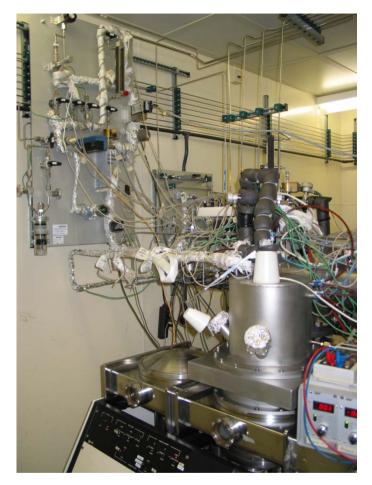
ALD of Copper and Copper Oxide Thin Films for Applications in Metallization Systems of ULSI Devices

<u>Thomas Waechtler</u>^a, Steffen Oswald^b, Nina Roth^c, Heinrich Lang^c, Stefan E. Schulz^{a,d}, and Thomas Gessner^{a,d}

^a Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09107 Chemnitz, Germany
^b Leibniz Institute for Solid-State and Materials Research (IFW), 01069 Dresden, Germany
^c Institute of Chemistry, Chemnitz University of Technology, 09107 Chemnitz, Germany
^d Fraunhofer Research Institution for Electronic Nanosystems (ENAS), 09126 Chemnitz, Germany
Contact: thomas.waechtler@zfm.tu-chemnitz.de

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008



TECHNISCHE UNIVERSITÄT CHEMNITZ

Outline

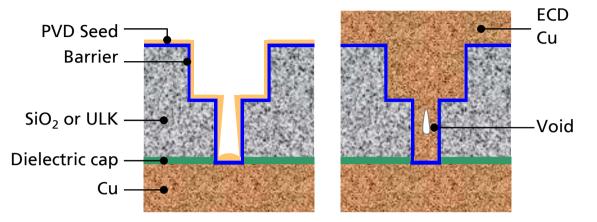
- Goals of the work
- Our approach for Cu ALD
- ALD results on Ta, TaN, Ru and SiO₂
- Reduction of ALD films
- Summary

4", single-wafer, vertical flow reactor used for ALD / CVD

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

ENAS

Fraunhofer Einrichtung Elektronische Nanosysteme



TECHNISCHE UNIVERSITÄT CHEMNITZ

Goals of the work

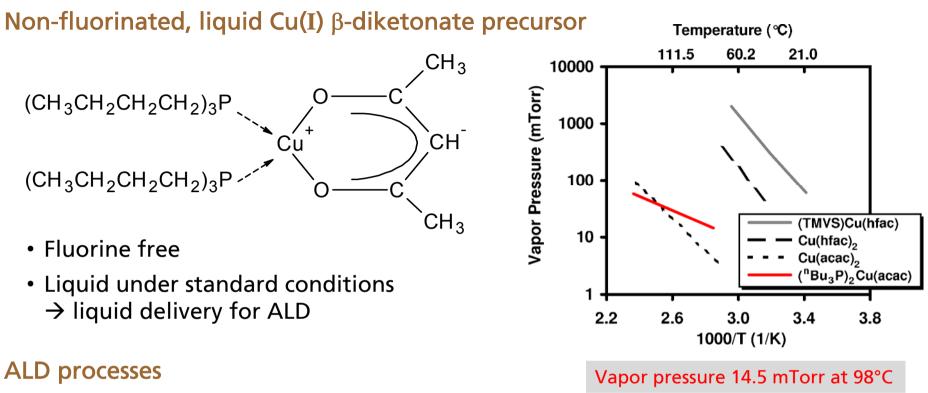
Why copper ALD?

- Seed layer for Cu damascene process
- Metallization of narrow holes and trenches, e.g. throughsilicon vias (TSV)
- Conformally coating 3D nanostructures (porous materials, nanowires, CNTs, ...) see for examle: D.B. Farmer and R.G. Gordon, *Electrochem. Solid-State Lett.* 8, G89 (2005)
 SWNT of 22 nm diameter coated with Al₂O₃ by ALD

Requirements for the seed layer:

- Highly conformal in aspect ratios of 4 to 5 and lines of 15 to 20 nm width (ITRS projection for 2020)
- Must grow on diffusion barriers
- Continuous and sufficiently conductive for ECD
- · Good adhesion to diffusion barrier

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

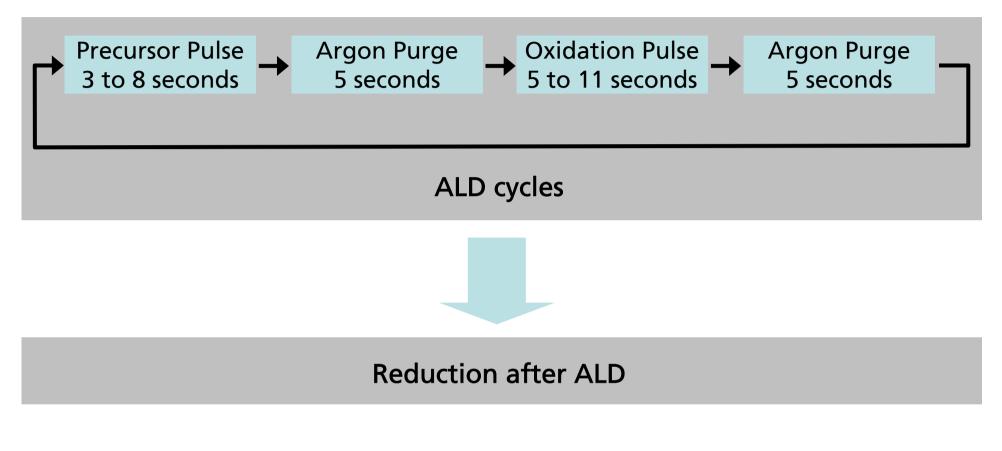


Fraunhofer Einrichtung Elektronische Nanosysteme

Our approach for Cu ALD

- Temperature < 160°C
- ALD of oxidic copper films on Ta, TaN, Ru, and SiO₂
- Wet O₂ as oxidizing agent
- Subsequent reduction

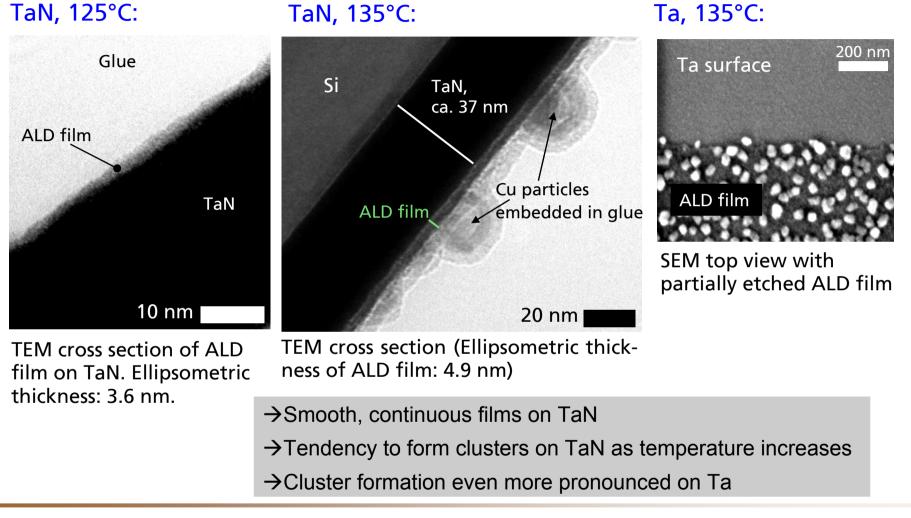
Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008 **Fraunhofer** Einrichtung Elektronische


Nanosysteme

Our approach for Cu ALD

Process Flow

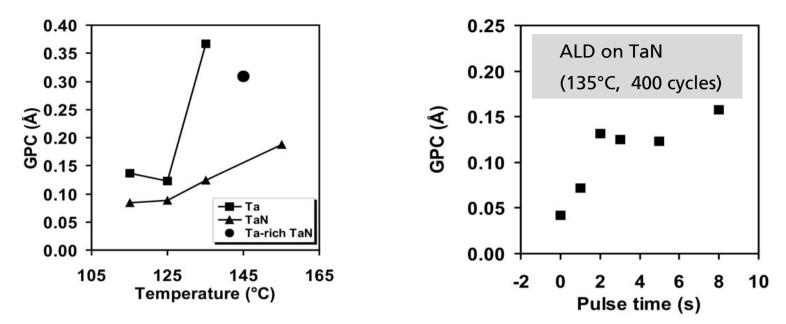
Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008



Fraunhofer Einrichtung Elektronische Nanosysteme

ALD on Ta and TaN

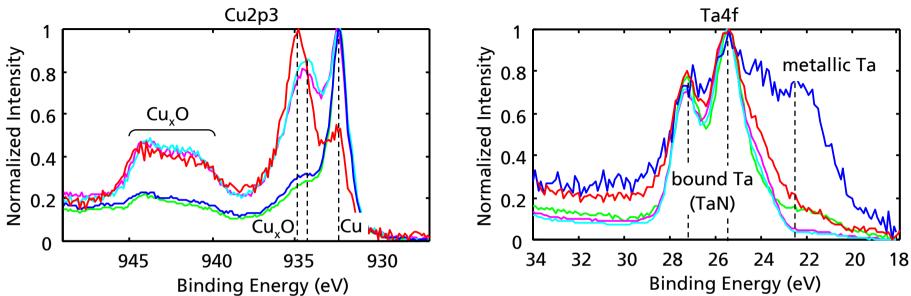
Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008


Fraunhofer Einrichtung Elektronische Nanosysteme

TECHNISCHE UNIVERSITÄT CHEMNITZ

ALD on Ta and TaN

- CVD effects on Ta above 125°C due to high reactivity towards metal-organics [E. Machado et al., Langmuir 21, 7608 (2005)]
- TaN less reactive less CVD effects ALD window up to ~130°C
- Degree of nitridation of the TaN important for ALD growth
- Nearly saturated growth on TaN at 135°C


Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

XPS of ALD films on TaN

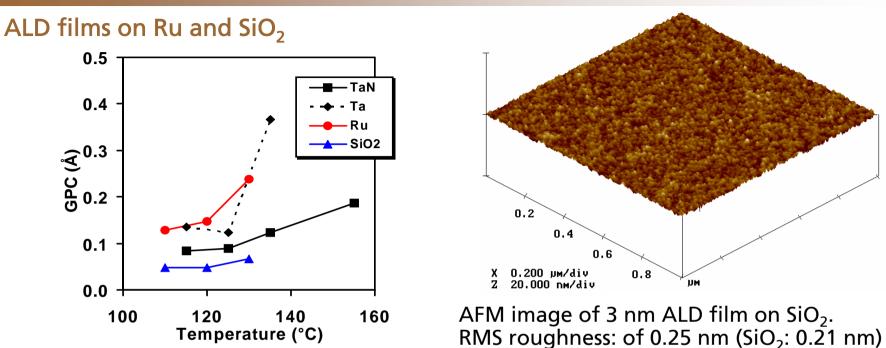
- Composites of metallic and oxidic Cu
- Increased metallic fraction with increased processing temperature (→ beginning CVD growth modes)
- Increased metallic fraction on stronger metallic TaN
- Generally good adhesion of the films (tape test)

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Fraunhofer Einrichtung Elektronische Nanosysteme

ALD process temp.:

125°C (light blue)


145°C (dark blue)

115°C (purple)

135°C (red)

155°C (green)

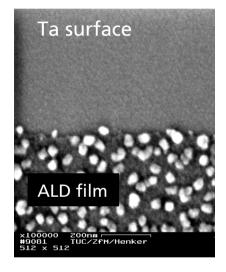
TECHNISCHE UNIVERSITÄT CHEMNITZ

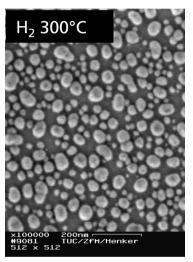
Results:

- Smooth, adherent films obtained both on Ru and SiO₂
- GPC on SiO₂ even lower than on TiN, higher GPC on Ru
- ALD window at least up to 135°C on SiO₂ and 125°C on Ru
- Composition similar to films on TaN (Cu/Cu_xO composites)

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Fraunhofer Einrichtung Elektronische Nanosysteme



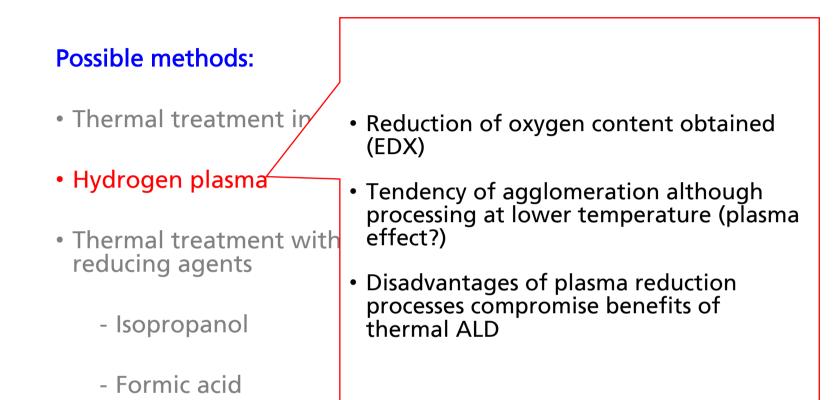

Possible methods:

- Thermal treatment in H₂5
- Hydrogen plasma
- Thermal treatment with orgar reducing agents
 - Isopropanol
 - Formic acid
 - Aldehydes

- High process temperature required
- No effective reduction
- Agglomeration of the films

Initial state after ALD on Ta: Continuous film with clusters

After reduction in H_2 for 30 min: Strong agglomeration

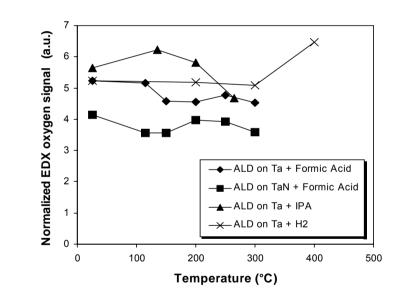

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Einrichtung Elektronische Nanosysteme

- Aldehydes

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008 ENAS

Fraunhofer Einrichtung Elektronische Nanosysteme

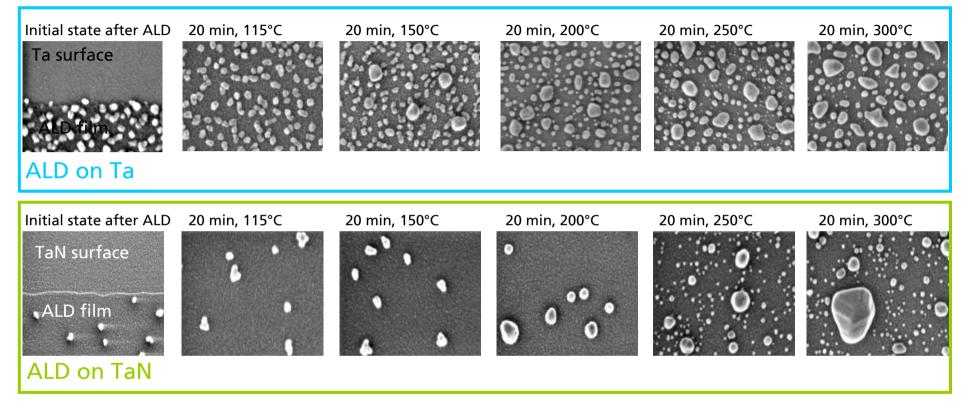


Possible methods:

- Thermal treatment in H₂
- Hydrogen plasma
- Thermal treatment with organic reducing agents
 - Isopropanol
 - Formic acid
 - Aldehydes

- Reduction of oxygen content obtained both with IPA and formic acid
- Elevated temperature required for effective IPA treatment → increase of sheet resistance
- More promising results obtained with formic acid already at temperatures < 120°C

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

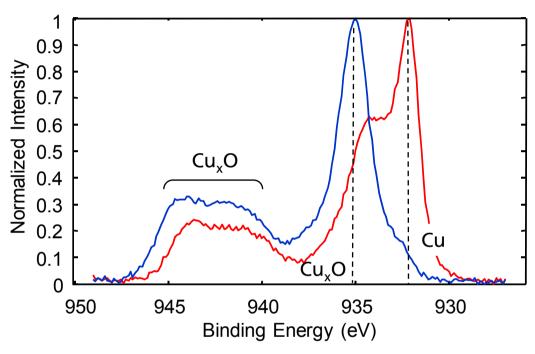

Fraunhofer Einrichtung Elektronische

Nanosysteme

Formic acid treatment – most promising method so far

- No agglomeration on TaN up to 150°C
- More severe cluster formation on Ta
- **Thomas Waechtler** 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Fraunhofer Einrichtung Elektronische Nanosysteme



TECHNISCHE UNIVERSITÄT CHEMNITZ

Formic acid treatment of ALD films on TaN

XPS analysis:

- Significant enhancement of metallic Cu content after treatment with formic acid
- Some oxidized Cu detected possible re-oxidation after reduction due to air exposure (~ 7 weeks between reduction process and XPS analysis)

Blue curve = after ALD and 25 weeks storage in air

Red curve = status of blue curve + reduction and 7 weeks storage in air

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Summary

Thermal ALD of Cu/Cu_xO composites on Ta, TaN, Ru and SiO₂

- Smooth, adherent films at least up to 135°C on TaN, Ru and SiO₂
- Saturated growth confirmed on TaN further study on other substrates
- ALD window at moderate temperatures of \leq 130°C
- Reduction processes under study to form metallic Cu on Ta and TaN
 - Different approaches investigated
 - Formic acid treatment most promising
 - Strong agglomeration tendency of films on Ta during reduction treatment
 - No agglomeration of ALD films on TaN up to 150°C

Outlook

- Ongoing study of ALD on Ru and SiO₂
 - Possibility of direct reduction of the precursor, especially on Ru
- Further work on reduction processes
- Application of ALD films as seed layers for Cu electroplating
- Functionalization of CNTs

Fraunhofer Einrichtung Elektronische Nanosysteme

Summary

TEM analyses: Anastasia Moskvinova and Dr. Steffen Schulze, Solid Surfaces Analysis Group @ TU Chemnitz (Prof. Michael Hietschold)

Vapor pressure measurements:

Dr. Aslam Siddiqi, Department of Thermodynamics, Univ. Duisburg

Funding:

German Research Foundation – International Research Training Group "Materials and Concepts for Advanced Interconnects"

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Fraunhofer Einrichtung Elektronische Nanosysteme

Advanced Interconnecte

TECHNISCHE UNIVERSITÄT CHEMNITZ

Thank you for your attention!

Thomas Waechtler 8th International Conference on Atomic Layer Deposition (ALD 2008), Bruges, Belgium, June 29 – July 2, 2008

Fraunhofer Einrichtung Elektronische Nanosysteme

TECHNISCHE UNIVERSITÄT CHEMNITZ