1[I] = [ﬁ] = 2.43 % 107* A. A detailed discussion of the relation between
the applied numerical unit system and macroscopic values is given in Appendix A.
The computations in sections 6.1 6.2, 6.3, 6.6 and 6.7 are realized without applying
a vibrational coupling to the wire, while the sections 6.4, 6.5 and 6.6 utilize coupling
to electron reservoirs and to a phonon bath.
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6.1. THE TRANSIENT OSCILLATION OF THE UNDRIVEN WIRE

6.1 The transient oscillation of the undriven wire

The equilibrium condition of the on-site population of the wire in the absence
of a second lead is determined by the Fermi function ny taken at the on-site energy
E;, namely

n; = tr(cgcipg(t)) =np(F; — EF). (6.2)
In this particular case, the current drops to zero after the wire has reached its
equilibrium level, simply due to the lack of a closed electrical circuit. The situation
is more interesting in the case where two leads are coupled to the wire, as it is
shown in Fig. 3.1. For instance, Fig. 6.1 shows a situation for a wire consisting of
two sites, in which the wire states at time zero are unoccupied. The equilibrium
state is reached after a relaxation time that mostly depends on the wire-lead coupling
strength.

on-site population
o
w
1
\
5

1]

Figure 6.1: Upper panel: population dynamics measured by n; = tr(c}e;ps(t)) (i =
1,2) for the undriven two site system as a function of time ¢ starting
with unoccupied wire states. The applied DC voltage is realized by a
difference between the left and the right Fermi energy of Er; — Ep, =
10A. The on-site energies of the wire are aligned and centered between
the left and the right Fermi energy Fy = Ey = Ep, +5A = Ep; —5A.
Bottom panel: the corresponding currents flowing from the left lead
into the first site Ijo¢;, from the right site into the right lead I,;g5; and
the net current Ines = (Lept + Lrignt)/2-

While the number of electrons in the relevant system is not constant in time, the
trace of the reduced density operator is conserved and normalized. A bias voltage
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6.2. COMPARISON OF TIME-LOCAL AND TIME-NONLOCAL APPROACH

on the system can be simulated by setting a difference between the left and right
Fermi energy, here Er; — Er, = 10A. Since we set the on-site energies to £y = E,
and apply a weak coupling scheme where the internal dynamics of the inner system
is about one order faster than the electron transfer between the leads and the wire,
a spatial drop of the population within the wire in its equilibrium state cannot be
observed in the upper panel of Fig. 6.1.

The equilibrium population of the entire wire is determined by the average over
the expectation values of the left and right sites, which is given by

np(Ey — Epy) + np(Ey — Efy)
2

tr (cJ{clpS (t)) A tr (cgcgpg (t)) ~ (6.3)
if the spectral densities of both leads, i.e. their coupling to the wire, are the same.
The transient oscillations of the corresponding directed net current decay and a
constant equilibrium value is reached, when the relaxation process is over. The upper
bound for the net current is determined by the small wire-lead coupling strength,
namely the spectral function Jg(w) with its maximum value of 0.1A.

6.2 Comparison of time-local and time-nonlocal approach

Fig. 6.2 shows a comparison of TL and TNL approaches for different spectral
densities. The wire states are initially unoccupied and electrons migrate from the
leads into the wire sites, depicted in the middle panel of Fig. 6.2. Despite both on-site
energies have been chosen equal to the Fermi levels By = Ey = Ep;—5A = Ep,+5A,
the equilibrium occupation value for both sites is given by n; = ny ~ 0.5 in the case
of a weak wire lead coupling. For larger coupling terms (with respect to second-
order perturbation), for instance p; = 22.5A, one observes a spatial drop of the
population in the wire n; > ny. For a broad spectral band, i.e. large I'y, TL and TNL
calculations show a good agreement for the different coupling strengths. However,
a shift between the equilibrium values of the two approaches arises for very narrow
bands and relatively strong wire-lead coupling for the population dynamics and the
corresponding current, depicted in the upper panel of Fig. 6.2. This deviation can be
explained with different higher order terms of the TL and the TNL approach [Kle04],
which become more important for larger coupling strengths. At 100 < ¢ < 110, we
apply a rectangular pulse with amplitude A = 10A to the system to check whether
the TL and TNL approximations agree in the different parameter regimes in their
dynamical behavior. In this highly dynamical situation, both approaches show a
good agreement even in the critical parameter regimes.
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6.2. COMPARISON OF TIME-LOCAL AND TIME-NONLOCAL APPROACH
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Figure 6.2: A comparison of TNL and TL calculations for a small band width
parameter I'; = 7.5A. The upper panel shows the applied rectangu-
lar pulse with an amplitude of Ay = 10A which influences the site
populations of the wire which are shown in the lower panel. The dif-
ference between TL and TNL populations becomes more evident for
stronger lead-wire couplings adjusted by the parameter p; in the spec-

tral decomposition of Jg(w).

The on-site energies and the left and

right Fermi energies are aligned Ey = Ey = Ep; + 5A = Ep, — 5A.
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6.3. TIME-DEPENDENT ELECTRON RESERVOIRS

6.3 Time-dependent electron reservoirs

Time-dependent electron reservoirs in molecular systems can be modelled within
the Floquet theory by applying a gauge transformation on the wire Hamiltonian
[KLHO05] or by using a source-Redfield [ON05] equation. Despite the fact that we
initially assumed that the lead Hamiltonian is time-independent, the formalism al-
lows one to treat time-dependent lead Hamiltonians as well by simply considering
time-dependent coefficients for the correlation functions C(t) = ¥, ax(t)e™®, in
the case of the TL theory, and a time derivative given by

FOO =3 s (a0 + 340 + 3 i (64)

To get the required form C(t) = ~,(t)C(t) which is necessary to derive differential
equations for Eqgs. (4.13, 4.14), we have to assume that

|k ()| < lax () e (1)), (6.5)
O ()] < le™ oy (2)), (6.6)

for all times ¢ not negligible in the time integration of the auxiliary operators in
Egs. (4.13, 4.14). In general, this assumption corresponds to the statement that
the lead dynamics is sufficiently slower than the lead-wire coupling dynamics. The
lead-wire coupling can be influenced by a variation of the chemical potential of
the electron distribution in the leads, by changing the parameters ), 'y, pr of the
spectral decomposition, or both. A change in the chemical potential and keeping the
spectral function unchanged would correspond to a charging process. Shifting the
spectral density, i.e. increasing or decreasing the (), parameters, and the chemical
potential by the same value describes a total change of the electrostatic potential
without an alteration of the population in the leads.

In the present work, we restrict ourselves to a time-periodic modulation of the
difference between the chemical potentials of the left and right lead

EF,’I‘ - EF,l = VE) sin(wvt), (67)

thereby approximating an AC voltage on the leads with amplitude V5. In this
special case, the quality of the approximation of slow dynamics can be determined
considering the general time dependence of the coefficients given by Eqs. (4.25, 4.26)
as

|ak(t)| ~ |nr (EF (1)) | (6.8)
for the FFR terms with the corresponding time-independent exponents ;. There-
fore, the time derivative becomes

jax(t)] ~ [n% (Br (1) BER(H)] ~ IVO; “cos (wyt) ni (B (1)) | (6.9)

44



6.3. TIME-DEPENDENT ELECTRON RESERVOIRS

and conditions (6.5, 6.6) are justified if

|Vowv
T

| < 1. (6.10)

Regarding the FFR terms, the relevant time-dependent coefficients are

Y (t) = —(2rk + )T + iEp(t) (6.11)
and
|ax ()] = [2TJ (v)| (6.12)
for k =1...m'. It can be shown that conditions (6.5, 6.6) are fulfilled if
Vowy
S 1 6.13
(m + 27k)T < (6.13)

which complies with the condition for the non-FFR coefficients (6.10). A disregard
of the conditions (6.5, 6.6) would cause additional fast oscillations of the current
during those times in which the AC voltage changes rapidly. The AC voltage causes
an AC in the system, both shown in Fig. 6.3, that follows the driving voltage. For
large voltage amplitudes V; a finite cut-off appears due to a bottle neck of the system
given by its weak coupling to the electronic leads.

0 5000 10000 15000 20000 25000

Figure 6.3: The alternating voltage (upper panel) with amplitude V; and frequency
wy = A/160 drives an AC (bottom panel) between the left and the
right lead through an wire consisting of five sites. A current cut-off
appears for large AC voltages, since the wire-lead coupling is weak.
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6.4. COHERENT DESTRUCTION OF TUNNELING

6.4 Coherent destruction of tunneling

Coherent destruction of tunneling (CDT) [LCKH03, LKMH04, CKHO04,
GDJH91, KCS*04] is a well understood quantum mechanical effect where an ex-
ternal periodic driving field of the form

A(t) = Agsin (wat) (6.14)

yielding an asymmetric potential U, (t) = %((51” —0d9,) in Eq. (3.5) can suppress the
time-averaged current in the field-driven two-site system. The current completely
breaks down if the ratio of the field parameters Agy/hwy is equal to a zero of the Bessel
function Jy (e.g. 2.405, 5.520, 8.654, ...), a condition that holds for isolated quantum
systems as well as for open systems [LCKH03, LKMHO04, KCS*04, CKHO04].

This is a simple but nontrivial system for a time-dependent conduction formal-
ism and we extend the results of former calculations which applied the wide-band
approximation [LCKH03, LKMH04, KCS*04, CKHO04]| to finite band effects by us-
ing a spectral decomposition. The finite width of the decomposed spectral density
(4.24) causes an additional decay of the current with increasing amplitude since the
coupling strength between the lead and the corresponding site decreases when the
on-site energy of the coupled site is driven to the edges of the Lorentzian during
the oscillation generated by the external field A(¢). Naturally, this effect becomes
more dominant for a smaller bandwidth parameter I'y, shown in Fig. 6.4. The time-
averaged current shows the predicted breakdowns at the zeros of Jy. The amplitude
Ay of the applied electrical field is here given in dimensions of [A] which corresponds
to field strengths of about 108% by assuming atomar distances of 1 A. The driving
frequency is set to wy = 10A which is in the low energy branch of infrared light.
Here the bias voltage is set to Ep; — Ep, = 60A =6 eV.

Similar to recent studies [LKMHO04|, we also apply an additional vibrational
coupling to the driven wire. The strength of the spectral density of the phonon
bath (4.24) determines the transport regime in the wire. In its absence we see fully
coherent transport regime which gradually becomes a sequential hopping regime
for larger spectral densities. This can be explained in the framework of quantum
mechanics by a suppression of the coherences due to the vibrational environment.
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Figure 6.4: The time-averaged current for the periodically driven two-site system
as a function of the amplitude for different bandwith parameters I';.
The frequency of the external field is wy; = 10A. The applied bias
voltage is 60A. The Fermi energies Er, = ; —30A, Ep; = Q; +30A
and the on-site energies F; = F, = (); are set in relation to the
parameter {2, of the spectral density.

Thus, the requirement for CDT, namely coherent transport, vanishes and the
supressions in Fig. 6.4 are smoothed, as it is shown in Fig. 6.5. Unlike reference
[LKMHO04], we also observe a significant widening of the supressions, what is proba-
bly due to a different parameter regime. For instance, a stronger wire-lead coupling
is applied here. Also, the absence of the wide band approximation in our calcula-
tions can cause an additional variation in comparison to reference [LKMHO04]. The
numerical example demonstrates the importance of the vibrational coupling to the
transport and the applicability of the developed method.
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6.5. VIBRATIONALLY DRIVEN CURRENT

AlA]

Figure 6.5: Same system as in Fig. 6.4 but the wire is additionally subject to a
vibrational coupling. The bandwidth parameter of the electron reser-
voirs is set to I'y = 50A and the bias voltage is given by 40A. The
reduction of current due to CDT become less distinct for larger phonon
bath coupling strengths given by the maximum of the phonon bath
spectral density (4.24).

6.5 Vibrationally driven current

In this section, we want to discuss shortly an effect caused by the thermal cou-
pling to the phonon bath. We employ a two site wire as depicted in Fig. 6.6. Both
leads are at the same Fermi energy and the on-site energy of the left site is fixed at
a higher value than the left one, Ujs = E1 — Ey and Er = (E; + E5)/2, giving the
wire an asymmetric configuration. The Fermi energy is also equal to the maximum
of the spectral density ); = Er. The temperature is set to kg1 = 0.5A.

Fig. 6.7 depicts the net current in as it is shown in Fig. 6.6 for U;3 = A. From
the initial time until ¢ = 400, the system is propagated without influence from the
phonon bath and one observes the typical relaxation behavior as it is described in
section 6.1. Due to the absence of a bias voltage, the equilibrium net current is
zero. Then the thermal bath is switched on and the current changes to another
equilibrium value. The appearance of this current can be explained in terms of
different site occupation values in thermal equilibrium.

In the given case, the equilibrium values of the sites are determined by the
Fermi function when the system coupled to the electron reservoirs only. Thus,
ny = np(E; — Ep) ~ 0.269 and ny ~ 0.731. If the phonon bath applys only to the
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6.5. VIBRATIONALLY DRIVEN CURRENT

Figure 6.6: A two site wire is coupled to two electron reservoirs and is subject to
a vibrational environment, but no laser field is applied. There is no
bias voltage applied to the wire; both reservoirs are at the same Fermi
energy Er. The left site is at a higher energy level than the right site
and Er = (E| + E»)/2. The difference between the on-site energies is
U12 = E1 - EQ.

system, the equilibrium occupation values of the sites are given by Bose statistics,
namely
exp(—BE)
n=———-=
Z
and ny ~ 0.881. Z is the partition function.

~ 0.119

Thus, we have an additional relaxation from the higher state to the lower state
and due to the spatial configurations of our sites, this relaxation causes a directed
current. This different scaling behavior also explains the dependency of the related
current on the value of Ujs as depicted in Fig. 6.8. An increase of the current
is observed for small values before the system enters a regime in which the current
decreases with increasing U;» again. Furthermore, the on-site energies of the wire are
also in an unfavorable coupling region in relation to the leads for larger Uo values.
The electron transfer in the given system realizes an energy transfer between the
left lead and phonon bath and right lead in favor of the two latter ones.
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Figure 6.7:

6.5. VIBRATIONALLY DRIVEN CURRENT
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The net current through the system depicted in Fig. 6.6. After the
system has reached its equilibrium, the coupling to the phonon bath

is switched on at ¢ = 400.
the value of the spectral density of the phonon bath Jp,(£24).

The resulting final net current depends on
The

temperature is set to kg7 = 0.5A. The bandwidth of the electron

reservoirs is I'y = 30A.
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Figure 6.8: The dependence of the current driven by the phonon bath on the value
of Uy, for different phonon bath spectral densities Jp,(£21).
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6.6. I-V CHARACTERISTICS

The effect is steady since the on-site energies of the wire and the temperature
and Fermi levels of the bath and the reservoirs are fixed in an artificial way. In
real systems, the current would stop once a new equilibrium value is reached. Thus
one would have to apply another dynamical driving source in the wire in order to
maintain the current.

A conclusive proof for the energy transfer in the system could be made by uti-
lizing an energy flow operator in analogy to our current operator (5.20). It should
be possible to derive such an operator within the provided theoretical network by
following the guideline presented in section 5.1. A measure of the energy flow from
the phonon bath into the system and vice versa would provide another powerful tool
to understand the transport in mesoscopic systems. Especially effects like current
induced light emission [GN] could be studied in highly dynamical situations. This
project will be subject to further investigations.

6.6 I-V characteristics

An important property of the system of interest is its current-voltage charac-
teristic since this quantity is experimentally approachable and also provides access
to important intrinsic information. In contrast to I-V calculations employing DFT
methods to simulate realistic molecules, the simple tunneling Hamiltonian utilized
in this section does not contain any information related to certain molecules. One
of the basic ideas of molecular electronics [AR74] is the construction of current rec-
tifiers. The required asymmetric transport properties can already be simulated with
the simple configurations discussed in previous sections. Furthermore, an I-V char-
acteristic gives one a better understanding of the wire-lead contact which is here
realized in second-order pertubation theory.

Fig. 6.9 shows the I-V curve for a 4-site tight-binding Hamiltonian for different
energy configurations and temperatures. The parameters employed in the calcula-
tion are as follows. The bandwidth of the spectral density (4.24) is set to [' = 25A
and the position of the center 2; of the Lorentzian is equal to the average of the on-
site energies. Both leads are characterized by the same spectral density. We chose a
higher setting for the temperature, e.g. kg7 = A, in order to get a better resolution
of the different regimes. At kgT = 0.25A, the I-V spectrum would be almost a step
function in the scale used in Fig. 6.9. We also employed only a single Lorentzian to
represent the spectral density of the phonon bath. The voltage is simulated by just
setting a difference between the left and the right Fermi energy V = Ep; — Ep, such
that Ep;(V) = Epy(V =0) +V/2 and Ep,(V) = Er,(V = 0) — V/2. The average
of all on-site energies equals the Fermi energy for V = 0.

The upper panel of Fig. 6.9 depicts the I-V function for an symmetric Hamilto-
nian where all on-site energies are equal £y = E, = F5 = E,; and no phonon bath
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is applied. Therefore, one observes a symmetric I-V characteristic which becomes
flatter for higher temperatures. At small bias voltages, the system operates within a
linear response regime before it enters a cut-off regime caused by the finite wire-lead
coupling at higher voltages. Increasing the bias voltage does not affect the value of
the equilibrium current within the cut-off regime.

The flattening of the I-V function in the upper panel of Fig. 6.9 can be explained
by considering that the occupation of the electronic leads is determined by the Fermi
function which becomes smoother for larger temperatures. Thus, the occupation
level difference between the left and the right lead becomes less distinct for higher
temperatures, which decreases the current for small voltages.
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-0,005 - —— k. T=4;J,,(2,)=0
-0,010 ] = - - - -kgT=24; 4, (Q,)=0
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0,005 —— -~~~ """ : : : : .
-40 -20 0 20 40

Figure 6.9: Upper panel: I-V characteristic for different temperatures of the sys-
tem depicted in Fig. 3.1 employing a symmetric wire, £}, = Fy =
FE3 = FE,, consisting of 4 sites. No phonon bath is applied. Bottom
panel: An asymmetric system with the on-site energy configuration
E, = E; = E5 —4A = E; — 4A. One observes an asymmetric trans-
port characteristic in the presences of a vibrational environment.

The bottom panel of Fig. 6.9 depicts a 4-site tight-binding Hamiltonian with
an asymmetric energy setting, viz. Fy = Ey = E3 —4A = E; — 4A. We employ
this configuration in order to study asymmetric transport properties. With the
chosen energy settings, one finds that the I-V curve is still symmetric in the absence
of a dissipative phonon bath where we have coherent transport. Here, different
transport channels, determined through the eigenenergies of the Hamiltonian, realize
the transport and the asymmetry is not reflected in the transport behavior. Since
the on-site energies are not equal to the position of the maximum of the spectral

02



6.7. OPTICAL CURRENT SWITCHING

density E; = €y — 2A and Ey = Q + 2A, the coupling between the leads and the
wire is weaker than in the case where E; = E; = Oy (upper panel of Fig. 6.9) and
one observes smaller currents in the bottom panel of Fig. 6.9.

The situation is different if a phonon bath couples to the wire, as the dashed line
in the bottom panel of Fig. 6.9 shows. In a scenario where the coherent transport
is replaced by sequential hopping, the orbital asymmetry of the system becomes
evident in its transport behavior. The increase of the current for negative bias
voltages can be understand by the arguments provided in the discussion of section
(6.5). The phonon bath causes an relaxation of the electrons from the higher energy
level Ej3 of site 3 to site 2 at energy Ey < Ej3. The relaxation process works also in
the other direction but at a smaller rate.

6.7 Optical current switching

The major advantage of the derived conduction formalism, in addition to the
avoidance of the wide-band limit, is the applicability to unrestricted time-dependent
systems. Former CDT studies of currents in open quantum systems [LCKHO03,
LKMHO04, KCS*04] were based on an infinite-time averaging of the currents due to
the mathematical nature of the used approaches. In Fig. 6.10, we apply a finite laser
pulse with a Gaussian shaped amplitude

_ (t _ T)2
202

A(t) = Agexp ( ) sin (wat) (6.15)

to the asymmetric driven system described in the last subsection.

The peak amplitude of the Gaussian was set to Ay = 24.05A, where the CDT
relation applies. This finite laser pulse causes the time-resolved current to oscillate
around zero, shown in the center panel of Fig. 6.10. The situation becomes more
obvious by looking at the time averaged current depicted in the bottom panel of
Fig. 6.10, where the averaging was taken over three oscillations of the driving field.

The averaged current is almost suppressed during the time in which the Gaussian
laser field is applied to the system and CDT is performed with a finite laser pulse.
The effect is superimposed by transient oscillations because the system is under the
constraint of permanently changing variables and tries to find its equilibrium state.
This finite-time effect gives rise to interesting experimental realizations.

Further investigations in the next section will deal with the idea to apply the
current formalism to an optimal control algorithm for time-distributed target states
in order to compute more sophisticated and applicable external control fields.
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Figure 6.10: Upper panel: Gaussian excitation pulse with a peak amplitude of
Ag = 24.05A and a width of 02 = 50. It excites the time-resolved net
current depicted in the middle panel. Bottom panel: The net current
averaged over three periods of the fast pulse oscillation reveals a
complete suppression. The on-site energies are equal F; = Fy = ()
and centered between the left and the right Fermi energy, which
define a DC voltage of Er, — Er; = 10A.







Chapter 7
OPTIMAL CONTROL OF MOLECULAR ELECTRONICS

7.1 Optimal control theory for target states distributed in time with
dissipation

In order to derive a suited control algorithm for the laser assisted transport in
molecular wires, one has to merge the properties of two already existing methods
and modify them in correspondence to the given constraints. Refs. [MMO01, MKM02]
present an optimal control algorithm for open quantum systems within the frame-
work of the reduced density operator. In their case, the relevant system is coupled
to a vibrational environment only. Their EOM is also given in terms of a quantum
master equation. Here, we will follow their guideline to derive similar EOM for an
optimal control algorithm related to the open system electron transfer. Furthermore,
since we need to define target states distributed in time, namely a current pattern as
a function of time, in order to derive a method applicable for molecular electronics,
we will merge the mentioned formalism with a recent approach [KM05b, KMO05a]
which deals with time-distributed target states. The first step is to separate the rel-
evant system Hamiltonian into the tight-binding part and a time-dependent dipole
part according to Eq.(3.18) to write the quantum master equation (4.50) in the TL
picture as

ps(t) = —iLwps(t) —iLu(t)ps(t) — D(t)ps(t)- (7.1)
Eq. (3.20) gives us an expression for the Liouville dipole operator. The time-

dependent dissipation operator D(t) incorporates all the dissipation terms and can
be determined from Eq. (4.50) as

D(t)pS (t) = z K;csz’ (t)pS (t) - szS (t)sz’ (t) - Azz’ (t)pS (t)Kw + Ps (t)//i;m:’ (t)K;c

(7.2)
The solution of the EOM (7.1) of the reduced density operator can be formally
written as

pS(t) = U(ta th A),O(to), (73)

where U(t,ty, A) is the time-evolution superoperator containing the system Hamil-
tonian and the dissipation operator. In this section, we list the laser field amplitude
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A(t) explicitly as an argument of all time-evolution operators since dependencies on
the control field are crucial to the following steps.

The control target is determined by the expectation value of the time-dependent
target operator O(t). Since we want to realize time-distributed control targets, the
control parameter Jy of the control target operator O(t) is defined by the integral

Jo(A) = / dr tr{O(r)ps(r)}. (7.4)

which is a function of the laser field amplitude A(¢). The final purpose of the
optimal control algorithm is to maximize functional (7.4). For instance, if the current
operator (5.20) is applied as the control target O(t) = Z(t), we demand a control field
which maximizes the current at times when the kernel of integral (7.4) has significant
values. Making the replacement O(7) = O§(1 — ty) leads directly to a control
formalism optimizing a field to reach a certain system state at the final control
time ¢, [MMO1, MKMO02] with Jy(ts) = tr{(O(t)ps(ts)}. The control functional is

defined as Lo

It 4) = Do(A) - 5 [ TAEA()A2(2). (7.5)

0

Since the intregration is performed from the initial time ¢y to the final control time
iy, the time-dependent target is also defined between initial and final time, thus
to < 7 < t;. Here, the penalty factor of the control field (or Lagrange multiplier)
A(t) is considered to be time-dependent to avoid sudden switch-on and switch-off
behavior of the control field at the beginning and end of the propagation time of

the system. In the numerical calculations, we will set A(t) =1/ ()\1 sin? (%t)) with

A1 = 1. In order to calculate the extremum of functional (7.5) under a variation
of the external field A(t), one has to set the corresponding functional derivative to
Zero:

0J(tr, A) d0Jo(A) 1 0

— 7 T =0=

JA(t) JA()  20A(1) / dt A(£) A% (2). (7.6)

Solving the derivative for the last term and inserting Eq. (7.4) results in

% [ a7 tr{O()ps(r)} = M)A, (77)

Since the target operator is not affected by variations of the external field, the func-
tional derivative applies only to the reduced density operator which is determined
by Eq. (7.3). Thus, the derivative of the time-evolution superoperator (Fréchet
derivative) can be straightforwardly computed as [MM01, MKM02]

dps(t) )
5A(t) - 5A—(t)U(T,t0,A)p(t0)
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. . T 12 ! 6£M(tl) !
= i [ AU AU o, Aps(io)
— i0(r — O)U(r,t, A LU (t, to, A)ps(to), (7.8)

where @(7 — t) is the unit step function. Applying Eq. (7.8) to the kernel of Eq.
(7.7) results in an explicit expression for the control field

AW = 5 [ 4706~ Ds{OMU(r 6 VLU 1o, A)ps(io))

_ Azt /dT@ )trs{O(MU(r,t, A Loups(t)}

- ALt) / dr0(r — t)trs{T(r, ¢, A)O(r)Lps(t)}-

(7.9)

The U(7,t, A) operator realizes a backward propagation from time ¢ to the inter-
mediate time 7 and its existence can be proved by using the cyclic properties of
the trace [MMO01, MKMO02]. It is not necessary to derive an explicit expression for
U(r,t, A) since we only need an EOM for

- / dr (1 — )T (7, t, A)O(7), (7.10)
which is derived in Appendix B.

Writing the result of Eq. (7.9) in terms of the auxiliary projector (7.10), the
final expression for the optimal control field reads

At) = 57t (x(OLups(0) (7.11)

Applying Eq. (7.11) to the master equation (7.1) results in an EOM for the reduced
density operator

0

aps(t) = —iLups(t) — D(t)ps(t) — ﬁtTS{X(t)ﬁuPS(t)}Eups(t) (7.12)

with an additional optimal control field term which includes the auxiliary operator
x(t) in its dipole part. The corresponding EOM for the auxiliary operator

57X(0) = =iLax(t) + DOX(O) — 5rrtrs DL} L(®) + O (113

is determined by the total time-derivative of Eq. (7.10) and the dissipation operator
D(t) is derived in more detail in Appendix B. The inhomogeneous term O(t) reflects
the time-distributed target state within the system of EOM. Eq. (7.13) is propagated
in the reverse time direction of Eq. (7.12) and since both equations depend on each
other in their dipole field part, they cannot be propagated simultaneously. Thus,
an iteration algorithm is required to solve this correlated system of equations.
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7.2 TIteration algorithm

Similar to previous publications [MM01, MKM02, OZR99, SR90, XYO"04,
Oht03, KM05b, KMO05a], we solve the equation system for the optimal field ap-
plying an iteration ‘algorithm which works as follows. We make an initial guess for
the field A%(t) = ol trS{X (t)L.p5(t)} to propage the EOM of the reduced density
operator from t, to ?; utilizing

9 pa(0) = —iLur(t) ~ DO - ﬁtrs{xn_l( PO} Lupalt),  (1.14)

for n = 1. Here, n denotes the index of the iteration loop. p%(¢) has to be saved at
each time step in order to propagate the auxiliary operator (7.10) backwards from

0 — 1

ax"(t) = —iLlyXx"(t) + D(t)x"(t) — rt)trs{xn(t)ﬁupg(t)}Ean(t) + O(t). (7.15)

We also store the auxiliary operator for the next propagation of p%(¢). In every
iteration loop, we get two approximations for the control field, namely A™(t) =
%t)trs{xn(t)/lupg(t)} and A"(t) = %t)trs{xn_l( )L,.p%(t)}. Thus, back and forth
iterations of expression (7.14) and (7.15) result in an iteration algorithm which
maximizes the quantum mechanical observable of O(t). The initial value of the
control field A°(¢) can be set to zero or one can start with an approximate guess for
an intuitive solution of the optimization problem.

7.3 Numerical results

In order to realize the optimal control algorithm described in the previous section,
one simply has to add a routine which propagates Eq. (7.15) to the program code
used for the calculations in chapter 6. A loop starts the two propagations one after
another as it is described in section 7.2. The numerical difficulties are caused by the
fact, that one has to define a discrete lattice in time to store the time-dependent
dissipation operator D(t) and the density operator p(t). These values are needed for
the next propagation of Eq. (7.15). The discrete time lattice requires a considerable
amount of memory since one has to store a set of operators with dimension 2. On
the other side, using a too wide lattice causes a numerical inhomogeneity which can
even disturb the convergence behavior of the iteration algorithm. A partial solution
to this problem would be to propagate the two dissipation operators D(t) and D(t)
independently in Eq. (7.14) and Eq. (7.15), leaving only the control field and the
density operator to be saved. But this would slow down the algorithm by about a
factor of two.
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We employed the faster one of the two options and limit our calculations to
small systems with either two or four sites. Also, influences caused by a phonon
bath are neglected in this section. All calculations in this section are performed at
a system temperature of kg7 = 0.5A. As in chapter 6, we consider only one single
Lorentzian for the spectral decomposition of the reservoirs and set the bandwidth
to I'y = 40A. The weak coupling restriction was taken care of by applying Eq. (6.1).
The employed dipole operator p is given by Eq. (3.21).

Furthermore, the time-dependence of the target state O(t) is weighted with the
Gaussian i 2
F(t) = Fyexp (%) . (7.16)
We will refer to F(t) as target function. Thus, optimizations in regions of large
F(t) contribute more to the general control target Jy(A) than contributions at small
target function values. In this way, the algorithm can realize time-dependent control
patterns determined by F(¢). In the following sections, neither Fy nor [ F(t) are
normalized since the convergence behavior of the algorithm depends on the choice
of Fy. Thus, O(t) and Jy(A) are not normalized as well. But this does not affect
the normalization of the other observables. Furthermore, a certain value for the
initial control field is not chosen since the tested problems have simple geometries
for which the algorithm showed a fast convergence. Thus, the initial control field
was set, to zero in the following numerical computations.

7.3.1 Optimal control of population without dissipation

The simplest nontrivial system within our framework is a wire consisting of two
sites, which is not coupled to electron reservoirs or a phonon bath. The on-site
energies are set equal Fy, = E5;. We employ this system to prove the convergence
of the formalism and how well it realizes the time-dependent control target. In the
initial state, the first site of the wire is occupied by a single electron, the second
site is unoccupied. Then the system is propagated in time and the electron bounces
between the two sites due to the hard wall boundary condition, as it is shown in the
middle panel of Fig. 7.1. In order to access the population dynamics in the wire,
the control target operator is set to

O(t) = F(t)ches. (7.17)

The target function is given by Eq. (7.16) with the parameters o, = 40, Fy = 10
and Tpeqr = 300, depicted in the upper panel of Fig. 7.1. Thus, the control target
is to maximize the occupation level of site two at times when F'(¢) has substantial
values. The computed control field, depicted in the bottom panel of Fig. 7.1, applies
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a sequence of short and irregular pulses to the wire which prohibit the electron from
hopping back to site one. 800 iterations were executed for the computation.
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Figure 7.1: Optimal population control applied to a two site wire which is not
coupled to electronic leads or a vibrational environment. The target
function F'(t) is depicted in the upper panel. The population of site 2
in time is shown in the middle panel. Bottom panel: The state of the
optimal control field after 800 iterations.

The mathematical origin of the control algorithm is the functional derivative
of the objective control functional. This implies that the iteration algorithm has
to increase monotonically the quantum mechanical expectation value defined by
the control target [OZR99]. Fig. 7.2 shows an increase of the control parameter
Jo with each iteration step. The state depicted in Fig. 7.1 could be improved by
further iterations since the maximal possible target value for the given system can
be determined as

Tomas = / dt F(t) = 400 v/27 ~ 1000. (7.18)

Here we used the fact, that the maximal occupation level at each site is limited to
one. Especially additional pulses between ¢t = 200 and ¢ = 250 would improve the
result since the occupation level in the tails of the Gaussian is relatively small. In
general, we observed a faster convergence for narrower control functions. Thus, a
smaller o, is applied in the following calculations.
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Figure 7.2: The monotonic convergence of the control algorithm given by Egs.
(7.14, 7.15). It was utilized to compute Fig. 7.1 which shows the state
of the system after 300 iterations. The control target .Jy is defined by
Eq. (7.5).

7.3.2 Optimal control of population with dissipation

Here, we employ the same system as in subsection 7.3.1 but with the sites coupled
to two electron reservoirs as depicted in Fig. 3.1. The coupling is weaker than in
the other calculations since we set p; = 0.01 (4AQ,T'?). The target function (7.16),
shown in the upper panel of Fig. 7.3, is set up with the parameters T}, = 200,
Fy =10 and 0. = 10 to enssure a fast convergence of the iteration algorithm. The
control target operator is again given by Eq. (7.17). On the contrary to subsection
7.3.1, the initial reduced density matrix corresponds to the equilibrium state of
the system which is determined by the influence of the two electronic leads, as it
is described in section 6.1. Both leads are at the same Fermi energy Er; = Ep,
and both sites have equal equilibrium occupation levels in the not irradiated wire.
Thus, the solution to maximize the occupation level at the second site is to apply
a constant laser pulse which lowers the on-site energy of this site. Since there is
no dynamical bouncing of the population between the sites, a sequence of different
pulses as in Fig. 7.1 is not required.

The maximal control target is given by Jy mae = 100 V27 & 251. Fig. 7.4 depicts
the convergence of the iteration algorithm applied to compute the state shown in
Fig. 7.3. The algorithm finds the obvious solution to the problem immediately and
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one observes a fast convergence at the beginning. It slows down later when only
minor adjustments to the control field are made by the algorithm.
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Figure 7.3: Similar situation as in Fig. 7.1, but with two leads attached to the
wire. The equilibrium state of the system without external field was
employed as the initial state of the wire. 200 iterations were performed
to compute the control field shown in the bottom panel.

150

140
130

g 120

-

110
100

90

0 ' 50 ' 160 ' 1é0 ' 260
number of iterations
Figure 7.4: The convergence of the control algorithm used to optimize the popu-

lation dynamics of a wire coupled to two electron reservoirs, depicted
in Fig. 7.3.
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7.3.3 Optimal control of current
7.3.3.1 Current switching

In order to realize a control scheme for the net current through a molecular wire,
one just has to apply the net current operator L, (t) = % (Z;(t) + Z(t)) for the
control target operator

O(t) = F(t)Tnes(t)- (7.19)

The parameters of the target function F'(t), displayed in the upper panel of Fig. 7.5,
are given by o, = 5.0, Fy = 10 and T}eqr = 200. The major difference to the control
of population dynamics is that the current operator is time-dependent as well. It
is propagated simultaneously with Eq. (7.14), stored and then applied during the
propagation of Eq. (7.15).

The on-site energies of the wire are configured as in Fig. 6.6 with U1, = By —Ey =
—4A and a bias voltage of Ex; — Ep, = 2A is additionally applied to the system.
The equilibrium net current which corresponds to this energy configuration can be
computed as Teguitibrium =~ 1.9107*[I]. An intuitive solution for a high equilibrium
conductance of the wire would be to apply a constant amplitude of A = 4A to the
dipole operator (3.21), which would align the on-site energies E; = Es. In this case,
the numerically computed net current is given by Iequiibrium ~ 5.191073 [I]. Since
the initial density matrix does not match with the equilibrium density matrix of the
system, one can observe current fluctuation in the third panel of Fig. 7.5 between
t =0 and t = 25.

We use this configuration in order to check whether the formalism finds the
solution by itself for this simple problem. The bottom panel of Fig. 7.5 displays
the computed control field amplitude A(t) after 100 iterations. The solution of the
algorithm is even better than the intuitive one, viz. aligning the on-site energies, and
it can be understood by looking at the population dynamics shown in the second
panel of Fig. 7.5. First, the left wire site is charged until it almost reaches its
maximal occupation level. Then the short pulse depicted in the bottom panel of
Fig. 7.5 with a peak amplitude of about A,..x = 6A discharges site one and pumps
the population to site two. This realizes the short current peak depicted in the
third panel of Fig. 7.5. The algorithm also accounts for the inertia of the system
by applying the pulse before the control target function F'(¢) has significant values.
Thus, we see the current peak at exactly Tpeqr = 200. The width of the current
distribution shows also a good agreement with the desired shape.
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Figure 7.5: The laser assisted transport through a wire with asymmetric on-site
energies Ui = Ey — Ey = —4A. A bias voltage of Er; — Ep, = 2A
is applied to the wire. The upper panel depicts the control target
function F'(t), the population of the two sites and the net current are
shown in the second and third panel, respectively. 100 iterations were
executed to compute the control field shown in the bottom panel.

The convergence behavior of the algorithm employing the current operator, de-
picted in Fig. 7.6, is quite similar to calculations employing a non-timedependent
particle number operator (7.17), where one could achieve a fast convergence by
defining a narrow and simple control function pattern. It is monotonic increasing
which shows the numerical stability of the algorithm also for time-dependent target
operators, if the time lattice in which the operators are stored is smooth enough.

65



7.3. NUMERICAL RESULTS

1,4

1,2—-
0,8—-
= 06

0,2 -

0,0 T T T T T T T T T 1
0 20 40 60 80 100

number of iterations

Figure 7.6: The convergence of the optimal control algorithm which was used to
compute the control field shown in Fig. 7.5.

7.3.3.2 Laser driven current

In the previous subsection, a situation was given where a bias voltage caused
current whose value was then influenced by an optimally controlled external laser
field. Here we want to present a study where the current is driven by the laser field
only without the support of a bias voltage. Therefore the left and the right Fermi
energies are set equal and a tight binding Hamiltonian consisting of four sites at
equal on-site energies is employed. The outermost sites have fixed energies while
the inner sites are subject to the dipole operator

which is modulated with the amplitude of the laser field as it is described in Eq.
(3.19). The scaled positions z,, are given by Eq. (3.22). The target of the optimal
control algorithm is to achieve a current surge determined by the target function
F(t) depicted in the upper panel of Fig. 7.7. Its parameters are given by 0. = 5.0,
Fy = 0.5 and Tpeqr = 200.

The problem is different from the previous examples since an optimized current
spike at Tjeqr, = 200, as shown in the third panel of Fig. 7.7, cannot be achieved by
applying only a single pulse as in the previous subsection. Hence a more compli-
cated solution for the control field is derived by the control algorithm, depicted in
the bottom panel of Fig. 7.7. It can be understood by considering the population
dynamics of the wire, depicted in the second panel of Fig. 7.7. The reason for the
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first pulses is to induce bouncing electron waves in the wire between the left and
right lead. Since the wire-lead coupling is weak, a portion of a wave of population
travelling through the wire cannot enter the lead and therefore bounces back. The
waves which are propagating through the wire are increased with every pulse in
order to have a favorable distribution of momenta and position in the wire before
the current spike at ¢ = 200 is due. Then, similar to the previous cases, a major
field pulse causes a major current spike. The propagating waves engender a series
of current surges in regular patterns before and after the main current peak.

After the field is turned off, the electron waves start decaying while causing
an alternating current. Fig. 7.7 was taken after 50 iterations and the peak of the
current surge does match the maximum of the control function F(t). A good timing
of the field is required in this model since the height and shape of the final current
spike also strongly depend on the sequence of the previous pulses. There is also
a longer delay between the main field pulse and the measured current since the
electrons have to pass an additional site before they are measured by entering or
leaving the electron reservoirs. The convergence of the OCT algorithm is shown in
Fig. 7.8. The prospective of electrical current driven by an optimal external field in
a molecular junction promises a variety of applications since the energy of the EM
field is directly transformed into an electrical current without the need of an initial
bias voltage or certain molecular symmetry.

In conclusion, we have derived an optimal control algorithm for the electrical cur-
rent in molecular systems and demonstrated its applicability for simple and com-
prehensible systems. This should enable future investigations to deal with more
complicated and realistic systems, which would also engender more complex control
fields. Another aspect is to include also the phonon bath into the optimal control
calculations. A time-reverse dissipation operator for the phonon bath coupling can
be derived in the same way as D(t) for the electron reservoirs. A study of the vibra-
tional coupling promises a variety of effects within the optimal control theory but a
full discussion would exceed the frame of this work.
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Figure 7.7: Optimal control of a 4-site wire where the laser field depicted in the
bottom panel influences only site 2 and 3. The on-site energies are
equal and no bias voltage is applied £y = Ey = E3 = Ey = Ep; =
Ep,. The upper panel depicts the control target function F'(¢), the
population of site 4 and the net current are shown in the second and
third panel, respectively. 50 iterations were executed to compute the
control field.
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Chapter 8
SUMMARY AND PERSPECTIVE

We have developed a time-dependent non-Markovian conduction formalism
based on a projection operator approach for the density matrix with a numeri-
cal decomposition of the spectral density. It enables studies of the time-resolved
current and population dynamics in molecular wires for arbitrary time-dependent
wire Hamiltonians, a powerful extension to existing theories and applicable for a
wide range of systems. The formalism includes the coupling to the electronic leads
and to the phonon bath in second-order perturbation theory and a non-perturbative
interaction with external fields. The resulting transport formalism could become a
powerful tool in mesoscopic physics if certain extensions are made. Its validity was
demonstrated numerically for different examples like the coherent destruction of
tunneling in a driven two-state system, optical control of current using a short laser
pulse, alternating currents and the electrical relaxation of the system into a biased
equilibrium state.

These effects were investigated on a femtosecond time scale, which is an impor-
tant aspect for its applicability to cover fast dynamical aspects. We furthermore
made a comparison of TNL and TL approaches to conclude that both agree in
the case of weak wire reservoir coupling. With the improved optimal control for-
malism, we were able to determine optimized control fields realizing a well defined
time-distributed target state such as a short current peak. Thus, we introduced an
often applied method in chemistry and molecular dynamics to the field of molecular
electronics.

The scientific achievements of this thesis

e Development of a method mathematically similar to the approach of Meier and
Tannor to account for the electron transfer in time-dependent open quantum
Systems.
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e Employment of their method to include vibrational coupling in a molecular
wire.

e Derivation of a current equation in consistence with our theory for the electron
transfer.

e Obtainment of a current operator by changing to a TL approach.

e Determination of an optimal control formalism for the open system electron
transfer in order to deal with time-dependent target states.

e Extension of our model to deal with time-dependent electron reservoirs.

e Realization of the points listed above numerically and presentation of basic
transport problems.

e Presentation of results for the influence of short laser pulses on the electrical
current in molecular wires.

Future investigations should extend the method to more sophisticated control
goals which would allow the formalism to deal with highly complicated current pat-
terns. Also, most of the examples presented refer only to simple physical situations
since we used them primarily to show the applicability of the method. Improved
calculations should include more realistic spectral densities, i.e. an Ohmic spectral
density for the vibrational coupling and a wire-lead transmission spectrum taken
from experimental data for the spectral density of the leads.

The role of the vibrational coupling in the electron transfer should be addressed
in more detail since it is not completely clear how the phonon bath influences the
electrical current in dynamical situations. The prospective of including an additional
electron-electron interaction would further complement the quantum mechanical
description of the system.

Starting from the definition of the current operator, one can develop a theory to
calculate the current fluctuation occurring during the transport. This noise infor-
mation and the extracted Fano factor would yield a deeper physical understanding
of effects like CDT [CKHO04]. A formal improvement of the derived method would
be to prove that it can be embedded in other quantum transport theories, e.g.
Landauer-Biittiker, similar to Refs. [LLY 05, CLSY].

From a numerical point of view, a major issue for optimization is to deal with
the Matsubara frequencies and the FFR values in a different way as it is done in the
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presented work. For wide bands and low temperatures, the requirement of a large
number of Matsubara/FFR, terms slows down the code significantly. One possible
solution to reduce their number could be a partial integration of the auxiliary density
matrices.

Many system properties in mesoscopic physics require a higher system dimension-
ality. Since a two-dimensional tight-binding description in matrix form requires an
extensive mapping between the sites, a Fock space basis is not applicable anymore.
Although it would be accompanied by a loss of generality, another modification
would be to replace the Fock space by a different basis which scales for instance
with N2 or N instead of 2V in the 1D case.
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Appendix A
THE UNIT SYSTEM AND PARAMETERS

In this section, we shortly present a way how to derive the macroscopic equiv-
alents of the units which we used in the current formalism by setting h = kg = 1.
The numerical results are all expressed in terms of the hopping parameter A acting
as the free parameter to gauge the system. Taking A = 0.1 eV is as reasonable
value for molecular systems, a temperature of

kT = 0.25A

then corresponds to
T =290.2K.

If we set the driving frequency of the external field to
E = hwg = 10A,

the corresponding wave length A is determined through the dispersion relation of
light
Q
A—=c
27

what results in
2mch

T 10-0.1eV
Furthermore, the period time for a single oscillation is given by

A = 1243 nm.
Tperiod = é = 4.141s
c
for infrared light with a wave length of A = 1243nm. Now, we can use this light

beam to measure the time unit for the employed time parameter ¢. In the program
code used for the numerical calculations, wy is set to

Wq = 1.0.
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Thus, the time unit of the program simply becomes

Te'riod
] =2 = 0.659fs.
== s

After determining the time, the current unit of the system [I] can be derived from
the basic definition of the current, namely
=9 _c_ 1010770 g1
St t  0659fs '
Other values like the parameters for the spectral decomposition, the on-site energy
or Fermi energy are of the order of eV in the system of interest and are therefore
expressed directly in terms of A.
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Appendix B
TIME REVERSE AUXILIARY OPERATOR

The calculations executed in Eq. (7.9) utilized the existence of a time reverse
time-propagation operator U(r,t, A). In this section, we employ the abbreviation
B(t) = L,(t)ps(t). In order to derive a differential expression for (7.10), one has to
refer to the time derivative applied to the time-propagation operator in the trace
expression of Eq. (7.9). Thus, we get

strs {O(NU(r, ¢, A)B(t)} = trs {O(N)U (7,8, A)(iLlw +iL,(t) + D(1)) B(t)}
= trs {U (7,8, A)O(7) (iLw +iL,(t) + D(1)) B(t)}
=trg {x(t) (iLw +iL,(t) + D(t)) B(t)}. (B.1)
The trace can be separated into the wire part and the dissipation part and both can

be evaluated separately. The Liouville operator can be shifted into the first position
in the trace utilizing the transformations

itrs {x(t)L()B(t)} = itrs {x(t)(H(t)B(t) — B(t)H(t))}
= atrg {x(t)H(t) B(t) — H(t)x(t)B(t)}
= atrg {—L(t)x(t)B(t)}. (B.2)
The time-reverse dissipation operator is given by

trs {x(t)D(t) B}
— Z trg { )(KpAga (1) B — Ky BA gy (t) — Age () BK, + BA 4y (t)Kw}

xx’

= > trs {E(t)x(t)B} . (B.3)

D(t)x(t) = Y Mg () Ko X (t) — KaX() Mg (t) — Ao (8)X (1) K + X (£) K A (2).
(B.4)
These are the necessary terms for the EOM (7.13) of the x(¢) operator.
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