
The ITL programming interface toolkit
(API functions Version 0.9.1)

Maharavo Randrianarivony

1 Introduction

This document serves as a reference for the beta version of our evaluation
library ITL. There are two main objectives for the ITL toolkit. First, it
describes a library which gives an easy way for programmers to evaluate
the 3D image and the normal vector corresponding to a parameter value
(u, v) which belongs to the unit square as illustrated in Fig. 1(b). The API
functions which are described in this document let programmers make those
evaluations without the need to understand the underlying CAD complica-
tions. As a consequence, programmers can concentrate on their own scien-
tific interests. Our second objective is to describe the input which is a set
of parametric four-sided surfaces that have the structure required by some
integral equation solvers as in Fig. 1(a). Note that the task of this toolkit is
not to split a set of CAD surfaces into four-sided subsurfaces. Such a task
can be done by another program whose output is used by this toolkit. We
will show four sample programs for illustrating the use of the API functions.
Note that this toolkit has been completely written in ANSI C. Therefore,
the illustrating samples are also written in C. In later versions, we might
provide FORTRAN examples (if needed).

(a)

x

y

z

X

1

1

(u, v)

n(u, v)

X(u, v)

(b)

Figure 1: (a)Input: foursided surfaces (b)Evaluation of image and normal
vector

1

2 The API functions

We will describe in this section a set of API functions, which we call hence-
forth ITL functions, that programmers can use and link in their programs.
All of those functions have the prefix itl in order to recognize them. In
order that one can use the following ITL functions, the short header file
"itl.h" must be included. A complete listing of that header file can be
found toward the end of this document. As a general rule, the content of
the program which uses ITL functions must be included between the func-
tions itl start session() and itl terminate session().

2.1 itl compute image()

Usage:

point3D itl compute image(int s,double u,double v);

s=index of the considered patch

u=first coordinate of a parameter from the unit square

v=second coordinate of a parameter from the unit square

Description:

Suppose we have as input a set of N foursided patches which are the images
of the unit square by parametric functions Xi(·, ·) (i = 0, ..., N − 1). The
function itl compute image() considers the four-sided patch which is iden-
tified by the index in the first argument. Then, it computes the 3D image
of the parameter variable (u, v) ∈ [0, 1]× [0, 1]. If the value of u or v resides
outside the interval [0, 1], then [0, 0, 0] is returned by the function.

2.2 itl compute normal()

Usage:

vector3D itl compute normal(int s,double u,double v,int mode);

s=index of the considered patch

u=first coordinate of a parameter from the unit square

v=second coordinate of a parameter from the unit square

mode=method of computing the normal

Description:

This function is similar to itl compute image() but it computes now the

2

normal vector corresponding to the parameter value (u, v)

n(u, v) = ∂uXs(u, v) × ∂vXs(u, v). (1)

Although the set of foursided surfaces could describe the boundary of a
solid, the normal vector could be pointed inward or outward according to
the parametrization. The value of the mode variable in the fourth argument
of the function could be one the following macros:

RAW NORMAL VEC

UNIT NORMAL VEC

depending on whether we obtain a plain or a unit normal vector. If the
paremeter (u, v) is not located inside the unit square, then the zero vector
is returned.

2.3 itl start session()

Usage:

void itl start session(char *nm);

nm=string containing the file name

Description:

This function opens the ITL file which is specified by the string nm. It
automatically determines the format of the file which could be binary or
ascii. First, the file is loaded in a self-expanding buffer. Afterwards, the
content of the file is loaded inside an implicit ITL object. This function
takes care also of every required memory allocation to store the geometric
information. Some message error is displayed if the ITL file is absent, wrong
or incomplete and the program is terminated. Before calling any other
ITL function, this function must already be executed. The file is closed by
itl start session() when all required geometric information is loaded.
The member variables of an ITL object are seen below:

1 typedef struct i t l o b j e c t {
2 int nb f ou r r e g ; //number o f four−s ided reg ions
3 int ∗ be l ; // parent trimmed sur face
4 patch ∗ s u r f ; // l i s t o f four−s ided patches
5 FILE ∗ fp ; // f i l e s t o r in g the ITL ob j e c t
6 char ∗ f i l e name ; // f i l e name o f the ITL ob j e c t
7 int s t o r a g e type ; // binary or a s c i i f i l e
8 int ∗ eva l type ; // use Coons or Gordon
9 } i t l o b j e c t ;

Since our primary goal is simplicity and prevention of complicated tasks for
programmers using this toolkit, we have taken care of all dynamic memory
managements required to store geometric information.

3

2.4 itl terminate session()

Usage:

void itl terminate session();

Description:

The purpose of this routine is to terminate the session of one ITL file. Its
main function is to release all memories which have been allocated implicitly
with itl start session() and to destroy the internal ITL object. Note
that the closing of the file is already done by itl start session(). Thus,
we need only handle the internal ITL object.

2.5 itl number patches()

Usage:

int itl number patches();

Description:

This function returns the number of four-sided patches of the geometry
which is contained in the input file.

2.6 itl parent face()

Usage:

int itl parent face(int s)

s=index of the considered patch

Description:

Note that the surface of a CAD object generally consists of several multiply
connected surfaces which we call faces. Each face has then several four-
sided subsurfaces which we call patch. The function itl parent face()

determines the parent face of the four-sided patch whose index s is specified
in the argument. That is, we determine the face to which the s-th four-sided
patch belongs. This function demonstrates itself useful when we want to
visualize the current geometric model where every face should have its own
drawing color.

2.7 itl number faces()

Usage:

int itl number faces();

4

Description:

This function determines the number of trimmed surfaces (faces) of the
geometry contained in the current file.

2.8 itl face members()

Usage:

int itl face members(int s,int *list);

s=index of the considered face

list[*]=set of member patches

Description:

Consider the s-th face which is specified by the first argument. This function
determines the list of patches which are derived from the face. Afterwards,
it stores the result in the array list[*] and returns the length of the list.
In many situations, the patches of all faces are arranged in lexicographical
order. But it is not always the case. In fact, this is the opposite of the
function itl parent face().

2.9 itl save file()

Usage:

void itl save file(char * nm,int mode);

nm=name of the file to store the ITL file

mode=method of saving the file

Description:

Use itl save file() in order to store the current ITL object in the file
which is specified by the string nm. For the value of the second variable
mode, we can choose from one of the following predefined macros.

ASCII VERBOSE FORMAT

ASCII SILENT FORMAT

BINARY LITTLE ENDIAN FORMAT

BINARY BIG ENDIAN FORMAT

For ascii mode, we may choose between verbose and silent structure. If
verbose is chosen, some alphabetical keywords are written in the content
of the output file and it is easy for the reader to read it with a simple
editor. Otherwise, almost only numerical data are written except in the

5

header section of the output file. For binary output, we may choose between
little-endian or big-endian. The output file of a certain chosen endianess is
independent of the native endianess of the current machine. This routine is
for example useful when we want to convert an ITL file into another format.

3 The input files

The property of the input object can be summarized as bellow:

1. Four-sided surfaces,

2. No hanging nodes: the intersection of two different four-sided surfaces
is either a complete side or a corner point,

3. Use of transfinite interpolation for the mappings,

(4). Globally continuous.

We put the fourth point inside parentheses in this beta version because we
cannot yet always guarantee it without additional assumption. We call the
input file which stores the above information an ITL file.

Before describing that file, let us discuss the reason why we want to introduce
that type of file. The set of patches which are used in this library is the result
of another program integralCAD which has two main tasks. First, it splits a
CAD object into four-sided surfaces. Second, it searches for a diffeomorphic
function from the unit square onto each foursided patch (Fig. 2(b)). Usually,
Coons patch is enough to describe the second task. But sometimes we have
to use Gordon patches.

Let us recall the Coons patch in matrix form as:

X(u, v) =
[

F0(u) F1(u)
]

[

δ(v)
β(v)

]

+

[

α(u) γ(u)
]

[

F0(v)
F1(v)

]

−

[

F0(u) F1(u)
]

[

α(0) γ(0)
α(1) γ(1)

] [

F0(v)
F1(v)

]

.

(2)

The Gordon patch which is defined as

X(u, v) :=
M
∑

i=0

gi(v)ϕi(u) +
N

∑

j=0

fj(u)ψj(v) −
M
∑

i=0

N
∑

j=0

xijϕi(u)ψj(v) (3)

requires the knowledge of some curves fj and gi inside the four-sided domain
as in Fig. 2(a).

6

f0 = α

f1

f2

fN = γ

g0 = δ
g1 g2 gM = β

x11 x21

x12

x22

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2: (a)A network of curves for Gordon patch (b)Diffeomorphism onto
a four-sided domain

Several CAD interfaces do not support transfinite interpolations. That is,
they do not have specified entities for Coons or Gordon patches. As a
consequence, if we use those CAD interfaces then we have to recompute
the internal curves gi and fj of equation (3). Such a task which has been
done by integralCAD and which could be computationally expensive does
not need to be repeated. Therefore, we store the equations of the internal
curves gi and fj in the ITL file. Another reason for using the ITL file is
its simplicity: it is very much adapted with our implicit data structure and
the file is sequentially written. You do not need to make any jump or line
search to find relevant information.

Input files are provided in ascii or binary modes. The use of binary formats
has the advantage of smaller size and speed of input/output. But text for-
mats might be more advantageous for new users who want to inspect the
content of the files. For ascii mode, we may choose between verbose and
silent option. For verbose option, some alphabetical keywords can be found
in the ascii ITL file and it is easy for the reader to investigate the file. For
silent option only numerical data can be found in the content section of
the ascii ITL file. As for binary ITL files, little-endian or big-endian byte
arrangements are available. Our program is neutral in terms of endianess
in the sense that we store the same file of a certain endianess irrespective
of the endianess of the system of the computer. Our implementation com-
putes automatically the endianess of the current machine and computes byte
reordering accordingly. In other words, for file access or file export, we deter-
mine first if we use MSB (Most Significant Byte) or LSB (Least Significant
Byte) byte organization. To simplify things, we deal only with double pre-
cision floating number double (8 bytes), integer int (4 bytes) and char (1
byte). All other built-in data types are not handled for now.

7

An ITL file has two sections: the header section and the content section.
The header section consists of some human readable introductory texts.
The first line consisting of the string ”itl file” identifies that we deal with
an ITL file. The beginning of the header file is recognized by the keyword
START HEADER. We see in the header section the number of four-sided
patches and the format with which the data is stored. The following four
keywords are used to identify those formats:

ascii verbose,

ascii silent,

binary little endian,

binary big endian.

The end of the header section is specified by the keyword TERMINATE HEADER.
An example of the header section would look as follows:

1 i t l f i l e
2 START HEADER
3 i t l f i l e type : a s c i i v e r b o s e
4 number o f f our−s ided s u r f a c e s : 4 6
5 #i l l u s t r a t i o n o f header
6 TERMINATE HEADER

Everything after the symbol # is supposed to be a comment for the human
reader. That is, the ITL parser ignores every line starting by #. A single
space and multiple spaces are supposed to be the same. Thus, between two
data there could only be space(s) or carriage return.

Usually the ITL files have suffix itl but that is is not mandatory. If the suffix
is not present but the content of the file is correct, we can still use the file
without change. But if the content is wrong, the itl suffix does not help. The
suffix is exclusively meant for human users and not for the machines. We
have chosen the labeling ITL which stands for integral because this toolkit
is intended to be used for integral equations which is our primary interest.
However, we believe that this format is general enough to be used for other
programs which require similar geometric information in patch form.

In the next section, we will display several sample program fragments in
order to illustrate the use of the ITL functions which we have described in
section 2. The programs have no particular important applications but they
serve as good examples.

8

4 Sample program 1 (organization and evaluation)

In the next simple program, we show a complete minimal routine for the
computation of the 3D image and normal vector corresponding to a given
parameter value (u, v) from the unit square.

1 #include < s td i o . h>
2 #include ” i t l . h”
3
4 void main ()
5 { int s ;
6 double u , v ;
7 point3D image ;
8 vector3D nml ;
9 i t l s t a r t s e s s i o n (” sample . i t l ”) ;

10 p r i n t f (”patch=”) ; s can f (”%d”,& s) ;
11 p r i n t f (”u=”) ; s can f (”%l f ”,&u) ;
12 p r i n t f (”v=”) ; s can f (”%l f ”,&v) ;
13 image=it l compute image (s , u , v) ;
14 p r i n t f (” image=[%f ,% f ,% f]\n” , image . abs i , image . ordo , image . cote) ;
15 nml=it l compute normal (s , u , v ,UNIT NORMAL VEC) ;
16 p r i n t f (”normal=[%f ,% f ,% f]\n” , nml . abs i , nml . ordo , nml . cote) ;
17 i t l t e rm i n a t e s e s s i o n () ;
18 }

Let us take a quick look at what this program does. First, we have to include
the header file "itl.h" so that we can use the ITL functions in our program.
The input is loaded from the file "sample.itl"with which we implicitly gen-
erate an ITL object. Afterwards, the user is asked to specify a patch index
s and a parameter value (u, v) belonging to the unit square. With the help
of the ITL functions itl compute image() and itl compute normal(), we
determine the corresponding 3D image and unit normal vector. As prob-
ably already noticed by the reader, the coordinates of the point and the
components of the vector are stored in the following data structure:

1 typedef struct po in t {
2 double abs i ;
3 double ordo ;
4 double cote ;
5 }point3D , vector3D ;

Note that in our implementation, the self-expanding memory for the ITL
object is very tight. We have only allocated an amount of memory which is
exactly what is needed to load the object. As a consequence, a good memory
management between itl start session() and itl terminate session()

is essential. It is possible that a program having inaccurate memory orga-
nization between those two keywords does not terminate well. As an il-
lustration, itl terminate session() might not function properly in the

9

following code. That is because we only allocate four int’s for the variable
z. Even worse, the value of the 3D point w might be awry because of memory
conflict.

1 void counter example ()
2 { int ∗ z ;
3 po int w;
4 i t l s t a r t s e s s i o n (” sample . i t l ”) ;
5 z=(int ∗) mal loc (4∗ s izeof (int)) ;
6 . . .
7 z [4]=56 ; // acces s v i o l a t i o n
8 w=i t l e v a l u a t e (0 , 0 . 5 , 0 . 5) ;
9 i t l t e rm i n a t e s e s s i o n () ;

10 f r e e (z) ;
11 }

It is worth being mentioned that files can be opened consecutively but the
current ITL object must be closed before opening another one. That is, we
must invoke itl terminate session() before opening another file. That
situation is illustrated in the following code fragment.

1 void example ()
2 { i t l s t a r t s e s s i o n (” sample1 . i t l ”) ;
3 . . . // code us ing sample1
4 i t l t e rm i n a t e s e s s i o n () ; // c l o s i n g s e s s i on f o r sample1
5 . . .
6 i t l s t a r t s e s s i o n (” sample2 . i t l ”) ;
7 . . . // code us ing sample2
8 i t l t e rm i n a t e s e s s i o n () ; // c l o s i n g s e s s i on f o r sample2
9 . . .

10 }

The following counter-example demonstrates an undesired situation where
the session with the first file ”sample1.itl” from line 2 is not yet closed
before opening a new session with the file ”sample2.itl” from line 4.

1 void counter example ()
2 { i t l s t a r t s e s s i o n (” sample1 . i t l ”) ;
3 . . .
4 i t l s t a r t s e s s i o n (” sample2 . i t l ”) ;
5 . . .
6 i t l t e rm i n a t e s e s s i o n () ; // c l o s i n g s e s s i on f o r sample2
7 . . .
8 i t l t e rm i n a t e s e s s i o n () ; // c l o s i n g s e s s i on f o r sample1
9 . . .

10 }

10

5 Sample program 2 (format conversion)

The next code takes an ITL file as input and it converts that file into a binary
little endian ITL file without modifying the stored geometric information.
If by chance the input file happens to be already a binary file of little endian
type, then itl save file() simply copies it.

1 void conve r t i on (char ∗ i n p u t i t l , char ∗ o u t pu t i t l)
2 { i t l s t a r t s e s s i o n (i n p u t i t l) ;
3 i t l s a v e f i l e (o u t pu t i t l ,BINARY LITTLE ENDIAN FORMAT) ;
4 i t l t e rm i n a t e s e s s i o n () ;
5 }

6 Sample program 3 (cloud of points)

Let us consider a code fragment for generating a random cloud of points. In
fact, we want to create m points for each four-sided patch. We then display
the result in the standard output.

1 #include < s t d l i b . h>
2 #include ” i t l . h”
3
4 // Generates a random number o f va lu e in [0 , 1]
5 double random unit ()
6 { int rd ;
7 double r e s ;
8 rd=1+(int) (1 0 0 . 0 ∗ rand () / (RANDMAX+1 .0)) ;
9 r e s=(double) rd / 1 0 0 . 0 ;

10 return r e s ;
11 }
12
13 void c l o ud po i n t s (int m)
14 { int N, s , j , k ;
15 double u , v ;
16 point3D ∗ c loud ;
17 i t l s t a r t s e s s i o n (” sample . i t l ”) ;
18 N=i t l number pa tche s () ;
19 c loud=(point3D ∗) mal loc (N∗m∗ s izeof (point3D)) ;
20 k=0;
21 for (s=0; s<N; s++)
22 for (j =0; j<m; j++)
23 {u=random unit () ;
24 v=random unit () ;
25 c loud [k]= it l compute image (s , u , v) ;
26 p r i n t f (” c loud [%d]=[% f ,% f ,% f]\n” , k , c loud [k] . abs i ,
27 c loud [k] . ordo , c loud [k] . co te) ;
28 k++;

11

29 }
30 f r e e (c loud) ;
31 i t l t e rm i n a t e s e s s i o n () ;
32 }

7 Sample program 4 (patch inventory)

The next program illustrates the determination of entity numbers: number
of patches, number of faces. Additionally, it shows how the memory for
them should be allocated/released.

1 void pa tch inve to ry ()
2 { int N,m, i , j , p ,∗ l i s t ;
3 i t l s t a r t s e s s i o n (” sample . i t l ”) ;
4 m=i t l numbe r f a c e s () ;
5 N=i t l number pa tche s () ;
6 l i s t =(int ∗) mal loc (N∗ s izeof (int)) ; //worst case
7 for (i =0; i<m; i++)
8 {p=i t l f a c e member s (i , l i s t) ;
9 p r i n t f (”Face=%d number o f i t s patches=%d\n” , i , p) ;

10 for (j =0; j<p ; j++)
11 p r i n t f (”\ tpatch=%d\n” , l i s t [j]) ;
12 }
13 f r e e (l i s t) ;
14 i t l t e rm i n a t e s e s s i o n () ;
15 }

8 Listing of the header file "itl.h"

1 #ifndef ITL H
2 #define ITL H
3
4 #i f de f ined DLL EXPORT
5 #define ITL API d e c l s p e c (d l l e xpo r t)
6 #else

7 #define ITL API d e c l s p e c (d l l impor t)
8 #endif

9
10 typedef ITL API struct po in t {
11 double abs i ;
12 double ordo ;
13 double cote ;
14 }point3D , vector3D ;
15
16 #define ASCII VERBOSE FORMAT 100

12

17 #define ASCII SILENT FORMAT 101
18 #define BINARY LITTLE ENDIAN FORMAT 102
19 #de f i n e BINARY BIG ENDIAN FORMAT 103
20 #define UNIT NORMAL VEC 104
21 #define RAWNORMALVEC 105
22
23 #ifde f c p l u s p l u s
24 extern ”C”
25 {
26 #endif

27
28 ITL API void i t l s t a r t s e s s i o n (char ∗) ;
29 ITL API void i t l t e r m i n a t e s e s s i o n () ;
30 ITL API int i t l number pa tche s () ;
31 ITL API int i t l numbe r f a c e s () ;
32 ITL API int i t l f a c e member s (int , int ∗) ;
33 ITL API int i t l p a r e n t f a c e (int) ;
34 ITL API point3D it l compute image (int , double , double) ;
35 ITL API vector3D it l compute normal (int , double , double , int) ;
36 ITL API void i t l s a v e f i l e (char ∗ , int) ;
37
38 #ifde f c p l u s p l u s
39 }
40 #endif

41
42 #pragma comment(l i b , ” i t l . l i b ”)
43
44 #endif // ITL H

9 Shipment and AS IS statement

We would like to discuss briefly about the items which are shipped in
the setup. We ship the header file ”itl.h” and the dynamic link library
”itl.dll” in order to enable compilation with your routines. Those are
enough to compile a program under windows using Visual Developper Stu-
dio. Additionally the setup program contains a few simple ITL files for
testing purposes. The above code examples are also included in the package
in form of developper studio project file as pattern. For Linux users, the
static library ”itl.a” will be provided in the next release. You might need
to retouch the accompanying Makefiles so that they are adapted with your
systems.

This library is part of the result of the CAGD research that I have done
with Prof. Brunnett (University of Chemnitz). This documents and the
accompanying library are provided ”as is”, without any warranty, expressed
or implied.

13

