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Bibliographische Beschreibung und Referat  
 
N. Hassan 
 
Spectroelectrochemistry of self-assembled monolayers of 2- and 4-mercaptopyridines 
 
Die Elektrochemie und die Spektroelektrochemie von selbst-organisiererten Monoschichten (self-
assembled monolayers, SAMs) gebildet aus 2-Mercaptopyridin (2MP) und 4-Mercaptopyridin 
(4MP) wurden an polykristallinen Goldelektroden in wässrigen Elektrolytlösungen untersucht. 
Folgende Untersuchungsmethoden wurden angewandt: zyklische Voltammetrie, elektrochemische 
Impedanzmessungen (EIM) und oberflächenverstärkte Raman Streuung (surface-enhanced Raman 
scattering, SERS). 
Die elektrochemischen Untersuchungen  von 2MP und 4MP in wässriger saurer Lösung (0.5 M 
H2SO4) zeigten, dass 2MP stärker adsorbiert wird als 4MP aufgrund der Bildung eines S-Au-N-
Chelates, wobei die S-Au-Interaktionen bei 4MP stärker sind. Die Bildung eines Chelates im Falle 
von 2MP verringert die Wahrscheinlichkeit der Bildung eines Dimers. In sauren Lösungen wird 
das N-Atom  von 2MP protoniert, was zu einer schwächeren Bindung von 2MP-Molekülen zur 
Substratoberfläche führt. Die Ergebnisse der SERS-Untersuchungen stimmen mit den Resultaten 
aus der zyklischen Voltammetrie überein. Man erhält eine Au-S-Streckschwingungsbande für 
2MP zwischen 225 bis 250 cm-1 bei Abscheidung aus wässriger oder saurer Lösung und für 4MP 
bei ca. 263 cm-1 in beiden Lösungen. Die SERS-Experimente ergaben eine senkrechte Orientie-
rung zur Goldoberfläche sowohl für 2MP als auch für 4MP. Die Thion-Thiol-Tautomerie von 2-
Mercaptopyridinen wurde ebenfalls in Betracht gezogen.  
Die Unter- und Überpotentialabscheidung von Kupfer auf einer polykristallinen Goldelektrode in 
wässriger 0.1 M Schwefelsäure in An- und Abwesenheit von SAMs von 2- und 4-
Mercaptopyridin wurde mit zyklischer Voltammetrie untersucht. Es zeigte sich, daß bei Vorhan-
densein der SAMs die Elektrodeposition von Kupfer verhindert wird, was auf starke Wechselwir-
kungskräfte zwischen dem Adsorbat (MP) und der Goldoberfläche zurückzuführen ist. 2MP zeigt 
eine grössere Inhibierung, was höchstwahrscheinlich auf die Bildung der Chelatstruktur zurückzu-
führen ist. Es wurden ebenso Untersuchungen zum Einfluss von 2MP und 4MP auf die abgeschie-
dene Kupfermonolage auf der Goldelektrode durchgeführt. Es zeigte sich, daß die Kupfermonola-
ge teilweise durch 2MP oder 4MP ersetzt wird. 
Die Elektronenaustauschgeschwindigkeit für das Fe2+/Fe3+-Redoxsystem in An- und Abwesenheit 
von 2MP- oder 4MP-Monolagen wurde mit zyklischer Voltammetrie und elektrochemischen Im-
pedanzmessungen (EIM) untersucht. Es stellte sich heraus, dass der Elektronenaustausch höchst-
wahrscheinlich über Defektstellen in der Monolage (Pinholes) erfolgt. In einer wässrigen Lösung 
verringert 4MP den Elektronenaustausch stärker als 2MP. Da die Packungsdichte bei 4MP größer 
ist als bei 2MP ist wahrscheinlich auch die Zahl der Pinholes geringer in der 4MP-Monolage. In 
saurer Lösung liegen die N-Atome protoniert vor. Man kann davon ausgehen, dass in saurer Lö-
sung zwei Prozesse gleichzeitig ablaufen, die für den Elektronenaustausch entscheidend sind. Ers-
tens kommt es zu einer Abstoßung zwischen der positiv geladenen Monolage und den positiv ge-
ladenen Redoxionen. Und zweitens erfolgt eine Abstoßung zwischen den positiv geladenen Mole-
külen der SAMs, was zu einer geringeren Packungsdichte führt. Der Ladungsaustausch wird do-
miniert durch den zweiten Effekt. 
Mit Hilfe von EIM wurden die Elektronenaustauschgeschwindigkeit und der Bedeckungsgrad be-
stimmt. 
Die korrosionshemmende Wirkung von 2MP und 4MP auf Stahl in 3.5 % wässriger NaCl-Lösung 
wurde mit Hilfe der EIM untersucht. 2MP zeigte eine grössere Hemmung als 4MP. 
 
Stichwörter: Spektroelektrochemie, Elektrochemie, selbst-organisierende Monoschichten, 2- 

und 4-Mercaptopyridin, Zyklische Voltmmetrie, EIM, Elektronenaustausch, 
SERS, Korrosionshemmung 
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Abstract 
N. Hassan 

Spectroelectrochemistry of self-assembled monolayers of 2- and 4-mercaptopyridines 

 
 

The electrochemistry and spectroelectrochemistry of the self-assembled 

monolayers (SAMs) prepared of 2-mercaptopyridine (2MP) and 4-mercaptopyridine 

(4MP) dissolved either in water or 0.1 M H2SO4 have been investigated at polycrys-

talline gold electrodes in aqueous electrolyte solutions using cyclic voltammetry, elec-

trochemical impedance measurements (EIM) and surface enhanced Raman spectros-

copy (SERS).  

 
Electrochemical studies of 2MP and 4MP monolayers in aqueous acidic solu-

tion (0.5 M H2SO4) suggest that 2MP is adsorbed more strongly than 4MP due to the 

formation of S-Au-N chelate. However, the S-Au bond was found to be stronger in 

4MP as compared with 2MP. The formation of the chelate in case of 2MP diminishes 

the probability of dimer formation. In the acidic solvent, the N-atom of 2MP molecule 

will be protonated leading to a weaker interaction of 2MP molecules with the sub-

strate surface. The SERS results are in good agreement with the cyclic voltammetry 

results. The Au-S stretching band was obtained in the region from 215 to 245 cm-1 for 

2MP deposited from water and acidic solvent and around 263 cm-1 for 4MP in both 

solvents. The SERS measurements showed also a perpendicular orientation of both 

2MP and 4MP on the gold surface. In explaining the SERS results, the thione-thiol 

tautomerisations of the mercaptopyridines were also taken into consideration.  

 
The under- and overpotential deposition of copper on a polycrystalline gold 

electrode in aqueous 0.1 M sulfuric acid in the presence and in the absence of SAMs 

of 2- and 4-mercaptopyridine has been studied using cyclic voltammetry. In general, 

the presence of these SAMs has been found to inhibit the electrodeposition process of 

copper, suggesting very strong interactions between these adsorbates and the Au sur-

face. 2MP shows a higher degree of inhibition, which is due to a stronger interaction 

probably due to the formation of the chelate structure. Studies have also been made of 

the influence of mercaptopyridines SAMs on the copper monolayer electrodeposited 

on the gold surface. The copper adlayer was found to be partially displaced by 2MP 

and 4MP monolayers. 
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The rate of electron transfer for the Fe3+/2+ redox system on the gold electrode 

has been probed in the absence and presence of 2MP and 4MP monolayers by cyclic 

voltammetry and electrochemical impedance measurements (EIM). The charge trans-

fer process was suggested to occur through the defects (pinholes) in the monolayer. In 

case of aqueous solvent 4MP decreases the electron transfer reaction stronger than 

2MP. Since the packing density for 4MP is higher than that of 2MP the number of 

pinholes might be lower in 4MP monolayer. In acidic solvent the N-atoms of the mer-

captopyridines will be protonated. It is proposed that two effects, which exist at the 

same time, are responsible for the electron transfer process in acidic solution. First, 

there will be a repulsive interaction between the positively charged monolayer and the 

positively charged redox probe. Second, there is a repulsion among the positively 

charged monolayer molecules that results in a less compact monolayer. The charge 

transfer is dominated due to the latter effect. With the EIM the rate of electron transfer 

and the surface coverage were determined. 

 

2MP and 4MP were examined as steel corrosion inhibitors in 3.5% aqueous 

NaCl solution using EIM. 2MP shows higher inhibition efficiency than 4MP. 

 

 

 

 

 

 

 

 

 

 

Keywords: Spectroelectrochemistry, Electrochemistry, Self-assembled monolayers, 

2- and 4-mercaptopyridine, Cyclic voltammetry, EIM, Electron transfer, 

SERS, Corrosion inhibition. 
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1 Introduction 

 

Interfacial reactions are becoming an increasingly important subject for studies. 

The ability to control the chemical and structural properties of surfaces is essential for 

the progress in catalysis, electronics, chemical sensing and many other applications. 

In parallel, understanding the rules that govern surface reactions provides very impor-

tant information for fundamental studies in chemistry. These considerations and the 

availability of numerous analytical techniques to detect the chemical changes in thin 

films have made studies of interfacial reactions an important area of modern science. 

 
 

1.1 Organic thin films 

 

Organic thin films have attracted a considerable interest over the last years, al-

though the subject has fairly old roots. More than 200 years ago, Franklin [1] ob-

served the calming influence of oil on water surfaces. In the 19th century, Pockels [2-

5] prepared monolayers at the air-water interface, followed by the works of Rayleigh 

[6], Hardy [7], Devaux [8] and others. Later monolayers of amphiphilic molecules on 

the water surface were named after Langmuir [9,10]. 

 

The deposition of long-chain carboxylic acids was studied for the first time by 

Blodgett [11,12] on solid substrates. Around that time, amphiphilic monolayers were 

already used to control the wetting behaviour of metal condenser plates in steam en-

gines [13-15]. In addition, researches focusing on self-assembled monolayers were 

performed later by Zisman [16], Blackman and Dewar [17].  

 

Interest in the properties of thin organic materials, especially coherently organ-

ized assemblies, has grown enormously in recent years, primarily due to the ease of 

fabrication, characterization and manipulation. Organic thin films usually display op-

tical, electrical, optoelectronic, mechanical, chemical and other properties used in 

many applications, which are not accessible with inorganic materials.  
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These films can be prepared by several methods. Fig.1 shows schematically the 

most common methods used for preparing organic thin films: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Most common methods used for preparing organic thin films as reported in 

reference [18]. Langmuir films (a), Langmuir-Blodgett films (b), Self-

assembled monolayers grown from solution (c) and Self-assembled 

monolayers grown from ultra high vacuum (d) [18]. 

 

1. Langmuir films consist of amphiphilic molecules spread on a liquid surface like 

water. The hydrophilic head group has an affinity to the water while the hydro-

phobic end group sticks out on the other side [19,20]. 

2. Langmuir-Blodgett (LB) films are prepared by transferring Langmuir films onto a 

solid substrate [21]. The head group is hydrophilic while the tail group is 

hydrophobic, so that the direction of the molecules is achieved prior to the transfer 

step. Multilayers are prepared by repeated (periodic) dipping of the substrate in 

appropriate solutions. Interest in LB layers continues unabated to this day due to 

possible technical applications in sensors, corrosion inhibition, lubrication and 

photoresists [22-25]. 

3. Self-assembled monolayers grown from solution or from the gas-phase represent a 

further class of organic thin films. The significant feature is the chemisorption (or, 

generally, strong interaction) of the head-group with a specific affinity to the sub-

strate. Self-assembled monolayers grown from solution will be discussed in more 

details in next sections.  

a

b

c 

d 
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The phenomenon of self-assembly has been recognized for nearly 60 years [16], 

nevertheless, it has not enjoyed the popularity of Langmuir-Blodgett (LB) layers until 

more recently. In contrast to Langmuir-Blodgett films, self-assembled monolayers of 

organic compounds can be obtained simply by chemical adsorption from aqueous or 

organic solutions. Compared with the LB technique, the self-assembling method has 

more advantages [26]: (i) the interactions between the layers are very strong like 

chemical bonds, metal complexations or electrostatic interactions; (ii) there is less 

limitation on the types of the molecular building blocks that can be used; (iii) it does 

not need a specific experimental apparatus. Therefore, the self-assembling method 

seems to be simpler and more flexible, and for these reasons appears to be very attrac-

tive.  

 
 
1.2 Self-assembled monolayers 

 

In general sense, self-assembled monolayers (SAMs) can be defined as well-

ordered and oriented molecular films, which are formed spontaneously, upon immer-

sion of a substrate (solid surface) into a solution containing an active surfactant mole-

cule. These molecules organize themselves in a two-dimensional (2-D) arrangement 

on the surface of the substrate.  

 

The field of SAMs has witnessed incredible development and depth of charac-

terization over the past 20 years. On the other hand, it is interesting to comment on the 

humble beginning and on important milestones. The field really began much earlier 

than is now recognized [27]. In 1946, Zisman [16] published the preparation of a 

monomolecular layer by adsorption (self-assembly) of a surfactant onto a clean metal 

surface. In 1983, Nuzzo and Allara [28] showed that SAMs of alkanethiolates on gold 

can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions. This work 

sparked attention in exploring SAM systems based on sulfur-metal interactions. Soon 

afterwards, it was revealed that other organosulfur compounds such as alkanethiols 

and alkyl sulfides can be also assembled on the surfaces of metals such as gold, silver 

and copper to afford SAMs [29-31]. Many self-assembly systems have been investi-

gated since this time but the most studied SAMs to date are alkanethiolates on gold 

[27]. 
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Successful self-assembling requires a relatively strong bond between the sub-

strate and an atom or moiety in the molecule and an additional lateral interaction be-

tween the molecules in the monolayer. The degree of order in monolayers depends 

upon many factors, including geometric considerations, electrostatic and dipole-dipole 

interactions within the monolayers and affinity of the head group of the surfactant to 

the surface. The simplicity and flexibility of the self-assembly process provides an 

opportune method for varying the properties of the metal as an electrode [32,33]. 

 

SAMs must fulfil at least three requirements: (1) to be strongly attached to the 

substrate, therefore the surfaces will resist environmental chemical and physical ef-

fects, (2) to be homogeneous and closely packed, accordingly the model surfaces will 

have a given and well-defined composition and (3) to allow different functional 

groups to be attached to the surface, thus offering a powerful way to develop systems 

that have several applications [34]. 

 
 
1.3 Organosulfur compounds 

 

Sulfur compounds have a strong affinity to transition metal surfaces [35-39]. 

Organosulfur compounds coordinate very strongly to the surface of the metal. The 

number of reported surface-active organosulfur compounds that form monolayers on 

metal surfaces has increased in recent years.  

 
 
1.3.1 Thiols 

 

Thiols are organic compounds in which a S-atom is bonded to a carbon atom in 

the molecule. Their chemical structure is close to alcohols except that sulfur is substi-

tuted for the oxygen in the hydroxyl group. Thiols are also known by the term “mer-

captan”. 

 

Thiol monolayers can be prepared by treatment of a gold surface under ambient 

conditions with a dilute solution of the thiol (< 1 mM). One of the important proper-

ties of such systems is that they give the possibility of controlling the molecular con-
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struction at the electrode-solution interface.  Thiols are very appropriate for such 

studies because of simplicity of preparation and the relatively large potential window 

within which such electrodes can operate [40]. 

 

Aromatic thiols have promising features in the preparation of thiol monolayers 

due to several reasons. First, aromatic thiols are highly anisotropic and the intermo-

lecular interactions are stronger than those between the n-alkanethiols, which may 

lead to different molecular packing structures. Second, electrons are more delocalized 

in the aromatic rings than in the alkane chains, as a result the electrical conductance 

through aromatic thiols is higher. Finally, various functional groups can be attached to 

the opposite molecular end, which have been used to modify the electrode surface 

properties. In 1988 Hubbard [41] carried out the first experiment on the molecular 

packing structure of aromatic thiols on metal surface. Monolayers of thiols, which 

contain aromatic [42-48], or heterocyclic groups [49-57] have been less intensively 

investigated. These systems, especially when containing a pyridine end group, are 

used to immobilize proteins on metal surfaces [58-60]. 

 
 
1.3.2 Mercaptopyridines 

 

Pyridine is a simple heterocyclic aromatic molecule with the formula C5H5N. 

Pyridine is structurally similar to benzene, with a single nitrogen atom substituted in 

the six-member aromatic ring for one of the carbons and one of the hydrogen atoms. 

 

Mercaptopyridines are thiol compounds that contain both N- and S- atoms in the 

molecule. Mercaptopyridines can be easily adsorbed on the surface of the metal. Up to 

date, most of the investigations suggest that mercaptopyridines bound to the surface 

mainly through S-atom after cleavage of the S-H bond and formation of a metal-S 

bond [49,54,61-67]. However, it has been suggested also that mercaptopyridines 

might bind to the gold surface through its N-atom [68]. Mercaptopyridines form stable 

SAMs on the metallic surface, which are suitable for many applications. In the present 

work, 2-mercaptopyridine (2MP) and 4-mercaptopyridine (4MP) were used (Fig. 2). 
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Fig. 2  Structures of 2-mercaptopyridine and 4-mercaptopyridine. 

 
 
1.4 Self-assembled monolayers of thiols on gold electrodes 

 

One of the most widely used systems in the molecular self-assembling method is 

the chemisorption of sulfur derivatives (e.g. thiols, disulfides) on gold surfaces [69-

71], due to the thermodynamically favorable formation of the gold-sulfur bond. The 

stability of the bond over a wide range of applied potential makes this system suitable 

for electrochemical purposes [72]. 

 

Efforts to accomplish the most blocking or most highly oriented monolayer on a 

gold substrate have led to the consideration of several factors in the self-assembly 

process such as substrate morphology, cleaning, thiol purity, kind of adsorbate, nature 

and concentration of deposition solvent, temperature, deposition time, the chain length 

of the thiol used and any “annealing” steps performed during or after the deposition 

step [73]. Unfortunately there are no definite formulas for achieving the “perfect” 

monolayer.  

 

The monolayers of the organosulfur compounds on gold have superlative prop-

erties combined with high structural order, flexibility in the structure of functional 

groups exposed at the solid-vapor or solid-liquid interface and ease of preparation and 

analysis. The convenience of thiols adsorbed on gold as a monolayer system is based 

on three considerations. First, gold is a relatively inert metal that does not form a sta-

ble oxide surface [74] and it resists atmospheric contamination. Second, gold has a 

strong specific interaction with sulfur [75] that allows the formation of monolayers in 

the presence of many other functional groups [31]. Third, long-chain alkanethiols or 

N SH N

SH
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thiols with fused aromatic rings form a compact and impervious monolayer on gold 

[76]. 

 
The presence of an aromatic ring in a thiol molecule can enhance the binding be-

tween Au and the thiol, which consequently results in the formation of compact and 

impermeable SAMs. The behaviour of SAMs formed from thiol containing π-

electron-rich aromatic substituents may prove interesting properties. In particular, 

aromatic thiol SAMs have received attention due to their high electronic conductivity 

and nonlinear optical properties [77].  

 
The first advantage of self-assembled monolayers based on thiols is the simplic-

ity with which SAMs are formed when gold and other metals are exposed to thiols. 

Normally it needs between seconds to minutes for the deposition of monolayer on the 

metal surface. The self-assembly method neither does require anaerobic or anhydrous 

conditions nor vacuum. Self-assembly is relatively insensible to the choice of solvent. 

While organic-free metal surfaces are desirable, the high affinity of the sulfur towards 

the metal enables the assembling layer to displace more weakly adsorbed impurities. 

Curvature of the metal surface is not a factor; substrates can range from macroscopic 

to submicroscopic dimensions and from smooth to highly porous surface. 

 
A second advantage arises from the affinity of the sulfur to the metal and the 

strength of the bond formed. SAMs survive prolonged exposure to vacuum. It is pos-

sible to have a wide range of functional groups in the adsorbing molecule without dis-

ordering the self-assembly process or destabilizing the SAM. Considering just the 

family of substituted alkanethiols, the terminal substituent can be an alkane (linear, 

branched, perfluorinated, perdeuterated), alkene, alkyne, aromatic, halide, ether, alco-

hol, aldehyde, carboxylic acid, amide, ester, amine or nitrile. The “body” of the mole-

cule can contain, for example, heteroatoms, aromatic groups, conjugated unsaturated 

links and other rigid rod structures, sulfones and amides.  

 
 
1.5 Preparation of self-assembled monolayers 

 
Thiol-based SAMs have previously been prepared by two methods [78]: growth 

from solution, which is the method used in this work, or growth from the gas phase. 
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In both cases, the highest possible purity of both the adsorbates and the substrates is 

preferred.  

 
 
Growth from solution 

 
Gold is the most popular substrate for thiol SAMs. Outstanding to its noble 

character, gold substrates can be handled in air without the formation of an oxide sur-

face layer, and can resist harsh chemical treatments, which remove organic contami-

nants. The purity of the gold surface appears to be more important than its smooth-

ness. Cleaning and etching steps are often part of the deposition protocol. Electro-

chemical cycling into the oxide formation region in dilute acid acts both as a cleaning 

and an annealing process; the resulting voltammogram provides an assay of the 

cleanliness of the gold. Alternatively, organic contaminants can be removed via expo-

sure of the gold to a powerful oxidant. Popular oxidants include “piranha” solution (a 

1:3 mixture of 30 % hydrogen peroxide and concentrated sulfuric acid at ca. 100 °C).  

 
Fig. 3 Formation mechanism of the self-assembled monolayers [79]. 
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A dilute solution of thiol (1 µM to 1 mM) dissolved in an appropriate solvent is 

prepared. The clean substrate is then immersed into the thiol-containing solution at 

room temperature, after that the monolayer-coated substrate is removed from the solu-

tion and rinsed with the solvent, which is typically the same as that used to generate 

the film to remove any adsorbate molecules that might be physisorbed to the surface 

of the monolayer. Usually any solvent capable of dissolving the molecule is suitable. 

 

The formation mechanism of the self-assembled monolayers is displayed in 

(Fig. 3). Initially the thiol molecules adsorb horizontally onto the metal substrate. Af-

terwards, the molecules lift up to form the vertically oriented layer. This is the most 

common approach for depositing the SAM. 

 
 

Growth from the gas phase 

 

In this technique, the experiments are typically carried out in an ultra high vac-

uum (UHV) chamber. Adsorbate molecules are usually placed in a container that is 

connected to the chamber through a dosage valve, which is used to control the flow of 

adsorbate vapor into the chamber. The container may require warming to introduce 

adsorbates that possess low vapor pressures. 

 

 

1.6 Non-electrochemical characterization methods of self-assembled monolayers 

 

SAMs have been subjected to nearly every known surface analytical method. 

Among the more frequently applied tools are contact angle, ellipsometry, surface IR 

(infrared) spectroscopy, surface enhanced Raman spectroscopy (SERS), X-ray photo-

electron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron 

microscopy (SEM), scanning tunneling (STM) and atomic force (AFM) microscopy. 

 

Out of several methods mentioned above, surface enhanced Raman spectroscopy 

(SERS) is used in this work and it will be discussed in more detail later on. 
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1.7 Electrochemical characterization of self-assembled monolayers 

Double-layer structure and capacitance 

 

Electrode/electrolyte interfaces demonstrate a capacitance whose magnitude re-

flects the distribution of ions on the solution side of the interface. The electrolyte dou-

ble layer is composed of the Helmholtz layer consisting of ions and solvent in physi-

cal contact with the electrode and the diffuse layer, which contains ions near the elec-

trode whose concentrations deviate from bulk concentrations.  

 
Interfacial capacitances are often measured via the charging current in a cyclic 

voltammogram. More comprehensive studies of capacitance behaviour are obtained 

by alternating current (ac) impedance measurements or ac voltammetry. A simple 

parallel-plate capacitor model shows that the reciprocal capacitance increases linearly 

with the thickness of the dielectric layer [78]. 

 
 
Electrochemical stripping and deposition of self-assembled monolayers 

 
SAMs from thiols, disulfides and sulfides oppose desorption over a wide poten-

tial range, but at very negative/positive potentials and in strongly alkaline electrolytes 

they are desorbed quantitatively.  

 
The potentials of the cathodic stripping peaks provide information about the 

strength of the metal-sulfur bond and the presence of any intermediate or weakly ad-

sorbed states [80]. The desorbed thiols tend to remain near the electrode and are read-

ily readsorbed when the electrode potential is shifted to a more positive value [78]. 

 
 
Blocking behaviour 

 
Alkanethiol SAMs restrain faradaic processes such as electrode oxidation and 

the exchange of electrons between the electrode and solution redox couples. The 

property of this blocking is attributed to the compactly packed structure of the 

monolayer, which obstructs the approach of solution ions and molecules to the elec-

trode surface. Electrostatic attraction or repulsion between surface moieties on the 

SAM and solution redox couples has a powerful effect on the blocking behaviour of 
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SAMs. Promising applications of blocking SAMs can be found in the areas of corro-

sion inhibition, nanoscale lithography and ion selective electrodes. However, closer 

examination of SAM-coated electrodes reveals the presence of pinholes (bare metal 

sites) and other defects, which allow a close approach of solution species [78]. 

 
Unfortunately, no procedure has been urbanized which consistently yields pin-

hole-free SAMs. For bulk solid metal electrodes, surfaces should be annealed, cleaned 

from organic contaminants and etched to expose fresh metal and to remove inorganic 

oxides, a potential source of pinholes.  

 
 
1.8 Applications of self-assembled monolayers 

 
SAMs offer an exceptional combination of physical properties that allow fun-

damental studies of interfacial chemistry, solvent-molecule interactions and self-

organization. Their well-ordered arrays and ease of functionalization make them ideal 

model systems in many fields [30,81,82]. Understanding the process of self-assembly 

is beneficial for manipulating the physicochemical properties of interfaces (e.g. wet-

ting, frictional or adhesive properties of the surface layer) for a variety of heterogene-

ous phenomena such as catalysis, corrosion inhibition and lubrication [83-86]. The 

flexible self-assembly technique has a number of applications such as chemical and 

biological sensors [87], efficient electronic and optical devices [88,89], nonlinear op-

tical materials, artificial membrane [90], electron-transfer barriers [91], high-density 

memory devices and photopatterning methodology [92-97]. 

 
Also SAMs can be used either to provide model systems of organized functional 

molecules for studying the interfacial phenomena, such as electron transfer or redox 

behaviour [98], or to create models for studying the interfacial interactions, such as 

adhesion or molecular recognition [82]. 

 
 
1.9 Self-assembled monolayers of thiols and electrochemistry 

 
In electrochemistry, the convenience of thiol-based SAMs arises from their abil-

ity to endure the electrochemical experiment. SAMs on electrodes are stable over a 

wide range of potentials and electrolyte compositions (especially aqueous electro-
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lytes). They afford means of controlling the electrode/electrolyte interfacial properties 

and the accessibility of the electrode surface to solution molecules. SAMs also pro-

vide a means of attaching a diverse set of structures, ranging from modified monolay-

ers to multilayers, to the electrode. There are some specific applications including the 

development of more selective and sensitive electrochemical sensors (especially bio-

sensors), controlling of faradaic reaction mechanism and a better understanding of 

factors controlling electron transfer over long distances and under large driving 

forces. 

 

In electrochemical applications, surface modification by SAMs is widely used. 

Since the electrochemical properties of the end group (and the backbone) can be var-

ied relatively easy, the use of SAMs in electrochemistry continues to be admired. 

Generally, the electrochemical potential offers a broad range of possibilities not only 

from a chemical, but also from a more physical perspective [99]. 

 

Preparation of metal electrodes coated with monolayers of thiolates having elec-

trochemically active groups has attracted interest as a method to attach special func-

tions to the electrodes [100-104]. These uses are based on the relatively high stability 

of the self-assembled monolayer against mechanical, thermal and chemical treat-

ments. This fact means that self-assembly of thiols can be controlled by variation of 

the potential of the metallic supports and this can be used for many exciting applica-

tions such as electrical control of wetting [105], electrochemical patterning [106,107] 

and preparation of sensor arrays [108]. 

 

To understand the interaction between the modified surface and the species pre-

sent in the phase in contact, one requires the knowledge, at a molecular level, of three 

fundamental aspects simultaneously: (1) the chemisorption process; (2) the geometri-

cal configuration of the modifier molecules on the surface and (3) the dependence of 

the modifier molecules on the external applied potential.  
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1.10 Aim of the Work 

 

The present work aims to form self-assembled monolayers of 2-

mercaptopyridine and 4-mercaptopyridine on the surface of a polycrystalline gold 

electrode.  

 

The effect of the electrode potential, the electrolyte solution and the solvent on 

the adsorption process will be investigated. 

 

The mode of surface bonding of the two mercaptopyridines on the surface of the 

polycrystalline gold electrode will also be studied. 

 

The influence of self-assembled monolayers of 2- and 4-mercaptopyridines on 

electrodeposited layer of copper on the surface of the gold electrode will be electro-

chemically studied. The stability of these monolayers on gold electrode will also be 

examined in the presence of copper ions in the solution. 

 

The mechanism of electron transfer reaction through the mercaptopyridine 

monolayers will be investigated. The effect of the conducting/insulator behaviour of 

these monolayers on the gold electrode will also be carried out which could behave as 

microarray electrode. 

 

Finally, the application of the formed monolayers of 2- and 4-mercaptopyridine 

will be tested as corrosion inhibitors for a steel electrode in sodium chloride solution. 
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2 Experimental  

2.1 Cyclic Voltammetry 

 
Cyclic voltammograms (CVs) were recorded with a polycrystalline gold disk 

(surface area is approximately 0.1 cm2) embedded in epoxy as a working electrode in 

aqueous solutions of 0.5 M H2SO4, 0.1 M H2SO4 containing 1.0 M CuSO4 and 1.0 M 

HClO4 containing 10 mM (NH4)2Fe(SO4)2
.6H2O + 10 mM (NH4)Fe(SO4)2

.12H2O as 

supporting electrolytes using a custom built potentiostat interfaced with a standard PC 

via an ADDA-converter card operating with custom-developed software. A gold sheet 

electrode is used as a counter electrode. Hg/Hg2SO4 in 0.1 M K2SO4 (MSE), its 

potential is 641 mV vs standard hydrogen electrode, and a reversible hydrogen 

electrode (RHE) in 1.0 M HClO4 are used as reference electrodes. CVs were recorded 

in a H-cell separated by glass frits.  

 
The working electrode is treated as follows: The Au electrode was polished with 

0.3 µm α-Al2O3 then 0.05 µm α-Al2O3 then washed ultrasonically with water. Before 

chemical modification, the electrode was cleaned in 0.5 M H2SO4 by potential scan-

ning between – 0.4 to 1.3 V vs MSE until a reproducible cyclic voltammogram was 

obtained. After cleaning, the electrode was rinsed with deionized water and immedi-

ately immersed into the solution of the mercaptopyridine for 3 minutes and then 

rinsed carefully with water to remove the non-chemisorbed species, if any. 

 
 
2.2 Electrochemical Impedance Measurement (EIM) 
 

Electrochemical impedance measurements were carried out by using a gold 

sphere electrode with a surface area of 0.13 cm2 in aqueous solution of 1.0 M HClO4 

as a supporting electrolyte containing 10 mM (NH4)2Fe(SO4)2
.6H2O + 10 mM 

(NH4)Fe(SO4)2
.12H2O. A potentiostat solartron SI 1287 connected to frequency re-

sponse analyzer SI 1255 interfaced to a PC with EIM software was used in the meas-

urements.  
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The measurements were carried out at 0.7 V vs RHE in 1.0 M HClO4 with po-

tential amplitude 5 mV and a wide frequency range from 0.1 Hz to 100 KHz was 

used. Evaluation of the impedance data was performed assuming equivalent circuit 

with Boukamp software. 

 
 
2.3 Surface Enhanced Raman Spectroscopy (SERS) 
 

In situ surface enhanced Raman experiments were conducted in custom de-

signed glass cells on a T64000 Raman spectrometer equipped with a 2D CCD camera 

cooled with liquid nitrogen. A COHERENT INNOVA 70 Kr+ gas ion laser provided 

laser illumination. SER spectra were recorded using 647.1 nm exciting laser light. The 

laser power was always maintained at 50 mW at the surface of the electrode to avoid 

destruction of the monolayer. 0.5 M aqueous H2SO4 was used as an electrolyte solu-

tion and MSE and gold sheet electrode were used as reference and counter electrodes 

respectively. 

 
Electrochemical roughening necessary to confer surface enhancement activity 

was performed. Roughening of the gold electrode (polycrystalline 99.99 %, polished 

down to 0.3 µm Al2O3) was performed in a separate cell with an aqueous solution of 

0.1 M KCl by cycling the electrode potential between ESCE  = - 800 mV and ESCE = 

1650 mV for approximately 10 minutes [109]. A gold sheet and a saturated calomel 

electrode (SCE) were used as counter and reference electrodes respectively. 

 
 
2.4 Corrosion Studies 

 
A C60-steel disk electrode (0.61% C, max. 0.40% Si, 0.75% Mn, max. 0.40% 

Cr, max. 0.10% Mo, max. 0.40% Ni and max. 0.63% others) was used as a working 

electrode. It was manufactured as a cylindrical shape of 10 mm height. The electrode 

is surrounded with Teflon in a way to function as a disk electrode with 1.13 cm2 ex-

posed surface area. It was polished on a sand paper 1000 grade and then on a 13 µm 

α-Al2O3. A gold sheet electrode and a saturated calomel electrode were used as 

counter and reference electrodes respectively. 3.5% NaCl was used as a supporting 

electrolyte. The corrosion of the steel and the effect of the SAMs of the mercaptopyri-

dines were studied by electrochemical impedance measurements. 
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2.5 Materials 

 
Electrolyte solutions were prepared from 18 MΩ water (Seralpur Pro 90 c), 2-

mercaptopyridine (Aldrich), 4-mercaptopyridine (Aldrich), sulphuric acid (Merck, 

G.R.), copper sulfate, perchloric acid (Acros, p.A.), potassium chloride (Merck, G.R.) 

ammonium iron (II) sulfate-6-hydrate (Riedel-de Haën AG), ammonium iron (III) sul-

fate-12-hydrate (Riedel-de Haën AG) and sodium chloride were used as received.  1 

mM of 2- and 4-mercaptopyridine solutions were used in all electrochemical and 

SERS experiments.  

 

All solutions were freshly prepared, purged with nitrogen (99.999%) except for 

corrosion studies. All measurements were performed at room temperature. 
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3 Results and discussion 

3.1 Cyclic Voltammetry 

 
The use of electrochemical techniques such as cyclic voltammetry provides a 

mean of investigating the energetics of the system and also for an indirect characteri-

zation of the processes taking place. The presence of co-adsorbed species would be 

anticipated to have a pronounced effect on the voltammetric features of the investi-

gated system. Formation of organized molecular assemblies at electrode surfaces pre-

sent an enormous scope to manipulate the interfacial architecture that holds the key to 

the proper understanding of several issues such as metal deposition, electron transfer, 

etc. 

 
 

3.1.1 Electrochemical behaviour of a gold electrode in 0.5 M H2SO4 

 
Fig. 4 shows the cyclic voltammogram (CV) of a bare polycrystalline gold elec-

trode in 0.5 M H2SO4 in the potential range of 0.0 to + 1.3 V vs MSE at a scan rate of 

100 mVs-1.  
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Fig. 4 CV of a bare polycrystalline Au electrode in 0.5 M H2SO4, dE/dt 100 mVs-1. 
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It can be observed in the figure that during the anodic scan of the first cycle 

there is a peak at 0.76 V indicating gold oxide formation, which undergoes reduction 

at 0.43 V in the cathodic scan [110]. 

 
 
3.1.2 Electrochemical behaviour of 2-mercaptopyridine on gold electrode  

 
Fig. 5 shows the CVs of a polycrystalline gold electrode pretreated with 1 mM 

solution of 2-mercaptopyridine (dissolved in water) in 0.5 M H2SO4. It is observed 

that during the anodic scan in the first cycle a broad peak at 1.16 V is formed. This 

rising current refers to two processes, which are the oxidation of the Au surface and 

the oxidation of 2MP. Again, during the cathodic scan of the first cycle, a Au oxide 

reduction peak occurs at 0.40 V whose peak height is considerably less than that re-

sulting from a bare Au electrode under identical conditions. This suggests that the 

presence of adsorbed 2MP gives rise to a decrease of the gold oxide formation to a 

certain level and the main process that takes place might be the adsorbate oxidation 

[64,99,110]. 
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Fig. 5 CVs of a polycrystalline gold electrode pretreated with 2MP (dissolved in 

water) in 0.5 M H2SO4, dE /dt 100 mVs-1. 

 
During the second cycle, the current at 1.16 V decreases and a separate peak that 

resolves itself distinctly with increasing number of cycles, corresponding to Au oxida-
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tion, could be noticed at around 0.84 V. This peak shifted to more negative potential 

with the subsequent cycling. In addition, with increasing number of cycles, the peak 

current due to the Au oxide reduction also increases. This suggests that during the first 

scan the oxidation of a Au surface is minimal owing to the presence of a 2MP layer. 

Subsequent cycles expose the Au surface, possibly due to the removal of the 2MP 

layer to the solution facilitating the formation of Au oxide and its reduction [110]. 

This tendency for Au oxide formation followed by its reduction increases gradually 

with increasing the number of cycles. This indicates that 2MP can be oxidized in an 

acidic medium on Au electrode [64]. 

 
The adsorption process for MPs suggests a net electron transfer from the sulfur 

atom to the metal as part of the monolayer formation process [111]. However, the sul-

fur atom behaves as an electron acceptor when it is bonded to gold [111] due to the 

large difference between the electronegativities of sulfur and gold [112]. The overall 

reaction is frequently expressed as eq. 1 [75,113-116]. 

 
 

Au + RSH = Au-SR + ½ H2                 eq. 1 
 

 

Although 2MP probably adsorbs primarily through the sulfur atom, the presence 

of the pyridine ring, with the nitrogen atom in the “ortho” position, could give rise to 

the formation of a chelate with the gold surface, thus giving rise to more strongly ad-

sorbed layer [64-67]. The formed surface chelate of type S–Au–N is shown in (Fig. 6) 

[67]. 

Au

..N S

 
 

Fig. 6 The chelate structure of 2-mercaptopyridine with Au surface 
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It is also possible that 2MP can be dimerized through the S atom to form bis-(2-

pyridyl)disulfide as shown in equation 2, but the formed chelate structure hinders the 

dimer formation [67]. 

 
 

N N S NSSH

2 eq. 2

 
 

 

When the polycrystalline Au electrode is pretreated with 1 mM solution of 2MP 

(dissolved in 0.1 M H2SO4) the CVs in 0.5 M H2SO4 (Fig. 7) show the same interest-

ing features still exist, but with a slightly negative shift in the oxidation peak as com-

pared with 2MP in water. This behaviour might be due to weak bonded 2MP in 0.1 M 

H2SO4, since in this solution the nitrogen of the pyridine ring is protonated, as a result 

the strength of interaction is dominated by the sulfur atom [64,66]. 
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Fig. 7 CVs of a polycrystalline gold electrode pretreated with 2MP (dissolved in 

0.1 M H2SO4) in 0.5 M H2SO4, dE /dt 100 mVs-1. 
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3.1.3 Electrochemical behaviour of 4-mercaptopyridine on gold electrode  

 
Fig. 8 shows CVs of a polycrystalline gold electrode pretreated with 1 mM so-

lution of 4-mercaptopyridine (dissolved in water) in 0.5 M H2SO4. 

 
It is observed during the anodic scan in the first cycle that a current plateau at 

0.93 V is formed. The increasing current might be due to the oxidation of both 4MP 

monolayer and the Au surface [64,99]. This plateau is shifted to a more negative po-

tential compared with the case of 2MP in water. It means less inhibition of Au oxide 

formation in case of 4MP [54,64].  

 
As mentioned before for 2MP, during the cathodic scan of the first cycle, a gold 

oxide reduction peak occurs at 0.42 V whose peak height is considerably less than that 

resulting from a bare Au electrode under identical conditions suggesting that the 4MP 

monolayer decreases of gold oxide formation and that the main process that is the ad-

sorbate oxidation [64,115].  
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Fig. 8 CVs of a polycrystalline gold electrode pretreated with 4MP (dissolved in 

water) in 0.5 M H2SO4, dE /dt 100 mVs-1. 

 
 
In the second cycle, the current at 0.93 V decreases and a broad peak appears at 

around 0.83V, which is shifted to more negative potential with increasing the numbers 

of the cycles. Additionally the peak height of the Au oxide reduction increases with 
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subsequent cycling. This suggests that when 4MP adsorbed on the Au electrode, the 

Au oxide formation is decreased. With subsequent cycles, due to the removal of the 

4MP layer, the formation of Au oxide and its reduction is facilitated [110]. The ten-

dency of Au oxide formation followed by its reduction increases with increasing the 

number of cycles. This indicates that also 4MP can be oxidized in an acidic medium 

on Au electrode [64]. 

 

In the case of 4MP, since the nitrogen atom is in the “para” position the chelate 

structure cannot form. Thus, the bonding to the surface is solely through the sulfur 

atom. This may result in a diminishing of the interaction of the adsorbed layer with 

the surface of the electrode [64,66,67]. The formation of the chelate (S-Au-N) in case 

of 2MP diminishes the negative charge on the S-atom. Therefore 2MP is adsorbed 

more strongly, due to the chelate formation, than 4MP. However, the S-metal bond is 

stronger in 4MP than in 2MP [67]. The formation of the S-Au bond proved by surface 

enhanced Raman spectroscopy will be intensively discussed in section 3.3. 

 

It was also concluded that 4MP binds to the electrode surface through the sulfur 

atom (normal geometry) in almost vertical orientation as in Fig. 9 [61,64]. In this case 

the packing density is larger than that for 2MP. There is also a small probability that 

4MP binds to the surface through a nitrogen atom (out of normal geometry) as shown 

in Fig. 9 [64,67]. 
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Fig. 9 The possibilities of 4-mercaptopyridine bonding with the Au surface. 

 

On the other hand, 4MP dissolved in water can form bis-(4-pyridyl)disulfide as 

in equation 3, which can be reduced easily and completely back to 4MP [49,66,67, 
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117]. In addition, it has been proposed that it can undergo the coupling reaction de-

picted in equation 4 [49]. The formation of this last product would be favored in acid 

medium. 

 
 

N

SH

N S NS2 eq. 3

bis-(4-pyridyl)disulfide 

H 

+

+ _

H + 

 

 

N

SH

N

S

N

+ H2S2 eq. 4

 

In fact both 2MP and 4MP are electrochemically active and can furthermore un-

dergo side reactions. 
 

When 4MP (in 0.1 M H2SO4) is adsorbed on Au electrode surface, the cyclic 

voltammograms (Fig. 10) show a similar behaviour to that described for 4MP ad-

sorbed from water, with the exception that the oxidation peak is slightly shifted to the 

negative potential. In addition, the height of the reduction peak is slightly lower than 

obtained in the case of 4MP dissolved in water. It is also lower than that for 2MP ei-

ther in water or in 0.1 M H2SO4. This behaviour might be due to weaker interaction 

between Au surface and the bonded 4MP dissolved in 0.1 M H2SO4 [64,66]. In 0.5 M 

H2SO4 the N-atom is protonated. Such protonation would cause (by inductive effects) 

a weakening of the sulfur-gold bond, besides diminishing the possibility of adsorption 

onto the electrode surface [64,66,67]. 

 



Results and discussion 
 

 37

-0.3 0.0 0.3 0.6 0.9 1.2 1.5

-0.4

-0.2

0.0

0.2

0.4

0.6

 

 1st cycle
 2nd cycle
 cycle No. 20

4MP in 0.1 M H2SO4

I /
 m

A

EMSE / V

 

Fig. 10 CVs of a polycrystalline gold electrode pretreated with 4MP (dissolved in 

0.1 M H2SO4) in 0.5 M H2SO4, dE /dt 100 mVs-1. 

 
In summary, when 2MP is deposited on the Au electrode surface from both me-

dia the formation of Au oxide is more inhibited than in the case of 4MP and the inhi-

bition in the neutral is higher than in the acidic medium for both adsorbates. This be-

haviour is similar to that described by Alonso et al. [54] for polycrystalline platinum 

electrode.  
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3.1.4 Electrodeposition of copper on gold electrode 

 

Electrochemical techniques such as cyclic voltammetry allows the characteriza-

tion of processes taking place during the electrodeposition of metals in the presence 

and absence of coadsorbed species, reflecting the interaction existing between the co-

adsorbates, the electrode surface and the metal overlayer [118-124]. Under the as-

sumption that two electrons are transferred per copper atom, Wieckowski and co-

workers [121] conclude that nearly a closed-packed monolayer of copper is formed on 

the metal surface. The adsorption of numerous organic species on the electrode sur-

face has been investigated, showing that they are able to hinder or even inhibit the 

electrodeposition of copper and silver onto metal substrates depending on the strength 

of adsorption [49,65,124]. Moreover, it has been established that the SAMs of mer-

captopyridines are able to displace copper and silver monolayers [54,66,67] deposited 

on gold [65] and platinum [64] electrodes. 

 
The copper deposition on a polycrystalline gold electrode from 1 mM CuSO4 

solution in the absence of the monolayer is displayed in Fig. 11.  
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Fig. 11  Underpotential and overpotential deposition of copper from 1 mM CuSO4 

solution in 0.1 M aqueous H2SO4 on a polycrystalline gold electrode, dE /dt 

50 mVs-1. 
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The potential was scanned in the negative direction at 50 mVs-1 from a starting 

point of + 0.5 V vs MSE. The CV illustrates both underpotential deposition (UPD) 

and overpotential deposition (OPD) regions. 

 

On the initial cathodic scan, two peaks at – 0.20 corresponding to copper UPD 

and at – 0.54 V corresponding to copper OPD are observed. In the subsequent positive 

scan, two features are observed for the stripping of the electrodeposited copper: a 

sharp peak at a potential of – 0.37 V corresponding to the removal of bulk copper 

(OPD) and a peak at – 0.17 V corresponding to the stripping of copper UPD [66]. 

 

The influence of 2MP and 4MP monolayers on electrodeposition of copper on a 

polycrystalline gold electrode has been also studied. Additionally the interaction of 

these adsorbates with the gold electrode covered with an initially deposited copper ad-

layer is also investigated. 

 

 

3.1.5 Copper deposition on gold electrode pretreated with 2-mercaptopyridine 

 

Fig. 12 shows the CVs for copper deposition on a gold electrode and on the gold 

electrode pretreated with 1 mM solution of 2MP in water. It can be observed from the 

figure that the copper deposition is inhibited on the Au surface. It can be also noticed 

that the peak potentials for UPD and OPD are the same as that for the copper deposi-

tion onto a bare gold electrode, with a decrease of the peak current, while both peaks 

for OPD and UPD stripping are shifted in the positive direction reflecting the presence 

of the 2MP on the surface. This suggested that the strength of interaction between the 

sulfur atom and the Au surface is greater than that between the deposited copper and 

the surface. The presence of very weak peaks that indicated the presence of copper 

might be attributed to the free sites (defects) of the 2MP monolayer, which allow cop-

per adatoms to be deposited on the surface [64,66]. 
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Fig. 12 Deposition of copper from 1 mM copper solution in 0.1 M aqueous H2SO4 

solution onto a polycrystalline Au electrode (solid line) and onto a Au elec-

trode pretreated with a 1 mM solution of 2MP in water (dashed line), dE/dt 

50 mVs-1. 

 

Table 1 (see page 43) summarizes the peak potentials associated with copper 

deposition and stripping on a bare gold electrode and on gold electrode pretreated 

with 2MP and 4MP dissolved in either water or in 0.1 M H2SO4. 

 

When an electrode is pretreated with a 1 mM solution of 2MP in 0.1 M aque-

ous H2SO4, the CV (Fig. 13) shows a slightly greater copper deposition more than in 

the case of 2MP dissolved in water. In the cathodic scan the peak potential of the UPD 

is the same as in the case of the bare electrode and gold electrode pretreated with 2MP 

in water while the OPD is shifted in the negative direction. In addition, the stripping 

of both OPD and UPD is shifted in the positive direction (see Table 1 page 43). This 

can be explained by the chelate formation in case of 2MP in water, which gives rise to 

stronger adsorption of the 2MP monolayer thus preventing more copper to be depos-

ited on the Au surface [64-67]. 
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Fig. 13 Deposition of copper from 1 mM copper solution in 0.1 M aqueous H2SO4 

solution onto a polycrystalline Au electrode (solid line) and onto a Au elec-

trode pretreated with a 1 mM solution of 2MP in 0.1 M aqueous H2SO4 

(dashed line), dE/dt 50 mVs-1. 

 
 
3.1.6 Copper deposition on gold electrode pretreated with 4-mercaptopyridine 

 

If a gold electrode is pretreated with 4MP in water the electrodeposition of Cu is 

diminished as shown in (Fig. 14). In the cathodic scan the copper UPD is shown to 

appear at – 0.21 V and the copper OPD at – 0.66 V. In the subsequent anodic scan two 

peaks at – 0.33 and at – 0.10 V indicating the OPD and UPD stripping of copper are 

observed respectively.  

 

In comparison with 2MP, the presence of 4MP monolayer allows more Cu ada-

toms to approach the Au surface (see Table 1 page 43), which might be indicated 

from the height of the stripping peaks in both cases and the shift of the copper OPD 

peak to a more negative value. This may be attributed to the possibility of the 4MP 

molecules to bind to the Au surface only through the S-atom since the presence of the 

N-atom in the para position precludes the chelate formation as in the case of 2MP.  
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Fig. 14 Deposition of copper from 1 mM copper solution in 0.1 M aqueous H2SO4 

solution onto a polycrystalline Au electrode (solid line) and onto a Au elec-

trode pretreated with a 1 mM solution of 4MP in water (dashed line), dE/dt 

50 mVs-1. 

 

The cyclic voltammogram of the Au electrode pretreated with 4MP dissolved in 

0.1 M aqueous H2SO4 is shown in Fig. 15. Under these conditions, a peak at –0.20 V 

is obtained in the UPD region corresponding to copper deposition on sites free of 

4MP. The OPD of copper takes place at a potential of – 0.69 V which is more nega-

tive than in the case of the absence of 4MP monolayer (see Table 1 page 43), imply-

ing that the process is less favored. In the anodic scan, peaks at – 0.33 and – 0.08 V 

corresponding to OPD and UPD stripping respectively are observed. The presence of 

4MP (deposited from H2SO4) inhibits the UPD stripping, delaying it 90 mV to a more 

positive potential. 

 

In comparison with 4MP dissolved in water (see Table 1 page 43), the OPD is 

shifted to a more negative potential in the case of 4MP deposited from H2SO4. This 

behaviour may be attributed to the protonation of the N-atom of 4MP in the acidic 

solvent, which is located para to the S-atom, such protonation would (by inductive ef-

fect) cause a weakening of the S-Au bond [64,66].  



Results and discussion 
 

 43

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.10

-0.05

0.00

0.05

0.10

0.15

I /
 m

A

EMSE / V

 

Fig. 15 Deposition of copper from 1 mM copper solution in 0.1 M aqueous H2SO4 

solution onto a polycrystalline Au electrode (solid line) and onto a Au elec-

trode pretreated with a 1 mM 4MP solution in 0.1 M aqueous H2SO4 

(dashed line), dE/dt 50 mVs-1. 

 
Table 1: Deposition and stripping potentials (vs MSE) for copper deposition on gold 

in the absence and presence of SAMs. 

 
SAMs UPDdep. OPDdep. OPDstr. UPDstr. 

Bare Au -0.20 -0.54 -0.37 -0.17 

2MP (water) -0.20 -0.54 -0.25 -0.06 

2MP (acid) -0.20 -0.59 -0.29 -0.09 

4MP (water) -0.20 -0.66 -0.33 -0.10 

4MP (acid) -0.20 -0.69 -0.33 -0.08 

 
 
3.1.7 Displacement of electrodeposited copper on gold by 2-mercaptopyridine 

 
When a copper monolayer is electrodeposited on a polycrystalline gold elec-

trode and subsequently exposed to a solution of 2MP in H2SO4 (dashed line in Fig. 

16), the copper monolayer is partially stripped as can be observed in the anodic scan. 
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This suggests that the strength of interaction between the S-atom and the gold surface 

is greater than that between the deposited copper and the surface. 
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Fig. 16 CVs of a polycrystalline gold electrode with an initially deposited Cu ad-

layer in 0.1 M aqueous H2SO4 after immersion in 2MP solutions, dE/dt 50 

mVs-1. 

 

If the gold electrode with an initially deposited copper is immersed in 2MP so-

lution in water, the displacement of copper is more than in case of 2MP dissolved in 

H2SO4. In this case the N-atom of the pyridine ring is not protonated, resulting in an 

increase in the strength of interaction between the adsorbed 2MP monolayer and the 

electrode so that 2MP became able to displace more electrodeposited copper. 

 
 
3.1.8 Displacement of electrodeposited copper on gold by 4-mercaptopyridine 

 

When a gold electrode with an electrodeposited Cu adlayer is immersed in 4MP 

solution in water or H2SO4 (Fig. 17), the anodic scan shows the stripping of the Cu 

adlayer.  
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Fig. 17 CVs of a polycrystalline gold electrode with an initially deposited Cu ad-

layer in 0.1 M aqueous H2SO4 solution after immersion in 2MP solutions, 

dE/dt 50 mVs-1. 

 

The structure of 4MP precludes the formation of a chelate with the Au surface, 

as in the case of 2MP. Thus, bonding to the surface is solely through the sulfur atom. 

This may result in a diminution of the interaction of the adsorbed layer with the elec-

trode so that 4MP displaces less copper. Besides, more copper is displaced by 4MP in 

water than by 4MP in 0.1 M aqueous H2SO4 solution because in the acidic solvent the 

N-atom is protonated. Since the N-atom is located para to the S-atom such protonation 

would (by inductive effect) cause a weakening of the S-Au bond, diminishing the 

amount of displaced copper. 
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3.1.9 Electron transfer kinetics of the redox reaction 

 
Electrochemical techniques such as cyclic voltammetry and electrochemical 

impedance measurements, which will be discussed in more details in the next sec-

tions, are suitable techniques for the investigation of the structure and the electro-

chemical properties of the SAMs and for studying the fast interfacial processes. These 

techniques give useful information on the distribution of defects in the formed 

monolayers, the properties of the coupled redox probes, the kinetics and mechanism 

of the monolayer formation process, and the surface coverage, etc. [31,69,125-129]. 

The methodologies used with these techniques are always based on the comparison of 

the results obtained with the unmodified and SAM-modified electrode substrate. 

 
 
3.1.10 Influence of 2-mercaptopyridine on electron transfer process 

 

Fig. 18 shows the CVs of a gold electrode in 1.0 M aqueous HClO4 solution 

containing Fe3+/2+ redox couple in absence and presence of 2MP monolayer deposited 

from water in the potential range of 0.0 to + 1.5 V vs RHE at dE/dt of 100 mV s-1. 

 

It can be observed from the figure that a well-defined CV characteristic of a dif-

fusion-limited redox process is obtained for the bare gold electrode showing a quasi-

reversible behaviour with peak-to-peak separation (∆Ep) of 120 mV [130]. For the 

electrochemically reversible process the equilibrium is maintained throughout the po-

tential scan (equilibrium requires that the surface concentrations of O and R, where O 

and R are the oxidants and the reductants respectively, are maintained at the values 

required by the Nernst equation). 

 

The reversible process is characterized by the following parameters: 

1. The peak potential separation ∆Ep = Epc – Epa = 58/n mV at all scan rates at 25°C 

(where Epc and Epa are the cathodic and the anodic peak potentials respectively 

and n is the number of electrons transferred/molecule). 

2. The current ratio Ipa / Ipc = 1 at all scan rates (where Ipa and Ipc are the anodic and 

the cathodic peak currents respectively). 
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3. The peak current function Ip / v1/2 is independent of v (where v is the scan rate) 

4. The peak current is given by the Randles-Sevcik relationship:  

 

Ip = 2.69 × 105 n3/2 A c D1/2 v1/2          eq. 5 
 
where A is electrode surface area (0.13 cm2 ), c is the concentration (mol L-1) and D is 

the diffusion coefficient for the redox probe (cm2 s-1). The value of D calculated for 

Fe3+/2+ redox couple using equation 5 is 3.45 × 10-7 cm2 s-1. 
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Fig. 18 CVs of a gold electrode in 1.0 M aqueous HClO4 solution containing Fe3+/2+ 

redox couple before and after immersion in 2MP solution in water, dE/dt 100 

mV s-1. 

 
The midpoint potential (Em) or the formal potential (Ef) can also be calculated 

as Em = (Epa + Epc) / 2 [131]. The calculated Em was found to be 760 mV vs RHE. The 

current ratio is unity within experimental error. All the above parameters are calcu-

lated and listed in Table 2 (see page 53). 

 
 

The efficiency of the monolayer in blocking the heterogeneous electron transfer 

(ET) reaction can be estimated by the kinetics of the redox probes, as expressed by the 
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peak-to-peak separation (∆Ep) [69]. When the 2MP layer, which has pinholes that al-

low the electron transfer through the monolayer, is adsorbed on the surface of the 

electrode, one can notice an obvious decrease in the cathodic and the anodic peak cur-

rents and an increase of the ∆Ep to a value of 847 mV. A significant positive potential 

shift for the anodic current peak and a negative potential shift for the cathodic current 

peak can be observed. The current ratio is close to unity. The value of Em is 703 mV, 

which is less positive than the value of 760 mV (vs RHE) observed for the bare Au 

electrode. Assuming that the Randles-Sevcik relationship (eq.5) is applicable, it can 

give a value for the effective diffusion coefficient (Deff.) of 1.06 ×10-7 cm2 s-1. This 

clearly indicates that the electrode surface was covered with a compact monolayer of 

2MP, which creates a barrier decreasing the electron transfer process.  

 
Pinholes are a kind of defect in thiol monolayers, which are the result of imper-

fect adsorption of the thiol molecule to the Au surface during the self-assembling step 

and/or subsequent loss of the formed monolayer during rinsing, storage or use. How-

ever, these pinholes are active sites in the formed monolayer. Concequently, the gold 

electrode modified with MPs behaves as a microarray electrode allowing molecules 

and ions from the electrolyte to reach the electrode surface [130,132-137]. Moreover, 

the π-electrons present in the molecules can further help the ET across the monolayers 

[138]. In fact, it has been generally observed that the organothiol SAM may or may 

not present some defects or pinholes on the surface, depending on the interaction be-

tween the adjacent molecules [134]. All the obtained values for Au electrode modified 

with 2MP deposited from water are listed in Table 2 (see page 53). 

 
Porter et al. [31] have suggested that ET of electroactive species at the SAMs 

covered electrodes could occur in three ways: (1) the electron could transfer through 

the film via a tunneling process, (2) the electroactive species could permeate through 

the monolayer and react at the electrode surface and (3) the electroactive species 

could diffuse to a bare spot, a pinhole, on the electrode. Sur et al. [139] suggested that 

the redox reactions could take place through either or both of the following processes 

occurring in parallel: 

1. Diffusion of the redox species through the pinholes and access to the electrode sur-

face followed by electron transfer reaction. 
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2. Permeation of the redox molecule through the assembly and access to a region 

close to the electrode surface. This is followed by ET through tunneling process. 

 

If 2MP is deposited from 0.1 M aqueous H2SO4 on Au surface (Fig. 19) there is 

a decrease in the cathodic and the anodic peak currents and an increase of the ∆Ep 

(731 V vs RHE) compared with the bare Au electrode. A significant positive potential 

shift for the anodic peak and a negative potential shift for the cathodic peak can be 

observed. The current ratio is close to unity. Assuming that the Randles-Sevcik rela-

tionship is applicable, it can give a value for Deff. of 1.58 × 10-7 cm2 s-1. All the ob-

tained values for the Au electrode modified with 2MP deposited from 0.1 M H2SO4 

are listed in Table 2 (see page 53). 
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Fig. 19 CVs of a polycrystalline gold electrode in 1.0 M aqueous HClO4 containing 

the redox couple in the presence and absence of 2MP monolayer deposited 

from 0.1 M aqueous H2SO4, dE /dt 100 mV s-1. 

 
 

On comparison with 2MP dissolved in water (Table 2 page 53), the value of 

∆Ep is lower and the value of Em is higher in the case of 2MP dissolved in acid. Also 

the peak current is higher in the latter case. Additionally the anodic peak is shifted to 
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more negative potential. This indicates that the ET reaction is less hindert in the case 

of 2MP dissolved in acidic solution [130-133]. 

 
In acidic solvent the N-atom of the 2MP is protonated. It is proposed that two 

effects, which exist at the same time, are considered to be responsible for the charge 

transfer process. First, there will be a repulsive interaction between the positively 

charged monolayer and the positively charged redox probes. Second, there is a repul-

sion among the positively charged monolayer molecules that results in a less compact 

monolayer. The latter interaction leads to the formation of open channels in the 

monolayer, which makes it easier for the redox probe to penetrate the monolayer. The 

latter effect is dominating in charge transfer (CT) process, although the electrostatic 

repulsion still exists between Fe3+/2+ and the positively charged 2MP monolayer, 

which explains the increase of the peak currents of 2MP dissolved in acidic solution 

compared with that of 2MP dissolved in water [140]. 
 

Berchmans et al. [141] rationalized the charge transfer response yielded by 

Au/SAM towards the positively charged Fe3+/2+  redox system on the basis of the inner 

sphere electron-transfer character. Thus the thin, compact and impervious monolayers 

were visualized to effectively prevent the direct access of the redox couple Fe3+/2+ to 

Au electrode surface, which was an essential prerequisite in inner sphere ET reac-

tions. Further study by Zhou et al. [132] showed that the heterogeneous ET of the 

positively charged redox probe is very difficult in acidic medium 

 
 
3.1.11 Influence of 4-mercaptopyridine on the electron transfer process 

 
Fig. 20 shows the CVs of a polycrystalline gold electrode in 1.0 M aqueous 

HClO4 containing Fe3+/2+ in the absence and in presence of 4MP monolayer deposited 

from water in the potential range from 0.0 to + 1.5 V vs RHE. 

 

It is observed that when 4MP is deposited from water on the Au electrode sur-

face there is a decrease in both cathodic and anodic peak currents. A significant posi-

tive potential shift for the anodic current peak can be observed, whereas a negative po-

tential shift occurred for the cathodic current peak. A value of 947 mV is calculated for 

∆Ep. A value of 810 mV vs RHE, which is higher than the value of 760 mV for the bare 
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Au electrode, is obtained for Em. Assuming that the Randles-Sevcik relationship is ap-

plicable, it can give a value for Deff. of 1.00 × 10-7 cm2s-1. All the obtained values for 

Au electrode modified with 4MP deposited from water are listed in Table 2 (see page 

53). 
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Fig. 20 CVs of a gold electrode in 1.0 M aqueous HClO4 containing Fe3+/2+ before 

and after immersion in 4MP solution in water, dE /dt 100 mV s-1. 

 
 

These differences between the bare Au electrode and the modified electrode 

with 4MP are due to the fact that in HClO4 (electrolyte) solution the N-atom of 4MP 

is protonated, which leads to repulsive interaction between the positively charged 

monolayer molecules and the positively charged redox probe and repulsion among the 

positively charged monolayer molecules. This leads to the formation of open channels 

in the monolayer that allows the redox probe to penetrate the monolayer [141]. 

 
Compared with 2MP (Fig. 18), it was found that 4MP hinder the heterogeneous 

ET reaction stronger than 2MP. Since the packing density for 4MP is suggested 

[64,67] to be higher than that for 2MP, the number of pinholes might be lower in 

4MP, which means less active sites are available for the ET reaction.  
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As shown in Fig. 21, when 4MP is deposited from 0.1 M aqueous H2SO4 on the 

Au electrode surface there is a decrease in the cathodic and anodic peak currents. A 

significant positive potential shift for the anodic current peak and a negative potential 

shift for the cathodic current peak can be observed. The current ratio is close to unity. 

For more details see Table 2 (see page 53). 
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Fig. 21 CVs of a polycrystalline gold electrode before and after immersion in 4MP 

solution in 0.1 M aqeous H2SO4. Same conditions as in Fig.20. 

 

In comparison with the case of 4MP dissolved in water (Table 2 page 53), it can 

be noticed that the ET reaction is more retarded in the case of 4MP dissolved in acidic 

solution depending on the values of the ∆Ep and the Ipc [130-133]. This can be ex-

plained as when 4MP is deposited from 0.1 M aqueous H2SO4 all the N-atoms will be 

protonated, as a result the possibility of nitrogen to be attached on the Au surface will 

decrease. This might suggest that all the monolayer molecules will be positively 

charged, which could increase the repulsion among the monolayer molecules and be-

tween the positively charged monolayer molecules and the redox probe. Conse-

quently, this will lead to more retardation of the ET reaction compared with 4MP de-

posited from water. 
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Table 2: Electrochemical parameters obtained from studying the heterogeneous ET 

reaction by cyclic voltammetry of unmodified and modified gold electrodes. 

 

 ∆Ep 
(mV) 

Epa 
(mV) 

Epc 
(mV) 

Em 
(mV) 

Ipc 
(mA) 

Ipa 
(mA) 

D 
(cm2 s-1) 

Bare Au 120 820 700 760 0.54 0.65 3.45 × 10-7 
Au/2MP 
(H2O) 847 1126 279 703 0.36 0.36 1.06 × 10-7 

Au/2MP 
(H2SO4) 

731 1125 394 760 0.41 0.44 1.58 × 10-7 

Au/4MP 
(H2O) 947 1283 336 810 0.36 0.35 1.00 × 10-7 

Au/4MP 
(H2SO4) 

1010 1329 319 824 0.37 0.38 1.18 × 10-7 

 

 

The results obtained support the conclusion that the gold electrode modified 

with 2MP and 4MP behaves as a microarray electrode, which allows electron transfer 

between a redox couple and the electrode surface.  
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3.2  Electrochemical impedance measurements 

 
The electrochemical impedance measurement (EIM) is a technique that has 

been used for a long time to study electrochemical processes at the electrode surface. 

It is a valuable and convenient method to give information on impedance changes of 

the electrode surface in the modified process. In electrochemical impedance experi-

ments, a small ac voltage is applied to an electrode/solution interface and correspond-

ing electrochemical impedance is obtained. The impedance is measured as a function 

of the frequency and hence an equivalent circuit can be deduced from the measure-

ments. The components of the equivalent circuit are related to physical features and/or 

processes at the electrode/solution interface through suitable modeling. However, dif-

ficulties in the processing of data using electrical analogs often arise because of the 

non-linearity in the proposed equivalent circuit. 

 
The impedance is usually composed of real (Z′) and imaginary (Z″) part: 

 

Z = Z′ - j Z″          eq. 6 
 

where j = (-1)1/2. There are several ways of plotting the impedance as a function 

of frequency. The most used one is the Nyquist plot (Z″ vs Z′ with the frequency as a 

parameter).  

 
This technique has some advantages as the solution resistance, the double layer 

capacitance and the current due to diffusion or other processes occurring in the SAMs 

can be clearly determined [130,132,142]. The results obtained by EIM will be com-

pared with those obtained with cyclic voltammetry. 

 
 

3.2.1 Electron transfer reaction on a bare gold electrode 

 
Impedance measurements were carried out at the formal potential (Ef) of the re-

dox couple, which was determined from cyclic voltammetry. Fig. 22 shows the im-

pedance measurements of a polycrystalline bare gold electrode in 1.0 M aqueous 

HClO4 solution containing Fe3+/2+ redox couple at 0.7 V vs RHE, in the frequency 

range from 0.1 to 105 Hz with a value of 5 mV for the amplitude. 
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As shown in the figure a typical Nyquist diagram is obtained. The impedance-

plane plot is characterized by two distinct regions [127,128,132-134,143,144]: 

 
(i) A semicircle in higher frequency region related to charge transfer process. This 

region is electrically described by a resistance in parallel with a capacitor related 

to the double-layer. In this region the reaction is purely kinetically controlled. 

(ii)  A 45° line in the complex-plane impedance plot defining a Warburg region of 

semi-infinite diffusion of species on the electrode at lower frequencies region. The 

reaction is in this region diffusion (mass transfer) controlled. 
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Fig. 22 The measured and the simulated impedance plot of the unmodified gold 

electrode in the redox solution.  

 
The charge transfer resistance controls the ET kinetics of the redox probe at the 

electrode surface. It is estimated from the extrapolation of the high-frequency semi-

circle to the impedance real axis. The value of the solution resistance is obtained from 

the impedance data corresponding to the highest frequency [126,144,145].  

 
The circuit model used in this study was a modified Randles circuit that is 

shown in Fig. 23 where Rs is the solution resistance; Rct is the charge transfer resis-
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tance to a species moving through the film, W is the Warburg impedance and Cdl is 

the double layer capacitance [139,146]. 

 
 
 
 

 
 

 

 

 

Fig. 23  The proposed equivalent circuit for the bare Au electrode. 

 
The surface changes of the electrode must cause a change in the ac response; 

this change can be understood according to the Randles’ equivalent circuit, and can be 

used to estimate the electrode coverage and the charge transfer rate constant. 

 
A simple equivalent circuit should give a vertical line in the Nyquist plot. How-

ever, in many cases, one finds lines with a high but finite slope, and it is also common 

to find lines with unity slope (corresponding to a phase angle of 45°). This behaviour 

is represented electrically as a constant phase element (CPE), with an impedance 

(ZCPE) is given by: 

 
ZCPE = 1 / Q (j ω)α          eq. 7 

 
where Q is the magnitude of the CPE, j = (-1)1/2, ω = 2πf (where  f is the frequency of 

the applied ac potential) and α (0 ≤ α ≤ 1) is a parameter that is related to the slope of 

the Nyquist plot of the ZCPE and determines the behaviour of this element. The ex-

perimental value of α is between 0.5 (for an ideally porous electrode) and 1 (for a per-

fect smooth electrode) [143]. 

 
If α =1, the CPE is an ideal capacitor and Q = Cdl [142]. A small deviation from 

1.0 (α > 0.80), as observed here, suggests that the gold substrates are sufficiently 

smooth for these studies [147]. The charge transfer resistance Rct and the electrode 

capacitance Cdl for Fe3+/2+ were calculated using Boukamp software as 5.6 Ω cm2 and 

W

Rs 

Rct

Cdl
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338.5 µF cm-2, respectively. Higher values of Cdl observed are due to high electro-

chemical active surface [148] 

 
 

Considering that the electrochemical redox reaction is in equilibrium and the 

concentrations of the oxidant and reductant are equal, the ET rate constant can be cal-

culated from equation 8 [127,132,126]: 

 

k = R T / F2 Rct c          eq. 8 
 

where k is the ET rate constant at the Au electrode, R is the gas constant, T is the tem-

perature, F is the Faraday constant and c is the concentration of the redox couple. 

 
The value of the ET rate constant calculated from equation 8 for the bare Au 

electrode is 4.75 × 10-4 cm s-1. All the obtained parameters characteristic for the bare 

Au electrode are listed in Table 3 (see page 62). 

 
EIM was used to study the blocking capacity of the formed SAMs, evaluating 

the presence of defects and/or pinholes in each case, and the obtained results were 

compared with those obtained by cyclic voltammetry of the redox couple Fe3+/2+ at 

each monolayer. 

 
 
3.2.2 Influence of 2-mercaptopyridine on the electron transfer reaction 

 
Fig. 24 illustrates the impedance measurements of a Au electrode modified with 

2MP deposited from water in 1.0 M aqueous HClO4 containing Fe3+/2+ redox couple. 

The same situation as Fig. 22. 

 
When 2MP is deposited from water on Au electrode both the charge transfer and 

the diffusion processes will be affected. At high frequencies where the electrochemi-

cal reaction is purely kinetically controlled the heterogenous charge transfer resistance 

is increased due to the decrease of the ET rate. At lower frequencies a linear compo-

nent is present. The Randles equivalent circuit is the same as that of unmodified Au 

electrode. 
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The value of the Rct is increased from 5.6 to 380.9 Ω cm2 while the rate constant 

is decreased from 4.75 × 10-4 to 6.98 × 10-6 cm s-1. The value of the capacitance is 

79.2 µF cm-2. The increase of the charge transfer resistance and the decrease of the 

rate constant reinforce the conclusion that the SAM may act as a barrier on the elec-

trode surface to the heterogeneous ET reaction [133,134,140]. These results are con-

sistent with those obtained by cyclic voltammetry (Fig. 18). 
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Fig. 24 Complex impedance plot of Au electrode in the presence of 2MP monolayer 

deposited from water in 1.0 M aqeous HClO4 containing Fe3+/2+ redox cou-

ple. Same setting as in Fig. 22 

 
 

The electrode coverage (θ) is a key factor, which can be used to estimate the 

surface state of the electrode and it is related to the charge transfer resistance. It is as-

sumed that the ET reaction occurs only at bare spots (defects) on the electrode surface 

and that the diffusion to these defects is planar [133]. According to this assumption, 

the following equation for the apparent fractional coverage of the electrode can be 

used [127,128,144]: 
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θ = 1 – (R°ct / Rct)        eq. 9 
 

where R°ct is the charge transfer resistance of the unmodified Au electrode and Rct is 

the charge transfer resistance of a modified Au electrode.  

 
According to the data obtained from Nyquist plots, a value of θ = 0.985 can be 

calculated for the Au electrode after immersion in 2MP solution in water. All the ob-

tained electrochemical parameters for the Au electrode modified with 2MP deposited 

from water are listed in Table 3 (see page 62). 

 
As shown in Fig. 25 when 2MP is deposited from 0.1 M H2SO4 on the Au elec-

trode a semicircle with a large diameter is obtained followed by a small linear part. 

This indicates the diminution of the heterogeneous ET reaction that takes place 

mainly in the kinetically controlled region. The Randles equivalent circuit, which de-

scribes this case, is the same as the unmodified Au electrode case.  
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Fig. 25 Complex impedance plot of Au in the presence of 2MP monolayer depos-

ited from 0.1 M aqeous H2SO4. Same setting as in Fig. 22 

 
 

From the impedance measurements, the values of Rct, Cdl, θ, and of the rate 

constant are obtained and listed in Table 3 (see page 62). These values encourage the 



Results and discussion 
 

 60

conclusion that the monolayer hinders the heterogeneous ET process, which is in 

agreement with the result obtained from cyclic voltammetry (Fig. 19). 

 

On comparing with the case of 2MP deposited from water on the Au surface, it 

was found that the charge transfer resistance is higher and the rate constant is lower in 

case of 2MP deposited from water (see Table 3 page 62), which indicates that the ap-

proach of the electrochemical species to the electrode surface is facilitated in case of 

Au electrode modified with 2MP deposited from 0.1 M H2SO4. The results are consis-

tent with those obtained with cyclic voltammetry (Fig. 18 and 19). 

 
 
3.2.3 Influence of 4-mercaptopyridine on the electron transfer reaction 

 
Fig. 26 shows the impedance measurements of Au electrode modified with 4MP 

deposited from water in 1.0 M aqueous HClO4 containing Fe3+/2+ redox couple. Same 

circumstances as in Fig. 22. 
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Fig. 26 Complex impedance plot of Au electrode in the presence of 4MP monolayer 

deposited from water in 1.0 M aqueous HClO4 containing Fe3+/2+ redox 

couple. Same circumstances as in Fig. 22. 
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When 4MP is deposited from water on the Au electrode the Nyquist plot con-

sists of a large diameter semicircle indicating a charge transfer process that became 

diffusion-controlled process at lower frequencies region. The Randles equivalent cir-

cuit of this system is the same as with a bare Au electrode. The obtained values of 

electrochemical parameters for the Au electrode modified with 4MP deposited from 

water are listed in Table 3 (see page 62). These values support the cyclic voltammetry 

results (Fig. 20). 

 

Comparing with 2MP deposited from water on the Au surface, the 4MP 

monolayer has higher Rct and lower k since the N-atom of the 4MP will be protonated 

in HClO4 solution, which results in repulsion interaction with the positively charged 

redox probe and among the monolayer molecules. Also the Rct is higher and the k is 

lower than in the case of 2MP deposited from 0.1 M H2SO4 because of the decrease in 

the density of the active sites in the 4MP monolayer due to the formation of a more 

compact monolayer. These results are in agreement with those obtained from cyclic 

voltammetry (Fig. 18-20). 

 

In case of 4MP deposited from 0.1 M H2SO4 on the Au electrode (Fig. 27) a 

semicircle showing a higher value for the charge transfer resistance at high frequen-

cies compared with 4MP deposited from water is obtained. The impedance can be 

modeled by an equivalent circuit as that for unmodified Au electrode or Au electrode 

modified with monolayers in all other cases. 

 

From the obtained impedance results the values of Cdl, θ and k are calculated. 

On comparison with all the values listed in Table 2, it was found that the resistance is 

higher for heterogeneous ET process in case of Au electrode modified by 4MP 

monolayer deposited from 0.1 M H2SO4. In this case all the N-atoms will be proto-

nated before adsorption, which preclude the adsorption through the N-atom of the 

pyridine ring so the repulsion interaction is higher in this case than in the case of 4MP 

in water leading to less ET reaction rate. These results are consistent with those ob-

tained by cyclic voltammetry (Fig. 18-21). 
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Fig. 27 Complex impedance plot of Au electrode in the presence of 4MP monolayer 

deposited from 0.1 M aqeous H2SO4. Same circumstances as in Fig. 22. 

 

Table 3: Electrochemical parameters obtained from impedance measurements for 

unmodified and modified gold electrodes. 

 
 Rct (Ω cm2) Cdl (µF cm-2) k (cm s-1) θ 

Bare Au 5.6 338.5 4.75 × 10-4 - 

Au/2MP (H2O) 380.9 79.23 6.98 × 10-6 0.985 

Au/2MP (H2SO4) 306.8 69.23 8.67 × 10-6 0.982 

Au/4MP (H2O) 453.7 72.31 5.86 × 10-6 0.988 

Au/4MP (H2SO4) 490.1 83.85 5.43 × 10-6 0.989 
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3.3 Surface enhanced Raman spectroscopy 

 
Although electrochemical techniques are suitable for collecting kinetic and 

thermodynamic data from electrochemical systems, they do not give atomic and mo-

lecular scale information on interfacial structures. In order to investigate the correla-

tion between the structure of a self-assembled film and its physical and chemical 

properties, many surface analytical techniques have been utilized. As a non-

destructive sensitive tool for studying the metal-adsorbate interactions and the reactiv-

ity of adsorbed species surface enhanced Raman scattering (SERS) is used since it can 

provide unique information about the structure and the orientation of the molecules 

adsorbed on the metal surface. Furthermore, several applications of SERS have been 

written for self-assembled monolayer [149,150], chemical detection [151], biochemis-

try [152-154] and single molecule detection [155,156]. 
 
The most interesting aspect of SERS measurements is the accessibility of a 

large number of vibrational transitions where modes are associated with specific mo-

lecular conformations allowing direct characterization of the structure and the mo-

lecular composition [157,158]. Previous research has shown that the frequency of vi-

brational modes can also yield structural information, where the change in frequency 

can be correlated with changes in the local environment of the investigated molecule 

[159,160]. 

 

SERS has been widely used in ambient and electrochemical environments 

[161]. Actually, it is considered to be the most suitable tool for in situ observation of 

surfaces in electrochemical environment. In this work SERS is used to investigate the 

structure and orientation of self-assembled monolayers. 

 
 
3.3.1 SER spectra of 4-mercaptopyridine in 0.5 M H2SO4 

 
SER spectra of 4-mercaptopyridine, deposited from water on a roughened poly-

crystalline gold surface, are shown in Fig. 28 at different potentials in 0.5 M H2SO4. 

For comparison the Raman spectrum of solid 4MP was also shown in Fig. 29. 
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When the molecules are chemisorbed on the metal surface, there is an overlap-

ping of the molecular and metal orbitals, the molecular structure will be changed and 

in the consequence, the positions and relative intensities of SERS bands are dramati-

cally changed [61].  
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Fig. 28 SER spectra of 4MP deposited from water on a roughened polycrystalline 

Au electrode in 0.5 M H2SO4 at different potential values. 
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Fig 29 Raman spectrum for solid 4MP. 
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The frequencies and assignments of Raman bands of solid and adsorbed 4MP 

are summarized in Table 4. The band assignments are based on Ref. [29,61,162-171]. 

 
Table 4: Spectral data of 4MP as a solid and adsorbed from water on a gold elec-

trode, at different electrode potential values. 
 

E MSE = 
Wilson # Symm. Mode Solid 

4MP -200 
mV 0 mV 200 

mV 
500 
mV 

700 
mV 

- - n.a. 117 - - - - - 
- - n.a. 140 - - - - - 
- - n.a. 159 - - - - - 
- - n.a. - - - - - 171 
- - n.a. 225 - - - - - 
- - n.a. - - - - - - 
- - ν (Au-S) - 263 263 263 265 265 
- - β i.p. (C-S) 319 - - - - - 
- - n.a. - - - - 330 330 
- - n.a. - - - - 364 364 
7 a1 δ (C-S)/γ (CCC) 435 418 418 418 418 418 
16 b1 γ (CCC) 479 488 488 488 - - 
6 b2 β (CCC) 652 590 - - - 590 
- - n.a. 696 - - - - - 
4 b1 β (CC)/ ν (CS) 728 711 711 711 711 711 
10 b1 γ (CH) 784 - -. - - - 
- - n.a. - 980 980 979 980 981 
1 a1 ν (ring breathing) 995 1006 1005 1006 1008 1006 
18 a1 β i.p. (CH) 1049 1046 1048 1048 1049 1057 
18 b2 β i.p. (CH) 1084 - - - - - 

12 a1 
ν (ring breath-

ing)/(C-S) 1111 1092 1092 1092 1093 1095 

9 a1 β i.p. (CH) - 1209 1209 1209 1219 - 
3 b2 β i. p (CH) 1293 1281 1280 1280 1274 - 
14 b2 ν (CC) 1402 - - - - - 
19 b2 ν (C=C/C=N) 1465 1477 1477 1476 1476 - 
- - n.a. 1484 - - - - - 
- - n.a. 1503 1509 1506 1508 1501 - 
- - n.a. 1587 - - - - - 
8 b2 ν (C=C) 1611 1607 1607 1607 1595 - 
8 a1 ν (C=C)/(C=N) 1624 1617 1618 1617 1616 1616 
ν : stretching; β: bending; β i.p.: in-plane bending; δ: in-plane deformation; γ: out-of-
plane deformation, i.p.: in-plane; n.a.: not assigned. 
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It is well known that aromatic heterocyclic molecules bearing a mobile H atom 

undergo rapid and facile tautomeric transformations in solution. It has also been re-

ported that, under ambient conditions, the pyridine derivatives substituted at the 2 or 4 

positions by potentially tautomeric groups, SH in this case, exist as the thione 

tautomer rather than the thiol in polar solution [172]. 4MP is assumed to be present as 

the thiol-thione tautomer forms (eq.10), in which the thione form is predominant 

[162,163].  

 

N

SH

N

S

H

eq. 10

Thiol Thione  
 
 

In the set of spectra of Figure 28 there is a band at 263 cm-1, which is not ap-

pearing in the solid 4MP (Fig. 29). There are some studies of related thiol compounds 

adsorbed on Au reported by various authors [173-175]. A band at 264 cm-1 was as-

signed by Bron and Holze [61] to the Au-S stretching mode. Joo and coworkers [175] 

found a Au-S mode with benzyl phenyl sulfide adsorbed on a gold sol at 227 cm-1. In 

a SER study of adsorbed benzenethiol a mode at 270 cm-1 was assigned to a Au-S 

stretching mode as already proposed previously [176]. Based on these studies the 

band at 263 cm-1 was assigned to be a Au-S stretching mode. This indicates that 4MP 

is bounded on the Au substrate through the S atom. 

 
All SER spectra of 4MP exhibit a remarkable increase in the intensity of the 

12a1 mode near 1092 cm-1. This is a so-called X-sensitive mode [165,166]. X-

sensitive modes are described as modes that are strongly coupled substituent and aro-

matic ring modes such as [ν (ring breathing)/(C-S)]. The local environment of the X 

substituent modulates the coupling [168]. This coupling has already been noticed in 

the SERS of thiophenol [166,176], in electrochemical SERS of 4MP on Au electrodes 

[169] and to a less extent in the normal Raman spectrum of pyridine/metal complexes 

[176,177]. Another X-sensitive band [β(CC)/ν (C-S)] at 728 cm-1 of the solid 4MP 
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shows a significant downward shift to about 711 cm-1 upon the adsorption to the Au 

surface. Both of these bands are sensitive to the structure and the properties of the 

substituent. From the preceding discussion it can be judged that 4MP is bonded to the 

gold surface via the S-atom [166,167,178,179]. 

 
Among other changes observed due to adsorption are the downward shift of the 

ν (C=C)/(C=N) band at 1624 to 1617 cm-1, which was previously reported 

[161,180,181] as a marker for the N-protonation of 4-mercaptopyridine (4MPH+) as 

shown in eq. 11. 

 

N

S

..

Au Au

N

S

H

+
H+

eq. 11

 
 

Orientation of the molecule with respect to the electrode surface can be ob-

tained from the shift, appearance and disappearance of bands in surface spectra com-

pared with normal spectra [182-184]. Modes that are perpendicular to the surface are 

preferentially enhanced. 4MP has C2v symmetry. Thus its vibrational modes can be 

classified into in-plane a1 and b2 modes and out-of-plane a2 and b1 modes. All these 

modes are considered as Raman active. For C2v molecules, all four symmetry species 

are required to define orientation. For perpendicular orientation, the relative en-

hancement of bands is in the order of b1 = b2 > a2. Molecules which are lying flat on 

the surface will show enhancements such as a2 = b1 > b2. The a1 totally symmetric vi-

brational modes cannot be used alone to assign orientation [176]. The b1 modes are 

weak and a2 modes are not observed at all from 4MP on the SER substrate. The most 

significant enhancements are appeared for the in-plane ring vibrations as follows 12 a1 

ν (ring breathing)/(C-S), 8b2 ν (CC) and 9 a1 β (CH). The inherent weakness of the b1 

and absence of the a2 vibrations makes comparison of their relative intensities with 

those of the a1 and b2 modes impossible [176]. Normal modes that are involved in-

plane motion of the ring C=C and C=N bond stretching are expected to be most en-
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hanced bands which is an indication for more or less perpendicular orientations of 

molecules with respect to the surface. Out-of-plane a2 and b1 vibrations should experi-

ence little enhancement. Alternatively, if the molecules were lying flat, the totally 

symmetric a1 and non-totally symmetric b2 in-plane vibrations would experience little 

or no enhancement. Some out-of-plane vibrations would be enhanced. In the SER 

spectra of 4MP, the 1a1 in-plane totally symmetric ring vibration appears as an intense 

band. Preferential enhancement of the in-plane 12a1, 9a1, and 8b2 vibrations suggests 

that the plane of the pyridine moiety is roughly perpendicular to the surface. 

 
Fig. 28 shows the SER spectra of 4MP at different applied potentials. The 

specta were recorded only with a potential window between oxidation and reduction 

(from – 200 to 700 mV vs MSE) to avoid contributions from reduction/oxidation 

products. As described above there will be some differences in the peak positions and 

band intensities due to adsorption. 

 
There are major changes can be observed in the SER spectra with different po-

tentials. First, in the low frequency region the intensity of the band at 263 cm-1, which 

was assigned to Au-S stretching, was found to be very weak at potentials from – 200 

to 0 mV vs MSE. Then its intensity increased with increasing potential. The lower in-

tensity of this band may be attributed to the protonation of the N-atom in acidic me-

dium that results in a weakening of the Au-S bond, as mentioned before, and then the 

interaction of Au-S became stronger as the potential is increased. Second observation 

is the upward shift from 1092 to 1095 cm-1 and the increasing of the intensity of the 

12 a1 ν  (ring breating)/(C-S) band with the increasing of the potential. Similar ν (C-

S) peak shift and enhancement have been observed for thiopental adsorbed via the S-

atom on SERS-active metal substrates [166,185]. A third change is the increasing of 

the intensities of the band 19 b2 ν (C=C)/(C=N) at 1477 cm-1 and the band 4 b1 

β (CC)/ ν (CS) at 711 cm-1. In addition the 8 b2 ν (C=C) band was shifted from 1607 

to 1595 cm-1. At potentials – 200, 0 and 200 mV vs MSE the 8a1ν (CC) band at 1616 

cm-1 is stronger than that at nearly 1607 cm-1. At 500 mV, several new bands appear at 

330, 364 and a broad band at 590 cm-1. A completely different spectrum is obtained at 

700 mV. At this potential the oxidation of the 4MP is started as can be seen from the 

cyclic voltammetry results (see Fig. 8). Since the major changes of the SER spectra 

with increasing the potential are obtained for the bands which are related to S-atoms, 
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it can be concluded that 4MP molecules deposited from water on Au surface might be 

adsorbed through the S-atom. It was published that 4MP molecules could bind to the 

surface through N-atom [64,67]. Nevertheless the obtained SER spectra (Fig. 28) do 

not show evidence of the Au-N bond. 

 
4MP deposited from 0.5 M H2 SO4: 

 
Fig.30 represents the set of SER spectra for 4MP deposited from 0.1 M aqueous 

H2SO4 on a Au surface. The details of band positions and their assignment are col-

lected in Table 5. 

200 400 600 800 1000 1200 1400 1600 1800 2000

0 mV

-200 mV

200 mV

500 mV

700 mV

EMSE=

Ra
m

an
 in

te
ns

ity
 / 

s-1

Raman shift / cm-1

 
Fig. 30 SER spectra of 4MP deposited from 0.1 M H2SO4 on a roughened polycrys-

talline Au electrode at different potential values in 0.5 M H2SO4.  

 
 

In Fig. 30 a band around 260 cm-1, that was assigned to Au-S stretching, was 

observed. In addition, an increase of the intensity of the X-sensitive band at 1090 cm-1 

and a shift of another X-sensitive band from 728 cm-1 of the solid 4MP to 711 cm-1 

can be observed upon adsorption on the Au surface. The appearance of the band at 

260 cm-1, the increase of the intensity of the band at 1090 cm-1 and the downward 
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shift of the band at 728 cm-1 are evidence for the adsorption of 4MP monolayer 

through the S-atom on the gold surface. 

 
Table 5: Assignments and wavenumber positions (cm-1) for normal Raman and 

SERS of 4MP deposited from 0.5 M H2SO4 on Au electrode [29,61,162-

171]. 

 

E MSE = 
Wilson # Symm. Mode Solid 

4MP -200 
mV 0 mV 200 

mV 
500 
mV 

700 
mV 

- - n.a. 117 - - - - - 
- - n.a. 140 - - - - - 
- - n.a. 159 - - - - - 
- - ν (Au-S) - 260 260 260 258 258 
- - β i.p. (C-S) 319 - - - - - 
- - n.a. - 337 - - 330 331 
- - n.a. - - - - 363 359 

7 a1 
δ (C-S)/ 
γ (CCC) 435 419 422 419 422 419 

- - n.a. - - - - 459 460 
16 b1 γ (CCC) 479 - - - - - 
6 b2 β (CCC) 652 - - - - - 
- - n.a. 696 - - - - - 
6 a1 β (CC)/ δ (C=S) 728 711 710 711 707 707 
10 b1 γ (CH) 784 - - - - - 
- - n.a. - 809 795 - - - 
- - n.a. - 982 982 978 987 979 
1 a1 ring breathing 955 1003 1003 1001 1007 1007 
18 a1 β (CH) 1049 1054 1053 1054 1069 1056 
18 b2 β (CH) 1090 1090 1089 1092 1090 1087 

12 a1 
ring breathing/ 

(C-S) 1111 1124 1126 1122 - - 

9 a1 β (CH) - 1198 1205 1203 1209 - 
- - n.a. 1293 - - - - - 
14 b2 ν (CC) 1402 - - 1405 1375 - 
19 b2 ν (C=C)/(C=N) 1465 1472 1472 1477 1476 1478 
19 a1 n.a. 1484 - - - - - 
- - n.a. 1503 - - - - - 
- - n.a. 1587 - - - 1591 1591 
8 b2 ν (C=C) 1611 - - - - - 
8 a1 ν (C=C)/(C=N) 1624 1617 1619 1613 1617 1614 
ν : stretching; β: bending; β i.p.: in-plane bending; δ: in-plane deformation; γ: out-of-
plane deformation, i.p.: in-plane; n.a.: not assigned 
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The SER spectra at increasing potential values show a dramatical enhancement 

of the bands at 260, 711, 1090 and at 1472 cm-1. Another observation is the increase 

of the intensity of the band at 1617 cm-1, which is related to 8 a1 ν (CC). The latter 

band will split at 500 mV vs MSE into two bands at 1591 and 1617 cm-1. New bands 

can be achieved at 330, 363 and 459 cm-1 at 500 mV. The oxidation of the 4MP 

monolayer is started at 700 mV. 

 

Comparing with SER spectra of 4MP deposited from water (Fig. 28) the bands 

at 1503 and 1293 cm-1 (of the solid 4MP) are disappeared and the others at 1054, 711 

and 419 cm-1 became more stronger in case of 4MP deposited from acid. It can be 

concluded that the change of the SER spectra can be observed mainly for the X-

sensitive bands in case of 4MP deposited from H2SO4. This suggests that the possibil-

ity of adsorption of 4MP might be only via S-atom since the N-atoms of 4MP are pro-

tonated in the acidic solvent.  

 

 

3.3.2 SER spectra of 2-mercaptopyridine in 0.5 M H2SO4 

 

Fig. 31 presents the results of SER spectra of 2MP deposited from water on a 

roughened polycrystalline gold surface at different potentials in 0.5 M aqueous 

H2SO4. For comparison the Raman spectrum of solid 2MP was also shown in Fig. 32 

(see page 73). 

 

Significant differences between these two classes of spectra can be seen indicat-

ing that the molecules show a structural change due to adsorption on the metal sur-

face. The peak position and band assignments are summarized in Table 6 (see page 

74). The bands assigned according to Ref. [162,163,186,187]. 

 

It is known that 2MP exists in the solid state in its thione form as a hydrogen-

bonded dimer (eq. 12) [188,189]. However, when 2MP is adsorbed onto the metal sur-

face through the sulfur group, such hydrogen-bonded dimers cannot be formed, hence 

the molecules should adopt a configuration more like that of a thiol form. 
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Fig. 31 SER spectra of 2MP deposited from water on a roughened Au electrode at 

different potential values in 0.5 M aqueous H2SO4.  

 
Comparing the spectra of solid 2MP with the adsorbed on the metal surface 

shows that the thione form is predominant when the molecules are in the solid state, 

but the thiol-like form is observed for molecules adsorbed on the gold surface. This 

comparison shows substancial differences in the case of the thiol. Many bands that are 

strong in the solid spectrum are not observed or are extremely weak in the surface 

spectra. In addition, many bands undergo significant frequency shifts. The loss of the 

proton and formation of an Au-S bond may account for some of the differences. 
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Fig 32 Raman spectrum of solid 2MP 

 

In the SER spectra of 2MP (Fig. 31) there is a band at 235 cm-1, which does not 

appear in solid 2MP (Fig. 32). Based on previous studies [61,173-175] this band was 

assigned to Au-S stretching mode. This indicates that 2MP is bounded on the Au sub-

strate through the S-atom. The ring modes containing CS stretching vibration such as 

6 a2 ν (CS) and 6 a1 ν (CS), which appear at 456 and 722 cm-1 respectively in the 

solid 2MP are red shifted to 430 and 712 cm-1 in the SER spectrum. This is another 

indication of the involvement of the S-atom in the adsorption process. Another X-

sensitive band at 1113 cm-1 is blue shifted to 1125 cm-1 and its intensity will increase. 

[166,176,179,190].  

 
There are three bands related to the N-atom. The first band [19 a ν (C=C/C=N)] 

is shifted from 1512 cm-1 to 1519 cm-1 due to adsorption. The second band, which is 

found at 1456 cm-1 [19 b ν (C=C/C=N)] in the Raman spectrum of the solid 2MP is 

shifted to 1448 cm-1 with a lower intensity in the SER spectra of 2MP. A third one is 

the high intensity sharp band [14 b ν (C=C/C=N)] at 1273 cm-1 became a very weak 

broad band. These results suggest that the N-atom of the 2MP molecule interact with 

Au surface forming the chelate structure (Fig. 6). 
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Table 6: A comparison of normal Raman and SERS of 2MP, deposited from water, 

on a roughened Au surface at different potentials [61,166,173-176,179,190]. 

 
E MSE = 

Wilson#  Symm. Mode Solid 
2MP 0 mV 100 

mV 
200 
mV 

300 
mV 

500 
mV 

700 
mV 

- - n.a 145 - - - - - - 
- - n.a. 184 - - 182 182 181 181 
- - ν (Au-S) - 235 236 238 238 243 242 
- - β (CS) 340 - - - - - - 

6 a 
δ (C-S) / 

γ (CCC) 456 430 432 429 429 428 428 

- - n.a. - 484 483 479 485 - - 
- - n.a. 577 - - - - - - 
6 a γ (CCC) 629 623 623 625 - - - 
- - ν (CS) 722 712 712 709 715 714 714 
- - n.a. 743 - - - - - - 
- - n.a. 789 - - - - - - 
- - n.a. - 937 937 932 938 938 938 
1 a ring breathing 1000 1010 1010 1006 1008 1008 1010 
18 a β (CH) 1036 1042 1045 1043 1041 - - 
- - n.a. - 1059 1056 1054 1052 1054 1054 
18 b β (CH) 1093 1093 1093 1095 1095 1093 1094 

12 a ring breathing 
/ν (C-S) 1113 1125 1129 1129 1125 1125 1127 

- - n.a. 1176 1154 1157 1157 1153 - - 
- - n.a. 1211 1203 1207 1202 1202 1203 1203 
- - n.a. - 1235 1235 1235 1239 1239 - 
14 b ν (C=C/C=N) 1275 1273 1275 - - - - 
- - γ (CH) 1384 - - - - - - 
- - n.a. 1432 - - - - - - 
19 b ν (C=C/C=N) 1456 1448 1448 - - - - 
- - n.a. 1491 - - - - - - 
19 a ν (C=C/C=N) 1512 1519 1519 - - - - 
8 b ν (C=C) 1579 1586 1583 1583 1575 1575 - 
8 a ν (C=C) 1626 1610 1610 1610 1609 1608 1608 
ν : stretching; β: bending; δ: in-plane deformation; γ: out-of-plane deformation, i.p.: 
in-plane; n.a.: not assigned 
 

 
In addition, bands at 1036 and 1000 cm-1 arise from β (CH) and ring breathing 

display characteristic spectra shift to 1042 and 1010 cm-1 respectively due to adsorp-

tion. Other bands at 1626 and 629 cm-1 due to 18 ν (CC) and γ (CCC) are red shifted 

to 1610 and 623 cm-1 respectively. New bands at 1235, 1059 and 484 cm-1 appear 

while the assignments at 1432, 1384, and 789 cm-1 disappear from the SER spectra. 
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It is assumed that the 2MP molecule retains its original Cs symmetry in the 

normal Raman spectrum. 2MP probably binds also with a predominantly perpendicu-

lar orientation to the Au surface [162,163].  

 
The SER spectra of 2MP (Fig. 31) were recorded in the potential range between 

oxidation and reduction (from 0 to 700 mV vs MSE) to avoid contributions from oxi-

dation/reduction products. Remarkable differences can be observed with different po-

tentials. The first change that can be noticed in the SER spectra is the increasing of the 

intensity of the ν (Au-S) band at 231 cm-1 with increasing the potential. Different 

from 4MP, this band is clearly appearing in the spectra starting from 0 mV. This sug-

gests the idea that 2MP adsorbed more strongly on the Au surface than 4MP owing to 

the formation of the chelate ring through S- and N-atoms as has been previously con-

cluded from the cyclic voltammetry measurements. Second observation is the increase 

of the intensity of the X-sensitive band at around 430 cm-1 as the potential increase. 

The third change is the decrease of the intensities of the bands at 1042 and 1059 cm-1. 

The latter band is downshifted to 1054 cm-1 with increasing the potential. Nearly all 

the intensities of the other bands in the spectra decreased. 

 
Compared with 4MP (Fig. 28), the spectrum of 2MP at 700 mV shows that the 

monolayer is still stable on the Au surface, which is not the case of 4MP. This might 

suggest that 2MP binds to the Au surface stronger than 4MP and the 2MP monolayer 

is more stable than 4MP monolayer with different potentials. 

 
 
2MP deposited from 0.1 M H2SO4: 

 
The SER spectra of 2MP deposited from 0.1 M H2SO4 on Au substrate are 

shown in (Fig. 33). The assignments of the bands are collected in Table 7 (see page 

77). 

 
In Fig. 33, the band arises from Au-S stretching can be detected at 215 cm-1 and 

it is up shifted with increasing the potential to the value of 220 cm-1 at 700 mV vs 

MSE. The X-sensitive bands at 456, 722 and 1113 cm-1 of the solid state are shifted to 

434, 715 and 1119 cm-1, which present another evidence for the adsorption of 2MP 

via S-atom on the substrate. 
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Fig. 33 SER spectra of 2MP deposited from 0.1 M H2SO4 on a roughened polycrys-

talline Au substrate in 0.5 M aqueous H2SO4 at different potentials. 

 

 

The intensity of the (14 b ν  (C=C/C=N) band at 1275 cm-1 is decreased in the 

SER spectra of 2MP and it is shifted to 1281 cm-1. Also the 19 b ν  (C=C/C=N) band 

at 1456 cm-1 is shifted to 1446 cm-1. The band near 1230 cm-1 in the SER spectra may 

be related to the coupled mode β (CH)/δ (NH). These may be evidences for the pro-

tonated N-atom in the acidic solvent [162]. 

 

In addition, the β (CH) bands at 1036 and 1093 cm-1 in the solid 2MP are 

shifted to 1052 and 1082 cm-1 and their intensities are increased remarkably upon ad-

sorption. The ν(C=C) band at 1626 cm-1 disappeared from the SER spectra. Also new 

bands appeared at 263 and 1548 cm-1. Others at 319 and 345 cm-1 are noticed at 700 

mV vs MSE. 
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Table 7 Spectra data and vibrational assignments for normal Raman and SERS of 

2MP deposited from 0.1 M H2SO4 on Au substrate at different potentials 

[61,166,173-176,179,190]. 

 

E MSE = 
Wilson# Symm. Mode Solid 

2MP 0 mV 100 
mV 

200 
mV 

300 
mV 

500 
mV 

700 
mV 

- - n.a. 145 - - - - - - 
- - n.a. 184 - - - - - - 
- - ν (Au-S) - 215 217 217 223 220 220 
- - n.a. - - - 263 263 263 263 
- - β (CS) - - - - - - 319 
- - n.a. 340 - - - - - 345 

- - 
δ (C-S)/ 
β (CCC) 456 434 436 430 435 434 433 

- - n.a. - 481 482 482 482 482 484 
- - n.a. - - 513 - 512 506 - 
- - n.a. 577 - - 559 - 562 593 
6 a γ (CCC) 629 637 639 633 631 633 641 
- - ν (C-S) 722 715 716 711 720 718 719 
- - n.a. 743 - - - - - - 
- - n.a. - 888 839 887 891 898 890 

1 a (ring breath-
ing) 1000 1005 1002 1002 1003 1007 1004 

18 a β (CH) 1036 1052 1048 1051 1055 1055 1055 
18 b β (CH) 1093 1082 1082 1082 1082 1081 1088 

12 a ring breath-
ing/ν (C-S) 1113 1119 1115 1116 1119 1118 1119 

- - n.a. 1176 1159 1157 1160 1160 1150 1155 
- - n.a. 1211 - - - - - - 

- - 
β (CH)/ 
δ (NH) 

- 1236 1236 1233 1233 1237 1238 

14 b 
ν (C=C)/(C=

N) 1275 1278 1278 1279 1280 1281 1281 

- - γ (CH) 1384 1382 - - - - - 
- - n.a. 1432 1418 1418 1413 1413 1419 1416 

19 b 
ν (C=C)/(C=

N) 1456 1455 1430 1446 1447 1450 1446 

19 a n.a. 1491 1472 1474 1477 1477 1481  
- - n.a. 1512 1516 - 1516 1529 - 1526 
8 b n.a. - 1548 1553 1555 1555 1555 - 
8 b ν (C=C) 1580 1579 - - - 1574 1578 
8 a ν (C=C) 1626 - - - - - - 
ν : stretching; β: bending; δ: in-plane deformation; γ: out-of-plane deformation, i.p.: 
in-plane; n.a.: not assigned. 
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For comparison between 2MP deposited from water and from H2SO4 Fig. 34 

shows the SER spectra for both cases at 300 mV vs MSE. 
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Fig. 34 SER spectra of 2MP deposited on Au electrode at 300 mV vs MSE. 

 
Significant differences can be noticed between the two spectra. First, the Au-S 

stretching appeared at 235 cm-1 in case of 2MP deposited from water and at 215 cm-1 

in case of 2MP deposited from acid. Then, the X-sensitive band around 430 cm-1 is 

more sharp and intense for the latter case. The other X-sensitive bands appeared at 

712 and 1124 cm-1 for deposition from water and at 717 and 1119 cm-1 for deposition 

from acid. The third difference is the 18 a β  (CH) band at 1052 cm-1 in case of acidic 

solvent is more intense than that in case of water, which appears as a broad weak band 

at around 1045 -1060 cm-1. The ring-breathing mode at 1203 cm-1 in case of deposi-

tion from water has higher intensity than that of the acidic solvent. There is a band at 

1553 cm-1 in case of 2MP adsorbed from acid, which does not exist in the case of wa-

ter and the ν  (C=C) band at 1609 cm-1 exists only for 2MP adsorbed from water. 

These changes may be due to the formed chelate ring when 2MP is deposited on Au 

surface from water, which does not exist in the case of acidic solvent since the N-

atom is protonated.  
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3.4 Corrosion inhibition 

 
Corrosion in pipes, pumps, turbine blades, coolers, superheaters, reheaters, fuel 

cells, and exhaust systems causes enormous industrial expense due to production 

downtime, accidental injuries, and replacement costs [191]. Steel is an important 

metal in industrial applications, but it can be easily oxidized in air. The chloride ions 

significantly promote the corrosion process in aqueous solution, such as seawater. In 

recent years, SAMs have offered a method to diminish corrosion of the metals. One of 

the most important methods in corrosion protection of metals is the use of organic in-

hibitors to protect the metal surface from the corrosive environments. The inhibition 

efficiency of the organic compounds is closely related to the structure and the proper-

ties of the film formed on the metal surface [192,193]. 

 

In order to study the inhibition of the SAMs in the selected medium, a number 

of methods can be used. Among the rapid methods of detection, the electrochemical 

impedance measurement is one of the most valuable methods. Generally, equivalent 

circuits are used to interpret the electrochemical impedance values obtained for inhibi-

tors performance in corrosion studies [194-206]. 

 
 
3.4.1 Study of the corrosion of C60 steel electrode by EIM 
 

In the electrochemical experiment, the iron will be dissociated on the anode ac-

cording to equation 13 [207] as follows 

 

Anode: Fe = Fe2+ + 2e-          eq. 13 
 

This reaction is rapid in most media [207]. The cathodic reaction is given by 

equation 14. This reaction proceeds rapidly in acids but only slowly in alkaline or 

neutral media  

 

Cathode: 2H+ + 2e- = H2          eq. 14 
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The cathodic reaction in neutral and alkaline media is accelerated by dissolved 

oxygen in accord with the depolarization reaction equation 15 

 

½ O2 + H2O + 2e- = 2OH-          eq. 15 
 

The Nyquist plot of C60 steel electrode in 3.5% aqueous NaCl solution at -0.57 

V vs SCE with 5 mV amplitude is presented in Fig. 35. The frequency range is 0.1 – 

105 Hz. 
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Fig. 35 The measured and the simulated Nyquist plot of EIS of C60 steel electrode. 
 

 

The polarization (or the charge transfer) resistance Rp value of the steel elec-

trode is obtained by calculating the semicircle intersection via curve fitting of imped-

ance data using Boukamp software. The value of Rp was found to be equal to 459 Ω.  

 

The influence of 2MP and 4MP on the corrosion of the steel electrode was stud-

ied after immersion of the electrode for 3 minutes in the aqueous solution of the mer-

captopyridines. 
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3.4.2 Influence of 2-mercaptopyridine on the corrosion of C60 steel electrode  

 
Fig. 36 shows the complex plane of the resulting impedance data for C60 steel 

electrode in the presence and in the absence of 2MP monolayer. The conditions are 

the same as for the bare steel electrode. 

 

0 100 200 300 400 500 600 700 800

0

-200

-400

-600

-800

-1000

 

 

Z'
' /

 O
hm

Z' / Ohm

 without 2MP (meas.)
 with 2MP (meas.)
 without 2MP (sim.)
 with 2MP (sim.)

 
Fig. 36 Nyquist impedance plots of steel electrode in presence and absence of 2MP 

monolayer in 3.5% NaCl 

 
It is clear that the presence of 2MP monolayer produced a higher Rp value, 

which is an indication of the formation of an effective protective film that hindered 

corrosion. The inhibition efficiency (η %) was determined using the following for-

mula [208]: 

 

η (%) = (1- Rp˚/Rp
inh ) 100          eq. 16 

 

where Rp˚ and Rp
 represent the electrode polarization resistance in the absence and the 

presence of the inhibitor, respectively. The polarization resistances and the inhibition 

efficiency results are collected in Table 8 (see page 82). 
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3.4.3 Influence of 4-mercaptopyridine on the corrosion of C60 electrode  

 
Fig. 37 shows the complex plane of the impedance data for C60 steel electrode 

in the presence and in the absence of 4MP monolayer. The conditions are similar as 

the bare steel electrode. 
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Fig. 37 Nyquist impedance diagrams of steel electrode in presence and absence of 

4MP monolayer in 3.5 % NaCl 

 
As can be seen from the figure the presence of 4MP monolayer shows a higher 

polarization resistance value than a bare electrode, which indicates that 4MP can serve 

as corrosion inhibitor for steel in NaCl solution. However, 4MP exhibits less inhibi-

tion efficiency than 2MP, which might be due to the presence of a chelate structure in 

2MP. 

 
Table 8 EIS (Rp and η) results for steel electrode in the absence and presence of the 

monolayer 

 

 Rp / Ω 
 η (%) 

Bare Fe 459 - 
2MP 1.25 × 103 75 
4MP 1.08 × 103 58 
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These results encourage further studies for the mercaptopyridines at different 

conditions to select the best inhibition efficiency for steel electrode and other elec-

trodes in different electrolyte solutions. 
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Summary  

 
Formation and subsequent characterization of self-assembled monolayers 

(SAMs) have become important in the field of chemical research today as self-

assembly is a versatile technique for surface modification for different applications . 

Thiol monolayer on Au has received considerable attention due to its simplicity and 

ease of preparation. The formation of SAMs of 2- and 4-mercaptopyridines on the 

surface of the polycrystalline gold electrode deposited from either water or aqueous 

0.1 M H2SO4 has been successfully carried out. The behaviour of these monolayers 

was also studied in different electrolytic media. Overview about self-assembled 

monolayers and the experimental methods used in the investigations are mentioned 

clearly. It is also worthy to say that mercaptopyridines were. 

 
The results obtained by cyclic voltammetry technique, electrochemical imped-

ance measurements (EIM) and surface enhanced Raman spectroscopy (SERS) have 

been intensively interpreted. The oxidation and reduction potentials of the SAMs of 2-

mercaptopyridine (2MP) and 4-mercaptopyridine (4MP) on gold surface in 0.5 M 

aqueous H2SO4 are obtained and discussed in detail. 2MP deposited from water is 

suggested to be adsorbed on the surface through the formation of S-Au-N chelate, 

whereas 4MP has the possibility to adsorb through S-atom (normal geometry). Ac-

cordingly, 2MP is more strongly adsorbed on the Au electrode than 4MP. It is prob-

able that 4MP is also bonded to the gold electrode through the N-atom (out of normal 

geometry). In the acidic solvent, 2MP and 4MP will be attached only through the S-

atom to the surface since the N-atom is protonated in the acidic solvent.  

 
The electrochemical deposition of copper is investigated using cyclic voltam-

metry technique in the absence and presence of 2- and 4-mercaptopyridine SAMs. 

The presence of these monolayers decreases the electrodeposition of copper to a great 

extent. This behaviour was rationalized to the very strong interactions between the 

gold electrode and the formed monolayer. This suggests that the formed monolayer is 

more stable than the Cu adlayer. 2MP monolayer shows a higher degree of inhibition 

of the electrodeposition of copper than 4MP. This stronger interaction is possibly due 

to the chelate structure of 2MP with the gold surface.  
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The influence of mercaptopyridine SAMs on gold electrode with an initially de-

posited copper has been also studied. Both 2MP and 4MP were found to displace the 

copper adlayer partially. This can be explained by the strength of interaction between 

the S-atom of the monolayer and the Au surface, which is greater than that between 

the Cu adatoms and the Au surface. 2MP can displace more copper adatoms than 

4MP. This could be interpreted to the 2MP chelate structure while the structure of 

4MP precludes the formation of a chelate with the Au surface, as in the case of 2MP. 

Thus, bonding to the surface is solely taking place through the sulfur atom. This may 

result in a diminution of the interaction of the adsorbed layer with the electrode so that 

4MP displaces less copper. However, more copper is displaced by 4MP dissolved in 

water than in acidic solution. This can be explained due to the protonation of the N-

atom in the “para” position of 4MP in acidic solution. Such protonation would cause 

(by inductive effect) a weakness of the S-metal bond. As a result, more Cu adatoms 

will be present on the Au surface. 

 
The electron transfer of the redox couple is studied by cyclic voltammetry and 

electrochemical impedance techniques. The rate of electron transfer of the Fe3+/2+ re-

dox couple has been also investigated in the presence and absence of the monolayers. 

The charge transfer was suggested to occur through the defects (pinholes) that allow 

the electron transfer through the formed monolayers. Consequently the gold electrode 

modified with MPs can behave as a microarray electrode allowing molecules and ions 

from the electrolyte to reach the electrode surface. 2MP was found to retard the elec-

tron transfer reaction more than 4MP. 

 
The surface enhanced Raman spectroscopy results are summarized and dis-

cussed. The formation of 2MP and 4MP monolayers on Au electrode is proved by the 

existence of Au-S stretching band which is located in the range of 215 to 250 cm-1 and 

at 263 cm-1 for 2MP and 4MP respectively. The experiments also suggest the perpen-

dicular orientation of both 2MP and 4MP on the gold surface. 

 
The EIM is also used to study the inhibition effect of the mercaptopyridine 

SAMs on the C60 steel electrode in 3.5% aqueous NaCl solution after 3 minutes im-

mersion in aqueous solution of the mercaptopyridines. The polarization resistance and 

the inhibition efficiency are calculated. 2MP has more inhibition efficiency than 4MP.  
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Future work 

 
The influence of 2-and 4-mercaptopyridines on the charge transfer process can be 

further investigated in neutral and basic solutions to give additional information about 

the mechanism of the charge transfer in different media and the effect of the media on 

the rate of the charge transfer. 

 
The research can be continued to examine 2- and 4-mercaptopyridine monolayers 

as corrosion inhibitors as a function of different immersion time either in the inhibitor 

solution or in the probed electrolytic solution, various electrolytic media, a variety of 

temperature values, ect. The effect of these monolayers can be also investigated for 

different electrode materials. 

 
2- and 4-mercaptopyridines self-assembled monolayers can be probed as a selec-

tive electrode to recognize selectively some metal ions, which are highly toxic to hu-

mans. 
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