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Abstract

This work aims to investigate some applications of the conjugate duality for scalar
and vector optimization problems to the construction of gap functions for varia-
tional inequalities and equilibrium problems. The basic idea of the approach is
to reformulate variational inequalities and equilibrium problems into optimization
problems depending on a fixed variable, which allows us to apply duality results
from optimization problems.

Based on some perturbations, first we consider the conjugate duality for scalar
optimization. As applications, duality investigations for the convex partially sepa-
rable optimization problem are discussed.

Afterwards, we concentrate our attention on some applications of conjugate
duality for convex optimization problems in finite and infinite-dimensional spaces
to the construction of a gap function for variational inequalities and equilibrium
problems. To verify the properties in the definition of a gap function weak and
strong duality are used.

The remainder of this thesis deals with the extension of this approach to vector
variational inequalities and vector equilibrium problems. By using the perturbation
functions in analogy to the scalar case, different dual problems for vector optimiza-
tion and duality assertions for these problems are derived. This study allows us to
propose some set-valued gap functions for the vector variational inequality. Finally,
by applying the Fenchel duality on the basis of weak orderings, some variational
principles for vector equilibrium problems are investigated.
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Introduction

In connection with studying free boundary value problems, variational inequali-
ties were first investigated by Stampacchia [80]. There is a huge literature on
the subjects of variational inequalities and related problems. Specially, the books
by Kinderlehrer and Stampacchia [51] and by Baiocchi and Capelo [13] provide
a thorough introduction to the applications of variational inequalities in infinite-
dimensional spaces. Moreover, for an overview of theory, algorithms and applica-
tions of finite-dimensional variational inequalities we refer to the survey paper by
Harker and Pang [47] and the comprehensive books by Facchinei and Pang [30],
[31].

From theoretical and practical point of view, the reformulation of variational
inequalities into equivalent optimization problems is one of the interesting subjects
in nonlinear analysis. This approach is based on the so-called gap or merit functions.
Some related well known results are due to Auchmuty [7], Auslender [8], Fukushima
[33], Peng [70], Yamashita, Taji and Fukushima [91], Zhu and Marcotte [99] for
the variational inequality; Chen, Yang and Goh [21] for the extended variational
inequality; Giannessi [38], [39] for the quasivariational inequality and Yang [93] for
the prevariational inequality problems, respectively. We refer also to the survey
papers by Fukushima [34] and by Larsson and Patriksson [57]. Depending on the
used approaches, different classes of gap functions for variational inequalities are
known as Auslender’s [8]; dual [61]; regularized [7], [33], [99]; ”D” or ”difference”
[70], [91] and Giannessi’s [38], respectively.

Among the mentioned approaches, the gap function due to Giannessi [38] has
been associated to the Lagrange duality for optimization problems. In order to
obtain variational principles for the variational inequality problem, Auchmuty [7]
used the saddle point characterization of the solution and later some properties of
such gap functions were discussed by Larsson and Patriksson [57]. Duality aspects
for variational inequalities (such problems are called inverse variational inequali-
ties) were investigated by Mosco [66] and later by Chen, Yang and Goh [21]. By
applying the approach due to Zhu and Marcotte [99], some relations between gap
functions for the extended variational inequality and the Fenchel duality for op-
timization problems were studied by Chen, Yang and Goh [21]. In the context of
convex optimization and variational inequalities the connections between properties
of gap functions and duality have been interpreted (see [21], [48]).

According to Blum and Oettli [15], equilibrium problems provide an unified
framework to the study of different problems in optimization, saddle and fixed
point theory, variational inequalities etc. Some results from these fields have been
extended to equilibrium problems. By using the approach of Auchmuty [7], vari-
ational principles for equilibrium problems were investigated by Blum and Oettli
[14].

On the other hand, various duality schemes for equilibrium problems were de-
veloped by Konnov and Schaible [52]. Here the authors deal with the relations
between solution sets of the primal and ”dual problems” under generalized convex-
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2 Introduction

ity and generalized monotonicity of the functions. One can notice that the so-called
Minty variational inequality follows from the classical dual scheme for the equilib-
rium problem.

The vector variational inequality in a finite-dimensional space was introduced
first by Giannessi [37] and some gap functions for variational inequalities have been
extended to the vector case. By defining some set-valued mappings, gap functions
in the sense of Auslender were extended from the scalar case to vector variational
inequalities by Chen, Yang and Goh [23]. The authors introduced also a generaliza-
tion of Giannessi’s gap function if the ground set of vector variational inequalities
is given by linear inequality constraints.

In analogy to the scalar case, vector equilibrium problems can be considered as a
generalization of vector variational inequalities, vector optimization and equilibrium
problems (see [4], [45] and [69]). Therefore some results established for these spe-
cial cases have been extended to vector equilibrium problems. By using set-valued
mappings as a generalization of the scalar case (cf. [7] and [14]) and by extending
the gap functions for vector variational inequalities, variational principles for vector
equilibrium problems were investigated by Ansari, Konnov and Yao [5], [6] (see also
[53]).

The aim of this work is to investigate a new approach on gap functions for vari-
ational inequalities and equilibrium problems on the basis of the conjugate duality
for scalar and vector optimization problems. The proposed approach is considered
first for variational inequalities in finite-dimensional Euclidean spaces, afterwards
this is extended to the equilibrium problems in topological vector spaces.

Before discussing the construction of some new gap functions for variational in-
equalities, we consider the conjugate duality for scalar optimization in connection
with some additional perturbations. Dual problems related to such perturbations
are so-called Fenchel-type and Fenchel-Lagrange type dual problems, respectively.
Closely related to this study, we reformulate the strong duality theorem in [16] and
as applications we discuss duality investigations for the convex partially separable
optimization problem.

Dual problems arising from the different perturbations (see [16] and [90]) in convex
optimization allow us to apply them to the construction of gap functions. The con-
struction of a new gap function for variational inequalities is based on the following
basic ideas:

� to reduce variational inequalities into optimization problems depending on a
fixed variable in the sense that both problems have the same solutions;

� to state the corresponding dual problems;

� to introduce a function as being the negative optimal value of the stated dual
problem for any fixed variable;

� to prove that the introduced function is a gap function for variational inequal-
ities.

To verify the properties of a gap function for variational inequalities, weak and
strong duality results are used. Under certain conditions as well as continuity and
monotonicity, by using the relations between gap functions and Minty variational
inequality problem, the so-called dual gap functions for the variational inequality
problem are investigated.
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We mention that the construction based on the Fenchel duality does not depend
on the ground set of the problem. Based on this remark, our approach is extended
to more general cases including variational inequalities, namely to equilibrium prob-
lems. Duality results we are going to use are recent developments on the conjugate
duality theory in the settings of locally convex spaces due to Boţ and Wanka [18].

The introduced gap functions for equilibrium problems provide a convenient way
of explaining as special cases the conjugate duality results for convex optimization
problems and some gap functions for variational inequalities. Involving conjugate
functions in the formulation of gap functions for variational inequalities and equi-
librium problems, the techniques of convex analysis can be used to compute them.

By introducing some set-valued mappings in connection with the conjugate du-
ality for vector optimization, we show that a similar approach like in the scalar case
can be applied to the vector variational inequality problem. For this reason, we
mention the conjugate duality theory developed by Tanino and Sawaragi [75], [82]
based on the Pareto efficiency. We remark that although the objective function of
the primal problem is vector-valued, by using this theory, the objective functions of
the dual problems turn out to be set-valued. By applying different perturbations as
in the scalar case (see [90]), we obtain some dual problems of this kind. In analogy
to the scalar case, we call them the Lagrange, the Fenchel and the Fenchel-Lagrange
dual problem for vector optimization, respectively.

As done in the scalar case, we show that the approach used by the construction
of a gap function for the vector variational inequality can be applied to the study of
variational principles for vector equilibrium problems. In order to investigate these
variational principles, we use the conjugate duality theory for vector optimization
problems on the basis of weak orderings developed by Tanino [84].

The thesis is organized as follows. The first chapter deals with the study of the
conjugate duality for scalar optimization via perturbations. Moreover, as applica-
tions we extend duality investigations for the convex partially separable optimiza-
tion problem.

In the second chapter, we apply the conjugate duality discussed in Chapter 1 to
the construction of gap functions for variational inequalities and equilibrium prob-
lems. In order to introduce new gap functions, for any fixed variable we use some
equivalent reformulations of variational inequalities and equilibrium problems as
optimization problems which allow us to apply duality results for convex optimiza-
tion.

The third chapter is devoted to the conjugate duality for vector optimization
and its applications to the vector variational inequality. First, we investigate dual
vector optimization problems arising from the different perturbations like in the
scalar case (see [90]). Afterwards, we concentrate on special cases of the stated
dual vector optimization problems which have some advantages for applications. In
conclusion, we define some new gap functions for the vector variational inequality
on the basis of the duality results discussed in this chapter.

In the last chapter we focus our attention on the investigation of variational
principles for vector equilibrium problems related to the conjugate duality. In order
to describe new variational principles, by using the Fenchel duality for vector op-
timization based on weak orderings, we introduce set-valued mappings depending
on the data, not on the solution set of the vector equilibrium problems. A similar
way is applied to variational principles for the dual vector equilibrium problem. As
special cases we discuss gap functions for weak vector variational inequalities.
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Chapter 1

Conjugate duality for scalar
optimization

1.1 An analysis of the conjugate duality

The concept of perturbed problems and conjugate functions provides an unified
framework to duality in optimization. The related original works are due to Fenchel
[32] and Moreau [65]. Later this theory was developed by Rockafellar [71] and by
Ekeland and Temam [27] in finite- and infinite-dimensional spaces, respectively. For
a comprehensive introduction to the conjugate duality we refer also to the book [73]
by Rockafellar.

In [90], Wanka and Boţ considered three different dual problems for scalar op-
timization problems with inequality constraints: the well known Lagrange and
Fenchel dual problems and a “combination“ of both, which is the so-called Fenchel-
Lagrange dual problem. More details about this approach and its applications can
be found in [16], [17], [85], [89] and [90].

By construction, ”weak duality” always holds, i.e. the optimal objective values of
the mentioned dual problems are less than or equal to the optimal objective value
of the primal problem. Under convexity assumptions, a constraint qualification
guarantees the so-called ”strong duality”, in fact that the optimal objective values
of the primal and the dual problems coincide and that the dual problems have
optimal solutions.

By using the indicator function of a set, we investigate some additional dual
problems. These dual problems will be so-called Fenchel-type and Fenchel-Lagrange-
type dual problems, respectively. Under convexity and regularity assumptions, we
study the relations between their optimal objective values.

1.1.1 Fenchel-type dual problems

Let X ⊆ Rn be a nonempty set and f : Rn → R = R ∪ {±∞}, g = (g1, ..., gm)T :
Rn → Rm be given functions. We consider the optimization problem

(P ) inf
x∈X∩G

f(x), G = {x ∈ Rn| g(x) ≤
Rm

+

0}.

Further we assume that dom f ∩X∩G 6= ∅, where dom h = {x ∈ Rn| h(x) < +∞}
is the effective domain of the function h : Rn → R. For x, y ∈ Rm, x ≤

Rm
+

y means

y − x ∈ Rm
+ = {z = (z1, ..., zm)T ∈ Rm| zi ≥ 0, i = 1,m}.

5



6 Chapter 1. Conjugate duality for scalar optimization

Let us remark that throughout this work the elements in the finite-dimensional

Euclidean spaces are supposed to be column vectors and xT y =
n∑

i=1

xiyi denotes as

usual the inner product of the vectors x, y ∈ Rn.
By using a general perturbation approach and the theory of conjugate functions
different dual problems to (P ) have been derived (see [16], [90])

(DL) sup
q ≥

Rm
+

0
inf

x∈X
[f(x) + qT g(x)],

(DF ) sup
p∈Rn

{
− f∗(p) + inf

x∈X∩G
pTx

}
and

(DFL) sup
p∈Rn

q ≥
Rm
+

0

{
− f∗(p) + inf

x∈X
[pTx+ qT g(x)]

}
.

By h∗C : Rn → R we denote the conjugate function of the function h relative to the
set C defined by h∗C(ξ) = sup

x∈C
[ξTx−h(x)]. If C = Rn, then h∗C becomes the classical

(Fenchel-Moreau) conjugate, which will be denoted by h∗. The problems (DL) and
(DF ) are the classical Lagrange and Fenchel dual problems, respectively. The dual
problem (DFL) is called the Fenchel-Lagrange dual and it is a ”combination” of the
Fenchel and Lagrange dual problems.

In this subsection we aim to discuss some dual problems to (P ), which have a
similar form as (DF ). By using the indicator function we can reduce the problem
(P ) to the equivalent form

(P δ) inf
x∈Rn

(f + δX + δG)(x),

where δC(x) is the indicator function of a given set C defined by

δC(x) =
{

0, if x ∈ C,
+∞, if x /∈ C.

Obviously, the optimal objective values of (P ) and (P δ) coincide. Let us notice that
to (DF ) associates the perturbation function ΦF : Rn ×Rn → R given by (see [16])

ΦF (x, y) =
{
f(x+ y), if x ∈ X ∩G,
+∞, otherwise.

We assume that each term of fδ := f+δX +δG takes the same perturbation variable
and let us consider all possible perturbations that we can do in the objective function
fδ. Introducing the corresponding perturbation functions, we can state different
dual problems. But some dual problems related to these perturbation functions
coincide with each other or they lead to (P ) or (DF ). In other words, based on the
following perturbation functions, we formulate some different dual problems.

(i) ΦF1 : Rn × Rn → R,
ΦF1(x, y) = f(x+ y) + δX(x+ y) + δX(x) + δG(x),

(ii) ΦF2 : Rn × Rn → R,
ΦF2(x, y) = f(x+ y) + δX(x) + δG(x+ y) + δG(x),



1.1 An analysis of the conjugate duality 7

(iii) ΦF3 : Rn × Rn → R,
ΦF3(x, y) = f(x+ y) + δX(x+ y) + δG(x),

(iv) ΦF4 : Rn × Rn → R,
ΦF4(x, y) = f(x+ y) + δX(x) + δG(x+ y),

where y ∈ Rn is the perturbation variable.
The dual problems to (P δ) can be defined by

(DFi
) sup

p∈Rn

{
− Φ∗Fi

(0, p)
}
,

where
Φ∗Fi

(0, p) = sup
x,y∈Rn

{
pT y − ΦFi(x, y)

}
, i = 1, 4.

Calculating the conjugate functions Φ∗Fi
, i = 1, 4, we obtain the following four dual

problems

(DF1) sup
p∈Rn

{
− f∗X(p) + inf

x∈X∩G
pTx

}
,

(DF2) sup
p∈Rn

{
− f∗G(p) + inf

x∈X∩G
pTx

}
,

(DF3) sup
p∈Rn

{
− f∗X(p) + inf

x∈G
pTx

}
,

(DF4) sup
p∈Rn

{
− f∗G(p) + inf

x∈X
pTx

}
or, equivalently,

(DF1) sup
p∈Rn

{
inf

x∈X
[f(x)− pTx] + inf

x∈X∩G
pTx

}
,

(DF2) sup
p∈Rn

{
inf
x∈G

[f(x)− pTx] + inf
x∈X∩G

pTx
}
,

(DF3) sup
p∈Rn

{
inf

x∈X
[f(x)− pTx] + inf

x∈G
pTx

}
,

(DF4) sup
p∈Rn

{
inf
x∈G

[f(x)− pTx] + inf
x∈X

pTx
}
.

One can notice that the problems (DFi), i = 1, 4, are so-called Fenchel-type
dual problems. As said before, the weak duality is always fulfilled and even more
we have the following relation

v(DF3)

v(DF )

v(DF4)

≤ v(DF1)

≤ v(DF2)
≤ v(P δ) = v(P ), (1.1)

where we denote by v(P ), v(DF ) and v(DFi
) the optimal objective value of (P ), (DF )

and (DFi
), i = 1, 4, respectively.

All inequalities in (1.1) can be strict. The next example shows this for some of them.

Example 1.1 Let X = [0,+∞) and the functions f, g : R → R be given by

f(x) =
{
x, x ≥ 0,
0, otherwise, g(x) = 1− x2,
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respectively. In order to find optimal objective values of (DFi), i = 1, 4, one has to
calculate the following terms:

(i) inf
x∈X

[f(x)− px] = inf
x≥0

x(1− p) =
{

0, p ≤ 1,
−∞, otherwise;

(ii) inf
x∈G

[f(x)− px] = min
{

inf
x≥1

x(1− p), inf
x≤−1

(−px)
}

=

 p, 0 ≤ p ≤ 0.5,
1− p, 0.5 ≤ p ≤ 1,
−∞, otherwise;

(iii) inf
x∈X∩G

px = inf
x≥0

1−x2≤0

px = inf
x≥1

px =
{
p, p ≥ 0,
−∞, otherwise;

(iv) inf
x∈X

px = inf
x≥0

px =
{

0, p ≥ 0,
−∞, otherwise;

(v) inf
x∈G

px = min
{

inf
x≥1

px, inf
x≤−1

px
}

=
{

0, p = 0,
−∞, otherwise.

By using the above calculations, the optimal objective values of (DFi), i = 1, 4, can
be obtained as follows.

v(DF1) = sup
p∈R

{
inf

x∈X
[f(x)− px] + inf

x∈X∩G
px

}
= sup

0≤p≤1
p = 1;

v(DF2) = sup
p∈R

{
inf
x∈G

[f(x)− px] + inf
x∈X∩G

px
}

= max
{

sup
0≤p≤0.5

2p, sup
0.5≤p≤1

1
}

= 1;

v(DF3) = sup
p∈R

{
inf

x∈X
[f(x)− px] + inf

x∈G
px

}
= 0;

v(DF4) = sup
p∈R

{
inf
x∈G

[f(x)− px] + inf
x∈X

px
}

= max
{

sup
0≤p≤0.5

p, sup
0.5≤p≤1

(1− p)
}

= 0.5.

As

inf
x∈Rn

[f(x)− px] = min
{

inf
x≥0

x(1− p), inf
x≤0

(−px)
}

=
{

0, 0 ≤ p ≤ 1,
−∞, otherwise,

the optimal objective value of the Fenchel dual problem is

v(DF ) = sup
p∈Rn

{
− f∗(p) + inf

x∈X∩G
px

}
= sup

0≤p≤1
p = 1.

Moreover, v(P ) = inf
x∈X∩G

f(x) = 1. Hence, it holds

v(DF3) < v(DF4) < v(DF1) = v(DF2) = v(DF ) = v(P ).

The following assertion deals with the equality relations between optimal objective
values of the primal and above dual problems.

Theorem 1.1 (see [71]) Assume that X and G are convex sets and that f is a
convex function.
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(i) If ri(X ∩ dom f) ∩ ri(G) 6= ∅, then v(DF3) = v(P ),

(ii) If ri(G ∩ dom f) ∩ ri(X) 6= ∅, then v(DF4) = v(P ),

(iii) If ri(X ∩G) ∩ ri(dom f) 6= ∅, then v(DF ) = v(P ),

(iv) If ri(X) ∩ ri(G) ∩ ri(dom f) 6= ∅, then

v(DF1) = v(DF2) = v(DF3) = v(DF4) = v(DF ) = v(P ).

1.1.2 Fenchel-Lagrange-type dual problems

Before considering further dual problems to (P ), we remark that to (DFL) (see [16])
corresponds the perturbation function ΦFL : Rn × Rn × Rm → R defined by

ΦFL(x, y, z) =

{
f(x+ y), if x ∈ X and g(x) ≤

Rm
+

z,

+∞, otherwise.

In order to apply the same approach to (DFL), we transform the problem (P ) into
the following equivalent form

(P δ
X) inf

x∈G
(f + δX)(x).

Each term of the objective function for (P δ
X) is supposed to take the same pertur-

bation variable. According to all possible perturbation functions, we can obtain
some dual problems having similar form as (DFL). Since some of them are reduced
to (DFL) or (DL), we introduce only three additional perturbation functions.

(i) ΦFL1 : Rn × Rn × Rm → R,

ΦFL1(x, y, z) =

{
f(x+ y) + δX(x+ y) + δX(x), if g(x) ≤

Rm
+

z,

+∞, otherwise.

(ii) ΦFL2 : Rn × Rn × Rm → R,

ΦFL2(x, y, z) =

{
f(x) + δX(x+ y), if g(x) ≤

Rm
+

z,

+∞, otherwise.

(iii) ΦFL3 : Rn × Rn × Rm → R,

ΦFL3(x, y, z) =

{
f(x+ y) + δX(x+ y), if g(x) ≤

Rm
+

z,

+∞, otherwise.

Consequently, we define the following three dual problems

(DFL1) sup
p∈Rn

q ≥
Rm
+

0

{
inf

x∈X
[f(x)− pTx] + inf

x∈X
[pTx+ qT g(x)]

}
,

(DFL2) sup
p∈Rn

q ≥
Rm
+

0

{
inf

x∈X
[−pTx] + inf

x∈Rn
[pTx+ f(x) + qT g(x)]

}
,

(DFL3) sup
p∈Rn

q ≥
Rm
+

0

{
inf

x∈X
[f(x)− pTx] + inf

x∈Rn
[pTx+ qT g(x)]

}
.

As in the previous subsection, we call the problems (DFLi), i = 1, 3, Fenchel-
Lagrange-type dual problems. If we denote by v(DL), v(DFL) and v(DFLi) the
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optimal objective value of (DL), (DFL) and (DFLi), i = 1, 3, respectively, then it
holds

v(DFL2)

v(DFL)

v(DFL3)
≤ v(DFL1)

≤ v(DL). (1.2)

Example 1.2 (see [16]) Let X = [0, ∞) and functions f : R → R, g : R → R be
defined by

f(x) =
{
−x2, x ≥ 0,
+∞, otherwise, g(x) = x2 − 1,

respectively. It is easy to verify that

v(DFL1) = (DFL3) = −∞.

Moreover, in [16] it was shown that

v(DL) = −1 and v(DFL) = −∞.

It remains to compute v(DFL2). As

inf
x∈R

[px+ f(x) + qg(x)] = inf
x≥0

[px− x2 + q(x2 − 1)]

=


−q, q ≥ 1, p ≥ 0,
−∞, 0 ≤ q < 1 or q = 1, p < 0,
− p2

4(q−1) − q, q > 1, p ≤ 0

and in view of

inf
x≥0

(−px) =
{

0, p ≤ 0,
−∞, otherwise,

one has

v(DFL2) = sup
p∈R
q≥0

{
inf

x∈X
(−px) + inf

x∈Rn
[px+ f(x) + qg(x)]

}

= max
{

sup
p=0
q≥1

(−q), sup
p≤0
q>1

(
− p2

4(q − 1)
− q

)}
= −1.

In conclusion, we have

v(DFL1) = v(DFL3) = v(DFL) < v(DFL2) = v(DL).

In order to state the equality relations between optimal objective values of duals
introduced in this subsection, let us mention two auxiliary assertions (see Fenchel’s
duality theorem in [71]).

Lemma 1.1 Assume that X is a convex set and that f, gi, i = 1,m, are convex
functions. Let ri(X) ∩ ri(dom f) 6= ∅. Then for each q ∈ Rm, q ≥

Rm
+

0, it holds

inf
x∈X

[f(x) + qT g(x)] = sup
p∈Rn

{
inf

x∈X
[f(x)− pTx] + inf

x∈Rn
[pTx+ qT g(x)]

}
= sup

p∈Rn

{
inf

x∈Rn
[f(x)− pTx] + inf

x∈X
[pTx+ qT g(x)]

}
. (1.3)
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Lemma 1.2 Assume that X is a convex set and that f, gi, i = 1,m, are convex
functions. Let ri(X) ∩ ri(dom f) 6= ∅. Then for each q ∈ Rm, q ≥

Rm
+

0, it holds

inf
x∈X

[f(x) + qT g(x)] = sup
p∈Rn

{
inf

x∈X
[−pTx] + inf

x∈Rn
[f(x) + pTx+ qT g(x)]

}
. (1.4)

Theorem 1.2 Assume that X is a convex set and that f, gi, i = 1,m, are convex
functions. Let ri(X) ∩ ri(dom f) 6= ∅. Then, it holds

v(DFL1) = v(DFL2) = v(DFL3) = v(DFL) = v(DL).

Proof: As (1.3), (1.4) hold for each q ∈ Rm, q ≥
Rm

+

0, and by (1.2), one has

v(DFL1) = v(DFL2) = v(DFL3) = v(DFL) = v(DL).

�

Taking into account a constraint qualification in Theorem 1.1 and Theorem 1.2,
the optimal objective values of all dual problems investigated in this section turn
out to be equal to each other. Specially, we can reformulate Theorem 2.8 in [16]
given in the case dom f = X. Recall that the constraint qualification in [16] can be
rewritten as

(CQ) ∃x′ ∈ ri(X) ∩ ri(dom f) :
[
gi(x′) ≤ 0, i ∈ L,
gi(x′) < 0, i ∈ N.

Here
L = {i ∈ {1, ...,m} | gi is an affine function}

and
N = {i ∈ {1, ...,m} | gi is not an affine function}.

Theorem 1.3 (see Theorem 2.8 in [16])
Let X be a convex set and f, gi, i = 1,m, be convex functions. Assume that the
constraint qualification (CQ) is fulfilled. If v(P ) is finite then (DL), (DF ), (DFL)
have optimal solutions and it holds

v(P ) = v(DL) = v(DF ) = v(DFL).

1.2 Convex partially separable optimization prob-
lems

The study of convex partially separable optimization problems first might be ap-
peared in [43] and [44]. According to [19], [25] and [76] by Schmidt et al., the
convexity and some other conditions arising in spline approximation problems usu-
ally lead to such type problems.

In [76] and references therein, Lagrange dual problems for convex partially sep-
arable optimization problem and its particular cases were established and strong
duality assertions were derived. In most of these cases, Lagrange dual problems are
unconstrained and if solutions of them are known, then the solutions of the primal
problems can be explicitly computed by the so-called return-formula. This is the
idea which has been applied by solving tridiagonally separable optimization prob-
lems and then by different convex and monotone spline approximations problems.
For details, we refer to [76] and [77].
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This section aims to extend duality investigations for convex partially separa-
ble optimization problems. By using the duality results discussed in Section 1.1,
we obtain different dual problems for the convex partially separable optimization
problem. Moreover, we derive optimality conditions for the mentioned problem and
its particular cases.

1.2.1 Problem formulation and preliminaries

Assume that Fi : Rli → R and Gi : Rli → Rm, i = 1, n, are convex functions and
Wi ⊆ Rli , i = 1, n, are convex sets. Let Ai ∈ Rli×(n+1), li ∈ N be given matrices.
Let us introduce the following optimization problem

(P cps) inf
u∈W

n∑
i=1

Fi(Aiu),

where

W =

{
u = (u0, ..., un)T ∈ Rn+1

∣∣∣ n∑
i=1

Gi(Aiu) ≤
Rm

+

0, Aiu ∈Wi, i = 1, n

}
.

(P cps) is called the convex partially separable optimization problem.
Introducing the auxiliary variables vi = Aiu ∈ Rli , i = 1, n, (P cps) can be

rewritten as

(P cps) inf
v∈V

n∑
i=1

Fi(vi),

where

V =

{
v ∈ Rk

∣∣∣ n∑
i=1

Gi(vi) ≤
Rm

+

0, vi −Aiu = 0, vi ∈Wi, i = 1, n

}
,

with v = (u, v1, ..., vn) ∈ Rn+1 × Rl1 × · · · × Rln and k = n+ 1 + l1 + ...+ ln.

In order to obtain different dual problems to (P cps), let us consider the convex
optimization problem

(P̃ ) inf
x∈ eG f̃(x), G̃ = {x ∈ X̃| g̃(x) ≤

Rt
+

0, h̃(x) = 0},

where X̃ ⊆ Rl is a convex set, f̃ : Rl → R, g̃ = (g̃1, ..., g̃t)T : Rl → Rt, h̃ =
(h̃1, ..., h̃w)T : Rl → Rw are given such that f̃ , g̃i, i = 1, t, are convex functions and
h̃j , j = 1, w, are affine functions.

Based on the previous section, it is clear that the corresponding dual problems
to (P̃ ) become

(D̃L) sup
q1 ≥

Rt
+

0

q2∈Rw

inf
x∈ eX{f̃(x) + qT

1 g̃(x) + qT
2 h̃(x)},

(D̃F ) sup
p∈Rl

{
−f̃∗(p) + inf

x∈ eG pTx

}
and

(D̃FL) sup
p∈Rl,q1 ≥

Rt
+

0

q2∈Rw

{
−f̃∗(p) + inf

x∈ eX[pTx+ qT
1 g̃(x) + qT

2 h̃(x)]
}
,
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respectively. For (P̃ ) the constraint qualification (CQ) looks like

(C̃Q) ∃x′ ∈ ri(X̃) ∩ ri(dom f̃) :

 g̃i(x′) ≤ 0, i ∈ L̃,
g̃i(x′) < 0, i ∈ Ñ ,
h̃j(x′) = 0, j = 1, w.

Here
L̃ = {i ∈ {1, ..., t} | g̃i is an affine function}

and
Ñ = {i ∈ {1, ..., t} | g̃i is not an affine function}.

Denoting by v(P̃ ) the optimal objective value of (P̃ ) and by v(D̃L), v(D̃F ), v(D̃FL)
the optimal objective values of (D̃L), (D̃F ) and (D̃FL), respectively, we have the
following assertion.

Proposition 1.1 (see Theorem 1.3)
Assume that the constraint qualification (C̃Q) is fulfilled. If v(P̃ ) is finite then
(D̃L), (D̃F ), (D̃FL) have optimal solutions and it holds

v(P̃ ) = v(D̃L) = v(D̃F ) = v(D̃FL).

1.2.2 Duality for convex partially separable optimization prob-
lems

For the convex partially separable optimization problem (P cps) we obtain the fol-
lowing dual problems, which follows from (D̃L), (D̃F ) and (D̃FL), respectively:

(Dcps
L ) sup

qi∈Rli ,i=1,n
nP

i=1
AT

i qi=0

qn+1 ≥
Rm
+

0

{
n∑

i=1

inf
vi∈Wi

[Fi(vi) + qT
n+1Gi(vi) + qT

i vi]

}
,

(Dcps
F ) sup

pi∈Rli ,i=1,n

{
−

n∑
i=1

F ∗i (pi) + inf
v∈V

n∑
i=1

pT
i vi

}
and

(Dcps
FL) sup

qi,pi∈Rli ,i=1,n
nP

i=1
AT

i qi=0

qn+1 ≥
Rm
+

0

{
−

n∑
i=1

F ∗i (pi) +
n∑

i=1

inf
vi∈Wi

[(pi + qi)T vi + qT
n+1Gi(vi)]

}
.

The functions F ∗i are the conjugates of Fi, i = 1, n.
Indeed, let us observe that the convex partially separable optimization problem
(P cps) is a particular case of (P̃ ), namely taking

X̃ = Rn+1 ×W1 × · · · ×Wn G̃ = V,

f̃ : Rk → R, f̃(v) =
n∑

i=1

Fi(vi),

g̃ : Rk → Rm, g̃(v) =
n∑

i=1

Gi(vi),

h̃ : Rk → Rl1 × · · · × Rln ,

h̃(v) = (v1 −A1u, · · · , vn −Anu)T ,
v = (u, v1, ..., vn) ∈ Rn+1 × Rl1 × · · · × Rln .

(1.5)
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Lagrange duality. Substituting (1.5) in (D̃L), we have

sup
q1 ≥

Rm
+

0

q2∈Rl1×···×Rln

q2=(q21,...,q2n)

inf
v∈ eX

{
n∑

i=1

Fi(vi) +
n∑

i=1

qT
1 Gi(vi) +

n∑
i=1

qT
2i(vi −Aiu)

}

= sup
q1 ≥

Rm
+

0

q2∈Rl1×···×Rln

inf
u∈Rn+1

vi∈Wi,i=1,n

{ n∑
i=1

Fi(vi) +
n∑

i=1

qT
1 Gi(vi)

+
n∑

i=1

qT
2ivi −

n∑
i=1

qT
2i(Aiu)

}
= sup

q1 ≥
Rm
+

0

q2∈Rl1×···×Rln

{
inf

u∈Rn+1
uT

(
−

n∑
i=1

AT
i q2i

)
+

n∑
i=1

inf
vi∈Wi

[Fi(vi)

+qT
1 Gi(vi) + qT

2ivi]
}
.

Because of inf
u∈Rn+1

uT
(
−

n∑
i=1

AT
i q2i

)
=

 0, if
n∑

i=1

AT
i q2i = 0,

−∞, otherwise,
(1.6)

we get (Dcps
L ), by taking the dual variables qi := q2i, i = 1, n, and qn+1 := q1.

Fenchel duality. For p = (pu, pv1 , ..., pvn
), we calculate f̃∗(p) that appears in

the formulation of (D̃F ). By definition, it holds

f̃∗(p) = sup
v∈Rk

{pT v − f̃(v)} = sup
v∈Rk

{
pT v −

n∑
i=1

Fi(vi)

}

= sup
u∈Rn+1

vi∈Rli ,i=1,n

{
pT

uu+
n∑

i=1

pT
vi
vi −

n∑
i=1

Fi(vi)

}

= sup
u∈Rn+1

pT
uu+

n∑
i=1

sup
vi∈Rli

{pT
vi
vi − Fi(vi)}.

Thus, in view of

sup
u∈Rn+1

pT
uu =

{
0, if pu = 0,
+∞, otherwise, (1.7)

and taking into account that inf
v∈V

pT v = inf
v∈V

n∑
i=1

pT
vi
vi, (Dcps

F ) is immediately ob-

tained, where pi := pvi
, i = 1, n, are the corresponding dual variables.

Fenchel-Lagrange duality. As we have seen before

f̃∗(p) = sup
u∈Rn+1

pT
uu+

n∑
i=1

F ∗i (pvi
).
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By (1.7), we can omit pu in the second term of (D̃FL). Thus, this looks like

inf
v∈ eX

{
n∑

i=1

pT
vi
vi +

n∑
i=1

qT
1 Gi(vi) +

n∑
i=1

qT
2i(vi −Aiu)

}

= inf
u∈Rn+1

vi∈Wi,i=1,n

{
n∑

i=1

pT
vi
vi +

n∑
i=1

qT
1 Gi(vi) +

n∑
i=1

qT
2ivi −

n∑
i=1

uT (AT
i q2i)

}

= inf
u∈Rn+1

uT
(
−

n∑
i=1

AT
i q2i

)
+

n∑
i=1

inf
vi∈Wi

[(pvi
+ q2i)T vi + qT

1 Gi(vi)].

In view of (1.6) and replacing pvi , q2i, i = 1, n, and q1 by pi, qi, i = 1, n, and qn+1,
respectively, we get (Dcps

FL). By using Proposition 1.1, one can derive for (P cps) and
its duals the following necessary and sufficient optimality conditions.

Theorem 1.4 (Optimality conditions for (P cps) and (Dcps
L ))

(a) Assume that the constraint qualification (C̃Q) is fulfilled (with the denotations
given in (1.5)). Let ū ∈ Rn+1 be an optimal solution to (P cps). Then there exists

an element q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ Rl1 × · · · × Rln × Rm, q̄n+1 ≥
Rm

+

0,
n∑

i=1

AT
i q̄i = 0

such that the following optimality conditions are satisfied:

(i) Fi(v̄i) + q̄T
n+1Gi(v̄i) + q̄T

i v̄i = inf
vi∈Wi

{Fi(vi) + q̄T
n+1Gi(vi) + q̄T

i vi}, i = 1, n,

(ii) q̄T
n+1

( n∑
i=1

Gi(v̄i)
)

= 0,

(iii) v̄i = Aiū, i = 1, n.

(b) Let ū ∈W and q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ Rl1 ×· · ·×Rln ×Rm be feasible to (Dcps
L ),

satisfying (i) − (iii). Then ū and q̄ are optimal solutions to (P cps) and (Dcps
L ),

respectively, and strong duality holds.

Proof: Let ū be an optimal solution to (P cps). Then v(P cps) =
n∑

i=1

Fi(v̄i) ∈

R, where v̄i = Aiū, i = 1, n. Therefore, by Proposition 1.1, there exists q̄ =
(q̄1, ..., q̄n, q̄n+1) ∈ Rl1 × · · · × Rln × Rm, an optimal solution to (Dcps

L ) such that

q̄n+1 ≥
Rm

+

0,
n∑

i=1

AT
i q̄i = 0, and strong duality holds

n∑
i=1

Fi(v̄i) =
n∑

i=1

inf
vi∈Wi

{Fi(vi) + q̄T
n+1Gi(vi) + q̄T

i vi}.

After some transformations we get

0 =
n∑

i=1

{Fi(v̄i) + q̄T
n+1Gi(v̄i) + q̄T

i v̄i

− inf
vi∈Wi

[Fi(vi) + q̄T
n+1Gi(vi) + q̄T

i vi]}

+ q̄T
n+1

(
−

n∑
i=1

Gi(v̄i)
)

+ ūT
(
−

n∑
i=1

AT
i q̄i

)
.

Taking into account that ū, q̄ are feasible to (P cps) and (Dcps
L ), respectively, and

since the inequality

Fi(v̄i) + q̄T
n+1Gi(v̄i) + q̄T

i v̄i ≥ inf
vi∈Wi

[Fi(vi) + q̄T
n+1Gi(vi) + q̄T

i vi], i = 1, n,
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is true, (i)− (iii) follows.
In order to prove the statement (b) the same calculations can be done in the opposite
direction. �

Theorem 1.5 (Optimality conditions for (P cps) and (Dcps
F ))

(a) Assume that the constraint qualification (C̃Q) is fulfilled. Let ū ∈ Rn+1 be
an optimal solution to (P cps). Then there exists an element p̄ = (p̄1, ..., p̄n) ∈
Rl1 × · · · × Rln such that the following optimality conditions are satisfied:

(i) Fi(v̄i) + F ∗i (p̄i) = p̄T
i v̄i, i = 1, n,

(ii)
n∑

i=1

p̄T
i v̄i = inf

v∈V

n∑
i=1

p̄T
i vi,

(iii) v̄i = Aiū, i = 1, n.

(b) Let ū ∈ W and p̄ ∈ Rl1 × · · · × Rln be such that (i) − (iii) are satisfied. Then
ū and p̄ are optimal solutions to (P cps) and (Dcps

F ), respectively, and strong duality
holds.

Proof: Let ū be an optimal solution to (P cps). Then v(P cps) =
n∑

i=1

Fi(v̄i) ∈

R, where v̄i = Aiū, i = 1, n. Therefore, by Proposition 1.1, there exists p̄ =
(p̄1, ..., p̄n) ∈ Rl1 × · · · × Rln , an optimal solution to (Dcps

F ), and it holds

n∑
i=1

Fi(v̄i) = −
n∑

i=1

F ∗i (p̄i) + inf
v∈V

n∑
i=1

p̄T
i vi.

The last relation can be rewritten as

0 =
n∑

i=1

{Fi(v̄i) + F ∗i (p̄i)− p̄T
i v̄i}+

n∑
i=1

p̄T
i v̄i − inf

v∈V

n∑
i=1

p̄T
i vi. (1.8)

Since the inequalities

Fi(v̄i) + F ∗i (p̄i) ≥ p̄T
i v̄i, i = 1, n (Young inequality),

n∑
i=1

p̄T
i v̄i − inf

v∈V

n∑
i=1

p̄T
i vi ≥ 0

are always true, all terms in (1.8) must be equal to zero. Therefore (i)−(iii) follows.
In order to get the second part of the theorem one has to make the same calculations,
but in the opposite direction. �

Theorem 1.6 (Optimality conditions for (P cps) and (Dcps
FL))

(a) Assume that the constraint qualification (C̃Q) is fulfilled. Let ū ∈ Rn+1 be an
optimal solution to (P cps). Then there exists an element (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈
Rl1×· · ·×Rln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ Rl1×· · ·×Rln×Rm, q̄n+1 ≥

Rm
+

0,
n∑

i=1

AT
i q̄i = 0

such that the following optimality conditions are satisfied:

(i) Fi(v̄i) + F ∗i (p̄i) = p̄T
i v̄i, i = 1, n,

(ii) (p̄i + q̄i)T v̄i + q̄T
n+1Gi(v̄i) = inf

vi∈Wi

{(p̄i + q̄i)T vi + q̄T
n+1Gi(vi)}, i = 1, n,

(iii) q̄T
n+1

( n∑
i=1

Gi(v̄i)
)

= 0,
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(iv) v̄i = Aiū, i = 1, n.

(b) Let ū ∈ W and (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ Rl1 × ...× Rln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈
Rl1 × ... × Rln × Rm be feasible to (Dcps

FL), satisfying (i) − (iv). Then ū and (p̄, q̄)
are optimal solutions to (P cps) and (Dcps

FL), respectively, and strong duality holds.

Proof: Let ū be an optimal solution to (P cps). Then v(P cps) =
n∑

i=1

Fi(v̄i) ∈ R,

where v̄i = Aiū, i = 1, n. Therefore by Proposition 1.1, there exists (p̄, q̄), p̄ =
(p̄1, ..., p̄n) ∈ Rl1 × · · · ×Rln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ Rl1 × · · · ×Rln ×Rm, an opti-

mal solution to (P cps
FL ) such that q̄n+1 ≥

Rm
+

0,
n∑

i=1

AT
i q̄i = 0, and it holds

n∑
i=1

Fi(v̄i) = −
n∑

i=1

F ∗i (p̄i) +
n∑

i=1

inf
vi∈Wi

{(p̄i + q̄i)T vi + q̄T
n+1G(vi)〉}.

The last equality is rewritable as

0 =
n∑

i=1

{Fi(v̄i) + F ∗i (p̄i)− p̄T
i v̄i}+

n∑
i=1

{(p̄i + q̄i)T v̄i + q̄T
n+1Gi(v̄i)

− inf
vi∈Wi

[(p̄i + q̄i)T vi + q̄T
n+1Gi(vi)]}+ q̄T

n+1

(
−

n∑
i=1

Gi(v̄i)
)

+ ūT
(
−

n∑
i=1

AT
i q̄i

)
.

Because ū and (p̄, q̄) are feasible to (P cps) and (Dcps
FL), respectively, and since the

inequalities

Fi(v̄i) + F ∗i (p̄i) ≥ p̄T
i v̄i, i = 1, n (Young inequality),

(p̄i + q̄i)T v̄i + q̄T
n+1Gi(v̄i) ≥ inf

vi∈Wi

[(p̄i + q̄i)T vi + q̄T
n+1Gi(vi)], i = 1, n,

are true, we obtain (i)− (iv).
The second part of the theorem follows by making the same calculations, but in the
opposite direction. �

1.2.3 Special cases

The convex partially separable optimization problem with affine con-
straints. Consider the problem

(P lps) inf
u∈W

n∑
i=1

Fi(Aiu),

where

W =

{
u ∈ Rn+1

∣∣∣ n∑
i=1

DiAiu = b, Aiu ∈Wi, i = 1, n

}
and Di ∈ Rm×li , i = 1, n, b ∈ Rm are given.

It is obvious that (P lps) is a special case of (P̃ ), whose feasible set containing
only affine constraints. The dual problems to (P lps) look like

(Dlps
L ) sup

qi∈Rli , i=1,n
nP

i=1
AT

i qi=0

qn+1∈Rm

{
qT
n+1b−

n∑
i=1

(Fi)∗Wi
(DT

i qn+1 + qi)

}
,

(Dlps
F ) sup

pi∈Rli , i=1,n

{
−

n∑
i=1

F ∗i (pi) + inf
u∈W

n∑
i=1

pT
i (Aiu)

}
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and

(Dlps
FL) sup

qi,pi∈Rli , i=1,n
nP

i=1
AT

i qi=0

qn+1∈Rm

{
qT
n+1b−

n∑
i=1

F ∗i (pi)

+
n∑

i=1

inf
vi∈Wi

(pi + qi +DT
i qn+1)T vi

}
.

As we have seen in Subsection 1.2.2, optimality conditions for all these three dual
problems can be derived. Let us give the case concerning the Fenchel-Lagrange dual
problem.

Proposition 1.2 (Optimality conditions for (P lps) and (Dlps
FL))

(a) Assume that the constraint qualification (C̃Q) is fulfilled. Let ū ∈ Rn+1 be an
optimal solution to (P lps). Then there exists an element (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈
Rl1 × · · · × Rln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ Rl1 × · · · × Rln × Rm,

n∑
i=1

AT
i q̄i = 0 such

that the following optimality conditions are satisfied:

(i) Fi(v̄i) + F ∗i (p̄i) = p̄T
i v̄i, i = 1, n,

(ii) (p̄i + q̄i +DT
i q̄n+1)T v̄i = inf

vi∈Wi

(p̄i + q̄i +DT
i q̄n+1)T vi, i = 1, n,

(iii) v̄i = Aiū, i = 1, n.

(b) Let ū ∈W and (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ Rl1 × · · · × Rln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈
Rl1 × · · · × Rln × Rm be feasible to (Dlps

FL), satisfying (i)− (iii). Then ū and (p̄, q̄)
are optimal solutions to (P lps) and (Dlps

FL), respectively, and strong duality holds.

The tridiagonally separable optimization problem. Let us now treat the
problem

(P ts) inf
u∈W

n∑
i=1

Fi(ui−1, ui),

where

W =
{
u = (u0, ..., un) ∈ Rs × · · · × Rs︸ ︷︷ ︸

n+1

∣∣∣
n∑

i=1

(Biui−1 + Ciui) = b, (ui−1, ui) ∈Wi ⊆ R2s, i = 1, n
}

and Bi, Ci ∈ Rm×s, i = 1, n, b ∈ Rm are given.
For (P ts) we can use the dual schemes for (P lps). Indeed, one can notice that

Ai =
(

ET
i

ET
i+1

)
and Aiu =

(
ui−1

ui

)
. Here ET

i = (Ø, ..., I, ...,Ø) ∈ Rs×s(n+1) is a

matrix, where Ø and I denote the quadratic matrixes with aij = 0, i, j = 1, s, and
aii = 1, aij = 0 for i 6= j, i, j = 1, s, respectively. If we take Di as (Bi, Ci), then
one has

Divi = (Bi, Ci)
(
ui−1

ui

)
= Biui−1 + Ciui and DT

i qn+1 =
(
BT

i qn+1

CT
i qn+1

)
.
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On the other hand, as
n∑

i=1

AT
i qi = 0, we obtain that

qi1 = 0,

qi2 + qi+1,i = 0, i = 1, .., n− 1, where qi =
(
qi1
qi2

)
∈ R2s.

qn2 = 0,

Replacing q̄i := qi+1,1, i = 1, ..., n− 1, it follows that

Diqn+1 + qi =
(
BT

i qn+1 + q̄i−1

CT
i qn+1 − q̄i

)
, i = 1, n, and q̄0 = q̄n = 0.

Consequently, the duals to (P lps) become in this situation

(Dts
L ) sup

qi∈Rs,i=0,n
q0=qn=0
qn+1∈Rm

{
qT
n+1b−

n∑
i=1

(Fi)∗Wi
(qi−1 +BT

i qn+1,−qi + CT
i qn+1)

}
,

(Dts
F ) sup

(pi1,pi2)∈R2s

i=1,n

{
−

n∑
i=1

F ∗i (pi1, pi2) + inf
u∈W

n∑
i=1

[pT
i1ui−1 + pT

i2ui]

}
,

and

(Dts
FL) sup

(pi1,pi2)∈R2s

qi∈Rs,i=0,n
q0=qn=0
qn+1∈Rm

{
qT
n+1b−

n∑
i=1

F ∗i (pi1, pi2) +
n∑

i=1

inf
(ui−1,ui)∈Wi

[(pi1 − qi−1 −BT
i qn+1)Tui−1 + (pi2 + qi − CT

i qn+1)Tui]
}
,

respectively. The next proposition provides optimality conditions for (P ts) and
(Dts

FL).

Proposition 1.3 (Optimality conditions for (P ts) and (Dts
FL))

(a) Assume that the constraint qualification (C̃Q) is fulfilled. Let ū ∈ Rn+1 be an
optimal solution to (P ts). Then there exists an element (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈
R2s × · · · × R2s︸ ︷︷ ︸

n

, q̄ = (q̄0, q̄1, ..., q̄n, q̄n+1) ∈ Rs × · · · × Rs︸ ︷︷ ︸
n+1

×Rm, q̄0 = q̄n = 0 such

that the following optimality conditions are satisfied:

(i) Fi(ūi−1, ūi) + F ∗i (p̄i1, p̄i2) = p̄T
i1ūi−1 + p̄T

i2ūi, i = 1, n,

(ii) (p̄i1 − q̄i−1 −Bi
T q̄n+1)T ūi−1 + (p̄i2 + q̄i − Ci

T q̄n+1)T ūi

= inf
(ui−1,ui)∈Wi

[(p̄i1 − q̄i−1 −Bi
T q̄n+1)Tui−1 + (p̄i2 + q̄i − Ci

T q̄n+1)Tui],

i = 1, n.

(b) Let ū ∈W and (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ R2s × · · · × R2s︸ ︷︷ ︸
n

,

q̄ = (q̄0, q̄1, ..., q̄n, q̄n+1) ∈ Rs × · · · × Rs︸ ︷︷ ︸
n+1

×Rm be feasible to (Dts
FL), satisfying (i) −

(ii). Then ū and (p̄, q̄) are optimal solutions to (P ts) and (Dts
FL), respectively, and

strong duality holds.
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Convex interpolation with cubic C1 splines. At the end of this section we
show how it is possible to reformulate the convex interpolation problem with C1

splines as a tridiagonally separable optimization problem. For more details about
other examples associated to the spline approximation including the mentioned one,
we refer to [19], [25], [76] and [77]. The role of the duality by solving this problem
will also be discussed.
Let (xi, yi)T ∈ R2, i = 0, n, be given data points defined on the grid

∆n : x0 < x1 < ... < xn.

A cubic spline S on ∆n can be given for [xi−1, xi] by the formula

S(x) = yi−1 +mi−1(x− xi−1)

+ (3τi − 2mi−1 −mi)
(x− xi−1)2

hi
+ (mi−1 +mi − 2τi)

(x− xi−1)3

h2
i

with hi = xi − xi−1, τi = yi−yi−1
hi

, i = 1, n. It holds S ∈ C1[x0, xn] and S(xi) =
yi, S

′(xi) = mi, i = 0, n.
The points (x0, y0), ..., (xn, yn) associated to ∆n are said to be in convex position if

τ1 ≤ τ2 ≤ · · · ≤ τn. (1.9)

By (1.9) the necessary and sufficient condition which guarantees the convexity of S
on [0, 1] leads to the following problem

(mi−1,mi)T ∈Wi (1.10)

where

Wi = {(mi−1,mi)T ∈ R2| 2mi−1 +mi ≤ 3τi ≤ mi−1 + 2mi}, i = 1, n. (1.11)

If the inequality ai ≤ bi, i = 1, n where a0 = −∞, b0 = +∞ and ai =
max{τi, 1

2 (3τi − bi−1)}, bi = 3τi − 2ai−1, i = 1, n, is fulfilled, then the problem
(1.10) is solvable (see [76]), but not uniquely in general. In order to select an
unique convex interpolant one has to minimize the mean curvature of S. It is easy
to verify that (see [76])

xn∫
x0

S′′(x)2dx =
n∑

i=1

4
h2

i

{m2
i +mimi−1 +m2

i−1 − 3τi(mi +mi−1) + 3τ2
i }

=
n∑

i=1

Fi(mi−1,mi),

and therefore we get the following optimization problem

(P sca) min
(mi−1,mi)

T∈Wi

i=1,n

n∑
i=1

Fi(mi−1,mi),

where Wi, i = 1, n, is given by (1.11). Obviously, (P csa) is a particular case of
(P ts). As we have seen, the Lagrange dual problem to (P csa) is

(Dcsa
L ) sup

q∈Rn+1

q=(q0,q1,...,qn)T

q0=qn=0

−

{
n∑

i=1

(Fi)∗Wi
(qi−1,−qi)

}
,
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where (see [25], [76]),

(Fi)∗Wi
(ξ, η) =


τi(ξ + η) + hi

12 (ξ2 − ξη + η2), if ξ ≤ 0, η ≥ 0,
τi(ξ + η) + hi

12 ( ξ
2 − η)2 if 0 ≤ ξ ≤ 2η,

τi(ξ + η) + hi

12 (ξ − η
2 )2, if 2ξ ≤ η ≤ 0,

τi(ξ + η), if ξ ≥ 2η, 2ξ ≥ η.

The problem (P csa) was solved in the literature by using of the so-called return-
formula (see [76])

(ui−1, ui)T = grad[(Fi)∗Wi
(q̄i−1,−q̄i)],

where (q̄0, q̄1, ..., q̄n)T ∈ Rn+1 is an optimal solution to (Dcsa
L ).

Later in Subsection 2.1.4 we discuss for a more general problem than (P sca), the
relations between the optimality conditions related to the Fenchel-Lagrange duality
(cf. Theorem 1.6) and so-called generalized variational inequalities. The generalized
variational inequality is closely related to the inclusion problem of finding a zero of
set-valued mappings. Whence, well-known proximal point and splitting algorithms
for solving the inclusion problems can be used to compute the solutions of the
problems arising from such optimality conditions.
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Chapter 2

Variational inequalities and
equilibrium problems

This chapter deals with some applications of conjugate duality for convex optimiza-
tion problems in finite and infinite-dimensional spaces to the construction of gap
functions for variational inequalities and equilibrium problems. The basic idea of
the approach is to reformulate variational inequalities and equilibrium problems
into optimization problems depending on a fixed variable, which allows us to apply
duality results from optimization problems.

2.1 Variational inequalities

In this section we consider new gap functions for variational inequalities based on
conjugate duality for convex optimization problems. By using dual problems inves-
tigated in [90] (see Chapter 1), we propose some new gap functions for variational
inequalities. Under certain assumptions, we discuss a further class of gap functions
for the variational inequality problem, the so-called dual gap functions.

2.1.1 Problem formulation and some remarks on gap func-
tions

Let K ⊆ Rn and F : Rn → Rn be a vector-valued function. The variational
inequality problem consists in finding a point x ∈ K such that

(V I) F (x)T (y − x) ≥ 0, ∀y ∈ K.

Although it is supposed mostly in the literature that K is a closed, convex set and F
is a continuous vector-valued function, we will make such assumptions only if they
are required. As mentioned before, one of the approaches for solving the problem
(V I) is to reformulate it into an equivalent optimization problem.

By using the conjugate duality theory presented in the previous chapter, we
discuss the construction of gap functions for variational inequalities. Before doing
this, we recall the definition of a gap function and some well-known gap functions
for the problem (V I).

Definition 2.1 A function γ : Rn → R is said to be a gap function for the problem
(V I) if it satisfies the following properties

(i) γ(y) ≥ 0, ∀y ∈ K;

(ii) γ(x) = 0 if and only if x solves the problem (V I).

23
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Definition 2.2 (Auslender’s gap function, [8])

γV I
A (x) := max

y∈K
F (x)T (x− y).

Let us now assume that the ground set K is defined by

K = {x ∈ Rn| gi(x) ≤ 0, i = 1, 2, ..,m}, (2.1)

where gi : Rn → R are convex functions and g(x) = (g1(x), ..., gm(x))T . Giannessi
proposed the following gap function which explicitly incorporates the constraints
that define the ground set K.

Definition 2.3 (Giannessi’s gap function, [39])

γV I
G (x) := inf

λ ≥
Rm
+

0
sup
y∈Rn

{
F (x)T (x− y)− λT g(y)

}
.

Notice that the formulation of Giannessi’s gap function is inspired by the Lagrange
duality for the optimization problem

(PV I ;x) inf
y∈K

F (x)T (y − x),

where K is given by (2.1) and x ∈ Rn is fixed. It is easy to see that

γV I
G (x) ≡ γV I

L (x) := −v(DV I
L ;x),

where v(DV I
L ;x) denotes the optimal objective value of the Lagrange dual problem

to (PV I ;x). Now let us state the Fenchel dual problem to (PV I ;x) and define a
function in the similar way, i.e.

γV I
F (x) := −v(DV I

F ;x).

Since the conjugate of the objective function for (PV I ;x) is

sup
y∈Rn

[pT y − F (x)T (y − x)] =
{
F (x)Tx, if p = F (x),
+∞, otherwise, (2.2)

the Fenchel dual problem to (PV I ;x) turns out to be (cf. (DF ) in Subsection 1.1.1)

(DV I
F ;x) sup

p=F (x)

{
− F (x)Tx+ inf

y∈K
pT y

}
= inf

y∈K
F (x)T (y − x).

Whence we define

γV I
F (x) := −v(DV I

F ;x) = − inf
y∈K

F (x)T (y − x) = sup
y∈K

F (x)T (x− y).

γV I
F is nothing else than Auslender’s gap function. Let us notice that, by using

the Fenchel duality, we can define a gap function for an arbitrary ground set K.
Assuming again that the ground set K is given by (2.1), in view of (2.2), the
Fenchel-Lagrange dual problem to (PV I ;x) becomes

(DV I
FL;x) sup

p=F (x)
q ≥

Rm
+

0

{
− F (x)Tx+ inf

y∈Rn
[pT y + qT g(y)]

}

= sup
q ≥

Rm
+

0
inf

y∈Rn
[F (x)T (y − x) + qT g(y)]

}
.

Therefore, the function γV I
FL(x) := −v(DV I

FL;x) also reduces to Giannessi’s gap func-
tion. The result can be summarized as follows.
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Proposition 2.1

(i) For the problem (V I), it holds γV I
F (y) = γV I

A (y), ∀y ∈ Rn.

(ii) If the ground set is given by (2.1), then it holds

γV I
FL(y) = γV I

G (y), ∀y ∈ Rn.

2.1.2 Gap functions for the mixed variational inequality

The problem (V I) can be generalized to the following mixed variational inequality
problem which consists in finding a point x ∈ K such that

(MV I) F (x)T (y − x) + f(y)− f(x) ≥ 0, ∀y ∈ K,

where f : Rn → R is a proper, convex function. Some results related to (MV I) can
be found in [27] and [55]. As said before, to the problem (MV I) one can associate
the following primal problem

(PMV I ;x) inf
y∈K

ϕ(y),

where the function ϕ : Rn → R is defined by

ϕ(y) := F (x)T (y − x) + f(y)− f(x) (2.3)

and x ∈ Rn is fixed. One can derive the conjugate of ϕ by

ϕ∗(p) = sup
y∈Rn

[pT y − ϕ(y)] = sup
y∈Rn

[pT y − F (x)T (y − x)− f(y) + f(x))]

= f∗(p− F (x)) + F (x)Tx+ f(x). (2.4)

Therefore the Fenchel dual problem to (PMV I ;x) is

(DMV I
F ;x) sup

p∈Rn

{
− f∗(p− F (x))− F (x)Tx− f(x) + inf

y∈K
pT y

}
.

In analogy to the problem (V I), we can introduce the following function

γMV I
F (x) := −v(DMV I

F ;x) = inf
p∈Rn

{
f∗(p− F (x)) + F (x)Tx+ f(x) + δ∗K(−p)

}
.

Theorem 2.1 Let ri(K)∩ ri(dom f) 6= ∅ and K be a convex set. Then γMV I
F is a

gap function for the problem (MV I).

Proof:

(i) Let x ∈ K be fixed. By weak duality it holds

v(DMV I
F ;x) ≤ v(PMV I ;x) ≤ 0.

Whence γMV I
F (x) = −v(DMV I

F ;x) ≥ 0.

(ii) If γMV I
F (x) = 0, then 0 = v(DMV I

F ;x) ≤ v(PMV I ;x) ≤ 0 and so v(PMV I ;x) =
0. This means that x solves the problem (MV I). On the other hand, if x ∈ K
is a solution to the problem (MV I), then v(PMV I ;x) = 0. Taking into account
Theorem 1.1(iii), we conclude that

γMV I
F (x) = −v(DMV I

F ;x) = −v(PMV I ;x) = 0.

�
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Remark 2.1 If one takes K = Rn in the formulation of the problem (MV I),
then this reduces to the extended variational inequality problem. By using γMV I

F

we obtain the same gap function for the extended variational inequality as in [21].
Indeed, because of

δ∗Rn(−p) = sup
x∈Rn

[−pTx] =
{

0, if p = 0,
+∞, otherwise,

we have

γEV I
F (x) = inf

p∈Rn

{
f∗(p− F (x)) + F (x)Tx+ f(x) + δ∗Rn(−p)

}
= f∗(−F (x)) + F (x)Tx+ f(x).

Example 2.1 Let K ⊆ Rn be a convex set and a ∈ Rn be a given point. Consider
the following so-called best approximation problem of finding x ∈ K such that

(P app) ‖y − a‖ ≥ ‖x− a‖, ∀y ∈ K,

where ‖ · ‖ denotes the Euclidean norm in Rn defined by ‖x‖ =
√
xTx.

The point x is nothing else than the projection of a onto K. It is easy to verify that
the problem (P app) is equivalent to the problem of finding x ∈ K such that

−2aT (y − x) + ‖y‖2 − ‖x‖2 ≥ 0, ∀y ∈ K.

This problem is a particular case of (MV I), taking F : Rn → Rn, F (z) = −2a and
f : Rn → R, f(z) = ‖z‖2. Let x ∈ Rn be fixed. Since

f∗(p− F (x)) = f∗(p+ 2a) = sup
y∈Rn

[(p+ 2a)T y − f(y)]

= sup
y∈Rn

[(p+ 2a)T y − yT y] =
1
4
(p+ 2a)T (p+ 2a),∀p ∈ Rn,

the gap function for this mixed variational inequality problem for any x ∈ Rn turns
out to be

γP app

F (x) = ‖x‖2 − 2aTx+ inf
p∈Rn

{1
4
(p+ 2a)T (p+ 2a) + δ∗K(−p)

}
.

Let us notice that in order to calculate the gap function γP app

F , one must first solve
the optimization problem with a linear objective function δ∗K(−p) = sup

y∈K
(−p)T y

and afterwards minimize the sum of a quadratic function and δ∗K over the whole
space Rn. This can be a much easier task than minimizing the norm function over
the convex set K.

Let the ground set K be given by (2.1). By using the formulations of the duals
(DL) and (DFL), we can introduce for x ∈ Rn the following functions

γMV I
L (x) : = −v(DMV I

L ;x)

= − sup
q ≥

Rm
+

0
inf

y∈Rn

{
F (x)T (y − x) + f(y)− f(x) + qT g(y)

}

= inf
q ≥

Rm
+

0
sup
y∈Rn

{
F (x)T (x− y)− f(y) + f(x)− qT g(y)

}
= inf

q ≥
Rm
+

0

{
F (x)Tx+ f(x) + sup

y∈Rn

[−F (x)T y − f(y)− qT g(y)]
}

= inf
q ≥

Rm
+

0

{
F (x)Tx+ f(x) + (f + qT g)∗(−F (x))

}
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and, in view of (2.4)

γMV I
FL (x) : = −v(DMV I

FL ;x)

= − sup
p∈Rn

q ≥
Rm
+

0

{
− f∗(p− F (x))− F (x)Tx− f(x)− (qT g)∗(−p)

}

= inf
p∈Rn

q ≥
Rm
+

0

{
f∗(p− F (x)) + F (x)Tx+ f(x) + (qT g)∗(−p)

}
,

respectively.

Theorem 2.2 Assume that the constraint qualification (CQ) (cf. Subsection 1.1.2)
is fulfilled. Then γMV I

L and γMV I
FL are gap functions for the problem (MV I).

Proof:

(i) It is easily verified by weak duality (see the proof of Theorem 2.1(i)).

(ii) As γMV I
L (x) = γMV I

FL (x) = 0, x is a solution to (MV I). Conversely, let
the problem (MV I) be solved by x and the constraint qualification (CQ) be
fulfilled. Then by Theorem 1.3, it holds strong duality. This implies that

γMV I
L (x) = γMV I

FL (x) = −v(DMV I
L ;x) = −v(DMV I

FL ;x) = −v(PMV I ;x) = 0.

�

Remark 2.2 Because of v(PMV I ;x) ≤ 0, where x is fixed, by the strong dual-
ity results in Chapter 1, the dual problems to (PMV I ;x) have optimal solutions.
Consequently, under the assumptions of Theorem 2.1 and Theorem 2.2, one can use
′′ min′′ instead of ′′ inf ′′ for the proposed gap functions.

Example 2.2 Let F ≡ 0. Assume that the ground set is given by (2.1) and the
assumptions of Theorem 2.1 and Theorem 2.2 are fulfilled. The problem (MV I)
reduces to finding an optimal solution x ∈ K to the convex optimization problem

(P c) inf
y∈K

f(y).

The gap functions γMV I
F , γMV I

L and γMV I
FL for x ∈ Rn become

γP c

F (x) = f(x) + inf
p∈Rn

{
f∗(p) + δ∗K(−p)

}
,

γP c

L (x) = f(x) + inf
q ≥

Rm
+

0
(f + qT g)∗(0)

and
γP c

FL(x) = f(x) + inf
p∈Rn

q ≥
Rm
+

0

{
f∗(p) + (qT g)∗(−p)

}
,

respectively. Let us remark that

(Dc
F ) sup

p∈Rn

{
− f∗(p)− δ∗K(−p)

}
,

(Dc
L) sup

q ≥
Rm
+

0

{
− (f + qT g)∗(0)

}
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and
(Dc

FL) sup
p∈Rn

q ≥
Rm
+

0

{
− f∗(p)− (qT g)∗(−p)

}

are the Fenchel, the Lagrange and the Fenchel-Lagrange dual problem to (P c) (cf.
Subsection 1.1.1), respectively. From whence the property (i) in the definition of
a gap function is nothing else than the weak duality between the primal and each
of the dual problems. The second requirement claims that x ∈ K is an optimal
solution to (P c) if and only if γP c

F (x) = γP c

L (x) = γP c

FL(x) = 0, which is nothing else
than

f(x) = sup
p∈Rn

{
− f∗(p)− δ∗K(−p)

}
= sup

q ≥
Rm
+

0
inf

x∈Rn

{
f(x) + qT g(x)

}

= sup
p∈Rn

q ≥
Rm
+

0

{
− f∗(p)− (qT g)∗(−p)

}
.

In other words, it expresses the strong duality assertions between the primal prob-
lem (P c) and the dual problems (Dc

F ), (Dc
L) and (Dc

FL), respectively.

Next let us study the relations between the gap functions for (MV I) introduced
above.

Proposition 2.2 Let the ground set K be given by (2.1). Then it holds

γMV I
L (x)

γMV I
F (x)

≤ γMV I
FL (x), ∀x ∈ Rn.

Proof: Let x ∈ Rn be fixed. According to Propositions 2.1 and 2.2 in [16] (see also
[90]), one has

v(DMV I
FL ;x) ≤

v(DMV I
L ;x)

v(DMV I
F ;x)

,

or, equivalently,
−v(DMV I

L ;x)

−v(DMV I
F ;x)

≤ −v(DMV I
FL ;x).

which leads to the desired conclusion. �

One of the desirable properties of gap functions is the convexity. Under certain
assumptions this property is fulfilled. First we have to introduce the following
definition.

Definition 2.4 A vector-valued function F : Rn → Rn is said to be

(i) monotone if for any points x, y ∈ Rn, we have [F (x)− F (y)]T (x− y) ≥ 0;

(ii) pseudo-monotone if for any points x, y ∈ Rn, we have F (y)T (x − y) ≥ 0
implies

F (x)T (x− y) ≥ 0.

Proposition 2.3 (Convexity of γMV I
F )

Assume that K is a convex set and F : Rn → Rn is an affine and monotone vector-
valued function. Then γMV I

F is convex.
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Proof: Let us verify first that the function

(x, p) 7→ f∗(p− F (x)) + F (x)Tx+ f(x) + δ∗K(−p) (2.5)

is convex with respect to (x, p). As F is affine and monotone and f is convex,
the function (x, p) 7→ F (x)Tx + f(x) is convex. On the other hand, the conjugate
functions f∗ and δ∗K are also convex. F being affine, then (x, p) 7→ p−F (x) is affine.
So (x, p) 7→ f∗(p − F (x)) is convex as it is the composition of a convex function
with an affine one. In conclusion, the function given by (2.5) is convex. Therefore,
by Theorem 1 in [73], γMV I

F is convex. �

Proposition 2.4 (Convexity of γMV I
L and γMV I

FL )
Assume that F : Rn → Rn is an affine and monotone vector-valued function. Then
γMV I

L and γMV I
FL are convex.

Proof: Because of the functions

(f + qT g)∗(−F (x)) = sup
y∈Rn

[−F (x)T y − f(y)− qT g(y)]

and (qT g)∗X(−p) = sup
y∈X

[−pT y − qT g(y)] are convex as the pointwise supremum of

affine functions with respect to (x, q) and (p, q), respectively, the convexity of γMV I
L

and γMV I
FL follows from Theorem 1 in [73]. �

2.1.3 Dual gap functions for the problem (V I)

In this subsection we introduce another class of gap functions for the problem (V I),
the so-called dual gap functions. Before doing this, let us mention the following
lemma which was proved first by Minty for a monotone vector-valued function.

Lemma 2.1 (see [47] and [51]) Let K be a nonempty, closed and convex subset of
Rn. Assume that F : Rn → Rn is a pseudo-monotone and continuous vector-valued
function on K. Then x ∈ K solves the problem (V I) if and only if x ∈ K and

(V I ′) F (y)T (y − x) ≥ 0, ∀y ∈ K.

Whence, under the assumptions of Lemma 2.1, the function γV I′

A : Rn → R defined
by

γV I′

A (x) := sup
y∈K

F (y)T (x− y)

is a gap function for the problem (V I) and it is called the dual gap function for
(V I). Remark that γV I′

A is the gap function for the problem (V I ′) in the sense
of Auslender and has been studied, for instance, in [61] and [97]. Using its duals
(DV I′

F ;x), (DV I′

L ;x) and (DV I′

FL ;x) we can formulate for the optimization problem

(PV I′ ;x) inf
y∈K

F (y)T (y − x),

where x ∈ Rn is fixed, the corresponding functions as follows

γV I′

F (x) : = −v(DV I′

F ;x) = inf
p∈Rn

{
sup
y∈Rn

[pT y + F (y)T (x− y)] + δ∗K(−p)
}
,

γV I′

L (x) : = −v(DV I′

L ;x) = inf
q ≥

Rm
+

0
sup
y∈Rn

{
F (y)T (x− y)− qT g(y)

}
.

γV I′

FL (x) : = −v(DV I′

FL ;x) = inf
p∈Rn

q ≥
Rm
+

0

{
sup
y∈Rn

[pT y + F (y)T (x− y)] + (qT g)∗(−p)
}
.
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In case of the functions γV I′

L and γV I′

FL , K is given by (2.1). Before we show that
the proposed functions are gap functions for the problem (V I), let us prove some
relations between them.

Proposition 2.5 It holds

γV I′

A (x) ≤ γV I′

F (x), ∀x ∈ Rn.

Proof: Let x ∈ Rn be fixed. For any p ∈ Rn it holds

sup
z∈Rn

[pT z − F (z)T (z − x)] ≥ pT y − F (y)T (y − x), ∀y ∈ Rn,

or, equivalently,

sup
z∈Rn

[pT z − F (z)T (z − x)]− pT y ≥ F (y)T (x− y), ∀y ∈ Rn.

Taking the supremum in both sides over all y ∈ K one gets

sup
z∈Rn

[pT z − F (z)T (z − x)] + δ∗K(−p) ≥ sup
y∈K

F (y)T (x− y).

After taking the infimum in the left hand side over all p ∈ Rn we conclude that
γV I′

F (x) ≥ γV I′

A (x), ∀x ∈ Rn. �

Proposition 2.6 Let the ground set be given by (2.1). Then it holds

γV I′

A (x) ≤
γV I′

L (x)

γV I′

F (x)
≤ γV I′

FL (x), ∀x ∈ Rn.

Proof: Like in Proposition 2.2, by Propositions 2.1 and 2.2 in [16] (see also [90]),
one can conclude that

γV I′

L (x)

γV I′

F (x)
≤ γV I′

FL (x), ∀x ∈ Rn.

On the other hand by Proposition 2.5, one has γV I′

A (x) ≤ γV I′

F (x), ∀x ∈ Rn. Let
x ∈ Rn and q ≥

Rm
+

0 be fixed. Because of −qT g(y) ≥ 0,∀y ∈ K, adding F (y)T (x− y)

in both sides, we have

F (y)T (x− y)− qT g(y) ≥ F (y)T (x− y).

Taking the supremum over all y ∈ K, we obtain that

sup
y∈Rn

{F (y)T (x− y)− qT g(y)} ≥ sup
y∈K

{F (y)T (x− y)− qT g(y)} ≥ sup
y∈K

F (y)T (x− y).

After taking the infimum in the left side over all q ≥
Rm

+

0, it follows that γV I′

L (x) ≥

γV I′

A (x), ∀x ∈ Rn. Thus the proof is completed. �

At next we show that under monotonicity assumptions the functions introduced
above can be related also to Auslender’s and Giannessi’s gap functions.

Proposition 2.7 Let F : Rn → Rn be a monotone vector-valued function. Then it
holds

γV I′

A (x) ≤ γV I′

F (x) ≤ γV I
A (x), ∀x ∈ Rn.
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Proof: By Proposition 2.5 there is γV I′

A (x) ≤ γV I′

F (x), ∀x ∈ Rn. Taking into
account the monotonicity of F, it holds

[F (y)− F (x)]T (y − x) ≥ 0, ∀x, y ∈ Rn,

or
F (y)T (y − x) ≥ F (x)T (y − x), ∀x, y ∈ Rn.

Let x ∈ Rn and p ∈ Rn be fixed. Adding −pT y and taking the infimum in both
sides over all y ∈ Rn, we get

inf
y∈Rn

[−pT y + F (y)T (y − x)] ≥ inf
y∈Rn

[−pT y + F (x)T (y − x)],

or, equivalently,

sup
y∈Rn

[pT y − F (y)T (y − x)] ≤ sup
y∈Rn

[pT y − F (x)T (y − x)]. (2.6)

Then, after adding δ∗K(−p) and taking the infimum in both sides over all p ∈ Rn,
we get

inf
p∈Rn

{
sup
y∈Rn

[pT y − F (y)T (y − x)] + δ∗K(−p)
}

= γV I′

F (x)

≤ inf
p∈Rn

{
sup
y∈Rn

[pT y − F (x)T (y − x)] + δ∗K(−p)
}

= γV I
F (x).

In view of Proposition 2.1(i), one has γV I′

F (x) ≤ γV I
A (x), ∀x ∈ Rn. �

Example 2.3 Consider the optimization problem

(P1) min
(x1,x2)T∈B

(x1 + x2),

where B = {(x1, x2)T ∈ R2| x2
1+x

2
2 ≤ 1}. Let F : R2 → R2 be defined by F (y1, y2) =

(1, 1)T . Then x = (x1, x2)T ∈ B is an optimal solution to the optimization problem
(P1) if and only if (x1, x2)T ∈ B is a solution to the variational inequality

F (x)T (y − x) ≥ 0,∀y = (y1, y2)T ∈ B.

Since F is a constant function, one can easy see that Auslender’s gap functions
for (V I) and for (V I ′) are equal having the following formulation for (x1, x2)T ∈ R2

γV I
A (x1, x2) = γV I′

A (x1, x2) = sup
(y1,y2)T∈B

(1, 1)
(
x1 − y1
x2 − y2

)
= x1 + x2 + sup

(y1,y2)T∈B
(−y1 − y2) = x1 + x2 +

√
2.

According to Proposition 2.7, γV I′

F turns out to be

γV I′

F (x1, x2) = x1 + x2 +
√

2, (x1, x2)T ∈ R2.

We also show by direct computation that this is true. Indeed, for (p1, p2)T ∈ R2,
we have

sup
(y1,y2)T∈R2

[
(p1, p2)

(
y1
y2

)
+ F (y1, y2)T

(
x1 − y1
x2 − y2

)]
= sup

(y1,y2)T∈R2
(p1y1 + p2y2 + x1 − y1 + x2 − y2)

= x1 + x2 + sup
(y1,y2)T∈R2

[(p1 − 1)y1 + (p2 − 1)y2]

=
{
x1 + x2, p1 = p2 = 1,
+∞, otherwise,
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from whence

γV I′

F (x1, x2) = inf
p1=1
p2=1

{
x1 + x2 + sup

(y1,y2)T∈B
(−p1y1 − p2y2)

}
= x1 + x2 + sup

(y1,y2)T∈B
(−y1 − y2) = x1 + x2 +

√
2.

Let us prove now that γV I′

F fulfills the properties in the definition of a gap
function. As x1 +x2 ≥ −

√
2, ∀(x1, x2)T ∈ B, relation (i) follows. Assume now that

γV I′

F (x1, x2) = 0, for (x1, x2)T ∈ B. As x1 = −x2 −
√

2, we have from x2
1 + x2

2 ≤ 1
that 2x2

2 + 2
√

2x2 + 1 ≤ 0. This is equivalent to (
√

2x2 + 1)2 ≤ 0 and therefore

x1 = x2 = −
√

2
2 . Since

(
−
√

2
2 ,−

√
2

2

)T

is an optimal solution to (P1), it solves the
variational inequality associated to (P1).

Proposition 2.8 Let F : Rn → Rn be a monotone vector-valued function and the
ground set K be given by (2.1). Then it holds

γV I′

L (x) ≤ γV I′

FL (x) ≤ γV I
G (x), ∀x ∈ Rn.

Proof: By Proposition 2.6 one has

γV I′

L (x) ≤ γV I′

FL (x), ∀x ∈ Rn.

Let x, p ∈ Rn and q ≥
Rm

+

0 be fixed. Since F is monotone, in the same way we can

obtain the relation (2.6). Hence, adding (qT g)∗(−p) and taking the infimum in both
sides over all p ∈ Rn and q ≥

Rm
+

0, it follows that

inf
p∈Rn

q ≥
Rm
+

0

{
sup
y∈Rn

[pT y − F (y)T (y − x)] + (qT g)∗(−p)
}

= γV I′

FL (x)

≤ inf
p∈Rn

q ≥
Rm
+

0

{
sup
y∈Rn

[pT y − F (x)T (y − x)] + (qT g)∗(−p)
}

= γV I
FL(x).

Taking into account Proposition 2.1(ii) we conclude that

γV I′

FL (x) ≤ γV I
G (x), ∀x ∈ Rn.

�

Theorem 2.3 Let K be a nonempty, closed, convex set and F : Rn → Rn be a
monotone and continuous vector-valued function. Then γV I′

F is a gap function for
the problem (V I).

Proof:

(i) Let x ∈ K be fixed. By weak duality it holds

γV I′

F (x) = −v(DV I′

F ;x) ≥ −v(PV I′ ;x) ≥ 0.

(ii) If γV I′

F (x) = 0, then

0 = v(DV I′

F ;x) ≤ v(PV I′ ;x) ≤ 0.

Thus v(PV I′ ;x) = 0 and so x is a solution to (V I ′). By Lemma 2.1, x is
also a solution to (V I). Conversely, let x ∈ K be a solution to the problem
(V I). Then it holds γV I

A (x) = 0. By Proposition 2.7 and according to (i) we
conclude that γV I′

F (x) = 0. �
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Theorem 2.4 Let F : Rn → Rn be a monotone and continuous vector-valued
function. Assume that for the problem (V I) the constraint qualification (CQ) is
fulfilled. Then γV I′

L and γV I′

FL are gap functions for the problem (V I).

Proof:

(i) Let x ∈ K be fixed. By weak duality and in view of Proposition 2.6 it holds

γV I′

FL (x) ≥ γV I′

L (x) = −v(DV I′

L ;x) ≥ −v(PV I′ ;x) ≥ 0.

(ii) To show the second property in the definition of a gap function, we apply the
same way for γV I′

L and γV I′

FL . Therefore verify this only for γV I′

L . As γV I′

L (x) =
0, we get that 0 = v(DV I′

L ;x) ≤ v(PV I′ ;x) ≤ 0. Consequently v(PV I′ ;x) = 0.
In other words, x solves (V I ′). By Lemma 2.1, x is a solution to (V I). Let
x ∈ K be a solution to the problem (V I) and the constraint qualification
(CQ) be fulfilled. Then it holds γV I

G (x) = 0. By Proposition 2.8 and in view
of (i), it follows that γV I′

L (x) = 0. �

Remark 2.3 Since the functions

sup
y∈Rn

{
pT y + F (y)T (x− y)

}
and sup

y∈K

{
F (y)T (x− y)− qT g(y)

}
are convex as the pointwise supremum of affine functions with respect to (p, x) and
(q, x), respectively, by Theorem 1 in [73] one can easily verify the convexity of the
functions γV I′

F , γV I′

L and γV I′

FL .

Example 2.4 Consider the optimization problem

(P2) min
(x1,x2)T∈B

(x2
1 − x2),

where B = {(x1, x2)T ∈ R2| x2
1 + x2

2 ≤ 1}. One can verify that (x1, x2)T ∈ B fulfills

y2
1 − y2 ≥ x2

1 − x2,∀(y1, y2)T ∈ B (2.7)

if and only if it holds

2y2
1 − 2x1y1 ≥ y2 − x2,∀(y1, y2)T ∈ B. (2.8)

By some widely-used inequalities it follows that (2.7) implies (2.8). For the reverse
implication, let (x1, x2)T ∈ B be satisfied (2.8) and consider an arbitrary pair
(y1, y2)T ∈ B. Applying (2.8) for

(
x1+y1

2 , x2+y2
2

)T ∈ B, one gets immediately (2.7).
Let us notice that (2.8) can be equivalently written as

2y1(y1 − x1)− (y2 − x2) ≥ 0,∀(y1, y2)T ∈ B.

Considering F : R2 → R2 defined by F (y1, y2) = (2y1,−1)T , it follows that
x = (x1, x2)T ∈ B is an optimal solution to (P2) if and only if x = (x1, x2)T ∈ B
solves the following variational inequality

F (y)T (y − x) ≥ 0,∀y = (y1, y2)T ∈ B.

As B is a convex and closed set and F is a monotone and continuous mapping, by
Lemma 2.1 this is equivalent to the problem of finding x = (x1, x2)T ∈ B such that

F (x)T (y − x) ≥ 0,∀y = (y1, y2)T ∈ B.
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For (x1, x2)T ∈ R2, Auslender’s gap function turns out to be

γV I
A (x1, x2) = sup

(y1,y2)T∈B
(2x1,−1)

(
x1 − y1
x2 − y2

)
= 2x2

1 − x2 + sup
(y1,y2)T∈B

(−2x1y1 + y2) = 2x2
1 − x2 +

√
4x2

1 + 1.

By Theorem 1.3, all gap functions introduced in Subsection 2.1.1 are equal with
γV I

A . For (x1, x2)T ∈ B, one has γV I
A (x1, x2) ≥ 1− x2 ≥ 0. On the other hand, for

an (x1, x2)T ∈ B with γV I
A (x1, x2) = 0, x2 must be equal to 1 and x1 must be equal

to 0. As (0, 1)T is the optimal solution of the problem (P2), we succeeded to prove
that γV I

A is really a gap function.
Let us try to find out the dual gap functions for the variational inequality prob-

lem associated to (P2). As mentioned before, by Theorem 1.3 for all (x1, x2)T ∈ R2

one has
γV I′

A (x1, x2) = γV I′

F (x1, x2) = γV I′

L (x1, x2) = γV I′

FL (x1, x2).

Let us calculate γV I′

F . By definition, for (x1, x2)T ∈ R2, one has

γV I′

F (x1, x2) =

inf
(p1,p2)T∈R2

[
sup

(y1,y2)T∈R2
(p1y1 + p2y2 − 2y2

1 + 2x1y1 + y2 − x2) + δ∗B(−p1,−p2)

]
.

As

sup
(y1,y2)T∈R2

(p1y1 + p2y2 − 2y2
1 + 2x1y1 + y2) =

{
(p1+2x1)

2

8 , if p2 = −1,
+∞, otherwise,

and
δ∗B(−p1,−p2) =

√
p2
1 + p2

2,

we have

γV I′

F (x1, x2) = −x2 + inf
p∈R

{
(p+ 2x1)2

8
+

√
p2 + 1

}
.

Since for (x1, x2)T ∈ B, one has γV I′

F (x1, x2) ≥ 1 − x2 ≥ 0, property (i) in the
definition of a gap function is fulfilled. On the other hand, if for (x1, x2)T ∈ B,
γV I′

F (x1, x2) = 0, then x2 must be equal to 1 and

inf
p∈R

{
(p+ 2x1)2

8
+

√
p2 + 1

}
= 1.

This can be true if x1 = 0 and then the infimum is attained for p = 0. As (0, 1)T is
the optimal solution to the problem (P2), this proves that γV I′

F is a gap function.

2.1.4 Optimality conditions and generalized variational in-
equalities

This subsection aims to consider some reformulations of the optimality conditions
arising from the conjugate duality, the so-called generalized variational inequalities.
The generalized variational inequality problem is closely related to the inclusion
problem of finding a zero of set-valued mappings. Therefore, various methods as
well as proximal point and splitting algorithms for solving the inclusion problems
can be applied to problems concerning the optimality conditions.
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Let K ⊆ Rn be a nonempty, closed and convex set, F : K ⇒ Rn be a set-valued
mapping. The generalized variational inequality is the problem of finding a point
x ∈ K such that

(GV I) ∃p ∈ F (x), pT (y − x) ≥ 0, ∀y ∈ K.

It is well known that (GV I) is closely related to the inclusion problem of finding a
zero of a set-valued mapping T : Rn ⇒ Rn

(IP ) 0 ∈ T (z), z ∈ Rn.

In the case K = Rn and F ≡ T, (GV I) reduces to (IP ). On the other hand, x ∈ Rn

solves (GV I) if and only if

(IPgvi) 0 ∈ F (x) +NK(x),

where NK is the normal cone operator given by

NK(x) =
{
{z ∈ Rn| zT (y − x) ≤ 0, ∀y ∈ K}, if x ∈ K;
∅, otherwise.

The case concerning the Fenchel dual problem. Let G ⊆ Rn be a
nonempty set and u : Rn → R ∪ {+∞} be a given function. We consider the
optimization problem

(Pu) inf
x∈G

u(x).

One of the dual problems mentioned in Chapter 1 is the Fenchel dual problem as
being

sup
p∈Rn

{
− u∗(p) + inf

x∈G
pTx

}
.

Proposition 2.9 Let G be a convex set and u : Rn → R ∪ {+∞} be a convex
function. Assume that ri(G)∩ri(dom u) 6= ∅. Then x̄ ∈ G is an optimal solution to
(Pu) if and only if it is a solution to the generalized variational inequality problem,
i.e. there exists p̄ ∈ ∂u(x̄) such that

(GV Iu) p̄T (x− x̄) ≥ 0, ∀x ∈ G,

where ∂u(x) is the subdifferential of the function u at x ∈ Rn defined by

∂u(x) = {z ∈ Rn| u(y)− u(x) ≥ zT (y − x), ∀y ∈ Rn}.

Proof: Let x̄ ∈ G be an optimal solution to (Pu). By the assumptions and in view
of Theorem 2.10 (a) in [16], there exists p̄ ∈ Rn such that

u(x̄) + u∗(p̄) = p̄T x̄ and p̄T x̄ = inf
x∈G

p̄Tx,

or, equivalently, p̄ ∈ ∂u(x̄) such that

p̄T (x− x̄) ≥ 0, ∀x ∈ G.

This means that x̄ is a solution to (GV Iu). The converse conclusion can be easily
verified by using Theorem 2.10(b) in [16]. �

Consequently, (GV Iu) reduces to the following inclusion problem of finding x̄ ∈ Rn

such that
(IPu) 0 ∈ ∂u(x̄) +NG(x̄).

It is well known that under maximal monotonicity assumptions of both set-
valued mappings, the so-called splitting algorithm can be applied to (IPu). Such
algorithms can be found as survey in [28, Chapter 3] and in the related papers
[35], [36] and [72]. Let us now recall the definition of maximal monotonicity of a
set-valued mapping and some related results.
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Definition 2.5

(i) A set-valued mapping T : Rn ⇒ Rn is said to be monotone if

(z − z′)T (x− x′) ≥ 0, ∀x, x′ ∈ Rn, z ∈ T (x), z′ ∈ T (x′);

(ii) A set-valued mapping T : Rn ⇒ Rn is said to be maximal monotone if it is
monotone and its graph

G(T ) = {(x, u) ∈ Rn × Rn| u ∈ T (x)}

is not strictly contained in the graph of any other monotone operator.

Proposition 2.10 (see [71]) Let f : Rn → R ∪ {+∞} be a proper, convex, lower
semicontinuous function and G ⊆ Rn be a nonempty closed, convex set. Then set-
valued maps ∂f : Rn ⇒ Rn and NG : Rn ⇒ Rn are maximal monotone.

Let us now consider a further example in connection with variational inequalities.
According to the mixed variational inequality (see Subsection 2.1.2), we can state
the following assertion.

Proposition 2.11 Let ri(K)∩ ri(dom f) 6= ∅ and K be a convex set. Then x̄ ∈ K
is a solution to (MV I) if and only if there exists p̄ ∈ F (x̄) + ∂f(x̄) such that

(GV Imvi) p̄T (y − x̄) ≥ 0, ∀y ∈ K.

Proof: Let x̄ ∈ K be a solution to (GV I). Since inf
y∈K

ϕ(y) = 0 < +∞ (see (2.3)),

by Theorem 2.10 (a) in [16], ∃p̄ ∈ Rn such that

f∗(p̄− F (x̄)) + f(x̄) = p̄T x̄− F (x̄)T x̄ and p̄T x̄ = inf
y∈K

p̄T y.

In other words, x̄ is a solution to (GV Imvi). The converse direction follows from
Theorem 2.10 (b). �

Corollary 2.1 (cf. Theorem 2.1) Let ri(K) ∩ ri(dom f) 6= ∅ and K be a convex
set. Then x̄ ∈ K is a solution to (GV Imvi) if and only if γMV I

F (x̄) = 0.

(GV Imvi) is equivalent to the inclusion problem of finding x̄ ∈ Rn such that

0 ∈ ∂f(x̄) + F (x̄) +NK(x̄).

Proposition 2.12 (see [72]) Let K ⊆ Rn be a nonempty closed convex set and
F : Rn → Rn be a continuous, monotone vector-valued function. Then F +NK is
a maximal monotone operator.

The case concerning the Fenchel-Lagrange dual problem. Let in Sub-
section 1.2.1, the feasible set of the problem (P cps) be given by

W =
{
u = (u0, ..., un)T ∈ Rn+1

∣∣∣ Aiu ∈Wi, i = 1, n
}
.

In this case, the Fenchel-Lagrange dual problem to (P cps) becomes

(Dcps
FL) sup

qi,pi∈Rli ,i=1,n
nP

i=1
AT

i qi=0

{
−

n∑
i=1

F ∗i (pi) +
n∑

i=1

inf
vi∈Wi

(pi + qi)T vi

}
.
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Proposition 2.13 Assume that ∃u′ ∈ Rn+1 such that Aiu
′ ∈ ri(Wi), i = 1, n

(cf. (C̃Q)). Then a vector ū ∈ W is an optimal solution to (P cps) if and only if
∀i ∈ {1, ..., n}, v̄i = Aiū ∈ Rli is a solution to the following generalized variational
inequality problem: ∃p̄i ∈ ∂Fi(v̄i) such that

(GV Ii
cps) (p̄i + q̄i)T (vi − v̄i) ≥ 0, ∀vi ∈Wi,

where
n∑

i=1

AT
i q̄i = 0.

Proof: Let ū ∈ W be an optimal solution to (P cps). Then, by Theorem 1.6(a),
there exists p̄ = (p̄1, ..., p̄n) ∈ Rl1 × · · · × Rln and

q̄ = (q̄1, ..., q̄n) ∈ Rl1 × · · · × Rln ,
n∑

i=1

AT
i q̄i = 0 such that

Fi(v̄i)+F ∗i (p̄i) = p̄T
i v̄i, and (p̄i+q̄i)T v̄i = inf

vi∈Wi

(p̄i+q̄i)T vi, for v̄i = Aiū, i = 1, n.

In other words, v̄i is solution to (GV Ii
cps). In order to show the opposite direction,

we apply Theorem 1.6(b). �

∀i ∈ {1, ..., n}, (GV Ii
cps) leads to the inclusion problem of finding v̄i ∈ Rli such

that
(IP i

cps) 0 ∈ q̄i +NWi(v̄i) + ∂Fi(v̄i),

where q̄i ∈ Rli fulfills
n∑

i=1

AT
i q̄i = 0.

2.2 Gap functions for equilibrium problems

As discussed in Section 2.1, by using the Fenchel duality we can introduce a gap
function for variational inequalities with an arbitrary ground set K. Following this
idea, the approach from the previous section can be applied to more general cases in-
cluding variational inequalities, namely equilibrium problems. Dealing with weaker
sufficient conditions for Fenchel duality regarding convex optimization problems in
the settings of locally convex spaces in [18], we extend the construction of a gap
function from finite-dimensional variational inequalities to equilibrium problems in
topological vector spaces.

2.2.1 Problem formulation and preliminaries

Let X be a real topological vector space and K ⊆ X be a nonempty closed and
convex set. Assume that f : X×X → R∪{+∞} is a bifunction satisfying f(x, x) =
0, ∀x ∈ K. The equilibrium problem consists in finding x ∈ K such that

(EP ) f(x, y) ≥ 0, ∀y ∈ K.

A function γ : X → R is said to be a gap function for (EP ) [63, Definition 2.1] if it
satisfies the properties

(i) γ(y) ≥ 0, ∀y ∈ K;

(ii) γ(x) = 0 and x ∈ K if and only if x is a solution to (EP ).

Some gap functions have been extended from variational inequalities to (EP ). For
instance, so-called regularized gap functions were investigated by Blum and Oettli
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[15]. Such gap functions are summarized in Subsection 2.2.3. Moreover, the natural
extension of the gap function in the sense of Auslender can be written as follows

γEP
A (x) := sup

y∈K
[−f(x, y)].

In this section we aim to apply the Fenchel duality in the settings of locally convex
spaces to the construction of gap functions for equilibrium problems. Before doing
this, let us recall some related definitions and results.

Let X be a real locally convex space and X∗ be its topological dual, the set of all
continuous linear functionals over X endowed with the weak* topology w(X∗, X).
By 〈x∗, x〉 we denote the value of x∗ ∈ X∗ at x ∈ X. For the nonempty set C ⊆ X,
the indicator function δC : X → R ∪ {+∞} is defined by

δC(x) =
{

0, if x ∈ C,
+∞, otherwise,

while the support function is σC(x∗) = sup
x∈C

〈x∗, x〉. Considering now a function

h : X → R ∪ {+∞}, we denote by dom h =
{
x ∈ X| h(x) < +∞

}
its effective

domain and by
epi h =

{
(x, r) ∈ X × R| h(x) ≤ r

}
its epigraph. A function h : X → R ∪ {+∞} is called proper if dom h 6= ∅. The
(Fenchel-Moreau) conjugate function of h is h∗ : X∗ → R ∪ {+∞} defined by

h∗(p) = sup
x∈X

[〈p, x〉 − h(x)].

Definition 2.6 Let the functions hi : X → R ∪ {+∞}, i = 1, ...,m, be given.

(i) The function h1� · · ·�hm : X → R ∪ {±∞} defined by

h1� · · ·�hm(x) = inf
{ m∑

i=1

hi(xi)|
m∑

i=1

xi = x
}

is called the infimal convolution function of h1, ..., hm.

(ii) The infimal convolution h1� · · ·�hm is called to be exact at x ∈ X if there

exist some xi ∈ X, i = 1, ...,m, such that
m∑

i=1

xi = x and

h1� · · ·�hm(x) = h1(x1) + ...+ hm(xm).

Furthermore, we say that h1� · · ·�hm is exact if it is exact at every x ∈ X.

Let ϕ : X → R ∪ {+∞} and ψ : X → R ∪ {+∞} be proper, convex and lower
semicontinuous functions such that dom ϕ∩dom ψ 6= ∅. We consider the following
optimization problem

(P ) inf
x∈X

{
ϕ(x) + ψ(x)

}
.

The Fenchel dual problem to (P ) is

(D) sup
p∈X∗

{
− ϕ∗(−p)− ψ∗(p)

}
.
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In [18] a new weaker regularity condition has been introduced in a more general
case in order to guarantee the existence of strong duality between a convex opti-
mization problem and its Fenchel dual, namely that the optimal objective values
of the primal and the dual are equal and the dual has an optimal solution. This
regularity condition for (P ) can be written as

(FRC) ϕ∗�ψ∗ is lower semicontinuous and

epi (ϕ∗�ψ∗) ∩
(
{0} × R

)
=

(
epi(ϕ∗) + epi(ψ∗)

)
∩

(
{0} × R

)
,

or, equivalently,

(FRC) ϕ∗�ψ∗ is a lower semicontinuous function and exact at 0.

Let us denote by v(P ) the optimal objective value of the optimization problem
(P ). The following theorem states the existence of strong duality between (P ) and
(D).

Proposition 2.14 (see[18]) Let (FRC) be fulfilled. Then v(P ) = v(D) and (D)
has an optimal solution.

Remark that considering the perturbation function Φ : X × X → R ∪ {+∞}
defined by Φ(x, z) = ϕ(x) +ψ(x+ z), one can obtain the Fenchel dual (D). Indeed,
the function Φ fulfills Φ(x, 0) = ϕ(x) + ψ(x), ∀x ∈ X and choosing (D) as being
(cf. [27])

(D) sup
p∈X∗

{
− Φ∗(0, p)

}
,

this problem becomes actually the well-known Fenchel dual problem.

2.2.2 Gap functions based on Fenchel duality

In this subsection we construct gap functions for equilibrium problems by using a
similar approach like the one considered for finite-dimensional variational inequal-
ities in Section 2.1. Here, the Fenchel duality will play an important role. We
assume that X is a real locally convex space and K ⊆ X is a nonempty closed and
convex set. Further, let f : X × X → R ∪ {+∞} be a given function such that
K ×K ⊆ dom f and f(x, x) = 0, ∀x ∈ K. Let x ∈ X be given. Then (EP ) can be
reduced to the optimization problem

(PEP ;x) inf
y∈K

f(x, y).

We mention that x∗ ∈ K is a solution to (EP ) if and only if it is an optimal solution
to (PEP ;x∗). Now let us reformulate (PEP ;x) using the indicator function δK(y)
as

(PEP ;x) inf
y∈X

{
f(x, y) + δK(y)

}
.

Then we can write the Fenchel dual to (PEP ;x) as being

(DEP ;x) sup
p∈X∗

{
− sup

y∈X
[〈p, y〉 − f(x, y)]− δ∗K(−p)

}
= sup

p∈X∗

{
− f∗y (x, p)− δ∗K(−p)

}
,
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where f∗y (x, p) := sup
y∈X

[〈p, y〉 − f(x, y)] is the conjugate of y 7→ f(x, y) for a given

x ∈ X. Let us introduce for any x ∈ X the following function

γEP
F (x) := −v(DEP ;x) = − sup

p∈X∗

{
− f∗y (x, p)− δ∗K(−p)

}
= inf

p∈X∗

{
f∗y (x, p) + σK(−p)

}
.

For (PEP ;x), the regularity condition (FRC) can be written as follows

(FRCEP ;x) f∗y (x, ·)�σK is a lower semicontinuous function and exact at 0.

Theorem 2.5 Assume that ∀x ∈ K the regularity condition (FRCEP ;x) is ful-
filled. Let for each x ∈ K, y 7→ f(x, y) be convex and lower semicontinuous. Then
γEP

F is a gap function for (EP ).

Proof:

(i) By weak duality it holds

v(DEP ;x) ≤ v(PEP ;x) ≤ 0, ∀x ∈ K.

Therefore one has γEP
F (x) = −v(DEP ;x) ≥ 0, ∀x ∈ K.

(ii) If x̄ ∈ K is a solution to (EP ), then v(PEP ; x̄) = 0. On the other hand, by
Proposition 2.14 the strong duality between (PEP ; x̄) and (DEP ; x̄) holds. In
other words

v(DEP ; x̄) = v(PEP ; x̄) = 0.

This means that γEP
F (x̄) = 0. Conversely, let γEP

F (x̄) = 0 for x̄ ∈ K. Then

0 = v(DEP ; x̄) ≤ v(PEP ; x̄) ≤ 0.

Therefore x̄ is a solution to (EP ). �

Remark 2.4 According to Theorem 2.5, under the assumption (FRCEP ;x),
∀x ∈ K the gap function introduced above coincides with γEP

A . The advantage
of considering γEP

F may come when computing it. In order to do this one has to
minimize the sum of the conjugate of a given function, for whose calculation the
well-developed apparatus existent in the field of convex analysis can be helpful, with
the support function of a nonempty closed convex set. On the other hand, in γEP

A

for fixed x ∈ K one has to compute the maximization problem over the set K which
can be a harder work. This aspect is underlined in Example 2.5.

Even if the assumption that (FRCEP ;x) must be fulfilled for all x ∈ K seems
complicate let us notice that it is valid under the natural assumption int K 6= ∅.
For a comprehensive study on regularity conditions for Fenchel duality we refer to
[18].

Example 2.5 Let X = R2, K = {(x1, x2)T ∈ R2| x2
1 +x2

2 ≤ 1} and f : R2×R2 →
R be defined by f(x1, x2, y1, y2) = y2

1 − x2
1 − y2 + x2. Consider the equilibrium

problem of finding (x1, x2)T ∈ K such that

y2
1 − y2 ≥ x2

1 − x2,∀(y1, y2)T ∈ K.

Instead of using γEP
A we determine γEP

F , as the calculations are easier. By definition,
for (x1, x2)T ∈ R2, one has

γEP
F (x1, x2) =
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inf
(p1,p2)T∈R2

[
sup

(y1,y2)T∈R2
(p1y1 + p2y2 − y2

1 + x2
1 + y2 − x2) + δ∗K(−p1,−p2)

]
.

As

sup
(y1,y2)T∈R2

(p1y1 + p2y2 − y2
1 + y2) =

{
p2
1
4 , if p2 = −1,
+∞, otherwise,

and
δ∗K(−p1,−p2) =

√
p2
1 + p2

2,

we have

γEP
F (x1, x2) = x2

1 − x2 + inf
p∈R

{
p2

4
+

√
p2 + 1

}
= x2

1 − x2 + 1.

Since for (x1, x2)T ∈ K, one has γEP
F (x1, x2) ≥ 1 − x2 ≥ 0, property (i) in the

definition of a gap function is fulfilled. On the other hand, if for an (x1, x2)T ∈ K,
γEP

F (x1, x2) = 0, then x2 must be equal to 1 and x1 must be equal to 0. As (0, 1)T

is the only solution to the equilibrium problem considered within this example, γEP
F

is a gap function.
An alternative proof of the fact that γEP

F is a gap function comes from veri-
fying the fulfillment of the hypotheses of Theorem 2.5, which are surely fulfilled.
As int K 6= ∅, the regularity condition (FRCEP ;x) is obviously valid for all x ∈ K.

Example 2.6 Let X = R2, K = {0} × R+ and f : R2 × R2 → R ∪ {+∞},
f = δR2

+×R2
+
. One can see that K ×K ⊆ domf , f(x, x) = 0,∀x ∈ K and that for

all x ∈ K the mapping y 7→ f(x, y) is convex and lower semicontinuous. We show
that although int K 6= ∅ fails, the regularity condition (FRCEP ;x) is fulfilled for
all x ∈ K.

Let x ∈ K be fixed. For all p ∈ R2 we have

f∗y (x, p) = sup
y∈R2

+

pT y = δ−R2
+
(p)

and
σK(p) = sup

y∈{0}×R+

pT y = δR×(−R+)(p).

As f∗y (x, ·)�σK = δR×(−R+), it is obvious that this function is lower semicontinuous
and exact at 0. The regularity condition (FRCEP ;x) is fulfilled for all x ∈ K and
one can apply Theorem 2.5.

Remark 2.5 In the following we stress the connections between the gap function
we have just introduced and convex optimization. Therefore let K ⊆ X be a convex
and closed set and u : X → R∪{+∞} be a convex and lower semicontinuous function
with K ⊆ dom u. We consider the following optimization problem with geometrical
constraints

(Pu) inf
x∈K

u(x).

Take f : X × X → R ∪ {+∞}, f(x, y) = u(y) − u(x) and assume, by convention,
that (+∞)− (+∞) = +∞. For all x ∈ X the gap function γEP

F becomes γEP
F (x) =

inf
p∈X∗

{
u∗(p)+σK(−p)

}
+u(x). Assuming that u∗�σK is lower semicontinuous and

exact at 0, the hypotheses of Theorem 2.5 are fulfilled and, so, γEP
F turns out to

be a gap function for the equilibrium problem which consists in finding x ∈ K such
that

f(x, y) = u(y)− u(x) ≥ 0,∀y ∈ K ⇔ u(y) ≥ u(x),∀y ∈ K.
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Since
(Du) sup

p∈X∗
{−u∗(p)− σK(−p)}

is the Fenchel dual problem to (Pu), we observe that the property (i) in the defini-
tion of a gap function is nothing else than weak duality between these problems. The
second requirement asks x ∈ K to be a solution to (Pu) if and only if γEP

F (x) = 0,
which is nothing else than u(x) = sup

p∈X∗
{−u∗(p)− σK(−p)}.

In the second part of the subsection we assume that dom f = X ×X and under
this assumption we deal with the so-called dual equilibrium problem (cf. [52]) which
is closely related to (EP ) and consists in finding x ∈ K such that

(DEP ) f(y, x) ≤ 0, ∀y ∈ K,

or, equivalently,
(DEP ) − f(y, x) ≥ 0, ∀y ∈ K.

By KEP and KDEP we denote the solution sets of the problems (EP ) and (DEP ),
respectively. In order to suggest another gap function for (EP ) we need some
definitions and results.

Definition 2.7 The bifunction f : X ×X → R is said to be

(i) monotone if, for each pair of points x, y ∈ X, we have

f(x, y) + f(y, x) ≤ 0;

(ii) pseudomonotone if, for each pair of points x, y ∈ X, we have

f(x, y) ≥ 0 implies f(y, x) ≤ 0.

Definition 2.8 Let K ⊆ X and ϕ : X → R. The function ϕ is said to be

(i) quasiconvex on K if, for each pair of points x, y ∈ K and for all α ∈ [0, 1], we
have

ϕ(αx+ (1− α)y) ≤ max
{
ϕ(x), ϕ(y)

}
;

(ii) explicitly quasiconvex on K if it is quasiconvex on K and for each pair of
points x, y ∈ K such that ϕ(x) 6= ϕ(y) and for all α ∈ (0, 1), we have

ϕ(αx+ (1− α)y) < max
{
ϕ(x), ϕ(y)

}
.

(iii) (explicitly) quasiconcave on K if −ϕ is (explicitly) quasiconvex on K.

Definition 2.9 Let K ⊆ X and ϕ : X → R. The function ϕ is said to be u-
hemicontinuous on K if, for all x, y ∈ K and α ∈ [0, 1], the function τ(α) =
ϕ(αx+ (1− α)y) is upper semicontinuous at 0.

Proposition 2.15 (cf. [52, Proposition 2.1])

(i) If f is pseudomonotone, then KEP ⊆ KDEP .

(ii) If f(·, y) is u-hemicontinuous on K for all y ∈ K and f(x, ·) is explicitly
quasiconvex on K for all x ∈ K then KDEP ⊆ KEP .
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By using (DEP ), in the same way as before, we introduce a new gap function
for (EP ). Let x ∈ K be a solution to (DEP ). This is equivalent to that x is an
optimal solution to the optimization problem

(PDEP ;x) inf
y∈K

[−f(y, x)].

Now we consider (PDEP ;x) for all x ∈ X. The corresponding Fenchel dual
problem to (PDEP ;x) is

(DDEP ;x) sup
p∈X∗

{
− sup

y∈X
[〈p, y〉+ f(y, x)]− δ∗K(−p)

}
,

if we rewrite (PDEP ;x) again using δK similarly as done for (PEP ;x). Let us define
the function

γDEP
F (x) : = −v(DDEP ;x)

= − sup
p∈X∗

{
− sup

y∈X
[〈p, y〉+ f(y, x)]− δ∗K(−p)

}
= inf

p∈X∗

{
sup
y∈X

[〈p, y〉+ f(y, x)] + σK(−p)
}
.

Assuming that for all x ∈ K the function y 7→ −f(y, x) is convex and lower-
semicontinuous one can give, in analogy to Theorem 2.5, some weak regularity
conditions such that γDEP

F becomes a gap function for (DEP ). Next result shows
under which conditions γDEP

F becomes a gap function for the equilibrium problem
(EP ).

Proposition 2.16 Assume that f is a monotone bifunction. Then it holds

γDEP
F (x) ≤ γEP

F (x), ∀x ∈ X.

Proof: By the monotonicity of f, we have

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ X,

or, equivalently, f(y, x) ≤ −f(x, y), ∀x, y ∈ X. Let p ∈ X∗ be fixed. Adding 〈p, y〉
and taking the supremum in both sides over all y ∈ X yields

sup
y∈X

[〈p, y〉+ f(y, x)] ≤ sup
y∈X

[〈p, y〉 − f(x, y)].

After adding σK(−p) and taking the infimum in both sides over p ∈ X∗, we conclude
that γDEP

F (x) ≤ γEP
F (x), ∀x ∈ X. �

Theorem 2.6 Let the assumptions of Theorem 2.5, Proposition 2.15(ii) and Propo-
sition 2.16 be fulfilled. Then γDEP

F is a gap function for (EP ).

Proof:

(i) By weak duality it holds

γDEP
F (x) = −v(DDEP ;x) ≥ −v(PDEP ;x) ≥ 0, ∀x ∈ K.

(ii) Let x̄ be a solution to (EP.) By Theorem 2.5, x̄ is solution to (EP ) if and
only if γEP

F (x̄) = 0. In view of (i) and Proposition 2.16, we get

0 ≤ γDEP
F (x̄) ≤ γEP

F (x̄) = 0.

Whence γDEP
F (x̄) = 0. Let now γDEP

F (x̄) = 0. By weak duality it holds

0 = v(DDEP ; x̄) ≤ v(PDEP ; x̄) ≤ 0.

Consequently v(PDEP ; x̄) = 0. That means x̄ ∈ KDEP . Hence, according to
Proposition 2.15(ii), x̄ is a solution to (EP ). �
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2.2.3 Regularized gap functions

The current subsection purposes to summarize some gap functions for (EP ) (see
[14] and [63]) in the same way as in Subsection 2.2.2. Throughout this subsection
we assume that X is a real reflexive Banach space and f is defined on K ×K and
takes real values, fulfilling f(x, x) = 0, ∀x ∈ K. This can be seen as special case
of our general framework, i.e. the situation when domf = K × K. Further, let
h : K ×K → R be a bifunction such that for each x ∈ K, y 7→ h(x, y) is convex,
differentiable and

(a) h(x, y) ≥ 0, ∀x, y ∈ K;

(b) h(x, x) = 0, ∀x ∈ K;

(c) h′y(x, x) = 0, ∀x ∈ K, where h′y means the derivative of h in the sense of
Gâteaux (cf. Definition 2.10) with respect to the second variable.

The gap functions we consider in this section will be defined on the set K. In
order to remain consistent with the definition of the gap function we gave in the
introduction, one may consider the gap function as taking the value +∞ outside
K.

Definition 2.10 A functional g : X → R is said to be differentiable (in the sense
of Gâteaux) at the point x ∈ X if there exists g′(x) ∈ X∗ such that

lim
t→0

g(x+ th)− g(x)
t

= 〈g′(x), h〉

is finite.

Proposition 2.17 [62, cf. Proposition 2.1]
Let f(x, y) be a convex, differentiable bifunction with respect to y and h(x, y) be a
function fulfilling the conditions (a)− (c). Then x̄ is a solution to (EP ) if and only
if it is a solution to the auxiliary equilibrium problem of finding x̄ ∈ K such that

(EPh) f(x̄, y) + h(x̄, y) ≥ 0, ∀y ∈ K.

Proof: Since in [62] has been used the alternative formulation, namely the variables
were exchanged in (EP ), let us show how the proof looks at our case. Indeed, it is
clear that if x̄ is a solution to (EP ), then it is also a solution to (EPh). Let x̄ be a
solution to (EPh). Then x̄ is an optimal solution to the optimization problem

inf
y∈K

[f(x̄, y) + h(x̄, y)]. (2.9)

Since K is convex, x̄ is an optimal solution to (2.9) if and only if

〈f ′y(x̄, x̄) + h′y(x̄, x̄), y − x̄〉 ≥ 0, ∀y ∈ K,

or, equivalently,
〈f ′y(x̄, x̄), y − x̄〉 ≥ 0, ∀y ∈ K.

In view of the convexity of f(x̄, ·) we obtain that

f(x̄, y)− f(x̄, x̄) ≥ 〈f ′y(x̄, x̄), y − x̄〉 ≥ 0, ∀y ∈ K.

This means that f(x̄, y) ≥ 0, ∀y ∈ K. �
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Corollary 2.2 Let f(x, y) be a concave, differentiable bifunction with respect to x.
Then x̄ is a solution to (DEP ) if and only if it is a solution to the dual auxiliary
equilibrium problem of finding x̄ ∈ K such that

(DEPh) − f(y, x̄) + h(x̄, y) ≥ 0, ∀y ∈ K.

Proof: Since −f(x, y) is convex and differentiable with respect to x, choosing
−f(y, x) instead of f(x, y), we can apply Proposition 2.17. �

In [14], Blum and Oettli proposed the following gap function for (EP )

γEP
h (x) := sup

y∈K
[−f(x, y)− h(x, y)],

while instead of (c) was taken the condition

(c̄) h(x, (1− λ)x+ λy) = o(λ), λ ∈ [0, 1].

Gap functions of such type have been investigated also for finite-dimensional vari-
ational inequalities, see for instance in [7], [21] and [99], whose important property
under certain assumptions is the differentiability. Recently, in a finite-dimensional
space, the differentiability of such type of a gap function for (EP ) has been consid-
ered in [63].

Theorem 2.7 Let the assumptions of Proposition 2.17 be fulfilled. Then γEP
h is a

gap function for (EP ).

Proof:

(i) γEP
h (x) = sup

y∈K
[−f(x, y)− h(x, y)] ≥ −f(x, x)− h(x, x) = 0, ∀x ∈ K.

(ii) If x̄ is a solution to (EP ), then by (a) we have

f(x̄, y) + h(x̄, y) ≥ 0, ∀y ∈ K.

Whence γEP
h (x̄) = sup

y∈K
[−f(x̄, y) − h(x̄, y)] ≤ 0. Therefore, by (i), we obtain

γEP
h (x̄) = 0. Let now γEP

h (x̄) = 0. Consequently

f(x̄, y) + h(x̄, y) ≥ 0, ∀y ∈ K.

By Proposition 2.17, this is true if and only if f(x̄, y) ≥ 0, ∀y ∈ K. �

On the other hand, γEP
h is closely related to the function γDEP

h : K → R∪{+∞}
defined by (see [14])

γDEP
h (x) := sup

y∈K
[f(y, x)− h(x, y)].

Proposition 2.18 Let f : K ×K → R be a monotone bifunction. Then it holds

γDEP
h (x) ≤ γEP

h (x), ∀x ∈ K. (2.10)

Proof: By the monotonicity of f, we have

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ K,

or, equivalently,
f(y, x) ≤ −f(x, y), ∀x, y ∈ K.

After adding −h(x, y) and taking the infimum in both sides over y ∈ K, we conclude
that γDEP

h (x) ≤ γEP
h (x), ∀x ∈ K. �
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Theorem 2.8 Let f : K×K → R, (x, y) 7→ f(x, y) be concave with respect to x and
convex with respect to y. Assume that f is a monotone differentiable bifunction and
the assumptions of Proposition 2.15(ii) are fulfilled. Then γDEP

h is a gap function
for (EP ).

Proof:

(i) γDEP
h (x) = sup

y∈K
[f(y, x)− h(x, y)] ≥ f(x, x)− h(x, x) = 0, ∀x ∈ K.

(ii) By Theorem 2.7, x̄ is a solution to (EP ) if and only if γEP
h (x̄) = 0. According

to (2.10) it holds
0 ≤ γDEP

h (x̄) ≤ γEP
h (x̄) = 0.

In other words γDEP
h (x̄) = 0. Let now γDEP

h (x̄) = 0. Then

−f(y, x̄) + h(x̄, y) ≥ 0, ∀y ∈ K.

Taking into account Corollary 2.2 and Proposition 2.15(ii) we conclude that
f(x̄, y) ≥ 0, ∀y ∈ K. �

2.2.4 Applications to variational inequalities

In this subsection we apply the approach proposed in Subsection 2.2.2 to variational
inequalities in a real Banach space. We assume that X is a real Banach space. The
variational inequality problem consists in finding x ∈ K such that

(V I) 〈F (x), y − x〉 ≥ 0, ∀y ∈ K,

where F : K → X∗ is a given mapping and K ⊆ X is a closed and convex set.
Considering f : X ×X → R ∪ {+∞},

f(x, y) =
{
〈F (x), y − x〉, if (x, y) ∈ K ×X,
+∞, otherwise,

the problem (V I) can be seen as a particular case of the equilibrium problem (EP ).
For x ∈ K, (V I) can be rewritten as the optimization problem

(PV I ;x) inf
y∈X

{
〈F (x), y − x〉+ δK(y)

}
,

in the sense that x̄ is a solution to (V I) if and only if it is an optimal solution to
(PV I ; x̄). In view of γEP

F , we introduce the function based on Fenchel duality for
(V I) by

γV I
F (x) = inf

p∈X∗

{
sup
y∈X

[〈p, y〉 − 〈F (x), y − x〉] + σK(−p)
}

= inf
p∈X∗

{
sup
y∈X

〈p− F (x), y〉+ σK(−p)
}

+ 〈F (x), x〉,∀x ∈ K.

From

sup
y∈X

〈p− F (x), y〉 =
{

0, if p = F (x),
+∞, otherwise,

follows that

γV I
F (x) = inf

p=F (x)
sup
y∈K

〈−p, y〉+ 〈F (x), x〉 = sup
y∈K

〈F (x), x− y〉,∀x ∈ K.
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In accordance to the definition of γEP
F in Subsection 2.2.2, we have that for x /∈ K,

γV I
F (x) = −∞.

Let us notice that for all x ∈ K, y 7→ f(x, y) is an affine function, thus continu-
ous. On the other hand, the set epi(f∗y (x, ·))+epi(σK) = {F (x)}×[〈F (x), x〉,+∞)+
epi(σK) is closed for all x ∈ K. This means that for all x ∈ K, f∗y (x, ·)�σK is lower
semicontinuous and exact everywhere in X∗ (cf. [18]). Thus the hypotheses of
Theorem 2.5 are verified and γV I

F turns out to be a gap function for the problem
(V I). γV I

F is actually so-called Auslender’s gap function (see [2] and [8]).

The problem (V I) can be associated to the following variational inequality intro-
duced by Minty which consists in finding x ∈ K such that

(V I ′) 〈F (y), y − x〉 ≥ 0, ∀y ∈ K.

As in Subsection 2.2.2, before we introduce another gap function for (V I), let
us consider some definitions and assertions.

Definition 2.11 A mapping F : K → X∗ is said to be

(i) monotone if, for each pair of points x, y ∈ K, we have

〈F (y)− F (x), y − x〉 ≥ 0;

(ii) pseudo-monotone if, for each pair of points x, y ∈ K, we have

〈F (x), y − x〉 ≥ 0 implies 〈F (y), y − x〉 ≥ 0;

(iii) continuous on finite-dimensional subspaces if for any finite-dimensional sub-
space M of X with K ∩M 6= ∅ the restricted mapping F : K ∩M → X∗ is
continuous from the norm topology of K ∩M to the weak∗ topology of X∗.

Proposition 2.19 (see [95, Lemma 3.1]) Let F : K → X∗ be a pseudo-monotone
mapping which is continuous on finite-dimensional subspaces. Then x ∈ K is a
solution to (V I) if and only if it is a solution to (V I ′).

Minty’s variational inequality (V I ′) is equivalent to the equilibrium problem
which consists in finding x ∈ K such that

−f(y, x) ≥ 0,∀y ∈ K.

As

−f(y, x) =
{
〈F (y), y − x〉, if (x, y) ∈ X ×K,
−∞, otherwise,

using the formula of γDEP
F , we get

γV I′

F (x) := inf
p∈X∗

{
sup
y∈K

[〈p, y〉 − 〈F (y), y − x〉] + σK(−p)
}
.

We can see that γV I′

F is nothing else than the so-called dual gap function for (V I)
which considered in Subsection 2.1.3 in finite-dimensional spaces. In fact, let x ∈ X∗

be fixed. According to the inequality

sup
y∈K

[〈p, y〉 − 〈F (y), y − x〉] ≥ 〈p, z〉 − 〈F (z), z − x〉, ∀z ∈ K,

it is easy to obtain that

sup
y∈K

[〈p, y〉 − 〈F (y), y − x〉] + sup
y∈K

[−〈p, y〉] ≥ sup
y∈K

〈F (y), x− y〉.
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After taking the infimum in the left hand side over all p ∈ X∗ and since the infimum
is attained at 0 ∈ X∗, one has (cf. γV I′

A in Subsection 2.1.3)

γV I′

F (x) = sup
y∈K

〈F (y), x− y〉.

Proposition 2.20 Let F : K → X∗ be a monotone mapping. Then it holds

γV I′

F (x) ≤ γV I
F (x), ∀x ∈ K.

Theorem 2.9 Let F : K → X∗ be a monotone mapping which is continuous on
finite-dimensional subspaces. Then γV I′

F is a gap function for (V I).

Proof:

(i) γDEP
F (x) ≥ 0 implies that γV I′

F (x) ≥ 0, ∀x ∈ K, as this is a special case.

(ii) By the definition of a gap function, x̄ ∈ K is a solution to (V I) if and only if
γV I

F (x̄) = 0. Taking into account (i) and Proposition 2.20, one has

0 ≤ γV I′

F (x̄) ≤ γV I
F (x̄) = 0.

In other words, γV I′

F (x̄) = 0. Let now γV I′

F (x̄) = 0. We can easily see that
x̄ ∈ K is a solution to (V I ′). This follows using an analogous argumentation
as in the proof of Theorem 2.6. Whence, according to Proposition 2.19, x̄
solves (V I). �



Chapter 3

Conjugate duality for vector
optimization with
applications

3.1 Conjugate duality for vector optimization

Among the references dealing with conjugate duality for vector optimization prob-
lems, we mention the papers [81], [82] by Tanino and Sawaragi and the books [42],
[75] as playing an important role in this chapter. Tanino and Sawaragi developed
the conjugate duality for vector optimization by introducing new concepts of con-
jugate maps and set-valued subgradients based on Pareto efficiency. Furthermore,
by using the concept of supremum of a set (cf. [83]) on the basis of weak orderings,
the conjugate duality theory was extended to a partially ordered topological vector
space by Tanino [84] and to set-valued vector optimization problems by Song [78],
respectively.

This chapter begins with recalling the concepts of conjugate maps, set-valued
subgradients and duality results for vector optimization given in [75]. For conve-
nience, we use some notations and definitions from [42]. Afterwards, we propose
dual vector optimization problems having set-valued objective maps, which arise
from different perturbations in analogy to the scalar case in [90]. In addition, dif-
ferent dual problems stated by using conjugate maps with vector variables are also
discussed.

3.1.1 Preliminaries

Let C be a pointed closed and convex cone in Rn. For any ξ, µ ∈ Rn, we use the
following ordering relations:

ξ≤
C
µ ⇔ µ− ξ ∈ C;

ξ ≤
C\{0}

µ ⇔ µ− ξ ∈ C\{0};

ξ �
C\{0}

µ ⇔ µ− ξ /∈ C\{0}.

The notions ≥
C
, ≥

C\{0}
and �

C\{0}
are used in an alternative way.

Definition 3.1 A point y ∈ Rn is said to be a maximal point of a set Y ⊆ Rn if
y ∈ Y and there is no y′ ∈ Y such that y ≤

C\{0}
y′.

49
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The set of all maximal points of Y is called the maximum of Y and is denoted
by max

C\{0}
Y . The minimum of Y is defined analogously. Further we take the cone C

being the nonnegative orthant

Rn
+ =

{
x = (x1, ..., xn)T ∈ Rn| xi ≥ 0, i = 1, n

}
.

Lemma 3.1 [75, cf. Proposition 3.1.3] Let Y1, Y2 ⊆ Rn. Then

(i) max
Rn

+\{0}
(Y1 + Y2) ⊆ max

Rn
+\{0}

Y1 + max
Rn

+\{0}
Y2;

(ii) min
Rn

+\{0}
(Y1 + Y2) ⊆ min

Rn
+\{0}

Y1 + min
Rn

+\{0}
Y2.

Definition 3.2 [42, cf. Definition 8.2.2]

(i) Let Y ⊆ Rn be a given set. The set min
Rn

+\{0}
Y is said to be externally stable if

Y ⊆ min
Rn

+\{0}
Y + Rn

+.

(ii) Similarly, the set max
Rn

+\{0}
Y is said to be externally stable if

Y ⊆ max
Rn

+\{0}
Y − Rn

+.

Lemma 3.2 [75, Lemma 6.1.1] Let F1 : Rn ⇒ Rp and F2 : Rn ⇒ Rp be set-valued
maps and X ⊆ Rn. Then

max
Rp

+\{0}

⋃
x∈X

[
F1(x) + F2(x)

]
⊆ max

Rp
+\{0}

⋃
x∈X

[
F1(x) + max

Rp
+\{0}

F2(x)
]
.

If max
Rp

+\{0}
F2(x) is externally stable for every x ∈ X, then the converse inclusion also

holds.

Corollary 3.1 [75, Corollary 6.1.3] Let F : Rn ⇒ Rp be a set-valued map and
X ⊆ Rn. If max

Rp
+\{0}

F (x) is externally stable for every x ∈ X, then

max
Rp

+\{0}

⋃
x∈X

F (x) = max
Rp

+\{0}

⋃
x∈X

max
Rp

+\{0}
F (x).

Before describing the conjugate duality for vector optimization let us recall the
concepts of conjugate maps and the set-valued subgradient.

Definition 3.3 [42, Definition 8.2.1]
Let h : Rn ⇒ Rp be a set-valued map.

(i) The set-valued map h∗ : Rp×n ⇒ Rp defined by

h∗(U) = max
Rp

+\{0}

⋃
x∈Rn

[
Ux− h(x)

]
, U ∈ Rp×n

is called the conjugate map of h.

(ii) The conjugate map of h∗, h∗∗ is called the biconjugate map of h, i.e.

h∗∗(x) = max
Rp

+\{0}

⋃
U∈Rp×n

[
Ux− h∗(U)

]
, x ∈ Rn.
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(iii) U is said to be a subgradient of the set-valued map h at (x̄; ȳ) if ȳ ∈ h(x̄) and

ȳ − Ux̄ ∈ min
Rp

+\{0}

⋃
x∈Rn

[h(x)− Ux].

The set of all subgradients of h at (x; y) is denoted by ∂h(x; y) and is called
the subdifferential of h at (x; y). If ∂h(x; y) 6= ∅, ∀y ∈ h(x), then h is said to be
subdifferentiable at x.

When ϕ : Rn → Rp is a vector-valued function, then the conjugate map ϕ∗ of
ϕ is defined by

ϕ∗(T ) = max
Rp

+\{0}

{
Tx− ϕ(x)| x ∈ Rn

}
, T ∈ Rp×n.

Let f : Rn → Rp ∪ {+∞} be an extended vector-valued function. Here +∞ is
the imaginary point whose every component is +∞. We consider the following
unconstrained vector optimization problem

(PV O) min
Rp

+\{0}

{
f(x)| x ∈ Rn

}
.

In other words, (PV O) is the problem of finding x̄ ∈ Rn such that

f(x) �
Rp

+\{0}
f(x̄), ∀x ∈ Rn.

Let Φ : Rn × Rm → Rp ∪ {+∞} be another vector-valued function such that

Φ(x, 0) = f(x), ∀x ∈ Rn,

which is the so-called perturbation function. The value function is a set-valued map
Ψ : Rm ⇒ Rp ∪ {+∞} defined by

Ψ(y) = min
Rp

+\{0}

{
Φ(x, y)| x ∈ Rn

}
.

Clearly Ψ(0) = min
Rp

+\{0}
f(Rn) is the minimal frontier of the problem (PV O). The

problem (PV O) can be stated as the primal optimization problem

(PV O) min
Rp

+\{0}

{
Φ(x, 0)| x ∈ Rn

}
.

The conjugate map of Φ, denoted by Φ∗ : Rp×n×Rp×m ⇒ Rp∪{+∞}, is a set-valued
map defined in the usual manner:

Φ∗(U, V ) = max
Rp

+\{0}

{
Ux+ V y − Φ(x, y)| x ∈ Rn, y ∈ Rm

}
.

Then the conjugate dual optimization problem can be defined as being

(DV O) max
Rp

+\{0}

⋃
V ∈Rp×m

[
− Φ∗(0, V )

]
.

Since −Φ∗ is a set-valued map, the problem (DV O) is not an ordinary vector opti-
mization problem. In other words, it can be reformulated as follows.

Find V ∗ ∈ Rp×m such that

−Φ∗(0, V ∗) ∩ max
Rp

+\{0}

⋃
V ∈Rp×m

[
− Φ∗(0, V )

]
6= ∅.
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Theorem 3.1 [75, Proposition 6.1.12] (Weak duality)

Φ(x, 0) /∈ −Φ∗(0, V )− Rp
+\{0}, ∀x ∈ Rn, ∀ V ∈ Rp×m.

Definition 3.4 The primal problem (PV O) is said to be stable with respect to the
perturbation function Φ if the value function Ψ is subdifferentiable at y = 0.

Theorem 3.2 [75, Theorem 6.1.1] (Strong duality)

(i) The primal problem (PV O) is stable with respect to Φ if and only if for each
solution x∗ to the primal problem (PV O) there exists a solution V ∗ to the dual
problem (DV O) such that

Φ(x∗, 0) ∈ −Φ∗(0, V ∗). (3.1)

(ii) Conversely, if x∗ ∈ Rn and V ∗ ∈ Rp×m satisfy (3.1), then x∗ is a solution to
(PV O) and V ∗ is a solution to (DV O).

3.1.2 Perturbation functions and stability

Let f : Rn → Rp, g : Rn → Rm be vector-valued functions and X ⊆ Rn. Consider
the vector optimization problem

(V O) min
Rp

+\{0}

{
f(x)| x ∈ G

}
,

where
G =

{
x ∈ X| g(x) ≤

Rm
+

0
}
.

In analogy to the scalar case, let us introduce now the following perturbation func-
tions (cf. [16], [90])

Φ1 : Rn × Rm → Rp ∪ {+∞}, Φ1(x, u) =

{
f(x), x ∈ X, g(x) ≤

Rm
+

u,

+∞, otherwise;

Φ2 : Rn × Rn → Rp ∪ {+∞}, Φ2(x, v) =
{
f(x+ v), x ∈ G,
+∞, otherwise;

Φ3 : Rn × Rn × Rm → Rp ∪ {+∞},

Φ3(x, v, u) =

{
f(x+ v), x ∈ X, g(x) ≤

Rm
+

u,

+∞, otherwise.

The corresponding value functions are defined by

Ψ1 : Rm ⇒ Rp, Ψ1(u) = min
Rp

+\{0}

{
Φ1(x, u)| x ∈ Rn

}
= min

Rp
+\{0}

{
f(x)| x ∈ X, g(x) ≤

Rm
+

u
}

;

Ψ2 : Rn ⇒ Rp, Ψ2(v) = min
Rp

+\{0}

{
Φ2(x, v)| x ∈ Rn

}
= min

Rp
+\{0}

{
f(x+ v)| x ∈ G

}
;
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and

Ψ3 : Rn × Rm ⇒ Rp, Ψ3(v, u) = min
Rp

+\{0}

{
Φ3(x, v, u)| x ∈ Rn

}
= min

Rp
+\{0}

{
f(x+ v)| x ∈ X, g(x) ≤

Rm
+

u
}
,

respectively. In view of Definition 3.4, the problem (V O) is said to be stable with
respect to the perturbation function Φi, i = 1, 2, 3, if the value function Ψi, i =
1, 2, 3, is subdifferentiable at 0.

Definition 3.5 Let Z ⊆ Rn be a convex set.

(i) The set-valued map G : Rn ⇒ Rp is said to be convex, if for any x1, x2 ∈
Z, x1 6= x2 and ξ ∈ [0, 1], we have

ξG(x1) + (1− ξ)G(x2) ⊆ G(ξx1 + (1− ξ)x2) + Rp
+.

(ii) The set-valued map G : Rn ⇒ Rp is said to be strictly convex, if for any
x1, x2 ∈ Z, x1 6= x2 and ξ ∈ (0, 1), we have

ξG(x1) + (1− ξ)G(x2) ⊆ G(ξx1 + (1− ξ)x2) + int Rp
+.

Lemma 3.3 Let X ⊆ Rn be a convex set and fi, i = 1, p, gj , j = 1,m, be convex
functions. If ∀u ∈ Rm (resp., ∀v ∈ Rn and ∀(v, u) ∈ Rn×Rm) the set Ψ1(u) (resp.,
Ψ2(v) and Ψ3(v, u)) is externally stable, then the value function Ψ1 (resp., Ψ2 and
Ψ3) is convex.

Proof: Let us verify it only for Ψ1. In the same way one can prove the result for
Ψ2 and Ψ3. Let u1, u2 ∈ Rm and λ ∈ [0, 1]. Then

λΨ1(u1) + (1− λ)Ψ1(u2) ⊆ λH1(u1) + (1− λ)H1(u2),

where H1(u) is defined by H1(u) =
{
f(x)| x ∈ X, g(x) ≤

Rm
+

u
}
. By using the con-

vexity and the external stability we have

λH1(u1) + (1− λ)H1(u2) ⊆
{
f(λx+ (1− λ)z)| λx+ (1− λ)z ∈ X,

g(λx+ (1− λ)z) ≤
Rm

+

λu1 + (1− λ)u2

}
+ Rp

+

= H1(λu1 + (1− λ)u2) + Rp
+

⊆ Ψ1(λu1 + (1− λ)u2) + Rp
+.

Consequently, one has

λΨ1(u1) + (1− λ)Ψ1(u2) ⊆ Ψ1(λu1 + (1− λ)u2) + Rp
+.

�

Let us show some stability criteria with respect to the above perturbation func-
tions. Similar results can be found in [82].

Proposition 3.1 (cf. [82]) Let X ⊆ Rn be a convex set and gj , j = 1,m, be convex
functions. Assume that the functions fi, i = 1, p, are strictly convex and ∀u ∈ Rm

the set Ψ1(u) is externally stable. If there exists x0 ∈ X such that g(x0) ≤
int Rm

+

0,

then the problem (V O) is stable with respect to Φ1.
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Proof: We define the set

epi Ψ1 = {(u, z) ∈ Rm × Rp| z ∈ Ψ1(u) + Rp
+}.

In analogy to Lemma 3.3 one can show that Ψ1 is a strictly convex set-valued map.
Whence epi Ψ1 is a convex set. Let the set-valued map H1 : Rm ⇒ Rp be defined
by

H1(u) = {f(x)| x ∈ X, g(x) ≤
Rm

+

u}.

Then it holds
Ψ1(u) + Rp

+ = H1(u) + Rp
+, u ∈ Rm.

The inclusion Ψ1(u) + Rp
+ ⊆ H1(u) + Rp

+ is clear. The converse one follows from
the external stability of the set Ψ1(u), u ∈ Rm. Consequently, we have

epi Ψ1 = {(u, z) ∈ Rm × Rp| z ∈ H1(u) + Rp
+}.

Hence (u, z) ∈ epi Ψ1 if and only if

∃ x ∈ X such that f(x) ≤
Rp

+

z and g(x) ≤
Rm

+

u. (3.2)

By assumption, if ∃ x0 ∈ X such that g(x0) ≤
int Rm

+

0, then ∃ε ∈ int Rm
+ such that

g(x0) ≤
int Rm

+

−ε. By using the notation

]a, b[k:=
k∏

i=1

{xi ∈ R| ai < xi < bi, ai, bi ∈ R}, for a, b ∈ Rk,

which is the extension of an open interval in Rk, we define the set

M :=]− ε, ε[m×]f(x0), f(x0) + δ[p⊆ Rm × Rp,

where ε ∈ int Rm
+ and δ ∈ int Rp

+ are given.
Let (u, z) ∈ M. This means that g(x0) ≤

int Rm
+

−ε ≤
int Rm

+

u and f(x0) ≤
int Rp

+

z. Ac-

cording to (3.2), (u, z) ∈ epi Ψ1. Therefore int(epi Ψ1) 6= ∅.

Let ẑ ∈ Ψ1(0) be fixed. Then ∃x̂ ∈ G such that ẑ = f(x̂) ∈ Ψ1(0) =
min

Rp
+\{0}

{f(x)| x ∈ G}. Let us show that (0, ẑ) is a boundary point of epi Ψ1. In-

deed, it is clear that (0, ẑ) ∈ epi Ψ1. Assume that (0, ẑ) ∈ int(epi Ψ1). Then there
exists a neighborhood U × V of (0, ẑ) such that U × V ⊆ epi Ψ1. In other words,
∃z̄ = ẑ − k, k ∈ int Rp

+ such that z̄ ∈ V and it holds (0, z̄) ∈ epi Ψ1. This
means that z̄ ∈ H1(0) + Rp

+. Therefore ∃x̄ ∈ G such that f(x̄) ≤
Rp

+

z̄. On the other

hand z̄ ≤
int Rp

+

ẑ which leads to a contradiction. Whence (0, ẑ) ∈ epi Ψ1\ int(epi Ψ1).

By a well-known separation theorem, there exists (ξ, µ) ∈ Rm × Rp, (ξ, µ) 6=
(0, 0) such that

ξTu+ µT z ≥ µT ẑ, ∀(u, z) ∈ epi Ψ1.

If z1 ∈ Ψ1(u1)+ Rp
+, then for any z ∈ z1 + int Rp

+ it holds z ∈ Ψ1(u1)+ int Rp
+.

Whence µ ∈ Rp
+. Let µ = 0. Then ξTu ≥ 0, ∀(u, z) ∈ epi Ψ1. Clearly, (m, f(x)) ∈

epi Ψ1, ∀x ∈ G, ∀m ∈ Rm
+ . As ξTm ≥ 0, we have ξ ∈ Rm

+ . If ξ 6= 0, then
ξT g(x) ≥ 0, ∀x ∈ X. But by assumption, for x0 ∈ X it holds ξT g(x0) < 0. In other
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words ξ = 0, which is a contradiction. This means that 0 ≤
Rp

+\{0}
µ. Moreover, one

can assume that µ ∈ Sp :=
{
µ = (µ1, ..., µp)T ∈ Rp| µi ≥ 0, i = 1, p,

p∑
i=1

µi = 1
}
.

Since Ψ1 is strictly convex, we can show that

ξTu+ µT z > µT ẑ, ∀(u, z) ∈ epi Ψ1, u 6= 0. (3.3)

In fact, if this is not fulfilled, ∃(u′, z′) ∈ epi Ψ1, u
′ 6= 0, such that ξTu′+µT z′ = µT ẑ.

As

1
2
z′ +

1
2
ẑ ∈ 1

2
Ψ1(u′) +

1
2
Ψ1(0) + Rp

+ ⊆ Ψ1

(1
2
u′

)
+ int Rp

+ + Rp
+

⊆ Ψ1

(1
2
u′

)
+ int Rp

+,

∃k′ ∈ int Rp
+ such that

1
2
z′ +

1
2
ẑ − k′ ∈ Ψ1

(1
2
u′

)
,

and this implies that
(

1
2u

′, 1
2z

′ + 1
2 ẑ − k′

)
∈ epi Ψ1 and, so,

ξT
(1

2
u′

)
+ µT

(1
2
z′ +

1
2
ẑ
)
− µT k′ ≥ µT ẑ,

or, equivalently,

1
2
µT ẑ +

1
2
µT ẑ − µT k ≥ µT ẑ ⇔ µT k′ ≤ 0.

But, as µT k′ > 0, we get a contradiction. Therefore (3.3) holds.

Let us notice that ∂Ψ1(0; z) 6= ∅ means ∀z ∈ Ψ1(0), ∃Λ ∈ Rp×m such that

z ∈ min
Rp

+\{0}

⋃
u∈Rm

[Ψ1(u)− Λu].

By assumption ẑ ∈ Ψ1(0) and for Λ̂ = [−ξ, ...,−ξ]T ∈ Rp×m we verify that this
relation holds. Let us assume that

ẑ /∈ min
Rp

+\{0}

⋃
u∈Rm

[Ψ1(u) + (ξTu)p],

where (ξTu)p = (ξTu, ..., ξTu)T ∈ Rp. Then ∃ū ∈ Rm, ū 6= 0 and ∃z̄ ∈ Ψ1(ū) such
that

z̄ + (ξT ū)p ≤
Rp

+\{0}
ẑ.

Since µ ∈ Sp, it holds
µT z̄ + ξT ū ≤ µT ẑ.

On the other hand, in view of (3.3) we see that µT z̄ + ξT ū > µT ẑ. This leads to a
contradiction. In other words ∂Ψ1(0; ẑ) 6= ∅. �

Proposition 3.2 Let X ⊆ Rn be a convex set and gj , j = 1,m, be convex func-
tions. Assume that the functions fi, i = 1, p, are strictly convex. If ∀v ∈ Rn the
set Ψ2(v) is externally stable, then the problem (V O) is stable with respect to Φ2.
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Proof: Let H2 : Rn ⇒ Rp be a set-valued map defined by H2(v) = {f(x+ v)| x ∈
G}. Introducing the set

epi Ψ2 = {(v, z) ∈ Rn × Rp| z ∈ Ψ2(v) + Rp
+},

and according to the external stability of Ψ2(v), v ∈ Rn it holds

Ψ2(v) + Rp
+ = H2(v) + Rp

+, v ∈ Rn.

Whence
epi Ψ2 = {(v, z) ∈ Rn × Rp| z ∈ H2(v) + Rp

+}.

Moreover, epi Ψ2 is a convex set. Let us notice that (v, z) ∈ epi Ψ2 means that

∃x ∈ G such that f(x+ v) ≤
Rp

+

z. (3.4)

As f is strictly convex, it is also continuous. Let x0 ∈ G be fixed. Since f is
continuous at x0 ∈ G, for any ε ≥

int Rp
+

0, there exists δ > 0 such that

f(x) ≤
int Rp

+

f(x0) + ε, for any x ∈ Uδ(x0) ⊆ G,

where Uδ(x0) := {x ∈ Rn| ‖x− x0‖ < δ} denotes an open neighborhood of x0. We
define the set

N := (0, δ)× · · · × (0, δ)︸ ︷︷ ︸
n

×]f(x0) + ε, f(x0) + 2ε[p⊆ Rn × Rp.

Let (v, z) ∈ N. Then it holds

f(x0 + v) ≤
int Rp

+

f(x0) + ε ≤
int Rp

+

z.

In view of (3.4), we have (v, z) ∈ epi Ψ2. This means that int(epi Ψ2) 6= ∅.

Let ẑ ∈ Ψ2(0) = min
Rp

+\{0}
{f(x)| x ∈ G} be fixed. Then (0, ẑ) is a boundary point

of epi Ψ2, i.e. (0, ẑ) ∈ epi Ψ2\ int(epi Ψ2).

By a well-known separation theorem, there exists (ξ, µ) ∈ Rn×Rp, (ξ, µ) 6= (0, 0)
such that

ξT v + µT z ≥ µT ẑ, ∀(v, z) ∈ epi Ψ2.

If z1 ∈ Ψ2(v1) + Rp
+, then for any z ∈ z1 + int Rp

+, it holds z ∈ Ψ2(v1) + int Rp
+.

Whence µ ∈ Rp
+. Let µ = 0. Then ξT v ≥ 0, ∀(v, z) ∈ epi Ψ2. Since f is strictly

convex, one has

f
(
x0 +

1
2
(x− x0)

)
= f

(1
2
x+

1
2
x0

)
≤

int Rp
+

1
2
f(x) +

1
2
f(x0), ∀x ∈ G, x 6= x0.

In other words
(

1
2 (x − x0), 1

2 (f(x) + f(x0))
)
∈ epi Ψ2, ∀x ∈ G, x 6= x0. Whence

ξT ( 1
2 (x− x0)) ≥ 0, or, equivalently, ξT (x− x0) ≥ 0, ∀x ∈ G, x 6= x0.

Choosing x̃i ∈ Uδ(x0), i = 1, n, such that x̃j
i =

{
xj

0, j 6= i,
xi

0 + δ
2 , j = i

and x̄i ∈

Uδ(x0), i = 1, n, such that x̄j
i =

{
xj

0, j 6= i,
xi

0 − δ
2 , j = i

, it follows that ξ = 0, which
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is a contradiction. Therefore 0 ≤
Rp

+\{0}
µ and it can be assumed that µ ∈ Sp.

Since Ψ2 is strictly convex, one can show that

ξT v + µT z > µT ẑ, ∀(v, z) ∈ epi Ψ2, v 6= 0. (3.5)

By assumption ẑ ∈ Ψ2(0) and for T̂ = [−ξ, ...,−ξ]T ∈ Rp×n let us now show that
∂Ψ2(0; ẑ) 6= ∅ holds. Assume that

ẑ /∈ min
Rp

+\{0}

⋃
v∈Rn

[Ψ2(v) + (ξT v)p],

where (ξT v)p = (ξT v, ..., ξT v)T ∈ Rp. Then ∃v̄ ∈ Rn, v̄ 6= 0 and ∃z̄ ∈ Ψ2(v̄) such
that

z̄ + (ξT v̄)p ≤
Rp

+\{0}
ẑ.

As µ ∈ Sp, it holds µT z̄+ξT v̄ ≤ µT ẑ. Taking into account (3.5), one has µT z̄+ξT v̄ >
µT ẑ, which leads to a contradiction. �

Proposition 3.3 Let X ⊆ Rn be a convex set and gj , j = 1,m, be convex func-
tions. Assume that the functions fi, i = 1, p, are strictly convex and ∀(v, u) ∈
Rn × Rm the set Ψ3(v, u) is externally stable. If there exists x0 ∈ X such that
g(x0) ≤

int Rm
+

0, then the problem (V O) is stable with respect to Φ3.

Proof: Let H3 : Rn × Rm ⇒ Rp be a set-valued map defined by H3(v, u) =
{f(x+ v)| x ∈ X, g(x) ≤

Rm
+

u}. As usual, the set epi Ψ3 defined by

epi Ψ3 = {(v, u, z) ∈ Rn × Rm × Rp| z ∈ Ψ3(v, u) + Rp
+}

is convex. By the external stability of Ψ3, it holds

Ψ3(u, v) + Rp
+ = H3(u, v) + Rp

+, v ∈ Rn, u ∈ Rm.

Therefore (v, u, z) ∈ epi Ψ3 means that

∃x ∈ X such that f(x+ v) ≤
Rp

+

z and g(x) ≤
Rm

+

u.

Since f is continuous at x0 ∈ X, for any ε ≥
int Rp

+

0, there exists σ > 0 such that

f(x) ≤
int Rp

+

f(x0) + ε, for any x ∈ Uσ(x0) ⊆ X.

On the other hand, as g(x0) ≤
int Rm

+

0 there exists δ ≥
int Rm

+

0 such that g(x0) ≤
int Rm

+

−δ.

Let us define the set

S := (0, σ)× · · · × (0, σ)︸ ︷︷ ︸
n

×]− δ, δ[m×]f(x0) + ε, f(x0) + 2ε[p⊆ Rn × Rm × Rp.

Let (v, u, z) ∈ S. This means that

f(x0 + v) ≤
int Rp

+

f(x0) + ε ≤
int Rp

+

z and g(x0) ≤
int Rm

+

−δ ≤
int Rm

+

u.
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In other words (v, u, z) ∈ epi H3. Consequently, we have int(epi Ψ3) 6= ∅.

Let ẑ ∈ Ψ3(0, 0) = min
Rp

+\{0}
{f(x)| x ∈ G} be fixed. Since a point (0, 0, ẑ) is

a boundary point of epi Ψ3, by a well-known separation theorem, there exists
(ξ1, ξ2, µ) ∈ Rn × Rm × Rp, (ξ1, ξ2, µ) 6= (0, 0, 0) such that

ξT
1 v + ξT

2 u+ µT z ≥ µT ẑ, ∀(v, u, z) ∈ epi Ψ3.

If z1 ∈ Ψ3(v1, u1)+Rp
+, then for any z ∈ z1+int Rp

+, it holds z ∈ Ψ3(v1, u1)+int Rp
+.

Whence µ ∈ Rp
+. Let µ = 0. Then ξT

1 v + ξT
2 u ≥ 0, ∀(v, u, z) ∈ epi Ψ3. Since f is

strictly convex, we have
(

1
2 (x − x0),m, 1

2 (f(x) + f(x0))
)
∈ epi Ψ3, ∀x ∈ G, x 6=

x0, ∀m ∈ Rm
+ . Therefore

ξT
1 (

1
2
(x− x0)) + ξT

2 m ≥ 0, ∀x ∈ G, x 6= x0, ∀m ∈ Rm
+ .

If m = 0, then it returns to the case of Ψ2 (see the proof of Proposition 3.2).
Consequently, ξ1 = 0. Whence, we have ξT

2 m ≥ 0, ∀m ∈ Rm
+ . It returns to the case

of Ψ1 (see the proof of Proposition 3.1). As a consequence, ξ1 = 0, which leads to
a contradiction. Therefore it can be assumed that µ ∈ Sp.
Moreover, since Ψ3 is strictly convex, one can show that

ξT
1 v + ξT

2 u+ µT z > µT ẑ, ∀(v, u, z) ∈ epi Ψ3, (u, v) 6= (0, 0). (3.6)

By assumption ẑ ∈ Ψ3(0) and for T̂ = [−ξ1, ...,−ξ1]T ∈ Rp×n and Λ̂ = [−ξ2, ...,−ξ2]T ∈
Rp×m we verify that ∂Ψ3(0, 0; ẑ) 6= ∅ holds. Indeed, let

ẑ /∈ min
Rp

+\{0}

⋃
(v,u)T∈Rn×Rm

[Ψ3(v, u) + (ξT
1 v)p + (ξT

2 u)p],

where (ξT
1 v)p = (ξT

1 v, ..., ξ
T
1 v)

T ∈ Rp and (ξT
2 u)p = (ξT

2 u, ..., ξ
T
2 u)

T ∈ Rp. Then
∃(v̄, ū)T ∈ Rn × Rm, (ū, v̄) 6= (0, 0) and ∃z̄ ∈ Ψ3(v̄, ū) such that

z̄ + (ξT
1 v̄)p + (ξT

2 ū)p ≤
Rp

+\{0}
ẑ.

Since µ ∈ Sp, it holds
µT z̄ + ξT

1 v̄ + ξT
2 ū ≤ µT ẑ.

This contradicts the fact that µT z̄ + ξT
1 v̄ + ξT

2 ū > µT ẑ (see (3.6)). Consequently,
∂Ψ3(0, 0; ẑ) 6= ∅. �

Later for the applications we have to consider the vector optimization problem
with linear objective function (cf. Section 3.2). Since the objective function is linear
and not strictly convex, we can not apply above stability criteria to this case. But
the following result can be given. Let A ∈ Rp×n. Consider the vector optimization
problem

(PA) min
Rp

+\{0}

{
Ax| x ∈ G

}
.

Before giving a stability criterion for (PA) with respect to Φ2, let us mention the
following trivial properties.

Remark 3.1 Let h : Rn → Rp be a vector-valued function and Y ⊆ Rn. The
following assertions are true:

(i) {h(x)| x ∈ Y } =
⋃

x∈Y

{h(x)}.
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(ii) For any t ∈ Rp it holds {h(x) + t| x ∈ Y } = {h(x)| x ∈ Y }+ t.

(iii) For any set A ⊆ Rp it holds
⋃

x∈Y

{
A+ h(x)

}
= A+

⋃
x∈Y

{h(x)}.

For the problem (PA) we can state the following assertion.

Proposition 3.4 Let the set min
Rp

+\{0}
{Ax| x ∈ G} be externally stable. Then the

problem (PA) is stable with respect to Φ2.

Proof: Let f(x) = Ax, A ∈ Rp×n. Then, in view of Remark 3.1, we have

−Ψ∗
2(T ) = min

Rp
+\{0}

⋃
v∈Rn

[
min

Rp
+\{0}

{Ax+Av| x ∈ G} − Tv
]

= min
Rp

+\{0}

⋃
v∈Rn

[
Av − Tv + min

Rp
+\{0}

{Ax| x ∈ G}
]

= min
Rp

+\{0}

[
{(A− T )v|v ∈ Rn}+ min

Rp
+\{0}

{Ax| x ∈ G}
]
.

Since the set min
Rp

+\{0}
{Ax| x ∈ G} is externally stable, one has (cf. Corollary 3.1)

−Ψ∗
2(A) = min

Rp
+\{0}

min
Rp

+\{0}
{Ax| x ∈ G} = min

Rp
+\{0}

{Ax| x ∈ G}. In other words, ∀z ∈

min
Rp

+\{0}
{Ax| x ∈ G} it holds z ∈ −Ψ∗

2(A). This means that ∂Ψ2(0; z) 6= ∅. �

3.1.3 Dual problems arising from the different perturbations

In this subsection the perturbation functions introduced in Subsection 3.1.2 are
used to developing the duality in vector optimization. As a consequence, we obtain
different dual problems having set-valued objective maps. Like in the scalar case,
let us call them the Lagrange, the Fenchel and the Fenchel-Lagrange dual problem
to (V O), respectively.

Lagrange duality. Let us begin with the first perturbation function Φ1. The
following preliminary result deals with the objective map with respect to Φ1.

Proposition 3.5 Let Λ ∈ Rp×m. Then

(i) Φ∗1(0,Λ) = max
Rp

+\{0}

{
{Λu| u ∈ Rm

+}+ {Λg(x)− f(x)| x ∈ X}
}
.

(ii) If the set max
Rp

+\{0}
{Λu| u ∈ Rm

+} is externally stable, then it holds

Φ∗1(0,Λ) = max
Rp

+\{0}

{
max

Rp
+\{0}

{Λu| u ∈ Rm
+}+ {Λg(x)− f(x)| x ∈ X}

}
.

Proof:

(i) Let Λ ∈ Rp×m. Taking into account Remark 3.1

Φ∗1(0,Λ) = max
Rp

+\{0}

{
Λu− Φ1(x, u)| x ∈ Rn, u ∈ Rm

}
= max

Rp
+\{0}

{
Λu− f(x)| x ∈ X, g(x) ≤

Rm
+

u
}

= max
Rp

+\{0}

⋃
x∈X

{
Λu− f(x)| g(x) ≤

Rm
+

u
}
.
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Setting ū := u− g(x), we have

Φ∗1(0,Λ) = max
Rp

+\{0}

⋃
x∈X

{
Λg(x)− f(x) + Λū| ū ∈ Rm

+

}
= max

Rp
+\{0}

⋃
x∈X

{
Λg(x)− f(x) + {Λū| ū ∈ Rm

+}
}

= max
Rp

+\{0}

{
{Λu| u ∈ Rm

+}+ {Λg(x)− f(x)| x ∈ X}
}
.

(ii) Follows from Lemma 3.2. �

According to Proposition 3.5, we can propose the following dual problem to (V O)

(DV O
L ) max

Rp
+\{0}

⋃
Λ∈Rp×m

[
− Φ∗1(0,Λ)

]
= max

Rp
+\{0}

⋃
Λ∈Rp×m

min
Rp

+\{0}

{
{−Λu| u ∈ Rm

+}+ {f(x)− Λg(x)| x ∈ X}
}
.

This dual problem may be considered as a kind of Lagrange-type dual problem.
Such interpretation appears evident and natural in the context of the following
derivation of the classical Lagrange dual problem to (V O) (cf. [75]).
As applications of Theorem 3.1 and Theorem 3.2 we get weak and strong duality
for V O and (DV O

L ).

Proposition 3.6 (weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Φ∗1(0,Λ),

where Λ ∈ Rp×m.

Proposition 3.7 (Strong duality)

(i) (V O) is stable with respect to Φ1 if and only if for each solution x∗ to (V O)
there exists a solution Λ∗ to (DV O

L ) such that

f(x∗) ∈ −Φ∗1(0,Λ
∗). (3.7)

(ii) Conversely, if x∗ ∈ G and Λ∗ ∈ Rp×m satisfy (3.7), then x∗ is a solution to
(V O) and Λ∗ is a solution to (DV O

L ).

Under the external stability criterion of the set max
Rp

+\{0}
{Λu| u ∈ Rm

+}, for the dual

problem with the objective map defined by Proposition 3.5(ii) we can obtain similar
results.

Before considering the next perturbation function, let us, as announced, explain
how the problem (DV O

L ) turns out to be the classical Lagrange dual problem to
(V O) (cf. [75]) under a certain restriction on the feasible set of the dual. To do
this, we assume that

Λ ∈ L :=
{

Λ ∈ Rp×m| Λu ≥
Rp

+

0, ∀u ∈ Rm
+

}
=

{
Λ ∈ Rp×m| ΛRm

+ ⊆ Rp
+

}
.
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Then we conclude immediately that

min
Rp

+\{0}
{Λu| u ∈ Rm

+} = {0}, ∀Λ ∈ L. (3.8)

Because of Λ ∈ L, by using (3.8), from Lemma 3.1(i) follows

Φ∗1(0,−Λ) = max
Rp

+\{0}

{
{−Λu| u ∈ Rm

+}+ {−Λg(x)− f(x)| x ∈ X}
}

⊆ max
Rp

+\{0}
{−Λu| u ∈ Rm

+}+ max
Rp

+\{0}
{−Λg(x)− f(x)| x ∈ X}

= − min
Rp

+\{0}
{Λu| u ∈ Rm

+}+ max
Rp

+\{0}
{−Λg(x)− f(x)| x ∈ X}

= max
Rp

+\{0}
{−Λg(x)− f(x)| x ∈ X}.

Denoting by Φ̃(Λ) := max
Rp

+\{0}
{−Λg(x)−f(x)| x ∈ X}, in this case we get the classical

Lagrange dual problem to (V O), as follows

(D̃V O
L ) max

Rp
+\{0}

⋃
Λ∈L

[
− Φ̃(Λ)

]
= max

Rp
+\{0}

⋃
Λ∈L

min
Rp

+\{0}
{Λg(x) + f(x)| x ∈ X}.

Proposition 3.8 [75, Theorem 5.2.4] (Weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Φ̃(Λ),

where Λ ∈ L.

Proposition 3.9 [42, Theorem 8.3.3] (see also [75, Theorem 5.2.5(i)])
Let x∗ ∈ G, Λ∗ ∈ L such that f(x∗) ∈ −Φ̃(Λ∗). Then f(x∗) is simultaneously a
minimal point to the primal problem (V O) and a maximal point to the dual problem
(D̃V O

L ).

Fenchel duality. Before stating the next dual problem to (V O), we consider the
following assertion relative to its objective map.

Proposition 3.10 Let T ∈ Rp×n. Then

(i) Φ∗2(0, T ) = max
Rp

+\{0}

{
{Tv − f(v)| v ∈ Rn}+ {−Tx| x ∈ G}

}
.

(ii) If the set f∗(T ) = max
Rp

+\{0}
{Tv−f(v)| v ∈ Rn} is externally stable, then it holds

Φ∗2(0, T ) = max
Rp

+\{0}

{
f∗(T ) + {−Tx| x ∈ G}

}
.

Proof:

(i) Let T ∈ Rp×n. In view of Remark 3.1

Φ∗2(0, T ) = max
Rp

+\{0}
{Tv − Φ2(x, v)| x ∈ Rn, v ∈ Rn}

= max
Rp

+\{0}
{Tv − f(x+ v)| x ∈ G, v ∈ Rn}

= max
Rp

+\{0}

⋃
x∈G

{Tv − f(x+ v)| v ∈ Rn}.
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Denoting v̄ := x+ v, one gets

Φ∗2(0, T ) = max
Rp

+\{0}

⋃
x∈G

{T v̄ − f(v̄)− Tx| v̄ ∈ Rn}

= max
Rp

+\{0}

⋃
x∈G

{
− Tx+ {T v̄ − f(v̄)| v̄ ∈ Rn}

}
= max

Rp
+\{0}

{
{Tv − f(v)| v ∈ Rn}+ {−Tx| x ∈ G}

}
.

(ii) By using Lemma 3.2, we obtain (ii). �

As a consequence we state the following dual problem to (V O) which will be called
the Fenchel dual problem

(DV O
F ) max

Rp
+\{0}

⋃
T∈Rp×n

[
− Φ∗2(0, T )

]
= max

Rp
+\{0}

⋃
T∈Rp×n

min
Rp

+\{0}

{
{f(v)− Tv| v ∈ Rn}+ {Tx| x ∈ G}

}
.

Again as consequences of the general theory we have weak and strong duality as-
sertions.

Proposition 3.11 (weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Φ∗2(0, T )

where T ∈ Rp×n.

Proposition 3.12 (Strong duality)

(i) (V O) is stable with respect to Φ2 if and only if for each solution x∗ to (V O),
there exists a solution T ∗ to (DV O

F ) such that

f(x∗) ∈ −Φ∗2(0, T
∗). (3.9)

(ii) Conversely, if x∗ ∈ G and T ∗ ∈ Rp×n satisfy (3.9), then x∗ is a solution to
(V O) and T ∗ is a solution to (DV O

F ).

As mentioned before, under the external stability of the set f∗(T ) = max
Rp

+\{0}
{Tv −

f(v)| v ∈ Rn}, for the dual problem with the objective map defined by Proposition
3.10(ii) one can also show similar dual assertions.

Fenchel-Lagrange duality. In order to formulate the dual problem to (V O)
dealing with the perturbation function Φ3, one has to find the corresponding dual
objective map.

Proposition 3.13 Let Λ ∈ Rp×m and T ∈ Rp×n. Then

(i) Φ∗3(0, T,Λ) = max
Rp

+\{0}

{ ⋃
u∈Rm

+

{Λu}+
⋃

v∈Rn

{Tv − f(v)}+
⋃

x∈X

{Λg(x)− Tx}
}
.

(ii) If the sets max
Rp

+\{0}
{Λu| u ∈ Rm

+} and f∗(T ) are externally stable, then it holds

Φ∗3(0, T,Λ) = max
Rp

+\{0}

{
max

Rp
+\{0}

⋃
u∈Rm

+

{Λu}+ f∗(T ) +
⋃

x∈X

{Λg(x)− Tx}
}
.



3.1 Conjugate duality for vector optimization 63

Proof:

(i) Let T ∈ Rp×n and Λ ∈ Rp×m. By applying Remark 3.1

Φ∗3(0, T,Λ) = max
Rp

+\{0}

{
Tv + Λu− Φ3(x, v, u)| x ∈ Rn, v ∈ Rn, u ∈ Rm

}
= max

Rp
+\{0}

{
Tv + Λu− f(x+ v)| x ∈ X, v ∈ Rn, g(x) ≤

Rm
+

u
}

= max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{
Tv + Λu− f(x+ v)| g(x) ≤

Rm
+

u
}
.

Putting ū := u− g(x), one has

Φ∗3(0, T,Λ) = max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{Tv + Λg(x) + Λū− f(x+ v)| ū ∈ Rm
+}

= max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{
Tv + Λg(x)− f(x+ v)

+ {Λū| ū ∈ Rm
+}

}
= max

Rp
+\{0}

⋃
x∈X

{
Λg(x) + {Λu| u ∈ Rm

+}

+ {Tv − f(x+ v)| v ∈ Rn}
}
.

Setting v̄ := x+ v, we obtain that

Φ∗3(0, T,Λ) = max
Rp

+\{0}

⋃
x∈X

{
Λg(x) + {Λu| u ∈ Rm

+}

+ {T v̄ − Tx− f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

⋃
x∈X

{
Λg(x)− Tx+ {Λu| u ∈ Rm

+}

+ {T v̄ − f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

{
{Λu| u ∈ Rm

+}

+ {Tv − f(v)| v ∈ Rn}+ {Λg(x)− Tx| x ∈ X}
}
.

(ii) By Lemma 3.2, we can easy verify (ii). �

Consequently, we can obtain the following so-called Fenchel-Lagrange dual problem
to (V O)

(DV O
FL ) max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×Rp×m

[
− Φ∗3(0, T,Λ)

]
= max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×Rp×m

min
Rp

+\{0}

{
{f(v)− Tv| v ∈ Rn}

+ {−Λu| u ∈ Rm
+}+ {Tx− Λg(x)| x ∈ X}

}
.

Proposition 3.14 (weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ X, ∀ξ ∈ Φ∗3(0, T,Λ),

where T ∈ Rp×n and Λ ∈ Rp×m.
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Proposition 3.15 (Strong duality)

(i) (V O) is stable with respect to Φ3 if and only if for each solution x∗ to (V O)
there exists a solution (T ∗,Λ∗) to (DV O

FL ) such that

f(x∗) ∈ −Φ∗3(0, T
∗,Λ∗). (3.10)

(ii) Conversely, if x∗ ∈ X and (T ∗,Λ∗) ∈ Rp×n ×Rp×m satisfy (3.10), then x∗ is
a solution to (V O) and (T ∗,Λ∗) is a solution to (DV O

FL ).

Similarly as for (D̃V O
L ), under the same restriction on Λ, we can introduce another

dual problem. Indeed, let us suppose that Λ ∈ L. Then, according to Lemma 3.1(i)
and (3.8), it holds

Φ∗3(0, T,−Λ) = max
Rp

+\{0}

{ ⋃
u∈Rm

+

{−Λu}+
⋃

v∈Rn

{Tv − f(v)}

+
⋃

x∈X

{−Λg(x)− Tx}
}

⊆ max
Rp

+\{0}

⋃
u∈Rm

+

{−Λu}

+ max
Rp

+\{0}

{ ⋃
v∈Rn

{Tv − f(v)}+
⋃

x∈X

{−Λg(x)− Tx}
}

= max
Rp

+\{0}

{ ⋃
v∈Rn

{Tv − f(v)}+
⋃

x∈X

{−Λg(x)− Tx}
}
.

Let us denote by Ψ̃(T,Λ) := max
Rp

+\{0}

{ ⋃
v∈Rn

{Tv − f(v)} +
⋃

x∈X

{−Λg(x) − Tx}
}
. If

the set f∗(T ) is externally stable, then Ψ̃(T,Λ) can be rewritten as

Ψ̃(T,Λ) = max
Rp

+\{0}

{
f∗(T ) +

⋃
x∈X

{−Λg(x)− Tx}
}
.

The proposed map allows us to suggest the dual problem

(D̃V O
FL ) max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×L

[
− Ψ̃(T,Λ)

]
= max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×L

min
Rp

+\{0}

{ ⋃
v∈Rn

{f(v)− Tv}+
⋃

x∈X

{Tx+ Λg(x)}
}
.

Proposition 3.16 (weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Ψ̃(T,Λ),

where T ∈ Rp×n and Λ ∈ L.

Proof: Let (T,Λ) ∈ Rp×n × L be fixed and ξ ∈ Ψ̃(T,Λ). In other words

ξ �
Rp

+\{0}
Tv − f(v) + (−Λg(x)− Tx), ∀v ∈ Rn, ∀x ∈ X.

Choosing v = x := x̄ ∈ G, we obtain that

f(x̄) + ξ �
Rp

+\{0}
−Λg(x̄).
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On the other hand, since Λ ∈ L, x̄ ∈ G it holds −Λg(x̄) ≥
Rp

+

0. Consequently, one has

f(x) + ξ �
Rp

+\{0}
0. �

Proposition 3.17 Let x∗ ∈ G, (T ∗,Λ∗) ∈ Rp×n×L such that f(x∗) ∈ −Ψ̃(T ∗,Λ∗).
Then f(x∗) is simultaneously a minimal point to the primal problem (V O) and a
maximal point to the dual problem (D̃V O

FL ).

Proof: Let x∗ ∈ G, (T ∗,Λ∗) ∈ Rp×n × L and f(x∗) ∈ −Ψ̃(T ∗,Λ∗). The latter
means

f(x∗) ∈ min
Rp

+\{0}

{ ⋃
v∈Rn

{f(v)− T ∗v}+
⋃

x∈X

{T ∗x+ Λ∗g(x)}
}
. (3.11)

If f(x∗) is not a minimal point to the primal problem (V O), then there exists x ∈ G
such that

f(x) ≤
Rp

+\{0}
f(x∗).

As mentioned before, it holds Λ∗ ∈ L, x ∈ G implies Λ∗g(x) ≤
Rp

+

0. Consequently, we

have f(x) + Λ∗g(x) ≤
Rp

+\{0}
f(x∗), or, equivalently,

f(x)− T ∗x+ T ∗x+ Λ∗g(x) ≤
Rp

+\{0}
f(x∗).

But

f(x)− T ∗x+ T ∗x+ Λ∗g(x) ∈
⋃

v∈Rn

{f(v)− T ∗v}+
⋃

x∈X

{T ∗x+ Λ∗g(x)},

which is a contradiction to (3.11). Therefore f(x∗) is a minimal point to the problem
(V O). Moreover, if f(x∗) is not a solution to (D̃V O

FL ), then ∃ỹ ∈
⋃

(T,Λ)∈Rp×n×L

[
−

Ψ̃(T,Λ)
]

such that f(x∗) ≤
Rp

+\{0}
ỹ. Let (T̃ , Λ̃) ∈ Rp×n × L such that ỹ ∈ −Ψ̃(T̃ , Λ̃).

From Λ̃g(x∗) ≤
Rp

+

0 follows

ỹ ≥
Rp

+\{0}
f(x∗) + Λ̃g(x∗) = f(x∗)− T̃ x∗ + T̃ x∗ + Λ̃g(x∗),

which contradicts the fact that ỹ ∈ −Ψ̃(T̃ , Λ̃) in the same way as before. Accord-
ingly, f(x∗) is a solution to (D̃V O

FL ). �

3.1.4 Duality via conjugate maps with vector variables

This subsection aims to investigate some special cases of dual problems based on al-
ternative definitions of the conjugate maps and the subgradient for a set-valued map
having vector variables. In Definition 3.3, if we choose U := [t, ..., t]T ∈ Rp×n for
t ∈ Rn, as a variable of the conjugate map, then this reduces to the definition used
in this subsection. Remark that duality results for vector optimization developed by
Tanino and Sawaragi (see [75] and [82]) are essentially not distinguishable in both
cases. Let us recall first definitions of the conjugate maps with vector variables (cf.
Definition 3.3).
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Definition 3.6 [42, Definition 7.2.3] (the type II Fenchel transform)
Let h : Rn ⇒ Rp be a set-valued map.

(i) The set-valued map h∗ : Rn ⇒ Rp defined by

h∗p(λ) = max
Rp

+\{0}

⋃
x∈Rn

[
(λTx)p − h(x)

]
, λ ∈ Rn

is called the (type II) conjugate map of h;

(ii) The conjugate map of h∗p, h∗∗p is called the biconjugate map of h, i.e.

h∗∗p (x) = max
Rp

+\{0}

⋃
λ∈Rn

[
(λTx)p − h∗p(λ)

]
, x ∈ Rn;

(iii) λ ∈ Rn is said to be a subgradient of the set-valued map h at (x̄; ȳ) if ȳ ∈ h(x̄)
and

ȳ − (λT x̄)p ∈ min
Rp

+\{0}

⋃
x∈Rn

[h(x)− (λTx)p],

where (λTx)p = (λTx, . . . , λTx)T ∈ Rp.

Like in Subsection 3.1.3, let f : Rn → Rp, g : Rn → Rm be vector-valued functions
and X ⊆ Rn. Consider the vector optimization problem (V O). Based on the pertur-
bation functions introduced in Subsection 3.1.3, let us suggest some dual problems
having vector variables. For convenience, in this subsection we use the following
notations.

ϕ1 : Rn × Rm → Rp ∪ {+∞}, ϕ1(x, u) =

{
f(x), x ∈ X, g(x) ≤

Rm
+

u,

+∞, otherwise;

ϕ2 : Rn × Rn → Rp ∪ {+∞}, ϕ2(x, v) =
{
f(x+ v), x ∈ G,
+∞, otherwise;

ϕ3 : Rn × Rn × Rm → Rp ∪ {+∞},

ϕ3(x, v, u) =

{
f(x+ v), x ∈ X, g(x) ≤

Rm
+

u,

+∞, otherwise.

Let us notice that throughout this subsection instead of ϕ∗ip, i = 1, 2, 3 we write
ϕ∗i , i = 1, 2, 3.

Lagrange duality. By using a dual objective map having vector variable with
respect to ϕ1, the Lagrange dual problem to (V O) was introduced in [81] (see also
[75]). Let us now explain how one can obtain this dual. Such analysis is usable for
further calculations.

Lemma 3.4 Let λ ∈ Rm. Then

min
Rp

+\{0}
{(λTx)p| x ∈ Rm

+} =

{ {0}, if λ ≥
Rm

+

0;

∅, otherwise,

where (λTx)p = (λTx, . . . , λTx)T ∈ Rp.

Proof: Let z ∈ min
Rp

+\{0}
{(λTx)p| x ∈ Rm

+}. Then ∃x̄ ∈ Rm
+ such that z = (λT x̄)p and

it holds
(λT x̄)p �

Rp
+\{0}

(λTx)p, ∀x ∈ Rm
+ ,
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or, equivalently,
λT x̄ ≤ λTx, ∀x ∈ Rm

+ .

In other words, it holds λT x̄ = min
x∈Rm

+

λTx. Since inf
x∈Rm

+

λTx =

{
0, if λ ≥

Rm
+

0;

−∞, otherwise,
we obtain the conclusion. �

Proposition 3.18 Let λ ∈ Rm. Then

ϕ∗1(0, λ) =

 max
Rp

+\{0}

{
(λT g(x))p − f(x)| x ∈ X

}
, if λ ≤

Rm
+

0;

∅, otherwise.

Proof: Let λ ∈ Rm. Then by definition

ϕ∗1(0, λ) = max
Rp

+\{0}

{
(λTu)p − ϕ1(x, u)| x ∈ Rn, u ∈ Rm

}
= max

Rp
+\{0}

{
(λTu)p − f(x)| x ∈ X, g(x) ≤

Rm
+

u
}
.

Setting ū := u− g(x), we have

ϕ∗1(0, λ) = max
Rp

+\{0}

{
(λT g(x))p + (λT ū)p − f(x)| x ∈ X, ū ∈ Rm

+

}
= max

Rp
+\{0}

{
{(λT g(x))p − f(x)| x ∈ X}+ {(λT ū)p| ū ∈ Rm

+}
}
.

In view of Lemma 3.1(i) and Lemma 3.4, one has

ϕ∗1(0, λ) ⊆ max
Rp

+\{0}
{(λT g(x))p − f(x)| x ∈ X}+ max

Rp
+\{0}

{(λTu)p| u ∈ Rm
+}

= max
Rp

+\{0}
{(λT g(x))p − f(x)| x ∈ X} − min

Rp
+\{0}

{(−λTu)p| u ∈ Rm
+}

=

{
max

Rp
+\{0}

{(λT g(x))p − f(x)| x ∈ X}, if λ ≤
Rm

+

0;

∅, otherwise.

It remains to show for λ ≤
Rm

+

0 that

max
Rp

+\{0}
{(λT g(x))p − f(x)| x ∈ X} ⊆ ϕ∗1(0, λ).

Let ȳ ∈ max
Rp

+\{0}
{(λT g(x))p−f(x)| x ∈ X}. This means ȳ ∈ {(λT g(x))p−f(x)| x ∈ X}

and
ȳ �

Rp
+\{0}

(λT g(x))p − f(x), ∀x ∈ X. (3.12)

Choosing ū = 0, we can verify that

ȳ = ȳ + (λT ū)p ∈
{
{(λT g(x))p − f(x)| x ∈ X}+ {(λTu)p| u ∈ Rm

+}
}
.

On the other hand, since (λTu)p ≤
Rp

+

0, ∀u ∈ Rm
+ , one has ȳ ≥

Rp
+

ȳ + (λTu)p and by

(3.12) it holds

ȳ + (λTu)p �
Rp

+\{0}
(λT g(x))p − f(x) + (λTu)p, ∀x ∈ X, ∀u ∈ Rm

+ .
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Consequently, we obtain that

ȳ �
Rp

+\{0}
(λT g(x))p − f(x) + (λTu)p, ∀x ∈ X, ∀u ∈ Rm

+ .

In other words ȳ ∈ ϕ∗1(0, λ). �

In this case the dual problem to (V O) can be written as

(D̂V O
L ) max

Rp
+\{0}

⋃
λ∈Rm

[
− ϕ∗1(0, λ)

]
= max

Rp
+\{0}

⋃
λ ≤

Rm
+

0

min
Rp

+\{0}
{f(x)− (λT g(x))p| x ∈ X}

= max
Rp

+\{0}

⋃
λ ≥

Rm
+

0

min
Rp

+\{0}
{f(x) + (λT g(x))p| x ∈ X}.

Proposition 3.19 [75, Theorem 6.1.4]

(i) The problem (V O) is stable with respect to ϕ1 if and only if for each solution
x̄ to (V O), there exists a solution λ̄ ∈ Rm with λ̄ ≥

Rm
+

0 to the dual problem

(D̂V O
L ) such that

f(x̄) ∈ min
Rp

+\{0}
{f(x) + (λ̄T g(x))p| x ∈ X}

and λ̄T g(x̄) = 0.

(ii) Conversely, if x̄ ∈ G and λ̄ ∈ Rm with λ̄ ≥
Rm

+

0 satisfy the above conditions,

then x̄ and λ̄ are solutions to (V O) and (D̂V O
L ), respectively.

Remark 3.2 Let p = 1 and the assumptions of Theorem 1.3 (see Section 1.1)
be fulfilled. Then Proposition 3.19 coincides with the optimality conditions (cf.
Theorem 2.9 in [16]) for the Lagrange dual problem in scalar optimization.

Example 3.1 Consider the vector optimization problem

(V O1) min
R2

+\{0}
{(x1, x2)| 0 ≤ xi ≤ 1, xi ∈ R, i = 1, 2}.

Let us construct the Lagrange dual problem to (V O1). Before doing this, in view
of (D̂V O

L ), for λ ≥
Rm

+

0, one has to calculate

min
Rp

+\{0}
{f(x) + (λT g(x))p| x ∈ X}.

Let λ = (λ1, λ2, λ3, λ4)T ∈ R4 and the function g : R2 → R4 be defined by g(x) =
(−x1, x1 − 1,−x2, x2 − 1)T . In other words, we have

min
R2

+\{0}

{ (
x1 − λ1x1 + λ2(x1 − 1)− λ3x2 + λ4(x2 − 1)
x2 − λ1x1 + λ2(x1 − 1)− λ3x2 + λ4(x2 − 1)

) ∣∣∣ (x1, x2)T ∈ R2

}
,

or, equivalently,

min
R2

+\{0}

{ (
(λ2 − λ1 + 1)x1 + (λ4 − λ3)x2

(λ2 − λ1)x1 + (λ4 − λ3 + 1)x2

) ∣∣∣ (x1, x2)T ∈ R2

}
−

(
λ2 + λ4

λ2 + λ4

)
.
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Let

B1 =
(
λ2 − λ1 + 1 λ4 − λ3

λ2 − λ1 λ4 − λ3 + 1

)
.

Taking into account Theorem 11.20 in [50], if ∃µ ∈ int R2
+ such that (see also

Lemma 3.6 in Subsection 3.2.2)

µTB1 = 0T , (3.13)

then min
R2

+\{0}
{B1x| x ∈ R2} = {B1x| x ∈ R2}. If (3.13) is not fulfilled, it follows that

min
R2

+\{0}
{B1x| x ∈ R2} = ∅. Moreover, from (3.13) follows

{
(λ2 − λ1 + 1)µ1 + (λ2 − λ1)µ2 = 0
(λ4 − λ3)µ1 + (λ4 − λ3 + 1)µ2 = 0.

Consequently, we have

λ1 = λ2 +
µ1

µ1 + µ2
, λ3 = λ4 +

µ2

µ1 + µ2
.

Let us define the set

L1 :=
{
λ ∈ R4| ∃µ ∈ int R2

+ such that λ1 = λ2 +
µ1

µ1 + µ2
, λ3 = λ4 +

µ2

µ1 + µ2

}
.

In conclusion, we obtain the Lagrange dual problem (D̂V O1
L ) as follows.

max
R2

+\{0}

⋃
λ ≥

R4
+

0

λ∈L1

{(
(λ2 − λ1 + 1)x1 + (λ4 − λ3)x2

(λ2 − λ1)x1 + (λ4 − λ3 + 1)x2

)
−

(
λ2 + λ4

λ2 + λ4

) ∣∣∣ (x1, x2)T ∈ R2

}
.

Let x̄ = (0, 0)T ∈ R2 and λ̄ = (λ̄1, λ̄2, λ̄3, λ̄4)T ∈ L1 be vectors such that λ̄ ≥
R4

+

0 and

λ̄T g(x̄) = 0. Then, from λ̄T g(x̄) = 0 follows λ̄2 + λ̄4 = 0. As λ̄2, λ̄4 ≥ 0, this implies
that λ̄2 = λ̄4 = 0. Moreover, as λ̄ ∈ L1, it holds λ̄1 = µ1

µ1+µ2
, λ̄3 = µ2

µ1+µ2
. In other

words, λ̄1 = α := µ1
µ1+µ2

, λ̄3 = 1−α, 0 < α < 1. On the other hand, it is clear that

f(x̄) = (0, 0)T ∈ min
R2

+\{0}
{f(x) + (λ̄λT g(x))2| x ∈ R2}

=
{ ( µ2

µ1+µ2
(x1 − x2)

µ1
µ1+µ2

(x2 − x1)

) ∣∣∣ (x1, x2)T ∈ R2

}
=

{ (
(α− 1)y
αy

) ∣∣∣ y ∈ R
}
, 0 < α < 1.

According to Proposition 3.19(ii), x̄ = (0, 0)T and λ̄ = (α, 0, 1− α, 0)T , 0 < α < 1
are solutions to (V O1) and (D̂V O1

L ), respectively.

Fenchel duality. Before considering the dual problem, we need the following
assertion.

Lemma 3.5 Let t ∈ Rn and Y ⊆ Rn. If the set max
Rp

+\{0}
{(tTx)p| x ∈ Y } 6= ∅, then

max
Rp

+\{0}
{(tTx)p| x ∈ Y } = {(max

x∈Y
tTx)p}.
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Proof: Let t ∈ Rn. By assumption, there exists x̄ ∈ Y such that

(tT x̄)p �
Rp

+\{0}
(tTx)p, ∀x ∈ Y,

or, equivalently,
tT x̄ ≥ tTx, ∀x ∈ Y.

Therefore tT x̄ = max
x∈Y

tTx. �

Proposition 3.20 Let t ∈ Rn. Then

ϕ∗2(0, t) =

{
f∗p (t)− (min

x∈G
tTx)p, if max

Rp
+\{0}

{(−tTx)p| x ∈ G} 6= ∅,

∅, otherwise.

Proof: Let t ∈ Rn. By definition

ϕ∗2(0, t) = max
Rp

+\{0}

{
(tT v)p − ϕ2(x, v)| x ∈ Rn, v ∈ Rn

}
= max

Rp
+\{0}

{
(tT v)p − f(x+ t)| x ∈ G, v ∈ Rn

}
.

Substituting v̄ := x+ v, we get

ϕ∗2(0, t) = max
Rp

+\{0}

{
(tT v̄)p − (tTx)p − f(v̄)| x ∈ G, v̄ ∈ Rn

}
= max

Rp
+\{0}

{
{(tT v̄)p − f(v̄)| v̄ ∈ Rn}+ {(−tTx)p| x ∈ G}

}
.

According to Lemma 3.1(i), it follows that

ϕ∗2(0, t) ⊆ max
Rp

+\{0}
{(tT v)p − f(v)| v ∈ Rn}+ max

Rp
+\{0}

{(−tTx)p| x ∈ G}.

It is clear that unless max
Rp

+\{0}
{(−tTx)p| x ∈ G} 6= ∅, ϕ∗2(0, t) = ∅.

Since max
Rp

+\{0}
{(−tTx)p| x ∈ G} 6= ∅, by Lemma 3.5 it holds

max
Rp

+\{0}
{(−tTx)p| x ∈ G} = {(−min

x∈G
tTx)p}.

In other words

ϕ∗2(0, t) ⊆ max
Rp

+\{0}
{(tT v)p − f(v)| v ∈ Rn} − (min

x∈G
tTx)p

= f∗p (t)− (min
x∈G

tTx)p.

Let now ȳ ∈ f∗p (t)− (min
x∈G

tTx)p. Then

ȳ ∈ max
Rp

+\{0}

{
{(tT v)p − f(v)| v ∈ Rn} − (min

x∈G
tTx)p

}
.

This means that

ȳ �
Rp

+\{0}
(tT v)p − f(v)− (min

x∈G
tTx)p, ∀v ∈ Rn.
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Moreover, from

(tT v)p − f(v)− (min
x∈G

tTx)p ≥
Rp

+

(tT v)p − f(v)− (tTx)p, ∀x ∈ G, ∀v ∈ Rn,

follows
(tT v)p − f(v)− (tTx)p �

Rp
+\{0}

ȳ, ∀x ∈ G, ∀v ∈ Rn.

Whence ȳ ∈ ϕ∗2(0, t). �

The Fenchel dual problem can be stated now as follows.

(D̂V O
F ) max

Rp
+\{0}

⋃
t∈Rn

[
− ϕ∗2(0, t)

]
= max

Rp
+\{0}

⋃
t∈Rn

[
− f∗p (t) + (min

x∈G
tTx)p

]
From Theorem 3.2 and Proposition 3.20 follows the following assertion.

Proposition 3.21

(i) The problem (V O) is stable with respect to ϕ2 if and only if for each solution
x̄ to (V O), there exists a solution t̄ ∈ Rn to the dual problem (D̂V O

F ) such that

f(x̄) ∈ −f∗p (t̄) + (min
x∈G

t̄Tx)p (3.14)

and t̄T x̄ = min
x∈G

t̄Tx.

(ii) Conversely, if x̄ ∈ G and t̄ ∈ Rn satisfy the above conditions, then x̄ and t̄

are solutions to (V O) and (D̂V O
F ), respectively.

Remark 3.3 Let p = 1 and the assumptions of Theorem 1.1(iii) be fulfilled. Then
Proposition 3.21 is nothing else that the optimality conditions (cf. Theorem 2.10
in [16]) for the Fenchel dual problem in scalar optimization.

Fenchel-Lagrange duality. The last dual problem in this section is constructed
by using the perturbation function ϕ3.

Proposition 3.22 Let t ∈ Rn and λ ∈ Rm. Assume that max
Rp

+\{0}
{(λT g(x)−tTx)p| x ∈

X} 6= ∅, then

ϕ∗3(0, t, λ) =

{
f∗p (t) + (max

x∈X
[λT g(x)− tTx])p, if λ ≤

Rm
+

0;

∅, otherwise.

Proof: Let t ∈ Rn and λ ∈ Rm. By definition

ϕ∗3(0, t, λ) = max
Rp

+\{0}

{
(tT v)p + (λTu)p − ϕ3(x, v, u)| x ∈ Rn, v ∈ Rn, u ∈ Rm

}
= max

Rp
+\{0}

{
(tT v)p + (λTu)p − f(x+ v)| x ∈ X, v ∈ Rn, g(x) ≤

Rm
+

u
}

= max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{
(tT v)p + (λTu)p − f(x+ v)| g(x) ≤

Rm
+

u
}
.
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Taking ū := u− g(x), one has

ϕ∗3(0, t, λ) = max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{
(tT v)p + (λT g(x))p + (λT ū)p − f(x+ v)| ū ∈ Rm

+

}
= max

Rp
+\{0}

⋃
x∈X

⋃
v∈Rn

{
(tT v)p + (λT g(x))p − f(x+ v) + {(λT ū)p| ū ∈ Rm

+}
}

= max
Rp

+\{0}

⋃
x∈X

{
(λT g(x))p + {(λT ū)p| ū ∈ Rm

+}

+ {(tT v)p − f(x+ v)| v ∈ Rn}
}
.

Setting now v̄ := x+ v, this implies that

ϕ∗3(0, t, λ) = max
Rp

+\{0}

⋃
x∈X

{
(λT g(x))p + {(λT ū)p| ū ∈ Rm

+}

+ {(tT v̄)p − (tTx)p − f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

⋃
x∈X

{
(λT g(x))p − (tTx)p + {(λT ū)p| ū ∈ Rm

+}

+ {(tT v̄)p − f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

{
{(λTu)p| u ∈ Rm

+}+ {(tT v)p − f(v)| v ∈ Rn}

+ {(λT g(x)− tTx)p| x ∈ X}
}
.

Consequently

ϕ∗3(0, t, λ) ⊆ max
Rp

+\{0}
{(λTu)p| u ∈ Rm

+}

+ max
Rp

+\{0}
{(tT v)p − f(v̄)| v ∈ Rn}

+ max
Rp

+\{0}
{(λT g(x))p − (tTx)p| x ∈ X}.

Moreover, one can easy verify that

max
Rp

+\{0}
{(λT g(x))p − (tTx)p| x ∈ X} = {(max

x∈X
[λT g(x)− tTx])p}.

By Lemma 3.4, we conclude that

ϕ∗3(0, t, λ) ⊆

{
f∗p (t) + (max

x∈X
[λT g(x)− tTx])p, if λ ≤

Rm
+

0;

∅, otherwise.

Let us now show the converse inclusion. Let t ∈ Rn, λ ≤
Rm

+

0 and

ȳ ∈ f∗p (t) + (max
x∈Rn

[λT g(x)− tTx])p. Then it holds

ȳ ∈ max
Rp

+\{0}

{
{(tT v)p − f(v)| v ∈ Rn}+ (max

x∈X
[λT g(x)− tTx])p

}
.

In other words

ȳ �
Rp

+\{0}
(tT v)p − f(v) + (max

x∈X
[λT g(x)− tTx])p, ∀v ∈ Rn.
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Since

(tT v)p − f(v) + (λT g(x)− tTx)p ≤
Rp

+

(tT v)p − f(v) + (max
x∈X

[λT g(x)− tTx])p, ∀x ∈ X,

we conclude that

ȳ �
Rp

+\{0}
(tT v)p − f(v) + (λT g(x)− tTx)p, ∀x ∈ X, v ∈ Rn,

or, equivalently,

ȳ+(λTu)p �
Rp

+\{0}
(tT v)p−f(v)+(λT g(x)−tTx)p+(λTu)p, ∀x ∈ X, ∀v ∈ Rn, ∀u ∈ Rm

+ .

On the other hand, because of (λTu)p ≤
Rp

+

0, ∀u ∈ Rm
+ , it holds

ȳ ≥
Rp

+

ȳ + (λTu)p, ∀u ∈ Rm
+ .

Hence we obtain that

ȳ �
Rp

+\{0}
(tT v)p − f(v) + (λT g(x)− tTx)p + (λTu)p, ∀x ∈ X, ∀v ∈ Rn, ∀u ∈ Rm

+ .

Therefore ȳ ∈ ϕ∗3(0, t, λ). �

As a consequence, we can suggest the following dual problem to (V O)

(D̂V O
FL ) max

Rp
+\{0}

⋃
(t,λ)∈Rn×Rm

[
− ϕ∗3(0, t, λ)

]
= max

Rp
+\{0}

⋃
t∈Rn

λ ≤
Rm
+

0

[
− f∗p (t) + (min

x∈X
[tTx− λT g(x)])p

]

= max
Rp

+\{0}

⋃
t∈Rn

λ ≥
Rm
+

0

[
− f∗p (t) + (min

x∈X
[tTx+ λT g(x)])p

]
.

According to Theorem 3.2 and Proposition 3.22 one can state the following result.

Proposition 3.23

(i) The problem (V O) is stable with respect to ϕ3 if and only if for each solution
x̄ to (V O), there exists a solution t̄ ∈ Rn, λ̄ ∈ Rm with λ̄ ≥

Rm
+

0 to the dual

problem (D̂V O
FL ) such that

f(x̄) ∈ −f∗p (t̄) + (min
x∈X

[t̄Tx+ λ̄T g(x)])p. (3.15)

Moreover it holds

t̄T x̄+ λ̄T g(x̄) = min
x∈X

[t̄Tx+ λ̄T g(x)] and λ̄T g(x̄) = 0. (3.16)

(ii) Conversely, if x̄ ∈ G and t̄ ∈ Rn, λ̄ ∈ Rm with λ̄ ≥
Rm

+

0 satisfy (3.15)–(3.16),

then x̄ and (t̄, λ̄) are solutions to (V O) and (D̂V O
FL ), respectively.
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Remark 3.4 In the scalar case Proposition 3.23 is nothing else than the assertion
dealing with the optimality conditions for the Fenchel-Lagrange dual problem (cf.
Theorem 2.11 in [16]).

Finally, we show some relations between dual objective maps investigated in this
subsection.

Proposition 3.24 Let t ∈ Rn and λ ∈ Rm with λ ≤
Rm

+

0. If max
Rp

+\{0}
{(−tTx)p| x ∈

G} 6= ∅ and max
Rp

+\{0}
{(λT g(x)− tTx)p| x ∈ X} 6= ∅, then

ϕ∗2(0, t) ⊆ ϕ∗3(0, t, λ)− Rp
+.

Proof: Let t ∈ Rn and λ ≤
Rm

+

0. Assume that z ∈ ϕ∗2(0, t) = f∗p (t)−(min
x∈G

tTx)p. Since

g(x) ≤
Rm

+

0, for x ∈ G one has −λT g(x) ≤ 0, ∀x ∈ G. After adding tTx in both sides,

we have
min
x∈X

[tTx− λT g(x)] ≤ min
x∈G

[tTx− λT g(x)] ≤ min
x∈G

tTx,

or, equivalently,
−(min

x∈G
tTx)p ≤

Rp
+

−(min
x∈X

[tTx− λT g(x)])p.

This means that

−(min
x∈G

tTx)p ∈ −(min
x∈X

[tTx− λT g(x)])p − Rp
+.

Therefore
z ∈ f∗p (t)− (min

x∈X
[tTx− λT g(x)])p − Rp

+.

In other words z ∈ ϕ∗3(0, t, λ)− Rp
+. �

Proposition 3.25 Let t ∈ Rn and λ ∈ Rm with λ ≤
Rm

+

0. If the set f∗p (t) is externally

stable and max
Rp

+\{0}
{(λT g(x)− tTx)p| x ∈ X} 6= ∅, then

ϕ∗1(0, λ) ⊆ ϕ∗3(0, t, λ)− Rp
+.

Proof: Let t ∈ Rn and λ ≤
Rm

+

0 be fixed. Then it is clear that

ϕ∗1(0, λ) = max
Rp

+\{0}
{(λT g(x))p − f(x)| x ∈ X}

⊆ {(λT g(x))p − f(x)| x ∈ X}
⊆ {(tTx)p − f(x)| x ∈ Rn}+ {−(tTx− λT g(x))p| x ∈ X}.

On the other hand, in view of the relation

−{(pTx− λT g(x))p| x ∈ X} ⊆ −min
x∈X

(pTx− λT g(x))p − Rp
+

and by the external stability of f∗p (t), we have

ϕ∗1(0, λ) ⊆ f∗p (t)− Rp
+ −min

x∈X
(pTx− λT g(x))p − Rp

+

= f∗p (t)−min
x∈X

(pTx− λT g(x))p − Rp
+

= ϕ∗3(0, t, λ)− Rp
+.

�
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3.2 Applications

The dual problems introduced in Section 3.1 allow us to define some new gap func-
tions for the vector variational inequality. In order to prove the properties in the
definition of a gap function for this kind of variational inequalities, the duality
assertions discussed in Section 3.1 are used.

3.2.1 Gap functions for the vector variational inequality

Let F : Rn → Rn×p be a matrix-valued function andK ⊆ Rn. The vector variational
inequality problem consists in finding x ∈ K such that

(V V I) F (x)T (y − x) �
Rp

+\{0}
0, ∀y ∈ K.

Definition 3.7 (cf. [23] and [42]) A set-valued map γ : K ⇒ Rp is said to be a
gap function for (V V I) if it satisfies the following conditions:

(i) 0 ∈ γ(x) if and only if x ∈ K solves the problem (V V I);

(ii) 0 �
Rp

+\{0}
γ(y), ∀y ∈ K.

For (V V I) the following gap function has been investigated (see [23])

γV V I
A (x) = max

Rp
+\{0}

{
F (x)T (x− y)| y ∈ K

}
.

Recall that γV V I
A is a generalization of Auslender’s gap function for the scalar

variational inequality problem (cf. [8]).
On the other hand, the dual problems and duality results investigated in Subsection
3.1.3 allow us to introduce some new gap functions for (V V I). We remark that
x ∈ K is a solution to the problem (V V I) if and only if 0 is a minimal point of the
set

{
F (x)T (y−x)| y ∈ K

}
. This means that x is a solution to the following vector

optimization problem

(PV V I ;x) min
Rp

+\{0}

{
F (x)T (y − x)| y ∈ K

}
.

Let x ∈ K be fixed. Setting fx(y) := F (x)T (y − x) instead of f in (DV O
F ), the

Fenchel dual problem to (PV V I ;x) turns out to be

(DV V I
F ;x) max

Rp
+\{0}

⋃
T∈Rp×n

min
Rp

+\{0}

{ ⋃
y∈Rn

{(F (x)T −T )y}−F (x)Tx+
⋃

y∈K

{Ty}
}
.

We define the following map for any x ∈ K

γV V I
F (x) :=

⋃
T∈Rp×n

Φ̃∗2(0, T ;x),

where Φ̃∗2(0, T ;x) is defined by

Φ̃∗2(0, T ;x) = max
Rp

+\{0}

{ ⋃
y∈Rn

{(T − F (x)T )y}+ F (x)Tx+
⋃

y∈K

{−Ty}
}
.

Theorem 3.3 Let for any x ∈ K the problem (PV V I ;x) be stable with respect to
Φ̃2(0, ·;x). Then γV V I

F is a gap function for (V V I).
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Proof:

(i) Let x ∈ K be a solution to the problem (V V I). As the problem (PV V I ;x) is
stable, by Proposition 3.12(i), there exists a solution Tx ∈ Rp×n to (DV V I

F ;x)
such that

fx(x) = 0 ∈ −Φ̃∗2(0, Tx;x). (3.17)

In other words, 0 ∈ Φ̃∗2(0, Tx;x) and this implies that

0 ∈
⋃

T∈Rp×n

Φ̃∗2(0, T ;x) = γV V I
F (x).

Conversely, let x ∈ K and 0 ∈ γV V I
F (x). Hence, there exists Tx ∈ Rp×n such

that

0 ∈ Φ̃∗2(0, Tx;x) or, equivalently, 0 = F (x)T (x− x) ∈ −Φ̃∗2(0, Tx;x).

According to Proposition 3.12(ii), x is a solution to (PV V I ;x) and also to the
problem (V V I).

(ii) Let y ∈ K be fixed. Then in view of Proposition 3.11, for any T ∈ Rp×n, one
has

fy(z) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈ Φ̃∗2(0, T ; y),

or equivalently,

F (y)T (z − y) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈

⋃
T∈Rp×n

Φ̃∗2(0, T ; y) = γV V I
F (y).

Setting z = y, we get
ξ �

Rp
+\{0}

0, ∀ξ ∈ γV V I
F (y).

�

According to Proposition 3.4, we can mention the following result relative to the
stability with respect to Φ̃2(0, ·;x), x ∈ K.

Proposition 3.26 Let for any x ∈ K the set min
Rp

+\{0}
{F (x)T y| y ∈ K} be externally

stable. Then the problem (PV V I ;x) is stable with respect to Φ̃2(0, ·;x).

Let us remark that in connection with the Fenchel dual problem we denote γV V I
F as

the Fenchel gap function for the vector variational inequality (V V I). Let now the
ground set K be given by

K =
{
x ∈ Rn| g(x) ≤

Rm
+

0
}
,

where g(x) = (g1(x), ..., gm(x))T , gi : Rn → R. Before introducing two other
gap functions, let us state the Lagrange and Fenchel-Lagrange dual problems for
(PV V I ;x). Taking fx in Φ∗1(0,Λ) and Φ∗3(0, T,Λ), respectively, we have

(DV V I
L ;x) max

Rp
+\{0}

⋃
Λ∈Rp×m

min
Rp

+\{0}

{ ⋃
q∈Rm

+

{−Λq} − F (x)Tx

+
⋃

y∈Rn

{F (x)T y − Λg(y)}
}
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and

(DV V I
FL ;x) max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×Rp×m

min
Rp

+\{0}

{ ⋃
q∈Rm

+

{−Λq} − F (x)Tx

+
⋃

y∈Rn

{(F (x)T − T )y}+
⋃

y∈Rn

{Ty − Λg(y)}
}
.

We introduce the following maps, for any x ∈ K, as follows

γV V I
L (x) :=

⋃
Λ∈Rp×m

Φ̃∗1(0,Λ;x),

where we define

Φ̃∗1(0,Λ;x) = max
Rp

+\{0}

{ ⋃
q∈Rm

+

{Λq}+ F (x)Tx+
⋃

y∈Rn

{Λg(y)− F (x)T y}
}

and
γV V I

FL (x) :=
⋃

(T,Λ)∈Rp×n×Rp×m

Φ̃∗3(0, T,Λ;x),

defining

Φ̃∗3(0, T,Λ;x) = max
Rp

+\{0}

{ ⋃
q∈Rm

+

{Λq}+ F (x)Tx+
⋃

y∈Rn

{(T − F (x)T )y}

+
⋃

y∈Rn

{Λg(y)− Ty}
}
.

Like in the proof of Theorem 3.3, by applying the duality assertions in Subsection
3.1.3, for (DV O

L ) and (DV O
FL ), respectively, the following theorem can be verified.

Theorem 3.4 Let for any x ∈ K the problem (PV V I ;x) be stable with respect to
Φ̃1(0, ·;x) and Φ̃3(0, ·;x), respectively. Then γV V I

L and γV V I
FL are gap functions for

(V V I).

The origin of these new gap functions for (V V I) justifies to call them as Lagrange
gap function γV V I

L and Fenchel-Lagrange gap function γV V I
FL , respectively.

3.2.2 Gap functions via Fenchel duality

According to the results in Subsection 3.1.4, we can suggest further class of gap
functions for (V V I). In this subsection, we restrict the construction of a gap function
to the case of Fenchel duality. As mentioned before, for a fixed x ∈ K we consider
the following vector optimization problem relative to (V V I).

(PV V I ;x) min
Rp

+\{0}

{
F (x)T (y − x)| y ∈ K

}
.

For a fixed x ∈ K, taking F (x)T (y − x) as the objective function, (D̂V O
F ) becomes

(D̂V V I
F ;x) max

Rp
+\{0}

⋃
t∈Rn

{
min

Rp
+\{0}

[(F (x)T (y−x)−(tT y)p| y ∈ Rn]+(min
y∈K

tT y)p

}
.

We need the following auxiliary result.

Lemma 3.6 Let M ∈ Rp×n. Then

min
Rp

+\{0}
{My| y ∈ Rn} =

{
{My| y ∈ Rn}, if ∃µ ∈ int Rp

+ such that µTM = 0T ,
∅, otherwise. .
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Proof: Let M ∈ Rp×n be fixed and ȳ ∈ Rn. According to Theorem 11.20 in [50],
Mȳ ∈ min

Rp
+\{0}

{My| y ∈ Rn} if and only if ∃µ ∈ int Rp
+ such that

µTMȳ ≤ µTMy, ∀y ∈ Rn. (3.18)

As

inf
y∈Rn

µTMy =
{

0, µTM = 0T ,
−∞, otherwise,

Mȳ ∈ min
Rp

+\{0}
{My| y ∈ Rn} if and only if ∃µ ∈ int Rp

+ such that

µTM = 0T . (3.19)

This means that under the above assumption each ȳ ∈ Rn is a solution to (3.18).�

Let C := [t, ..., t] ∈ Rn×p and for a fixed x ∈ K the set N(x) be defined by

N(x) := {t ∈ Rn| ∃µ ∈ int Rp
+ such that (F (x)− C)µ = 0}.

In view of Lemma 3.6, one has

(D̂V V I
F ;x) max

Rp
+\{0}

⋃
t∈N(x)

{
−F (x)Tx+{(F (x)−C)T y| y ∈ Rn}+(min

y∈K
tT y)p

}
.

Let us introduce for x ∈ K the following map

γ̃V V I
F (x) := F (x)Tx+

⋃
t∈N(x)

[
{(C − F (x))T y| y ∈ Rn} − (min

y∈K
tT y)p

]
.

Theorem 3.5 Let for any x ∈ K the set min
Rp

+\{0}
{F (x)T y| y ∈ K} be externally

stable. Then γ̃V V I
F is a gap function for (V V I).

Proof:

(i) Let x ∈ K be fixed. As the set min
Rp

+\{0}
{F (x)T y| y ∈ K} is externally stable,

by Proposition 3.26 the problem (PV V I ;x) is stable. Taking F (x)T (y − x)
instead of f(y) in f∗p (t), by Lemma 3.6, we have

f∗p (t) = max
Rp

+\{0}
{(tT y)p − F (x)T (y − x)| y ∈ Rn}

= F (x)Tx− min
Rp

+\{0}
{(F (x)− C)T y| y ∈ Rn}

= F (x)Tx− {(F (x)− C)T y| y ∈ Rn},

where C = [t, ..., t] ∈ Rn×p and t ∈ N(x). Then (3.14) is equivalent to

0 ∈ −F (x)Tx+ {(F (x)− C)T y| y ∈ Rn}+ (min
y∈K

tT y)p. (3.20)

Let x̄ ∈ K be a solution to (V V I). By Proposition 3.21(i) and (3.20) it follows
that 0 ∈ γ̃V V I

F (x̄). Let x̄ ∈ K and 0 ∈ γ̃V V I
F (x̄). Then ∃t̄ ∈ N(x̄) such that

0 ∈ F (x̄)T x̄+ {(C̄ − F (x̄))T y| y ∈ Rn} − (min
y∈K

t̄T y)p,

where C̄ = [t̄, ..., t̄] ∈ Rn×p. Taking into account Proposition 3.21(ii) and
(3.20), x̄ is a solution to (PV V I ; x̄). Consequently, x̄ solves the problem (V V I).
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(ii) Let y ∈ K. Choosing as T := [t, ..., t]T ∈ Rp×n, by Proposition 3.11 and
Proposition 3.20, it holds

F (y)T (z − y) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈ f∗p (t)− (min

y∈K
tT y)p, t ∈ N(y),

or, equivalently,

F (y)T (z − y) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈ γ̃V V I

F (y).

Setting z = y, one has

ξ �
Rp

+\{0}
0, ∀ξ ∈ γ̃V V I

F (y).

�

Remark 3.5 In the case p = 1, the problem (V V I) reduces to the scalar varia-
tional inequality problem of finding x ∈ K such that

(V I) F (x)T (x− y) ≥ 0, y ∈ K,

where F : Rn → Rn is a vector-valued function. Let x ∈ K be fixed. By the
definition of the set N(x), there exists µ > 0 such that (F (x)− t)µ = 0. Therefore
it holds F (x) = t. Consequently, the gap function for the variational inequality
becomes

γV I
F (x) = F (x)Tx+ max

y∈K
(−F (x)T y)

= max
y∈K

F (x)T (x− y),

which coincides with Auslender’s gap function (see [2] and [8]).

Example 3.2 Let F =
(

1 0
0 1

)
be a constant matrix and

K = {(x1, x2)T ∈ R2| 0 ≤ xi ≤ 1, xi ∈ R, i = 1, 2}.

We consider the vector variational inequality problem of finding x ∈ K such that

(V V I1)
(

1 0
0 1

)
(y − x) �

R2
+\{0}

0, ∀y ∈ K.

Let us describe γ̃V V I
F for (V V I1). Let x = (x1, x2)T ∈ R2 be fixed. First we consider

the set-valued map W : R2 ⇒ R2 given by (cf. (D̂V V I
F ;x))

W (x1, x2) = min
R2

+\{0}
{F (x)T (y − x)− (tT y)2| y ∈ R2}.

Then

W (x1, x2) = min
R2

+\{0}

{(
1 0
0 1

)(
y1 − x1

y2 − x2

)
−

(
t1y1 + t2y2
t1y1 + t2y2

) ∣∣∣ (y1, y2)T ∈ R2

}
= min

R2
+\{0}

{ (
y1 − x1 − t1y1 − t2y2
y2 − x2 − t1y1 − t2y2

) ∣∣∣ (y1, y2)T ∈ R2

}
= min

R2
+\{0}

{ (
(1− t1)y1 − t2y2
−t1y1 + (1− t2)y2

) ∣∣∣ (y1, y2)T ∈ R2

}
−

(
x1

x2

)
.
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If ∃µ = (µ1, µ2)T ∈ int R2
+ such that (µ1, µ2)

(
1− t1 −t2
−t1 1− t2

)
= 0, or, equiva-

lently,
{

(1− t1)µ1 − t1µ2 = 0
−t2µ1 + (1− t2)µ2 = 0, then, by Lemma 3.6, it holds

W (x1, x2) =
{ (

(1− t1)y1 − t2y2
−t1y1 + (1− t2)y2

) ∣∣∣ (y1, y2)T ∈ R2

}
−

(
x1

x2

)
.

As (µ1, µ2) ∈ int R2
+, it must to be

∣∣∣∣ (1− t1) −t1
−t2 (1− t2)

∣∣∣∣ = 0. As a consequence,

one has
t1 + t2 = 1 and t2µ1 = t1µ2.

Whence

γ̃V V I1
F (x) =

(
x1

x2

)
+

⋃
t∈N1

[ { (
t(y2 − y1)

(1− t)(y1 − y2)

) ∣∣∣ (y1, y2)T ∈ R2

}

−

 min
0≤y1≤1

(1− t)y1 + min
0≤y2≤1

ty2

min
0≤y1≤1

(1− t)y1 + min
0≤y2≤1

ty2

  ,
where the set N1 is defined by

N1 := {t ∈ R| ∃µ ∈ int R2
+ such that (1− t)µ1 = tµ2}.

Moreover, as N1 = (0, 1), we conclude that

γ̃V V I1
F (x) =

(
x1

x2

)
+

⋃
t∈(0,1)

{(
ty

(t− 1)y

) ∣∣∣ y ∈ R
}
.



Chapter 4

Variational principles for
vector equilibrium problems

In this chapter we focus on the construction of set-valued mappings on the basis of
the so-called Fenchel duality, which allow us to propose some new variational prin-
ciples for vector equilibrium problems. First we present some notions and results
regarding conjugate duality in vector optimization based on weak orderings, which
are due to Tanino [84] and Song [78]. Under certain assumptions, in order to char-
acterize the solutions for vector equilibrium problems, set-valued mappings on the
basis of Fenchel duality depending on the data, but not on the solution sets of vector
equilibrium problems, are introduced. In conclusion, by applying these results, we
investigate gap functions for the so-called weak vector variational inequalities.

4.1 Preliminaries

Let Y be a real topological vector space partially ordered by a pointed closed convex
cone C with a nonempty interior intC in Y. For any ξ, µ ∈ Y, we use the following
ordering relations:

ξ < µ ⇔ µ− ξ ∈ int C;
ξ ≮ µ ⇔ µ− ξ /∈ int C.

The relations > and ≯ are defined similarly. Let us now introduce the weak
maximum and weak supremum of a set Z in the space Y induced by adding to Y
two imaginary points +∞ and −∞. We suppose that −∞ < y < +∞ for y ∈ Y.
Moreover, we use the following conventions

(±∞) + y = y + (±∞) = ±∞ for all y ∈ Y, (±∞) + (±∞) = ±∞,

λ(±∞) = ±∞ for λ > 0 and λ(±∞) = ∓∞ for λ < 0.

The sum +∞+ (−∞) is not considered, since we can avoid it.
For a given set Z ⊆ Y , we define the set A(Z) of all points above Z and the set

B(Z) of all points below Z by

A(Z) =
{
y ∈ Y | y > y′ for some y′ ∈ Z

}
and

B(Z) =
{
y ∈ Y | y < y′ for some y′ ∈ Z

}
,

respectively. Clearly A(Z) ⊆ Y ∪ {+∞} and B(Z) ⊆ Y ∪ {−∞}.

81
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Definition 4.1 A point ŷ ∈ Y is said to be a weak maximal point of Z ⊆ Y if
ŷ ∈ Z and ŷ /∈ B(Z), that is, if ŷ ∈ Z and there is no y ∈ Z such that ŷ < y.

The set of all weak maximal points of Z is called the weak maximum of Z and
is denoted by WMaxZ.

Definition 4.2 A point ŷ ∈ Y is said to be a weak supremal point of Z ⊆ Y if
ŷ /∈ B(Z) and B({ŷ}) ⊆ B(Z), that is, if there is no y ∈ Z such that ŷ < y and if
the relation y′ < ŷ implies the existence of some y ∈ Z such that y′ < y.

The set of all weak supremal points of Z is called the weak supremum of Z and
is denoted by WSupZ. Remark that WMaxZ = Z ∩ WSupZ. Moreover it holds
−WMax(−Z) = WMinZ and −WSup(−Z) = WInfZ, where a weak minimum
and a weak infimum can be defined analogously to the maximum and supremum,
respectively. For more properties of these sets we refer to [83] and [84].

Now, we give some definitions of the conjugate mapping and the subgradient of
a set-valued mapping based on the weak supremum and the weak maximum of a
set. Let X be another real topological vector space and let L(X,Y) be the space
of all linear continuous operators from X to Y. For x ∈ X and l ∈ L(X,Y), 〈l, x〉
denotes the value of l at x.

Definition 4.3 (see [84]) Let G : X ⇒ Y be a set-valued mapping.

(i) A set-valued mapping G∗ : L(X,Y) ⇒ Y defined by

G∗(T ) = WSup
⋃

x∈X

[
〈T, x〉 −G(x)

]
, for T ∈ L(X,Y)

is called the conjugate mapping of G.

(ii) A set-valued mapping G∗∗ : X ⇒ Y defined by

G∗∗(x) = WSup
⋃

T∈L(X,Y)

[
〈T, x〉 −G∗(T )

]
, for x ∈ X

is called the biconjugate mapping of G.

(iii) T ∈ L(X,Y) is said to be a subgradient of the set-valued mapping G at (x0; y0)
if y0 ∈ G(x0) and

〈T, x0〉 − y0 ∈ WMax
⋃

x∈X

[
〈T, x〉 −G(x)

]
.

The set of all subgradients of G at (x0; y0) is called the subdifferential of G at
(x0; y0) and is denoted by ∂G(x0; y0). If ∂G(x0; y0) 6= ∅ for every y0 ∈ G(x0), then
G is said to be subdifferentiable at x0.

We present now the conjugate duality theory for vector optimization developed
by Tanino [84]. Let X and Y be real topological vector spaces. Assume that Y is
the extended space of Y and h is a function from X to Y ∪{+∞}. We consider the
vector optimization problem

(P ) WInf{h(x)|x ∈ X}.
Let U be another real topological vector space, the so-called perturbation space.
Let Φ : X × U → Y ∪ {+∞} be a perturbation function such that

Φ(x, 0) = h(x), ∀x ∈ X.
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Then the perturbed problem considered here is

(Pu) WInf
{

Φ(x, u)| x ∈ X
}
,

where u ∈ U is a perturbation variable.

Definition 4.4 The set-valued mapping W : U ⇒ Y defined by

W (u) = WInf(Pu) = WInf
{

Φ(x, u)| x ∈ X
}

is called the value mapping of (P ).

It is clear that WInf(P ) = W (0). The conjugate mapping of Φ is

Φ∗(T,Λ) = WSup
{
〈T, x〉+ 〈Λ, u〉 − Φ(x, u)| x ∈ X, u ∈ U

}
for T ∈ L(X,Y) and Λ ∈ L(U,Y). Then

−Φ∗(0,Λ) = −WSup
{
〈Λ, u〉 − Φ(x, u)| x ∈ X, u ∈ U

}
= WInf

{
Φ(x, u)− 〈Λ, u〉| x ∈ X, u ∈ U

}
.

A dual problem to (P ) can be defined as follows

(D) WSup
⋃

Λ∈L(U,Y )

[
− Φ∗(0,Λ)

]
.

Since Λ 7→ −Φ∗(0,Λ) is a set-valued mapping, the dual problem is not an usual
vector optimization problem.

Proposition 4.1 [84, Proposition 5.1] (Weak duality)
For any x ∈ X and Λ ∈ L(U, Y ) it holds

Φ(x, 0) /∈ B
(
− Φ∗(0,Λ)

)
.

Definition 4.5 [84, Definition 5.2]
The primal problem (P ) is said to be stable if the value mapping W is subdifferen-
tiable at 0.

Theorem 4.1 [84, Theorem 5.1], [78, Theorem 3.1]
If the problem (P ) is stable, then

WInf(P ) = WSup(D) = WMax(D).

Let us notice that the conjugate duality for set-valued vector optimization prob-
lems has been investigated by Song [78]. Some stability criteria in connection with
this duality can be found in [78], [79] and [84]. As mentioned in Section 3.1, the sta-
bility assertion for (P ) in [84] deals with the convexity of the perturbation function
Φ and a regularity condition.
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4.2 Fenchel duality in vector optimization

This section is devoted to the presentation of a special perturbation function which
allows us to state the so-called Fenchel duality. Let the spaces X and Y be the same
as in Section 4.1. Assume that h is a function from X to Y ∪ {+∞} and G ⊆ X.
We consider the constrained vector optimization problem

(Pc) WInf{h(x)|x ∈ G}.

Let us choose the perturbation space U = X and introduce the perturbation func-
tion Φ from X ×X to Y ∪ {+∞} defined by

Φ(x, u) =
{
h(x+ u), if x ∈ G;
+∞, otherwise.

Then the perturbed problem turns out to be

(Pu) WInf
{

Φ(x, u)| x ∈ X
}
.

To verify the next assertion we use the following trivial properties.

Remark 4.1 Let g : X → Y be a function and Z ⊆ X. The following assertions
are true:

(i) For any y ∈ Y it holds

{g(x) + y| x ∈ Z} = {g(x)| x ∈ Z}+ y;

(ii) For any set A ⊆ Y it holds⋃
x∈Z

[A+ g(x)] = A+
⋃

x∈Z

{g(x)}.

Proposition 4.2 Let T ∈ L(X,Y) . Then

Φ∗(0, T ) = WSup
{
h∗(T ) + {−〈T, x〉| x ∈ G}

}
.

Proof: Let T ∈ L(X,Y) be fixed. By definition

Φ∗(0, T ) = WSup{〈T, u〉 − Φ(x, u)| x ∈ X,u ∈ X}
= WSup{〈T, u〉 − h(x+ u)| x ∈ G, u ∈ X}.

Setting ū := x+ u, by applying Remark 4.1 and Proposition 2.6 in [84], we obtain
that

Φ∗(0, T ) = WSup
{
{〈T, ū〉 − h(ū)| ū ∈ X}+ {−〈T, x〉| x ∈ G}

}
= WSup

{
WSup{〈T, ū〉 − h(ū)| ū ∈ X}+ {−〈T, x〉| x ∈ G}

}
= WSup

{
h∗(T ) + {−〈T, x〉| x ∈ G}

}
.

�

Consequently, we can state the dual problem as follows

(Dc) WSup
⋃

T∈L(X,Y)

WInf
{
− h∗(T ) + {〈T, x〉| x ∈ G}

}
.
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Proposition 4.3 (Weak duality)
For any x ∈ G and T ∈ L(X,Y) it holds

h(x) /∈ B
(
− Φ∗(0, T )

)
.

Proposition 4.4 If the primal problem is stable, then

WInf(Pc) = WSup(Dc) = WMax(Dc).

Remark 4.2 According to Proposition 2.6 in [84], we can use for Φ∗(0, T ) the
following equivalent formulations

Φ∗(0, T ) = WSup
{
{〈T, u〉 − h(u)| u ∈ X}+ {−〈T, x〉| x ∈ G}

}
= WSup

{
h∗(T ) + {−〈T, x〉| x ∈ G}

}
= WSup

{
h∗(T ) + WSup{−〈T, x〉| x ∈ G}

}
.

The following result deals with the stability of the problem (Pc), if the objective
function has the form h(x) = 〈C, x〉, C ∈ L(X,Y) .

Proposition 4.5 Let C ∈ L(X,Y) and the objective function h : X ⇒ Y be defined
by h(x) = 〈C, x〉. Then the problem (Pc) is stable.

Proof: Let W : X ⇒ Y be the value mapping defined by

W (y) = WInf{Φ(x, y)| x ∈ X}
= WInf{〈C, x+ y〉| x ∈ G} = 〈C, y〉+ WInf{〈C, x〉| x ∈ G}.

Let z ∈ W (0) be fixed. Then ∂W (0; z) 6= 0 means that ∃T ∈ L(X,Y) such that
(see Definition 4.3(iii))

−z ∈ WMax
⋃

y∈X

[〈T, y〉 −W (y)]. (4.1)

One can notice that

WMax
⋃

y∈X

[〈T, y〉 −W (y)] ⊆ WSup
⋃

y∈X

[〈T, y〉 −W (y)] = W ∗(T ).

Let us show that (4.1) holds. By applying Remark 4.1, we have

W ∗(T ) = WSup
⋃

y∈X

[〈T, y〉 −W (y)]

= WSup
⋃

y∈X

[〈T, y〉 − 〈C, y〉 −WInf{〈C, x〉| x ∈ G}]

= WSup
{
−WInf{〈C, x〉| x ∈ G}+ {〈T − C, y〉| y ∈ X}

}
.

Taking T = C, in view of Corollary 2.3 in [84], one has

W ∗(C) = WSup WSup{−〈C, x〉| x ∈ G}
= WSup{−〈C, x〉| x ∈ G} = −WInf{〈C, x〉| x ∈ G} = −W (0).

This means that ∀z ∈W (0), it holds−z ∈W ∗(C).On the other hand, as 〈C, 0〉−z ∈⋃
y∈X

[〈C, y〉 −W (y)], it follows that

−z ∈ WMax
⋃

y∈X

[〈C, y〉 −W (y)].

In other words, W is subdifferentiable at 0. �
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4.3 Variational principles for (V EP )

Let X and Y be real topological vector spaces. Assume that K is a nonempty
convex set in X and f : K ×K → Y is a bifunction such that f(x, x) = 0, ∀x ∈ K.
We consider the vector equilibrium problem which consists in finding x ∈ K such
that

(V EP ) f(x, y) ≮ 0, ∀y ∈ K.

By Kp we denote the solution set of (V EP ). We say that a variational principle
(see [5]) holds for (V EP ) if there exists a set-valued map G : K ⇒ Y, depending on
the data of (V EP ) but not on its solution set such that the solution set of (V EP )
coincides with the solution set of the following vector optimization problem

(PG) WMin
⋃

x∈K

G(x).

(PG) is nothing else than the problem of finding x0 ∈ K such that

G(x0) ∩WMin
⋃

x∈K

G(x) 6= ∅.

Remark that variational principles for (V EP ) have been investigated in [5] and
[6]. This section aims to show how a similar approach can be extended from the
scalar case (see Section 2.2) to vector equilibrium problems. As in the scalar case,
we use the Fenchel duality for vector optimization discussed in Section 4.2.

It is clear that x̄ ∈ K is a solution to (V EP ) if and only if 0 is a weak minimal
point of the set {f(x̄, y)| y ∈ K}. Let us consider for a fixed x ∈ K the following
vector optimization problem

(PV EP ;x) WInf
{
f(x, y)| y ∈ K

}
.

Redefining

f̃(x, y) =
{
f(x, y), if (x, y) ∈ K ×K;
+∞, otherwise;

and setting it in (Dc), the corresponding Fenchel dual turns out to be

(DV EP ;x)WSup
⋃

T∈L(X,Y)

WInf
{
{f̃(x, y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}
= WSup

⋃
T∈L(X,Y)

WInf
{
{f(x, y)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

In view of Proposition 2.6 in [84] it also can be written as

(DV EP ;x) WSup
⋃

T∈L(X,Y)

WInf
{
− f∗K(T ;x) + {〈T, y〉| y ∈ K}

}
,

where f∗K(T ;x) is defined by f∗K(T ;x) = WSup{〈T, y〉 − f(x, y)| y ∈ K}. For any
x ∈ K, we introduce the following mapping

γp(x) :=
⋃

T∈L(X,Y)

[
− Φ∗p(0, T ;x)

]
,
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where Φ∗p(0, T ;x) = WSup
{
f∗K(T ;x)+{−〈T, y〉| y ∈ K}

}
. Consequently, we obtain

that

γp(x) =
⋃

T∈L(X,Y)

[
−WSup

{
f∗K(T ;x) + {−〈T, y〉| y ∈ K}

}]
=

⋃
T∈L(X,Y)

WInf
{
− f∗K(T ;x) + {〈T, y〉| y ∈ K}

}
=

⋃
T∈L(X,Y)

WInf
{
{f(x, y)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

We consider the following optimization problem

(Pγ) WSup
⋃

x∈K

γp(x).

Lemma 4.1 For any x ∈ K, if z ∈ γp(x), then z ≯ 0.

Proof: Let x ∈ K be fixed and

z ∈ γp(x) =
⋃

T∈L(X,Y)

WInf
{
{f(x, y)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

Whence, ∃T ∈ L(X,Y) such that

z ∈ WInf
{
{f(x, y)− 〈T , y〉| y ∈ K}+ {〈T , y〉| y ∈ K}

}
.

We assume that z > 0. This relation can be rewritten as

z > f(x, x)− 〈T , x〉+ 〈T , x〉,

and this leads to a contradiction. �

Theorem 4.2 Let the problem (PV EP ;x) be stable for each x ∈ Kp. Then

(i) x̄ ∈ K is a solution to (V EP ) if and only if 0 ∈ γp(x̄);

(ii) Kp ⊆ Kp
γ , where Kp

γ denotes the solution set of (Pγ).

Proof:

(i) If x̄ ∈ K is a solution to (V EP ), then by Proposition 4.4 it holds

0 ∈ WInf(PV EP ; x̄) = WMax(DV EP ; x̄).

Whence

0 ∈ WMax
⋃

T∈L(X,Y)

WInf
{
− f∗K(T, x̄) + {〈T, y〉| y ∈ K}

}
.

Consequently, 0 ∈ γp(x̄). Let us now assume that

0 ∈ γp(x̄) =
⋃

T∈L(X,Y)

WInf
{
− f∗K(T, x̄) + 〈T, y〉| y ∈ K}

}
=

⋃
T∈L(X,Y)

WInf
{
{f(x̄, y)− 〈T, y〉| y ∈ K}

+ {〈T, y〉| y ∈ K}
}
.
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Therefore, ∃T ∈ L(X,Y) such that

0 ∈ WInf
{
{f(x̄, y)− 〈T , y〉| y ∈ K}+ {〈T , y〉| y ∈ K}

}
.

Assume that 0 /∈ WInf{f(x̄, y)| y ∈ K}. Then it is clear that
0 /∈ WMin{f(x̄, y)| y ∈ K}. Hence ∃y′ ∈ K such that f(x̄, y′) < 0 or, equiva-
lently f(x̄, y′)− 〈T , y′〉+ 〈T , y′〉 < 0, which leads to a contradiction.

(ii) Let x̄ ∈ Kp. In view of (i), we have 0 ∈ γp(x̄). On the other hand, by Lemma
4.1, for any x ∈ K, if z ∈ γp(x), then z ≯ 0. Therefore, from z ∈

⋃
x∈K

γp(x)

follows z ≯ 0. This means that

0 ∈ WMax
⋃

x∈K

γp(x) ⊆ WSup
⋃

x∈K

γp(x).

Whence x̄ ∈ Kp
γ . �

Remark 4.3 Taking instead of f the bifunction f̃ : X × X → Y ∪ {+∞}, the
mapping γp can be rewritten as

γ̃p(x) =
⋃

T∈L(X,Y)

WInf
{
{f̃(x, y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}
.

One can easy verify that Lemma 4.1 and Theorem 4.2 remain true in this case. This
results will be used later for applications.

Remark 4.4 Let X = Rn and Y = Rp. Then a linear continuous operator
T ∈ L(Rn,Rp) can be identified with a p× n matrix. Moreover, let us assume that
p = 1. Then for a given set Z ⊆ R, we have (cf. [83])

ŷ ∈ WSupZ if and only if ŷ > y, ∀y ∈ Z and if y′ < ŷ, then ∃y ∈ Z such that
y′ < y.

In other words, WSupZ is reduced to the usual concept of the supremum of a set
Z in R. Assume that ϕ : X ×X → R ∪ {+∞} is a bifunction satisfying ϕ(x, x) =
0, ∀x ∈ K. We can consider the equilibrium problem which consists in finding
x ∈ K such that

(EP ) ϕ(x, y) ≥ 0, ∀y ∈ K,

which is special case of (V EP ). Taking ϕ instead of f̃ in (DV EP ;x), the dual
becomes

(DEP ;x) sup
T∈R1×n

inf
{
{ϕ(x, y)− Ty| y ∈ X}+ {Ty| y ∈ K}

}
= sup

T∈R1×n

{
inf
y∈X

{ϕ(x, y)− Ty}+ inf
y∈K

Ty
}

= sup
T∈R1×n

{
− ϕ∗y(x, T ) + inf

y∈K
Ty

}
,

where ϕ∗y(x, T ) := sup
y∈X

{Ty−ϕ(x, y)} is the conjugate function of f with respect to

the variable y for a fixed x. In this case, we can define the gap function for (EP )
as follows:

γEP
F (x) := −v(DEP ;x) = inf

T∈R1×n

{
ϕ∗y(x, T ) + sup

y∈K
[−Ty]

}
,
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where v(DEP ;x) is the optimal objective value of (DEP ;x). This is nothing else
that the gap function introduced in Section 2.2.

Example 4.1 Let u : X → Y ∪ {+∞} be a given function. Let us define the
bifunction f̃ : dom u ×X → Y ∪ {+∞} as f̃(x, y) = u(y) − u(x), where dom u =
{x ∈ X| u(x) ∈ Y }. We assume that K ×K ⊆ dom f̃ . Then (V EP ) is reduced to
the following vector optimization problem of finding x ∈ K such that

(P̃u) f̃(x, y) = u(y)− u(x) ≮ 0, ∀y ∈ K.

For any x ∈ K, γ̃p turns out to be

γ̃p(x) = −u(x) +
⋃

T∈L(X,Y)

WInf
{
{u(y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}
.

Assuming the stability of (P̃u), by Proposition 4.4 it holds

WInf(P̃u) = WSup(D̃u) = WMax(D̃u), (4.2)

where (D̃u) is the Fenchel dual problem to (P̃u).
Let x̄ ∈ K be a solution to (P̃u). From (4.2) follows

u(x̄) ∈
⋃

T∈L(X,Y)

WInf
{
{u(y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}
.

In other words 0 ∈ γ̃p(x̄). The inverse implication follows analogously (see the proof
of Theorem 4.2). On the other hand, by Proposition 4.4 and Proposition 2.6 in
[84], one has WSup

⋃
x∈K

γ̃p(x) = {0}. If x̄ ∈ K solves (P̃u), then as shown before

0 ∈ γ̃p(x̄). This means that Kp ⊆ Kp
γ . In other words, the assertions of Theorem

4.2 are fulfilled.

Example 4.2 (see [79]) Let X = R, Y = R2 and C = R2
+. Let the vector-valued

function ϕ1 : R → R2 ∪ {+∞} be given by

ϕ1(x) =
{

(x, 0), if x ∈ [0, 1],
+∞, otherwise.

Introducing the bifunction f1 : R2 → R2 ∪ {+∞} as

f1(x, y) =
{
ϕ1(y)− ϕ1(x), if (x, y)T ∈ [0, 1]× [0, 1],
+∞, otherwise,

we consider the vector equilibrium problem of finding x ∈ K = [0, 1] such that

(V EP1) f1(x, y) = ϕ1(y)− ϕ1(x) ≮ 0, ∀y ∈ K.

According to γp, we have

γp1(x) =
⋃

T∈L(R,R2)

WInf
{
{ϕ1(y)− ϕ1(x)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

This can be written as (see Remark 4.2)

γp1(x) = −ϕ1(x)−
⋃

T∈L(R,R2)

WSup
{
{〈T, y〉 − ϕ1(y)| y ∈ K}+ {−〈T, y〉| y ∈ K}

}
= −ϕ1(x)−

⋃
T∈L(R,R2)

WSup
{

WSup{〈T, y〉 − ϕ1(y)| y ∈ K}

+ WSup{−〈T, y〉| y ∈ K}
}
.
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Notice that the linear continuous operator T ∈ L(R,R2) has the form T = (α, β) ∈
R2. Using the notations

ψ1(T ) : = WSup{〈T, y〉 − ϕ1(y)| y ∈ K} = WSup{(α− 1, β)y| y ∈ [0, 1]},
ψ2(T ) : = WSup{−〈T, y〉| y ∈ K} = WSup{(−α,−β)y| y ∈ [0, 1]},

let us calculate for any T = (α, β) ∈ L(R,R2) the sets ψ1(T ), ψ2(T ) and WSup{ψ1(T )+
ψ2(T )}.

(i) If α ≥ 1 and β ≥ 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = α− 1, y ≤ β) ∨ (y = β, x ≤ α− 1)}

and
ψ2(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0)}.

Whence WSup{ψ1(T ) + ψ2(T )} = ψ1(T ).

(ii) If α > 1 and β < 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = α− 1, y ≤ β) ∨ (y = 0, x ≤ 0)

∨ (y =
β

α− 1
x, 0 ≤ x ≤ α− 1)},

ψ2(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = −β, x ≤ −α)

∨ (y =
β

α
x, − α ≤ x ≤ 0)}.

Consequently, we have

WSup{ψ1(T ) + ψ2(T )} = {(x, y)T ∈ R2| (x = α− 1, y ≤ β)

∨ (y = −β, x ≤ −α) ∨ (y =
β

α
x, − α ≤ x ≤ 0)

∨ (y =
β

α− 1
x, 0 ≤ x ≤ α− 1)}.

If α = 1 and β < 0, then we can easy see that

WSup{ψ1(T ) + ψ2(T )} = {(x, y)T ∈ R2| (x = 0, y ≤ 0)

∨ (y = −β, x ≤ −α) ∨ (y =
β

α
x, − α ≤ x ≤ 0)}.

(iii) If 0 < α < 1 and β ≥ 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = β, x ≤ α− 1)

∨ (y =
β

α− 1
x, α− 1 ≤ x ≤ 0)},

ψ2(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0)}.

As a consequence, one has WSup{ψ1(T ) + ψ2(T )} = ψ1(T ). In additional, if
α = 0 and β ≥ 0, then it holds

WSup{ψ1(T ) + ψ2(T )} = {(x, y)T ∈ R2| (x = 0, y ≤ 0)

∨ (y = β, x ≤ α− 1) ∨ (y =
β

α− 1
x, α− 1 ≤ x ≤ 0)}.
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(iv) If 0 < α < 1 and β < 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0)},
ψ2(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = −β, x ≤ −α)

∨ (y =
β

α
x, − α ≤ x ≤ 0)}.

Thus WSup{ψ1(T ) + ψ2(T )} = ψ2(T ). Moreover, if α = 0 and β < 0, then it
holds

WSup{ψ1(T ) + ψ2(T )} = {(x, y)T ∈ R2| (x = 0, y ≤ β) ∨ (y = −β, x ≤ 0)}.

(v) If α < 0 and β ≥ 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = β, x ≤ α− 1)

∨ (y =
β

α− 1
x, α− 1 ≤ x ≤ 0)},

ψ2(T ) = {(x, y)T ∈ R2| (x = −α, y ≤ −β) ∨ (y = 0, x ≤ 0)

∨ (y =
β

α
x, 0 ≤ x ≤ −α)}.

Consequently, we get

WSup{ψ1(T ) + ψ2(T )} = {(x, y)T ∈ R2| (x = −α, y ≤ −β)

∨ (y = β, x ≤ α− 1) ∨ (y =
β

α− 1
x, α− 1 ≤ x ≤ 0)

∨ (y =
β

α
x, 0 ≤ x ≤ −α)}.

(vi) If α < 0 and β < 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0),
ψ2(T ) = {(x, y)T ∈ R2| (x = −α, y ≤ −β) ∨ (y = −β, x ≤ −α)}.

In conclusion, we have WSup{ψ1(T ) + ψ2(T )} = ψ2(T ).

Summarizing all above cases, we obtain the complete description of γp1 .

4.4 Variational principles for (DV EP )

It is well known that (V EP ) is closely related to the so-called dual vector equilib-
rium problem of finding x ∈ K such that

(DV EP ) f(y, x) ≯ 0, ∀y ∈ K.

In the same way as before, we can obtain similar results for (DV EP ). Indeed, let
us denote by Kd the solution set of (DV EP ). We mention that x̂ ∈ K is a solution
to (DV EP ) if and only if 0 is a weak maximal point of the set {f(y, x̂)| y ∈ K}.
For any x ∈ K we consider the vector optimization problem

(PDV EP ;x) WSup{f(y, x)| y ∈ K}
= −WInf{−f(y, x)| y ∈ K}.

In other words, we can reduce (PDV EP ;x) to the following vector optimization
problem

(P̃DV EP ;x) WInf{−f(y, x)| y ∈ K}.
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By using the extended function

f̂(x, y) =
{
−f(y, x), if (x, y) ∈ K ×K;
+∞, otherwise,

the Fenchel dual to (P̃DV EP ;x) turns out to be

(D̃DV EP ;x) WSup
⋃

Λ∈L(X,Y)

WInf
{
{f̂(x, y)− 〈Λ, y〉| y ∈ X}+ {〈Λ, y〉| y ∈ K}

}
= WSup

⋃
Λ∈L(X,Y)

WInf
{
{−f(y, x)− 〈Λ, y〉| y ∈ K}+ {〈Λ, y〉| y ∈ K}

}
.

Whence for x ∈ K we can define the following mapping

γd(x) :=
⋃

Λ∈L(X,Y)

Φ∗d(0,Λ;x),

where Φ∗d(0,Λ;x) = WSup
{
{f(y, x) + 〈Λ, y〉| y ∈ K}+ {−〈Λ, y〉| y ∈ K}

}
.

To the problem (DV EP ) can be associated the following set-valued vector op-
timization problem

(Dγ) WInf
⋃

x∈K

γd(x).

Lemma 4.2 For any x ∈ K, if z ∈ γd(x), then z ≮ 0.

Proof: Let x ∈ K be fixed and

z ∈ γd(x) =
⋃

Λ∈L(X,Y)

WSup
{
{f(y, x) + 〈Λ, y〉| y ∈ K}+ {−〈Λ, y〉| y ∈ K}

}
.

Consequently, ∃Λ̃ ∈ L(X,Y) such that

z ∈ WSup
{
{f(y, x) + 〈Λ̃, y〉| y ∈ K}+ {−〈Λ̃, y〉| y ∈ K}

}
.

Let z < 0. In other words

z < f(x, x) + 〈Λ̃, x〉 − 〈Λ̃, x〉.

This contradicts the fact that z is a weak supremal point of the set
{
{f(y, x) +

〈Λ̃, y〉| y ∈ K}+ {−〈Λ̃, y〉| y ∈ K}
}
. �

Theorem 4.3 Let the problem (P̃DV EP ;x) be stable for each x ∈ Kd. Then

(i) x̃ ∈ K is a solution to (DV EP ) if and only if 0 ∈ γd(x̃);

(ii) Kd ⊆ Kd
γ , where Kd

γ denotes the solution set of (Dγ).

Proof:

(i) Let x̃ ∈ K be a solution to (DV EP ). Then by Proposition 4.4, it follows that

0 ∈ WSup(PDV EP ; x̃) = −WInf(P̃DV EP ; x̃) = −WMax(D̃DV EP ; x̃).
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Thus

0 ∈ WMin
⋃

Λ∈L(X,Y)

WSup
{
{f(y, x̃) + 〈Λ, y〉| y ∈ K}+ {−〈Λ, y〉| y ∈ K}

}
.

In other words, we have 0 ∈ γd(x̃). Let now 0 ∈ γd(x̃). Then, ∃Λ̃ ∈ L(X,Y)
such that

0 ∈ WSup
{
{f(y, x̃) + 〈Λ̃, y〉| y ∈ K}+ {−〈Λ̃, y〉| y ∈ K}

}
.

If 0 /∈ WSup(PDV EP ; x̃), then 0 /∈ WMax(PDV EP ; x̃). Whence ∃ỹ ∈ K such
that f(ỹ, x̃) > 0, i.e. f(ỹ, x̃) + 〈Λ̃, ỹ〉 − 〈Λ̃, ỹ〉 > 0, which leads to a contradic-
tion.

(ii) Let x̃ ∈ Kd. Taking into account (i), one has 0 ∈ γd(x̃). By Lemma 4.2 we
obtain that

0 ∈ WMin
⋃

x∈K

γd(x) ⊆ WInf
⋃

x∈K

γd(x).

This means x̃ ∈ Kd
γ . �

Remark 4.5 As mentioned in Remark 4.3, choosing instead of γd the bifunction
f̂ : X ×X → Y ∪ {+∞}, one can define the following mapping

γ̃d(x) = WSup
{
{f̂(y, x) + 〈Λ, y〉| y ∈ X}+ {−〈Λ, y〉| y ∈ K}

}
.

Under (generalized) convexity and monotonicity assumptions, the relationships be-
tween the solution sets of (V EP ) and (DV EP ) have been investigated in [6] and
[59]. Whence, under the assumptions considered in these papers, the mapping γd

can be related to the problem (V EP ). Before doing this, let us recall some defini-
tions and results.

Definition 4.6 [6, Definition 2.1]
A function f : K ×K → Y is called

(i) monotone if, for all x, y ∈ K, we have

f(x, y) + f(y, x) ≤ 0;

(ii) pseudomonotone if, for all x, y ∈ K, we have

f(x, y) ≮ 0 implies f(y, x) ≯ 0,

or, equivalently,
f(x, y) > 0 implies f(y, x) < 0.

Definition 4.7 [6, cf. Definition 2.2]
A function h : K → Y is called:

(i) quasiconvex if, for all α ∈ Y, the set L(α) = {x ∈ K| h(x) ≤ α} is convex;

(ii) explicitly quasiconvex if h is quasiconvex and, for all x, y ∈ K such that
h(x) < h(y), we have

h(zt) < h(y), for all zt = tx+ (1− t)y and t ∈ (0, 1);
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(iii) hemicontinuous if, for any x, y ∈ K and t ∈ [0, 1], the mapping t 7→ h(tx +
(1− t)y) is continuous at 0+.

Proposition 4.6 [6, Proposition 2.1]
Let K be a nonempty convex subset of a Hausdorff topological vector space X and
let f : K ×K → Y be a bifunction such that f(x, x) = 0, ∀x ∈ K.

(i) If f is pseudomonotone, then Kp ⊆ Kd;

(ii) If f(x, ·) is explicitly quasiconvex and f(·, y) is hemicontinuous for all x, y ∈
K, then Kd ⊆ Kp.

By Theorem 4.3 and Proposition 4.6 we can easy verify the following assertion.

Proposition 4.7 Let all the assumptions of Proposition 4.6 and Theorem 4.3 be
fulfilled. Then

(i) x̃ ∈ K is a solution to (V EP ) if and only if 0 ∈ γd(x̃);

(ii) Kp ⊆ Kd
γ .

4.5 Gap functions for weak vector variational
inequalities

This section deals with the construction of gap functions for the so-called weak
vector variational inequalities. Therefore we apply the results for vector equilibrium
problems in the previous section. As before, let X and Y be real topological spaces.
Assume that K is a closed and convex subset of X and F : X → L(X,Y) is a given
mapping. The weak vector variational inequality consists in finding x ∈ K such
that

(WV V I) 〈F (x), y − x〉 ≮ 0, ∀y ∈ K.

Definition 4.8 [23, Definition 5(ii)]
A set-valued mapping ψ : X ⇒ Y is said to be a gap function for the problem
(WV V I) if it satisfies the following conditions

(i) 0 ∈ ψ(x) if and only if x ∈ K solves (WV V I);

(ii) 0 ≯ ψ(y), ∀y ∈ K.

It is clear that x̄ ∈ K is a solution to (WV V I) if and only if 0 is a weak minimal
point of the set {〈F (x̄), y − x̄〉| y ∈ K}. Let us consider the vector optimization
problem:

(PWV V I ;x) WInf{〈F (x), y − x〉| y ∈ K}.

Taking for any x ∈ K, f̃(x, y) := 〈F (x), y − x〉 in γ̃p, we suggest the following map
for (WV V I)

ψp(x) :=
⋃

T∈L(X,Y)

WSup
{
{〈T, y〉 − 〈F (x), y − x〉| y ∈ X}+ {−〈T, y〉| y ∈ K}

}
=

⋃
T∈L(X,Y)

WSup
{
{〈T − F (x), y〉| y ∈ X}+ {−〈T, y〉| y ∈ K}

}
+ 〈F (x), x〉.

Theorem 4.4 ψp is a gap function for the problem (WV V I).



4.5 Gap functions for weak vector variational inequality 95

Proof:

(i) Since 〈F (x), y − x〉 is a linear mapping with respect to y, one can apply
Proposition 4.5. Consequently, for any x ∈ K the problem (PWV V I ;x) is
stable. For f̃(x, y) = 〈F (x), y − x〉, the first condition in the definition of a
gap function follows from Theorem 4.2(i).

(ii) By Lemma 4.1, for any y ∈ K and z ∈ −ψp(y) implies z ≯ 0. Consequently,
we have 0 ≯ ψp(y), ∀y ∈ K. �

The relations between (WV V I) and the so-called Minty vector variational in-
equality have been investigated by several authors (see [40], [59], [94] and [96]).
Here we consider the Minty weak vector variational inequality consists in finding
x ∈ K such that

(MWV V I) 〈F (y), x− y〉 ≯ 0, ∀y ∈ K.

Likewise in Section 4, (MWV V I) can be related to the following vector optimization
problem:

(PMWV V I ;x) WInf{〈F (y), y − x〉| y ∈ K}

in the sense that x̄ ∈ K is a solution to (MWV V I) if and only if 0 is a weak
minimal point of the set {〈F (y), y − x̄〉| y ∈ K}. Taking f̂(x, y) := 〈F (x), y − x〉 in
γ̃d, we can introduce the following mapping

ψd(x) =
⋃

Λ∈L(X,Y)

WSup
{
{〈F (y), x− y〉+ 〈Λ, y〉| y ∈ X}+ {−〈Λ, y〉| y ∈ K}

}
.

From Theorem 4.3(i) and Lemma 4.2 follows the following assertion.

Theorem 4.5 Let the problem (PMWV V I ;x) be stable for any solution x ∈ K to
(MWV V I). Then ψd is a gap function for the problem (MWV V I).

Under certain assumptions the mapping ψd is also a gap function for (WV V I).
Let us recall first the following definitions.

Definition 4.9 [96] Let F : K → L(X,Y) be a given function.

(i) F is weakly C-pseudomonotone on K if for each x, y ∈ K, we have

〈F (x), y − x〉 ≮ 0 implies 〈F (y), x− y〉 ≯ 0;

(ii) F is v-hemicontinuous if for each x, y ∈ K and t ∈ [0, 1], the mapping t 7→
〈F (x+ t(y − x)), y − x〉 is continuous at 0+.

Proposition 4.8 [96, Lemma 2.1]
Let X, Y be Banach spaces and let K be a nonempty convex subset of X. As-
sume that a function F : K → L(X,Y) is weakly C-pseudomonotone on K and
v-hemicontinuous. Then x ∈ K is a solution to (WV V I) if and only if it is also a
solution to (MWV V I).

As a consequence, we can easy verify the following assertion.

Proposition 4.9 Let the assumptions of Theorem 4.5 and Proposition 4.8 be ful-
filled. Then ψd is a gap function for (WV V I).
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Index of notation

R – the set of real numbers

R – the extended set of real numbers

Rn – n-dimensional Euclidean space

Rp×n – the set of p× n matrices with real entries

Rm
+ – the non-negative orthant of Rm

int C – the interior of the set C

ri(C) – the relative interior of the set C

dom h – the effective domain of the function h

epi h – the epigraph of the function h

h1�h2 – the infimal convolution of the functions h1 and h2

h∗ – the conjugate function of the function h

h∗C – the conjugate function of the function h relative to the set C

G∗ – the conjugate mapping of the set-valued map G

h∗p – the conjugate of the vector-valued function h
with p-dimensional vector variable

δC – the indicator function of the set C

σC – the support function of the set C

NC(x) – the normal cone operator to the set C at x ∈ C

∂h(x) – the subdifferential of the function h at x

∂h(x; y) – the subdifferential of the set-valued map h at (x; y)

≥
Rm

+

– the partial ordering induced by Rm
+

≥
int Rm

+

– the weak partial ordering induced by int Rm
+

≥
C

– the partial ordering induced by cone C

≥
C\{0}

– the partial ordering induced by C\{0}

> – the weak partial ordering induced by int C

97
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ξ �
C\{0}

µ – the partial ordering which means that ξ − µ /∈ C\{0}

ξ ≯ µ – the weak partial ordering which means that ξ − µ /∈ int C

X∗ – the topological dual of a topological vector space X

xT y – the inner product of the vectors x and y

〈·, ·〉 – the linear pairing between a topological vector space and its topological dual

L(X,Y) – the space of all linear continuous operators from X to Y

w(X∗, X) – the weak∗-topology of X∗

max
Rp

+\{0}
Z – the set of all maximal points of the set Z

min
Rp

+\{0}
Z – the set of all minimal points of the set Z

WSupZ – the set of all weak supremal points of the set Z

WMaxZ – the set of all weak maximal points of the set Z

WInfZ – the set of all weak infimal points of the set Z

WMinZ – the set of all weak minimal points of the set Z

v(P ) – the optimal objective value of the primal optimization problem (P )

v(D) – the optimal objective value of the dual optimization problem (D)
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Theses

of the dissertation

A duality approach to gap functions for variational inequalities and
equilibrium problems by Lkhamsuren Altangerel

1. This thesis deals with some applications of the conjugate duality theory for
optimization problems to the construction of gap functions for variational in-
equalities and equilibrium problems. It concerns both scalar and vector cases.
The proposed approach is considered first for variational inequalities, after-
wards this is applied to more general cases including variational inequalities,
the equilibrium problems. We observe that the proposed gap functions for
equilibrium problems provide a convenient way of explaining as special cases
the conjugate duality results for convex optimization problems and some gap
functions for variational inequalities.

2. We consider the optimization problem

(P ) inf
x∈X∩G

f(x), G = {x ∈ Rn| g(x) ≤
Rm

+

0},

where X ⊆ Rn is a nonempty set and f : Rn → R = R ∪ {±∞}, g =
(g1, ..., gm)T : Rn → Rm are given functions. For x, y ∈ Rm, x ≤

Rm
+

y means y−

x ∈ Rm
+ . In associated to some perturbations, the so-called Fenchel-type and

Fenchel-Lagrange-type dual problems to (P ) are discussed. Closely related to
this study, we reformulate the strong duality theorem in [16].

3. By using the conjugate duality for scalar optimization we extend the investi-
gations of the duality for the convex partially separable optimization problem

(P cps) inf
u∈W

n∑
i=1

Fi(Aiu),

where

W =

{
u = (u0, ..., un)T ∈ Rn+1

∣∣∣ n∑
i=1

Gi(Aiu) ≤
Rm

+

0, Aiu ∈Wi, i = 1, n

}
.

Here Fi : Rli → R, Gi : Rli → Rm, i = 1, n, are convex functions and
Wi ⊆ Rli , i = 1, n, are convex sets. Moreover, Ai ∈ Rli×(n+1), li ∈ N are
given matrices. Optimality conditions for (P cps) and some of its particular
cases are derived (see also L. Altangerel, R. I. Boţ and G. Wanka [1]).

4. The second chapter of the work is devoted to the construction of some new gap
functions for variational inequalities and equilibrium problems on the basis of
the conjugate duality for scalar optimization. The approach is based on the
reformulation of the variational inequality problem which consists in finding
x ∈ K such that

(V I) F (x)T (y − x) ≥ 0, ∀y ∈ K,

where K ⊆ Rn and F : Rn → Rn is a vector-valued function, into the opti-
mization problem

(PV I ;x) inf
y∈K

F (x)T (y − x).



For a fixed x ∈ Rn we define the gap functions as the negative optimal ob-
jective values of the corresponding dual problems. In order to prove that the
introduced functions satisfy the properties in the definition of a gap func-
tion for (V I) we use weak and strong duality results for convex optimization.
Moreover, gap functions for the mixed variational inequality problem and the
so-called dual gap functions for (V I) are also studied (see also L. Altangerel,
R. I. Boţ and G. Wanka [2]).

5. Since the construction of a gap function based on the Fenchel duality does not
depend on the ground set K, the approach is extended to the more general
case including variational inequalities, namely to the equilibrium problem of
finding x ∈ K such that

(EP ) f(x, y) ≥ 0, ∀y ∈ K,

where f : X ×X → R∪ {+∞} is a bifunction such that f(x, x) = 0, ∀x ∈ K,
and K is a closed, convex subset of a real topological vector space X satisfying
K × K ⊆ dom f. To verify the properties of a gap function for (EP ), the
duality results in the settings of locally convex spaces by Boţ and Wanka [18]
are used. Gap functions for (EP ) based on the Fenchel duality are applied
to convex optimization problems and variational inequalities in a real Banach
space (see also L. Altangerel, R. I. Boţ and G. Wanka [3]).

6. The remainder of this thesis deals with the extension of this approach to
vector variational inequalities and vector equilibrium problems. As tools here
we use duality results for vector optimization by Tanino and Sawaragi [82]
and Tanino [84]. Introducing vector-valued perturbation functions in analogy
to the scalar case (see [16] and [90]), at the beginning of the third chapter we
obtain for the following vector optimization problem

(V O) min
Rp

+\{0}

{
f(x)| x ∈ G

}
, G =

{
x ∈ X| g(x) ≤

Rm
+

0
}

different dual problems having set-valued objective maps, where f : Rn →
Rp, g : Rn → Rm are vector-valued functions and X ⊆ Rn.

7. Additionally, considering the conjugate maps with vector variables we investi-
gate further dual problems to (V O). Remark that these can be seen as special
cases of the dual problems investigated before. As shown in this work, there
are some advantages of investigating such dual problems.

8. Related to the different dual problems and duality results discussed in the
third chapter, we define some new gap functions for the vector variational
inequality of finding x ∈ K such that

(V V I) F (x)T (y − x) �
Rp

+\{0}
0, ∀y ∈ K,

where F : Rn → Rn×p is a matrix-valued function and K ⊆ Rn.

9. Finally, we consider the vector equilibrium problem which consists in finding
x ∈ K such that

(V EP ) f(x, y) ≮ 0, ∀y ∈ K,

where f : K ×K → Y is a bifunction such that f(x, x) = 0, ∀x ∈ K, and K
is a subset of a real topological vector space X. In analogy to the scalar case,
we introduce the set-valued mapping on the basis of the Fenchel duality. The



proposed set-valued mapping and the duality results developed by Tanino
[84] give us the possibility to investigate variational principles for (V EP ).
Similar discussions are applied to the so-called variational principles for the
dual vector equilibrium problem and to constructing gap functions for weak
vector variational inequalities.
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