
Faculty of Computer Science
Computer Architecture Group

Diploma Thesis

Monitoring of large-scale Cluster
Computers

Stefan Worm
stefan.worm@hrz.tu-chemnitz.de

February 12, 2007

Supervisor: Prof. Dr.-Ing. W. Rehm∗

Advisors: Dipl.-Inf. Torsten Mehlan∗, Dipl.-Inf. Torsten Hoefler∗?
∗ Chemnitz University of Technology,? Indiana University

The original (PDF) version of this document is available at:
http://archiv.tu-chemnitz.de/pub/2007/0003/

Keywords: monitoring, remote monitoring, local monitoring, cluster monitoring,
cluster management, cluster, computer, cluster computer, network, network load,
performance, scalability, Chemnitz High-Performance Linux Cluster, CHiC, OFED,
InfiniBand, port counters, netgauge, Abinit, Nagios, plugin, plug-in

Worm, Stefan:
Monitoring of large-scale Cluster
Computers
Diploma Thesis, Chemnitz University
of Technology, 2007.

http://archiv.tu-chemnitz.de/pub/2007/0003/

Abstract

The constant monitoring of a computer is one of the essentials to be up-to-date about
its state. This may seem trivial if one is sitting right in front of it but when monitoring
a computer from a certain distance it is not as simple anymore. It gets even more
difficult if a large number of computers need to be monitored. Because the process
of monitoring always causes some load on the network and the monitored computer
itself, it is important to keep these influences as low as possible. Especially for a high-
performance cluster that was built from a lot of computers, it is necessary that the
monitoring approach works as efficiently as possible and does not influence the actual
operations of the supercomputer.

Thus, the main goals of this work were, first of all, analyses to ensure the scalability
of the monitoring solution for a large computer cluster as well as to prove the function-
ality of it in practise. To achieve this, a classification of monitoring activities in terms
of the overall operation of a large computer system was accomplished first. There-
after, methods and solutions were presented which are suitable for a general scenario
to execute the process of monitoring as efficient and scalable as possible.

During the course of this work, conclusions from the operation of an existing cluster
for the operation of a new, more powerful system were drawn to ensure its functionality
as good as possible. Consequently, a selection of applications from an existing pool
of solutions was made to find one that is most suitable for the monitoring of the new
cluster. The selection took place considering the special situation of the system like the
usage of InfiniBand as the network interconnect. Further on, an additional software
was developed which can read and process the different status information of the In-
finiBand ports, unaffected by the vendor of the hardware. This functionality, which so
far had not been available in free monitoring applications, was exemplarily realised
for the chosen monitoring software.

Finally, the influence of monitoring activities on the actual tasks of the cluster was
of interest. To examine the influence on the CPU and the network, the self-developed
plugin as well as a selection of typical monitoring values were used exemplarily. It
could be proven that no impact on the productive application for typical monitoring
intervals can be expected and only for atypically short intervals a minor influence could
be determined.

Task of the Diploma Thesis

Today’s cluster computers are used in different sizes. The number of small and
medium installations with up to 128 nodes is growing continuously. At the upper end
of the range very large clusters with several thousands of compute nodes were designed.
The administration of such systems requires a supervising and monitoring system that
can be used in those different kinds of parallel computers in a scalable manner.

The aim of this work is to analyse existing cluster monitoring mechanisms and to
design extensions to these already existing tools. First the most relevant freely avail-
able solutions shall be considered. Thereby this thesis should especially elaborate how
to detect irregular behaviour patterns or errors and moreover how to react on them.
Furthermore, the scalability to a large number of nodes and the influence on other com-
putation processes shall be analysed.

After the phase of analysing, missing functions and error cases should be identi-
fied. In addition convenient methods of statistical appraisal shall be found to identify
possible accumulations of errors and as a consequence the detection of increasing prob-
ability of a failure of a component. Furthermore suitable behaviour patterns which can
be defined as a reaction to errors shall be identified. It should be discussed in which
way automatic interventions are possible. Hence, the achieved specification of an en-
hanced monitoring system should be adapted in the most relevant parts so that it can be
integrated into the Chemnitz High-Performance Linux Cluster (CHiC). In addition, a
special focus of this work shall be on the scalability and the smallest possible influence
on other compute processes.

Theses

I It is possible to run a cluster monitoring system with only minimum effects on
user tasks.

II A system that monitors only the necessary things is less error-prone and therefore
easier to maintain.

III A monitoring system that presents the information in a suitable way does relieve
the administrators from unnecessary maintenance work.

IV The outage of the cluster has to be minimised.

V Most application runtimes (e.g. ABINIT) are not significantly influenced by stan-
dard monitoring activities.

VI One server can handle the monitoring of hundreds of components, each of them
with a set of values that has to be checked.

VII The integrated monitoring of all components of a system, instead of the use of
independent approaches for each of them, is to be favoured.

VIII It exist no vendor independent InfiniBand network interface port counter moni-
toring software that supports established open source monitoring applications.

IX The size and quantity of the network packets of the monitoring system have a
measurable influence on the performance of the communication network.

Contents

List of Figures . ix
List of Tables . ix
Listings .ix
Abbreviations and Acronyms . xv

1 Introduction 1
1.1 Cluster Computers. 1
1.2 Cluster Management. 3
1.3 Summary . 5

2 Cluster Monitoring 7
2.1 Monitoring as Part of Management. 7
2.2 A Monitoring Model . 9
2.3 Generation of Data. .10

2.3.1 Local and Remote Monitoring. 10
2.3.2 Communication Methods. 10
2.3.3 Overview about Monitoring Objects. 11
2.3.4 Performance and Scalability. 11

2.4 Processing of Data. .14
2.4.1 Data Validation and Storage. 14
2.4.2 Combination of Monitoring Values. 14
2.4.3 Filtering and Analysis. 18

2.5 Dissemination of Information. 19
2.6 Presentation of Results. .21
2.7 Summary .22

3 Chemnitz High-Performance Linux Cluster (CHiC) 23
3.1 Introduction to the CHiC. 23
3.2 Experiences from the CLiC System. 24
3.3 Summary .29

4 Evaluation of Monitoring Approaches 31
4.1 Selection of a Monitoring Application. 31
4.2 Nagios and the Plugin Topology. 37
4.3 The InfiniBand Interconnection Network. 38

Stefan Worm vii

Contents

4.3.1 Introduction to Design and Features. 39
4.3.2 Constitution of the Port Counters. 39

4.4 Design and Implementation of a Port Counter Monitoring Plugin. . . . 40
4.4.1 Preliminary Considerations. 40
4.4.2 Thecheck_iberr Script 42

4.5 Summary .44

5 Evaluation of the Performance Impact of Monitoring Activities 47
5.1 Introduction to the Test Configuration. 47
5.2 Impact regarding the Execution of Applications. 47

5.2.1 Influence on Abinit due to Local and Remotecheck_iberr
Script Execution . 48

5.2.2 Influence on Abinit due to Local and Remote Nagios Plugins. . 50
5.2.3 Influence of Local and Remote Nagios Plugins via IPoIB and

GbE on Four Local Abinis Jobs. 52
5.3 Impact regarding the Network Performance. 54

5.3.1 Network Performance with and without Remote and Local Ex-
ecution of Nagios Plugins via IPoIB and GbE. 54

5.3.2 Network Performance with and without Execution of
thecheck_iberr Script . 56

5.3.3 Network Performance with and without Execution of Nagios
Plugins Depending on the Delay of their Execution. 58

5.4 Quantitative CPU and Network Load Analysis. 59
5.4.1 Influence of Nagios Plugins on Clients and the Monitoring Server59
5.4.2 Influence of thecheck_iberr Script on Clients and the Mon-

itoring Server. .60
5.4.3 Exemplary Monitoring Server Test with Nagios Plugins and the

check_iberr Script . 61
5.5 Summary .63

6 Conclusion and Outlook 65

A Source Code Listing of the check_iberr Perl Script 67

B Monitoring Server and Client Configuration 73
B.1 Definition of Hosts and Services on the Monitoring Server. 73
B.2 Definition of the Check Commands on the Monitoring Server for Direct

Execution .76
B.3 Definition of the Check Commands on the Monitoring Server for Exe-

cution via NRPE .76
B.4 Definitions on the Monitoring Client. 77

Bibliography 79

Index 85

viii Stefan Worm

List of Figures

List of Figures

2.1 Correlation of Management and Monitoring. 9
2.2 Object that is Controlled and Monitored. 17

3.1 Exemplary Timetable as Basis for Alerting Methods. 25
3.2 Monitoring of the Infrastructure with Corresponding Importance. . . . 27

5.1 Influence on Abinit due to Local and Remotecheck_iberr Script
Execution .49

5.2 Influence on Abinit due to Local and Remote Nagios Plugins. 50
5.3 Influence of Local and Remote Nagios Plugins via IPoIB and GbE on

Four Local Abinis Jobs. .53
5.4 Network Performance with and without Remote and Local Execution

of Nagios Plugins via IPoIB and GbE. 55
5.5 Network Performance with and without Execution of thecheck_iberr

Script .57
5.6 Network Performance with and without Execution of Nagios Plugins

Depending on the Delay of their Execution. 58
5.7 Network Packet Size Regarding the Communication of Various Nagios

Plugins and thecheck_iberr Script 62

List of Tables

1.1 Layers of Integrated Management and Functional Areas of Management5

2.1 Monitoring Objects and their States. 12
2.2 Errors of Event Classification. 18

4.1 InfiniBand HCA port counters. 40

5.1 Nagios Plugins .51

Listings

A.1 check_iberr.pl. .67
B.1 Configuration of the Hosts and Services on the Nagios Server. 73
B.2 Nagios Server Direct Command Execution Configuration. 76
B.3 Nagios Server Command Execution Configuration via NRPE. 76
B.4 NRPE Monitoring Client Configuration. 77

Stefan Worm ix

Abbreviations and Acronyms

ACM Association for Computing Machinery− page 83

AES Advanced Encryption Standard− page 38

AMD Advanced Micro Devices,Inc. − page 23

AP Access Point− page 12

API Application Programming Interface− page 34

BLAS Basic Linear Algebra Subroutines− page 23

CHIC Chemnitz High-Performance Linux Cluster − page iv

CLIC Chemnitz Linux Cluster − page 23

CPMD. Car-Parrinello Molecular Dynamics− page 24

CPU Central Processing Unit− page 11

DB DataBase− page 12

DDR Double Data Rate− page 86

DES Data Encryption Standard− page 38

DFT Density Functional Theory− page 47

DGEMM Double-precision GEneral Matrix Multiply− page 23

DHCP Dynamic Host Configuration Protocol− page 59

DMA Direct Memory Access− page 86

DNS. Domain Name Service− page 12

DPS Distributed Processing System− page 13

FCAPS Fault-, Configuration-, Accounting-, Performance- and Security- (man-
agement) − page 4

Stefan Worm xi

Abbreviations and Acronyms

FTP File Transfer Protocol− page 10

GB Gigabit (109 bit = 1.25 ∗ 108 byte = 125 MB) − page 23

GBE Gigabit Ethernet (network interconnect)− page 47

GFLOPS giga (109) floating point operations per second − page 23

GNU GNU is not Unix − page xii

GPL GNU General Public License − page 87

GPU.Graphics Processing Unit− page 12

GUI Graphical User Interface− page 21

GUID (InfiniBand) Global Unique IDentifier− page 42

HA High-Availability − page 2

HCA (InfiniBand) Host Channel Adapter− page 57

HDD Hard Disk Drive − page 11

HP High-Performance− page 2

HPC High-Performance Cluster− page 2

HTTP HyperText Transfer Protocol− page 12

HVAC Heating, Ventilation and Air Conditioning− page 87

HW HardWare − page 5

I/O Input / Output − page 12

IA Intel Architecture (IA-32, IA-64) − page 31

IB InfiniBand − page 23

IBA InfiniBand Architecture − page 39

IBTA InfiniBand Trade Association− page 81

ICMP Internet Control Message Protocol− page 11

ID IDentifier − page 11

IEC International Electronical Commission− page 4

IEEE Institute of Electrical & Electronics Engineers− page 83

xii Stefan Worm

Abbreviations and Acronyms

IETF Internet Engineering Task Force− page 11

IM Instant Message− page 20

IMAP Internet Message Access Protocol− page 12

IP Internet Protocol− page 12

IPC. Inter-Process Communication− page 53

IPDPS(IEEE) International Parallel & Distributed Processing Symposium
− page 81

IPMI Intelligent Platform Management Interface− page 23

IPOIB Internet Protocol over InfiniBand − page 50

ISO International Organization for Standardization− page 4

IT Information Technology− page 1

JTC Joint Technical Committee− page 81

LAN Local Area Network − page xv

LB Load-Balancing − page 2

LID (InfiniBand) Local IDentifier − page 42

MAC Media Access Control− page 11

MAD (InfiniBand) MAnagement Diagram− page 49

MPI Message Passing Interface− page 24

MRTG. Multi Router Traffic Grapher− page 34

MUA Mail User Agent − page 89

NFS Network File System− page 12

NIC Network Interface Card− page 57

NMS Network Management System− page 33

NRPE Nagios Remote Plugins Executor− page 48

NSCA Nagios Service Check Acceptor− page 38

NTP Network Time Protocol− page 26

OFED OpenFabrics Enterprise Distribution− page 42

Stefan Worm xiii

Abbreviations and Acronyms

OOB Out-Of-Band − page 48

OS Operating System− page 11

OSCAR Open Source Cluster Application Resources− page 84

OSI Open Systems Interconnection− page 4

PBS Portable Batch System− page 27

PCI Peripheral Component Interconnect− page 91

PCI-X PCI eXtended− page 39

PCIE PCI express − page 39

PMEO-PDS . . . (International Workshop on) Performance Modelling, Evaluation,
and Optimization of Parallel and Distributed Systems− page 81

POPPost Office Protocol− page 12

POWERPC Performance optimization with enhanced RISC Performance Chip
− page 31

PPCPowerPC − page 31

PSU Power Supply Unit − page 12

RAID Redundant Array of Independent Disks− page 28

RAM Random Access Memory− page 11

RDMA Remote Direct Memory Access− page 39

RFC Request For Comments− page 11

RISC Reduced Instruction Set Computer− page 82

RTT Round Trip Time − page 51

S.M.A.R.T. Self-Monitoring, Analysis, and Reporting Technology− page 12

SDR Single Data Rate (InfiniBand network connection) − page 23

SIESTA Spanish Initiative for Electronic Simulations with Thousands of Atoms
− page 24

SM (InfiniBand) Subnet Manager− page 40

SMP.Symmetric Multi-Processor− page 23

xiv Stefan Worm

Abbreviations and Acronyms

SMS.Short Message Service
cellular phone text messaging− page 20

SMTP Simple Mail Transfer Protocol− page 12

SNMP Simple Network Management Protocol− page 11

SSH Secure SHell− page 10

TB TeraByte (1012 byte ≈ 240 byte) − page 23

TCP Transmission Control Protocol− page 51

TDES Triple DES − page 38

UDP. User Datagram Protocol− page 93

UPS Uninterruptible Power Supply− page 12

VL Virtual Lane − page 40

WLAN Wireless LAN − page 12

XML eXtensible Markup Language− page 33

Stefan Worm xv

1 Introduction

The semi-annual published Top5001 list containing the five hundred fastest computers
on earth fascinates computer interested people as well as the rest of the world every time
anew. This topic is very attractive not only because of the very illustrative coverage in
the media, especially the amazing comparisons with the first supercomputers like the
one which was used for planning the moon landing, but also because of the abilities
of recent ordinary computers or even with mobile phones which have about the same
performance. This shall show that every person can have one of today’s supercomputer
some time in the future for himself and that it is only a matter of perspective what a
supercomputer is.

In this work not the pure computing power is the main topic, it is the supervision of
those computers. Because only with the help of monitoring it can be ascertained what is
the state of the system and only with that information a system’s administrator is able
to keep it running properly so that a user can really benefit from the full computing
power.

1.1 Cluster Computers

“When computing, there are three basic approaches to improving performance – use
a better algorithm, use a faster computer, or divide the calculation among multiple
computers.”[Slo05, p.4] Often the algorithms and their implementation are already op-
timised and cannot be made significantly faster – furthermore at a certain stage of the
problem which needs to be calculated, the computing power of a fast computer is not
enough or the price for it is too high.

In this situation, the use of the third approach is advisable. Having a minimum
of two computers, is already a cluster because of its definition2. But usually the term
“cluster” in Information Technology (IT) refers to a large number of systems commonly
at supercomputer size which means “The class of fastest and most powerful computers
available.”[LJ93, p.275]

Still, having a bunch of computers is still not a computer in the sense of a super-
computer-cluster. Referring to Sterling [Ste02], “[. . .] a cluster is any ensemble of
independently operational elements integrated by some medium for coordinated and
cooperative behaviour.” The most important issue regarding the definition is the need

1The Top500 list is presented at the Supercomputer Conference twice a year since 1993.
http://www.top500.org/lists/

2cluster: a number of persons, animals, or things grouped together (refer to Webster’s New World
Dictionary of American English, Third College Edition [Neu88])

Stefan Worm 1

http://www.top500.org/lists/

Chapter 1. Introduction

of something that makes the computers work together which means in this specific case
at least two things: an interconnection network and some special software.

What kind of computers, network connections and cluster–software is used depends
on the purpose of the cluster. Sloan [Slo05, p.11] distinguishes three types:

High-Performance Cluster This is the original type of cluster. At the very begin-
ning when sets of computers where assembled to a cluster it was because of high-
performance (HP) reasons. It was done with the intention to get more computing
power than a single machine can provide, usually to solve a specific problem
within an acceptable period of time. In literature the termssupercomputerand
clusterusually refer to this type of cluster which is also the focus of this work.

High-Availability Cluster These types of clusters are made for scenarios where
maximum reliability is necessary. It means that a service or application is avail-
able whenever it is needed, with only a minimum of downtime. High-Availability
(HA) clusters can guarantee that because of their failover mechanism. It means
that there is a set of computers which are doing their job and another set of spare
computers which are running idle, just checking the working ones and waiting to
take over if one of them fails. Respectively the “spare” computers are also work-
ing but they are able to take over the load of the other ones if necessary. Those
clusters, because of their functionality, are also called failover clusters [Slo05,
p.11] or Fault-Tolerant Clusters [Boo03]. They typically consist of only a few
computers, often only of two machines and not of tens, hundreds or thousand
like the High-Performance Clusters (HPC).

Load-Balancing Cluster This kind of cluster is very similar to the HPCs because
they are also made for dividing the work among multiple computers, but with the
difference that a Load-Balancing (LB) cluster is for providing a better real-time3

performance. For example a scenario where a web server, that cannot handle the
traffic on its own or within an acceptable period of time any longer, is suitable to
be replaced by a LB cluster.

Especially when thinking of a slightly different scenario, like processing a large
amount of data in a short period of time from a physical simulation, this class of
cluster can also be named High-Throughput Cluster (refer to [Luc04]).

The classification mentioned above is not precise. Depending on the problem that
has to be solved, and especially the type of software and algorithms which are used, the
cluster can be a combination of the different types.

In addition to a definition concerning the purpose of the cluster, the National Re-
search Council of the National Academies [GSP05] further classifies supercomputer–
clusters regarding their overall productivity:

3The termreal-timemeans that a response to a query [the result of an operation] has to be given within
a specified period of time, this can be a fraction of a second, but it does not have to be. (refer to
[Dib02])

2 Stefan Worm

1.2. Cluster Management

capability A capability cluster is used as a whole to solve a single, large problem –
one that otherwise cannot be solved in a reasonable period of time [GSP05, p.24].

capacity The representative capacity system is one on which several and smaller
computations are executed. The merit is a system that has good performance
/ cost value and can be used for a lot of domains.

1.2 Cluster Management

Working out what kind of cluster is needed, buying the hardware and building up the
system is one thing – to keep it running another. It is necessary to have a strategy for
managing all work related to the cluster computer. One of the first things that comes
to one’s mind thinking ofmanagementis probably the management of a company or
the act of conducting or supervising something. In its general meaning,to manage4

something means “to handle or direct with a degree of skill”.5

In a more specific conception, management is every action inside an organisation
with the focus to guarantee an effective and efficient way of operation.

Thus, management can be classified into five layers of integrated management re-
ferring to Hegering [HAN99] whereby every layer is based on the efficiency of the
underlying ones:

5. enterprise management / service management (organisation of business processes,
business services and policies)

4. management of applications (computer programs, distributed applications)

3. information management (all kinds of business data)

2. system management (server, workstation, printer, etc.)

1. network management (communication network, router, switches, etc.)

Integrated management describes the process of the seamless interaction of tools of
every layer to cooperate and interact together. This is contrary to an isolated approach
of management where a single tool is used for single problems especially of single
management layers without interacting with one another [HA94]. Referring to this
model, the overall integration is, of course, an ideal point of view. But nevertheless, the
goal is to coordinate as much as possible within the system of management.

Based on the classification mentioned above and the limited focus of this work fur-
ther considerations are dedicated to the two basic layers system and network manage-
ment only. Obviously, the areas of enterprise and information management are primary
non technical ones and therefore not interesting in terms of “Cluster Monitoring”. In

4manage: Italianmaneggiare, from manohand (refer to Webster’s New World Dictionary of American
English, Third College Edition [Neu88])

5Merriam-Webster Online Dictionary [man05]

Stefan Worm 3

Chapter 1. Introduction

addition to that the area of application management is touched only in few points so
that a complete consideration of this is not necessary and would go beyond the scope
of this work.

Furthermore, the classification of the five layers of integrated management is directed
to the specific objects belonging to them. This is important in order to knowwhat
has to be managed. But it is at least as essential as this to knowhow all that can be
managed. To achieve that, the International Organization for Standardization (ISO)
and the International Electronical Commission (IEC) has published the ISO/IEC 7498-
4 standard “Information processing systems – Open Systems Interconnection – Basic
Reference Model – Part 4: Management Framework” [ISO89]. 6

In this document, the ISO has categorised the requirements for management func-
tionality into five areas that are also known as FCAPS based on the starting letters of
fault, configuration, accounting, performance and security:7

fault management A fault is the abnormal operation of a component that reveals as
a particular event (e.g. an error). The management of it deals with its detection,
isolation and correction.

configuration management This management part is responsible for collecting
and providing information, as well as for the identification and control over com-
ponents. It includes the initialisation and termination as well as the provision of
continuous operation of the system.

accounting management Accounting is the recording and summarising of actions
with the intention to analyse, verify and report them for being able to charge for
the use of resources.

performance management The management of performance is the evaluation of
the behaviour and the effectiveness of resources. It is used for gathering statistical
information for tuning and sizing them, as well as for reporting reasons.

security management Principally this is the support of applications’ security poli-
cies. It has importance in the secure implementation of management tasks, the
detection of security violations and maintaining security audits, as well as the
creation, deletion, and control of security mechanisms.

Those five functional areas of management explicitly apply to each of the five layers
of integrated management [HAN99] that are mentioned above. It means the classifica-
tion in functional areas is orthogonal to the classification in layers.

Because of the limited focus of this work, only the intersection of system and net-
work management with fault and performance management is considered (refer to Ta-
ble 1.1 on the facing page). Apparently, the management of security [Wor05] and

6This is the fourth part of the well known ISO/IEC 7498-1 standard [ISO94] (refer to [Tan03]), in
which the seven layer Open Systems Interconnection (OSI) reference model is defined, that is the
abstract description for communications and computer network protocol design.

7An interpretation of this standard can be found in [Lan94, CS92, Lib00].

4 Stefan Worm

1.3. Summary

enterprise m.
application m.
information m.
system m.
network m.

accounting
m.

configura-
tion m.

fault m. perfor-
mance m.

security m.

Table 1.1:Layers of Integrated Management and Functional Areas of Management

configuration is important and big areas of interest themselves, but they are too exten-
sive and the relevance compared to the other functional management areas is too small
to be explained in detail in this work – nevertheless annotations regarding those aspects
were given in a short way if possible. In addition to that, accounting management is
also not the main focus of this work, because at a cluster system its usage is important
not the billing for it. – An explanation of the exclusion of the management layers was
mentioned above.

1.3 Summary

In this chapter, a short introduction to cluster computers was given. It was shown
for what purpose those kinds of computers are needed. Moreover, a classification of
cluster computers into one of the categories ofhigh-performance, high-availabilityand
load-balancingwas presented, as well as an alternative approach of cluster computer
classification based oncapabilityandcapacity.

Then, a general overview of the field of management was given. A five layer classi-
fication of management with the people in suits on top, down to the “technical” man-
agement of computer hardware (HW) was shown, with the further focus on system and
network management. In addition to that, five functional areas of management that
are adaptable to the management layers mentioned above were introduced, whereupon
fault and performance management were chosen for detailed considerations in follow-
ing chapters.

Stefan Worm 5

2 Cluster Monitoring

In Section1.2 on page3 an introduction to the management of clusters was given.
It describes all the procedures that have to be done beginning with installation, over
maintenance to the shut down of the system. There are decisions to makehow, when,
where, what, etc. to do with the cluster. To get a basis of information, necessary to
make management decisions, it requires monitoring. Based on a useful business axiom
“if you can’t measure it, you can’t manage it” [LH02] it means that it is essential to get
an overview of the state of the cluster before it can be run in a useful and efficient way.

The verbto monitor1 means “to watch and check on a person or thing” [Neu88],
in a more technical definition it means “to check on or regulate the performance of a
machine” [Neu88]. For this it is necessary to measure – to realise performance mea-
surement. In this aspectperformanceis always related to what is intended. Based on a
specific task, the performance of a system can be anything fromnone, it cannot perform
at all, to it has optimum performance, in the way that it uses the existing resources as
good as possible.

Finally, referring to Joyce et al. monitoring can be defined as the process of collec-
tion, interpretation and presentation of information concerning objects [JLSU87].

2.1 Monitoring as Part of Management

As mentioned in Section1.2on page3 there are various fields of management that can
be categorised in different ways. Furthermore, it was also emphasised in the preceding
section that monitoring is the basis for management. Thus, monitoring is essential for
every kind of management and every kind of management requires its own type of
monitoring. Therefore management is not possible without proper monitoring. Based
on this conclusion, it is permissible to substitute the wordmanagementby monitoring
in Table1.1on page5 and with its new meaning it also describes the kind of monitoring
that is focused in this work.

There are two primary types of monitoring regarding their purpose [LH02, CWSC01]
where each of both belongs to its correlative management area (refer to Section1.2on
page3):

real-time monitoring Also known as event or fault monitoring.2 It watches every
unintended, unexpected change of the systems state, this could be a check for a

1monitor: past participle of the classical Latin “monere” which means “to warn” [Neu88]
2Although fault monitoring is the correlative of fault management, the term real-time monitoring is

used because it describes its task in a better way.

Stefan Worm 7

Chapter 2. Cluster Monitoring

subsystem’s outage or the exceed of preset threshold values. The key premise is
the permanent check of the system and the instant processing and dissemination
of the information (refer to Section2.4on page14 and Section2.5on page19),
which can be, for example, the immediate alerting of a responsible person in case
of an unexpected behaviour.

It allows only reactiveactions related to the systems state. Consequently, an
action can be taken only after an event has occurred, which usually means that
the unwanted behaviour has already appeared.

historical monitoring Another term is performance monitoring3, the result of its
job is the automatic generation of (long-term) statistics, for example foravail-
ability, utilisation and throughput. First, a system performing historical monitor-
ing collects the data and stores them. After this, the gathered data can be used
to generate graphs that usually show the dependency between values, e.g., the
system’s performance over time, or for the detection of problems that occurred
in the past.

It is the basis for predictions of the systems behaviour in the future and possi-
ble actions that can be taken to prevent system outages (proactiveactions). For
example for the prediction of future resource demands.

A classification in two categories, like mentioned above, does not mean that the two
types of monitoring are incompatible to one another – indeed the gathered data of a
real-time monitoring system can be used as the input for historical monitoring. But
it has to be kept in mind that both systems have their own purpose and that a simple
integration would not lead to a satisfactory solution, for example the storing of all real-
time monitoring data without any concept would lead to a huge data grave instead of
convincing historical monitoring statistics.

Finally the question is posted, where does monitoring end and where does man-
agement begin. Although both terms are sometimes used to describe the same thing
and even appear interchangeable for some reasons, it is possible to make a distinc-
tion. Monitoring can be defined as the process of gaining information about an object
and management as the process of making decisions regarding the object based on the
monitoring information, as well as the control of the object. The control loop between
monitoring, management and the object that is managed and monitored is shown in
Figure2.1on the next page (refer to [MSS94]).

This distinction is important to define what type of action belongs to monitoring and
what belongs to management. Regarding the definition mentioned above, additionally,
there is the scope of direct processing of the monitoring data that can be seen either as
a task of the monitoring system or of the management system. It depends on whether
monitoring is defined as the pure gaining of information of an object or as a system that
supplies the management system as good as possible.

3Though performance monitoring correlates to performance management, because of its better descrip-
tion of what is meant with it, the term historical monitoring is used further on.

8 Stefan Worm

2.2. A Monitoring Model

Management Monitoring

Object

Presentation
Dissemination

Processing
Generation

Decision Making
Control

Figure 2.1:Correlation of Management and Monitoring

Basically, because of the approach to reduce the complexity of the anyway complex
management system and the approach to reduce the load on the whole system while
performing various tasks as early as possible in the processing chain, a monitoring
system with some intelligent behaviour is described in this chapter.

2.2 A Monitoring Model

A generally functional model which can be used to describe activities of an efficient
monitoring system, is presented in [MSS94] as the four areas of Generation, Process-
ing, Dissemination and Presentation.

• Generation:Detection of events and generation of event and status reports.

• Processing:Providing of common functions for data processing such as valida-
tion, combination, correlation and filtering. The goal is to convert the raw and
low-level monitoring data into appropriate data structures and a certain level of
detail.

• Dissemination:The distribution of monitoring reports to people (users, adminis-
trators, managers) or software (management SW, cluster batch system, etc.) that
require them is organised.

• Presentation:Displaying of gathered and processed monitoring information to
the user in an appropriate form.

In the following sections, the parts of the monitoring model are described in detail
with the focus on monitoring cluster computers.

Stefan Worm 9

Chapter 2. Cluster Monitoring

2.3 Generation of Data

The beginning of the monitoring process is to generate the monitoring information.
This can be done in several ways. Simply by performing several actions manually
from time to time [Sel00], for exampleping the machine, login viaSSHto perform
some commands likedf , ifconfig, top, psand others, or check the system’s services by
fetching a website, downloading a file via FTP and so on. Although this kind of “mon-
itoring” is very common among administrators supervising a small set of computers, it
is not as seldom as expected also for large computer sets. Nevertheless, for a cluster
computer the better way is to use tools that generate monitoring data in an automated
way. Therefore the approach of a centralised monitoring server is analysed, which is
supported by specialised software modules for monitoring, or the status and event logs
of a third party (software-)system.

2.3.1 Local and Remote Monitoring

Based on the location where monitoring is performed, it is differentiated between local
and remote monitoring. The method oflocal monitoring means that the monitored
object itself performs the necessary actions for getting its own status information and
that it is responsible itself for all monitoring activities. This can be done by scripts or
programs that are executed periodically for example with the help of thecron service,
by a specialised, permanent running monitoring daemon, or by a dedicated hardware
system like a specialservice CPU. The gained information can, but does not have to
be sent (pushed) periodically, or if necessary, to a system that collects data from local
monitoring systems to store and further process them.

The counterpart of local monitoring isremote monitoring. The termremotemeans
that the monitoring supervision of the system is mandatory performed from the outside
by a dedicated monitoring server which is driven by a kind of policy. This could be
realised completely externally for example by passively analysing the network traffic
or by actively checking the host’s status. For this reason a local monitoring daemon can
be installed too, but with the difference that it is dependent on the monitoring server
and controlled by it. The communication between them can be organised bypulling
(also:polling), which means that the server periodically demands information (probe)
from the monitored object that thereon replies the requested information. If necessary,
the monitored objects send analert (also: trap) to the server in addition.

2.3.2 Communication Methods

In addition to the principles where monitoring is performed, the two principles have
one thing in common: a kind of communication between the monitored object and the
monitoring server. This can be done in various ways.

A very common practise is the use of the Simple Network Management Protocol

10 Stefan Worm

2.3. Generation of Data

(SNMP)4 standard [MS01], that offers a standardised and flexible method mainly for
network devices. It has not only been developed to meet monitoring but also manage-
ment requirements.

Especially for network status concerns the use of Internet Control Message Proto-
col (ICMP) specified in RFC 792 [RFC81] is suitable [Hal00]. For example network
connectivity and performance can be monitored by actively usingping messages or
passively record ICMP error messages like “destination unreachable”.

Among other methods like remote execution of commands which was mentioned
above, the communication protocol of a specialised monitoring client is usually realised
in a very specific implementation. Not the interoperability of those implementations is
the main topic, the focus typically lies on the lowest possible impact on the performance
of the involved monitored components, and a minimum network load and the possibility
to fit the communication method to the specific needs of dedicated monitoring systems
best (refer to Section2.3.4).

2.3.3 Overview about Monitoring Objects

At this point, the kind of real objects that are meant forsystem and networkmonitoring
in combination withfault and performancemonitoring are presented. With the term
“objects” every kind of things that can be monitored or that are involved in the process
of monitoring are described. See Table2.1on the next page for a brief overview.

Apart from the objects whose values can change, not mentioned in Table2.1on the
following page are all the objects that are static, for example CPU ID, CPU type, HDD
vendor, HDD size, RAM size, OS version, MAC address, etc., because the focus of
monitoring is on the objects that are applicable for finding out if something is working
as it should do or not. Although those object values are also retrievable and usable for
the monitoring system, they are more interesting for configuration management (see
Section1.2 on page4). Further on, the non-requesting of the values mentioned above
via the monitoring system also avoids network traffic.

2.3.4 Performance and Scalability

Theperformance of a system describes the ability how well it carries out an action or
pattern of behaviour [per05]. A statement regarding a system’s general performance is
often a relative value, either compared to another system or the practically measured
performance value compared with the theoretically expected one of the system. Only
based on the results of the system’s comparison mentioned above, a statement likepoor,
good, optimumregarding its performance can be made. Obviously, the performance
should always be the optimum, which usually means to use the full power of a system,
because of the reason not to give away the expensively purchased performance, e.g., of
a cluster computer.

4The SNMP standard consists of various Request for Comments (RFC), the details of the actual SNMP
version 3 can be found in RFC 3410 to 3418 at the Internet Engineering Task Force (IETF) website –
http://www.ietf.org/rfc/ .

Stefan Worm 11

http://www.ietf.org/rfc/

Chapter 2. Cluster Monitoring

classification objects states to be monitored
specific hard-
ware devices

wireless local area network
(WLAN) access point (AP)

working?

printer paper and toner fill level
computing centre temperature
rack temperature, water throughput, fan
network switch working?, performance

standard
computers

hard disk free capacity, S.M.A.R.T. values
(temperature, defect-free?)

CPU utilisation, temperature
RAM utilisation, defect-free?
network controller, network
connection

working?, performance (speed,
throughput, latency, bandwidth), IP
address, DNS name

graphics card temperature of the GPU
fan (mainboard, PSU, chas-
sis)

rotation

power supply unit supply voltage
Uninterruptible Power Sup-
ply (UPS)

charged?

mainboard, chassis temperature
software
processes

operating system uptime, load, processes, I/O, log files
(events, errors), user accounts, soft-
ware licences

services(HTTP, FTP, DB,
DNS, e-mail(POP, SMTP,
IMAP), file server (NFS))

availability, correct execution, where
appropriate: number of connections,
response time, queue, etc.

Table 2.1:Monitoring Objects and their States

The problem is that it is anything but trivial to manage the system in the way that it
exhibits optimum performance – as mentioned above the basis for this is monitoring.
For example if one of the many computing nodes of a cluster computer goes down for
some reason, the performance of it also does. To recognise such situations, a typical
approach is to monitor the node directly. As mentioned above in Section2.3.1 on
page10 there are various possibilities at what point of the system monitoring can be
performed.

One thing they all have in common is that various resources have to be used which
otherwise could have been used by the productive applications. Usually the highest
impact is seen at the system’s CPU and network interconnect. If no extra network in-
terconnect and no additional monitoring hardware are installed, the resources of the
productivity system have to be also used for monitoring tasks. It means that unfortu-
nately the process of monitoring also consumes a fraction of the overall performance
of the entire computing system.

12 Stefan Worm

2.3. Generation of Data

Therefore the goal is to keep the influence of the monitoring actions on the system’s
performance as low as possible. Especially the impact of the monitoring activities on
the system’s CPU and the network interconnect has to be minimised. In order to reach
that goal a careful selection has to be made of the objects thathave to bemonitored and
the objects thatcan bemonitored (refer to Table2.1on the preceding page). Sometimes
the more likely disadvantageous proceeding is made by trying to monitor everything
that is possible, because at first sight every object appears worth it.

Unfortunately this does not increase the chance of getting to know about an important
event. In contrast, without appropriate filtering and processing this approach lowers it,
because of the flooding of information the chance of getting to know about the really
important ones gets lower. The lower the number of objects that have to be monitored
the lower the performance impact. Furthermore the impact of the monitoring system
itself regarding its architecture, monitoring principles and rules, implementation and
especially the frequency of executing monitoring activities is also an issue that has to
be paid attention to [SDA+00].

From this it follows that there is a trade-off between the performance loss because of
the execution of monitoring functions and the risk of not getting to know if something
is wrong with the cluster, that therefore also could lead to a significant performance
loss.

Another issue that affects the performance of monitoring and therefore also of the
cluster computer is thescalability of the monitoring system. The scalability describes
the capability of a system being easily expandable or upgradeable on demand [sca05].
For a monitoring system it means that a small installation of a few monitored objects
could work well but for a huge number of objects like on a large cluster computer the
same monitoring approach could have that much influence on the productive system
that it needs a large fraction of its performance for monitoring only. This is of course
unacceptable, hence a monitoring system must be examined regarding its ability to
work well with a large number of monitored objects. A big influence on this problem
has the type of application that runs on the computer cluster and the period of time
between the execution of two monitoring actions.

For example when a distributed application5 runs on a cluster computer and has to
do a lot of communication work among each of its components, additionally there
is a monitoring application that shares the CPU and the network connection with the
distributed application, in a special case an uncoordinated execution of the two appli-
cations can lead to a significant slowdown of the productive application [PKP03]. Al-
though the outlined scenario above is a very special one it shows that the configuration
of the monitoring system is essential for the scalability of the system.

Another aspect of the scalability is the ability of the system that controls all monitor-
ing activity to handle a large amount of monitoring data. Based on the monitoring data
this system needs an appropriate network connection, an adequate data storage space

5 A distributed application, based on a distributed processing system (DPS), consists of several au-
tonomous parts which interact in order to cooperate to achieve an overall goal by coordinating their
activities and exchange information by means of communication systems. [SK87]

Stefan Worm 13

Chapter 2. Cluster Monitoring

and reasonable computation power or a distribution of the monitoring functionality it-
self or by using a load-balancing cluster (refer to Section1.1on page2).

2.4 Processing of Data

In the previous section the generation of monitoring information was discussed. In
this section common processing activities that can be performed on this information
are considered. Note that these processing functionalities are often integrated and are
performed in different places and at various stages.

2.4.1 Data Validation and Storage

First of all the generated monitoring information (Section2.3 on page10) has to pass
validation and plausibility tests to make sure the system has been monitored correctly.
This may be performed on different levels. When the monitoring information is exam-
ined, it is tested for example whether the identification number (ID) is the expected one
or if the time-stamp is valid. Invalid reports are discarded.

A different class of invalid values are those out of the defined range of a certain value
and which appear obviously incorrect for a human, for example if the CPU load is more
than 100 percent or the rotation of a fan is twice the value of its absolute maximum. The
origins of such values, e.g., a wrong measurement itself, are various and the treatment
of them depends on the analysis strategy. Those values can be generally ignored or they
can be stored and analysed further, depending on if they occur only once, occasionally
or frequently to extrapolate appropriate reactions towards this.

The monitoring data is stored in a database to have a current status of the system,
because it is used to access it for further analysis of the data later on, especially for
detecting component failures or for concerns of the management system. The data is
stored separately for real-time or historical monitoring reasons (refer to Section2.1on
page7) or the real-time data can be converted for historical monitoring by summarising
the data with a specific procedure to master its volume.

2.4.2 Combination of Monitoring Values

The combination describes the real analysis of the monitored data. Up to this point the
generated, validated and stored monitoring information are completely uninterpreted.
Not until the measured values are put into relation with the expected ones a statement
about the system’s status can be made.

A simple approach to monitoring is to find out if a system is healthy or not. But
without the definition what the “right” status is, this question cannot be answered. Thus,
it has to be defined what an “error” is.

14 Stefan Worm

2.4. Processing of Data

Events

The measured monitoring information can be classified into various types ofevents.

• alright/okay (no problems)

• unknown (no classification possible – the monitoring value cannot be classified
otherwise)

• warning

• critical (an error has occurred)

But the definition to which class an event belongs is the administrator’s concern. Not
before the administrator has defined what an expected value is and what an unexpected
value or behaviour of an object is, a statement regarding an event’s classification can be
made. Thus, this is the prerequisite to make intelligent appearing statements like“the
temperature of the CPU is too high”.

The conditions for the classification of the events can be different. The simplest way
is that the monitored value is compared with one or more predefined ranges in which it
fits best – resulting from this the classification is made. For example if the temperature
of the CPU is below valuex1 it is anokay event, above valuex1 and below valuey1 it
is awarning eventand above valuey1 it is acritical event.

In a more complex situation the measured value is additionally compared with pre-
ceding values of the object or with values of another object to perform the event clas-
sification. For example if the CPU temperature is between valuex1 andy1 (warning)
for z hours the administrator can define a rule that classifies this ascritical. Regarding
the comparison of values, it has to be paid attention that also the missing of the present
or preceding ones can lead to a reaction. This can be for example the classification as
a warningevent immediately after the missing of just one value or after some time if a
few are missing, or for example it can be classified as acritical event if the missing of
a value remains persistent, depending on the configuration.

But the previous situation can be expanded even more to model more complex situ-
ations. The reason for the further enhancements of the classification process is due to
special requirements.

First, the user of the monitoring system could demand the monitoring of very special
situations or combinations of events that are not scheduled in the normal monitoring
rules.

Second, wrong measured values should be excluded by comparing for example val-
ues that are directly or indirectly related to each other, such as the comparison of the
temperature of the CPUs, of the chassis and of the rack to eliminate situations like the
following one. The temperature of the rack rises, but the CPU and chassis temperatures
of all the computers in that rack stay almost the same. If only the rack’s temperature
would have been measured, a possible conclusion would have been that the cooling
system has a problem and the classification would have beencritical for instance. But
knowing about all temperature implies the more possible conclusion that there is only

Stefan Worm 15

Chapter 2. Cluster Monitoring

a problem with the measurement of the temperature of the rack, as the computer work
well, therefore the classification would bewarningonly.

Third, it is possible to make more general and abstract statements of the system’s
state by correlate several values to get just one value that for example expresses that
one computer is without any problems. If all measured objects of the computer indicate
that there are no problems at the moment, or the computer is accessible via the network,
the infrastructure (network switch, network connection), for instance, is alright as well.
The main reason for value summarisation is to ease the work of the administrator by
reducing the classification of events in eitherwarningor critical, because usually a lot
of effort is involved to handle these. Another possibility for a better classification is
the performing of additional monitoring actions to confirm or rebut a measured value
where qualified doubts about its validity exist. For instance, the additional measuring
of the CPU’s load can test if the possibly too high value of the CPU’s temperature is
caused by a lot of work the CPU is doing or because of a defective temperature sensor.

The monitoring system is able to perform this action because the monitoring module
for a specific value is already available on the system which is monitored. The monitor-
ing system can simply access this value if necessary – the execution of general purpose
commands in this context is not necessary by the monitoring system. Moreover its ex-
ecution also would not have been allowed, because of the separation of monitoring and
management tasks regarding a specific object (refer to Figure2.1on page9), the direct
control of it is part of the management only, refer to Figure2.2on the facing page. This
is also important for the field ofproactive managementwhich handles the execution of
commands on an object. It can be the installation of additional software like another
monitoring module (refer to Section1.2on page4 – areas of management) or just the
execution of a command that takes influence on the monitored object [CS92].

For instance a high load, almost 100 percent, on a specific computer that is not work-
ing on a cluster job may occur from time to time. The reason for this was figured out –
it was caused by a program that sometimes misbehaves and because of this consumes
almost all processing power for nothing. The newest version of this program is already
installed and there is no replacement for this program, which means that only the ef-
fects of it can be treated. Thus, a possible solution would be to implement that if a high
load on the specific computer occurs, an additional measuring verifies if it actually is
due to the program that sometimes misbehaves, if yes the process of the program is ter-
minated and it is restarted. The solution is suitable for this situation only and this kind
of solutions should be used only rarely, because there is a high danger that something
goes (automatically) wrong and it can cover up problems instead of solving them. To
encounter this risk, at least a notification of the administrator should be made after the
performing of the solution of the problem (refer to Section2.5– Dissemination, p.19).

Another use of the summarisation of events is the avoidance of event flooding. For
example if a network switch breaks down, only one event is generated and not one for
every single computer that is affected by this situation [LH02]. In addition to that, in
a situation where the measured value of an object wobbles slightly around a threshold
value in a fast manner, for example at the stage towarning, the generation of one event
for every exceeding of it is not desired.

16 Stefan Worm

2.4. Processing of Data

Object
Configuration;

Command
Execution

Request of
Monitoring
Information

Transmission
of Monitoring
Information

Information
Exchange

MonitoringManagement

Figure 2.2:Object that is Controlled and Monitored

The configuration of the scenarios described above requires the foregone modelling
of them by the administrator of the monitoring system as mentioned before, as well as
the support of the monitoring system for this. It means, that it has to have the possi-
bility for example to record the representation of the network regarding the situation
mentioned above where event flooding has to be avoided if just one component fails
but many others are affected.

The classification and combination of the monitoring information is essential to keep
a clear view of the system. The increasing level of abstraction associated with this ap-
proach prevents the users of such information from being overwhelmed by the consid-
erable volume of information. The separation of events and their associated reactions
is for reducing the complexity, so that it is not necessary to define appropriate reactions
on every single monitored value – the aggregation of them allows the definition of a set
of reactions for the event classes only. Any appropriate reaction to this is part of the
dissemination of the monitoring data (refer to Section2.5on page19).

Although the reactions are not directly on a single measured value but on an event
class the information, of what the reason for the event was, is put through to the object
or person which handles the reaction to it in the end.

Measurement Errors

The classification of the measured values in event classes is not without errors. Ideally
there is a measured value that really is a specified event type (e.g.warning) and it will
be classified accordingly. It is the same situation if a measured value does not belong

Stefan Worm 17

Chapter 2. Cluster Monitoring

to a specified event type and is not classified as this, too. This seems trivial, but it is
not. There are situations conceivable where this is not correct (see below). If the two
situations mentioned above occur, everything is alright and it is the way how it should
work (refer totrue positive andtrue negative in Table2.2).

Nevertheless, the following two situations are more important, because something
has gone wrong if they occur. Thefalse positive(also: typeI error orα error) is the
result of a classification which describes that the measured value is not of the specified
event type, but it is wrongly classified as this type. Thus, a measured value would be
classified as awarningalthough its true nature does not fulfil the requirements for the
event class. Further on, afalse negative(also: typeII error orβ error) classification
describes that the measured value is of the specified event type, but it is not classified
as this type. Thus, although for example a measured value should have been classified
as acritical event it has not been.

the true nature of the event
it is the specified type it is not the specified type

classifi-
cation of
the event

as the speci-
fied type

true positive false positive

not as the
specified type

false negative true negative

Table 2.2:Errors of Event Classification

The importance of the topic is to understand that a monitoring system itself can never
be without any errors, so it cannot be perfect. There are always errors that can occur,
mainly that a value is not classified as a special event although it is or vice versa. In
consequence this can lead to events that are not handled although they should and then
perhaps cause big trouble regarding the monitoring purpose. For example a bug in
the software of the I/O server can lead to a misbehaviour of it, so that it writes data
to the storage system which causes damage to the stored information and that needs
to be stopped immediately. In the other error situation it bothers the administrator
unnecessarily if a lot of false alarms occur.

The reasons for the wrong event classifications are mainly systematic errors like
insufficient classification rules, wrong measurement interpretation, general errors in the
software that processes the classification, etc. or random errors like in the measurement
itself and in the measurement data transmission [Kan02].

2.4.3 Filtering and Analysis

The filtering of the information is primarily for their reduction on all levels of the
monitoring system due to the amount of data that has to be generated, processed, dis-
seminated and presented. The filtering on a stage as early as possible of the monitoring
process reduces the work for the stages that follow. For example it reduces the CPU
and network influence on the cluster computer best by ascertaining only the actually
necessary data. Also the validation of information (refer to Section2.4.1on page14) is

18 Stefan Worm

2.5. Dissemination of Information

a kind of filtering that pursues the goal of information reduction, as well as the control
of the dissemination of information (refer to Section2.5), for example that the mon-
itoring reports are only sent to the person who is interested in them. The criteria on
which the filtering is performed, are defined as a part of the processing rules and are
also based on the requirements that are defined by the administrator of the monitoring
system.

Another important issue of the processing of the monitoring information is the anal-
ysis of them. The analysis can be the main purpose for example of a historical moni-
toring system (refer to Section2.1on page7) that usually has specialised functions for
this. But it can also be useful for a real-time monitoring system (refer to Section2.1on
page7) that can benefit, e.g., from the ability to determine the average or a mean aver-
age of particular status variables, forecasting faults in components and the possibility
to get some statistics that allow a clear view of the system’s state [MSS94]. Often, for
instance it is interesting to have statistics such as the total CPU usage, idle and busy
times, the amount of data sent, etc. Another use of the analysis can be the supervision
of the monitoring system and its process itself. For example with the help of the ad-
ministrator that classifies all false alarms on their occurrence, statements regarding the
system’s quality of the classification of events can be made.

2.5 Dissemination of Information

Monitoring reports that are the result of the monitoring information processing have to
be forwarded to different users of such information. The destination of such reports
may be human users, the management system, other monitoring objects or processing
entities. It is based on the approach to disseminate only the really necessary information
to avoid a big workload on the monitoring system and to ensure that the receiver of the
information gets only those that are interesting.

The following reactions on events are conceivable, based on the classification of
them (refer to Section2.4.2 on page15) and the principle of separating the event’s
classification by their reaction to it.

1. forwarding the information to other systems

• event log database

• further processing instances

• the management system

• presentation module (refer to Section2.6 on page21), change the object’s
status in the monitoring system if necessary – information available for
pulling

2. inform user or administrator – by pushing information

a) e-mail

Stefan Worm 19

Chapter 2. Cluster Monitoring

b) cellular phone text message (SMS)

c) instant messages (IM) or playing a sound file if the person is working at the
computer

d) phone call

A dissemination of the information to other systems always happens. Either the re-
ceiving objects and instances have rules to handle the event information or they simply
discard or ignore them. But the main task of the dissemination module is the handling
of the information that is sent directly to the human user. This is done only if the infor-
mation is of such importance that it needs the attention of a person. Which information,
respectively event classes are chosen for this is part of the configuration of the monitor-
ing rules, as mentioned above. An exemplary situation could be that if awarningevent
occurs an e-mail is sent and if acritical event occurs an SMS or IM is sent.

Further on, the dissemination module is responsible for the enforcement of the rules
that handle theWho? is informed, depending on theWhen?. It means, that only the
responsible person or a group of persons (Who?) will be informed at a certain time
(When?) to ensure that the person is really able to handle the information and that this
person is in duty or stand-by duty and not on holidays so that he or she can really deal
with it. It has to be ensured as well that at every time and for every event the right
destination is addressed. This is part of an escalation procedure in the handling of the
dissemination of monitoring reports.

The procedure ofescalatinga problem means that it is tried to counteract on a per-
ceived discrepancy, for example that a problem gets bigger and bigger if not treated and
that it is levelled up fromwarning to critical if it lasts to ensure the treatment of it for
instance. But if it is acritical event already, there are two possibilities to ensure that
treatment of it takes place. One is to define subclasses of an event class and to perform
different actions based on the level of sub-classification. Another one is to handle the
escalation of the treatment of monitoring events with the help of the dissemination pro-
cedure itself. In a reliable monitoring system it has to be ensured that there is a reaction
to an event that has occurred.

This can be done by the receiver of the event notification by sending an answer to the
monitoring system that the processing of the event is under way. The escalation of all
monitoring information finally end at a person, because if every preceding classification
and the therewith associated actions, like automated execution of programs that should
fix something, fail, a person is the last instance that can handle a problem. Thus, the
escalation of the treatment of a problem if it is disseminated to people is very important.

One possibility to do this is for example the rule that a person flags the problem he
or she starts working on. This can be done by sending a reply message on the received
e-mail, SMS, etc. or by marking the problem asworking onat the front-end of the
monitoring system. If the flagging does not happen after a period of time or the status
does not change although the problem is flagged, its treatment is further escalated.
Furthermore it is unaffected by the possibility to flag the problem as, e.g.,not solvable

20 Stefan Worm

2.6. Presentation of Results

until further noticeor evenbrokenif there are conditions that cannot be fulfilled at the
moment and that thereon no further escalation is carried out.

Finally, the escalation of the treatment of a problem means that another person which
can be the member of the team or someone from outside (horizontal escalation) is in-
formed, or a person that has more experience or the superior or even his or her superior
is informed (vertical escalation), or that it is tried to get through to a specific person
by means of different communication methods, for example e-mail first, text message
(SMS) second and automated phone call as the last resort.

2.6 Presentation of Results

The final step in monitoring is the presentation of the information as the result of the
preceding generation, collection, processing and dissemination of data.

The way in which this can be done depends on the physical device the administrator
is using, for example a computer display, a mobile phone display or a voice interac-
tion system. Additionally it also depends on the requirements of the user to choose the
appropriate presentation form. This can be a textual representation in a system con-
sole, short message or e-mail, as well as a graphical representation with the help of a
Graphical User Interface (GUI) or a specialised display system. Thus, the presentation
module has to control the amount of monitoring data, the levels of abstraction of such
information and the rate at which this information is presented.

The main focus of the presentation of information has to be on theusability of the
system which means the ability of convenient and practical use of something [MAS+03,
Nie04]. It means that the quantity of information, the detail of information and the time
interval in which the information is presented depends on the specific requirements of
the user and the presentation system and is essential for the success of the monitor-
ing strategy. Only if the user of such information is not overwhelmed by irrelevant
information a proper reaction to it is possible.

Thus, user-friendly techniques for instance at the presentation device computer mon-
itor is desirable, for example the grouping of the information for a better overview,
comprehensible event messages especially for e-mail or adjusted display format with
weighted lists (e.g. tag clouds [MHS06]). The use of weighted lists can also solve
a typical problem in information presentation, that is to find out which of thecritical
events is the most urgent one. It means, the system administrators “have to be able to
tell at a glance which of the “red” issues is the “reddest” and having the most impact”
[LH02, p. 519]. The condition on which a very urgent event is highlighted with a larger
font or the top position of a list, has to be an additional value which could be the po-
sition in the dependency hierarchy, a manually predefined one or a dynamic one such
as the number of events over a fixed period of time. Thus, events may be displayed in
theircausalrather thantemporalorder.

Nevertheless, especially for historical monitoring the use of two dimensional dia-
grams, with one axis representing a specific value and the other representing time is the
most common method to show the changes over time.

Stefan Worm 21

Chapter 2. Cluster Monitoring

2.7 Summary

In this chapter, the relation between management and monitoring has been shown. The
distinction between real-time monitoring and historical monitoring as the correlative of
fault management and performance management was made and the different require-
ments of both on a monitoring system were presented in detail.

Furthermore a model that describes the procedure of monitoring as the four areas
of generation, processing, dissemination and presentation of data was introduced and
explained in more detail.

In Section2.3“Generation of Data” the distinction between local monitoring and re-
mote monitoring was made, an overview about objects and their states was given, in ad-
dition to that some remarks were made about building up a preferably high-performance
and scalable system.

The Section2.4 “Processing of Data” discusses various types of classification ap-
proaches to classify the measured values in event categories for further processing, as
well as the appearance of measurement errors.

In the last two sections, first the dissemination of the monitoring results to the ob-
jects or people that use them with the help of an appropriate escalation procedure and
second the presentation of them on various devices with the focus on their usability was
discussed (refer to Section2.5on page19and Section2.6on the previous page).

Finally, this chapter has given a comprehensive overview about cluster monitoring in
general and about topics on which it has to be paid attention to, in particular to be able
to understand the requirements of such a system.

22 Stefan Worm

3 Chemnitz High-Performance
Linux Cluster (CHiC)

3.1 Introduction to the CHiC

The Chemnitz High-Performance Linux Cluster (CHiC)1 is a computer system, ac-
cording to the definition in Section1.1 on page2 and it serves as a capacity system
regarding the classification in Section1.1on page3. It is the successor of the Chemnitz
Linux Cluster (CLiC)2, a 528 node, single-CPU, self-made Beowulf3 system incorpo-
rating Intel Pentium III 800 MHz CPUs and Fast Ethernet interconnection network.
It is maintained by the university’s computing centre and it was rated on position 126
(Rmax = 143.3 GFlops4, Rpeak = 424.3 GFlops) of the November Top500 list [top00]
in the year 2000.

The CHiC installed in November 2006 under the supervision of the Computer Ar-
chitecture Group is a diskless 530 node system with dual-CPU (SMP architecture) and
dual-core AMD Opteron 2218 (2600 MHz) central processing units, which was build
by IBM and installed by Megware. Additional 8 input and output (I/O) nodes for the
connection to the 60 TB storage system, 12 visualisation nodes with high-end graphics
cards, two management and two login nodes are also part of the system. The intercon-
nection network for computation is a 4xSDR (10 Gb raw bandwidth) InfiniBand5 (IB)
network with Clos network topology [LNC98, Clo53] and an extra network for man-
agement according to the Intelligent Platform Management Interface (IPMI)6 standard
is realised with Gigabit Ethernet technology.

The CHiC project group consists of 23 professorships and institutes at the Chem-
nitz University of Technology with the intention to support research in the fields of
modelling and numeric simulation of problems, for example in quantum mechanics,
as well as real-time rendering of complex virtual reality scenes. The following com-
putational kernels, libraries and tools were identified to contribute to the majority
of the system’s load regarding a foregone survey: Basic Linear Algebra Subroutines
(BLAS), double-precision General Matrix Multiply (DGEMM), ABINIT [GBC+02],

1http://www.tu-chemnitz.de/chic/
2http://www.tu-chemnitz.de/urz/clic/
3http://www.beowulf.org/overview/
4GFlops = giga (109) floating point operations per second
5http://www.infinibandta.org/
6http://www.intel.com/design/servers/ipmi/

Stefan Worm 23

http://www.tu-chemnitz.de/chic/
http://www.tu-chemnitz.de/urz/clic/
http://www.beowulf.org/overview/
http://www.infinibandta.org/
http://www.intel.com/design/servers/ipmi/

Chapter 3. Chemnitz High-Performance Linux Cluster (CHiC)

Car-Parrinello Molecular Dynamics (CPMD)7, SIESTA8 and self-developed ones. The
communication interface is almost only the Message Passing Interface (MPI).

3.2 Experiences from the CLiC System

The Chemnitz Linux Cluster (CLiC) is the predecessor of the Chemnitz High-Perfor-
mance Linux Cluster (CHiC) as mentioned in Section3.1. Experiences from the long-
standing operation of the CLiC and therefore, resulting recommendations for the CHiC
will be described as follows.

The current infrastructure of the CLiC monitoring is based on the Big Brother9 mon-
itoring software – the following statements and conclusions are drawn from the use
of the Big Brother Version 2003. The monitoring of specific hardware values on the
computers with a Linux operating system is done by thelm_sensors 10 software in
combination with a Big Brother script that is executed by the system’scron daemon
according to the preset interval. This is not necessary at the CHiC, because every node
of the system has an Intelligent Platform Management Interface (IPMI) that takes over
this functionality.

At the CLiC the monitoring of the system’s fans was very error-prone. The status
reports from the monitoring system often did not match the real state (refer to Sec-
tion 2.4.2on page17). The reasons for this could not be clearly identified, but a faulty
mainboard chip is the most likely explanation for this. Due to the filtering of the air
within the air conditioning, no considerable dust has been deposited on the fans, this
may also be the reason that only few of them actually broke down. Because of a rack-
based air conditioning at the CHiC system and as a consequence of that an even more
cleaner environment, a prematurely breakdown of fans is not expected at the CHiC.
The future use of IPMI hardware monitoring, another monitoring software, and CPUs
that turn off before overheating should prevent the appearance of this problem at the
CHiC. The more so as a fan breakdown can be indirectly recognised by a temperature
increase, which is a feature that was not implemented in the CLiC, but it is conceivable
for an implementation in the CHiC.

Common practise in the monitoring of the CLiC was, that the responsible adminis-
trator looked for event e-mails every morning and from time to time during the day or
the person looked at the central status website of the monitoring system to see what
is the state of the system at the moment or what happened in the past. Other alerting
mechanisms besides e-mail like mentioned in Section2.5on page19were not used.

Mechanisms that are able to complement the e-mail approach like SMS or automated
phone calls may be viewed as useful, but only if they are set up carefully so that they
do not annoy during working hours, as well as during stand-by duty. Also helpful
for the configuration of the alerting as well as for the escalation procedure (refer to

7http://www.cpmd.org
8http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
9http://www.bb4.org/

10http://www.lm-sensors.org/

24 Stefan Worm

http://www.cpmd.org
http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
http://www.bb4.org/
http://www.lm-sensors.org/

3.2. Experiences from the CLiC System

Section2.5on page20) is the interconnection with a groupware system [Got02, Mur00]
or a similar system, which contains holidays, meetings, working hours, even the lunch
break schedule if necessary, on which a decision can be madeWho?, When?andHow?
a person is contacted (refer to Figure3.1). This will help to prevent the configuration of
those anyhow existing information at a second place which would originate only more
work and the risk of a misconfiguration.

6 a.m. - 8 a.m.

12 a.m. - 1 p.m.

8 a.m. - 12 a.m.

3 p.m. - 5 p.m.

1 p.m. - 3 p.m.

Paul AlexAnne

lunchbreak

12 p.m. - 6 a.m.

5 p.m. - 12 p.m.

 working

holi-
day

 stand-by
 duty

 stand-by
 duty

 meeting

 out of
 duty

 out of
 duty

...

...

...

...

...

...

...

...

available via
e-mail

not available
for any
communication

available via
phone calls
only

available via
SMS - only if
urgent
(escalation)

available via
SMS

 working

 working

 working

 working

Figure 3.1:Exemplary Timetable as Basis for Alerting Methods

One problem with the CLiC monitoring system was the insufficient filtering of less
important event messages and the tagging of really important ones. This led to the
generation of up to several hundred e-mails if a central component broke down (refer
to Section2.4.2on page16), whereas usually only around five e-mails occurred during
the day. Moreover, sometimes the administrator did not pay appropriate attention to a
single possibly very important incoming e-mail, due to the large number of less impor-
tant messages that too often contained only information that not necessarily require a
person’s attention.

Another thing that can be improved based on the experiences of the CLiC system
is the amount of monitoring information that was sent. The problem is that too many
messages weaken the attention of the administrator for the really important ones. It
also consumes the administrator’s time with things that not necessarily have to be done
immediately and therefore a notification has not necessarily to be generated for this.
In this situation the regular survey of the system’s status for example several times a
day or perhaps only now and then during the week, depending on the importance of
the system that is monitored, may be enough for the administrator’s check of minor
important events.

Stefan Worm 25

Chapter 3. Chemnitz High-Performance Linux Cluster (CHiC)

Three main approaches need to be considered for this. One is that also minor impor-
tant events and messages are sent via e-mail to the administrator and that in addition to
that major important ones are sent also via another communication method like SMS.
Second, only e-mails are used and major important messages are flagged with a cus-
tom mail header for example with the priority class ”high“ which can be interpreted
adequately by the e-mail client. The third approach is topushonly the really impor-
tant information to the administrator and let the minor important ones bepulled by
him or her. Which one of them, perhaps slightly modified or even another approach
should be chosen is mainly an issue of the dissemination and escalation procedure (re-
fer to Section2.5on page19), as well as of the administration policy and the person’s
preferences.

One approach to prevent false event messages (refer to Section2.4.2on page17) is
the use of some kind of maintenance support functionality like the registration of the
maintenance schedules. With this, the administrator would be able to see if an event
is caused by something to which it has to be paid attention to or because of a planned
outage for maintenance. Otherwise the administrator would not be bothered at all if no
message is sent out because of the monitoring system’s knowledge about the service
plan. The installation of additional functionality whereby a person can advert his or her
work on the elimination of a problem is not necessary at the CHiC system because the
operation and maintenance is not accomplished by a huge staff but by a small group of
people, therefore the installation of such a system would not justify the additional work
compared with the expected benefit from this.

Disadvantages of the Big Brother monitoring system that was used at the CLiC sys-
tem were, among others, the following ones. The system’s abilities for historical mon-
itoring (refer to Section2.1 on page7) was very limited and not very meaningful,
moreover the information was not very helpful in trend observation. In addition to that
the reporting of events, especially in e-mails was not very intuitive. The generated mes-
sages contained only very short and cryptic text that needed a person trained in reading
them. This stands in contrast to the recommendations of an easy comprehensible and
user friendly content (refer to Section2.6 on page21), especially the source of the
information and the rule of processing that led to this message should be given – this
counts all the more for a replacement administrator, who would gladly take on some
help additionally provided by the system like the proposal of possible solutions regard-
ing a specific event or if it would have executed a preceding test (refer to Section2.4.2
on page16) to present a perimeter of the problem. Nonetheless, the creation of rules
for this is very complex and it has to be paid attention that a wrong configuration of it
or an error in its execution can be misleading for the administrator.

An example for a misconfiguration of the monitoring system at the CLiC is, that
for a specific computer a problem with the Network Time Protocol (NTP) service was
indicated because it could not be verified if the NTP daemon runs or works correctly.
But the reason for this was that the node was very busy with computations and the
monitoring plugin that checks the NTP availability could not be executed in time. Thus,
the problem indicated by the monitoring application was not the actual one. This could
have been prevented by a more careful configuration, for example by interpreting only

26 Stefan Worm

3.2. Experiences from the CLiC System

more than one or two missing measured values as a problem if, apart from that, the
other values are in a proper state. A disadvantage of the Big Brother monitoring system
was the lack of a possibility to schedule the monitoring tasks within a specific period. It
for example always started to check the connectivity (ping) of a computer exactly every
five minutes for all computers which led to a high and short network burst instead of
distributing this action over a certain period of time for a constant but low network load.

In addition to that, another disadvantage of Big Brother was the huge amount of files
that had to be handled by the suite. Especially at the very beginning of the project this
led to the effect that the creation of a lot of single log files caused the Linux system to
run out of inodes.

monitoring
priority:

high

medium

low
login

core switch management

rack

cluster nodes

storage

leaf switch

Figure 3.2:Monitoring of the Infrastructure with Corresponding Importance

In the following paragraph several considerations regarding the CHiC’s monitoring
approach will be shown.

First, the monitoring system has to be able to cooperate with miscellaneous com-
ponents of the cluster system which means it has to be easily expandable on demand.
For instance, an interaction of the batch system with the monitoring system is essen-
tial, because both benefit from the information of one another. In the situation where
the batch system is updated by the monitoring system if something is wrong, the batch
system can exclude a node from getting new work. Or if the batch system gets to know
about irregularities over its application feedback mechanism, it can update the moni-
toring system so that it can process the information and induce appropriate actions. For
example the Portable Batch System (PBS)11 of the CLiC sometimes stopped on a node
for some reason and therefore also the processing on it, but the monitoring application
did not recognise this and instead indicated a proper state further on.

11http://www.openpbs.org/

Stefan Worm 27

http://www.openpbs.org/

Chapter 3. Chemnitz High-Performance Linux Cluster (CHiC)

In addition to that the monitoring of the critical infrastructure of the cluster is very
important, which includes the monitoring of the I/O servers, storage system, air condi-
tioning, login servers, network switches and more. Although some infrastructure like
the storage system, network switches and racks bring their own monitoring function-
ality, leveraging SNMP or even own mechanisms for alerting, mostly via e-mail, it is
essential that those components are also connected to the overall monitoring system due
to the integrated approach of management (refer to Section1.2on page4) and therefore
the monitoring system (refer to Section2.1on page7). Because only if the breakdown
of a disk in a RAID system or irregularities at a high-availability system (refer to Sec-
tion 1.1on page2) are properly processed by an overall monitoring system, instead of
the use of special purpose mechanisms and approaches, an efficient monitoring can be
assured. In the end, the precise monitoring of every single compute node of a cluster is
less important than the monitoring of the central infrastructure components, because a
problem at this point may affect everything else on the cluster system, whereas a prob-
lem at one or a few compute nodes may only affect limited computation jobs or even
nothing if the node is anyway idle at the occurrence of an error (refer to Figure3.2on
the previous page).

Another aspect that has to be paid attention to on a monitoring system for the CHiC
is the ability to present the status information in a meaningful and clear way, because
on a system with so many nodes there is always something that is not in a proper state.
Furthermore, there may be several nodes that are in a specific state and may remain in it
for some time, for instance until the exchange hardware has arrived the node is indicated
asoffline for maintenanceinstead ofcritical – host unreachable. In Big Brother this
led to the effect, that the overview website of the CLiC was very colourful, because
Big Brother indicates the states of an object in several colours like green, yellow, red,
purple, etc. but the sorting criterion was always the name of a monitored object and
so the really interesting states were mixed with other ones and that was not useful
to quickly find out what was wrong. A possibility to group and filter the information
would simplify the work with the monitoring system in the way that it should be able to
sort for example the most urgent events at the top of a table followed by the remaining
events in ascending order.

Although the use of an extra network for management and monitoring reasons is a
good idea, because it reduces the impact on the productive network connection, it has
to be paid attention to the fact that the monitoring of the reachability of a system over
the management network does not proof the reachability of it through the productive
network. So additional tests have to be made, like the approach that was used at the
CLiC: a node that has currently no work to do is temporarily converted into a monitor-
ing assistant by using it for connectivity tests over the productive network.

Another possibility to improve the quality of the event messages is to introduce a
separate rating system that handles the administrator’s feedback regarding an event
message with the goal to reduce the handling of unimportant or uninteresting messages
for the administrator. Because the monitoring system cannot find this out for itself,
it requires the administrator’s feedback. This approach is very interesting, because
it relieves the administrator from wasting time making changes in the configuration

28 Stefan Worm

3.3. Summary

files that may not be very intuitive, every time some little change has to be made.
But the problem is, that it is not trivial to set up a system that is able to appraise the
administrator’s feedback to transform it into a format which is capable to be executed
by the monitoring system.

The monitoring must be easily configurable, as seen at the CLiC system, a too com-
plicated system is not suitable for the continuous change of the configuration that has
to be performed at a system of this size.

Also observed at the CLiC was the effect, that a self-developed monitoring expansion
module that performed several specific tests in a row could not be supervised regarding
what it is doing at the moment and in which state it is in. In addition to that it checked
too many objects too often, for example the CLiC system had trouble with the outage
of the disks, the reason for this may have been the execution of extensive bad block test
of the hard disks.

3.3 Summary

In this chapter, the Chemnitz High-Performance Linux Cluster (CHiC) and its prede-
cessor the Chemnitz Linux Cluster (CLiC) were presented. Regarding those systems,
information of the construction and of the purpose of the systems were given (refer to
Section3.1on page23).

Furthermore, experiences made at the CLiC system were discussed and it is consid-
ered how the operation of the CHiC could be improved based on these information. For
this, advantages and disadvantages from the operation of the CLiC were analysed and
recommendations were derived from this as well as from the conclusions of a generic
monitoring approach (refer to Section2.2on page9).

Stefan Worm 29

4 Evaluation of Monitoring
Approaches

In this chapter the monitoring software that was chosen for the CHiC shall be consid-
ered as well as the reasons that led to this decision. Furthermore, a short description
and comparison of other monitoring applications that could have been used also for the
CHiC shall be given.

Based on this, a monitoring script is presented that adds new functionality, to the
monitoring application. Further on, it was paid attention to the fact that this new piece
of software fits into the desired monitoring strategy and infrastructure.

4.1 Selection of a Monitoring Application

In the area of monitoring software a lot of different applications are established. They
all have different features, depending on what kind of monitoring they are focused on
(refer to Section1.2on page4and Section2.1on page7). There are products, that focus
on the network which means that they can easily monitor the network infrastructure,
e.g., switches, routers, etc., and they usually have a good SNMP support. Another kind
of software is explicitly made for performing a specific task, for example monitoring a
computer cluster or very specific hardware or software components.

There are also products that have a general focus on a possibly wide availability
for example in heterogeneous environments for Unix, Linux, Windows, Mac OS, etc.,
as well as a support for very different platforms such as standard computers with IA-
32/IA-64 or PowerPC (PPC), proprietary hardware or software (storage systems, access
control systems, air conditioning, embedded devices, micro-controllers and so on). Fur-
ther on, they all have different strengths and weaknesses in several areas, for example
in maintenance, alerting mechanisms, use formission criticalinfrastructure, etc. And
finally a differentiation regarding proprietary software, freeware and open source soft-
ware could be made.

During the course of this chapter, proprietary software products such as the moni-
toring components of large suites like HP OpenView1 (NNM2) and IBM Tivoli3 (Net-
View4) are not considered further. The advantages of this kind of software which are

1OpenView Monitoring:http://openview.hp.com/solutions/nsm/
2Network Node Manager:http://openview.hp.com/products/nnm/
3Tivoli Monitoring: http://www.ibm.com/software/tivoli/products/monitor/
4NetView: http://www.ibm.com/software/tivoli/products/netview/

Stefan Worm 31

http://openview.hp.com/solutions/nsm/
http://openview.hp.com/products/nnm/
http://www.ibm.com/software/tivoli/products/monitor/
http://www.ibm.com/software/tivoli/products/netview/

Chapter 4. Evaluation of Monitoring Approaches

primarily a rich function set and a seamless integration in the existing workflow or in-
frastructure of an institution do not compensate the disadvantages of them regarding the
use for the CHiC. These disadvantages are first of all a high complexity of the whole
system that results in expensive customising and a comparatively deep know-how that
is necessary for operation and the development of special extensions, as well as the
high purchase price and partially obligatory vendor support.

The further considerations shall be restricted on free software that is widely used
for monitoring tasks, and in addition to that software that is used at the CLiC and
the university’s computing centre. The following section gives a short overview about
software that could be suitable for the CHiC, regarding an as far as possible generic
approach that allows the easy integration of all the monitoring objects into one solution
without having multiple applications for similar tasks side by side.

If not mentioned otherwise, only a short introduction and significant advantages or
disadvantages are given for every software to clarify the reasons that led to the decision
for one or another monitoring software for the CHiC. The selection of the software
can be made regardless of existing applications at the university’s computing centre
and CLiC, which are Big Brother 2003, Nagios 2.6 and Network Node Manager of
HP OpenView 6.2, because the CHiC is a self-contained system which is going to be
arranged preferably independent from other systems.

Big Brother The monitoring software Big Brother5 was used for the CLiC system
and it is still in use for monitoring the infrastructure of the university’s computing
centre. The software is not state of the art any longer. Some design aspects, like
the way of using shell scripts means a lot of maintenance work [Sel00]. For more
aspects regarding the use of Big Brother refer to Section3.2on page24.

Another aspect that keeps this software from being deployed at the CHiC is the
ambiguous licence situation of it for non-commercial users and that there is no
ongoing development. Still, this software was analysed because it would have
been a good idea to use software that is already used in the institution but because
of its disadvantages and that there is no need to use the same software as the
computing centre as described above, the application was discarded at an early
stage of the evaluation of monitoring software.

Big Sister A very close alternative would have been Big Sister6. It is still being devel-
oped, open source and compatible to Big Brother [CWSC01], but it also means
that the weaknesses of the design, for example the inability to efficiently paral-
lelise the checks, are included too. In addition to that, the existence of only a few
plugins and the small dissemination of it in combination with a comparatively
small community, led to the decision to discard Big Sister for further analysis at
this point.

5http://www.bb4.org/
6http://www.bigsister.ch/

32 Stefan Worm

http://www.bb4.org/
http://www.bigsister.ch/

4.1. Selection of a Monitoring Application

OpenNMS The open source network management system OpenNMS7 is an applica-
tion that has its main focus on the management of networks, which can be seen at
the excellent SNMP support. The first impression of this program is quite good,
but there are some disadvantages [O’D02, Bal05]. It is the most complex soft-
ware of the ones presented here, the design is based on Java and XML which is
among other reasons causal for the difficulties to get the system running. Remote
and passive monitoring capabilities are relatively new features, and in addition to
that, the possibility for an easy use of plugins for one’s specific needs is based on
the Nagios plugin infrastructure.

To sum up, OpenNMS is a very powerful program for managing and monitoring
a network of components, if supporting SNMP. The use of additional software
that can monitor specific values is only supported by an indirection via Nagios
plugins. After all, OpenNMS will not be analysed further regarding a possible
use at the CHiC.

Ganglia An application that has been explicitly developed for the use in cluster com-
puters is Ganglia8. The software architecture consists of a daemon which is in-
stalled on each computer that shall be monitored. The daemon gains the desired
information and sends status reports to another daemon on a server which collects
and stores the information gained by the client daemons.

The application has some very good features, for example a very lightweight data
exchange protocol between the daemons [SKMC03] and an easy installation and
configuration. But there are some disadvantages, for instance the documentation
is very short. A resulting problem from this is, that neither there nor in other
documentations9 for Ganglia an option for a notification of the administrator in
case of a problem can be found – alas this is an important component for an
integrated monitoring system with real-time monitoring (refer to Section2.1 on
page7). Another disadvantage is that there is no possibility for modelling the
infrastructure in-depth and therefore also no option for modelling dependencies
between the components. There is an automatic discovery feature that is quite
functional, but it has one vital handicap – it does not recognise computers that
are already down right from the beginning because it has no information about
the infrastructure in advance as mentioned above.

Another aspect which is a two-edged sword is the procedure that every monitor-
ing client briefs its current state via multicast in the network at default settings.
On the one hand, this has the advantage that the status of the whole network can
be seen at every node and not just on the monitoring server. On the other hand,
this behaviour only scale up to a certain limit of cluster nodes – as the developers
of Ganglia confess themselves (refer to [MCC04]). Furthermore, for a cluster
computer environment this feature is definitely not necessary.

7http://www.opennms.org/
8http://ganglia.sourceforge.net/
9http://www.ibm.com/collaboration/wiki/display/WikiPtype/ganglia

Stefan Worm 33

http://www.opennms.org/
http://ganglia.sourceforge.net/
http://www.ibm.com/collaboration/wiki/display/WikiPtype/ganglia

Chapter 4. Evaluation of Monitoring Approaches

Although the application was among the last choices, not only because of its wide
use in other clusters all over the world, it was not chosen for the CHiC because
of the disadvantages mentioned above.

Nagios The software Nagios10 is basically just a framework which have to be ex-
tended by various kinds of features, plugins and extensions, to set up a solution
that fits one’s needs best. It is the last one that should be mentioned here and to
anticipate the decision, it is the one that was chosen for the use at the CHiC. It
is an application that also has some negative aspects, for example a somewhat
higher network load compared to other software and the design issue that it starts
a single process for every task that it has to accomplish, leading to a higher load
on the monitoring server. Nevertheless, it is the one that showed the most solid
performance in various important disciplines.

First of all, the Nagios open source software is only a monitoring framework
which is delivered with various extensions that makes it a very generic appli-
cation that can monitor notionally everything. For example the Nagios Remote
Plugins Executor (NRPE) add-on allows, the execution of software on a remote
machine and beyond network boarders. In addition to that the Nagios Service
Check Acceptor (NSCA) add-on allows passive checks that work in a trap-based
style. On top of that the flexibility that comes with the plugin concept makes
Nagios capable of monitoring network devices with and without SNMP, as well
as standard computer clients and special hardware and software. For standard
requirements, plugins are included, for everything else, the large and active com-
munity provides a lot of additional plugins that fulfil most needs. In the end, be-
cause of the open plugin application programming interface (API) and the good
and comprehensive documentation [Gal06] it is possible to add necessary func-
tionality.

Furthermore, compared to other software the notification and alerting functional-
ity is very good as well as the graphical report and visualisation functions which
are feasible for a basic recognition of trends and the historical performance of an
entity – it can be even improved by additional tools such as Multi Router Traffic
Grapher (MRTG).

Facts about Nagios that are important for this work are given above, a further ex-
tensive introduction of the detailed functioning, features, installation, etc. shall
be refrained from at this point – for this refer to [Gal06], [Fri02] and [Har03].
Moreover, a general, only matter-of-fact comparison of Ganglia, Nagios and var-
ious other applications that does not contain a rating of the software, but which
compares only specific aspects and features, can be found in [GWB+04].

The monitoring applications shown above are only a selection from plenty of soft-
ware that is similar to those, but which was not examined in-depth, for various reasons.
For example they are not developed further, the software is a one-man project only,

10http://www.nagios.org/

34 Stefan Worm

http://www.nagios.org/

4.1. Selection of a Monitoring Application

the latest release is too old, there is no community for it, important functions are miss-
ing, the information on the website appears outdated, respectively a documentation
is missing. In alphabetic order these are: Angel Network Monitoring11, CluMon12,
GroundWork13, Lemon14, Midas15, Mon16, Munin17, Performance Co-Pilot18, PIKT19,
Spong20, Supermon21 and Zenoss22.

At the end and as glanced at quickly above, Nagios was chosen for the CHiC based
on the selection of various monitoring applications and the considerations that were
made regarding them. Due to its powerful framework design the implementation of
various functions that extend the basic monitoring abilities can be carried out easily.
Which kinds of specialised plugins and functions could be realised, will be discussed
next.

One feature of a monitoring application that has to be paid attention to, are the abil-
ities for historical monitoring(refer to Section2.1 on page8). Also known as trend
or performance monitoring this function could be necessary to watch thetrend of the
system’s capacity utilisation – usually this is done to detect bottlenecks in advance and
to gain information for the expansion of a system. For the CHiC, no upgrades are
planned and a capacity overload will be prevented with the help of a batch system.
Thus, regarding this topic, an extensive monitoring of the system to gain those data
is not mandatory. For example, information regarding the system’s usage can also be
gained via the load of the batch system or indirectly via the analysis of anyway avail-
ablereal-time monitoring data(refer to Section2.1on page7) – an active and because
of its nature performance reducing monitoring, only because of this, would be a waste
of resources.

Another reason for historical monitoring, the accounting of the system’s usage, is
not the main focus at the CHiC, because at the first expansion stage only research
inside the university shall be performed. If the CHiC should some day be included into
a grid infrastructure, monitoring because of accounting reasons does not have to be
done at the stage of the system’s monitoring software, because for example the Globus
Toolkit since version 4.0 does contain the SweGrid Accounting System (SGAS) which
is responsible for this.

Furthermore, at a late stage of expansion the system could be extended to support the
users in analysing the possibly good performance of their applications. For the support
and also for the training of the users, information, regarding the enhancement of their

11http://www.paganini.net/index.cgi/angel/
12http://clumon.ncsa.uiuc.edu/
13http://groundworkopensource.com/
14http://lemon.web.cern.ch/
15http://midas-nms.sourceforge.net/
16http://www.kernel.org/software/mon/
17http://munin.projects.linpro.no/
18http://oss.sgi.com/projects/pcp/
19http://pikt.org/
20http://spong.sourceforge.net/
21http://supermon.sourceforge.net/
22http://www.zenoss.com/

Stefan Worm 35

http://www.paganini.net/index.cgi/angel/
http://clumon.ncsa.uiuc.edu/
http://groundworkopensource.com/
http://lemon.web.cern.ch/
http://midas-nms.sourceforge.net/
http://www.kernel.org/software/mon/
http://munin.projects.linpro.no/
http://oss.sgi.com/projects/pcp/
http://pikt.org/
http://spong.sourceforge.net/
http://supermon.sourceforge.net/
http://www.zenoss.com/

Chapter 4. Evaluation of Monitoring Approaches

programs that run on the cluster, for example data regarding the cache misses and the
time that was spent with waiting, could be gained by additional monitoring modules.
Although, this is a very useful feature, it is not the primary concern of the monitoring of
the cluster. If this option is required, specialised tools (e.g. Paradyn23) that are usually
started via the batch system can be used for this, but these are not the main focus of a
generic monitoring system.

Nevertheless, additional monitoring time and effort can be spent during times when
a cluster node is idle. In combination with the batch system that knows about these
situations, some tests could be performed. For example at the CLiC system, hard drive
checks were performed, but they are not necessary at the CHiC, because the compute
nodes are diskless ones. A useful check on an idle computer could be the test of the
system’s memory as well as for example the check of the behaviour of specific compo-
nents. This could be for instance the throughput of the network connections, primarily
the InfiniBand (refer to Section4.3on page38) but also the Gigabit Ethernet manage-
ment connection is conceivable. If there are a minimum of two idle nodes, fitness tests
of involved network hardware could be made which means that the speed and the error
rate could be measured. First of all, physical damages from the installation and those
that could arise from the maintenance can be discovered, as well as the slow deteriora-
tion of performance caused for example by the ageing of the components which could
be discovered by the analysis of the monitoring data over time.

Finally, a main goal of the efforts regarding monitoring is the creation of a powerful
system with which the users can solve their problems as good as possible. This can
be done by making and keeping the system as fast as possible, which does work only
if everything is in good condition – this is the issue of the monitoring system. The
worst performance, a single component can have, is if it does not work at all, so the
downtime of it must be as short as possible as well as the downtime of the whole
cluster, if a major incident has happened. Although, this is not very comfortable, the
consequences are not as significant as on a high-availability system, for example in a
commercial environment. Nevertheless, the downtime of for example the whole cluster
should be minimised, because the depreciation of it is distinctive and can be calculated
as follows.

The pure purchase price of the cluster was2, 640, 000 Euro. If an operation period
of 5 years is assumed,

2, 640, 000 Euro

5 years · 365 days · 24 hours
≈ 60 Euro/hour

in terms of figures one hour mathematically costs about60 Euro. In addition to that,
also singular costs for the reconstruction of the room (≈ 1, 800, 000 Euro), running
expenses for the maintenance staff (one administrator for one year:≈ 45, 000Euro),
electricity24 (maximum power consumption:≈ 200 kW) and air conditioning (addi-
tional200 kW) have to be considered,

23http://www.paradyn.org/
24energy price: roughly estimated 0.10 Euro/kWh

36 Stefan Worm

http://www.paradyn.org/

4.2. Nagios and the Plugin Topology

1, 800, 000 Euro

5y · 365d · 24h
+

45, 000 Euro

365d · 24h
+ 2 · 200 kW · 0.10 Euro/kWh

≈ 41.10 Euro/hour + 5.14 Euro/hour + 40.00 Euro/hour ≈ 86 Euro/hour

so that the additional costs are about86 Euro/hour.
Thus, the total expenses are60 Euro/hour + 86 Euro/hour = 146 Euro/hour.

That means in total, every day, the cluster cannot be used for scientific calculations,
costs in terms of figures146 Euro/h · 24 h = 3504 Euro/day25, so that the outage of
the whole cluster or just a few nodes should be as short as possible with the help of the
appropriate monitoring strategy.

4.2 Nagios and the Plugin Topology

As the monitoring platform for the cluster, Nagios was chosen (refer to Section4.1on
page34), hence a short introduction into the topology of Nagios 2.6 shall be given for
an easier understanding of the decisions regarding the developed software.

The simplest way of monitoring is, if the monitoring server actively checks the mon-
itoring client directly via a network connection – for this, the server sends a request
message to the client which sends an answer and finally the server processes the answer.
Hereupon the server performs an adequate reaction to it which can be also caused by
a missing answer, depending on the configuration of the monitoring application (refer
to Section2.5 on page19). With this approach of monitoring, for example, it can be
checked if the client is up (check_ping) or if a certain service is working (check_ssh,
check_mail, etc.). The advantage is that nothing at the configuration of the client has to
be changed and if the administrator is interested only in monitoring values that can be
gained via the network, the setup of such an approach can be performed very easily.

If the requirements regarding what has to be known about a client are more demand-
ing, for example the CPU temperature or the system’s load, the approach from above
has to be expanded. For this, on the specific client that has to be monitored, an addi-
tional service has to be set up which can gain the necessary information. It works in
the way that on the monitored computer the Nagios Remote Plugins Executor (NRPE)
is installed, which is responsible for the communication with the monitoring server
similar to the description above as well as for gaining the information by executing
plugins (check_temperature, check_load). Hence, the NRPE add-on, that was tested
and utilised in version 2.5.2, works as an agent in between the request of the monitor-
ing server and the location from where the monitoring information is required. Because
it is possible for NRPE to execute any kind of plugin, even another NRPE instance, this
software can be used not only as a local, but also as a remote gateway which can be even
multi-level. It means, in a situation where a device that should be monitored could not
be accessed directly by the monitoring server, for example because the client is in the
scope of another network, NRPE could be used as gateway if it is installed on a com-
puter that is accessible from both networks, so that the monitoring server can check the

253504 Euro are around $4555 (1 Euro≈ 1.30 USD, Jan. 2007)

Stefan Worm 37

Chapter 4. Evaluation of Monitoring Approaches

clients health status by performing acheck_pingcommand via NRPE. The monitor-
ing server would send a request for executing a check, if a specific computer is alive,
to the computer, on which the NRPE service is running, that executes thecheck_ping
command by proxy for the monitoring server and sends the result back to it.

The third main possibility of the server for gaining monitoring information is to
“perform” passive checks. It means, the server is configured in the way that it is waiting
for a status report from a specific device or for a specific value instead of initiating an
active check itself. If the information of a passive check, which is also called a trap,
reaches the server it is processed like a response to an active check. Depending on
the server’s configuration, the absence of a message within a specific period of time
either means for the server that everything is alright or that it is not. For Nagios, the
add-on NSCA (Nagios Service Check Acceptor) exists which runs as a daemon on
the monitoring server. It receives the incoming passive values and passes them on to
the core of the Nagios application which further processes them. In order that no one
can send possibly faked information to the server, the connection between the NSCA
daemon and the NSCA client can be weakly (XOR) or strongly encrypted (e.g. DES,
TDES, AES, Twofish, Serpent) – because of the additional load that every encryption
generates it should be carefully considered which level of security is necessary in a
specific situation. Sending monitoring status information to the server in the Nagios
context means to pass the information in a specified format to thesend_nsca client
on the computer that is monitored which delivers them to the NSCA daemon on the
monitoring server. During this work, version 2.6 of NSCA was tested and utilised.

Last but not least a few words regarding the configuration of Nagios – some examples
can be seen in AppendixB on page73. The text-based files are self-explaining as far
as possible, the configuration of the hosts and services is straightforward, but some
attention has to be paid to the definition of the check commands, depending on the
intention to use a check command directly or via NRPE a different argument passing
has to be considered (refer to SectionB.2and SectionB.3on page76). Furthermore, for
the passive monitoring with NSCA it is crucial that the value names that are passed on
to Nagios are the same as the service names for what Nagios is expecting information,
otherwise Nagios will reject them without notice. Because of the missing response
regarding the nature of the design it is hard to detect misbehaviours concerning this
matter.

4.3 The InfiniBand Interconnection Network

Due to the usage of InfiniBand at the CHiC system and that an enhancement of its
monitoring approach is presented in Section4.4.1on page40 which is based on this
technology, some basic information about InfiniBand are given below.

38 Stefan Worm

4.3. The InfiniBand Interconnection Network

4.3.1 Introduction to Design and Features

As the main interconnection network the InfiniBand Architecture (IBA) is used. Al-
though, it was developed as a point-to-point bidirectional high-speed interconnect for
inter-server and server-I/O communication in standard computing centres, in the ma-
jority of cases it is nowadays used in High-Performance Computing (HPC) systems.

The design goal of the InfiniBand Trade Association26 (IBTA) was a system that
offers a possibly high “reliability, availability, performance, and scalability necessary
for present and future server systems” [Pfi01]. The result was a standard [Inf04] that
supports symmetric full-duplex connection from 2.5 Gb/s gross (single data rate). Very
common in InfiniBand installations is a 4x 2.5 Gb/s = 10 Gb/s raw bandwidth connec-
tion which results in a usable data rate of a maximum of 8 Gb/s.

Important features of InfiniBand are Remote Direct Memory Access (RDMA), mes-
sage send/receive within the user space and the support of standard bus systems like
PCI-X or PCIe [Hoe05, CWP03]. The main reason for the use at the CHiC was the
comparably low price regarding the provided bandwidth and latency.

4.3.2 Constitution of the Port Counters

The InfiniBand network interface, that is called Host Channel Adapter (HCA), offers
a set of values that can be monitored. In general they are calledport countersbut
depending on the characteristic that should be accentuated it can also be referred to
them asperformance counters, health countersor error counters.

A selection of the most interesting port counters that are also important for the spe-
cific monitoring of the HCA regarding the InfiniBand standard [Inf04] are presented in
Table4.1on the following page. They are collected separately for every single port, of
which a Host Channel Adapter can have multiple ones.

In addition to the counters in Table4.1on the next page, the InfiniBand HCA also of-
fers the values PortXmitData (transmitted data in byte), PortRcvData (received data in
byte), PortXmitPkts (transmitted packets) and PortRcvPkts (received packets), but be-
cause of the limited benefit for monitoring the system’s health, they are not considered
further.

The knowledge of the significance of each counter is based on the experiences with
the network, therefore no generally valid statements of the importance of each value
can be made. So, the detailed setting of threshold values and the appropriate reaction
of the monitoring system on their exceeding must be customised during the operation
of the system. Hence, no preferred differentiations will be made at this point regarding
the attention to each counter.

26http://www.infinibandta.org/

Stefan Worm 39

http://www.infinibandta.org/

Chapter 4. Evaluation of Monitoring Approaches

counters description (number of∼)
SymbolError minor link errors detected on physical lanes
LinkErrorRecovery successfully completed link error recoveries
LinkDowned failed link error recoveries (link down)
RcvErrors received packets containing an error
RcvRemotePhysErrors packets that are received with a bad packet end delimiter
RcvSwRelayErrors received packets that were discarded because they could

not be forwarded by the switch
XmtDiscards outbound packets discarded because the port is down or

congested
XmtConstraintErrors packets not transmitted from the switch’s physical port
RcvConstraintErrors packets received on the switch port that are discarded
LinkIntegrityErrors times that the count of local physical errors exceeded the

specified threshold
ExcessiveBufferOver-
runErrors

consecutive (receive) buffer overrun errors

VL15Dropped
incoming management packets dropped due to resource
limitations

Table 4.1:InfiniBand HCA port counters

4.4 Design and Implementation of a Port Counter
Monitoring Plugin

In the following section, the design and implementation of a possibility to monitor the
performance counters of the InfiniBand interface shall be considered, for this the self-
developed monitoring scriptcheck_iberr will be described (refer to AppendixA on
page67). It is capable of checking the health status of an InfiniBand network adapter.

4.4.1 Preliminary Considerations

At the CHiC system the monitoring of the port counters (refer to Table4.1) can be
made with the subnet manager (SM) of the Voltaire InfiniBand core switches that of-
fers, among other information and abilities, an interface so that the administrator can
supervise them. However, an integration into a monitoring system like Nagios is not
provided. Thus, the monitoring of the port counters with this alternative would have
meant to write a tool that filters and converts the data of the Voltaire specific status file
provided by the core switches to be able to process them in the monitoring applica-
tion. The disadvantage of this approach is that a solution that is specific to the Voltaire
switches can be used only with these. Hence, the decision was made to develop a ven-
dor independent possibility to monitor the performance counters so that the information
can be processed by the monitoring system Nagios.

Some vital advantages that were decisive for this are the potential to use this approach

40 Stefan Worm

4.4. Design and Implementation of a Port Counter Monitoring Plugin

also in environments with mixed vendors and in situations where multiple isolated In-
finiBand network scopes have to be monitored. Furthermore, the use of the locally
executed version of the plugin via NRPE (see below) allows to monitor the port coun-
ters of the InfiniBand network interface and, in spite of a malfunction of the InfiniBand
network, troubleshooting can be made with the help of another network connection. At
the CHiC system this is a Gigabit Ethernet connection that can be used in this case to
perform analyses of the InfiniBand state despite its outage.

Furthermore, the reason for developing thecheck_iberr script was the interest
in the health status of the network connections. The knowledge about the detailed state
of a network connection can be an important information in several fields. For example
it can be useful for error diagnostics or the verification if everything is alright with the
network, so that as reason for a possible misbehaviour of some software the network
connection can be excluded. This knowledge is also important for finding the reasons
for performance issues, as well as for isolating the possible reason for a problem with
the network. Among others also for the identification of possibly abnormal behaviour
of the network regarding specific issues that can be seen only in the temporal trend,
e.g., abnormal behaviour of a component that was caused by occasional errors at the
network interface.

Thecheck_iberr plugin was written in the programming language Perl, because
if necessary Nagios can be used with an integrated Perl interpreter that has a better
performance than the standard Perl interpreter that otherwise would have to be executed
every time for the accomplishment of each script. Furthermore, Perl is the preferred
script language for plugins by the Nagios community27, shown by the fact that a lot
of them are written in Perl and that tutorials and libraries exists for this programming
language. Plugins can also be written in other script languages, as far as their execution
is possible on the Nagios server or on the device that is monitored if NRPE is used.

Nevertheless, binary programs can also be used as a plugin for Nagios. Actually,
the difference that makes an ordinary script or binary program a Nagios plugin is just
the way how it expresses its return codes and values. Basically, Nagios expects return
codes that stand for the status types (0 = “OK”, 1 = “WARNING”, 2 = “CRITICAL ”,
3 = “U NKNOWN”) and optional some textual information that describe the status codes
closer, as well as additional information that are stored for generating detailed reports,
e.g., for historical monitoring (refer to2.1 on page8). If some program provides the
desired monitoring information but it does return them in another format, a Nagios
plugin would consist only of a wrapper that converts them as needed.

The name of the scriptcheck_iberr comes from the different names that express
the characteristics of the InfiniBand port counters (refer to Section4.3.2on page39).
The names of the plugins in Nagios regardless if they are scripts or binaries are usually
composed ofcheck + underscore+ NAME, whereas the NAME typically describes
what exactly the plugin is doing. In this case, the namecheck_iberr describes that
a Nagios plugin that checks the InfiniBand (IB) error counters, the ending.pl to mark
it as a Perl script can be optionally added.

27http://www.nagiosexchange.org/

Stefan Worm 41

http://www.nagiosexchange.org/

Chapter 4. Evaluation of Monitoring Approaches

4.4.2 The check_iberr Script

The realisation of the port status monitoringcheck_iberr plugin for Nagios is based
on the OpenFabrics Enterprise Distribution (OFED) in version 1.1 of the OpenFabrics
Alliance28, therefore this software collection has to be available on the systems that
shall be monitored. The plugin has to be executed with additional rights29 due to the
dependency on information that can be gained only with extended rights. Apart from
the installation of the NSCA client on the computer that runs the plugin, no other pre-
conditions are necessary30.

First, only the essential parameters shall be considered. The execution of./check_
iberr.pl -H name is the most basic variant. Whereas, the parameter-H is the
only one that is mandatory, which expects thenameof the computer that is monitored.
It has to be the exact name of the computer as it was defined in the Nagios configuration,
so that the monitoring server can correctly associate the results to it (refer to Section4.2
on page38). All other parameters are optional, respectively they have default values,
so that they not have to be specified until they are needed. Anyhow, the parameter-G
for the global unique identifier (GUID) of the port or-l for the local identifier (LID)
of the monitored InfiniBand interface is usually specified, as well as the parameter-m
for the name of the Nagios monitoring server. The GUID of an InfiniBand network
port is comparable with the MAC address of an Ethernet network port, whereas the
InfiniBand LID, which is a kind of a dynamic identifier that is only valid inside a
specific network scope, does not have a straight counterpart at an Ethernet network, but
the LID is soonest comparable with a private IP address. More script parameters like
for the output of debug messages, the specification of paths for the OFED or NSCA
directory, etc. can be discovered with the-h help option (also refer to AppendixA on
page67).

The application works as follows. It expects the GUID or LID of the InfiniBand port
that should be monitored, otherwiselocalhostis assumed. If a GUID or the optionlo-
calhostis given, the corresponding LID is looked up with theibaddr program from the
OFED software collection. The next step is to perform the check of the port counters
(refer to Table4.1on page40) with the help of the LID. For this, theibcheckerrsscript
that is also part of the OFED software collection is used. After this, its response is
processed and the results are sent out to the monitoring server with thesend_nscapro-
gram. The standard option is to send out only the values that exceed the corresponding
thresholds, but optionally also the status of all port counters can be sent out (-u update
option). If desired, the counters of the InfiniBand port are reseted (-r reset option) af-
terwards. The last activity of the plugin is to choose its appropriate return value, which
is either “OK” (non of the port counters exceed a threshold value), “WARNING” (one or

28http://www.openfabrics.org/
29The execution of an application with root permissions is a known security concern, that is why the

limitation of the rights is advisable. This can be done among other possibilities viasudo, setuidor
SELinux.

30For detailed instructions of the installation of the script and the necessary configurations on the mon-
itoring server, as well as on the computer that executes the script, refer to the documentation that is
included in the plugin.

42 Stefan Worm

http://www.openfabrics.org/

4.4. Design and Implementation of a Port Counter Monitoring Plugin

more values exceeded a threshold), “CRITICAL ” (the exceeding of minimum one value
is higher than defined with the-c factor option) or “UNKNOWN” (something un-
expected has happened or an error occurred during execution, e.g., a wrong LID or
GUID was given). In addition to that, applicable extra information regarding the return
values are printed out for further processing in Nagios.

For a detailed insight how thecheck_iberr plugin works, refer to the source code
in AppendixA on page67.

As it can be seen from the explanation above, there are two ways in which the
check_iberr plugin can be used for monitoring the port counters of an InfiniBand
HCA. The first is that it reads only the port counters of the host on which it is executed.
This is the alternative for the use of the plugin via the Nagios Remote Plugins Executor
(NRPE) as described in Section4.2on page37, it is recommended if the port counters
shall be checked without using the InfiniBand network. The second alternative is, start-
ing from one computer, to check the port counters of different hosts via the InfiniBand
network. If it has to be assured that the check of the counters is performed locally only,
the plugin has to be executed neither with the GUID (-G) nor with the LID (-l) option
so that the default valuelocalhost is assumed. Otherwise, using either the GUID or
LID port identifier, it is automatically detected if the counters for the given identifier
can be checked locally, because it belongs to the local InfiniBand interface from which
the information can be obtained. If the detection shows that the port counters have to
be obtained remotely via the InfiniBand network connection, they are requested from
the remote host corresponding to the given identifier (GUID or LID). The differences
of the two alternatives of checking the port counter information locally or remotely,
regarding the impact on the network performance, as well as on the host’s computing
performance are discussed in Section5.2on page47and Section5.3on page54.

Compared to the standard approach of Nagios for gaining monitoring information,
the use of the Nagios Service Check Acceptor (NSCA) add-on has several advantages.

The general procedure of checking a value with Nagios plugins is, that the monitor-
ing server requests the check of a specific value regarding its internal schedule and that
a plugin is executed thereupon. This plugin checks, regardless if it is executed locally
or remotely, usually one value and returns the result as mentioned above to the moni-
toring server. If there are multiple values to check, one plugin each has to be executed.
This approach is advisable if all values are different, because different plugins have to
be used for this anyway. Unlike the port counters (refer to Table4.1on page40) of the
InfiniBand network interface which can be checked all in the same way.

The execution of one plugin for every value that has to be checked would mean a
significant expense. Therefore, the monitoring of the InfiniBand port status shall be
performed in a more efficient way. Thus, the approach was chosen to use NSCA (refer
to Section4.2 on page38) to reduce the plugin’s communication and execution effort
for gaining the monitoring information. The advantage of it is, that only the values
that exceed a predefined threshold are reported to the monitoring server. However, if
a specific value is alright for a long time, no reports are sent to the monitoring server,
which hereupon cannot be sure if the absence of reports is due to an alright status of
a value or because a problem has occurred in the monitoring workflow. To face this

Stefan Worm 43

Chapter 4. Evaluation of Monitoring Approaches

issue, thecheck_iberr script has the update option (-u) that reports the status of
all values of a specific InfiniBand port to the monitoring system.

Finally, thecheck_iberr plugin that was presented above is able to monitor the
InfiniBand port counters in different efficient ways. However, there are a few minor
things that could be done to improve it further. One thing is to refine the usability of
the script. For example, to use the-G and-l option for passing a GUID and a LID at
the same time does not make sense. Either both identifiers refer to the same port, than
they do not both have to be passed on, or they refer to different ports and the script has
to opt for one, which would not be conformable with a consistent program behaviour
and shall be avoided. Hence, a possible usability improvement is if the script would
offer only one option for passing an identifier and be able to detect whether it is a GUID
or LID.

Another thing that could be improved in thecheck_iberr plugin is its robustness
of the program flow against unexpected behaviour of external, depending programs and
functions. But all these are minor topics which do not effect the general functionality
of the script if installed and used as documented. However, those improvements are not
crucial, and have to be put off until a later development version due to time restrictions
for this work.

4.5 Summary

In this chapter, considerations regarding a monitoring approach for the CHiC were
made.

First, starting from a plenty of different monitoring software that exists, the number
of applications to be considered further was limited to a subset of them that could be
used for the CHiC. According to this, several products were excluded because they did
not fit minimum requirements, so that the software Big Brother, Big Sister, OpenNMS,
Ganglia and Nagios were chosen for a more detailed comparison (refer to Section4.1
on page32). Based on this, the Nagios monitoring framework was chosen as the one
that fits best for the monitoring of the CHiC system.

Furthermore, several aspects and requirements were considered that are relevant for
the monitoring of the cluster, for example the need for minimising the outage of the
system. Calculations regarding this showed that every day which the cluster cannot be
used as planned the amount of around 3500 Euro gets lost in terms of figures. Hence,
this showed that it is important to minimise the time that the CHiC is out of service and
that it is crucial to monitor the system to face this issue.

With reference to the monitoring software Nagios that was suggested for the CHiC,
an introduction was given to the application itself and the corresponding plugin topol-
ogy which is important for the monitoring topics (refer to Section4.2 on page37).
In addition to that, a short introduction to the InfiniBand interconnection network was
given, in particular to the port counters of the InfiniBand HCA (refer to Section4.3on
page38).

Finally, the design and implementation of thecheck_iberr monitoring plugin

44 Stefan Worm

4.5. Summary

that checks the health counters of an InfiniBand network interface was presented (refer
to Section4.4.2on page42). Thereby, the focus was on a solution that is as efficient
as possible in checking the values so that the influence on the computation tasks of a
computer is preferably low.

Moreover, thecheck_iberr plugin was posted on the Nagios plugin developer
mailing list (nagiosplug-devel) whereupon it was challenged releasing the plugin on the
official central repository31 for plugins, which is now the place where possible further
improvements will be released.

31http://www.nagiosexchange.org/

Stefan Worm 45

http://www.nagiosexchange.org/

5 Evaluation of the Performance
Impact of Monitoring Activities

5.1 Introduction to the Test Configuration

In this chapter the Nagios plugincheck_iberr for InfiniBand port status checks
(refer to Table4.1on page40), developed during the course of this work, and a set of
various standard Nagios plugins (refer to Table5.1on page51) will be tested regarding
their impact on the network performance as well as the performance of the applications
that run on a specific compute node.

The test configuration consists of four dual-CPU, dual-core, 64 bit Intel Xeon 5130
at 2 GHz computer systems with a total of 2 GB RAM under Scientific Linux 4.4
with kernel 2.6.9-42.0.3.ELsmp. The interconnection consists of two separate Gigabit
Ethernet (GbE) ports and one 4xSDR (10 Gb) InfiniBand port.

If not described otherwise the computersc6-3andc6-4have been used for the per-
formance measurements. The computersc6-1 andc6-2 have been used for triggered
the interrupt data (c6-1to c6-3andc6-2to c6-4).

5.2 Impact regarding the Execution of
Applications

This section shows how monitoring of a computer can influence the applications that
run on it. Referring to this, the application ABINIT 1 in version 5.2.3 was used, which
is a software package developed to find charge density, electronic structure and the
total energy of systems made of nuclei and electrons within Density Functional Theory
(DFT) [GBC+02]. It was chosen as a reference application because it is one of the
software packages which are supposed to be used at the CHiC (refer to Section3.1on
page23).

The ABINIT software, in particular the parallel versionabinip, was used with the
help of the MVAPICH22 MPI implementation in version 0.9.8 and OpenIB3 InfiniBand
in version 1.1 as the network interconnect. As the input data for ABINIT , a working set
was used that was originally created for benchmarking the submissions for the solicita-
tion of the CHiC and which results in eight jobs, because they fit well on two computers

1http://www.abinit.org/
2http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
3http://www.openfabrics.org/

Stefan Worm 47

http://www.abinit.org/
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
http://www.openfabrics.org/

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

with two CPUs and two cores each. Another issue for choosing this benchmark is the
execution time of approximately 90 seconds which is long enough to compensate mi-
nor irregularities during the measurements and short enough for the test series to be
manageable regarding the large number of them that have to be executed for gaining
the measured values.

Moreover, ABINIT uses 100 percent of the CPU resources on all cores, so it is guar-
anteed that the system is always on heavy load and that also minimum influences on
the system can be measured indirectly via the execution time of ABINIT .

5.2.1 Influence on Abinit due to Local and Remote
check_iberr Script Execution

The influence on ABINIT caused by the execution of thecheck_iberr script as a
local script via the Nagios NRPE add-on, as well as the execution of the same script on
a remote computer is presented in Figure5.1 on the facing page. Its intention was to
clarify the significance of the slowdown of a typical application that runs on the cluster
regarding a specific monitoring value and its monitoring interval. In addition to that
the difference between two methods of gaining the same information was determined.
The reason for this was to find out whether it is better to gain the performance counters
for the InfiniBand network connection on a specific host either directly via the same
InfiniBand network connection that is also used by ABINIT or via an additional out-of-
band (OOB) communication over the GbE management network.

Referring to this, Figure5.1on the next page shows the dependency between the ex-
ecution time of ABINIT (in seconds) on the y-axis and the delay between the execution
of two check_iberr scripts in a row (in seconds) on the x-axis. The delay between
two script executions is displayed on the abscissa because during the measurements the
delay was the best way to guarantee a constant triggering rate on the two systems to be
measured during the variable execution time of ABINIT . The labelling of the second y-
axis on the right side of the diagram shows the issue mentioned above as the slowdown
of the ABINIT execution (in seconds) regarding its execution time without any distur-
bances. An uninterrupted run of ABINIT takes about 90.9 seconds – this value was
used as the basis for the calculation of the slowdown of the application. Furthermore,
every measuring point consists of the average of at least six independent measurements,
which means a minimum of six full ABINIT runs at any given script execution delay
value. The delay of1e−6 s = 1µs = 0.000001s is roughly the same as if the there is no
delay, which means that the script executing process cannot be made faster than this.

Thus, the analysis of Figure5.1on the facing page shows a slowdown of the ABINIT

execution if thecheck_iberr script is executed locally via NRPE over GbE of about
40% but only for very small delays which is synonymous for a high monitoring fre-
quency. If the delay between two script executions becomes larger, the slowdown of
the ABINIT execution becomes smaller. At a delay of one second the slowdown is less
than 4% and at a delay of ten seconds less than 0.5%. It means that the influence of the
script execution on ABINIT is already that low at this untypically frequent monitoring

48 Stefan Worm

5.2. Impact regarding the Execution of Applications

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10 100
 0

 20

 40

 60

 80

 100

E
x
e
c
u
t
i
o
n

t
i
m
e

o
f

A
b
i
n
i
t

[
s
e
c
]

S
l
o
w
d
o
w
n

[
p
e
r
c
e
n
t
]

Delay of check-iberr.pl script execution [sec]

Influence on Abinit due to Local and Remote check-iberr Script

Abinit execution time (local script)
Abinit execution time (remote script)

Abinit slowdown (local script)
Abinit slowdown (remote script)

Figure 5.1:Influence on Abinit due to Local and Remotecheck_iberr Script Exe-
cution

interval that the expected slowdown of intervals of three or five minutes (180 to 300
seconds) will be even lower. A more detailed consideration regarding this aspect will
be made explaining Figure5.2 on the next page. The cause of the general slowdown
is the CPU consumption of the NRPE plugin and thecheck_iberr script. A distur-
bance of the communication between the ABINIT jobs can be eliminated by using an
extra Gigabit Ethernet network, so that the communication of ABINIT via InfiniBand
network is exclusive.

Regarding the impact on ABINIT caused by the remote monitoring of the perfor-
mance counters via a remote execution of thecheck_iberr script it can be stated
that, even at a very low delay rate of1µs between two executions, the slowdown of
ABINIT was less than 1%. The reason for the very low slowdown close to the border-
line of measuring errors is that the CPU load caused by the InfiniBand kernel module
ib_mad1 which is responsible for answering those queries is very low compared to
the load caused by the scenario mentioned above. Obviously the impact on the ABINIT

job communication via InfiniBand is not significant, probably because of the imple-
mentation of remote communication on the InfiniBand network regarding the query of
the performance counters via Management Datagram (MAD) packets as described in
[Inf04].

Finally, the method of querying the performance counters of an InfiniBand network
card via the remote execution of thecheck_iberr script has a much lower slowdown
on a specific ABINIT calculation with very small monitoring intervals than the local
execution of it and should be preferred because of this aspect.

Stefan Worm 49

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

5.2.2 Influence on Abinit due to Local and Remote Nagios
Plugins

In Figure5.2 the execution time of ABINIT depending on the local execution of vari-
ous Nagios plugins via Gigabit Ethernet network, as well as via InfiniBand network is
shown. The conditions are similar to Figure5.1on the previous page, which means that
the labelling of the axes is the same except that the abscissa displays the delay between
two executions of the whole set of Nagios plugins instead of only thecheck_iberr
script.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1e-05 1e-04 0.001 0.01 0.1 1 10 100
 0

 20

 40

 60

 80

 100

E
x
e
c
u
t
i
o
n

t
i
m
e

o
f

A
b
i
n
i
t

[
s
e
c
]

S
l
o
w
d
o
w
n

[
p
e
r
c
e
n
t
]

Delay of Nagios plugins execution [sec]

Influence on Abinit due to Local and Remote Nagios Plugins

Abinit execution time (plugins via IPoIB)
Abinit execution time (plugins via GbE)

Abinit slowdown (IPoIB)
Abinit slowdown (GbE)

Figure 5.2:Influence on Abinit due to Local and Remote Nagios Plugins

The main purpose of this measurement is to find out the impact of a typical moni-
toring situation on the performance of the reference application ABINIT . The purpose
is to determine whether the execution of the Nagios plugins via GbE or via IPoIB is
the faster alternative. The preliminary considerations are that either the communication
via the Internet Protocol over InfiniBand (IPoIB) could have less impact on ABINIT ,
because the InfiniBand network (10 Gb) is faster than GbE (1 Gb) or it could have
more impact on ABINIT , because the network connection has to be shared unlike the
communication via Gigabit Ethernet.

Table5.1on the facing page shows the list of plugins that were exemplarily chosen
as a possible set of values for monitoring. During the use of this set of plugins for
test purposes, they were executed sequentially as they appear in Table5.1. This set of
plugins, that are selected from the Nagios plugin collection4 in version 1.4.4, covers

4http://nagiosplug.sourceforge.net/

50 Stefan Worm

http://nagiosplug.sourceforge.net/

5.2. Impact regarding the Execution of Applications

many values which an administrator can be interested in. They reflect a profile of what
can be monitored, but they do not lay claim to be a ready to use selection. Usually
the number of plugins that are used to monitor a specific machine would be smaller
than the eleven plugins that are presented here, especially at a cluster computer where
high performance is desired. Because every additional check module influences the
performance of the system in a negative way, only modules that are really necessary
should be used.

plugin name via description
check_load NRPE checks the CPU load
check_mem NRPE checks the memory usage
check_procs NRPE (1) checks the general number of processes

(2) checks if the MPI daemon is running
(3) checks if theipoib module is loaded

check_sensors NRPE reads the health status (CPU temperature, fan speed, etc.)
with lm_sensors

check_log NRPE checks if something has changed in /var/log/messages
check_ntp network checks if the NTP server is running and the possible time

difference
check_ping network checks the average round trip time (RTT) and packet loss
check_ssh network checks if the SSH daemon is answering
check_tcp network checks if a daemon is listening on a specific TCP port, in

this case port 80 for a web server

Table 5.1:Nagios Plugins

Figure5.2on the preceding page shows that the execution of monitoring applications
slows down the execution of ABINIT all the more the number of disturbances increases
which is equivalent to a decrease of the delay between two executions. The maximum
slowdown is 23% for plugins via GbE and 36% for plugins via IPoIB, but the slowdown
decreases as the delay between two sets of Nagios plugins executions increases, for
example for a delay of 10 seconds the slowdown for GbE is 1.58% and for IPoIB it is
2.05%.

Furthermore, the chart shows that the execution of the plugins via the IPoIB network
connection slows down ABINIT more than the execution of the same plugins via the
Gigabit Ethernet network connection. This difference cannot be explained due to the
plugins execution, because exactly the same set was executed via both network con-
nections and therefore they also had the same impact on the system’s CPU.

Thus, the less impact of the plugins via GbE is probably caused by the plugin com-
munication via an extra network, so that the communication of ABINIT via another one
is not affected. The other way around, the greater impact of the plugins via IPoIB is
more likely because of the network connection that has to be shared among the com-
munication for the plugins and the communication for ABINIT (refer to Figure5.4 on
page55). This is interesting in reference to the higher bandwidth and lower latency of

Stefan Worm 51

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

the InfiniBand network. Obviously, the advantage from this is not enough to get a better
performance than with the GbE communication via two separated networks. Another
reason for worse performance via IPoIB network could be a potentially higher CPU
consumption for processing the IPoIB communication on a specific machine which is
discussed in Figure5.3on the next page.

Finally, the impact of the plugins regarding an application that runs on a computer
can be calculated as follows. For the consideration of a usual monitoring interval from
three to five minutes the run time of ABINIT of about 90 seconds is too short. This run
time is good for measurement reasons as described above in Section5.2on page47, but
for reflections regarding practical monitoring intervals, extrapolations have to be made.
Based on a slowdown of1.58% at a delay of ten seconds via the GbE interface (refer
to Figure5.2on page50) which corresponds to nine sets of monitoring checks during
a 90.9 seconds ABINIT run, the slowdown for one set of checks every90.9 seconds
would be: (1.58% / 9) = 0.175%. Assuming a monitoring interval of5 minutes
(= 300 seconds) which would mean one check every300 seconds instead of one check
every90.9 seconds, this would reduce the influence on the application by a factor of
(300 seconds / 90.9 seconds = 3.30033) ≈ 3.3. Thus, for an ABINIT that runs very
long, the performance loss would be0.175% / 3.3 ≈ 0.053%.

To sum up, it can be stated that for a monitoring interval of five minutes for the
collection of eleven plugins via Gigabit Ethernet a slowdown of just around 0.053% is
expected – by using InfiniBand and a basis of2.05% the expected slowdown would be
around 0.069%. Even if a very short monitoring interval of one minute and InfiniBand
is used, the maximum expected performance loss would be0.069% · 5 = 0.345%. Due
to the fact that usually less than eleven plugins per computer are used the expected
slowdown is actually less than this, nonetheless a higher impact on the system’s per-
formance could be seen if other, uncommon types of plugins are used that for example
cause a high CPU or network load.

5.2.3 Influence of Local and Remote Nagios Plugins via
IPoIB and GbE on Four Local Abinis Jobs

Figure5.3on the facing page shows the analysis of the influence of the Nagios plugins
(refer to Table5.1 on the previous page) on the execution of the sequential version of
ABINIT , calledabinis. In contrast toabinip which was used for gaining the measure-
ment data of Figure5.1on page49 and Figure5.2on page50, abinisuses, because of
its sequential nature, only one CPU core for its calculations and therefore it does not
perform any communication with other processes on the same machine or on a remote
one. A similar input file as before was used forabinis, but with the difference that the
complexity of it was reduced by the factor of eight, so that a single run also took about
90 seconds.

In this test, only one machine was used for getting the measuring results and one for
triggering the plugins (refer to Section5.1 on page47). On the computer for getting
the measuring data,abinis was started four times almost in parallel. The duration of

52 Stefan Worm

5.2. Impact regarding the Execution of Applications

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10 100
 0

 20

 40

 60

 80

 100

E
x
e
c
u
t
i
o
n

t
i
m
e

o
f

A
b
i
n
i
t

[
s
e
c
]

S
l
o
w
d
o
w
n

[
p
e
r
c
e
n
t
]

Delay of Nagios plugins execution [sec]

Influence of Nagios Plugins via IPoIB and GbE on Four Local Abinis Jobs

Abinit execution time (plugins via IPoIB)
Abinit execution time (plugins via GbE)

Abinit slowdown (plugins via IPoIB)
Abinit slowdown (plugins via GbE)

Figure 5.3:Influence of Local and Remote Nagios Plugins via IPoIB and GbE on Four
Local Abinis Jobs

every single run was recorded and the average of all four runs was taken as a measuring
point. This was usually repeated six times and the average of them was taken as the
final measuring point for a specific Nagios plugin delay.

In addition to Figure5.2 on page50 the difference in CPU consumption caused by
the communication via Gigabit Ethernet, as well as via InfiniBand is examined. The
comparison of the progression of the GbE and IPoIB curve in Figure5.3shows that the
impact onabinis is higher for a situation in which the communication of the plugins
goes via InfiniBand network. Thus, because other influences like disturbances of the
inter-process communication (IPC) can be excluded due to the test setup, the impact
has to be traced back to a higher CPU load that is caused by communication via IPoIB.
The most likely reason for this are differences in the network driver modules.

The maximum relative difference in the slowdown ofabinis is about 17% ((1 −
(12.32% / 14.84%)) · 100 = 16.98% ≈ 17% for x = 0.01 seconds, yGbE =
12.32%, yIPoIB = 14.84%), compared with the results from Figure5.2 on page50
where plugin executions via IPoIB performed about 37% worse than via GbE ((1 −
(22.356% / 35.58%)) · 100 = 37.1669% ≈ 37% for x = 0.01 seconds, yGbE =
22.356%, yIPoIB = 35.58%). Since the relative slowdown of IPoIB is always higher
than the GbE one in both figures, for the detailed calculation above, the pointx =
0.01 seconds was chosen because this is where the maximum difference between the
two is and therefore more accurate predictions can be made.

Thus, a 17% worse performance of IPoIB relative to GbE regarding only the CPU
impact shows that the worse performance of IPoIB relative to GbE regarding an ABINIT

Stefan Worm 53

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

run with process communication via InfiniBand network of 37% is caused partially by
the higher CPU load of the IPoIB network communication. It means, that only a little
more than half of it is caused through the InfiniBand network connection that has to be
shared among ABINIT and Nagios plugins (refer to Figure5.2on page50).

5.3 Impact regarding the Network Performance

In the following section, figures are presented that show the influence of monitoring
activities on the network performance. For this, the network benchmark application
netgauge5 in version 1.0a1 was used ([HLR]), analogical to ABINIT with the help of
MVAPICH2 MPI over InfiniBand. The test configuration as described in Section5.1
on page47 stays the same, which means the computersc6-3 andc6-4 were used for
benchmarking only and the computersc6-1andc6-2for triggering the interrupt data.

The functionality ofnetgaugeis that it begins with a packet size of one byte and
in the process of measuring the packet size increases exponentially by doubling the
preceding value to get the actual one, until the desired maximum packet size is reached
– for example223 = 8388608 byte ≈ 8.4 MB. For every size, a packet is sent to the
second computer which echoes it as soon as it has been received and when it reaches
the first computer again, the total runtime is taken – after this, the next measuring of a
packet with the same size can start. This is repeated several times, from around 500 to
8000 times, depending on the accuracy that is needed. For every total measurement of
a specific packet size, among other values the median for it is calculated by netgauge.
The median, which is the value for what the sum of the absolute deviations from it is
minimal, is used instead of the arithmetic mean because of its resistance to outliers.

5.3.1 Network Performance with and without Remote and
Local Execution of Nagios Plugins via IPoIB and GbE

In this section, by means of Figure5.4on the facing page, the impact on the InfiniBand
network performance regarding the set of Nagios plugins as described in Table5.1on
page51 via GbE network, as well as via IPoIB network connection is discussed. In
comparison to Figure5.2 on page50 and Figure5.3 on the previous page the delay
between two executions of the whole set of plugins was made zero, which means that
the triggering computers tried to generate as much influence as possible. The labelling
on the x-axis is the packet size in byte with a logarithmic scale and the labelling of the
y-axis, which is in a logarithmic scale too, is the throughput of the InfiniBand network
connection in Megabit per second (Mb/s).

The unhindered chart shows an almost linear increasing network throughput depend-
ing on the packet size at the beginning, which starts to slightly flatten past a packet size
of 211 byte and intensifies with further growing packet sizes. As from a size of220 byte
the chart does show only marginal growth until a maximum network throughput of

5http://www.unixer.de/research/netgauge/

54 Stefan Worm

http://www.unixer.de/research/netgauge/

5.3. Impact regarding the Network Performance

 1

 10

 100

 1000

 10000

20 25 210 214 220 225
 0

 20

 40

 60

 80

 100

I
n
f
i
n
i
B
a
n
d

(
I
B
)

N
e
t
w
o
r
k

T
h
r
o
u
g
h
p
u
t

[
M
b
i
t
/
s
e
c
]

S
l
o
w
d
o
w
n

[
p
e
r
c
e
n
t
]

Packet size [byte]

Network Performance w and w/o Remote and Local Execution of Nagios Plugins

median throughput (w/o plugins)
median throughput (w plugins via IPoIB)
median throughput (w plugins via GbE)

IB slowdown (regarding plugins via IPoIB)
IB slowdown (regarding plugins via GbE)

Figure 5.4:Network Performance with and without Remote and Local Execution of
Nagios Plugins via IPoIB and GbE

around 7600 Mb/s is reached. The charts for the measurements of the Nagios plugins
influence via Gigabit Ethernet or InfiniBand network are very similar to the unhindered
one, whereas the performance is always lower in comparison to the unhindered chart.
Referring to this, only a small difference in those three charts can be seen, although the
labelling is already in a logarithmic scale, hence the slowdown in percent was plotted
on the second y-axis due to plugin execution via GbE and IPoIB.

First, it shows that the slowdown on the InfiniBand network is always higher than
the one on the GbE network. This can be explained with the fact that the plugin com-
munication via IPoIB influences the InfiniBand performance and as a consequence of
that the network performance measurement too. It also fits with the conclusion that was
made at Figure5.2on page50and Figure5.3on page53.

Second, the value, which shows that the IPoIB slowdown is higher compared to the
GbE slowdown, is almost zero or it differs not more than 2% on most measuring points.
In particular for very small and very large packet sizes – for example atx = 28 byte,
yGbE = 312.36 byte andyIPoIB = 318.15 byte it is (1− (312.36 byte / 318.15 byte)) ·
100 ≈ 1.82%. Complementary to this, three significant differences can be identified.
At x = 24, x = 26and x = 211 byte the throughput slowdown of IPoIB differs explicitly
from the GbE slowdown. A possible explanation for this are conflicts of the measured
packet size with the packet sizes of specific Nagios plugins. In Figure5.7on page62the
packet sizes for the test set of Nagios plugins which were used during the measurements
can be seen. The peak of packets smaller than 150 byte is significant and possibly the
reason for the IPoIB slowdown atx = 16 byte andx = 64 byte. The peak between

Stefan Worm 55

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

the Nagios plugins packet size of 1126 byte and 1200 byte could be causal for the
InfiniBand slowdown at the network benchmark packet size ofx = 2048 byte, which
is expected to be the packet size that is affected next for data of 1126 byte to 1200 byte.

Since at all stages of packet size measuring the same set of Nagios plugins was
executed, it seems that plugin packets of a specific size have a significant impact on the
InfiniBand network performance if their size is just at the size of the packets that are
tested at this moment bynetgauge.

As a reason for this, the influence of the different treatment of different packet sizes
of InfiniBand is assumed. It seems that for the IB packet processing, a set of queues is
used, each for a specific range of packet sizes. Hence, for the network benchmark of
a specific packet size the corresponding InfiniBand processing queue is used only and
very extensively, whereas the other queues are almost empty, except for a few packets
for the Nagios plugins. Thus, if Nagios packets in addition to the plenty of benchmark
packets of a specific size are in the queue, the possible reason for the slowdown as de-
scribed above can be explained as a consequence of the load on this specific InfiniBand
processing queue.

5.3.2 Network Performance with and without Execution of
the check_iberr Script

The test setup for obtaining the charts of Figure5.5 on the next page was used to find
out the influence of thecheck_iberr script in relation to the InfiniBand network
performance via GbE, as well as via IPoIB. It is very similar to the test setup of Fig-
ure5.4on the preceding page which means that thecheck_iberr script is executed
over and over again without any delays instead of the execution of the known set of
Nagios plugins. Everything else stays the same, which means the assignment of the
roles to the computers and the labelling of the axes has not changed, as well as no de-
lay between two script executions means that the triggering computers try their best to
generate as much load as possible. Furthermore, the general conclusions regarding the
first three charts that show the throughput depending on the packet size, without the
presentation of the slowdown, are still applicable (refer to Section5.3.1on page54).

The first difference in Figure5.5 on the facing page compared to Figure5.4 on the
previous page is the percentage slowdown of the script due to execution via the two
different networks. In this figure, the InfiniBand network slowdown regarding the ex-
ecution of thecheck_iberr script via IPoIB is not always higher than the network
slowdown that is caused by script execution via GbE. In fact, the two charts of IPoIB
and GbE have very much the same progression and do differ only marginally in two
measuring points each.

Although, some differences could also be explained by possible conflicts of Infini-
Band queues (refer to Figure5.4 on the preceding page), the generally more aligned
progression of the two slowdown charts points to another relevant explanation for this.
Note that both slowdown charts in Figure5.5 are constantly higher than the one in
Figure 5.4. Regarding the InfiniBand slowdown charts, for example the percentage

56 Stefan Worm

5.3. Impact regarding the Network Performance

 1

 10

 100

 1000

 10000

20 25 210 214 220 225
 0

 20

 40

 60

 80

 100

I
n
f
i
n
i
B
a
n
d

(
I
B
)

N
e
t
w
o
r
k

T
h
r
o
u
g
h
p
u
t

[
M
b
i
t
/
s
e
c
]

S
l
o
w
d
o
w
n

[
p
e
r
c
e
n
t
]

Packet size [byte]

Network Performance w and w/o Execution of the check-iberr.pl Script

median throughput (w/o any disturbance)
median throughput (w check-iberr via IPoIB)
median throughput (w check-iberr via GbE)

IB slowdown (check-iberr via IPoIB)
IB slowdown (check-iberr via GbE)

Figure 5.5:Network Performance with and without Execution of thecheck_iberr
Script

slowdown for a packet size ofx = 20 byte tox = 23 byte is just around 13% in Figure
5.4 and with around 28% significantly higher in Figure5.5. In addition to that at the
measuring point ofx = 28 where the percentage slowdown in both figures begins its
continuous decrease, the slowdown is just about 16% in Figure5.4, but about 27% in
Figure5.4.

As a reason for this, the very different kinds of monitoring information that where
gained on the one hand by the set of Nagios plugins and on the other hand by the
check_iberr script can be taken into account. Whilst the set of Nagios plugins are
checking various kinds of information that basically result in load for the CPU and
memory, as well as some load on the network for the essential communication of the
plugins, thecheck_iberr script primarily checks only one kind of information that
mostly stresses the InfiniBand Host Channel Adapter (HCA) itself. The HCA, which
is equivalent to the Network Interface Card (NIC) on other network types, is the target
of the check_iberr script to gain the performance counter information. It means
that the script checks over and over again those values and therewith interferes with the
InfiniBand HCA. Because of the high frequency of the checks and the direct influence
on the InfiniBand network card, the overall performance of the IB network connection
is substantially lower than shown in Figure5.4on page55.

Stefan Worm 57

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

5.3.3 Network Performance with and without Execution of
Nagios Plugins Depending on the Delay of their
Execution

In Figure5.6 the influence on the InfiniBand network throughput regarding the packet
size and the frequency of the plugin calls as a third dimension is presented. In addition
to Figure5.4 on page55 and Figure5.5 on the preceding page which showed the
impact charts for a lot of disturbances, this figure shall demonstrate the influence on
the network regarding smaller frequencies of interferences.

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Network Performance w and w/o Execution of Nagios Plugins via IPoIB

IB Slowdown
 5
 1

20
25

210
214

220
225

 Packet size [byte]

 1e-05
 1e-04

 0.001
 0.01

 0.1
 1

 10
 Delay between two
 plugin calls [sec]

 0

 5

 10

 15

 20

Slowdown of
IB [percent]

Figure 5.6:Network Performance with and without Execution of Nagios Plugins De-
pending on the Delay of their Execution

The position of the axis is a little different as in the two-dimensional plots, which
means that in this three-dimensional figure the x-axis shows the packet size in byte, the
y-axis the delay between two calls of the whole set of Nagios plugins in seconds and
third, the z-axis shows the slowdown in percent of the InfiniBand network regarding
the plugin execution via IPoIB based on the throughput of an untroubled network. The
execution of the plugins via IPoIB was chosen because in the preceding figures the
influence for IPoIB was always higher or equal to the GbE alternative and therefore
conclusions from this test setup can also be adapted for the Gigabit Ethernet later on.

This figure is based on Figure5.4 on page55, which can be seen at plugin delays
of 0.01 seconds and below on the y-axis where the slowdown chart is almost the same
as the IPoIB one in Figure5.4. Both preceding figures (5.4 and5.5) show the max-
imum performance impact that can be expected because the measurement setup tried

58 Stefan Worm

5.4. Quantitative CPU and Network Load Analysis

to generate as much influence as possible. This impact can be easily recognised at the
slowdown for small packet sizes, but for a realistic monitoring scenario the charts for
larger delays have to be paid attention to.

Figure5.6on the facing page shows that an influence of less than 1% is reached with
a delay of 10 seconds at most. It means that if the time between two total executions
of the set of Nagios plugins is larger than 10 seconds, the influence is marginal and for
a delay of 20 seconds the influence on the InfiniBand network performance cannot be
detected anymore as it can be seen in the chart. Thus, for considerations concerning
realistic monitoring intervals of 1 minute to 5 minutes, as made for Figure5.2regarding
the impact on the execution time of ABINIT , no measurable influence of the network
throughput is expected.

5.4 Quantitative CPU and Network Load Analysis

One aspect that has not yet been considered is the quantitative load of the CPU and the
network connection of the monitoring server and its corresponding clients. For this, the
known set of Nagios plugins (refer to Table5.1 on page51) and thecheck_iberr
script are examined regarding their effects on the monitoring server, as well as regarding
their effects on the clients that are monitored.

For this, the applicationiptraf 6 was used because it has features to determine de-
tailed network statistics regarding a specific interface. To exclude parasitic influences
regarding the measurements, the configuration as described in Section5.1 on page47
was used. In particular the use of two network interfaces was important whereby every
usual traffic like SSH, DHCP messages, and others used the first network interface,
so that the second network interface could be used for untroubled measurements. For
measuring the CPU load, the applicationstopandpswere used.

5.4.1 Influence of Nagios Plugins on Clients and the
Monitoring Server

First, the quantitative influence of the set of Nagios plugins (refer to Table5.1 on
page51) on the client computers that were monitored and second the total impact on
the monitoring server was examined. The singular execution of this set of plugins gen-
erated a total of 143 packets with 29883 byte of data. It means that statistically every
packet has a size of29883 byte / 143 packets ≈ 209 byte/packet and that every packet
is responsible for143 packets / 11 plugins = 13 packets/plugin in average.

The next test setup was based on the execution of the whole set of Nagios plugins
1000 times in a row without any delays. This took 210 seconds and generated a network
traffic of around 29.8 MB which is a traffic rate of round 141 kB/sec, whereas half of it
was traffic that wentin and the other half was traffic that wentout.

6http://iptraf.seul.org/

Stefan Worm 59

http://iptraf.seul.org/

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

The execution of 1000 times 11 plugins within 210 seconds equals to1000 · 11
plugins / 210 seconds ≈ 52.4 plugins/second which means that52.4 plugins/second
/ 11 plugins ≈ 4.76 computer/second can be monitored. For the CHiC system
with around 550 computers to be monitored the time of550 computer/4.76 computer
/second ≈ 115.5 second is necessary.

Thus, less than two minutes are needed to check eleven values from each computer
of the CHiC. Therefore, a monitoring frequency of three to five minutes can be used
without any problems. Also a very low frequency of just one minute is feasible if the
plugins were executed in parallel as it is supported by Nagios and not sequentially as
it was performed in the benchmark script or if fewer values for monitoring are used
(refer to Section5.2.2on page50). Furthermore, not the amount of data, a monitoring
server can send out in parallel, was examined, only the fastest possible interaction of
two computers was analysed as it was also done in the test setups in Section5.1 on
page47 et sqq. Hence, this has no effect on the considerations because the parallel
execution of the plugins on more than one computer at once tends to be faster than the
strict sequential execution – an approximately realistic load on a monitoring server will
be discussed below (refer to Section5.4.3on the facing page).

5.4.2 Influence of the check_iberr Script on Clients and
the Monitoring Server

As the next step, the quantitative influence of thecheck_iberr script on client com-
puters and the monitoring server shall be examined. The singular local execution of the
script via the Nagios Remote Plugins Executor (NRPE) generates a total of 18 packets
with 3965 byte of data.

The execution of this script 1000 times in a row without any delays took 64 seconds.
Thus, a speed of1000 executions / 64 seconds ≈ 15.6 executions/second can be
reached, which means that around 550 computers of the CHiC can be monitored at
least once within550 computer / 15.6 computer/second ≈ 32 seconds. Hence, the
performance of the script is sufficient for realistic checking frequencies.

Above, thecheck_iberr script was executed in standard mode which reports the
status of the performance counters of the InfiniBand network adapter only if they ex-
ceed a specific threshold. Usually, nothing is reported, because most of the performance
counters are error counters and in a stable operation of the system they occur only oc-
casionally. But to make sure that the monitoring of the performance counters works
well, there is an update option which forces the script to read and report all counters
irrespective of the exceeding of a certain threshold, as well as an option for resetting
them to assure a well defined state if desired (refer to4.4.1on page40).

This results in a total of 51 packets with 14931 byte of data which are generated
by one singular local execution of the script with the update option via the Nagios
Remote Plugins Executor (NRPE). The execution of the script 550 times in a row
without any delays, which is equivalent for one update check for each of the CHiC
computers, took 9 minutes and 10 seconds (= 550 seconds). This seems to be a

60 Stefan Worm

5.4. Quantitative CPU and Network Load Analysis

long time, because monitoring intervals of 10 minutes or more appear possible. In
a realistic scenario the update check would be made only once an hour or less fre-
quently. Hence, to fit into the 5 minutes monitoring pattern, based on hourly in-
tervals (1 hour = 60 minutes / 5 minutes = 12) it has to be calculated with
550 seconds / 12 ≈ 45.8 seconds. Thus, in addition to the time consumption of 32
seconds of the standardcheck_iberr execution to check every CHiC computer at
least once and the 45.8 seconds that are proportionally necessary for an update execu-
tion of thecheck_iberr script, to sum up an interval of 77.6 seconds is sufficient for
a supposed monitoring interval of three to five minutes. Further on, the consideration
made above regarding the limitations of the test setup and among others the sequential
execution are still valid. The load on the monitoring server in a realistic situation will
be discussed below.

5.4.3 Exemplary Monitoring Server Test with Nagios Plugins
and the check_iberr Script

In the preceding sections some tests were performed that showed the influence of Na-
gios plugins and thecheck_iberr script regarding their influence on impact that
have to be monitored as well as on a computer that works as a monitoring server. Those
tests were good for discussing the quantitative influence in a controlled situation con-
sidering a specific aspect. In the following section the behaviour of the computer that
works as the monitoring server in a realistic situation shall be examined.

For this, a computer with AMD Athlon at 950 MHz, 0.5 GB RAM under Scientific
Linux 4.3 with kernel 2.6.9-34EL was used. On this computer, Nagios was installed.
Further on, the four computers described in Section5.1 on page47 where used as
the ones that should be monitored. To generate a preferably high load on the moni-
toring server, the known set of Nagios plugins (refer Table5.1 on page51) and the
check_iberr script with the update option that generates more load as the standard
version (refer to Section5.4.2on the facing page) were used and a monitoring interval
of 10 seconds was set.

The impact on the CPU load of the monitoring machine varied from zero percent
up to about five percent. During a 20 minutes = 1200 seconds interval the Nagios
process consumed 26 seconds of CPU time. It means, that the average load was
(26 seconds / 1200 seconds) · 100 = 2.16% ≈ 2.2%. Thus, for the 550 comput-
ers of the CHiC a load of550 · (2.16% / 4 computers) ≈ 297.9% is expected.

For a realistic monitoring interval of 5 minutes = 300 seconds instead of 10 seconds
as in the measurements above, the load would be300 seconds / 10 seconds = 30 times
lower and therefore only around297.9% / 30 = 9.93%. Although this is not a lot, the
load would be even less, because the computer that is actually used as monitoring server
in the CHiC is a much more powerful one which is faster and has more cores (refer to
Section3.1on page23).

Other processes like the NRPE or NSCA add-ons which assist Nagios are not neces-

Stefan Worm 61

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

sary to be examined in detail regarding their influence on the CPU, because during the
test run as mentioned above they consumed less than a tenth of a second of CPU time.

The network load varied a lot, but it was never higher than 56 kB/s (in andout traffic),
so that for the CHiC system it should be around550 computer · (56 kB/s / 4 computer)
= 7700 kB/s = 7.7 MB/s which is approximately(100 / 125 MB/s) · 7.7 MB/s =
6.16% of a Gigabit Ethernet (1 Gb/s = 1000 Mb/s / 8 = 125 MB/s) connection.
Thus, there is enough reserve capacity for the operation of more monitoring plugins or
plugins that generate a lot more traffic.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200 1275 1350 1425 1500

N
u
m
b
e
r

o
f

p
a
c
k
e
t
s

[
p
e
r
c
e
n
t
]

Packet size [byte]

Network Packet Size Regarding the Communication of Various Plugins

Fraction of the total number of packets

Figure 5.7:Network Packet Size Regarding the Communication of Various Nagios Plu-
gins and thecheck_iberr Script

In addition to this, Figure5.7shows the spreading of the network packet sizes as they
are caused by the execution of the known set of Nagios plugins and thecheck_iberr
script with update option. It shows the number of packets in percent on the y-axis and
the packet size in byte on the x-axis, whereas the classification in parts of 75 byte is
due to the measuring withiptraf .

The first statement that can be made is, that about 45% of all packets are smaller than
75 byte and about 32% of all packets are between 76 and 150 byte, therefore more than
three quarters (45% + 32% = 78%) of all packets are smaller than 150 byte. Counting
also packets between 151 byte and 300 byte, which are7.3% + 3.6% = 11% in total,
almost 90% of all packets are smaller than 300 byte. Thus, most of the packets that are
caused by monitoring activities are small ones and only packets between 751 byte and
825 byte with 3.1%, as well as packets between 1126 byte and 1200 byte with 6.5%
show up as an exception.

62 Stefan Worm

5.5. Summary

Those peaks are very interesting, a further analysis of them showed that the peak
between 751 byte and 825 byte is caused by the update packets that are generated by
the check_iberr script with the update option. The peak between 1126 byte and
1200 byte is caused by the check_tcp plugin which is used multiple times for different
purposes within the set of Nagios plugins (refer to Table5.1on page51).

The influence of the relatively uneven spreading of the packet sizes can also be seen
at the network throughput measurements of Figure5.4on page55.

USER VIRT RES SHR S %CPU %MEM TIME+ COMMAND
nagios 28992 3496 2276 S 0.0 0.7 0:26.00 nagios
nagios 3496 684 572 S 0.0 0.1 0:00.08 nsca
nagios 4592 1440 1208 S 0.0 0.3 0:00.01 nrpe

worm 64572 4608 1796 R 1.0 0.2 0:00.02 check_iberr.pl

The table above shows a snapshot of the memory usage of the involved applications
that was made withtop. Its columns show in order: user name, virtual memory im-
age (kB)7, resident memory size (kB), shared memory size (kB), process status (S =
sleeping, R = running), CPU usage, memory usage, CPU time (min:sec.hundredth),
command name.

The commandsnagios, nscaandnrpewere executed on the monitoring server. The
usage of resident memory for example ofnagiosis low with just3496 kB ≈ 3.5 MB
and it is not expected to be more than550 computer · (3.5 MB / 4 computer) ≈
480 MB, even if a worst case scenario of a linear progression is assumed.

Thecheck_iberr.plcommand was recorded during its local execution via NRPE on a
computer that was monitored with it. The resident memory size with round 4.6 MB is
also low and it does not need to be paid a lot of attention to it, in particular because not
more than one of these scripts is executed at a time on a specific monitoring client.

The execution of this script on the monitoring server as the remote version that di-
rectly monitors a specific computer without NRPE, shows the same behaviour regard-
ing resident memory size. Considerations regarding the execution frequency of this
script on one computer were made above (refer to Section5.4.2 on page60) and it
was shown that it could be executed fast enough to monitor a CHiC-sized number of
computers.

5.5 Summary

In this chapter the impact of the monitoring activities on a specific host and the network
was analysed. The execution of a (monitoring) program on a computer always uses a
fraction of the available resources. In the field of supercomputing often applications are
executed that use all the CPU or network resources they can get. Thus, if a monitoring

7It has to be paid attention to the fact that the documentation oftop misleadingly describes the unit as
"kb" which would mean "kilobit", although the presented values are in fact in "kilobyte" (kB).

Stefan Worm 63

Chapter 5. Evaluation of the Performance Impact of Monitoring Activities

program also needs to be executed by the CPU, the main application is necessarily
slowed down. This can be for example 0.1% or even 10% of the runtime depending on
the application and on the monitoring strategy.

How much slowdown is expected for the CHiC was analysed in this chapter. For
this, a sample application that is also to be used on it (ABINIT), as well as a set of
values that are worth to be monitored was chosen (refer to Table5.1 on page51) and
the effects caused by them were evaluated. In addition to that, the self-developed script
check_iberr for monitoring the performance counters of the InfiniBand network
interfaces was also embraced into the test setup (refer to Section4.4.1on page40).

First, the analysis of the measurements regarding both, the set of Nagios plugins
and thecheck_iberr script, showed that the slowdown of ABINIT is negligible for
realistic monitoring intervals of one minute or more. The slowdown expected for an
interval of one minute is definitely below 1% and for a five minutes interval it is even
below 0.1% of the run time (refer to Section5.2 on page47 and Section5.2.2 on
page52).

Furthermore, the behaviour of the local or remote execution of thecheck_iberr
script was examined. The result is that with the remote version of the script that gains
the InfiniBand performance counters via InfiniBand management packets has no mea-
surable influence on the monitored computer. This is done by the relocation of the
script execution to the monitoring server. With this the anyway small influence of the
script on a monitored computer can be decreased further, so that no impact on appli-
cations that run on the monitored computer is expected regarding the utilisation of this
approach (refer to Figure5.1on page49).

Second, the analysis of the measurements of the InfiniBand network throughput, also
regarding the set of Nagios plugins and thecheck_iberr script, showed that the
slowdown is negligible too, for realistic monitoring intervals of one minute or more.
Already at an interval of 10 seconds or more, the slowdown is less than 1% (refer to
Figure5.6on page58).

Last, an analysis, if the server on which Nagios runs can handle the entire monitoring
of the CHiC was made. It showed that the CPU load and the network traffic which is
expected for monitoring various values for around 550 computers is less than 10%
of the CPU load and also less than 10% of a Gigabit Ethernet network connection
and therefore managable for a monitoring server with Nagios running on it (refer to
Section5.4.3on page61).

64 Stefan Worm

6 Conclusion and Outlook

This thesis dealt with the monitoring of large-scale cluster computers. There is often
confusion what exactly the termmonitoringstands for, favoured by the fact that this
term is used in very different areas. Hence, for the monitoring of a cluster computer, a
classification was made.

The definition of monitoring is not possible without defining the termmanagement,
thus a classification of it was presented. This contained a two-dimensional arrange-
ment, that on the one hand describes five layers from enterprise and application man-
agement to information, system, and network management (refer to Section1.2 on
page3), as well as on the other hand the FCAPS classification of the ISO/IEC 7498-
4 standard that stands for fault, configuration, accounting, performance, and security
management (refer to Section1.2on page4).

The actual scope of monitoring a cluster computer was elaborated by adopting the
management fields as described above for the action of monitoring. This is admissible
because the relation of management and monitoring describes a control cycle regarding
a specific entity (refer to Figure2.1on page9). Hence, this thesis describes the process
of monitoring as the sequence of generation, processing, dissemination and presenta-
tion of the information. The benefit from these classifications is the ability to describe
which specific monitoring task belongs where in the monitoring scope so that appro-
priate actions can be performed at a computer system without getting in conflict with
other duties and responsibilities.

Furthermore, the situation of the existing Chemnitz Linux Cluster regarding the mon-
itoring was examined and suggestions for the improvement of the operation of it, as
well as for succeeding systems, were presented. For example a lot of time and effort
for maintenance can be saved by properly configured processing and dissemination of
the monitoring data (refer to Section3.2on page24).

As the result of considerations regarding the applicability of various free monitoring
solutions at the Chemnitz High-Performance Cluster, the software Nagios was chosen
as the one that fits the needs of the cluster system best (refer to4.1 on page34). On
a cluster computer various entities have to be monitored, for example the status of the
central infrastructure such as core switches or storage systems (refer to Figure3.2 on
page27) or the health status of the racks. For most of these needs software is available
that can perform such tasks. But there are other requirements that cannot be fulfilled
with existing free monitoring software, such as the check of the counters of the Infini-
Band network ports. Hence, during the course of this work, a plugin was developed
that is able to read and process the different status information of the InfiniBand ports,
unaffected by the vendor of the hardware. This software was exemplarily implemented

Stefan Worm 65

Chapter 6. Conclusion and Outlook

for the Nagios monitoring framework so that this plugin can be used as an integrated
component that seamlessly fits with the monitoring approach.

In general, the monitoring of some entity does always influence the actual operation
of it. Thus, the impact of the monitoring activities has to be as small as possible. Es-
pecially for a large number of computers, such as a cluster system, the scalability of
the monitoring approach is very important. For this, various measurements were per-
formed, regarding the influence of the self-developed plugincheck_iberr and a set
of representative monitoring values on the computation and the network performance
of a specific system. Concerning this matter, it was evaluated how significant the ex-
pected impact is. First, a typical monitoring interval of 5 minutes was taken as a basis,
but the results of this work showed that even for a very frequent interval of 1 minute
the influence was always below 1% for every type of measurement. Whereas some of
them showed even significantly less impact than this, for example, the remotely exe-
cuted version of the self-developedcheck_iberr script had no measurable influence
on the execution time of ABINIT (refer to Section5.2.1on page48). Furthermore, this
thesis has demonstrated, that the proposed monitoring solution would scale also on a
large number of nodes, based on extrapolations from a test set with several monitoring
values (refer to Section5.4.3on page61).

Additionally, during the course of this work it was discovered that the InfiniBand
network interface probably processes packets of different sizes in different queues,
which would mean that the processing of several packets of one size would be less
efficient than the processing of several packets of different sizes (refer to Section5.3.1
on page54). Considerations regarding this aspect should be accomplished in the future.
For example a comprehensive test series could be developed that proves how far this
behaviour of the InfiniBand network interface could be leveraged.

66 Stefan Worm

A Source Code Listing of the
check_iberr Perl Script

1 # ! / u s r / b in / p e r l −Tw
2

3 use POSIX;
4 use s t r i c t ;
5 use Getop t: : Long;
6 use v a r s qw ($opt_V $opt_h $opt_b $ o p t _ r $opt_u $opt_m $opt_H $opt_G $ o p t _ l
7 $opt_p $op t_c $opt_d $opt_n $opt_g $ o p t _ f $PROGNAME) ;
8

9 my (%ERRORS) = (" UNKNOWN" => 3 ," OK" => 0 ,’ WARNING’ => 1 ," CRITICAL " => 2) ;
10 $PROGNAME = " check_iberr " ;
11

12 sub p r i n t _ r e v i s i o n ($$) ;
13 sub usage;
14 sub s u p p o r t() ;
15 sub p r i n t _ h e l p () ;
16 sub p r i n t _ u s a g e () ;
17

18 # emp t i es t h e env i ronment v a r i a b l e s due t o s e c u r i t y r e a s o n s
19 $ENV{ ’ PATH’ }= ’ ’ ;
20 $ENV{ ’ BASH_ENV’ }= ’ ’ ;
21 $ENV{ ’ ENV’ }= ’ ’ ;
22

23 # r e a d s t h e i n p u t o p t i o n s o f t h e s c r i p t
24 Getop t: : Long : : Con f i gu re(’ bundling ’) ;
25 GetOpt ions (" V" => \ $opt_V , " version " => \ $opt_V ,
26 " h" => \ $opt_h, " help " => \ $opt_h,
27 " b" => \ $opt_b, " bug" => \ $opt_b,
28 " r " => \ $op t_ r , " reset " => \ $op t_ r ,
29 " u" => \ $opt_u, " update " => \ $opt_u,
30 " m=s" => \ $opt_m, " monitoringhost =s" => \ $opt_m,
31 " H=s" => \ $opt_H, " hostname =s" => \ $opt_H,
32 " G=s" => \ $opt_G, " portguid =s" => \ $opt_G,
33 " l =s" => \ $op t_ l , " lid =s" => \ $op t_ l ,
34 " p=s" => \ $opt_p, " portnumber =s" => \ $opt_p,
35 " c=s" => \ $opt_c, " critical =s" => \ $opt_c,
36 " d=s" => \ $opt_d, " ofeddir =s" => \ $opt_d,
37 " n=s" => \ $opt_n, " sendnscabindir =s" => \ $opt_n,
38 " g=s" => \ $opt_g, " sendnscacfgdir =s" => \ $opt_g,
39 " f =s" => \ $op t_ f , " thresholdfile =s" => \ $ o p t _ f) ;
40

41 # v e r i f i e s t h e c o r r e c t n e s s o f t h e i n p u t o p t i o n s
42 i f ($opt_V) {
43 p r i n t _ r e v i s i o n($PROGNAME, ’ $Revision : 0.4 $’) ;
44 e x i t $ERRORS{ ’ OK’ } ;
45 }
46

47 i f ($opt_h) {
48 p r i n t _ h e l p() ; e x i t $ERRORS{ ’ OK’ } ;
49 }
50

51 i f (($ o p t _ r) && ($opt_b)) {
52 p r i n t " resetting performance (error) counters \ n" ;

Stefan Worm 67

Appendix A. Source Code Listing of thecheck_iberr Perl Script

53 }
54

55 i f (($opt_u) && ($opt_b)) {
56 p r i n t " updating all performance (error) counters \ n" ;
57 }
58

59 ($opt_m) | | usage(" Warning : monitoring host not specified \ n") ;
60 my $monhost = $1 i f ($opt_m =~ / ([− .A−Za−z0−9] +) /) ;
61 ($monhost) | | usage(" Invalid address : $opt_m \ n") ;
62

63 ($opt_H) | | usage(" Warning : host IP address not specified \ n") ;
64 my $hostname= $1 i f ($opt_H =~ / ([− .A−Za−z0−9] +) /) ;
65 ($hostname) | | usage(" Invalid host IP address : $opt_H \ n") ;
66

67 $opt_G | | ($opt_G = ’ localhost ’) ;
68 my $ p o r t g u i d = $1 i f ($opt_G =~ / ([− .A−Za−z0−9] +) /) ;
69 ($ p o r t g u i d) | | usage(" Invalid portguid address : $opt_G \ n") ;
70

71 ($ o p t _ l) | | ($ o p t _ l = ’ none ’) ;
72 my $ p o r t l i d = $1 i f ($ o p t _ l =~ / ([− .A−Za−z0−9] +) /) ;
73 ($ p o r t l i d) | | usage(" Invalid LID address : $opt_l \ n") ;
74

75 ($op t_c) | | ($op t_c = 1 0) ;
76 my $ c r i t i c a l = $1 i f ($op t_c =~ / ([0 −9] { 1 , 5 } | 6 6 0 0 0) /) ;
77 ($ c r i t i c a l) | | usage(" Invalid critical threshold factor \ n") ;
78

79 ($opt_p) | | ($opt_p = 1) ;
80 my $ p o r t n r = $1 i f ($opt_p =~ / ([0 −9] { 1 , 2 } | 1 0 0) + /) ;
81 ($ p o r t n r) | | usage(" Invalid port number (usually : 1): $opt_p \ n") ;
82

83 ($opt_d) | | ($opt_d = ’ / usr / ofed / bin ’) ;
84 my $ofed = $1 i f ($opt_d =~ / ([− .A−Za−z0− 9 \ /] +) /) ;
85 ($o fed) | | usage(" Invalid OFED directory (usually : / usr / ofed / bin): $opt_d \ n") ;
86

87 ($opt_n) | | ($opt_n = ’ / usr / bin ’) ;
88 my $ s e n d n s c a b i n d i r= $1 i f ($opt_n =~ / ([− .A−Za−z0− 9 \ /] +) /) ;
89 ($ s e n d n s c a b i n d i r) | | usage(" Invalid directory
90 (usually : / usr / bin): $sendnscabindir \ n") ;
91

92 ($opt_g) | | ($opt_g = ’ / etc / nsca ’) ;
93 my $ s e n d n s c a c f g d i r= $1 i f ($opt_g =~ / ([− .A−Za−z0− 9 \ /] +) /) ;
94 ($ s e n d n s c a c f g d i r) | | usage(" Invalid directory
95 (usually : / etc / nsca): $sendnscacfgdir \ n") ;
96

97 my $ t h r e s h o l d f i l e=’ ’ ;
98 i f ($ o p t _ f) { $ t h r e s h o l d f i l e = $1 i f ($ o p t _ f =~ / ([− .A−Za−z0−9 \ / \ _] +) /) ;
99 }

100

101 my $ l i d s t r=’ ’ ;
102 i f ($ p o r t g u i d eq " localhost ") {
103 i f ($ p o r t l i d eq " none ") {
104 $ l i d s t r = ‘ $o fed/ i baddr ‘ ;
105 } e l s e { $ l i d s t r = ‘ $o fed/ i b a d d r $ p o r t l i d ‘ ; }
106 } e l s e { $ l i d s t r = ‘ $o fed/ i b a d d r −G $por tgu id ‘ ;
107 }
108

109 my @test= s p l i t (/ / , $ l i d s t r) ;
110 i f ($opt_b) { p r i n t " LIDstr : $lidstr " ; }
111

112 # − checks i f t h e s c r i p t was ex ec u t ed wi th s u f f i c i e n t r i g h t s
113 # − g e t t h e LID , based on t h e g iven GID
114 i f (" GID" ne $ t e s t[0]) {
115 i f ($opt_b) {
116 p r i n t " test [1]: $test [1] - Error : This script was possibly
117 not started with superuser rights .\ n" ;
118 }

68 Stefan Worm

119 alarm (2) ; # a la rm i s s e t t o 2 seconds
120 $ l i d s t r = ‘ / u s r / b in / sudo $ofed/ i b a d d r −G $por tgu id ‘ ;
121 alarm (0) ; # c a n c e l t h e a la rm i f e v e r y t h i n g i s a l r i g h t
122 i f ($opt_b) {
123 p r i n t " LIDstr : $lidstr " ;
124 }
125 @test= s p l i t (/ / , $ l i d s t r) ;
126 i f ($ t e s t[4] eq " resolve ") {
127 p r i n t " The LID that was passed does not exist .\ n" ;
128 e x i t $ERRORS{ ’ UNKNOWN’ } ;
129 }
130 i f ($ t e s t[5] eq " path_query ") {
131 p r i n t " The GUID that was passed does not exist .\ n" ;
132 e x i t $ERRORS{ ’ UNKNOWN’ } ;
133 }
134 i f (" GID" ne $ t e s t[0]) {
135 i f ($opt_b) {
136 p r i n t " test [1]: $test [1] - Error : This script needs
137 superuser rights (must be started as ROOTor SUDO
138 must be configured).\ n" ;
139 }
140 p r i n t " Script could not be executed without errors : Possibly
141 missing rights (no ROOT, no SUDO) or output format of
142 parsed tools (ibaddr) has changed .\ n" ;
143 e x i t $ERRORS{ ’ UNKNOWN’ } ;
144 }
145 my $no roo t = 1 ;
146 }
147

148 my $ s u b l i d s t r = $1 i f ($ t e s t[4] =~ / ([− . x0−9a−zA−Z] *) /) ;
149 i f ($opt_b) { p r i n t " sublidstr : $sublidstr (test [4]: $test [4]\ n" ; }
150

151 # t h e per fo rmance c o u n t e r s a r e read
152 my @resu l t=’ ’ ;
153 i f ($ o p t _ f) {
154 @resu l t = ‘ $o fed/ i b c h e c k e r r s−v − t $ t h r e s h o l d f i l e $ s u b l i d s t r $ p o r t n r ‘ ;
155 } e l s e {
156 @resu l t = ‘ $o fed/ i b c h e c k e r r s−v $ s u b l i d s t r $ p o r t n r ‘ ;
157 }
158

159 my $ a n z r e s u l t = s c a l a r (@resu l t)−1;
160 my $ i =0;
161 my @temp;
162 my @nsca_send;
163 my $ t h s t r=’ ’ ;
164 my $ t h i n t =0;
165 my $ t h c r i t =0;
166 my $va lue=0;
167 my $ c r i t _ v a l _ o c u r e d=0;
168 my (%t h) = (’ RcvErrors ’ , " 4" , ’ RcvRemotePhysErrors ’ , " 5" ,
169 ’ XmtConstraintErrors ’ , " 8" , ’ RcvConstraintErrors ’ , " 9" ,
170 ’ SymbolErrors ’ , " 1" , ’ LinkRecovers ’ , " 2" , ’ LinkDowned ’ , " 3" ,
171 ’ RcvSwRelayErrors ’ , " 6" , ’ XmtDiscards ’ , " 7" , ’ VL15Dropped ’ , " 12" ,
172 ’ LinkIntegrityErrors ’ , " 10" , ’ ExcBufOverrunErrors ’ , " 11") ;
173

174 # checks i f t h e o u t p u t o f t h e per fo rmance check has t h e ex pe c t ed fo rma t
175 @temp= s p l i t (/ / , $ r e s u l t[$ a n z r e s u l t]) ;
176 i f (" check " ne $temp[1]) {
177 # i f no t : t r y a n o t h e r way t o check t h e per fo rmance c o u n t e r s
178 i f ($ o p t _ f) {
179 @resu l t= ‘ / u s r / b in / sudo $ofed/ i b c h e c k e r r s _ p a t c h e d−v − t
180 $ t h r e s h o l d f i l e $ s u b l i d s t r $ p o r t n r ‘ ;
181 } e l s e {
182 @resu l t= ‘ / u s r / b in / sudo $ofed/ i b c h e c k e r r s _ p a t c h e d−v $ s u b l i d s t r $ p o r t n r ‘ ;
183 }
184 $ a n z r e s u l t = s c a l a r (@resu l t)−1;

Stefan Worm 69

Appendix A. Source Code Listing of thecheck_iberr Perl Script

185 @temp= s p l i t (/ / , $ r e s u l t[$ a n z r e s u l t]) ;
186 i f (" check " ne $temp[1]) {
187 p r i n t " Script could not be executed without errors : Possibly the
188 output format of parsed tools (ibcheckerrs) has changed .\ n" ;
189 e x i t $ERRORS{ ’ UNKNOWN’ } ;
190 }
191 }
192

193 # − i f a minimum of one v a l u e exceeds a t h r e s h o l d, t h i s w i l l be r e p o r t e d
194 # by send ing NSCA r e p o r t s t o t h e m o n i t o r i n g s e r v e r (one per v a l u e)
195 i f (($ a n z r e s u l t >= 1) | | ($opt_u)) {
196 i f ($opt_b) {
197 i f (! open(WRITEME, " | $sendnscabindir / send_nsca $monhost - c
198 $sendnscacfgdir / send_nsca . cfg ")) {
199 p r i n t " Script could not be executed without errors : SEND_NSCA
200 could not be executed (executable missing ?).\ n" ;
201 e x i t $ERRORS{ ’ UNKNOWN’ } ;
202 }
203 } e l s e {
204 i f (! open(WRITEME, " | $sendnscabindir / send_nsca $monhost - c
205 $sendnscacfgdir / send_nsca . cfg 1>/ dev / null ")) {
206 p r i n t " Script could not be executed without errors : SEND_NSCA
207 could not be executed (executable missing ?).\ n" ;
208 e x i t $ERRORS{ ’ UNKNOWN’ } ;
209 }
210 }
211 f o r ($ i =0; $ i < $ a n z r e s u l t; $ i ++){
212 @temp= s p l i t (/ / , $ r e s u l t[$ i]) ;
213 $ t h s t r = $temp[6] ;
214 chop($ t h s t r) ; chop($ t h s t r) ;
215 $ t h i n t = i n t ($ t h s t r) ;
216 $ t h c r i t= $ t h i n t * $ c r i t i c a l ;
217 $va lue= i n t ($temp[4]) ;
218 i f (i n t ($temp[4]) < $ t h c r i t) {
219 p r i n t WRITEME " $hostname \ tIB_$temp [2]\ t1 \ tThreshold exceeded :
220 $temp [4] $temp [5] $temp [6]\ n\ n" ;
221 i f ($opt_b) {
222 p r i n t " warning " ; p r i n t " --- temp4 : -- $temp [4]--;
223 value : -- $value --; thcrit : -- $thcrit --\ n" ;
224 }
225 } e l s e { p r i n t WRITEME " $hostname \ tIB_$temp [2]\ t2 \ tThreshold
226 exceeded : $temp [4] (Critical : $thcrit)\ n\ n" ;
227 i f ($opt_b) { p r i n t " critical " ; p r i n t " --- temp4 : -- $temp [4]--;
228 value : -- $value --; thcrit : -- $thcrit --\ n" ;
229 }
230 $ c r i t _ v a l _ o c u r e d= $ c r i t _ v a l _ o c u r e d+1;
231 }
232 d e l e t e($ th{ $temp[2] }) ;
233 }
234

235 my @errnames= keys(%t h) ;
236 f o r ($ i =0; $ i < s c a l a r (@errnames) ; $ i ++) {
237 p r i n t WRITEME " $hostname \ tIB_$errnames [$i]\ t0 \ tOK:
238 value below threshold \ n\ n" ;
239 i f ($opt_b) {
240 p r i n t " OK: " ; p r i n t " --- errnames
241 -- $errnames [$i]--; i : -- $i --;\ n" ;
242 }
243 }
244 i f ($opt_b) {
245 p r i n t " Errornames without exceeding a threshold :
246 @errnames ; Total : " ; p r i n t s c a l a r (@errnames) ;
247 }
248 c l o s e(WRITEME) ;
249 }
250

70 Stefan Worm

251 # i f t h e r e s e t o p t i o n i s s e t : t h e per fo rmance c o u n t e r s a r e r e s e t e d
252 my $ e r r c o d e=0;
253 i f ($ o p t _ r) {
254 $ e r r c o d e = system(" $ofed / perfquery - R $sublidstr $portnr ") ;
255 i f ($ e r r c o d e != 0) {
256 $ e r r c o d e=0;
257 $ e r r c o d e = system(" / usr / bin / sudo $ofed / perfquery - R $sublidstr $portnr ") ;
258 i f ($ e r r c o d e != 0) {
259 i f ($opt_b) { p r i n t " \ nSomething went wrong ! Errcode : $errcode \ n" ; }
260 e x i t $ERRORS{ ’ UNKNOWN’ } ;
261 }
262 }
263 i f ($opt_b) { p r i n t " \ nerrcode : $errcode (should be ’0’)\ n" ; }
264 }
265

266

267

268 i f ($opt_b) {
269 p r i n t " Following error counters had values above
270 threshold ($anzresult total): \ n" ;
271 f o r ($ i =0; $ i < $ a n z r e s u l t+1; $ i ++){
272 p r i n t " $result [$i] " ;
273 }
274 }
275

276 # − i f c r i t i c a l e r r o r s or warn ings o c c u r r e d or e v e r y t h i n g was a l r i g h t
277 # d i f f e r e n t r e t u r n v a l u e s a r e passed t o Nagios
278 i f ($ c r i t _ v a l _ o c u r e d>0) {
279 p r i n t " $crit_val_ocured value (s) exceeded critical threshold .\ n" ;
280 e x i t $ERRORS{ ’ CRITICAL ’ } ;
281 }
282

283 i f ($ a n z r e s u l t>0) {
284 p r i n t " $anzresult value (s) exceeded warning threshold .\ n" ;
285 e x i t $ERRORS{ ’ WARNING’ } ;
286 }
287

288 i f ($ o p t _ r) {
289 p r i n t " Resetting of all performance (error) counters successful .\ n" ;
290 } e l s e {
291 p r i n t " everything alright \ n" ;
292 }
293

294 e x i t $ERRORS{ ’ OK’ } ;
295

296 # a few s u b r o u t i n e s a r e d e f i n e d as f o l l o w s :
297 sub p r i n t _ u s a g e () {
298 p r i n t " Usage: $PROGNAME[- r] [- u] - H <hostname > [- m <monitoringhost >]
299 [- G <portguid >] [- l <lid >] [- p <portnumber >] [- c <crit >]
300 [- d <dir - ofed >] [- n<dir - send_nsca >] [- g <dir - send_nsca . cfg >]
301 [- f <thresholdfile >] \ n" ;
302 }
303

304 sub p r i n t _ h e l p () {
305 p r i n t _ r e v i s i o n($PROGNAME, ’ $Revision : 0.4 $’) ;
306 p r i n t " Copyright (c) 2007 Stefan Worm
307

308 This plugin reports if errors at ports of an InfiniBand interface have occurred .
309

310 " ;
311 p r i n t _ u s a g e() ;
312 p r i n t "
313

314 - b, -- bug
315 prints debug messages to STDOUT
316 - r , -- reset

Stefan Worm 71

Appendix A. Source Code Listing of thecheck_iberr Perl Script

317 reset all performance (error) counters
318 - u, -- update
319 update all performance (error) values
320 - H, -- hostname =STRING
321 Name of the host in which the IB should be checked
322 (exactly the same as defined in Nagios)
323 - m, -- monitoringhost =IP - Address
324 IP address of the monitoring host
325 (To where the results of this script should be sent to ?)
326 - G, -- portguid =HEX
327 portguid number of the IB device to be checked (Default : localhost)
328 - l , -- lid =HEX
329 lid number of the IB device to be checked
330 - p, -- portnumber =INTEGER
331 portnumber of the IB device to be checked (DEFAULT: 1)
332 - c, -- critical =INTEGER
333 factor of the exceeding of the warning - threshold when
334 a CRITICAL status will result (DEFAULT: 10)
335 - d, -- dirofed =full - directory - path
336 Full directory path for the ofed - tools (DEFAULT: / usr / ofed / bin)
337 - n, -- sendnscabindir =full - directory - path
338 Full directory path for the send_nsca binary (DEFAULT: / usr / bin)
339 - g, -- sendnscacfgdir =full - directory - path
340 Full directory path for the send_nsca . cfg config file (DEFAULT: / etc / nsca)
341 - f , -- filename =threshold - file
342 Custom thresholds file with full path
343 (DEFAULT THRESHOLD: between 10 or 100 depending on the value)
344

345 " ;
346 s u p p o r t() ;
347 }
348 sub p r i n t _ r e v i s i o n ($$) {
349 my $commandName= s h i f t ;
350 my $ p l u g i n R e v i s i o n = s h i f t ;
351 $ p l u g i n R e v i s i o n =~ s / ^ \ $Rev i s i on: / / ;
352 $ p l u g i n R e v i s i o n =~ s / \ $ \ s* $ / / ;
353 p r i n t " $commandName (nagios - plugins 1.4.4) $pluginRevision \ n" ;
354 p r i n t " This nagios plugin come with ABSOLUTELYNO WARRANTY. You may
355 redistribute copies of the plugin under the terms of the GNU
356 General Public License . For more information about these
357 matters , see the file named COPYING.\ n" ;
358 }
359

360 sub s u p p o r t () {
361 my $ s u p p o r t=’ Send email to the author if you have questions \ n
362 regarding use of this software . ’ ;
363 $ s u p p o r t =~ s /@/ \@/ g ;
364 $ s u p p o r t =~ s / \ \ n / \ n / g ;
365 p r i n t $ s u p p o r t;
366 }
367

368 sub usage {
369 my $ fo rma t= s h i f t ;
370 p r i n t f ($ format ,@_) ;
371 e x i t $ERRORS{ ’ UNKNOWN’ } ;
372 }

Listing A.1: check_iberr.pl

72 Stefan Worm

B Monitoring Server and Client
Configuration

B.1 Definition of Hosts and Services on the
Monitoring Server

On the Nagios monitoring server the following configurations regarding the hosts and
services that should be monitored have to be performed to set up an exemplary moni-
toring scenario, to understand the situation under which the analyses of this work were
made.

The following Nagios configuration example creates a situation in which the host
namedc5-2should be monitored regarding its InfiniBand (IB) error counters via Nagios
Remote Plugins Executor (NRPE). This is appropriate if the Nagios monitoring server
is not connected via InfiniBand with the host that should be monitored. However, if it is
connected, thecheck_iberr.pl script can also be executed directly on the Nagios
monitoring host and the error counters check could be made directly via IB-network
which performs much better than the version via NRPE.

The configuration causes the error counters at the monitoring clients to be checked
every 5 minutes and only if the state of an error counter has changed (threshold ex-
ceeded) this will be (passively) reported to the Nagios server. Furthermore, every 59
minutes the status of all values will be passively updated and reported to the Nagios
server, as well as every 24 hours all error counters will be reseted.

1 d e f i n e h o s t{
2 use g e n e r i c−h o s t ; − Name of h o s t t e m p l a t e t o use
3 ; (Nagios−Standard−Template)
4 host_name c5−2
5 a l i a s Compute−5−2
6 a d d r e s s 1 9 2 . 1 6 8 . 1 . 5 2
7 check_command check−hos t−a l i v e
8 p a r e n t s j a c k
9 max_check_a t tempts 10

10 c h e c k _ p e r i o d 24x7
11 n o t i f i c a t i o n _ i n t e r v a l 120
12 n o t i f i c a t i o n _ p e r i o d 24x7
13 n o t i f i c a t i o n _ o p t i o n s d , r
14 c o n t a c t _ g r o u p s admins
15 }
16

17 d e f i n e s e r v i c e{
18 use g e n e r i c−s e r v i c e ; − Name of s e r v i c e t e m p l a t e t o use
19 ; (Nagios−Standard−Template)
20 host_name c5−2
21 s e r v i c e _ d e s c r i p t i o n i b e r r _ n s c a _ t r i g g e r

Stefan Worm 73

Appendix B. Monitoring Server and Client Configuration

22 i s _ v o l a t i l e 0
23 c h e c k _ p e r i o d 24x7
24 max_check_a t tempts 4
25 n o r m a l _ c h e c k _ i n t e r v a l 5
26 r e t r y _ c h e c k _ i n t e r v a l 1
27 c o n t a c t _ g r o u p s admins
28 n o t i f i c a t i o n _ o p t i o n s w, u , c , r
29 n o t i f i c a t i o n _ i n t e r v a l 960
30 n o t i f i c a t i o n _ p e r i o d 24x7
31 check_command i b c h e c k e r r!0 x0002c9010ad27db1 ; I n f i n i B a n d PortGUID
32 }
33

34 d e f i n e s e r v i c e{
35 use g e n e r i c−s e r v i c e
36 host_name c5−2
37 s e r v i c e _ d e s c r i p t i o n i b e r r _ n s c a _ u p d a t e _ t r i g g e r
38 i s _ v o l a t i l e 0
39 c h e c k _ p e r i o d 24x7
40 max_check_a t tempts 4
41 n o r m a l _ c h e c k _ i n t e r v a l 59 ; min
42 r e t r y _ c h e c k _ i n t e r v a l 1
43 c o n t a c t _ g r o u p s admins
44 n o t i f i c a t i o n _ o p t i o n s w, u , c , r
45 n o t i f i c a t i o n _ i n t e r v a l 960
46 n o t i f i c a t i o n _ p e r i o d 24x7
47 check_command i b c h e c k e r r _ u p d a t e!0 x0002c9010ad27db1
48 }
49

50 d e f i n e s e r v i c e{
51 use g e n e r i c−s e r v i c e
52 host_name c5−2
53 s e r v i c e _ d e s c r i p t i o n i b e r r _ n s c a _ r e s e t _ t r i g g e r
54 i s _ v o l a t i l e 0
55 c h e c k _ p e r i o d 24x7
56 max_check_a t tempts 4
57 n o r m a l _ c h e c k _ i n t e r v a l 1440 ; i n m inu tes (1440 min . e q u a l s 1 day)
58 r e t r y _ c h e c k _ i n t e r v a l 1
59 c o n t a c t _ g r o u p s admins
60 n o t i f i c a t i o n _ o p t i o n s w, u , c , r
61 n o t i f i c a t i o n _ i n t e r v a l 1960
62 n o t i f i c a t i o n _ p e r i o d 24x7
63 check_command i b c h e c k e r r _ r e s e t!0 x0002c9010ad27db1
64 }
65

66 d e f i n e s e r v i c e{
67 name g e n e r i c−i b e r r o r s−s e r v i c e ; t h e ’ name’ o f t h i s t e m p l a t e
68 a c t i v e _ c h e c k s _ e n a b l e d 0 ; Ac t i ve s e r v i c e checks a r e enab led
69 p a s s i v e _ c h e c k s _ e n a b l e d 1 ; P a s s i v e s e r v i c e checks a r e enab led/ a c c e p t e d
70 p a r a l l e l i z e _ c h e c k 1 ; Ac t i ve s e r v i c e checks shou ld be p a r a l l e l i z e d
71 ; (d i s a b l i n g t h i s can l e a d t o major pe r fo rmance
72 ; p rob lems)
73 o b s e s s _ o v e r _ s e r v i c e 1 ; We shou ld o b s e s s over t h i s s e r v i c e
74 ; (i f n e c e s s a r y)
75 c h e c k _ f r e s h n e s s 1 ; D e f a u l t i s NOT t o check s e r v i c e ’ f r e s h n e s s’
76 f r e s h n e s s _ t h r e s h o l d 3600 ; seconds
77 n o t i f i c a t i o n s _ e n a b l e d 1 ; S e r v i c e n o t i f i c a t i o n s a r e enab led
78 e v e n t _ h a n d l e r _ e n a b l e d 1 ; S e r v i c e e v e n t h a n d l e r i s enab led
79 f l a p _ d e t e c t i o n _ e n a b l e d 1 ; F lap d e t e c t i o n i s enab led
80 f a i l u r e _ p r e d i c t i o n _ e n a b l e d1 ; F a i l u r e p r e d i c t i o n i s enab led
81 p r o c e s s _ p e r f _ d a t a 1 ; P r o c e s s per fo rmance d a t a
82 r e t a i n _ s t a t u s _ i n f o r m a t i o n 1 ; R e t a i n s t a t u s i n f o r m a t i o n a c r o s s program
83 ; r e s t a r t s
84 r e t a i n _ n o n s t a t u s _ i n f o r m a t i o n1 ; R e t a i n non−s t a t u s i n f o r m a t i o n a c r o s s program
85 ; r e s t a r t s
86 i s _ v o l a t i l e 0
87 c h e c k _ p e r i o d 24x7

74 Stefan Worm

B.1. Definition of Hosts and Services on the Monitoring Server

88 max_check_a t tempts 4
89 n o r m a l _ c h e c k _ i n t e r v a l 5
90 r e t r y _ c h e c k _ i n t e r v a l 1
91 c o n t a c t _ g r o u p s admins
92 n o t i f i c a t i o n _ o p t i o n s w, u , c , r
93 n o t i f i c a t i o n _ i n t e r v a l 960
94 n o t i f i c a t i o n _ p e r i o d 24x7
95 s e r v i c e g r o u p s i b e r r o r s
96 check_command check_dummy_iber rors! 1 ! " The status of this passive
97 value is not up to date any longer
98 - something could be wrong "
99 ; − i f t h e f r e s h n e s s _ t h r e s h o l di s exceeded,

100 ; t h i s command i s ex ec u t ed (i t r e t u r n s t h e
101 ; s t a t u s o f ’ Warning’)
102 r e g i s t e r 0 ; − DON’ T REGISTER THIS DEFINITION − ITS NOT
103 ; A REAL SERVICE, JUST A TEMPLATE!
104 }
105

106 d e f i n e s e r v i c e{
107 use g e n e r i c−i b e r r o r s−s e r v i c e ; Name of s e r v i c e t e m p l a t e t o use
108 host_name c5−2
109 s e r v i c e _ d e s c r i p t i o n IB_SymbolEr rors
110 }
111 d e f i n e s e r v i c e{
112 use g e n e r i c−i b e r r o r s−s e r v i c e
113 host_name c5−2
114 s e r v i c e _ d e s c r i p t i o n IB_L inkRecovers
115 }
116 d e f i n e s e r v i c e{
117 use g e n e r i c−i b e r r o r s−s e r v i c e
118 host_name c5−2
119 s e r v i c e _ d e s c r i p t i o n IB_LinkDowned
120 }
121 d e f i n e s e r v i c e{
122 use g e n e r i c−i b e r r o r s−s e r v i c e
123 host_name c5−2
124 s e r v i c e _ d e s c r i p t i o n IB_RcvEr ro rs
125 }
126 d e f i n e s e r v i c e{
127 use g e n e r i c−i b e r r o r s−s e r v i c e
128 host_name c5−2
129 s e r v i c e _ d e s c r i p t i o n IB_RcvRemotePhysErrors
130 }
131 d e f i n e s e r v i c e{
132 use g e n e r i c−i b e r r o r s−s e r v i c e
133 host_name c5−2
134 s e r v i c e _ d e s c r i p t i o n IB_RcvSwRelayErrors
135 }
136 d e f i n e s e r v i c e{
137 use g e n e r i c−i b e r r o r s−s e r v i c e
138 host_name c5−2
139 s e r v i c e _ d e s c r i p t i o n IB_XmtDiscards
140 }
141 d e f i n e s e r v i c e{
142 use g e n e r i c−i b e r r o r s−s e r v i c e
143 host_name c5−2
144 s e r v i c e _ d e s c r i p t i o n I B _ X m t C o n s t r a i n t E r r o r s
145 }
146 d e f i n e s e r v i c e{
147 use g e n e r i c−i b e r r o r s−s e r v i c e
148 host_name c5−2
149 s e r v i c e _ d e s c r i p t i o n I B _ R c v C o n s t r a i n t E r r o r s
150 }
151 d e f i n e s e r v i c e{
152 use g e n e r i c−i b e r r o r s−s e r v i c e
153 host_name c5−2

Stefan Worm 75

Appendix B. Monitoring Server and Client Configuration

154 s e r v i c e _ d e s c r i p t i o n I B _ L i n k I n t e g r i t y E r r o r s
155 }
156 d e f i n e s e r v i c e{
157 use g e n e r i c−i b e r r o r s−s e r v i c e
158 host_name c5−2
159 s e r v i c e _ d e s c r i p t i o n IB_ExcBufOver runEr ro rs
160 }
161 d e f i n e s e r v i c e{
162 use g e n e r i c−i b e r r o r s−s e r v i c e
163 host_name c5−2
164 s e r v i c e _ d e s c r i p t i o n IB_VL15Dropped
165 }

Listing B.1:Configuration of the Hosts and Services on the Nagios Server

B.2 Definition of the Check Commands on the
Monitoring Server for Direct Execution

If the check_iberr.pl script should be executed locally and a direct performance
counter check of the InfiniBand network device should be performed, the following
definitions that have to be made on the monitoring server, can be used as a blueprint.

1 d e f i n e command{
2 command_name i b c h e c k e r r
3 command_l ine / u s r /CHECK−DIR / c h e c k _ i b e r r. p l −m 1 9 2 . 1 6 8 . 1 . 9 8−H $ARG1$−G $ARG1$
4 }

6 d e f i n e command{
7 command_name i b c h e c k e r r _ u p d a t e
8 command_l ine / u s r /CHECK−DIR / c h e c k _ i b e r r. p l −m 1 9 2 . 1 6 8 . 1 . 9 8−H $ARG1$−G $ARG1$−u
9 }

11 d e f i n e command{
12 command_name i b c h e c k e r r _ r e s e t
13 command_l ine / u s r /CHECK−DIR / c h e c k _ i b e r r. p l −m 1 9 2 . 1 6 8 . 1 . 9 8−H $ARG1$−G $ARG1$−r
14 }

Listing B.2:Nagios Server Direct Command Execution Configuration

B.3 Definition of the Check Commands on the
Monitoring Server for Execution via NRPE

If the check_iberr.pl script should be executed remotely via NRPE the following
definitions, that have to be made on the monitoring server, can be used as a blueprint
as well.

1 d e f i n e command{
2 command_name i b c h e c k e r r
3 command_l ine $USER1$/ check_nrpe−H $HOSTADDRESS$−c c h e c k _ i b e r r '

−a 1 9 2 . 1 6 8 . 1 . 9 8$HOSTNAME$ $ARG1$
4 }

76 Stefan Worm

B.4. Definitions on the Monitoring Client

6 d e f i n e command{
7 command_name i b c h e c k e r r _ u p d a t e
8 command_l ine $USER1$/ check_nrpe−H $HOSTADDRESS$−c c h e c k _ i b e r r _ u p d a t e'

−a 1 9 2 . 1 6 8 . 1 . 9 8$HOSTNAME$ $ARG1$
9 }

11 d e f i n e command{
12 command_name i b c h e c k e r r _ r e s e t
13 command_l ine $USER1$/ check_nrpe−H $HOSTADDRESS$−c c h e c k _ i b e r r _ r e s e t'

−a 1 9 2 . 1 6 8 . 1 . 9 8$HOSTNAME$ $ARG1$
14 }

Listing B.3:Nagios Server Command Execution Configuration via NRPE

B.4 Definitions on the Monitoring Client

The configuration of the Nagios Remote Plugin Executor (NRPE) on the host that
should be monitored is exemplary presented for the option that thecheck_iberr.pl
script should be executed locally on this host. Of course, the path usually has to be
changed regarding where thecheck_iberr.pl script is located on the specific host.

If one or more of the several options of thecheck_iberr.pl script are used, they
should be added at this point. The program parameters that are expected below, are the
ones that were passed by the command definition on the monitoring server to the NRPE
(refer to SectionB.3 on the facing page).

1 command[c h e c k _ i b e r r] = / u s r /CHECK−DIR / c h e c k _ i b e r r. p l '
−m $ARG1$−H $ARG2$−G $ARG3$

2 command[c h e c k _ i b e r r _ u p d a t e] = / u s r /CHECK−DIR / c h e c k _ i b e r r. p l '
−m $ARG1$−H $ARG2$−G $ARG3$−u

3 command[c h e c k _ i b e r r _ r e s e t] = / u s r /CHECK−DIR / c h e c k _ i b e r r. p l '
−m $ARG1$−H $ARG2$−G $ARG3$−r

Listing B.4:NRPE Monitoring Client Configuration

Stefan Worm 77

Bibliography

[Bal05] Tarus Balog: Enterprise-Wide Network Management with OpenNMS.
O’Reilly SysAdmin, 2005.
URL http://www.oreillynet.com/pub/a/sysadmin/
2005/09/08/opennms.html [p. 33]

[Boo03] Charles Bookman:Linux Clustering: Building and Maintaining Linux
Clusters. New Riders Publishing, Indianapolis, 2003. ISBN 978-1-57870-
274-9. [p. 2]

[Clo53] Charles Clos:A study of non-blocking switching networks. Bell System
Technical Journal, Volume 32 (Number 2), March 1953:pp. 406–424. [p.
23]

[CS92] Dah Ming Chiu and Ram Sudama:Network Monitoring Explained: De-
sign and Application. Ellis Horwood, Chichester, UK, 1992. ISBN 0-13-
614710-0. [p. 4, 16]

[CWP03] B. Chandrasekaran, Pete Wyckoff and Dhabaleswar K. Panda:MIBA: A
Micro-Benchmark Suite for Evaluating InfiniBand Architecture Implemen-
tations. Lecture Notes in Computer Science - Computer Performance, Vol-
ume 2497, Springer, Berlin / Heidelberg, 2003:pp. 29–46. ISSN 302-9743.
(ISBN 978-3-540-40814-7).
URL http://dx.doi.org/10.1007/b12028 [p. 39]

[CWSC01] Stephen Chan, Cary Whitney, Iwona Sakreja and Shane Canon:Monitor-
ing Tools for Larger Sites. In: ;login: The Magazine ofUSENIX &
SAGE, Volume 26, Number 5, August 2001.
URL http://www.usenix.org/publications/login/
2001-08/pdfs/chan.pdf [p. 7, 32]

[Dib02] Peter C. Dibble:Real-Time Java Platform Programming. Prentice Hall,
Palo Alto, CA, 2002. ISBN 978-0-13-028261-3. [p. 2]

[Fri02] Æleen Frisch:Essential System Administration. O’Reilly, Sebastopel, CA,
2002. ISBN 0-596-00343-9. [p. 34]

[Gal06] Ethan Galstad:Nagios Version 2.x Documentation, 2006.
URL http://nagios.sourceforge.net/docs/2_0/ [p. 34]

Stefan Worm 79

http://www.oreillynet.com/pub/a/sysadmin/2005/09/08/opennms.html
http://www.oreillynet.com/pub/a/sysadmin/2005/09/08/opennms.html
http://dx.doi.org/10.1007/b12028
http://www.usenix.org/publications/login/2001-08/pdfs/chan.pdf
http://www.usenix.org/publications/login/2001-08/pdfs/chan.pdf
http://nagios.sourceforge.net/docs/2_0/

Bibliography

[GBC+02] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rig-
nanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy,
M. Mikami, Ph. Ghosez, J.-Y. Raty and D.C. Allan:First-principles
computation of material properties : the ABINIT software project.
Computational Materials Science 25, 478–492, 2002.
URL http://dx.doi.org/10.1016/S0927-0256(02)
00325-7 [p. 23, 47]

[Got02] Ellen Gottesdiener:Requirements by Collaboration: Workshops for Defin-
ing Needs. Addison Wesley Professional, 2002. ISBN 978-0-201-78606-4.
[p. 25]

[GSP05] Susan L. Graham, Marc Snir and Cynthia A. Patterson, editors:Getting up
to speed: The future of supercomputing. The National Academies Press
of the National Research Council, Washington, D.C., 2005. ISBN 0-309-
09502-6. [p. 2, 3]

[GWB+04] Michael Gerndt, Roland Wismüller, Zoltán Balaton, Gábor Gombás,
Péter Kacsuk, Zsolt Németh, Norbert Podhorszki, Hong-Linh Truong,
Thomas Fahringer, Marian Bubak, Erwin Laure and Thomas Margalef:
Performance Tools for the Grid: State of the Art and Future. Working
Group on Automatic Performance Analysis: Real Tools (APART), 2004.
URL http://urza.lpds.sztaki.hu/~zsnemeth/apart/
repository/gridtools.pdf [p. 34]

[HA94] Heinz-Gerd Hegering and Sebastian Abeck:Integrated network and sys-
tem management. Addison-Wesley, Wokingham, UK, 1994. ISBN 0-201-
59377-7. [p. 3]

[Hal00] Eric A. Hall: Internet Core Protocols. O’Reilly, Sebastopel, CA, 2000.
ISBN 1-56592-572-6. [p. 11]

[HAN99] Heinz-Gerd Hegering, Sebastian Abeck and Bernhard Neumair:Inte-
grated Management of Networked Systems: Concepts, Architectures, and
Their Operational Application. Morgan Kaufmann, 1999. ISBN 1-55860-
571-1. [p. 3, 4]

[Har03] Richard C. Harlan:Network Management with Nagios. Linux Journal,
(Number 111), 2003. ISSN 1075-3583.
URL http://portal.acm.org/citation.cfm?id=860378
[p. 34]

[HLR] Torsten Hoefler, André Lichei and Wolfgang Rehm:Low-Overhead
LogGP Parameter Assessment for Modern Interconnection Networks. TU
Chemnitz. presented in Long Beach, CA, USA, Mar. 2007, Accepted for
publication at the 6th International Workshop on Performance Modelling,

80 Stefan Worm

http://dx.doi.org/10.1016/S0927-0256(02)00325-7
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
http://urza.lpds.sztaki.hu/~zsnemeth/apart/repository/gridtools.pdf
http://urza.lpds.sztaki.hu/~zsnemeth/apart/repository/gridtools.pdf
http://portal.acm.org/citation.cfm?id=860378

Bibliography

Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-
PDS) 2007 in conjunction with IEEE International Parallel & Distributed
Processing Symposium (IPDPS) 2007. [p. 54]

[Hoe05] Torsten Hoefler:Evaluation of publicly available Barrier-Algorithms and
Improvement of the Barrier-Operation for large-scale Cluster-Systems
with special Attention on InfiniBand Networks. Diploma Thesis, Technical
University of Chemnitz, Faculty of Computer Science, Germany, 2005.
URL http://archiv.tu-chemnitz.de/pub/2005/0073/
data/diploma.pdf [p. 39]

[Inf04] InfiniBand Trade Association (IBTA):InfiniBand Architecture Specifica-
tion Volume 1, Release 1.2. 2004. [p. 39, 49]

[ISO89] ISO/IEC (JTC 1) 7498-4: Information processing systems – Open
Systems Interconnection – Basic Reference Model – Part 4: Management
framework, 1989.
URL http://standards.iso.org/ittf/PubliclyAvailable
Standards/s014258_ISO_IEC_7498-4_1989(E).zip . [p. 4]

[ISO94] ISO/IEC (JTC 1) 7498-1: Information technology – Open Systems
Interconnection – Basic Reference Model: The Basic Model, 1994.
URL http://standards.iso.org/ittf/PubliclyAvailable
Standards/s020269_ISO_IEC_7498-1_1994(E).zip . [p. 4]

[JLSU87] Jeffrey Joyce, Greg Lomow, Konrad Slind and Brian Unger:Monitoring
distributed systems. ACM Transactions on Computer Systems (TOCS),
Volume 5 (Number 2), ACM Press, New York, 1987:pp. 121–150. ISSN
0734-2071.
URL http://doi.acm.org/10.1145/13677.22723 [p. 7]

[Kan02] Stephan H. Kan:Metrics and Models in Software Quality Engineering,
Second Edition. Addison Wesley Professional, 2002. ISBN 978-0-201-
72915-3. [p. 18]

[Lan94] Alwyn Langsford: OSI Management Model and Standards. In Morris
Sloman, editor,Network and distributed systems management, Addison-
Wesley, Wokingham, UK. 1994. ISBN 0-201-62745-0, pp. 69–93. [p.
4]

[LH02] Thomas A. Limoncelli and Christine Hogan:The Practice of System and
Network Administration. Addison-Wesley – Pearson Education, 2002.
ISBN 0-201-70271-1. [p. 7, 16, 21]

[Lib00] Hastings Maboshe Libati:Network Traffic Analysis and Security Monitor-
ing to Detect Intrusions. Dissertation, Friedrich-Schiller-University Jena,
School for Mathematics and Computer Science, Germany, 2000. [p. 4]

Stefan Worm 81

http://archiv.tu-chemnitz.de/pub/2005/0073/data/diploma.pdf
http://archiv.tu-chemnitz.de/pub/2005/0073/data/diploma.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_7498-4_1989(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_7498-4_1989(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://doi.acm.org/10.1145/13677.22723

Bibliography

[LJ93] Rubin H. Landau and Paul J. Fink Jr.:A Scientist’s and Engeneer’s Guide
to Workstations and Supercomputers: coping with Unix, RISC, Vectors,
and programming. John Wiley & Sons, New York, 1993. ISBN 0-471-
53271-1. [p. 1]

[LNC98] Soung C. Liew, Ming-Hung Ng and Cathy W. Chan:Blocking and non-
blocking multirate Clos switching networks. IEEE/ACM Transactions on
Networking (TON), Volume 6 (Number 3), IEEE Press, Piscataway, NJ,
1998:pp. 307–318. ISSN 1063-6692.
URL http://dx.doi.org/10.1109/90.700894 [p. 23]

[Luc04] Robert W. Lucke:Building Clustered Linux Systems. Prentice Hall, Upper
Saddle River, NJ, 2004. ISBN 978-0-13-144853-7. [p. 2]

[man05] "manage":Merriam-Webster Online Dictionary, 2005. (05 Oct. 2006).
URL http://www.merriam-webster.com [p. 3]

[MAS+03] James McGovern, Scott W. Ambler, Michael E. Stevens, James Linn,
Vikas Sharan and Elias K. Jo:A Practical Guide to Enterprise Archi-
tecture. Prentice Hall, Upper Saddle River, NJ, 2003. ISBN 978-0-13-
141275-0. [p. 21]

[MCC04] Matthew L. Massie, Brent N. Chun and David E. Culler:The Ganglia
Distributed Monitoring System: Design, Implementation, and Experience.
IN: Parallel Computing, Volume 30, Issue 7, 2004:pp. 817–840. ISSN
0167-8191. (http://ganglia.info/papers/science.pdf).
URL http://dx.doi.org/10.1016/j.parco.2004.04.001
[p. 33]

[MHS06] Yusef Hassan Montero and Victor Herrero-Solana:Improving Tag-Clouds
as Visual Information Retrieval Interfaces. To appear in: International
Conference on Multidisciplinary Information Sciences and Technologies
(InSciT), Mérida, Spain, 2006.
URL http://www.nosolousabilidad.com/hassan/
improving_tagclouds.pdf [p. 21]

[MS01] Douglas R. Mauro and Kevin J. Schmidt:Essential SNMP. O’Reilly, Se-
bastopel, CA, 2001. ISBN 0-596-00020-0. [p. 11]

[MSS94] Masoud Mansouri-Samani and Morris Sloman:Monitoring Distributed
Systems. In Morris Sloman, editor,Network and distributed systems man-
agement, Addison-Wesley, Wokingham, UK. 1994. ISBN 0-201-62745-0,
pp. 303–347. [p. 8, 9, 19]

[Mur00] Richard Murch:Project Management: Best Practices for IT Professionals.
Prentice Hall, Upper Saddle River, NJ, 2000. ISBN 978-0-13-021914-5.
[p. 25]

82 Stefan Worm

http://dx.doi.org/10.1109/90.700894
http://www.merriam-webster.com
http://ganglia.info/papers/science.pdf
http://dx.doi.org/10.1016/j.parco.2004.04.001
http://www.nosolousabilidad.com/hassan/improving_tagclouds.pdf
http://www.nosolousabilidad.com/hassan/improving_tagclouds.pdf

Bibliography

[Neu88] Victoria Neufeldt, editor:Webster’s New World Dictionary of American
English, Third College Edition. Webster’s New World Dictionaries - A
Division of Simon & Schuster, Inc., New York, 1988. ISBN 0-13-947169-
3. [p. 1, 3, 7]

[Nie04] Jakob Nielsen:Usability engineering. Kaufmann, Amsterdam, 2004.
ISBN 0-12-518406-9. [p. 21]

[O’D02] Shane O’Donnell: Network Management with OpenNMS. O’Reilly
ONLamp.com, 2002.
URL http://www.onlamp.com/pub/a/onlamp/2002/04/
18/opennms.html [p. 33]

[per05] "perform": Merriam-Webster Online Dictionary, 2005. (23 Oct. 2006).
URL http://www.merriam-webster.com [p. 11]

[Pfi01] Gregory F. Pfister:Aspects of the InfiniBand Architecture. IN: IEEE Inter-
national Conference on Cluster Computing, Proceedings, 2001:pp. 369–
371. ISSN 0272-5428. (ISBN: 0-7695-1390-5). [p. 39]

[PKP03] Fabrizio Petrini, Darren J. Kerbyson and Scott Pakin:The Case of the
Missing Supercomputer Performance: Achieving Optimal Performance
on the 8,192 Processors of ASCI Q. In SC ’03: Proceedings of the
2003 ACM/IEEE conference on Supercomputing. IEEE Computer Society,
Washington, DC, USA, 2003. ISBN 1-58113-695-1, p. 55. [p. 13]

[RFC81] RFC 792:Internet Control Message Protocol (ICMP), 1981.
URL http://www.ietf.org/rfc/rfc792.txt [p. 11]

[sca05] "scalable":Merriam-Webster Online Dictionary, 2005. (23 Oct. 2006).
URL http://www.merriam-webster.com [p. 13]

[SDA+00] Anthony Skjellum, Rossen Dimitrov, Srihari Angulari, David Lifka,
George Coulouris, Putchong Uthayopas, Stephen L. Scott and Rasit Eski-
cioglu: Systems Administration. In Mark Baker, editor,Cluster Computing
White Paper, chapter 6. 2000.
URL http://arxiv.org/pdf/cs.DC/0004014 [p. 13]

[Sel00] John Sellens:System and Network Monitoring. In: ;login: The
Magazine ofUSENIX & SAGE, Volume 25, Number 3, June 2000.
URL http://www.usenix.org/publications/login/
2000-6/features/monitoring.html [p. 10, 32]

[SK87] Morris Sloman and Jeff Kramer:Distributed Systems and Computer Net-
works. Prentice Hall, 1987. ISBN 0-13-215864-7. [p. 13]

Stefan Worm 83

http://www.onlamp.com/pub/a/onlamp/2002/04/18/opennms.html
http://www.onlamp.com/pub/a/onlamp/2002/04/18/opennms.html
http://www.merriam-webster.com
http://www.ietf.org/rfc/rfc792.txt
http://www.merriam-webster.com
http://arxiv.org/pdf/cs.DC/0004014
http://www.usenix.org/publications/login/2000-6/features/monitoring.html
http://www.usenix.org/publications/login/2000-6/features/monitoring.html

Bibliography

[SKMC03] Federico D. Sacerdoti, Mason J. Katz, Matthew L. Massie and
David E. Culler: Wide Area Cluster Monitoring with Ganglia.
IN: IEEE International Conference on Cluster Computing, Proceed-
ings, 2003:pp. 289–298. (http://ganglia.info/papers/
Sacerdoti03Monitoring.pdf).
URL http://dx.doi.org/10.1109/CLUSTR.2003.1253327
[p. 33]

[Slo05] Joseph D. Sloan:High Performance Linux Clusters with OSCAR, Rocks,
openMosix, and MPI. O’Reilly, Sebastopel, CA, 2005. ISBN 0-596-
00570-9. [p. 1, 2]

[Ste02] Thomas Sterling, editor:Beowulf Cluster Computing with Linux. The
Massachusetts Institute of Technology Press, 2002. ISBN 0-262-69274-0.
[p. 1]

[Tan03] Andrew S. Tanenbaum:Computer Networks, Fourth Edition. Prentice
Hall, Upper Saddle River, NJ, 2003. ISBN 978-0-13-066102-9. [p. 4]

[top00] The TOP500 list of the 500 most powerful commercially available com-
puter systems. website, November 2000.
URL http://www.top500.org/list/2000/11/200/ [p. 23]

[Wor05] Stefan Worm:Administration of Access Rights in Web Applications. Stu-
dent Research Paper, Technical University of Chemnitz, Faculty of Com-
puter Science, Germany, 2005.
URL http://archiv.tu-chemnitz.de/pub/2005/0143/ [p.
4]

84 Stefan Worm

http://ganglia.info/papers/Sacerdoti03Monitoring.pdf
http://ganglia.info/papers/Sacerdoti03Monitoring.pdf
http://dx.doi.org/10.1109/CLUSTR.2003.1253327
http://www.top500.org/list/2000/11/200/
http://archiv.tu-chemnitz.de/pub/2005/0143/

Index

Symbols
α error,seefalse positive event classifi-

cation
β error,seefalse negative event classifi-

cation

A
Abinit, 23, 47

abinip,47, 52
abinis,52
DFT, 47
MPI, 47
MVAPICH2, 47, 54
OpenIB,47

absolute deviation,seemeasurement
access point (AP),11
accounting management,4
active monitoring checks,seetypes of

monitoring
add-on,seeNagios add-on
administration policy,26
administrator,1, 10, 15, 16
Advanced Encryption Standard (AES),

seeencryption algorithm
Advanced Micro Devices,Inc. (AMD),

23
agent,seeNagios Remote Plugins Ex-

ecutor (NRPE)
air conditioning,28, 31
alert,seemonitoring communication
AMD CPU

Athlon, 61
Opteron,23

Angel Network Monitoring,seemoni-
toring software (rejected)

application management,seeintegrated
management

Application Programming Interface (API),
34

arithmetic mean,seemeasurement
Association for Computing Machinery

(ACM), 83

B
bandwidth,seenetwork bandwidth
Basic Linear Algebra Subroutines (BLAS),

23
batch system,9, 27, 35
benchmark

netgauge,54
Beowulf,23
Big Brother,seemonitoring software
Big Sister,seemonitoring software
bug,18

C
capacity utilisation,35
Car-Parrinello Molecular Dynamics (CPMD),

24
cellular phone text message,20
chassis,11, 15
check_iberr script source code,67
check_iberr.pl,42, 56, 63, 73
Chemnitz High-Performance Linux Clus-

ter (CHiC),23
Chemnitz Linux Cluster (CLiC),23

Stefan Worm 85

Index

Chemnitz University of Technology1, 23
CHiC components

12x visualisation nodes,23
2x login nodes,23
2x management nodes,23
530x compute nodes,23
8x I/O nodes,23

Clos network,23
CluMon, seemonitoring software (re-

jected)
cluster

capability,3, 5
capacity,3, 5, 23
failover,2
Fault-Tolerant,2
High-Availability (HA), 2
High-Performance (HP),2, 23, 51
High-Throughput,2
Load-Balancing (LB),2

commercial monitoring software
OpenView,seeHP OpenView
Tivoli, seeIBM Tivoli

community,seeNagios
computer error,seebug
computing centre,11, 32, 39
configuration management,4
CPU,11, 13, 15, 19, 51
cron,seeUnix/Linux programs

D
daemon,10, 38
Data Encryption Algorithm (DEA),see

encryption algorithm
Data Encryption Standard (DES),seeen-

cryption algorithm
DataBase (DB),11
defective temperature sensor,16
Density Functional Theory (DFT),see

Abinit
depreciation (of the cluster),36
df, seeUnix/Linux programs
DHCP (Dynamic Host Configuration Pro-

tocol),59

1http://www.tu-chemnitz.de/

Direct Memory Access (DMA),39
diskless,23
dissemination of monitoring data,19, 22
distributed application,13
Distributed Processing System (DPS),13
Domain Name Service (DNS),11
Double Data Rate (DDR),seeInfiniBand

(IB) network
double-precision General Matrix Multi-

ply (DGEMM), 23
downtime (of an application),2
downtime (of the cluster),36
duplex network connection,39

E
e-mail,21
e-mail client,26
encryption algorithm

AES (Rijndael),38
DES (DEA),38
Serpent,38
TDES (TDEA),38
Twofish,38

enterprise management,see integrated
management

error counters,seeInfiniBand port coun-
ters

error log file,11
escalation,24

horizontal,21
vertical,21

escalation procedure,20
Ethernet

Fast,23
Gigabit,23

event classes
alright/okay,15
critical, 15
unknown,15
warning,15

event classification
true negative,18
true positive,18

event classification error

86 Stefan Worm

http://www.tu-chemnitz.de/

Index

false negative,18
false positive,18

event log file,11
event monitoring,seereal-time moni-

toring
ExcessiveBufferOverrunErrors,seeIn-

finiBand port counters
eXtensible Markup Language (XML),

33

F
false negative event classification,18
false positive event classification,18
Fast Ethernet,23
fault management,4, 22
fault monitoring,seereal-time monitor-

ing
Fault, Configuration, Accounting, Per-

formance and Security (FCAPS),
4

Fault-Tolerant Cluster,2
File Transfer Protocol (FTP),11
fixed disk,seeHard Disc Drive (HDD)
full-duplex,seeduplex network connec-

tion

G
Ganglia,seemonitoring software
gateway,seeNagios Remote Plugins Ex-

ecutor (NRPE)
generation of monitoring data,10, 22
GFlops,23
Gigabit Ethernet (GbE),23, 47
Global Unique IDentifier (GUID),see

InfiniBand (IB) network
Globus Toolkit

SweGrid Accounting System (SGAS),
35

Globus Toolkit2, 35
GNU, xii
GNU General Public License (GPL),see

open source software
Graphical User Interface (GUI),21

2http://www.globus.org/

graphics card,11, 23
Graphics Processing Unit (GPU),11
grid software,seeGlobus Toolkit
GroundWork,seemonitoring software

(rejected)
groupware system,25

H
Hard Disc Drive (HDD),11

bad block test,29
hardware,11, 12
health counters,seeInfiniBand port coun-

ters
heating, ventilation and air conditioning

(HVAC), seeair conditioning
High-Availability Cluster,2
High-Performance Cluster (HPC),2, 23,

51
high-speed interconnect,seeInfiniBand

(IB) network
High-Throughput Cluster,2
historical monitoring,8, 19, 21, 22
horizontal escalation,21
Host Channel Adapter (HCA),seeIn-

finiBand (IB) network
HP OpenView,31

Network Node Manager (NNM),31
HP3 (Hewlett-Packard),31
HW, seehardware
HyperText Transfer Protocol (HTTP),11

I
I/O nodes,seeCHiC components
I/O server,18, 23, 28
IBM Tivoli, 31

NetView,31
IBM4 (International Business Machines),

23
ifconfig, seeUnix/Linux programs
incoming traffic,seenetwork traffic
Indiana University, Bloomington5, i

3http://www.hp.com/
4http://www.ibm.com/
5http://www.indiana.edu/

Stefan Worm 87

http://www.globus.org/
http://www.hp.com/
http://www.ibm.com/
http://www.indiana.edu/

Index

InfiniBand (IB) network,23, 47
Double Data Rate (DDR),39
Global Unique IDentifier (GUID),

42
high-speed interconnect,39
Host Channel Adapter (HCA),39,

57
ib_mad1,49
inter-server communication,39
Local IDentifier (LID),42
Management Datagram (MAD),49
processing queue,56
Remote Direct Memory Access (RDMA),

39
server-I/O communication,39
Single Data Rate (SDR),23, 39, 47
subnet manager (SM),40

InfiniBand Architecture (IBA),39
InfiniBand network benchmark,seebench-

mark
InfiniBand port counters

ExcessiveBufferOverrunErrors,39
LinkDowned,39
LinkErrorRecovery,39
LinkIntegrityErrors,39
RcvConstraintErrors,39
RcvErrors,39
RcvRemotePhysErrors,39
RcvSwRelayErrors,39
SymbolError,39
VL15Dropped,39
XmtConstraintErrors,39
XmtDiscards,39

InfiniBand Trade Association (IBTA),39,
81

InfiniBand transmission counters
PortRcvData,39
PortRcvPkts,39
PortXmitData,39
PortXmitPkts,39

information management,seeintegrated
management

inodes,27
Input/Output (I/O),39

instant messages (IM),20
Institute of Electrical & Electronics En-

gineers (IEEE),83
integrated management,3, 5

application management,3
enterprise management,3
information management,3
network management,3
service management,3
systems management,3

Intel CPU
Pentium III,23
Xeon,47

Intelligent Platform Management Inter-
face (IPMI),23, 24

Inter-Process Communication (IPC),53
inter-server communication,seeInfini-

Band (IB) network
interconnection network,2, 23
International Electronic Commission (IEC),

4
International Organization of Standard-

ization (ISO)6, 4
International Parallel & Distributed Pro-

cessing Symposium (IPDPS),81
Internet Control Message Protocol (ICMP),

11
Internet Message Access Protocol (IMAP),

11
Internet Protocol over InfiniBand (IPoIB),

50
interpreter,seePerl interpreter
iptraf, seenetwork monitoring,62
ISO/IEC 7498-1,4
ISO/IEC 7498-4,4

J
Java,seeprogramming language

L
latency,seenetwork latency
Lemon,seemonitoring software (rejected)
library, seeNagios

6http://www.iso.org/

88 Stefan Worm

http://www.iso.org/

Index

limitations of root permissions
SELinux,42
setuid,42
sudo,42

LinkDowned,seeInfiniBand port coun-
ters

LinkErrorRecovery,seeInfiniBand port
counters

LinkIntegrityErrors,seeInfiniBand port
counters

Linux, 23, 24, 27, 47, 61
Linux distribution

Scientific Linux,47, 61
lm_sensors,24, 51
Load-Balancing Cluster,2, 14
Local Area Network (LAN),xiii
Local IDentifier (LID), seeInfiniBand

(IB) network
local monitoring,10, 22
log file

error,11
event,11

login, seeUnix/Linux programs
login nodes,seeCHiC components
login server,23, 28

M
Mail User Agent (MUA),seee-mail client
mainboard,11
management,3, 16, 22
management (ISO/OSI)

accounting management,4
configuration management,4
fault management,4
performance management,4
security management,4

MAnagement Datagram (MAD),seeIn-
finiBand (IB) network

management network,28
management nodes,seeCHiC compo-

nents
measurement

absolute deviation,54
arithmetic mean,54

median,54
outliers,54

Megware7, 23
memory,seeRAM
Message Passing Interface (MPI),24, 47,

54
Midas,seemonitoring software (rejected)
Mon,seemonitoring software (rejected)
monitoring,7, 22

event,7
fault, 7
historical,8, 19
performance,8
real-time,7, 19
to monitor,7

monitoring communication
alert,10
polling, 10
probe,10
pulling, 10
pushing,10
trap,10

monitoring model,9, 22
Dissemination,9
Generation,9
Presentation,9
Processing,9

monitoring policy,10
monitoring reports,19
monitoring software

Big Brother,24, 32
Big Sister,32
Ganglia,33
Nagios,34
OpenNMS,33

monitoring software (rejected)
Angel Network Monitoring,35
CluMon,35
GroundWork,35
Lemon,35
Midas,35
Mon, 35

7http://www.megware.de/

Stefan Worm 89

http://www.megware.de/

Index

Munin, 35
Performance Co-Pilot,35
PIKT, 35
Spong,35
Supermon,35
Zenoss,35

monitoring suite,seemonitoring system
monitoring system,iv, 8, 10, 11, 13, 15,

18, 20, 22, 26, 29
Multi Router Traffic Grapher (MRTG)8,

34
multicast,33
Munin,seemonitoring software (rejected)
MVAPICH2, seeAbinit

N
Nagios,34

community,41
Perl plugin library,41
plugin wrapper,41
tutorials,41

Nagios add-on
Nagios Remote Plugins Executor (NRPE),

48, 60
Nagios Service Check Acceptor (NSCA),

38, 61
Nagios plugins

check_load,51
check_log,51
check_mem,51
check_ntp,51
check_ping,51
check_procs,51
check_sensors,51
check_ssh,51
check_tcp,51

Nagios status codes
Critical, 41
OK, 41
Unknown,41
Warning,41

netgauge,54

8http://oss.oetiker.ch/mrtg/

NetView,seeIBM Tivoli
network,seeinterconnection network
network bandwidth,39
network benchmark,seebenchmark

netgauge,54
network connection,16
network controller,11
network driver

GbE,53
IPoIB, 53

Network File System (NFS),11
Network Interface Card (NIC),57
network latency,39
network management,seeintegrated man-

agement
Network Management Software (NMS),

33
network monitoring

iptraf9, 59
Network Node Manager (NNM),seeHP

OpenView
network switch,11, 16, 28
network throughput,54
Network Time Protocol (NTP),26, 51
network traffic,11

in, 59
out,59

NSCA communication encryption,see
encryption algorithm

O
open source software

Big Sister,32
Nagios,34
OpenNMS,33

Open Systems Interconnection (OSI),4
OpenFabrics Alliance10, 42
OpenFabrics Enterprise Distribution (OFED),

42
OpenIB,47
OpenNMS,seemonitoring software
OpenView,seeHP OpenView

9http://iptraf.seul.org/
10http://www.openfabrics.org/

90 Stefan Worm

http://oss.oetiker.ch/mrtg/
http://iptraf.seul.org/
http://www.openfabrics.org/

Index

Operating System (OS),11, 24
Opteron CPU,23
OSI Management functional areas,see

management (ISO/OSI)
Out-Of-Band (OOB),48
outgoing traffic,seenetwork traffic

P
Paradyn,36
passive monitoring checks,seetypes of

monitoring
PCI Express (PCIe/PCI-E),39
PCI eXtended (PCI-X),39
Pentium III,seeIntel CPU
performance,11, 22
Performance Co-Pilot,seemonitoring

software (rejected)
performance counters,seeInfiniBand port

counters
performance management,4, 22
performance measurement tool,seePara-

dyn
Performance Modelling, Evaluation, and

Optimization of Parallel and Dis-
tributed Systems (PMEO-PDS),
81

performance monitoring,seehistorical
monitoring

Peripheral Component Interconnect (PCI),
39

Perl,seeprogramming language
Perl interpreter,41
PIKT, seemonitoring software (rejected)
ping,seeUnix/Linux programs
plugins,seeNagios plugins
policy

administration,26
monitoring,10

polling, seemonitoring communication
Portable Batch System (PBS),27
PortRcvData,seeInfiniBand transmis-

sion counters
PortRcvPkts,see InfiniBand transmis-

sion counters

PortXmitData,seeInfiniBand transmis-
sion counters

PortXmitPkts,seeInfiniBand transmis-
sion counters

Post Office Protocol (POP),11
Power Supply Unit (PSU),11
presentation of monitoring data,22
presentation of monitoring results,21,

22
proactive management,16
proactive system management,8
probe,seemonitoring communication
processing of monitoring data,14, 22
programming language

Java,33
Perl11, 41

ps,seeUnix/Linux programs
pseudo-encryption

XOR, 38
pull information,20, 26
pulling, seemonitoring communication
push information,20, 26
pushing,seemonitoring communication

Q
queue,seeInfiniBand (IB) network

R
rack,11, 15, 28
RAM, 11, 47, 61
RcvConstraintErrors,seeInfiniBand port

counters
RcvErrors,seeInfiniBand port counters
RcvRemotePhysErrors,seeInfiniBand

port counters
RcvSwRelayErrors,seeInfiniBand port

counters
reactive system management,8
real-time monitoring,7, 19, 22
Redundant Array of Independent Disks

(RAID), 28
Remote Direct Memory Access (RDMA),

seeInfiniBand (IB) network

11http://www.perl.org/

Stefan Worm 91

http://www.perl.org/

Index

remote monitoring,10, 22
active,10
passive,10

return code,seeNagios status codes
Rijndael,seeencryption algorithm
Round Trip Time (RTT),51, 54
router,31

S
scalability,13, 22
Scientific Linux,seeLinux distribution
security level,38
security management,4
Self-Monitoring, Analysis, and Report-

ing Technology (S.M.A.R.T.),11
SELinux,seelimitations of root permis-

sions
sensor,seetemperature sensor
Serpent,seeencryption algorithm
service,seedaemon
service management,seeintegrated man-

agement
setuid, see limitations of root permis-

sions
Simple Mail Transfer Protocol (SMTP),

11
Simple Network Management Protocol

(SNMP),11, 31
Single Data Rate (SDR),seeInfiniBand

(IB) network
SMS,20, 24
software,11
software licences,11
Spanish Initiative for Electronic Simu-

lations with Thousands of Atoms
(SIESTA)12, 24

Spong,seemonitoring software (rejected)
SSH,10, 51, 59
status code,seeNagios status codes
storage system,18, 23, 28

12http://www.uam.es/
departamentos/ciencias/
fismateriac/siesta/

subnet manager (SM),seeInfiniBand (IB)
network

sudo,seelimitations of root permissions
supercomputer,2
Supermon,seemonitoring software (re-

jected)
support,32
SweGrid Accounting System (SGAS),

seeGlobus Toolkit
switch,seenetwork switch
SymbolError,seeInfiniBand port coun-

ters
symmetric duplex connection,seedu-

plex network connection
Symmetric Multi-Processor (SMP),23
system administrator,seeadministrator
systems management,seeintegrated man-

agement

T
tag cloud, see weighted list21
TDEA (Triple DEA), seeencryption al-

gorithm
TDES (Triple DES),seeencryption al-

gorithm
temperature,11

chassis,11, 15
computing centre,11
CPU,11, 15, 51
GPU,11
HDD, 11
mainboard,11
rack,11, 15

temperature sensor,16
throughput,seenetwork throughput
Tivoli, seeIBM Tivoli
top,seeUnix/Linux programs
Top500 list,1, 23
Transmission Control Protocol (TCP),

51
trap,seemonitoring communication
trend monitoring,seehistorical moni-

toring
true negative event classification,18

92 Stefan Worm

http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
http://www.uam.es/departamentos/ciencias/fismateriac/siesta/

Index

true positive event classification,18
tutorials,seeNagios
Twofish,seeencryption algorithm
type II error, see false negative event

classification
typeI error,seefalse positive event clas-

sification
types of monitoring

active,37
passive,38

U
Unix/Linux programs

cron,10, 24
df, 10
ifconfig, 10
login, 10
ping,10, 27, 51
ps,10, 59
ssh,10, 51
top,10, 59, 63

usability,21, 22, 44
User Datagram Protocol (UDP) based

services
NTP,26

V
vendor support,seesupport
vertical escalation,21
visualisation nodes,seeCHiC compo-

nents
VL15Dropped,seeInfiniBand port coun-

ters
Voltaire13

HCA, 40
switch,40

W
web server,51
webmail,seee-mail client
weighted list,21
wireless local area network (WLAN),11
wrapper,seeNagios

13http://www.voltaire.com/

X
Xeon,seeIntel CPU
Xiranet14 storage system,seestorage sys-

tem
XmtConstraintErrors,seeInfiniBand port

counters
XmtDiscards,seeInfiniBand port coun-

ters
XOR, seepseudo-encryption

Z
Zenoss,seemonitoring software (rejected)
zero Nagios plugin execution delay,54

14http://www.xiranet.com/

Stefan Worm 93

http://www.voltaire.com/
http://www.xiranet.com/

Acknowledgements

Thank you for inspiring me, helping me, showing me the pro and contra regarding my
decisions, for the substantial discussions and the possibility of sharing their knowledge

with me. In short, everyone who was involved in the creation process of this work.

In alphabetic order:

Matthias Clauß
Detlef Heine

Torsten Hoefler
Gerd Kretzschmar
Torsten Mehlan
Frank Mietke

Thomas Müller
Andreas Poller
Wolfgang Rehm
Wolfgang Riedel
Thomas Schier
Ronald Schmidt
Tom Schwaller
Regina Trieder
Jens Wegener

	Cover Sheet
	Table of Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations and Acronyms
	Introduction
	Cluster Computers
	Cluster Management
	Summary

	Cluster Monitoring
	Monitoring as Part of Management
	A Monitoring Model
	Generation of Data
	Local and Remote Monitoring
	Communication Methods
	Overview about Monitoring Objects
	Performance and Scalability

	Processing of Data
	Data Validation and Storage
	Combination of Monitoring Values
	Filtering and Analysis

	Dissemination of Information
	Presentation of Results
	Summary

	Chemnitz High-Performance Linux Cluster (CHiC)
	Introduction to the CHiC
	Experiences from the CLiC System
	Summary

	Evaluation of Monitoring Approaches
	Selection of a Monitoring Application
	Nagios and the Plugin Topology
	The InfiniBand Interconnection Network
	Introduction to Design and Features
	Constitution of the Port Counters

	Design and Implementation of a Port Counter Monitoring Plugin
	Preliminary Considerations
	The check_iberr Script

	Summary

	Evaluation of the Performance Impact of Monitoring Activities
	Introduction to the Test Configuration
	Impact regarding the Execution of Applications
	Influence on Abinit due to Local and Remote check_iberr Script Execution
	Influence on Abinit due to Local and Remote Nagios Plugins
	Influence of Local and Remote Nagios Plugins via IPoIB and GbE on Four Local Abinis Jobs

	Impact regarding the Network Performance
	Network Performance with and without Remote and Local Execution of Nagios Plugins via IPoIB and GbE
	Network Performance with and without Execution of the check_iberr Script
	Network Performance with and without Execution of Nagios Plugins Depending on the Delay of their Execution

	Quantitative CPU and Network Load Analysis
	Influence of Nagios Plugins on Clients and the Monitoring Server
	Influence of the check_iberr Script on Clients and the Monitoring Server
	Exemplary Monitoring Server Test with Nagios Plugins and the check_iberr Script

	Summary

	Conclusion and Outlook
	Source Code Listing of the check_iberr Perl Script
	Monitoring Server and Client Configuration
	Definition of Hosts and Services on the Monitoring Server
	Definition of the Check Commands on the Monitoring Server for Direct Execution
	Definition of the Check Commands on the Monitoring Server for Execution via NRPE
	Definitions on the Monitoring Client

	Bibliography
	Index

