
Numerical Aspects in Optimal Control

of Elasticity Models with Large Deformations

Andreas Günnel

Dissertation submitted to the

Faculty of Mathematics

at

Chemnitz University of Technology

in accordance with the requirements for the degree Dr. rer. nat.

Advisor: Prof. Dr. Roland Herzog

Chemnitz, April 1, 2014

Gewidmet meinem Großvater

Hans Günnel

Contents

Acknowledgments viii

Abstract ix

Chapter 1. Introduction 1

1.1 Motivation 1

1.2 Outline of the Thesis 3

1.3 Notation 5

1.4 Nomenclature 6

Chapter 2. A Mathematical Model of Elasticity with Finite Deformations 11

2.1 Modeling of Finite Deformations 12

2.2 Models for Elastic Material Behavior 14
2.2.1. Balance-of-Forces Approach 14
2.2.2. Energy Minimization Approach 18
2.2.3. Loads (Volume, Boundary, Inner Pressure, Fiber Tension) 23

2.3 Comparison to Linear Elasticity 32

2.4 Parametrization of the Reference Configuration Ω 36

2.5 Hierarchical Plate Model 38

Chapter 3. Numerical Methods to Solve the Forward Problem 47

3.1 Newton’s Method 48

3.2 Globalization by a Line Search 49

3.3 Krylov Subspace Methods 56

3.4 Discretization 61

3.5 Preconditioner and Multigrid Method 65

Chapter 4. Optimal Control Problems in Elasticity 72

4.1 Setting of the Optimal Control Problem 73

vi Contents

4.1.1. Quality functionals 74
4.1.2. Cost or Penalty Functionals 84

4.2 Lagrange-Newton: An All-at-once Approach 85
4.2.1. Solving the Lagrange Equation 86
4.2.2. Discretization 88

4.3 Quasi-Newton: A Reduced Formulation 89
4.3.1. Quasi-Newton Method 93
4.3.2. Broyden-Fletcher-Goldfarb-Shanno-Update 94
4.3.3. Simple Wolfe-Powell Line Search 97
4.3.4. Discretization 100

Chapter 5. Implementation in FEniCS 104

5.1 Introduction to FEniCS 105

5.2 Weak Formulations and UFL 109
5.2.1. Mutual Definitions 110
5.2.2. Objective Functions 113
5.2.3. Forward Problem 115
5.2.4. Lagrange Problem 118
5.2.5. Reduced Optimal Control Problem 121
5.2.6. Automatic Differentiation vs. Differentiation by Hand 124
5.2.7. Parametrization 126
5.2.8. Hierarchical Plate Model 131

5.3 Solver Routines 137
5.3.1. Multigrid Method 137
5.3.2. CG and MinRes Method 140
5.3.3. Forward Problem 141
5.3.4. Lagrange-Newton Problem 142
5.3.5. Reduced Problem 144

5.4 An Experimental Preconditioner 147

Chapter 6. Numerical Experiments 151

6.1 Experiments on the Forward Problem 153
6.1.1. Line Search and Iterates of Newton’s Method 153
6.1.2. Plate Model 156

6.2 Experiments on the Optimal Control Problem 159
6.2.1. Elevated Bar with Fiber Tension Control 159
6.2.2. Regional Penalization 167
6.2.3. Flower Movement by Turgor Pressure 170
6.2.4. Enclosed Volume 173

vii

Chapter 7. Conclusions and Perspectives 177

Appendix A. Appendix 181

A.1 Matrix Calculus 181

A.2 Derivatives of Energy Functionals 183

Appendix B. Theses 186

Appendix C. Curriculum Vitæ 188

Bibliography 191

Acknowledgments

My deepest gratitude goes to my supervisor Roland Herzog. Not only for offering
me the possibility to work at the TU Chemnitz and to write my thesis, but also for
his support and patience with me. His advice and remarks were most helpful for
my work and he taught me a lot in the last years.

Arnd Meyer introduced me to the area of elasticity and plate theory, for which I am
very grateful. Also, I thank Anton Schiela for the discussions on optimal control
and his remarks.

My position at the TU Chemnitz was partially funded by the BMBF project Qualitätspakt
Lehre and the DFG Excellence Cluster MERGE, which is much appreciated.

I want to express my gratitude for the people working at the faculty of mathematics
at the TU Chemnitz for the enjoyable work climate. First of all, I thank my working
group: Roland Herzog, Martin Bernauer, Frank Schmidt, Gerd Wachsmuth, Susann
Mach, Ilka Riedel, Tommy Etling, Felix Ospald (especially for his help with FMG),
Jan Blechschmidt and Ailyn Schäfer. Not only for the mathematical discussions
but also for the social events. This also includes Arnd Meyer, Hansjörg Schmidt,
René Schneider, Matthias Pester and Jens Rückert. Furthermore, I would like to
thank the secretaries Anne-Kristin Glanzberg, Kerstin Seidel and Heike Weichelt as
well as the people from the MRZ, Margit Matt, Elke Luschnat, Mathias Meier and
Roman Unger.

In the last years, I had the opportunity to teach several courses in mathematics and
I am very thankful for this experience and the feedback my students gave me.

My parents supported me throughout all my life and I am very thankful for all
their care and nurture. This includes my dear brother Heiko as well, on whom I
always can rely on. Finally, I thank Marcella in my heart of hearts for her constant
encouragement, reading the manuscripts carefully and taking up with me in the last
months when I was busy writing this thesis. I can only hope that I will make it up
to her someday.

Abstract

This thesis addresses optimal control problems with elasticity for large deformations.
A hyperelastic model with a polyconvex energy density is employed to describe the
elastic behavior of a body. The two approaches to derive the nonlinear partial
differential equation, a balance of forces and an energy minimization, are compared.
Besides the conventional volume and boundary loads, two novel internal loads are
presented. Furthermore, curvilinear coordinates and a hierarchical plate model can
be incorporated into the formulation of the elastic forward problem.

The forward problem can be solved with Newton’s method, though a globalization
technique should be used to avoid divergence of Newton’s method. The repeated
solution of the Newton system is done by a CG or MinRes method with a multigrid
V-cycle as a preconditioner.

The optimal control problem consists of the displacement (as the state) and a load
(as the control). Besides the standard tracking-type objective, alternative objective
functionals are presented for problems where a reasonable desired state cannot be
provided. Two methods are proposed to solve the optimal control problem: an all-
at-once approach by a Lagrange-Newton method and a reduced formulation by a
quasi-Newton method with an inverse limited-memory BFGS update.

The algorithms for the solution of the forward problem and the optimal control prob-
lem are implemented in the finite-element software FEniCS, with the geometrical
multigrid extension FMG. Numerical experiments are performed to demonstrate
the mesh independence of the algorithms and both optimization methods.

1 Introduction

1.1 Motivation

Elastic deformations are a common phenomenon in nature: for example, large parts
of the tissues of animals are elastic, otherwise movements would be impossible or
would cause damage due to material fatigue. But also in modern technology, elastic
parts are often components of machines and devices, which allow a flexible shape
or movement. There are cases where the shape of the deformed elastic part is of
interest, and the question arises how a certain shape can be attained. We consider
the case where an exterior or interior load acts on the body and we try to find a
load that deforms the body in a desired way. This will be formulated as an optimal
control problem.

As we seek a noticeable change in the shape of the body, we expect the deformation
to be large, which requires an elasticity model for large (non-infinitesimal) defor-
mations. These models are inherently nonlinear and challenging to solve. In this
thesis, we focus on polyconvex hyperelasticity models, which can be formulated as
an energy minimization problem. This will constitute our forward problem: the
computation of the deformation of an elastic body for a given load.

This forward problem is the basis for the optimal control problem, where we seek
to find a load such that the deformation is close to the desired one. One possible
application in medicine of implant design is investigated by Lars Lubkoll, Anton
Schiela and Martin Weiser, see Lubkoll et al. (2012). Consider a patient who lost
a part of his jaw bone along with the skin due to an accident. The bone could
be replaced by an implant that is reconstructed from the undamaged part of the
intact jaw bone. The skin can be transplanted from another part of the body, but
the thickness and elastic behavior is likely to be different than that of the original
facial skin. As a consequence, the facial reconstruction might be unsatisfactory
to the patient as symmetry in facial structures is a key aspect to appearance. In
order to improve this procedure, the implant could be modeled in such a way that
the resulting facial structure matches the undamaged right half of the jaw. The
authors have shown that the optimal control problem with a contact between the
rigid implant and the elastic skin can be reformulated as an optimal control problem
with a boundary load. In this setting, the deformation of the skin is the state and
the boundary load on the inside is the control. Other applications can be found in
industrial manufacturing.

2 1 Introduction

The elasticity model which is used in this thesis is fundamental to extensions like
elasto-plastic material models for large deformations. Several mathematicians in
Germany are working on the optimal control of elasto-plasticity. The Sonder-
forschungsbereich (SFB) 666: Integral Sheet Metal Design with Higher Order Bifur-
cations has a project on optimal control of deep-drawing processes, investigated by
Stefan Ulbrich and Daniela Bratzke from the TU Darmstadt. Furthermore, Michael
Stingl and Stefan Werner from the Friedrich-Alexander University Erlangen-Nürn-
berg worked on the optimal control of hot rolling processes, in which friction plays
an important role. Gerd Wachsmuth and Roland Herzog from the TU Chemnitz and
Christian Meyer from the TU Darmstadt made major contributions to the analysis
and stationarity of optimal control problems in the case of small deformations, see
Herzog et al. (2013).

Another related type of problem is shape optimization. Benedikt Wirth from the
University of Münster proposed to measure the difference between two body shapes
by the required physical energy to deform the current body such that it matches the
desired shape, see Rumpf and Wirth (2009), Rumpf and Wirth (2011) and Penzler
et al. (2012).

The contributions of this thesis is extended in several directions:

Modeling

As we seek to describe biological phenomena, we need to model certain forces that
are commonly found in animals and plants. First, we show how an inner pressure,
called turgor pressure in plants, can be understood as an interior load and how it can
be integrated into the elasticity model for large deformations. Other examples are
muscle tissues where the muscle fiber causes a tension along its fiber direction. We
present a model for this kind of interior load and show how it fits into the elasticity
model.

Hierarchical Plate Model

Large deformations often occur when the body can be easily deformed, for example
because it is a thin plate. Here, full 3D formulations of the deformation problem
suffer from discretization problems, often referred to as locking. In order to avoid
this locking and exploit the structure of the deformation, several plate models have
been proposed. While some are only applicable for very thin plates, we use the
hierarchical plate model which can also be applied to thicker plates. We show how
this ansatz is incorporated into the elasticity model and the optimal control problem.

Quality Functionals for the Optimal Control Problem

In a large part of the mathematical literature on optimal control, a tracking-type
objective functional with a desired state is presented and used. While this func-
tional is not only plausible for many problems, it is also practical for the analysis of
these problems. However, there are many situations in elasticity where we cannot

1.2 Outline of the Thesis 3

provide a desired state for the objective functional. We present a couple of exam-
ples where a desired state is not available and give alternatives how to formulate
appropriate objective functionals for these examples. Furthermore, we use shape
derivatives to obtain simple representations of the first derivative of these novel
objective functionals.

Optimization Methods

As the number of degrees of freedom might be large for partial differential equations
in 3D, we need methods that are capable of solving large-scale problems. On the one
hand, this means that an algorithm should ideally scale linearly with the problem
size, otherwise the computational costs might be too high. In order to achieve this,
we formulate the iterative optimization methods and the solver for the linear systems
in a function space setting. This approach is natural for this type of problems and
eventually allows us to construct a quasi-Newton method to solve the optimal control
that shows a mesh independent behavior.

Implementation

All presented algorithms and variational equations were implemented in the finite
element software FEniCS. Even though many routines, like Newton’s method or the
conjugate gradient method, where already present in FEniCS, we had to implement
them anew to modify them to our requirements. This also includes a line search
method for the forward problem. The possible divergence of Newton’s method for
elasticity problems with large deformations can be resolved by a globalization tech-
nique. We propose a new line search objective which mimics the stored energy and
is applicable in many situations like the case of inhomogeneous Dirichlet boundary
conditions or the lack of a formulation of the forward problem based on a stored
energy.

1.2 Outline of the Thesis

Chapter 2 – A Mathematical Model of Elasticity with Finite Deformations .
This chapter presents the modeling of elasticity for large deformations. First we
compare two different approaches to obtain a variational equality for the forward
problem: the classical balance of forces and an energy minimization. Both ap-
proaches yield the same variational equality, though the energy minimization allows
the usage of methods that can be motivated from optimization, e. g. a line search
as a globalization technique. Next, we present the modeling of two interior loads
and how they fit into the elasticity model. Finally, we demonstrate how curvilinear
coordinates and the hierarchical plate model can be incorporated into the full 3D
model.

4 1 Introduction

Chapter 3 – Numerical Methods to Solve the Forward Problem . The forward
problem is a nonlinear partial differential equation and Newton’s method is likely
to diverge for large deformations. As a remedy, we present several globalization
techniques, among them a new method built on a guiding function. In order to
solve the linear system in Newton’s method, we use a conjugate gradient or minimal
residual method. At this point, all algorithms are formulated in a function space
setting, which allows the correct choice of norms and scalar products. Next, we use
a finite element method to discretize the problem, including a multigrid method to
build a preconditioner for the CG and MinRes method.

Chapter 4 – Optimal Control Problems in Elasticity . The elasticity model
is the basis for the optimal control problem, with the displacement as the state
and a load as the control. First, we present a couple of examples for the objective
functional. We point out that a classical tracking type functional is not always
applicable as we might not be able to provide a desired state. As an alternative,
We give three examples for objective functionals. We present two optimization
methods to solve the optimal control problem: a Lagrange-Newton method, and a
quasi-Newton method with BFSG update. Again, both are formulates in Hilbert
spaces, which is particularly rewarding when constructing the BFGS update for the
quasi-Newton method.

Chapter 5 – Implementation in FEniCS . The presented algorithms are im-
plemented in the finite element software FEniCS. We give a brief introduction to
FEniCS and how it can be used to solve partial differential equations. Next, we
demonstrate how the several forms and functions of the optimal control problem
can be implemented. This includes the curvilinear coordinates as well as the hier-
archical plate model. Finally, we propose an experimental preconditioner that uses
the current stiffness matrix rather than the stiffness matrix from the linear model
of elasticity. However, the current matrix might be indefinite, and we propose a
method to avoid this problem.

Chapter 6 – Numerical Experiments . In this chapter we present several nu-
merical experiments to test the implemented algorithms. First, we compare the
globalization techniques for the forward problem by the example of a thick plate.
Furthermore, we use this example to compare the hierarchical plate model with the
full 3D model. Next, the four optimal control problems demonstrate the different
objective functions. Here, we also compare the Lagrange-Newton and quasi-Newton
and their advantages. Additionally, we illustrate how curvilinear coordinates and
the hierarchical plate model can be used in optimal control of elasticity.

1.3 Notation 5

1.3 Notation

This section gives an overview over the notation which is used throughout this thesis.

Domains Ω, Ω̂ and Ω̃ are distinguished by their marker, e. g. a hat ̂ or a tilde .̃

Points within these domains have the same marker, e. g. x ∈ Ω, x̂ ∈ Ω̂ or x̃ ∈ Ω̃.
The boundary of Ω is denoted by ∂Ω and the interior of Ω is denoted by int Ω.

Scalars, vectors and tensors are denoted by Latin or Greek letters.

• We use lowercase symbols like m or t for scalars.
• Bold symbols like x or U denote vectors in R3.
• Arrows~· indicate vectors of Rn, such as coefficient vectors.
• Uppercase Symbols like F refer to tensors, normally of order 2, e. g. ma-

trices.

Exceptions to these rules are the local volume change J , because this convention
is widely used in the literature, and the prolongation operator p and restriction
operator r (both matrices), as P is more commonly used for the preconditioner and
R for the Riesz operator.

Components of a vector f or a tensor F are denoted by [f]i, respectively [F]ij . The
only exceptions are the spatial coordinates x ∈ Ω where we abbreviate the earlier
notation by xi := [x]i due to their frequent use.

Functions (fields) defined on domains Ω, like a scalar field m : Ω → R or a vector

field f : Ω → R3, inherit the marker of the domain, e. g. f : Ω → R3, f̂ : Ω̂ → R3

or f̃ : Ω̃ → R3, to emphasize the arguments they have and to possibly drop the

arguments for better readability, e. g. f̂ = f̂(x̂). The gradient of scalar fields or
the Jacobian of vector fields with respect to the spatial coordinates x are denoted

both by ∇(·). If the field is defined for example on Ω̂ and the differentiation is with

respect to x̂, the differential operator inherits the marker, that is ∇̂(·).
Functionals defined on (Sobolev) function spaces are denoted with uppercase
letters like W or S. Even though we said to use uppercase letters for tensors, the
usage of these functionals should make clear that these are not tensor-valued. Their
derivatives with respect to an argument is indicated by a subscript, for example
W,U denotes the derivative of W with respect to its argument U . In this thesis,
derivatives with respect to functions are to be understood as formal. The directional
derivative of W , at a point U and in a direction δU , is denoted by W,U (U)[δU]. The
second derivative in the directions δU and δV then readsW,UU (U)[δU , δV]. We use
the symbol δ for perturbations like δU in the calculus for differentiation, whereas
the symbol ∆ is used for search directions like ∆U in algorithms like Newton’s
method. For example, Newton’s method would read in this notation

Uk+1 = Uk + ∆Uk with W,UU (Uk)[δU ,∆Uk] = −W,U (Uk)[δU], ∀ δU .

6 1 Introduction

The set of linear and bounded operators from a Hilbert space X to a Hilbert space
Y are denoted by L(X ,Y). The inner product of a Hilbert space X is (x1, x2)X ,
x1, x2 ∈ X . The dual space of a Hilbert space X is X ∗ and the duality pairing is
denoted by [y, x]X∗,X , with y ∈ X ∗ and x ∈ X .

Tensor Calculus

• The set of 3 × 3 matrices is denoted by M3 := R3×3 and the subset of
matrices with positive determinant is M3

+ := {A ∈ M3 : detA > 0}.
• The identity matrix is denoted by I, in most cases, I ∈ M3.

• The Kronecker symbol is denoted by δij :=

{
1 if i = j
0 else

• The unit vectors ~ei are defined by [~ei]j = δij .
• We do not use the Einstein summation convention in this work. Sums are

always denoted by the symbol
∑

, though sometimes we drop the index

range if they are clear, e. g.
∑
i :=

∑3
i=1.

• We drop the multiplication dot “·” for tensor products, e. g. AB := A ·B.
This follows the common literature on linear algebra but not the literature
on differential geometry, e. g. Ciarlet (2005), or literature on mechanical
engineering, e. g. Spencer (2004) or Bower (2009).

• The inner product between two matrices A : B in M3 is defined as A :
B := tr(A>B) with the trace operator trA :=

∑3
i=1[A]ii. Please note that

the definition A : B is not unified in the literature, some authors define it
as tr(AB).

• The Euclidean scalar product between two vectors a, b is simply a>b. The
Euclidean norm of a vector is denoted by ‖·‖2, that is ‖x‖22 := x>x, while
the Frobenius norm of a matrix is ‖·‖F, that is ‖A‖2F := A : A.

• The cofactor of a regular matrix A is defined by cof A := (detA)A−>.

Integrals over the domain Ω are denoted by
∫

Ω
. . .dx and integrals over a part of

the boundary Γ ⊂ ∂Ω are denoted by
∫

Γ
. . .dS. The differentials dx and dS inherit

the marker of the domain, e. g.
∫

Ω̂
. . .dx̂.

State and Control variables in literature on optimal control are often called y and
u. Unfortunately, this clashes with the widely used U for the displacement which
is our state. Therefore we use U for the state (displacement) and C for the control
(load).

1.4 Nomenclature

Sets and Domains

1.4 Nomenclature 7

M3 set of 3× 3-matrices
M3

+ set of 3× 3-matrices with positive determinant
Ω reference configuration and undeformed body in 3D, section 2.1

Ω̂ current configuration and deformed body in 3D, section 2.1

Ω̃ parameter space for curvilinear coordinates to describe Ω, section 2.4

Ω2D midsurface of a plate, section 2.5
∂Ω boundary of the domain Ω

ΓN, Γ̂N Neumann boundary for the boundary load g, respectively ĝ

L2(Ω) Sobolev function space
H1

0 (Ω) Sobolev function space
U state space for the displacement, definition 2.2.10
C control space for the load, definition 2.2.15
X mixed space for the Lagrange function, definition 4.2.1

Operators

∇, ∇̂, ∇̃ gradients with respect to x, x̂, x̃

div, d̂iv, d̃iv divergence with respect to x, x̂, x̃

(·),U derivative with respect to U
ε(U) linearized strain of the displacement U , eq. 2.48
S solution operator, definition 4.3.1
R Riesz operator for a Hilbert space, defined by (3.11)

8 1 Introduction

Tensor, Vector and Scalar Fields

x material coordinates of the undeformed domain Ω, section 2.1

x̂ material coordinates of the deformed domain Ω̂, section 2.1

x̃ parameter of the parameter space Ω̃, section 2.4
U displacement, section 2.1

U2D
i part of the displacement for the plate model, section 2.5

δU perturbation of the displacement U
∆U search direction for the displacement U
F deformation gradient, section 2.1

G̃ Jacobi matrix, (2.52)

J local volume change, section 2.1
C right Cauchy-Green tensor (C = F>F)

T, T̂ Cauchy stress tensor, section 2.2

f volume load, section 2.2.3
g boundary load, section 2.2.3
t inner pressure, section 2.2.3
m tension along a fiber, section 2.2.3
a fiber direction, section 2.2.3
C control, section 2.2.3
δC perturbation of the control C
∆C search direction for the control C
Z multiplier in the Lagrange functional (4.18) or adjoint state in the

adjoint equation 4.37
X abbreviation for the triple (U ,C,Z)
s, y auxiliary functions (4.42) for the BFGS update

1.4 Nomenclature 9

Functionals

G guiding function (3.5) for the guiding criterion (3.4)
I objective functional of the optimal control problem (4.2)

Ired reduced objective functional of the reduced optimal control problem (4.32)
L(·, ·, ·) Lagrange functional (4.18)
P penalty or cost functional (4.17) for the control
Q quality functional for the state

Qtrack tracking-type quality functional (4.4)
Qpen regional penalization (4.6)
Qs quality functional (4.9) for the desired direction

QV enclosed volume between two plates
w energy density (2.18)
W stored energy (2.45)

W (T) energy (2.32) for the stress

W (C) energy for the control

W (f) energy for the volume load, table 2.1

W (g) energy for the boundary load, table 2.1

W (t) energy for the inner pressure, table 2.1

W (m) energy for the fiber tension, table 2.1

Matrices and Vectors

Ah stiffness matrix from the nonlinear model of elasticity
Klin.elast stiffness matrix from the linear model of elasticity
MC mass matrix in the control space
P preconditioner
p`→`+1 prolongation (3.24)

Parameters

λ, µ Lamé parameters
a, b, c, d, e material parameters for the polyconvex energy density (2.18)
2d thickness of a plate

D2D degree of the hierarchical plate model
pi Legendre polynomial of degree i, remark 2.5.3

DGL degree of the Gauss-Legendre quadrature formula, remark 2.5.5
xjωj integration point and its weight for the Gauss-Legendre quadrature, remark 2.5.5
aTol absolute tolerance in a stopping criterion
rTol relative tolerance in a stopping criterion
sC scaling for the initial hessian (4.43) of the BFGS update
sU , sC , sZ scaling factors of the block preconditioner (4.27)
L number of mesh refinements

10 1 Introduction

Norms and Inner Products

‖·‖2 Euclidean norm of a vector
‖·‖F Frobenius norm of a matrix
‖·‖U∗ norm in the dual state space U∗
‖·‖C∗ norm in the dual control space C∗
‖·‖X∗ norm in the dual space X ∗
(·, ·)U inner product of the state space U
(·, ·)C inner product of the control space C
[·, ·]U∗,U duality pairing for the state space U and its dual U∗
[·, ·]C∗,C duality pairing for the control space U and its dual U∗

Abbreviations

AD automatic/algorithmic differentiation
BC boundary condition
BFGS Broyden-Fletcher-Goldfarb-Shanno (update formula)
CG Conjugate Gradient (method)
dofs degrees of freedom
FEM finite element method
FFC FEniCS Form Compiler
LM-BFGS limited Broyden-Fletcher-Goldfarb-Shanno (update formula)
LN Lagrange-Newton (method)
LNnest nested Lagrange-Newton (method)
MinRes Minimal Residual (method)
NURBS non-uniform rational B-splines
QN quasi-Newton (method)
PDE partial differential equation
UFL Unified Form Language

2 A Mathematical Model of Elasticity with
Finite Deformations

Contents

2.1 Modeling of Finite Deformations 12

2.2 Models for Elastic Material Behavior 14
2.2.1. Balance-of-Forces Approach 14
2.2.2. Energy Minimization Approach 18
2.2.3. Loads (Volume, Boundary, Inner Pressure, Fiber Tension) 23

2.3 Comparison to Linear Elasticity 32

2.4 Parametrization of the Reference Configuration Ω 36

2.5 Hierarchical Plate Model 38

In this chapter we give an introduction to the mathematical modeling of elasticity
for large deformations. Our object of interest is an elastic body which is deformed
by exterior or interior loads. First, in section 2.1, we describe the geometry of the
deformation, which can be achieved by the displacement in the case of stationary
elastic material behavior. Based on the displacement, we can formulate geometrical
quantities such as the deformation gradient F or the local volume change J . In
section 2.2, we will show the classical derivation of the model of elasticity by starting
with the balance-of-forces. In this derivation, a stress tensor shows up and we need
to establish a relationship between the displacement and this stress tensor. In case of
hyper-elastic materials, this relationship is modeled by an energy density w. We will
see that this energy density w can also be used to take a different approach than the
balance-of-forces: the energy minimization. Here we will formulate a stored energy,
which is a measure for the work which is done to deform the body. The formal first
order optimality condition of the energy minimization problem will be the same
variational equality as in the balance-of-forces approach. The minimization of the
stored energy is also an essential part of the existence result due to John Ball, who
proved the existence of a displacement for polyconvex energy densities.

In section 2.2.3, we will give some more details on the modeling of the loads. The
two classical types, volume and boundary loads, can be found in almost every book
on elasticity, though the assumptions for these loads are often not stated explicitly.

12 2 A Mathematical Model of Elasticity with Finite Deformations

After representing the derivation of these two external loads, we show how two
internal loads can be modeled: an inner pressure and a tension along a fiber tension,
both motivated by biological phenomena. To put these two internal loads into the
context of the energy minimization, we will state energy functionals that correspond
to these loads, showing that the loads are conservative.

We will conclude the derivation of the elasticity model with a comparison to the
linear model of elasticity in section 2.3. We will see the two main reasons why
the linear model is valid only for small strains and cannot be applied for large
deformations.

Sometimes it is easier to describe the undeformed body in curvilinear coordinates,
which we will discuss in section 2.4. Our prior notation for the elasticity model
allows an easy inclusion of such curvilinear coordinates into the variational equality.
This also holds true for the hierarchical plate model in section 2.5. Here we present
a plate model that can be understood as a reduction technique, that is we assume
that the displacement has a certain structure. This assumption turns out to be a
sound one for thin plates.

2.1 Modeling of Finite Deformations

In this work, the derivation of the mathematical problem follows Ciarlet (1988).
The object of interest is an undeformed mechanical body which occupies the domain
Ω ⊂ R3, that means Ω is open, connected and has a Lipschitz boundary. This body
is now deformed due to an internal or external force. That means that each material
point x = (x1,x2,x3) ∈ Ω of the undeformed body is moved to a new position x̂(x)

of the deformed body Ω̂ = x̂(Ω) ⊂ R3, with a function x̂ : Ω→ Ω̂, see figure 2.1. We
assume the function x̂ to be injective, otherwise two material particles would occupy

the same spot, so there exists an inverse function x̂−1 : Ω̂ → Ω. The undeformed

body Ω is often called reference configuration and the deformed body Ω̂ current
configuration.

Functions to describe physical quantities (e. g. the material density) can be defined

on either Ω or Ω̂, depending on whether one uses the Eulerian or the Lagrangian

description. In this work, functions defined on the current configuration Ω̂ are
marked with a hat ,̂ not only to emphasize their dependencies, but also to clarify
the argument in case we drop the argument (x̂) for better readability.

A common way to describe a deformation is the displacement field U : Ω → R3

which is the difference
U(x) := x̂(x)− x. (2.1)

This quantity is sufficient to describe an elastic deformation x̂(x) = x + U(x) in
our framework (unlike visco-elasticity or plasticity where additional quantities are
required to describe and evolve the current deformation).

2.1 Modeling of Finite Deformations 13

Figure 2.1. The undeformed body Ω (blue) and the deformed

body Ω̂ (red).

In later formulations, the deformation gradient F plays a central role. It is defined
as the Jacobian (matrix)1

F (x) :=
∂x̂

∂x
(x) , [F]ij =

∂x̂i
∂xj

, i, j = 1, 2, 3, (2.2)

and its inverse matrix is

F−1(x) :=
∂x

∂x̂
(x̂) , [F−1]ij =

∂xi
∂x̂j

, i, j = 1, 2, 3. (2.3)

It is easy to see that it is the inverse matrix of F , e. g.

[F−1F]ij =
∑
k

[F−1]ik[F]kj =
∑
k

∂xi
∂x̂k

∂x̂k
∂xj

= δij .

In order to reformulate F in terms of the displacement U , we introduce the differ-
ential operators2

[∇V]ij(x) :=
∂V i

∂xj
(x) , i, j = 1, 2, 3, (2.4)

and

[∇̂V̂]ij(x̂) :=
∂V̂ i

∂x̂j
(x̂) , i, j = 1, 2, 3, (2.5)

1Despite its name, the deformation gradient F should not be viewed as a gradient in the classical
sense. It is the derivative of x̂ with respect to x.
2Another common notation, for example see Meyer (2007), Bertram (2008) or Ogden (1984), is
built around the gradient operator Grad(·) which is the transpose of the above definition ∇(·).
This usually accompanies the definition “A : B := tr(AB)”.

14 2 A Mathematical Model of Elasticity with Finite Deformations

for differentiable functions V : Ω → R3 and V̂ : Ω̂ → R3. Applying the chain rule
yields the relationship

[∇̂V̂]ij(x̂(x)) :=

3∑
k=1

∂V i

∂xk

∂xk
∂x̂j

(x) , i, j = 1, 2, 3,

or, in terms of matrices,

∇̂V̂ (x̂(x)) = ∇V (x)F−1(x). (2.6)

With this notation, F can be written in the form

F (x) =
∂(id+ U)

∂x
(x) = I +∇U(x), (2.7)

with the identity matrix I ∈ M3. Another frequently met quantity is the local
volume change

J(x) := detF (x) = det (I +∇U(x)) . (2.8)

We remark that the local volume change J(x) should be positive for all x ∈ Ω.
Otherwise, the deformed body is not guaranteed to be physically admissible and the
following modeling cannot be justified. A positive local volume change is essential
to the modeling of elasticity. A further discussion on this topic can be found in
section 2.3.

2.2 Models for Elastic Material Behavior

The classical displacement-traction problem is described by an undeformed body Ω
which is clamped on a part ΓD ⊂ ∂Ω of the boundary of the body. Due to boundary
loads g(x) ∈ R3 acting on the remaining part ΓN = ∂Ω \ ΓD of the boundary and
volume loads f(x) ∈ R3 acting on the whole body, the reference configuration Ω

is deformed into the current configuration Ω̂. In this section, a brief description of
the modeling of elastic material behavior of the body is given. In this work, we
assume that the material behavior is isotrop and homogeneous, though extension to
anisotropic material behavior is possible in principle. We will start with the classical
modeling based on a balance of forces. For more details, see Ciarlet (1988), Ogden
(1984), Antman (1984), Bertram (2008), Bower (2009) or Bower (2012).

2.2.1. Balance-of-Forces Approach

A classical principle in mechanics, namely Newton’s law, states that if a body is at
rest, all forces and stresses must be balanced. That means that for each force there
is an equivalent counter force. As we assume our problem to be time independent
or stationary, the deformed body has to be at rest. This means that the balance of
forces is formulated in the deformed body, as this is the current configuration where

the body rests. Let us start with a small arbitrary control volume ω̂ ⊂ int Ω̂. The

2.2 Models for Elastic Material Behavior 15

balance of forces consists of two parts: forces over the boundary and the volume loads
acting on the control volume. The forces over the boundary ∂ω̂ can be described by

the so-called Cauchy stress tensor T̂ ∈ M3.

Theorem 2.2.1 (Cauchy’s theorem). Let n̂(x̂) be the outer normal of ω̂ at x̂ ∈ ∂ω̂.

There exists a symmetric tensor field T̂ : Ω̂→ M3 (independent of the choice of ω̂)

such that the force at x̂ ∈ ∂ω̂ can be written as T̂ (x̂)n̂(x̂).

Proof.

For a proof, see (Ciarlet, 1988, Th. 2.3-1) or (Antman, 1984, Th. 7.14).

The resulting force due to stresses along the boundary ∂ω̂ can then be written as∫
∂ω̂

T̂ (x̂)n(x̂) d∂ω̂ =

∫
ω̂

d̂ivT̂ (x̂) dx̂,

after applying Green’s first identity from lemma A.2.4.

To simplify notation, we assume without loss of generality that the volume load

f̂ : Ω̂ → R3 acts on the volume (e. g. Newton per cubic meter) rather than acting
on the material mass (Newton per gram in the case of gravity). The latter can be
reformulated as a load acting on the volume (e. g. by multiplying with the material
density ρ in the case of gravity). However, one should keep this in mind as it is

essential for transformations from f̂ : Ω̂→ R3 to f : Ω→ R3.

Combining inner stresses T̂ and volume loads f̂ results in the equation∫
ω̂

d̂ivT̂ (x̂) + f̂(x̂) dx̂ = 0.

Since this equation has to hold for all subdomains ω̂ ⊂ Ω̂ and we assume the
continuum hypothesis, see (Salenco, 2001, ch. 1), the first part of the balance of
forces reads

d̂ivT̂ (x̂) + f̂(x̂) = 0 in Ω̂. (2.9)

Another type of forces are boundary forces ĝ : Γ̂N → R3. As they act on the surface

of the deformed body and counter-act the stresses T̂ n̂ along the surface, the second
part of balance of forces directly reads

T̂ (x̂)n̂(x̂) = ĝ(x̂) on Γ̂N. (2.10)

The last part is the clamping on ΓD, that is

U(x) = 0 on ΓD. (2.11)

16 2 A Mathematical Model of Elasticity with Finite Deformations

Combining the above equations (2.9), (2.10) and (2.11), the balance of forces reads

d̂ivT̂ (x̂) + f̂(x̂) = 0 in Ω̂

T̂ (x̂)n̂(x̂) = ĝ(x̂) on Γ̂N

U(x) = 0 on ΓD.

(2.12)

Multiplying with a test function V̂ : Ω̂ → R3 and applying Green’s identity yields
the weak formulation∫

Ω̂

T̂ : ∇̂V̂ dx̂ =

∫
Ω̂

f̂
>
V̂ dx̂ +

∫
Γ̂N

ĝ>V̂ dŜ ∀ V̂ with V̂ |Γ̂D = 0, (2.13)

where the matrix inner product is denoted by A : B := tr(A>B). This weak
formulation cannot be directly used to solve the problem, due to two reasons:

(1) The unknown displacement U determines the deformation x̂ = x+U(x),

hence the current configuration Ω̂ and therefore all functions in the equa-

tion (2.13) depend on U , even the differential operator ∇̂ (and d̂iv).

(2) The Cauchy stress tensor T̂ depends on the unknown displacement U . A
relationship between those two quantities has to be established.

To address the first problem, the weak formulation (2.13) is transformed onto the
reference configuration Ω:

• A volume element dx̂ is transformed by dx̂ = detF dx.

• We recall the equation (2.6) for the differential operator ∇̂V̂ = ∇V F−1.

• The stress tensor T̂ can be transformed by the Piola transformation

T (x) = (detF (x)) T̂ (x̂(x))F−>(x)

or T̂ (x̂(x)) = (detF (x))−1 T (x)F>(x),
(2.14)

see (Ciarlet, 1988, th. 1.7-1) The new stress tensor T is called first Piola-
Kirchhoff stress tensor.

• The test function V̂ defined on the current configuration is transformed

onto the reference configuration by setting V (x) := V̂ (x̂(x))

• The transformation of the loads f̂ and ĝ will be done in section 2.2.3.

2.2 Models for Elastic Material Behavior 17

Combining the above yields the transformation of the weak formulation∫
Ω̂

T̂ : ∇̂V̂ dx̂

=

∫
Ω

tr
(

(detF)−1FT>∇V F−1
)

(detF) dx

=

∫
Ω

tr
(
T>∇V

)
dx =

∫
Ω

T : ∇V dx

and∫
Ω̂

f̂
>
V̂ dx̂ +

∫
Γ̂N

ĝ>V̂ dŜ =

∫
Ω

f>V dx +

∫
ΓN

g>V dS.

As a result, the weak formulation of the balance of forces in the reference configu-
ration reads∫

Ω

T (x) : ∇δU(x) dx =

∫
Ω

f(x)>δU(x) dx +

∫
ΓN

g(x)>δU(x) dS

∀ δU with δU |ΓD = 0.

(2.15)

The second problem is to determine a relationship between the first Piola-Kirchhoff
stress tensor T and the displacement U . In general, this can be done by a so-called
response function, which models the relation between the stress and the strain.
For example, in the case of linear elasticity with infinitesimally small deformations,
the stress-strain-relation is linear and can be well justified by various principles of
continuum mechanics. In the case of large deformations however, this relation is far
more complicated. So far, various phenomenological models have been proposed to
describe the elastic behavior of materials.

In this work, we consider a continuous, homogeneous and isotropic elastic material
behavior that is modeled by a so-called polyconvex stored-energy density w depend-
ing on the deformation gradient F . As for now, it should be sufficient to state that
the first Piola-Kirchhoff stress tensor T can be written as

[T (x)]ij =
∂w

∂[F]ij
(F (x)) i, j = 1, 2, 3, (2.16)

for a given energy density w : M3
+ → R. Inserting this into the variational equation

(2.15) yields a nonlinear partial differential equation of second order for the unknown
U . More details about w will be given in the next section 2.2.2.

18 2 A Mathematical Model of Elasticity with Finite Deformations

2.2.2. Energy Minimization Approach

An alternative approach to the previous derivation is the minimization of the so-
called stored energy. It is based on the observation that the current configuration
minimizes (locally) a stored energy functional W (if it exists) depending on the
displacement U . This means our deformation problem with the displacement U
can be written as an optimization problem

min
U∈U

W (U ,C), (2.17)

with a function space U and a load C, both to be defined later. The computation
of W depends on a so-called energy density w which characterizes the material
behavior. One can find several proposals for such densities in the literature, for
example see Bertram (2008), Antman (1984) and Ciarlet (1988) for an overview, as
well as Ogden (1984) or Simo and Hughes (1998), and references therein. We choose
our energy density to be a function w : M3

+ → R such that

w(F) = a‖F‖2F + b‖cof F‖2F + c(detF)2 − d ln(detF) + e, (2.18)

with the Frobenius norm ‖·‖F and certain material constants a, b, c, d > 0, e ∈ R.
This is a special case of Ogden’s materials from Ogden (1972) or a compressible
Moonley-Rivlin material, see Ciarlet and Geymonat (1982). The constant e is chosen
such that the undeformed body has no energy, that is w(I) = 0.

Remark 2.2.2 (Equivalent formulations of the energy density w). The energy den-
sity w can be expressed with respect to various quantities. Most formulations can
be transformed into others by a direct calculation. However, calculating derivatives
might be easier in certain formulations. We give a few popular choices on which the
energy density might depend:

• The energy density w from (2.18) can also be written in terms of the strain
tensor E := 1

2
(∇U +∇U> +∇U>∇U), e. g.

w̄(E) = ā tr(E) + b̄1(trE)2 + b̄2 tr(E2) + c(detF)2 − d ln(detF) + e,

with b = − b̄2
2

and a = ā
2
− b̄2, see Weiser et al. (2007).

• Another formulation uses the invariants of the right Cauchy-Green tensor
C := F>F , e. g. I1(C) = trC, I2(C) = tr cof C and I3(C) = detC or
directly the eigenvalues of C, see (Ciarlet, 1988, ch. 4.10), Bertram (2008)
or Antman (1984). It is also possible to use C itself to write down the
energy density.

• Some authors, like Meyer (2007), prefer so-called pseudo-invariants
1
i

tr(Ci), i = 1, 2, 3. In this formulation, the calculation of derivatives
with respect to F might be easier than in most formulations.

2.2 Models for Elastic Material Behavior 19

This energy density has the following properties which are needed not only for an
existence result in Ball (1977) but they also satisfy certain observations from real
experiments. Our first axiom is the frame indifference of w, that means the value
of the energy does not depend on the choice of the coordinate system.

Theorem 2.2.3 (Frame indifference). The function w from (2.18) is frame-
indifferent, that means that the function value w(F) is indifferent to any rotation
of F by a matrix Q ∈ M3

+ with Q>Q = I, i. e.

w(F) = w(QF) ∀Q ∈ M3
+ with Q>Q = I. (2.19)

Proof.

We have the following:

(1) detQ = 1 because of Q>Q = I and Q ∈ M3
+

(2) the frame indifference of the Frobenius norm, that is
‖QF‖2F = tr(F>Q>QF) = tr(F>F) = ‖F‖2F

(3) cof(QF) = cof Q cof F = Q cof F because cof Q = Q−> = Q.

Using these properties yields

w(QF) = a‖QF‖2F +b‖cof(QF)‖2F +c
(

det(QF)
)2 −d ln

(
det(QF)

)
+ e

= a‖F‖2F +b‖Q cof F‖2F +c
(

detF
)2 −d ln

(
detF

)
+ e

= w(F).

The next assumption comes from the observation that you cannot shrink a body to
have no volume. This is modeled by an energy density diverging to∞ as the volume
tends to zero. From the point of view of constrained optimization, this property can
also be interpreted as a barrier functional for the constraint J = detF > 0. This
property is very important because otherwise negative local volume change might
occur which results in physically inadmissible deformations.

Theorem 2.2.4 (Behavior for shrinking volume). The function w from (2.18) sat-
isfies

lim
detF→0

w(F) =∞. (2.20)

Proof. Obviously, the last term in w, that is −d ln detF , diverges to∞ as detF → 0
since d > 0. As the other terms are nonnegative for a, b, c ≥ 0, the sum diverges to
∞.

20 2 A Mathematical Model of Elasticity with Finite Deformations

The assumption (2.20) implies that w cannot be convex with respect to F , see
(Ciarlet, 1988, ch. 4.8) for a proof. Therefore it is replaced by a weaker requirement
of polyconvexity, which is required later for Ball’s existence result in theorem 2.2.9.

Theorem 2.2.5 (Polyconvexity of the energy density w). The function w from
(2.18) is polyconvex, that means there exists a convex function w̄ : M3

+ × M3
+ ×

(0,∞)→ R such that

w(F) = w̄(F, cof F,detF), ∀F ∈ M3
+. (2.21)

Proof. We choose

w̄(F,H, J) = a‖F‖2F + b‖H‖2F + c J2 − d ln J + e, F,H ∈ M3
+, J ∈ (0,∞).

The Frobenius norm ‖·‖F is a convex function for all matrices because of the triangle
inequality, therefore the first two terms are convex for a, b ≥ 0. The last two terms
are convex because their second derivative 2c + dJ−2 is positive for c, d > 0 and
J > 0.

The next assumption states that at the undeformed state U ≡ 0, the energy density
w matches the energy density belonging to the linear, isotropic elasticity model for
infinitesimally small strains.

Theorem 2.2.6 (Behavior for small deformations). The energy density w from
(2.18) behaves like the St. Venant-Kirchhoff energy density around the undeformed
state U , that is

w(F) =
λ

2

(
trE

)2
+ µ tr(E2) +O(‖E‖3F), E =

1

2
(F>F − I), (2.22)

with the Lamé material parameters λ, µ > 0.

Proof. We refer to the proof (Ciarlet, 1988, Th. 4.10-2), which also shows the relation
of the constants a, b, c, d, e and the Lamé constants λ, µ.

Remark 2.2.7 (Relation between a, b, c, d, e and λ, µ). The proof of (Ciarlet, 1988,
Th. 4.10-2) shows how the material parameters a, b, c, d, e have to be chosen with
respect to the Lamé constants λ, µ, though it is not an injective relation. A possible
choice is

a =
µ

2
− λ

8
, b =

λ

8
, c =

λ

8
, d = µ+

λ

2
, e = −3µ

2
− λ

8
. (2.23)

The last requirement for Ball’s existence result is a certain coercivity inequality
which describes how much the energy density should increase for large deformations.

2.2 Models for Elastic Material Behavior 21

Theorem 2.2.8 (Coercivity inequality). The energy density w from (2.18) satisfies
the inequality

w(F) ≥ c1
(
‖F‖pF + ‖cof F‖qF + (detF)r

)
+ c2, ∀F ∈ M3

+ (2.24)

with constants c1 > 0, p ≥ 2, q ≥ p
p−1

, r > 1, c2 ∈ R.

Proof. Again, we refer to the proof given in (Ciarlet, 1988, Th. 4.10-2).

We are now ready to state the existence result from Ball (1977) for the energy
density w, taken from (Ciarlet, 1988, ch. 7.7).

Theorem 2.2.9 (Ball’s Existence result for the displacement U). Let Ω ⊂ R3 be a
domain and w : M3

+ → R be a stored energy density with the following properties:

(1) w is polyconvex, see (2.21)
(2) w →∞ for J = detF → 0, see (2.20)
(3) w is coercive, see (2.24)

Let furthermore Γ = ΓD ∪ ΓN be a dS-measurable partition of the boundary ∂Ω
with an area |ΓD| > 0, and let UD : ΓD → R3 be a measurable function such that
the set

Ū =
{
U ∈W 1,p(Ω)3; cof(I +∇U) ∈ Lq(Ω)3×3, det(I +∇U) ∈ Lr(Ω),

U = UD a.e. on ΓD, det(I +∇U) > 0 a.e. in Ω
} (2.25)

is not empty. Let f ∈ Lp3(Ω)3 and g ∈ Lp4(ΓN)3 be such that the linear form

l(U) =

∫
Ω

f(x)>U(x) dx +

∫
ΓN

g(x)>U(x) dΓ

is bounded. The global energy is

W (U) =

∫
Ω

w
(
F (x)

)
dx− l(U),

and assume that inf
U∈Ū

W (U) <∞. Then there exists at least one function U? such

that
U? ∈ Ū and W (U?) = inf

U∈Ū
W (U).

Proof. See the original source Ball (1977) or the proof in (Ciarlet, 1988, ch. 7.7).

Ball’s existence result proves that there exists at least one solution, though it is
possible that multiple solutions exist. If we have homogeneous Dirichlet boundary

22 2 A Mathematical Model of Elasticity with Finite Deformations

conditions UD ≡ 0, the set Ū in the proof is nonempty because U ≡ 0 ∈ Ū . As we
require a Hilbert space as a state space for our algorithms later, we modify the space
(2.25) from Ball’s proof. For this purpose, we choose the same space as in linear
elasticity, that is the Sobolev space H1(Ω)3. We keep the constraint J = detF > 0
implicitly by extending the definition of the energy density to w : M3 → R ∪ {∞}
with

w(F) =

{
a‖F‖2F + b‖cof F‖2F + c(detF)2 − d ln(detF) + e for detF > 0

∞ for detF ≤ 0
.

(2.26)

Definition 2.2.10 (State space). Corresponding to the linear model of elasticity,
we choose the state space U to be

U =
{
U ∈ H1(Ω)3,U = 0 a.e. on ΓD,

}
. (2.27)

We choose the inner product (·, ·)U to be induced by a linear elasticity model, that
is for U ,V ∈ U ,

(U ,V)U := aelast(U ,V)

=

∫
Ω

λ tr(∇U) tr(∇V) + 2µ
(
ε(U) : ε(∇V)

)
dx, (2.28)

with ε(U) = 1
2
(∇U +∇U>).

Having an energy density, we can integrate it over the undeformed domain Ω and
add functionals for the volume load f and boundary load g, gaining the global stored
energy functional

W (U ,f , g) =

∫
Ω

w
(
F (x)

)
dx−

∫
Ω

f(x)>U(x) dx−
∫

ΓN

g(x)>U(x) dS, (2.29)

with the deformation gradient F (x) = I + ∇U(x). As we seek to minimize this
energy, we consider the (formal) first order optimality condition of (2.17), which is
the variational equation

0 = W,U (U ,C)[δU] ∀ δU ∈ U

=

∫
Ω

w,F
(
F (x)

)
[∇δU(x)] dx−

∫
Ω

f(x)>δU(x) dx−
∫

ΓN

g(x)>δU(x) dS. (2.30)

Comparing this equation with the earlier weak formulation (2.15) derived from the
balance of forces, one can see that the two formulations are equivalent if the relation

2.2 Models for Elastic Material Behavior 23

(2.16) between the first Piola-Kirchhoff stress tensor and the energy density w is
rewritten as

T : ∇δU = w,F
(
F (x)

)
[∇δU(x)]. (2.31)

Hence, both approaches yield the same variational equation for the displacement-
traction problem. For an easier use in later sections, we denote the energy due to
the Cauchy stress with

W (T)(U) :=

∫
Ω

w
(
F (x)

)
dx, (2.32)

and its derivative w. r. t. U with

W
(T)
,U (U)[δU] :=

∫
Ω

w,F
(
F (x)

)
[∇δU(x)] dx. (2.33)

The first derivative w,F and the second derivative w,FF can be found in the appendix
as lemma A.2.1.

Remark 2.2.11.

• The stored energy is essential to the energy minimization and Ball’s proof.
However, for certain loads (e. g. pressure load on the boundary), it is still
an open question whether an according functional can be added in the
stored energy, and therefore if a stored energy exists for this load. We will
only consider loads with energy functionals which are called conservative
loads. Example loads will be given in the next section 2.2.3.

• The formulation as an optimization problem extends the methods to solve
the problem. A discussion about this aspect can be found in section 3.2.

• The uniqueness of the solution U cannot be ensured in elasticity with
large deformation, see (Ciarlet, 1988, Sect. 5.8) for examples. The first
order optimality conditions (2.30) can only ensure stationary points and
there exists the possibility of multiple local minima of the stored energy.
This might occur if a rod buckles or is twisted around its axis. In these
examples, where the non-uniqueness of the state U plays a central role, the
problem should be altered to be instationary or incremental steps should
be added (which could be understood as a pseudo time). However, we will
not consider these examples in this thesis and assume that the method to
solve the energy minimization returns a single solution.

2.2.3. Loads (Volume, Boundary, Inner Pressure, Fiber Tension)

In this section, we give more details on the modeling and transformation from Ω̂ to
Ω of the classical volume load f and the boundary load g, which are both external
forces. We then show the modeling and transformation of two internal forces: an

24 2 A Mathematical Model of Elasticity with Finite Deformations

inner pressure t and a tension m along a given fiber direction a. For each load,
we will start on the current configuration because the load actually works on the
deformed body. We then transform it to the reference configuration to implement
it in our problem (2.15). Finally we give the respective energy functional that can
be added to the stored energy (2.29).

Volume Load f .

Forces like gravity can be modeled as a volume load. That is each material point

x̂ ∈ Ω̂ on the deformed body has a vector f̂m(x̂) describing the force per mass, e. g.

in the physical unit N/kg. Since f̂m acts on the mass, we multiply it by the material

density ρ̂ : Ω̂ → (0,∞) to get the volume load f̂ = ρ̂f̂m which acts on the volume

instead of the mass. The resulting force due to f̂ over a control volume ω̂ ⊂ Ω̂ then
is ∫

ω̂

f̂(x̂) dx̂ =

∫
ω̂

ρ̂(x̂)f̂m(x̂) dx̂.

As we have seen in section 2.2.1, this equation has to be transformed to the reference
configuration Ω in order to get a PDE that can be solved numerically with a finite

element method. First, we assume that the value of f̂m(x̂) at a material point does

not change due to the deformation, that is fm(x) := f̂m(x̂(x))3 Second, the mass
conservation states that due to the deformation from ω to ω̂, the value of mass does
not change. The mass of ω̂ and ω is∫

ω̂

ρ̂(x̂) dx̂ =

∫
ω

ρ(x) dx.

Since the subdomain ω̂ can be arbitrarily chosen, we get the relationship

ρ̂(x̂(x)) dx̂ = ρ(x) dx or ρ̂(x̂(x)) detF (x) = ρ(x). (2.34)

Now we can transform the volume load f̂ to f by∫
ω̂

f̂(x̂) dx̂ =

∫
ω̂

ρ̂(x̂)f̂m(x̂) dx̂

=

∫
ω

ρ(x)fm(x) dx =

∫
ω

f(x) dx,

with f(x) = ρ(x)fm(x). To sum it up, we have

f(x) = f̂(x̂(x)), (2.35)

3This would not hold true if one models a force due to e. g. a magnetic field which is not constant
because the current force would depend on the current position of the material point.

2.2 Models for Elastic Material Behavior 25

due to the fact that the force acts on the mass rather than volume and the mass
conservation. The incorporation of the volume load into the variational equation
(2.15) was already shown. Also the energy functional

W (f)(U ,f) = −
∫
Ω

f(x)>U(x) dx,

was mentioned previously in Ball’s existence theorem 2.2.9. Its first derivative is

W
(f)
,U (U ,f)[δU] = −

∫
Ω

f(x)>δU(x) dx,

and its second derivative is obviously zero.

Boundary Load g.

We model a boundary load which acts on the surface Γ̂N of the deformed body. That

is each material point x̂ ∈ Γ̂N on the deformed body has a vector ĝ(x̂) describing

the force per area, e. g. in the physical unit MPa = N/mm2. Let γ̂ ⊂ Γ̂N be a control

area of the surface of Ω̂. The resulting force acting on γ̂ is∫
γ̂

ĝ(x̂) dŜ.

We assume that the direction of this force does not change due to the deformation,
that is g(x) and ĝ(x̂(x)) have the same direction4 Additionally, we assume that
the resulting force on γ̂ does not change due to deformation5 Combining those two
assumptions we get the transformation∫

γ̂

ĝ(x̂) dŜ =

∫
γ

g(x) dS.

To sum up, we have
ĝ(x̂(x)) = g(x), (2.36)

due to the fact that the force acts on the surface area and the resulting force is con-
stant. The way how to implement this boundary load into the variational equation
(2.15) was shown in a previous section. The respective energy functional already
mentioned in theorem 2.2.9 is

W (g)(U , g) = −
∫

ΓN

g(x)>U(x) dS.

4This would not hold true for a hydrostatic pressure load on the boundary because it always acts
perpendicular to the surface and thus the direction depends on the current surface normal.
5Again, this does not hold true for a constant hydrostatic pressure load on the boundary because
an increase in the area also leads to an increase in the resulting force.

26 2 A Mathematical Model of Elasticity with Finite Deformations

The first derivative of this energy functional is

W
(g)
,U (U , g)[δU] = −

∫
ΓN

g(x)>δU(x) dS,

and its second derivative is zero.

Inner Pressure t.

An inner pressure, unlike an external pressure, can be viewed as a stress inside the
body. First, we give an example where inner pressures occur.

Example 2.2.12 (Turgor Pressure). Turgor pressure appears in cellular biology
among plant, bacteria and fungi cells, see (Campbell, 1997, pg. 835f) or Raven et al.
(2001). It is the pressure of the cell plasma against the cell wall and is caused by
the osmotic flow of water inside or outside the cell. Three states describing the
levels of water inside the cell are shown in figure 2.2.3. If water flows into a cell, the
volume of the cell increases and might press against the cell wall. This introduces
an inner pressure in the body, called turgor pressure. We assume this pressure to
be hydrostatic. The plasmolyzed state can shrink the volume of the cell as it is a
common observation of withered plants or dried fruits. Therefore the turgor pressure
can be positive or negative.

Let the internal pressure be given by a scalar field t̂ : Ω̂ → R on the current

configuration, e. g. in the physical unit MPa = N/mm2. Let ω̂ ⊂ Ω̂ be a control
domain of the deformed body. We assume the pressure to be hydrostatic, that
means that the resulting force over a surface is perpendicular to the surface. This

is equivalent to modeling it as a stress t̂(x̂)I at a material point x̂ ∈ Ω̂, with the

identity matrix I ∈ M3, compare Cauchy’s Theorem 2.2.1. The stress tensor T̂ can
be seen as a counter action to the inner pressure t, therefore the balance of forces
on ω̂ reads

0 =

∫
∂ω̂

T̂ (x̂)n̂(x̂)− t̂n̂(x̂) d∂ω̂ =

∫
∂ω̂

(T̂ (x̂)− t̂(x̂)I)n̂(x̂) d∂ω̂

=

∫
ω̂

d̂iv
(
T̂ (x̂)− t̂(x̂)I

)
dω̂.

As the subdomain ω̂ can be arbitrarily chosen, the following equation has to hold,

d̂iv
(
T̂ (x̂)− t̂(x̂)I

)
= 0 in Ω̂. (2.37)

A corresponding weak formulation to (2.37) on the current configuration is∫
Ω̂

(
T̂ (x̂)− t̂(x̂)I

)
: ∇̂V̂ (x̂) dx̂ = 0 ∀V̂ .

2.2 Models for Elastic Material Behavior 27

Figure 2.2. Turgor pressure caused by osmatic water flow:
One can see three different states of water levels (in blue) in a cell
(green) and the surrounding cell walls (gray). If the water flows
outwards of a cell, its volume will decrease and it will eventually
reach the plasmolyzed state in the left picture. Here the cell has
less water than it could normally hold. The center picture shows
the flaccid state, where the cell has enough water to approximately
fill the cell. The turgid state is illustrated in the right picture,
where the inflow of water causes the cell to expand so much that
it presses against the cell walls.

Again, this is transformed onto the reference configuration Ω by the Piola transfor-

mation (2.14) for the stress tensor T̂ and the transformation rules for the domain

and the differential operator ∇̂. We also assume that the pressure in a material point
does not depend on the displacement U but only on its material point x = x(x̂),

that is t(x) = t̂(x̂(x)). Combining the above yields the weak formulation in the
reference configuration∫

Ω

(
T (x)− t(x) (detF (x))F−>(x)︸ ︷︷ ︸

=cof F (x)

)
: ∇V (x) dx = 0 ∀V . (2.38)

One can see that the inner pressure t enters the balance of forces in a different way
than the external volume or boundary load. To complete the modeling, we can
define the energy for the inner pressure to be

W (t)(U , t) = −
∫
Ω

t(x)(det
(
I +∇U(x)

)
dx =

∫
Ω

t(x)
(

detF (x)
)

dx, (2.39)

28 2 A Mathematical Model of Elasticity with Finite Deformations

then its directional derivative, see lemma A.2.2, is

W
(t)
,U (U , t)[δU] = −

∫
Ω

t(x) cof F (x) : ∇δU(x) dx,

which matches the corresponding part in (2.38).

There is a special case if the inner pressure t is constant on Ω, e. g. t(x) = t0 ∈ R.
Using Green’s identity and the Piola identity div cof F = 0, see (Ciarlet, 1988,

pg. 39), the derivative W
(t)
,U can be rewritten as

W
(t)
,U (U , t)[δU] = −t0

∫
Ω

cof F : ∇δU dx

= −t0
∫
Ω

∑
ij

[cof F]jiδU i,j dx (use Green’s identity)

= −t0
∫
Γ

∑
ij

[cof F]jiδU inj dS + t0

∫
Ω

∑
ij

([cof F]ji),j δU i dx

= −t0
∫
Γ

(
δU> cof F n

)
dS + t0

∫
Ω

(div cof F)δU dx

= −t0
∫
Γ

(
δU> cof F n

)
dS.

This term for the variational equation (2.15) is the same as for constant external
hydrostatic pressure loads t0 as it can be found in (Ciarlet, 1988, ch. 2.7). This
implies that constant internal pressures can be viewed as constant external pressures
and vice versa. However, since it is an open question if a nonconstant external
pressure is a conservative load, we exclude an external hydrostatic pressure for our
work.

Tension m along Fibers.

We now consider and model a load that runs along a given fiber direction. This is
motivated by biological models again.

Example 2.2.13 (Muscle fibers). Muscle fibers can be found in many animals
including birds, mammals, fish, and amphibians, see (Campbell, 1997, pg. 1139f).
In most cases, the muscle controls a skeleton joint, where fibers are aligned in the
same direction. However, there are also muscles that control the shape of a certain
tissue, e. g. the tongue or the heart muscle. The tongue has certain areas where
the direction of the muscle fibers are fairly grouped. Still, it can perform a wide
variation of movements and is even co-responsible for the human speaking abilities.
As for the other example, the heart muscle controls by its movement and shape

2.2 Models for Elastic Material Behavior 29

the blood circulation through the heart chambers and eventually through the whole
body. Irregularities like cardiac dysrhythmia or ventricular fibrillation show how
complex this mechanism is and how hard it is to control. Take for example the
defibrillation which is still a painful and sometimes traumatic therapy today. In
this field, mathematics is used to improve therapy and the chance of survival of the
patients, see for example Nagaiah et al. (2013).

Even though these tissues are expected to have an anisotropic material behavior,
we simplify it by replacing it with an isotropic elastic material in this thesis.

We start the modeling of an internal tension along a fiber on the current configura-

tion. Let the vector field â : Ω̂→ R3 describe the fiber direction inside the deformed
body. For simplicity, we assume that the fiber direction is a unit vector, that is the

Euclidean norm ‖â(x̂)‖2 = 1 for all x̂ ∈ Ω̂. Let the scalar field m̂ : Ω̂→ R describe
the tension along a fiber, e. g. in the unit MPa = N/mm2. The control volume

ω̂ ⊂ Ω̂ of the deformed body can be arbitrarily chosen.

The force of the tension always runs along the fibers, that means that the resulting

force on a surface of ω̂ is m â(â>n̂).6 Again, the stress tensor T̂ is seen as a counter
action to the tension m, therefore the balance of forces on ω̂ is

0 =

∫
∂ω̂

(
T̂ (x̂)− m̂(x̂) â(x̂) â(x̂)>

)
n̂ d∂ω̂

=

∫
ω̂

d̂iv
(
T̂ (x̂)− m̂(x̂) â(x̂) â(x̂)>

)
dω̂.

As the subdomain ω̂ can be arbitrarily chosen, we get the equation

d̂iv
(
T̂ (x̂)− m̂(x̂) â(x̂) â(x̂)>

)
= 0 in Ω̂, (2.40)

and its weak variational form∫
Ω̂

(
T̂ (x̂)− m̂(x̂) â(x̂) â(x̂>

)
: ∇̂V̂ (x̂) dx̂ = 0 ∀V̂ . (2.41)

In order to transform this weak formulation onto Ω, we need to model the transfor-
mation of m̂ and â:

• During the deformation, the fiber orientation is rotated along the defor-
mation. This can be written as

â(x̂(x)) =
F (x)a(x)

‖F (x)a(x)‖2
.

6The last scaling term (â>n̂) is due to the fact that the tangential component of m â does not
affect the resulting force on ω̂ because it is an inner stress. The same argument can also be found

for the Cauchy stress tensor T̂ in Cauchy’s Theorem 2.2.1.

30 2 A Mathematical Model of Elasticity with Finite Deformations

• The tension m : Ω→ R is assumed to scale with the volume, that is

m(x) = m̂(x̂) detF (x). (2.42)

This can be justified for muscle cells in the following way: Let ω and ω̂ =
x̂(ω) be subdomains representing a cell in the undeformed and deformed
body. This cell has the ability to enforce a tension along its fiber direction.
The tension along the fiber â in a point x̂ ∈ ω̂ is

â(x̂)>
(
m̂(x̂) â(x̂) â(x̂)>

)
â(x̂) = m̂(x̂),

because â>â = 1. The same holds true for the undeformed configuration
ω,

a(x)>
(
m(x)a(x)a(x)>

)
a(x) = m(x).

We assume that this tension does not change if the volume of the cell
changes due to deformations, that means the cell itself retains its power
during the deformation. Therefore the total tension caused by the cell has
to be equal for both configurations, that means∫

ω̂

m̂(x̂) dx̂ =

∫
ω

m̂(x̂(x)) detF (x) dx =

∫
ω

m(x) dx.

As the cells will be viewed as a continuum in order to fit into our model of
elasticity, the subdomain ω can be chosen arbitrarily and equation (2.42)
follows.

We can now transform the weak formulation (2.41) onto Ω and get the equation∫
Ω

T : ∇δU −m ‖Fa‖−2
2

(
Fa (Fa)>

)
: (∇δUF−1) dx = 0 ∀δU .

A part of the second term in the integral can be simplified, e. g.(
Fa (Fa)>

)
: (∇δUF−1) =(Fa)>(∇δUF−1)(Fa)

=a>F>(∇δUa).

Inserting this yields the weak formulation∫
Ω

T (x) : ∇δU(x)−m(x)

(
a(x)>F>(x)∇δU(x)a(x)

)
‖F (x)a(x)‖22

dx = 0 ∀δU . (2.43)

2.2 Models for Elastic Material Behavior 31

Theorem 2.2.14 (Energy functional for the fibre tension). The energy functional
for the fiber tension m in the weak formulation (2.43) is

W (m)(U ,m) = −
∫
Ω

m(x) ln‖F (x)a(x)‖2 dx. (2.44)

Proof. The derivative W
(m)
,U (U ,m)[δU] can be found in lemma A.2.3 and matches

the term from the variational equation (2.43).

Summary Finally, we incorporate the different loads presented in this section to a
more unified model. For simplicity of notation, in the case of a single load, let us
denote this load by C, e. g. if only a volume load is applied, we have C = f . A list
of all loads can be found in table 2.1.

load type C energy W (C) derivative W
(C)
,U (U ,C)[δU]

Volume load f −
∫
Ω

f>U dx −
∫
Ω

f>δU dx

Boundary load g −
∫

ΓN

g>U dS −
∫

ΓN

g>δU dS

Inner pressure t −
∫
Ω

t (detF) dx −
∫
Ω

t (detF)F−> : ∇δU dx

Fiber tension m −
∫
Ω

m ln
(
‖Fa‖

)
dx −

∫
Ω

m a>F>∇δUa
a>F>Fa

dx

Cauchy stress T
∫
Ω

w(F) dx
∫
Ω

w,F (F)[∇δU] dx.

Table 2.1. Different loads that are modeled in section 2.2.3. The
Cauchy stress is added to this list for completeness although it is
not a load.

Definition 2.2.15 (Control space). Let C be one of the loads presented earlier and
Ωctrl ⊂ Ω respectively Γctrl ⊂ Γ the part of the domain or boundary where the load
is applied. We define the control space C to be the L2-space on Ωctrl respectively
Γctrl, with the corresponding scalar product (·, ·)C . More details are given in table
2.2.

32 2 A Mathematical Model of Elasticity with Finite Deformations

load type C control space C scalar product (·, ·)C

Volume load f C(f) = L2(Ωctrl)3 (f1,f2)f =
∫

Ωctrl

f1(x)>f2(x) dx

Boundary load g C(g) = L2(Γctrl)3 (g1, g2)g =
∫

Γctrl

g1(x)>g2(x) dS

Inner pressure t C(t) = L2(Ωctrl) (t1, t2)t =
∫

Ωctrl

t1(x) t2(x) dx

Fiber tension m C(m) = L2(Ωctrl) (m1,m2)m =
∫

Ωctrl

m1(x)m2(x) dx

Table 2.2. Different loads with their control spaces and corre-
sponding scalar products.

With this notation, the general energy minimization problem for a given load C ∈ C
is

min
U∈U

W (U ,C)

with W (U ,C) = W (T)(U) +W (C)(U ,C).
(2.45)

The formal first order optimality conditions are

0 =W,U (U ,C)[δU]

=W
(T)
,U (U)[δU] +W

(C)
,U (U ,C)[δU].

(2.46)

We will call this equation the forward problem. Of course, the problem can be
extended to a finite number of loads as well, simply by adding their corresponding
energy functionals to the stored energy

W (U ,C1,C2, . . .) = W (T)(U) +
∑
i

W (Ci)(U ,Ci).

Remark 2.2.16. Ball’s existence result from theorem 2.2.9 applies only to the case
of volume loads f and boundary loads g.

2.3 Comparison to Linear Elasticity

In the case of very small displacements U , the variational equation (2.46) can be
linearized with respect to U , neglecting higher order terms of U . One constitutive
assumption of stored energies is that this linearization should match the linear model

2.3 Comparison to Linear Elasticity 33

of elasticity, see theorem 2.2.6. The linear model to describe an isotropic elastic
material behavior is build on the St.Venant model defined by the energy density

wStV(F) =
λ

2
(trE)2 + µ(E : E), (2.47)

where the Green-St.Venant strain tensor E is defined as E := 1
2
(F>F − I) and the

Lamé parameters are λ > 0 and µ > 0. This energy functional is not polyconvex,
for a proof we refer to (Ciarlet, 1988, Th. 4.10-1). As the Green-St.Venant strain
tensor E itself is nonlinear with respect to U , there is a special notation for the
linearized strain tensor

ε(U) :=
1

2
(∇U +∇U>). (2.48)

Minimizing the global St.Venant energy

W lin(U ,C) :=

∫
Ω

λ

2
(tr ε(U))2 + µ

(
ε(U) : ε(U)

)
dx + (terms from load C), (2.49)

with the linearized strain tensor ε instead of E, one obtains the first order optimality
condition

0 = W StV
,U [V] =

∫
Ω

λ tr(∇U) tr(∇V) + 2µ
(
ε(U) : ε(V)

)
dx + (terms from load C).

(2.50)
This variational equation is also obtained if the weak formulation (2.46) for large
deformations is linearized at U ≡ 0, see theorem 2.2.6. Hence the model in linear
elasticity can be viewed as a linearization of the nonlinear problem at U ≡ 0. As a
consequence, it is expected to be applicable only for very small deformations, which
can be underpinned by two major reasons:

Self-Penetration

One can also see that the property (2.20), that is w(F) → +∞ as J → 0, does
not hold for the St.Venant energy (2.47). As a consequence, there are deformations
where the local volume change J(x) is negative in certain regions, that means the
material penetrates itself locally, which is a violation of continuum mechanics. We
illustrate this with an example.

Example 2.3.1 (Self-penetration of a compressed unit cube). Let Ω = (0, 1)3 be
a unit cube which is clamped at the left side, that is ΓD = 0× [0, 1]× [0, 1]. There
is a constant volume load f(x) = (f, 0, 0) and the Lamé parameters are λ = 1 and
µ = 1. If f is large enough, e. g. f = 2.2, the volume change J is no longer positive
for all points x ∈ Ω, see figure 2.3.

Rigid Body Movements

34 2 A Mathematical Model of Elasticity with Finite Deformations

Figure 2.3. The undeformed cube Ω in gray is compressed to the
colored body. The preservation of a positive volume does not hold
and the body penetrates itself.

A rigid body can undergo two types of deformations, namely translation and rota-
tion, that do not cause any stresses. They are called rigid body movements and can
be written as x̂(x) = U trans + Qx, x ∈ Ω, consisting of a translation U trans ∈ R3

and a rotation with a rotation matrix Q ∈ M3
+, Q>Q = I. The corresponding

displacement is

U(x) = U trans + (Q− I)x, x ∈ Ω.

A translation U trans is a rigid body movement for the linear and nonlinear model,
because both depend on the gradient ∇U and for a translation we always have
∇U trans = 0. As a consequence, a translation U trans would not show up in the
balance of forces. If no clamping is applied, that is ΓD = ∅, the translation U trans

can be viewed as a three-dimensional kernel of the linear, respectively nonlinear,
operator belonging to the model. However, in many practical problems, a clamping
appears naturally.

As for rotations, they are not rigid body movements in the linear model. To see this,
we take a look at the Green-St.Venant strain tensor E and its linearized version ε,

2E = F>F − I =∇U +∇U> +∇U>∇U ,

2ε =∇U +∇U>.

2.3 Comparison to Linear Elasticity 35

Inserting U(x) = U trans + (Q− I)x, that is ∇U = Q− I, into E and ε yields

2E = Q− I +Q> − I + (Q− I)>(Q− I)

= Q− I +Q> − I +Q>Q−Q> −Q+ I = 0

2ε = Q+Q> − 2I = (Q> − I)(Q− I).

We can see that the linearized strain tensor ε is only zero for the identity Q = I.
This is the reason why rotations are not rigid body movements in linear elasticity
because the Green-St.Venant strain tensor E or ε are measures for the occurring
strains in a deformed body. These strains induce certain stresses defined by the
material law. The presented material law in 2.18 and the St.Venant energy (2.47)
have the property that T (x) = 0 ⇔ E(x) = 0 or ε(x) = 0 respectively. Large
deformations often exhibit local rotations, e. g. the tip of a bending bar is sloped.
These rotations themselves cause stresses in the linear model, which are not observed
in reality.

We summarize this section by emphasizing the differences between the linear and
nonlinear model of elasticity in Table 2.3.

linear model from equation (2.50) nonlinear model from equation (2.46)

suitable only for small deformations suitable for larger deformations

only one configuration Ω two configurations Ω and Ω̂

no transformations of variational equa-
tions are necessary

transformations Ω̂ → Ω are necessary
for the variational equations

rotations are not rigid body movements rotations are rigid body movements

2ε = ∇U +∇U> 2E = ∇U +∇U> +∇U>∇U

energy is quadratic in U energy ensures w → 0 as J → 0

Cauchy stress T is linear in U Cauchy stress T is nonlinear in U

Table 2.3. Comparison of the linear and the nonlinear model of elasticity.

36 2 A Mathematical Model of Elasticity with Finite Deformations

2.4 Parametrization of the Reference Configuration Ω

So far, the position of the material point x ∈ Ω was a given argument. However,
for certain bodies like tubes, a parametrization might be helpful to describe the

problem with curvilinear coordinates x(x̃). For a given parameter space Ω̃ ⊂ R3,
the reference configuration can be described as

Ω =
{
x = x(x̃), x̃ ∈ Ω̃

}
, (2.51)

with a sufficiently smooth and bijective function x : Ω̃ → Ω, see figure 2.4. In the
following, the tilde ˜ emphasizes that a function takes arguments in the parameter

space Ω̃ or a differentiation is with respect to the parameter x̃.

Figure 2.4. Cylindrical coordinates from example 2.4.1: the pa-

rameter space Ω̃ is shown in green, while the undeformed body Ω

is plotted in blue and the deformed body Ω̂ in red.

Our task is to reformulate the weak formulation (2.30) in Ω̃ in order to use numerical
methods like finite elements. First we define the Jacobi-matrix

G̃(x̃) :=
∂x

∂x̃
(x̃) , [G̃]ij =

∂xi
∂x̃j

, i, j = 1, 2, 3. (2.52)

The transformation of vector fields Ṽ : Ω̃ → R3 is defined by Ṽ (x̃) := V (x(x̃)),
while formulas for the volume and area elements can be found in Ciarlet (2005),
that is

dx =
∣∣det G̃

∣∣dΩ̃ and dS =
∣∣det G̃(x̃)

∣∣‖G̃−>(x̃)ñ(x̃)‖2dS̃. (2.53)

2.4 Parametrization of the Reference Configuration Ω 37

We assume in the following, that det G̃(x̃) > 0, ∀x̃ ∈ Ω̃, to ensure that the
parametrization is injective, see (Ciarlet, 2005, pg. 18). As we have seen earlier,
the energy minimization (2.45) and its first order optimality as a weak variational
equation (2.46) can be formulated in terms of the displacement U and the defor-
mation gradient F . Therefore it is sufficient to give presentations of these two
quantities. The transformation of U is straight-forward, i. e.

Ũ(x̃) := U
(
x(x̃)

)
. (2.54)

To transform the deformation gradient F we first define the differential operator ∇̃
as

[∇̃Ũ(x̃)]ij =
∂Ũ i

∂x̃k
(x̃). (2.55)

The relationship of ∇̃ to the differential operator ∇ can be computed by the chain
rule

[∇δU]ij(x(x̃)) :=
∑
k

∂δŨ i

∂x̃k

∂x̃k
∂xj

(x̃) , i, j = 1, 2, 3,

or, in term of matrices,

[∇δU](x(x̃)) = ∇̃δŨ(x̃)G̃−1(x̃) , i, j = 1, 2, 3. (2.56)

Hence, we get the parametrized deformation gradient

F̃ (x̃) := F
(
x(x̃)

)
= I +∇U(x(x̃)) = I + ∇̃Ũ(x̃)G̃−1(x̃). (2.57)

We are now able to rewrite the weak variational equation (2.46) (with all loads

attached) in terms of Ũ , yielding

0 =

∫
Ω̃

w,F
(
I + F̃ (x̃)

) [
∇̃δŨ(x̃)G̃−1(x̃)

] ∣∣ det G̃(x̃)
∣∣dΩ̃

−
∫
Ω̃

f(x(x̃))>δŨ(x̃)
∣∣ det G̃(x̃)

∣∣ dΩ̃

−
∫

Γ̃N

g(x(x̃))>δŨ(x̃)
∣∣ det G̃(x̃)

∣∣‖G̃>(x̃)ñ(x̃)‖ dΓ̃

+

∫
Ω̃

t(x(x̃)) cof F̃ (x̃) :
(
∇̃δŨ(x̃)G̃−1(x̃)

)∣∣ det G̃(x̃)
∣∣ dΩ̃

+

∫
Ω̃

m(x(x̃))
(
a(x(x̃))>F̃>(x̃)∇̃δŨ(x̃)G̃−1(x̃)a(x(x̃))

) ∣∣ det G̃(x̃)
∣∣ dΩ̃.

(2.58)

38 2 A Mathematical Model of Elasticity with Finite Deformations

The parametrization of the loads f , g, t and m is not necessary, though it is possible.
The same applies to the fiber directions a, which might be easily described in the
parametrization. However, this is more a point of the implementation and can be
adapted by the user.

Example 2.4.1 (Cylindrical Coordinates). Cylindrical coordinates are often used
to describe bodies with a rotational symmetry, like tubes or rods. The coordinates

x(x̃1, x̃2, x̃3) =

x̃1 cos x̃2

x̃1 sin x̃2

x̃3

 x̃ ∈ Ω̃ := [r1, r2]× [0, π]× [0, h], (2.59)

are a natural parametrization to describe such a domain, see figure 2.5. For the

Jacobi-matrix G̃ we have

G̃(x̃1, x̃2, x̃3) =

cos x̃2 −x̃1 sin x̃2 0
sin x̃2 x̃1 cos x̃2 0

0 0 1

 , (2.60)

and its inverse G̃−1 and the local volume det G̃ are

G̃−1(x̃1, x̃2, x̃3) =

 cos x̃2 sin x̃2 0
− 1

x̃1
sin x̃2

1
x̃1

cos x̃2 0

0 0 1

 , det G̃(x̃1, x̃2, x̃3) = x̃1.

X

X

X

1

2

3

r

phi

z

Figure 2.5. Cylindrical coordinates (x̃1, x̃2, x̃3) = (r, ϕ, z) and
the coordinates (x1,x2,x3) for the reference configuration.

2.5 Hierarchical Plate Model

In many mechanical applications (e. g. elasto-plastic deep-drawing processes of plates),
the physical body is very thin. This might cause large discretization errors in a stan-
dard three-dimensional finite element method. Several methods have been proposed
to deal with this problem, among them a hierarchical plate model, suggested by

2.5 Hierarchical Plate Model 39

Babuška and Li (1991), Babuška et al. (1992), Babuška et al. (1993), Schwab and
Wright (1995), Ovtchinnikov and Xanthis (1995) and others.

A plate, in contrast to a shell, is defined to be planar, that means it can be described
by its midsurface Ω2D ⊂ R2 and a perpendicular coordinate for the thickness, like
in

Ω = Ω2D × (−d, d), (2.61)

where the plate has the thickness 2d > 0. The core idea of most plate models is
the reduction from the three-dimensional domain Ω to the midsurface Ω2D, that is
all functions take arguments in Ω2D. This might be exact for certain given loads,
but it can be only an approximation for the displacement U . However, a good
approximation that keeps most of the structure of U can still pay off. We illustrate
the idea of the hierarchical plate model with an example.

Example 2.5.1 (A First Idea for a Plate Model). The ansatz is similar to many
plate models: we start by splitting the displacement U . Here, we decompose U :

Ω → R3 into a part U2D
0 : Ω2D → R3 to describe the deformed midsurface Ω̂2D =

U2D
0 (Ω2D) and a part U2D

1 : Ω2D → R3 for the thickness coordinate x3, see figure
2.6. This can be formulated as

U(x1,x2,x3) = U2D
0 (x1,x2) + x3 U

2D
1 (x1,x2),

(x1,x2) ∈ Ω2D,x3 ∈ (−d, d).

This is not restricted to perpendicular midsurface normals like the Kirchhoff-Love
hypothesis, but also allows shear deformations and thickness change. Of course,
the real three dimensional displacement in general might be richer than the above
description could offer. However, this can still be a good approximation for thin
plates.

We now generalize this idea by adding more terms U2D
i to improve the approxima-

tion of the displacement over the thickness.

Definition 2.5.2 (Hierarchical plate model). Let U2D
i : Ω2D → R3, i = 0, . . . , D2D

be sufficiently differentiable functions. We call the ansatz

U(x1,x2,x3) =

D2D∑
i=0

pi(
1
d
x3)U2D

i (x1,x2), (2.62)

for (x1,x2) ∈ Ω2D, x3 ∈ (−d, d), the hierarchical plate model of the degree D2D.
The polynomials pi are the Legendre polynomials of order i.

Remark 2.5.3 (Legendre polynomials). The usage of Legendre polynomials pi is
due to numerical stability. If one would use powers of x3, e. g. (x3)i, as coefficients

40 2 A Mathematical Model of Elasticity with Finite Deformations

x3

x3 U1

x3 U1+

Figure 2.6. Cross section of a plate: The thick line represents
the midsurface, left for the undeformed body and right for the
deformed body. The role of U2D

1 is to allow a change in the di-
rection of the thickness, from x3 in the reference configuration to
x3 + U2D

1 in the current configuration.

in front of U2D
i , numerical elimination would occur if the thickness 2d is too small.

The Legendre polynomials pi can be found in Zeidler (2013), e. g.

p0(x) = 1 p1(x) = x p2(x) = 1
2
(3x2 − 1)

p3(x) = 1
2
(5x3 − 3x) p4(x) = 1

8
(35x4 − 30x2 + 3),

(2.63)

and are plotted in figure 2.7.

x

p0(x)

−1 1

1

x

p2(x)

−1 1

1

x

p4(x)

−1 1

1

x

p1(x)

−1 1

1

x

p3(x)

−1 1

1

Figure 2.7. The first five Legendre polynomials defined in 2.63.

2.5 Hierarchical Plate Model 41

Our first task is to find a representation of the gradient operator ∇ for this ansatz
(2.62). Let us recall that the ∇ is the derivative with respect to (x1,x2,x3). The
differentiation of U2D

i with respect to the first two spatial coordinates, x1 and x2,
is the standard differentiation of the functions U2D

i , e. g.

∂U

∂xj
(x) =

D2D∑
i=0

pi(
1
d
x3)

∂U2D
i

∂xj
(x1,x2), j = 1, 2.

The derivative with respect to x3 does not involve a differentiation of the functions
U2D
i but is the derivative of the Legendre polynomials over the coordinate x3, e. g.

∂U

∂x3
(x) =

D2D∑
i=0

p′i(
1
d
x3)U2D

i (x1,x2).

Combining these two formulas we get the gradient operator ∇ for the hierarchical
plate model (2.62),

∇U(x) ∈ R3×3 :=

D2D∑
i=0

(
pi(

1
d
x3)

∂U2D
i

∂x1
(x1,x2) pi(

1
d
x3)

∂U2D
i

∂x2
(x1,x2) 1

d
p′i(

1
d
x3)U2D

i (x1,x2)
)
,

(2.64)
where the three entries are column vectors. The first two columns are the gradient
of the sum of two-dimensional functions U2D

i while the third column is a certain
sum of these functions U2D

i . We will show in section 5.2.8 how this gradient can be
implemented.

Example 2.5.4 (Plate Gradient for Degree D2D = 1). For the case of D2D = 1, we
have a linear ansatz x3U

2D
1 in addition to the midsurface displacement U2D

0 , e. g.

U(x1,x2,x3) = U2D
0 (x1,x2) + 1

d
x3U

2D
1 (x1,x2).

The differentiation with respect to x3 then is simply 1
d
U2D

1 and we have the gradient

∇U(x) =
(

U2D
0,1 + x3U

2D
1,1 U2D

0,2 + x3U
2D
1,2

1
d
U2D

1 (x1,x2)
)
,

with U2D
i,j :=

∂U2D
i

∂xj
(x1,x2), i = 0, 1 and j = 1, 2.

Having this notation, the deformation gradient F for the hierarchical plate model
is the same as before, that is

F (x) = I +∇U(x).

These representations of U =
∑
piU

2D
i and of ∇ from (2.64) for our hierarchical

plate model are now inserted in the previous full three-dimensional model. For

42 2 A Mathematical Model of Elasticity with Finite Deformations

example, the stored energy W from (2.45) then reads

W (U ,C) =

∫
Ω

w
(
I +∇U(x)

)
dx +W (C)(U ,C)

=

∫
Ω

w
(
I +∇

∑
pi(

1
d
x3)U2D

i (x1,x2)
)

dx +W (C)
(∑

piU
2D
i ,C

)
.

(2.65)
The first order optimality condition (2.46) then becomes

0 =W,U (U ,C)[δU]

=

∫
Ω

w,F (I +∇U(x)) [∇δU(x)] dx +W
(C)
,U

(∑
U2D
i ,C

)
[δU] , (2.66)

with the test function δU =
∑
piδU

2D
i (x). Before we discuss the load in the context

of the plate model, we address how to compute the three-dimensional integrals over
Ω.

Integration over the Thickness

As we assumed the spatial coordinate x3 to be perpendicular to the midsurface Ω2D,
the integration can be done separately, for example∫

Ω

. . .dx =

∫
Ω2D

(∫ d

−d
. . .dx3

)
dx1dx2. (2.67)

The integral over the thickness can be approximated by numerical integration, for
example by a Gauss-Legendre quadrature, taken from (Plato, 2004, ch. 6.8) and
Zeidler (2013).

Remark 2.5.5 (Gauss-Legendre quadrature). Let f : [−d, d] → R be a smooth
function. The integral over [−d, d] can be approximated by the Gauss-Legendre
quadrature formula of degree DGL, that is∫ d

−d
f(x) dx ≈ d

DGL∑
j=1

ωjf(d xj), (2.68)

with certain integration points (abscissas) xj ∈ [−1, 1] and weights ωi > 0, j =
1, . . . , DGL. The formula already includes the transformation from [−d, d] to [−1, 1].
The formulas for the degrees DGL = 2, 3, 4, 5 can be found in table 2.4.

2.5 Hierarchical Plate Model 43

DGL xj ∈ [−1, 1] ωj > 0

2 ± 1
3

√
3 1

3 0 8
9

± 1
5

√
15 5

9

4 ± 1
35

√
525− 70

√
30 1

36

(
18 +

√
30
)

± 1
35

√
525 + 70

√
30 1

36

(
18−

√
30
)

5 0 128
225

± 1
21

√
245− 14

√
70 1

900

(
332 + 13

√
70
)

± 1
21

√
245 + 14

√
70 1

900

(
332− 13

√
70
)

Table 2.4. Abscissas and weights for the Gauss-Legendre quadra-
ture formulas up to degree DGL = 5 taken from Weisstein (2014),
Zwillinger (2003).

We apply this formula to approximate the integrals of the weak formulation (2.66).

For the first term W
(T)
,U , we get∫

Ω

w,F (I +∇U(x)) [∇δU] dx

=

∫
Ω2D

(∫ d

−d
w,F (I +∇U(x)) [∇δU(x)] dx3

)
dx1dx2

≈
∫

Ω2D

dDGL∑
j=1

ωiw,F (I +∇U(x1,x2, xj)) [∇δU(x1,x2, xj)]

dx1dx2.

(2.69)

The evaluation of U , or δU , for a certain x3 = d xj is actually calculating the
Legendre polynomials at xi, e. g. pi(xi) and computing the sum over all U2D

i . Section
5.2.8 will demonstrate how this can be done in the finite element library FEniCS.
Other terms can be approximated analogously.

44 2 A Mathematical Model of Elasticity with Finite Deformations

Ansatz for the Loads

The load C will become the control in the later optimal control, therefore we need
an ansatz for it as well. The hierarchical plate model was motivated in cases where
the domain Ω is planar and thin. The inner pressure t and the fiber tension m were
mainly motivated by biological systems, but both phenomena are unlikely to occur
on thin plates. Therefore we drop these two load types in the context of the plate
model. In technical applications it is rather difficult to apply volume loads that vary
over the thickness coordinate x3, so the volume load is assumed to be constant over
the thickness, e. g.

f(x1,x2,x3) = f(x1,x2).

Applying the Gauss-Legendre formula on the energy functional W (f) for the volume
load f , which is constant over x3, we get

W (f)(U ,f) =

∫
Ω

f(x)>U(x) dx

=

∫
Ω2D

f(x1,x2)>

DGL∑
i=1

ωiU(x1,x2, xi)

dx1dx2.

(2.70)

The first derivative can be calculated analogously.

Next, we consider a boundary load g. A load acting on the rim ∂Ω2D × [−d, d]
would be technically challenging and the total force would scale with the thickness
2d which was assumed to be very small. Therefore we drop boundary loads on the
rim and assume them to act on the upper or lower surface, e. g. ΓN = Ω2D×{−d, d}.
Let g(·, ·,−d) be the boundary load that acts on the lower surface Ω2D × {−d} and
g(·, ·, d) be the one acting on the upper surface Ω2D × {d}. The energy functional
then reads

W (g)(U , g) =

∫
ΓN

g(x)>U(x) dS

=

∫
Ω2D

g(x1,x2,−d)>U(x1,x2,−d) + g(x1,x2, d)>U(x1,x2, d)dx1dx2.

(2.71)
In section 5.2.8 we will give details on how we implemented the plate model and its
ansatz functions.

Comparison to other Plate Models

The Mindlin-Reissner plate model is based on the early works of Mindlin (1945),
Reissner (1944) and Reissner (1945), who suggested this model independently. The

2.5 Hierarchical Plate Model 45

ansatz in the case of linear elasticity reads

U(x1,x2,x3) =
(
x3[U2D

1]1(x1,x2),x3[U2D
1]2(x1,x2), [U2D

0]3(x1,x2)
)>

, (2.72)

taken from Paumier and Raoult (1997). There are additional assumptions which
however contradict the ansatz for U . This is not uncommon for plate models and
demands caution in the modeling. If we drop a certain assumption, Paumier and
Raoult (1997) have shown that this model is consistent with the hierarchical plate
model for d → 0. We can also see, that the ansatz for the Mindlin-Reissner plate
model can be extended to the hierarchical plate model with U = U2D

0 + x3U
2D
1 for

larger deformations. Thus, possible deformations of the Mindlin-Reissner model are
included in the hierarchical plate model with the degree D2D ≥ 1.

The hierarchical plate model also includes possible displacements of the popular
Kirchhoff-Love-theory, based on the works of Kirchhoff (1850) and Love (1888),
see (Ciarlet, 1997, ch. 1.7). This model uses the assumption that the normal of the
midsurface stays orthogonal to the midsurface during the deformation, that means
that shear is not possible. Additionally, the thickness is assumed to stay constant,
hence no change in the thickness is possible either7. This yields the ansatz for the
deformation

x̂(x1,x2,x3) = x+U2D(x1,x2) +x3 n̂
2D(x1,x2) (x1,x2) ∈ Ω2D,x3 ∈ (−d, d),

where n̂2D(x1,x2) is the normal of the deformed midsurface at the material point
x̂(x1,x2, 0), which can be computed by

n̂2D
0 =

U2D
,x1
×U2D

,x2

‖U2D
,x1
×U2D

,x2
‖
.

These two assumptions seem reasonable for very thin plates and deformations where
the change of thickness is negligible. However, it is not clear how well these assump-
tions can be justified for large deformations. Comparing the ansatz functions of
the Kirchhoff hypothesis and the hierarchical plate model (2.62), one can see that
possible deformations under the Kirchhoff hypothesis can also be described in the
hierarchical plate model. This does not hold true the other way around, so the
hierarchical plate model allows more deformations and hence is less restrictive. Of
course, this comes at the price of introducing new unknowns. However, the Kirchhoff
hypothesis has its own difficulties. The displacement U of the Kirchhoff hypothesis
already depends on the first derivatives of U2D and hence the deformation gradient
F will depend on the second derivatives of U . To solve the problem with a finite el-
ement method, the discretization requires elements which are globally continuously
differentiable, like Bogner-Fox-Schmidt elements or MITC elements, see for example

7There are extensions of the Kirchhoff-model that allow a change of the thickness by adding an
additional unknown for the change of thickness.

46 2 A Mathematical Model of Elasticity with Finite Deformations

Arnold and Falk (1989), Lee and Bathe (2010) and Rückert (2013) and references
therein.

3 Numerical Methods to Solve the For-
ward Problem

Contents

3.1 Newton’s Method 48

3.2 Globalization by a Line Search 49

3.3 Krylov Subspace Methods 56

3.4 Discretization 61

3.5 Preconditioner and Multigrid Method 65

This chapter is devoted to solution methods for the elastic forward problem. That
means we seek to find the unknown displacement field U which is determined by the
energy minimization (2.45). The formal first order optimality condition is a nonlin-
ear partial differential equation which we solve with Newton’s method. In section
3.1, we formulate Newton’s method in function space, rather than discretizing it
first and then solving the discretized problem. However, we still face the problem of
a possible divergence of Newton’s method, which is often observed in elasticity with
large deformations. We will discuss possible methods to overcome this problem in
section 3.2. In order to apply Newton’s method, we repeatedly need to solve the
Newton system which is a linear equation. In section 3.3, we present two Krylov
subspace methods. As the underlying operator A is self-adjoint, we can employ a
minimal-residual (MinRes) method to solve it. Furthermore, as we know that the
solution U is a local minimum of the energy minimization problem and the oper-
ator A is the second derivative of the stored energy, we can also use a truncated
conjugate gradient (CG) method for the Newton system. Again, both methods are
formulated in a function space setting, which will offer us some insights on norms
for the stopping criteria and the role of the preconditioner.

At this point, we will briefly introduce the discretization by a finite element method
(FEM) in section 3.4. The FEM is a broadly used discretization technique for many
problems that require solving partial differential equations (PDE). Next, in section
3.5, we show how the multigrid method is incorporated as a preconditioner for the
Krylov subspace method and the idea of nested iterations.

48 3 Numerical Methods to Solve the Forward Problem

3.1 Newton’s Method

We seek to find a local minimum U? ∈ U of the energy minimization problem (2.45)
for a given load C, that is

U? = arg min
U∈U

W (U ,C)

with W (U ,C) = W (T)(U) +W (C)(U ,C),

with the necessary first order optimality condition which is the (nonlinear) varia-
tional equality (2.46), that is

0 =W,U (U?,C)[δU]

=W
(T)
,U (U?)[δU] +W

(C)
,U (U?,C)[δU], ∀δU ∈ U .

There are two approaches now:

• Discretize-then-Optimize: We first introduce a finite-dimensional function
space Uh by a finite element method and then consider the discretized
optimization problem as a problem in the coefficient vector in Rn and
solve it, for example, with Newton’s method in Rn.

• Optimize-then-Discretize: We first formulate Newton’s method in the infi-
nite dimensional function space U and solve the (linear) Newton system by
introducing a finite dimensional function space Uh, solving the resulting
linear system of equations.

For some problems, the two approaches might yield the same algorithm at the end
(if certain scalar products are chosen right) and it is said that discretization and
optimization commutate. However, this is not always the case. We choose the second
approach, Optimize-then-Discretize, because it seems more natural and may offer
helpful insights into the method, e. g. how to choose scalar products or norms. This
will also help to get an algorithm that is mesh independent, that means the algorithm
behaves similarly on refined meshes, e. g. with respect to iteration numbers.

We consider the problem (2.46),

0 = W,U (U?)[δU], ∀δU ∈ U ,

and want to solve it by Newton’s method. Let U0 ∈ U be an initial guess, e. g.
U0 ≡ 0. The Newton step in the (k + 1)-st iteration is

Uk+1 = Uk + α∆Uk, (3.1)

with a step length α > 0 and a search direction ∆Uk defined by the (linear) Newton
system

W,UU (Uk,C)[δU ,∆Uk] = −W,U (Uk,C)[δU], ∀δU ∈ U . (3.2)

3.2 Globalization by a Line Search 49

In more details, that is

W,U (Uk,C)[δU] = W
(T)
,U (Uk)[δU] +W

(C)
,U (Uk,C)[δU]

=

∫
Ω

w,F (I +∇Uk)[∇δU] dx +W
(C)
,U (Uk,C)[δU],

and

W,UU (Uk,C)[δU ,∆Uk]

= W
(T)
,UU (Uk)[δU ,∆Uk] +W

(C)
,UU (Uk,C)[δU ,∆Uk]

=

∫
Ω

w,FF (I +∇Uk)[∇δU ,∇∆Uk] dx +W
(C)
,UU (Uk,C)[δU ,∆Uk].

The last term W
(C)
,UU vanishes if the load C is a volume load f or a boundary

load g, see the formulas in table 2.1. We summarize Newton’s method to solve the
variational problem (2.46) in algorithm 3.1.1. A natural stopping criterion would
be a relative or absolute tolerance for the derivative W,U (Uk,C), e. g.

‖W,U (Uk,C)‖U∗
‖W,U (U0,C)‖U∗

≤ rTol or ‖W,U (Uk,C)‖U∗ ≤ aTol, (3.3)

with a user defined relative tolerance rTol > 0 and an absolute tolerance aTol > 0.

Algorithm 3.1.1 (Newton’s method to solve W,U (U ,C) = 0).

Input: initial U0, energy W , load C, k = 0
Output: state U

1: while (‖W,U (Uk,C)‖U∗ is too large) do
2: get ∆Uk by solving W,UU (Uk,C)[δU ,∆Uk] = −W,U (Uk,C)[∆Uk]
3: choose step length αk by a line search
4: set Uk+1 := Uk + α∆Uk

5: set k := k + 1
6: end while
7: return displacement Uk

3.2 Globalization by a Line Search

As known, a standard Newton’s method with a fixed step length α = 1 cannot
guarantee convergence in general. This holds true in particular for large elastic
deformations, as shown in the following example.

50 3 Numerical Methods to Solve the Forward Problem

Example 3.2.1 (Thick Plate). Let Ω = (0, 2) × (0, 2) × (0, 1
10

) be a plate. The
plate is clamped at the rim

ΓD = {x ∈ ∂Ω : x1 ∈ {0, 2} or x2 ∈ {0, 2}} .
A volume load f = (0, 0, 1

4
)> acts on the whole body Ω. We choose a value for

Young’s modulus of E = 1 and a Poisson ratio of ν = 0.3, which results in the
material parameters

a =
25

208
, b =

15

208
, c =

15

208
, d =

35

52
, e = −135

208
,

for the polyconvex energy density w from (2.18).

Remark 3.2.2 (Non-convergence of Newton’s method). We consider the example
3.2.1 and use Newton’s method on it. The start at U0 ≡ 0 results in the first iterate
U1 = ∆U0 which is shown in figure 3.1. The following iterates fail to converge.

The reason of the divergence lies in the local negative volume change J(x) < 0 for
some x ∈ Ω. As the first Newton system at U0 ≡ 0 is equivalent to the model of
linear elasticity, the result δU0 might not satisfy the positivity of the local volume
change J = detF > 0 for very large deformations. If the step length is chosen
as α = 1, the new iterate U1 = δU0 has a local negative volume change and is
physically inadmissible and hence the elastic model cannot be expected to yield
a reasonable result anymore. While the stored energy W is ∞ for local negative
volume changes, the forms for the derivatives W,U and W,UU might be still evaluable
at U1. Hence the negative volume might not be detected in the algorithm and the
Newton solver ends in divergence.

There are various ways to overcome this problem and get convergence of Newton’s
method. As we try to solve the energy minimization problem (2.45), these techniques
can also be viewed as globalization methods to ensure the convergence of Newton’s
method as an optimization method.

Incremental Method and Homogenization

A very common and simple method is an incremental increase of the load C, that
means we scale the load Cs := sC with a parameter s ∈ [0, 1]. We assume we know
a s0 ∈ [0, 1] such that Newton’s method converges to the intermediate solution
Us0 . From there we increase the increment and start Newton’s method at the
initial guess Us0 . We repeat this procedure and gain a sequence of parameters
0 ≤ s0 < s1 < . . . < sn = 1 and eventually can solve the original problem. This
algorithm is not to be understood as a line search inside Newton’s method but
rather a step-by-step solving with Newton’s method. Algorithm 3.2.3 shows the
incremental strategy with a simple trial and error strategy, that means we try to

3.2 Globalization by a Line Search 51

Figure 3.1. The first iterate of a standard Newton’s method for
example 3.2.1. Only the quarter (0, 1) × (0, 1) × (0, 1

10
) of the

domain Ω is plotted and the x3-axis points to the right. The
gray plate is a quarter of the undeformed domain Ω and the blue
domain the solution of the first Newton step with a step length
α = 1. The red areas at the clamping boundary ΓD and in the
center of the plate indicate a negative local volume change J(x) <
0.

solve for sk and if Newton’s method does not converge, we decrease sk until we get
convergence. From there we start to increase sk again.

Algorithm 3.2.3 (Incremental strategy).

Input: initial s0 = 0, all loads in dependency of s
Output: state U for s = 1

1: set k := 0
2: while s < 1 do
3: try to solve the forward system for sk
4: if (successful) then
5: choose a new sk+1 such that sk < sk+1 ≤ 1 and set k := k + 1
6: else
7: choose s̄k such that sk−1 < s̄k < sk and set sk := s̄k
8: end if
9: end while

10: return displacement U

The incremental method is quite easy to implement, however the question how to
choose sk remains open. A fixed series of parameters 0 < s0 < s1 < . . . < sn = 1 is
not practical for the later optimal control, therefore an automatization is required.
The simple trial and error method from the algorithm might work in general, though
homogenization techniques might improve that search. Still, this could be very

52 3 Numerical Methods to Solve the Forward Problem

expensive to do, as many Newton steps might be wasted just to find out that a
current parameter sk is not sufficiently small.

Simple Backtracking to ensure J > 0

Another straightforward idea would be to check the positivity of the local volume
change J = detF > 0 for a current iterate Uk+1 = Uk + α∆Uk with α = 1. If the
check fails, the step length α is decreased until the positivity of volume change J > 0
is satisfied for all points x ∈ Ω. This ensures a physically admissible deformation
x̂ = x + U and hence is a remedy of non-convergence caused by negative local
volume changes. Algorithm 3.2.4 shows this method. However it might happen
that the Newton step is still too large even though the volume change is positive,
resulting overall in a poor performance of Newton’s method. As the new iterate can
still be very close to a negative volume change in a certain point x, it might not be
a good start for the next Newton iteration.

Algorithm 3.2.4 (Simple backtracking).

Input: search direction ∆Uk, old iterate Uk, sα ∈ (0, 1)
Output: step length α

1: set α := 1, k := 0, done:=false
2: while done=false do
3: set U := Uk + α∆Uk

4: check for neg. local vol. changes J(x) = det
(
I +∇U(x)

)
∀ x ∈ Ω.

5: if (neg. vol. detected) then
6: set α := sαα
7: else
8: set done:=true
9: end if

10: end while
11: return displacement U = Uk + α∆Uk

Armijo-Backtracking on the Stored Energy W

As we have the energy minimization problem (2.45) and apply Newton’s method as
an optimization method on it, a line search naturally appears in the algorithm as a
globalization technique. A simple choice could be an Armijo-backtracking line search
to ensure that the stored energy W decreases with each new iterate, see (Nocedal
and Wright, 2006, ch. 3.1). As the stored energy W is only finite for displacements
with positive local volume change, the Armijo condition also ensures the positivity
of the local volume change J = detF > 0. For an easier reading of algorithm 3.2.5,
we abbreviate the function W along the search direction ∆Uk, that is

ϕ(α) := W (Uk + α∆Uk,C)

ϕ′(0) := W,U (Uk,C)[∆U].

3.2 Globalization by a Line Search 53

Algorithm 3.2.5 (Armijo-backtracking on the stored energy W).

Input: Energy function ϕ along the search direction, parameter σ ∈ (0, 1
2
), sα ∈

(0, 1)
Output: step length α

1: set α := 1, k := 0, done:=false
2: compute the stored energy ϕ(0) and the slope ϕ′(0)
3: while done=false do
4: set U := Uk + α∆Uk and compute the stored energy ϕ(α) := W (U ,C)
5: if (ϕ(α) > ϕ(0) + ασϕ′(0)) then
6: set α := sαα
7: else
8: set done:=true
9: end if

10: end while
11: return displacement U = Uk + α∆Uk

This method only works if a stored energy is available, which however is assumed
in this work. Another problem not discussed in this work would be inhomogeneous
Dirichlet boundary conditions (BCs), as they are included in the state space U .1

Hence the initial guess U0 requires the inhomogeneous Dirichlet BCs as well, since
otherwise the Armijo-condition might fail in the very first iteration (inhomogeneous
Dirichlet BCs normally increase the stored energy).

Guiding Function

The basic idea of this method is introducing a so-called guiding criterion with a
guiding function G : U → [0,∞] whose task is twofold:

(1) Judge if a step yields a physically admissible iterate in order to ensure
that the elastic model can be used (just like Checking Positive Volume).

(2) Damp very large Newton steps if necessary, which stabilizes Newton’s
method. However it should be avoided that it impairs the local conver-
gence rate.

Both goals can be achieved by a backtracking line search with the guiding criterion

G(Uk + α∆Uk) ≤ G(Uk) + β|Ω|, (3.4)

1It is not known yet how to add inhomogeneous Dirichlet boundary conditions to a stored energy.
Penalization terms might be an idea but the choice of the penalization term and parameter
remains. Normally one has to perform the energy minimization in the subspace that satisfies
the inhomogeneous Dirichlet BCs, but this requires an initial state U0 with the inhomogeneous
Dirichlet BCs. This is difficult in case of “large” inhomogeneous Dirichlet BC data.

54 3 Numerical Methods to Solve the Forward Problem

the guiding function

G(U) =

{ ∫
Ω

∣∣ ln (det(I +∇U(x))
)∣∣ dx

∞ if the integral is not defined
, (3.5)

and a guiding parameter β > 0. The step length α starts at 1 and is decreased by
a certain factor, e. g. sα = 1

2
, if the criterion is not satisfied, see algorithm 3.2.6.

Algorithm 3.2.6 (Backtracking for guiding criterion (3.4)).

Input: Current iterate Uk, search direction ∆Uk, sα ∈ (0, 1)
Output: step length α

1: set α := 1, k := 0, done:=false
2: compute G(Uk) and the offset β|Ω|
3: while done=false do
4: set U := Uk + α∆Uk and compute G(U)
5: if (G(U) > G(Uk) + β|Ω|) then
6: set α := sαα
7: else
8: set done:=true
9: end if

10: end while
11: return displacement U = Uk + α∆Uk

First of all, the guiding criterion (3.4) excludes physically inadmissible deformations.
If an iterate Uk+1 = Uk + α∆Uk has a point x ∈ Ω with negative volume change
det(I +∇U(x)) < 0, the logarithm ln det(I +∇U(x)) in the in guiding function is
not defined. Therefore, the value of the guiding function is G(Uk+1) = ∞. As we
assume to start with a physically admissible initial guess U0 with G(U0) <∞, the
positive volume change is preserved during Newton’s method because a physically
inadmissible iterate Uk+1 could not satisfy the criterion.

The guiding criterion also damps Newton’s method for very large steps far away
from the undeformed state U ≡ 0 (states near the undeformed state seem not to
cause trouble). Let us assume we start Newton’s method at U0 ≡ 0 with

G(U0) =

∫
Ω

∣∣ ln (det(I +∇0(x))
)∣∣ dx =

∫
Ω

∣∣ ln 1
∣∣ dx = 0.

As the guiding function value is non-negative, any iterate U 6= 0 would have G(U) ≥
G(U0) = 0, with equality only if the volume change is J ≡ 1, which would mean
that the iterate U1 behaves like an incompressible material. This is very unlikely
for the material models and parameters in this work. Hence we can expect that the
guiding functional G increases with the first iterate U1. The damping now occurs
by limiting this increase by the term β|Ω|. This strategy does not impair the local

3.2 Globalization by a Line Search 55

convergence behavior of Newton’s method. If Newton’s method convergences, the
norm of the search direction ∆Uk becomes smaller. As a consequence, the difference
G(Uk+1)−G(Uk) decreases too and eventually is smaller than the offset β|Ω|. We
illustrate the behavior of this line search strategy with the following example.

Example 3.2.7 (Compression of a Cube). Let Ω be the cube (−1, 1)3 and g = g0 n,
g0 ∈ R be an orthogonal boundary load on the whole boundary ΓN = ∂Γ. As we
do not impose any Dirichlet boundary conditions, the solution is not unique due to
rigid body movements. However we will neglect these movements and consider a
special (analytical) solution for this problem. First, we show that the compression

x̂(x) = γ x, or Uγ(x) = (γ − 1)x, γ > 0, (3.6)

with a certain constant γ = γ(g0) ∈ R, solves the energy minimization, that is the
first-order optimality condition W,U (Uγ) = 0.

Proof. The deformation gradient for (3.6) is simply F = γ I. Due to the
isotropy of the elastic material behavior and frame indifference (2.19), the
stress tensor is W,U (Uγ) = cγI, with the constant cγ = 2aγ + 8bγ3 +
2cγ5−dγ−1 for the energy density (2.18). Inserting this into the first-order
optimality condition (2.46) yields∫

Ω

cγI :
(
∇δU(x)

)
dx−

∫
∂Ω

g0δU(x)>n(x) dS = 0, ∀ U ∈ U .

The term I : ∇δU = tr(∇δU) can be rewritten as div δU . We can now
choose the constant γ such that cγ = g0 because

cγ = 2aγ + 8bγ3 + 2cγ5 − dγ−1

is a monotone increasing and thus bijective function cγ : (0,∞) → R for
a, b, c, d > 0. Our first-order optimality condition then reads

g0

∫
Ω

div δU(x) dx− g0

∫
∂Ω

δU(x)>n(x) dS = 0, ∀ U ∈ U ,

which is Green’s identity.

Let us consider the more important case with g0 < 0, e. g. the cube is compressed,
that is J = γ3 < 1. Negative volume changes might occur in the linearized Newton
steps if the load g0 < 0 is small enough. Starting at U0 ≡ 0, the first Newton
step would be ∆U0(x) = (γ0 − 1)x (the linearized system inherits the isotropy and
reference invariance of the nonlinear model and hence the step δU0 differs only in the
constant γ0.) Unlike the constant γ > 0, the constant γ0 depends (affine-) linearly
on g0 and thus might be negative, which is ruled out now by the guiding criterion.
Following Newton’s method will give a sequence of iterates Uk, Uk(x) = (γk− 1)x.

56 3 Numerical Methods to Solve the Forward Problem

Inserting Uk into the guiding function (3.5) yields

G(Uk) =

∫
Ω

∣∣ ln γk∣∣ dx.

As the body is compressed, that is γk < 1, the guiding criterion (3.4) reads

G(Uk+1)−G(Uk) ≤ β|Ω|∫
Ω

− ln(γk+1) dx−
∫
Ω

− ln(γk) dx ≤ β|Ω|

⇔ ln
γk
γk+1

≤ β ⇔ γk+1 ≥ γke−β .

This means that the constant γk+1 of the new iterate Uk+1 is bounded below by
the old constant multiplied by a factor e−β < 1. In the case of an expanding
body, instead of compressing, the factor would be eβ . Hence the volume change
is bounded below and above. Of course, the uniform compression is a very simple
example and does not account for richer deformations. Still, the guiding function
(3.5) can be used for more complex problems, as it is a quantity to measure an
“average” logarithmic volume change.

A numerical experiment on the different globalization techniques can be found in
6.1.1.

3.3 Krylov Subspace Methods

Before we discuss the discretization of the problem in the next section, we briefly
present two Krylov subspace methods, namely the conjugate gradient method (CG
method), introduced by Hestenes and Stiefel (1952), and the minimal residual
method (MinRes-method), introduced by Paige and Saunders (1975) in the Hilbert
space U .

We seek to solve the Newton system (3.2), that is the variational equality

W,UU (Uk,C)[δU ,∆Uk] = −W,U (Uk,C)[δU], ∀δU ∈ U .

The Hilbert space U has the inner product (·, ·)U and its dual space is U∗, while
[·, ·]U∗,U denotes the duality pairing. We introduce the linear bounded operator
A ∈ L(U ,U∗), which is defined by

[Ax, y]U∗,U := W,UU (Uk,C)[x, y], x, y ∈ U . (3.7)

Since the second derivatives of W are symmetric, the operator A is self-adjoint, that
is

[Ax, y]U∗,U = [Ay, x]U∗,U .

3.3 Krylov Subspace Methods 57

The right-hand side b ∈ U∗ is defined by

[b, x]U∗,U := −W,U (Uk,C)[x], x ∈ U . (3.8)

Both, A and b, depend on the current iterate Uk of Newton’s method. We now
rewrite the Newton system (3.2) as the linear operator equation

Ax = b ∈ U∗, (3.9)

with the solution x := ∆U ∈ U . In order to (approximately) solve (3.9), we apply
a Krylov subspace method. As the operator A is self-adjoint, a MinRes-method
can be applied, or a CG method can be used to solve the problem if the operator is
positive definite (coercive), that is there exists a constant c > 0 such that

[Ax, x] ≥ c‖x‖2U , ∀x ∈ U . (3.10)

The operator A cannot be expected to be positive definite for all iterates Uk ∈ U ,
but we can still employ a truncated CG method inside Newton’s method. More
details will be given later, let us first start with the standard CG method.

CG Method

We assume the operator A ∈ L(U ,U∗) to be self-adjoint and positive definite. The
CG method can be derived in a Hilbert space in the same way as in Rn and also
yields the same algorithm, with one small, but important observation. Günnel et al.
(2014) pointed out that the Riesz operator R ∈ L(U∗,U), defined by

(Rr, x)U = [r, x]U∗,U , ∀r ∈ U∗, x ∈ U , (3.11)

takes the same place as the inverse of a preconditioner in a so-called preconditioned
CG method. Algorithm 3.3.1 shows the CG method in Hilbert space taken from
Günnel et al. (2014).

Algorithm 3.3.1 (CG method for (3.9) in Hilbert space).

1: set r0 := b−Ax0 ∈ U∗
2: set p0 := Rr0 ∈ U
3: set k := 0
4: while (conv. crit. not satisfied) do

5: set αk :=
[rk, Rrk]

[Apk, pk]
6: set xk+1 := xk + αkpk
7: set rk+1 := rk − αkApk
8: set βk+1 :=

[rk+1, Rrk+1]

[rk, Rrk]
9: set pk+1 := Rrk+1 + βk+1pk

10: set k := k + 1
11: end while

58 3 Numerical Methods to Solve the Forward Problem

The choice of the preconditioner will be explained in section 3.5. The convergence
criteria is the standard decrease of the residual in the R-norm (or U∗.norm), e. g.

‖rk‖R
‖b‖R

≤ rTol or ‖rk‖R ≤ aTol, (3.12)

with a user defined relative tolerance rTol > 0 and absolute tolerance aTol > 0. We
choose the norm of the right-hand side b in the denominator instead of the norm of
r0 because we would like to have a stopping criterion which is independent of the
initial guess x0. A good initial guess would make it harder to satisfy the relative
stopping criterion since the denominator would be smaller. For example, if we have
an initial guess x0 which is very close to the solution, the relative stopping criterion
might not even be satisfiable due to numerical rounding errors. We will still use
the phrase initial residual norm for the norm ‖b‖R, even though the actual initial
residual is r0 = b−Ax0.

Truncated CG Method

The CG method requires the linear operator A = W,UU (Uk,C) to be positive def-
inite (coercive). This cannot be guaranteed for all iterates, however Ball’s existence
theorem implies that there is a local minimum thus the linear operator A is at least
positive semi-definite. Therefore the assumption that A is positive definite near a
solution is reasonable. In a case like this, a truncated CG method can be used
inside of Newton’s method, see “Line search Newton-CG method” in (Nocedal and
Wright, 2006, ch. 7.1). Weiser et al. (2007) have used this approach to solve prob-
lems with elasticity, though they used a different technique for the globalization to
ensure convergence of Newton’s method.

The basic idea of a truncated CG method is simply to stop the CG method if a
search direction pk with negative curvature is detected. A negative curvature means
that the term [Apk, pk] is negative, in which case the iterate xk is not updated in
the direction pk. This is a very small modification of the CG method and can be
easily implemented, see algorithm 3.3.2, lines 5-7. As we assume A to be positive
definite near the solution, a break due to negative curvatures will not happen near
the solution. Therefore we can expect that this modification will not worsen the
local convergence behavior of Newton’s method as we eventually have a standard
CG method.

MinRes Method

Another Krylov subspace method to solve Ax = b for a self-adjoint operator A is
the MinRes method. Like in the CG method, Günnel et al. (2014) have shown that
the Riesz operator takes the role of the (inverse) preconditioner. Thus the choice
of the inner product in the Hilbert space U also defines the preconditioner, which
is an explanation why a preconditioner for the MinRes method has to be positive

3.3 Krylov Subspace Methods 59

definite. Algorithm 3.3.3 shows details on the MinRes method, taken from Günnel
et al. (2014).

Algorithm 3.3.2 (Truncated CG method for (3.9) in Hilbert space).

1: set r0 := b−Ax0 ∈ U∗
2: set p0 := Rr0 ∈ U
3: set k := 0
4: while (conv. crit. not satisfied) do
5: if [Apk, pk] < 0 then
6: return current xk if k > 0, otherwise p0

7: end if

8: set αk :=
[rk, Rrk]

[Apk, pk]
9: set xk+1 := xk + αkpk

10: set rk+1 := rk − αkApk
11: set βk+1 :=

[rk+1, Rrk+1]

[rk, Rrk]
12: set pk+1 := Rrk+1 + βk+1pk
13: set k := k + 1
14: end while

Algorithm 3.3.3 (MinRes method for (3.9) in Hilbert space).

1: set v0 := 0 ∈ U∗ and w0 := w1 := 0 ∈ U
2: set v1 := b−Ax0 ∈ U∗
3: set z1 := Rv1

4: set γ1 := [v1, z1]1/2

5: set z1 := z1/γ1 and v1 := v1/γ1

6: set η0 := γ1, s0 := s1 := 0, c0 := c1 := 1
7: set k := 1
8: while (conv. crit. not satisfied) do
9: set δk := [Azk, zk]

10: set vk+1 := Azk − δkvk − γkvk−1

11: set zk+1 := Rvk+1

12: set γk+1 := [vk+1, zk+1]1/2

13: set zk+1 := zk+1/γk+1 and vk+1 := vk+1/γk+1

14: set α0 := ckδk − ck−1skγk and α1 := (α2
0 + γ2

k+1)1/2

15: set α2 := skδk + ck−1ckγk and α3 := sk−1γk
16: set ck+1 := α0/α1 and sk+1 := γk+1/α1

17: set wk+1 := (1/α1)
[
zk − α3wk−1 − α2wk

]
18: set xk := xk−1 + ck+1ηk−1wk+1

19: set ηk := −sk+1ηk−1

60 3 Numerical Methods to Solve the Forward Problem

20: set k := k + 1
21: end while

Similarly to the CG method, we choose the convergence criterion

‖rk‖R
‖b‖R

=
|ηk|
‖b‖R

≤ rTol or ‖rk‖R = |ηk| ≤ aTol. (3.13)

The current residual norm ‖rk‖R can be easily computed by ‖rk‖R = |ηk|.

Inexact Newton’s Method

One reason for using Newton’s method is its fast local convergence. To retain this
convergence rate, one has to be careful how to incorporate iterative linear solvers
like CG or MinRes.

Remark 3.3.4 (Local convergence of Newton’s method). Setting the step length
α = 1 in the update (3.1) of Newton’s method would yield a standard Newton’s
method. This method has a local quadratic convergence rate if it converges and
certain assumptions are satisfied, see (Deuflhard, 2004, ch. 8) or (Kelley, 1995,
Th. 5.1.2). This means that the iterates Uk converge towards the solution U? and
there exists a constant C > 0 such that

‖Uk+1 −U?‖ ≤ C ‖Uk −U?‖2 ∀k ∈ N.
This only holds true if the Newton step (3.1) is solved to sufficient accuracy. As
we will use iterative solvers for the Newton system, we have to choose the stopping
criteria of the linear solvers carefully so we will not lose the fast local convergence
of Newton’s method.

A Newton’s method, where the Newton system is not solved accurately in each step,
is called an inexact Newton’s method. Here, we solve the first Newton steps with a
lower accuracy by setting the relative tolerance of the iterative linear solver quite
large, e. g. rTolsafe = 10−4. This tolerance will be lowered when Newton’s method
converges, that means the norm ‖W,U (Uk,C)‖U∗ from the stopping criterion (3.3)
of Newton’s method decreases. The choice how we set the relative tolerance rTol of
the linear solver influences the local convergence behavior of Newton’s method. The
following two strategies depend on the norm of the current right-hand side in the
Newton step (3.1), that is ‖W,U (Uk,C)‖U∗ . We can choose the relative tolerances

rTol = min {rTolsafe, ‖W,U (Uk,C)‖U∗}

or rTol = min

{
rTolsafe, ‖W,U (Uk,C)‖

1
2
U∗

}
,

(3.14)

with a minimal relative tolerance rTolsafe > 0. The first strategy will keep the
q-quadratic convergence rate, while the second strategy will give a q-superlinear

3.4 Discretization 61

convergence rate (of order 3
2
), that means there exists a zero sequence ck with

‖Uk+1 −U∗‖ ≤ ck ‖Uk −U∗‖ ∀k ∈ N,

see (Nocedal and Wright, 2006, Th. 7.2) or (Kelley, 1995, Th. 6.1.2). Next to this
relative stopping criterion, we use a stopping criterion with a very small absolute
tolerance aTol. This can be understood as a safety action: If we do not use aTol
as well, we risk that rounding errors might prevent the iterative linear solvers from
satisfying the relative stopping criterion.

Another point is the expectation on the performance of the algorithm with respect to
the computational costs. We emphasize that the local quadratic convergence rate is
with respect to the number of iterations, not to the computational costs themselves.
The overall algorithm, including the iterative solvers for the (linear) Newton system,
might not be as fast if the iterative solvers take a lot of computational time due
to their possibly slower convergence rate. Their number of iterations might also
grow as we solve the Newton system more and more accurately. Still, Newton’s
method shows the local quadratic convergence, even though the computational costs
to achieve it might grow quite fast.

3.4 Discretization

In order to approach the energy minimization problem (2.45) with the solution
U ∈ U numerically, we need to reduce the infinite dimensional function space U to
a finite dimensional space Uh and compute an approximation Uh of the solution U .
This procedure is called discretization and one of the most common methods is the
finite element method (FEM). We briefly introduce the FEM to clarify the notation.
For a comprehensive introduction and details we refer to Braess (2007), Babuška
et al. (2011), Brenner and Scott (2002), Elman et al. (2005) and references therein.

We start with the base of the FEM, the triangulation or mesh. Having a two- or
three-dimensional domain Ω, we decompose it into a finite number of simplices, that
are triangles or tetrahedra, in this work.

Definition 3.4.1 (Triangulation). Let Ω ⊂ Rd, d = 2, 3, be a given open two- or
three-dimensional domain. We call a decomposition

Th = {T1, T2, T3 . . . , TNT } ,
with simplices Ti a triangulation or mesh if the following criteria are satisfied:

(1) Ω =
NT⋃
i=1

Ti

(2) two simplices share, that is Ti ∩ Tj , i 6= j, either
• a point that is a corner node of both simplices

62 3 Numerical Methods to Solve the Forward Problem

• a line that is an edge of both simplices
• a triangle that is a facet of both simplices (only for d = 3)

The task of decomposing the domain Ω into a triangulation Th can be achieved by
either using a structured mesh in case Ω is a rather simple geometry that allows a
straightforward definition of the simplices, or by a mesh generator for more arbitrary
domains.

Having a mesh Th, we can define ansatz functions on the simplices in order to define
basis functions to span a finite-dimensional function space Uh. Table 3.1 shows the
kinds of Lagrange finite elements which we use in this thesis.

Piecewise constant elements P0

v : Ω→ R with v
∣∣
intTi

≡ const, ∀ Ti ∈ Th

Continuous, piecewise linear elements P1

v ∈ C0(Ω) with v
∣∣
Ti

is affine linear w. r. t. x

Table 3.1. The two types of finite elements which are used in this
work. The elements defined on a triangle are used for the plate
model, while the tetrahedron is used for the full three-dimensional
problem. The green dots are the nodes representing the degrees
of freedom of a Lagrange finite element.

With these ansatz functions, the Lagrange basis functions ϕi, i = 1, . . . , NU , are
defined such that ϕi(x

glob
j) = δij with the global nodes xglob

j and dimUh = NU .
These functions form a base of the discretized function space Uh, e. g.

Uh = span {ϕ1, ϕ2, . . . , ϕNU } .
Hence, a function Uh ∈ Uh can be represented by the coefficient vector

~u = (u1, u2, . . . , uNU)> ∈ RNU ,

with Uh(x) =

NU∑
i=1

uiϕi(x), x ∈ Ω.

3.4 Discretization 63

We use this discretization to solve our energy minimization numerically. As said
earlier, we first optimize (that is applying algorithm 3.1.1) and then discretize (that
is reducing the Newton system from U to Uh).

Definition 3.4.2 (Discretized State Space). Let Th be the triangulation and U the
state space of the domain Ω. We choose continuous piecewise linear elements P1 to
discretize the state space, that is

Uh =
{
U ∈ U : U

∣∣
Ti

is affine linear
}
. (3.15)

Definition 3.4.3 (Discretized Control Space). Let Th be the triangulation and
C the control space of the domain Ω. We choose continuous piecewise constant
elements P0 to discretize the control space, that is

Ch =
{
C ∈ C : C

∣∣
Ti

is constant
}
. (3.16)

If the load/control lives on the boundary, e. g. C = L2(ΓN), the discretized control
space lives on ΓN as well.

Having defined the discretized function spaces Uh and Ch, we can have another look
at the algorithms 3.1.1 (Newton’s method), 3.3.1 (CG method) and 3.3.3 (MinRes
method). Besides discretizing all functions in these algorithms, we need represen-
tations of the operator A and the Riesz operator R. These will be the stiffness
matrix Ah and the discretized Riesz Rh which will be the application of the precon-
ditioner P . First, we start with the stiffness matrix while section 3.5 will present
the preconditioner.

We consider the Newton system (3.2), that is

W,UU (Uh,Ch)[δUh,∆Uh] = −W,U (Uh,Ch)[δUh], ∀δUh ∈ Uh,

and replace the function space U by Uh, e. g.

W,UU (Uh,Ch)[δUh,∆Uh] = −W,U (Uh,Ch)[δUh], ∀δUh ∈ Uh, (3.17)

for a given load Ch ∈ Ch, which can be obtained by an approximation Ch ≈ C ∈ C.
Using the coefficient vectors

~u = (u1, u2, . . . , uNU)> ∈ RNU , ∆Uh(x) =

NU∑
j=1

ujϕj(x), x ∈ Ω,

~v = (v1, v2, . . . , vNU)> ∈ RNU , δUh(x) =

NU∑
i=1

viϕi(x), x ∈ Ω,

(3.18)

64 3 Numerical Methods to Solve the Forward Problem

and inserting this into (3.17) yields

W,UU (Uh,Ch)[Σviϕj ,Σujϕj] = −W,U (Uh,Ch)[Σviϕi], ∀~v ∈ RNU

⇔
NU∑
i,j=1

ujviW,UU (Uh,Ch)[ϕi, ϕj] = −
NU∑
j=1

viW,U (Uh,Ch)[ϕi], ∀~v ∈ RNU .

By choosing the unit vectors ~ei in RNU for the vectors ~v, we finally obtain the system
of linear equations

Ah ~u = ~b, (3.19)

with the symmetric stiffness matrix

[Ah]ij = W,UU (Uh,Ch)[ϕi, ϕj], (3.20)

and the right-hand side

[~b]i = W,U (Uh,Ch)[ϕi]. (3.21)

We like to emphasize that both, stiffness matrix Ah ∈ RNU×NU and right-hand-side
bh ∈ RNU depend on the current iterate Uk in Newton’s method. The assembly of

Ah and ~b is normally done element-wise and the integrals are computed by Gauss
quadrature rules for triangles and tetrahedra.

The stiffness matrix Ah is symmetric, what follows from the symmetry of second
derivatives. The symmetry is very important property for the choice of linear solvers
and could be destroyed if the Dirichlet boundary conditions are applied to the linear
system (3.19) in the wrong way.

Remark 3.4.4 (Ways to apply Dirichlet boundary conditions).

Elimination: The nodes belonging the Dirichlet BCs are eliminated, that is their
already known values are integrated into the linear system and their entries are then
deleted from the matrix Ah, coefficient vector ~u and right-hand side fh. Hence,
the dimension of the problem is reduced since the degrees of freedom from the
Dirichlet nodes are eliminated. In the implementation, this approach requires a
rearrangement of memory allocated for the matrix and vectors, which might be
costly.

Nonsymmetric row replacement: Let the degree of freedom j be part of the
Dirichlet BC uj = 0, e. g. the x2-component in a certain global node. The j-th
row from the matrix Ah and right-hand side fh are replaced by unit vectors ~e>j and
[fh]j = 0, such that the equation uj = 0 is used instead of the PDE in this node.
(In the case of inhomogeneous Dirichlet BC uj = uD

j and that the current iterate
does not fulfill them yet, the difference between given value and current value in
this node is written in the right-hand side). This can be easily implemented but the
symmetry of the matrix is destroyed.

3.5 Preconditioner and Multigrid Method 65

Symmetric row and column replacement: Again, let the degree of freedom j
be part of the Dirichlet BCs. The j-th row from the matrix Ah and right-hand side
fh are replaced by unit vectors ~e>i and [fh]j = 0, such that the equation uj = 0 is
used instead of the PDE in this node. In order to preserve the symmetry of Ah,
the j-th column is replaced by ~ej . In case of homogeneous Dirichlet BCs, this does
not require a change of the right-hand side fh. (In case that the inhomogeneous
Dirichlet BCs are not fulfilled yet, certain terms have to be added to fh too, hence
applying the Dirichlet BCs has to be done on Ah and fh simultaneously.)

Projection: The projection method can be used with iterative solvers like Krylov
subspace methods. The matrix Ah and the right-hand side fh are not modified, but
after multiplying with the matrix Ah, e. g. ~r = Ah ~u − fh, the Dirichlet BCs are
applied to the result, e. g. ~r. This ensures that the iterates of the Krylov method
stay in the subspace where the homogeneous Dirichlet BCs are fulfilled.

As we will use a Krylov subspace method, we choose to keep the symmetry of Ah
by a symmetric row and column replacement. The projection method would also be
possible, but it might cause difficulties with the smoother inside the preconditioner,
see the next section 3.5.

3.5 Preconditioner and Multigrid Method

The choice of the preconditioner P has a huge impact on the convergence behavior
of the Krylov subspace method for the linear system Ax = b, with a linear operator
A ∈ L(U ,U∗) and a Hilbert space U . As mentioned earlier, this choice is equivalent
to the choice of the inner product (·, ·)U of the Hilbert space U . This also means
that for an unfavorable choice for preconditioner/inner product, even properties like
boundedness or coercivity of the linear operator A might be lost.

Many practical realizations of a preconditioner cannot be formulated for the infi-
nite dimensional function space U , but rather depend on the discretized space Uh.
For example, methods like incomplete-LU-factorization (ILU) or algebraic multi-
grid (AMG) depend on the structure of the matrix Ah, while other methods like
Bramble-Pasciak-Xu (BPX) or geometrical multigrid also need information about
the hierarchy of a family of meshes. Therefore we understand the preconditioner
as a symmetric and positive definite matrix P which is applied on the discretized

linear system Ah~x = ~b.

We seek to find a “good” preconditioner, which is a compromise between the per-
formance of the CG or MinRes method, e. g. how many iterations are needed to
solve the problem to a satisfactory accuracy, and the computational costs of the ap-
plication of the preconditioner. There are two extreme cases: The identity matrix
P = I has virtually no costs for the application but a very poor performance for the

66 3 Numerical Methods to Solve the Forward Problem

CG or MinRes method for fine meshes. On the other hand, choosing the matrix
P = Ah implies that we need only one Krylov iteration, but the costs to apply the
preconditioner is a linear system solve itself. Various methods for the preconditioner
P has been proposed so far in order to find a compromise between costs and per-
formance of the Krylov subspace method. It is important to note that there is no
“best” preconditioner and that the choice should always take the problem behind it
into account.

The performance, or convergence behavior, of the CG and MinRes method is much
more complex than the classical convergence proof suggests. For example, let us
restate the result for the CG method from (Braess, 2007, Th. 4.4).

Theorem 3.5.1 (Classical linear bound for the CG method). Let the sequence
~x0, ~x1, ~x2, . . . be iterates generated by the CG method (alg. 3.3.1) with the precon-

ditioner P applied on the linear system Ah~x = ~b with the solution ~x∗ and let κ
be the condition number of the symmetric positive definite matrix PAh. Then the
iterates satisfy the linear bound

‖~xk − ~x∗‖Ah ≤ 2

(√
κ− 1√
κ+ 1

‖~x0 − ~x∗‖Ah
)k

(3.22)

with the Ah-norm ‖~x‖Ah := ~x>Ah~x.

Remark 3.5.2. This result can be extended to infinite dimensional Hilbert spaces
where κ is the quotient of the lower and upper bound of the spectrum of the linear
operator RA ∈ L(U ,U), see (Daniel, 1967, Section 1.2) and (Elman et al., 2005,
Section 2.2), where a similar linear bound for the MinRes method is shown.

According to this linear bound based on the condition number κ, we can expect
a better convergence rate if the condition number is small. However, as Gergelits
and Strakoš (2013) recently noted, this a-priori convergence rate analysis is based
on simplifications that eventually cannot be expected to describe the actual conver-
gence behavior of a CG method running on a computer. For example, the classical
convergence rate analysis neglects rounding errors and simplifies the spectrum of A
to its bounds or outlying eigenvalues. We conclude that a small condition number
κ is desirable for our purpose and might even offer a better convergence in the CG
or MinRes method, though we do not expect the convergence behavior to behave
as the linear bound based on the condition number κ might suggest.

Another desirable property is the spectral equivalence of the preconditioner P and
the stiffness matrix Ah for different refinement levels. It implies that with subse-
quently refined meshes, the number of Krylov iterations will be bounded from above,
which is also called mesh independent behavior. Otherwise, the running time of the

3.5 Preconditioner and Multigrid Method 67

overall algorithm to solve the problem would not scale linearly with the problem
size, that is the number of degrees of freedom.

Definition 3.5.3 (Spectrally Equivalent Preconditioner). Let A ∈ L(U ,U∗) be a
linear operator and let U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U be a family of discretized function
spaces. The discretizations of A are Ai ∈ L(Ui,U∗i). The family of preconditioners
Pi ∈ L(Ui,U∗i) is called spectrally equivalent if there exist constants c, c > 0 such
that for all i = 0, 1, 2, . . ., we have

c [Pi x, x]U∗i ,Ui
≤ [Ai x, x]U∗i ,Ui

≤ c [Pi x, x]U∗i ,Ui
, ∀x ∈ Ui. (3.23)

We emphasize that the spectral equivalence of P and Ah does not guarantee a
fast convergence as the quotient κ := c/c takes the role of the condition number
in the linear bound and κ might be very large. For example, the stiffness matrices
belonging to the standard inner product of the Sobolev space H1

0 (Ω)3 might be a bad
choice even though they are spectrally equivalent to the matrices Ai. A better choice
would be the inner product (2.28) which belongs to the linear model of elasticity.
Of course, we will not solve this problem exactly, but rather approximately by a
V-cycle of a geometrical multigrid method. Another choice would be a V-cycle of
the stiffness matrix Ah itself, though it is not guaranteed that this preconditioner
is positive definite, see section 5.4. Let us start by briefly introducing the multigrid
method itself.

Multigrid Method

The core idea is a hierarchy of meshes, so-called levels. While solving a problem on
the finest mesh, we can switch to other meshes where it might be easier to solve the
problem and low frequent errors can be easily diminished. See Hackbusch (1980),
Wesseling (1992) or Trottenberg et al. (2001) for an introduction.

We start with a given mesh T0, the coarse mesh, and subsequent refinements yield
the new meshes T1 ⊂ T2 ⊂ . . . ⊂ TL, where L is the number of total refinements.
We assume that the refinement only adds new degrees of freedom, therefore the
discretized function spaces U0 ⊂ U1 ⊂ . . . ⊂ UL are nested. We now define a
prolongation which transfers a function uh ∈ U` on level ` to the next finer mesh
on level ` + 1, or to be more precise, the coefficient vector is prolongated. Since
the discretized function spaces are nested, the prolongated function is the same
function. Of course, this identity in the function space does not mean an identity
for the coefficient vectors since the basis functions in U` and U`+1 are different. This
is where the prolongation operator p`→`+1 takes its role.

Let {ϕj}Lj=1 and {ψi}
N`+1

i=1 be the finite element basis of U` respectively U`+1. A

function u ∈ U` can be represented by a coefficient vector on each level, e. g. ~x ∈ RL

68 3 Numerical Methods to Solve the Forward Problem

on level ` and ~y ∈ RN`+1 on level `+ 1, with the identity

x` =

N`∑
j=1

x`jϕj =

N`+1∑
i=1

yiψi.

We evaluate this equation in the global nodes xglob
k , k = 1, . . . , N`+1 of the mesh on

level `+ 1 yields and, as we use Lagrange elements, that implies ψi(x
glob
k) = δik, we

get a simple representation for the vector ~y, that is

yk =

N`∑
j=1

xjϕj(x
glob
k).

This sum is actually very short because the Lagrange finite elements have a local
support.

Definition 3.5.4 (Prolongation and restriction matrix). The prolongation matrix
p`→`+1 ∈ RN`+1×L (such that ~y = p`→`+1~x) is defined as

[p`→`+1]ij = ϕj(x
glob
i). (3.24)

The canonical restriction matrix r is defined as r`+1→` := p>`→`+1.

With these prolongation and restriction operators, we can move from one level to
another. This allows the following idea of multigrid: A decomposition of the error
of an intermediate solution into the eigenfunctions of the operator A yields parts
of higher and parts of lower “frequencies”2. The intermediate solution on the finest
mesh has higher and lower frequency error components, while those with higher
frequency tend to be “smoothed out“ faster than those with lower frequencies. On
the other hand, the errors with high frequencies are not resolved on a very coarse
mesh and here the former low frequency errors have a high frequency, and hence
can be “smoothed out“ on the coarse mesh. The conclusion is the multigrid idea:
Smooth out the higher frequency error on the finer meshes and the lower frequency
errors on the coarser meshes. However, we will not employ a full multigrid method
to solve our linear problems but rather use it as a preconditioner inside of a Krylov
subspace method, see Braess (2007) or the numerical experiments in Ospald (2012).

V-Cycle of a Multigrid Method

A multigrid V-cycle starts on the finest mesh level L and computes the current
residual on this level. The residual is then restricted and passed to the next coarser
mesh, where a smoothing is applied. This is repeated until the coarsest mesh level
` = 0 is reached. Here, the problem is solved by a direct solver. This is rather

2The word “frequency” is very descriptive in the case of the Poisson equation in 1D where the
eigenfunctions are sin- and cos-functions whose frequencies varies the eigenvalues. In the case of
linear elasticity, it even has the physical meaning of natural oscillation of an elastic body.

3.5 Preconditioner and Multigrid Method 69

inexpensive because the number of degrees of freedom on the level ` = 0 is small
compared to the other levels. The correction is prolongated and passed to the next
finer mesh level ` = 1, where a smoothing is applied. This procedure is repeated until
the finest mesh is reached. Braess and Hackbusch (1983) proved that a multigrid
with a V-cycle converges mesh independently. Therefore, our preconditioner, a
single multigrid V-cycle with a matrix Klin.elast, is spectral equivalent to the inverse
K−1

lin.elast, which would be an exact application of the preconditioner. Furthermore,
Schöberl et al. (2011) have shown that this also applies for the linear Reissner-
Mindlin plate model, which is a special case of the hierarchical plate model for
small deformations. Hence we choose the multigrid V-cycle also in the case of the
hierarchical plate model to test it.

A recursive definition of a multigrid V-cycle can be found in algorithm 3.5.5. The
matrices A` on the various levels can be obtained by a Galerkin projection, see
(Hackbusch, 1980, ch. 3.7). We only assemble the matrix AL on the finest mesh and
restrict it to the other levels by recursively computing

A`−1 = r`+1→`A`p`→`+1. (3.25)

Algorithm 3.5.5 (Multigrid V-cycle MGV (`, ~x,~b) for the linear system Ax = b).

Input: level `, iterate ~x ∈ RL, right-hand side ~b ∈ RL
Output: new iterate ~x ∈ RL

1: if ` = 0 then
2: return ~x = A−1

0
~b

3: else
4: ~x := Sν1` (A`, ~x,~b)

5: ~d := r`+1→`(~b−A`~x)

6: ~e := MGV (`− 1, ~e, ~d)
7: ~x := ~x+ p`→`+1~e

8: ~x := Sν2` (A`, ~x,~b)
9: return ~x

10: end if

The choice of the smoother S and its number of repetitions ν1, ν2 have an influence
on the preconditioner in several aspects: As we want to use a V-cycle as a precondi-
tioner, the application of a V-cycle has to be that of a symmetric, positive definite,
linear operator. On the other hand, the choice of the smoother has an impact on
how “good” the preconditioner is, this means the performance of the Krylov method
as well as the computational costs of applying the smoother. Numerical experiments
in Ospald (2012) on linear elasticity suggest the use of a successive over-relaxation
(SOR) and ν1, ν2 = 1.

Nested Iterations

70 3 Numerical Methods to Solve the Forward Problem

Since we have a hierarchy of nested meshes from the multigrid method, we can
employ the idea of so-called nested iterations to solve the forward problem. Let
L+ 1 be the number of nested function spaces, e. g.

U0 ⊂ U1 ⊂ . . . ⊂ UL.
We seek to solve the optimal control problem (4.2) on the finest mesh, that means
in UL. Starting on the coarsest mesh and solving the forward problem in U0, we get
the solution

U (0) ∈ U0.

By interpolating U (0) ∈ U0 onto U1 by the prolongation operator p0→1 (see definition
3.5.4), we can use this interpolation as an initial guess for the forward problem in
U1, e. g.

U
(0)
0 = p0→1U

(1) ∈ U1.

This might a better initial guess than the generic choice U
(1)
0 = 0 and thus fewer

iterations of Newton’s method on the level 1 are needed. We recursively employ
this idea until we have solved the finest mesh, see algorithm 3.5.6. Working on the

finest mesh is expensive and by having a better initial guess U
(L)
0 , we hope to save

iterations and thus computational work load.

Algorithm 3.5.6 (Newton’s method with nested iterations).

Input: initial U
(0)
0 , nested spaces U0 ⊂ U1 ⊂ . . . ⊂ UL

Output: U (L)

1: for ` := 0, 1, . . . , L do
2: compute U ` by solving the forward prob. (2.46) with alg. 3.1.1 starting with

U
(`)
0

3: if ` < L then
4: set U

(`+1)
0 := p`→`+1U

(`) ∈ U(`+1)

5: else
6: return displacement U (L) on the finest mesh level
7: end if
8: end for

Summary of the Forward Solver

We conclude this chapter by summarizing the core points of the forward problem,
that is the computation of the displacement U for a given load C.

• Newton’s method is used to solve the system 0 = W,U (U ,C), see alg. 3.1.1
• A line search method is used to avoid inadmissible deformations with local

negative volume change, see section 3.2
• Krylov methods like truncated CG or MinRes are employed to solve the

Newton system (3.2).

3.5 Preconditioner and Multigrid Method 71

• The finite element method (FEM) is used to discretize the Hilbert space
U , with P0, P1 and P2 as finite elements.

• A multigrid hierarchy is built and a V-cycle of a multigrid method serves
as a preconditioner for the truncated CG or MinRes method.

4 Optimal Control Problems in Elasticity

Contents

4.1 Setting of the Optimal Control Problem 73
4.1.1. Quality functionals 74
4.1.2. Cost or Penalty Functionals 84

4.2 Lagrange-Newton: An All-at-once Approach 85
4.2.1. Solving the Lagrange Equation 86
4.2.2. Discretization 88

4.3 Quasi-Newton: A Reduced Formulation 89
4.3.1. Quasi-Newton Method 93
4.3.2. Broyden-Fletcher-Goldfarb-Shanno-Update 94
4.3.3. Simple Wolfe-Powell Line Search 97
4.3.4. Discretization 100

The main aspect of this chapter is the optimal control of the elasticity model from
chapter 2. That means we want to achieve a desirable state U by applying a certain
load C. We start with the general setting of the optimal control problem in section
4.1. We discuss the objective functional I and possible ways to quantify a “desirable”
state. In some cases for large deformations, the standard approach with a tracking
type functional might not work because we simply cannot provide a reasonable
desired state Udes. We give a couple of examples for alternative objectives. The
first is based on a regional penalization of the space occupied by the deformed body.
For example, this can be used so that the deformed body avoids certain regions of
the space. The second example is motivated by a flower moving towards the sun,
where the deformed body in our model tries to point into a given direction. A third
functional measures the volume that is gained by the deformation of a plate.

In order to solve the optimal control problem, we present two methods. The first
method in section 4.2 is an all-at-once approach that is based on the Lagrange
functional and finding a root of its first derivative. Setting the first derivative
to zero is a nonlinear equation which we solve with Newton’s method, called the
Lagrange-Newton method in optimal control. The Lagrange-Newton system will be
solved by a MinRes method with a block preconditioner.

The second method is the quasi-Newton method in section 4.3. Here we eliminate
the state U = S(C) by the solution operator S which returns the displacement U

4.1 Setting of the Optimal Control Problem 73

for a given load C. We then have an unconstrained minimization problem with the
reduced objective functional Ired. We continue by showing how the first derivative
of the reduced objective functional Ired can be computed, which includes solving the
adjoint equation. Next, we show how a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update formula can be formulated in function space so that we can approximate the
second derivative Ired

,CC . To ensure that this methods works, we use a Wolfe-Powell
line search. We conclude section 4.3 by giving some remarks on the discretization
for the quasi-Newton method.

4.1 Setting of the Optimal Control Problem

The object of interest is an elastic body Ω that can be deformed by the load C,
which can be an external load, for example a volume load f or a boundary load g,
or an internal load, for example an inner pressure t or a fiber tension m. Using this
load, we seek to deform the body in a desirable way. In the following, we call the
load C the control and the displacement U the state1.

Both, state and control, are linked by the elastic material behavior discussed in
chapter 2, that eventually led to the variational equality

0 = W,U (U ,C)[δU], ∀ δU ∈ U

with W (U ,C) = W (T)(U) +W (C)(U ,C),
(4.1)

where WC is one of the energy functionals of the load C, compare table 2.1. The
control belongs to a control space C, depending on which type of load is applied. We
assume that we have only one of the four loads as a control for an easier notation,
though it is straight-forward how to extend the problem to multiple controls.

Our problem now is to find a certain control C to achieve a state U which is
desirable. We formulate this as the optimization problem

min
U∈U,C∈C

I(U ,C)

s.t. 0 = W,U (U ,C)[δU], ∀ δU ∈ U .
(4.2)

In order to illustrate examples for the objective functional I : U × C → [0,∞), we
assume the splitting

I(U ,C) = Q(U) + P (C), (4.3)

consisting of a quality functional Q : U → [0,∞) and a penalty/cost functional
P : U → [0,∞). Lubkoll et al. (2012) have shown the existence of a solution of the
optimal control problem for the case of boundary loads g under certain assumptions.

1Please note that a wide part of mathematical literature on optimal control uses a different
notation, where the control is denoted by y and the state by u.

74 4 Optimal Control Problems in Elasticity

4.1.1. Quality functionals

We consider a function Q : U → [0,∞) that assigns a certain objective value Q(U)
to a given displacement U , for example depending on how ”well” the deformed body

Ω̂ matches a given desired shape Γ̂des, which also defines Ω̂des and vice versa. Of
course, there are various ways to describe this quality and the practical problem
behind it should be taken into account as well. Most importantly, the way how the
desired shape is described plays a huge role for the implementation. Among others,
we could have

• a parametrization of the surface Γ̂des,

• an implicit definition of the surface Γ̂des,

• B-splines or non-uniform rational B-splines (NURBS) describing Γ̂des

• a two-dimensional mesh defined by given vertices.

The following presented quality functionals might be more or less applicable to one
of those descriptions. First, we give an introducing example and later show how it
can be modeled with different quality functionals.

Example 4.1.1 (Elevation of a Bar). The undeformed body is the bar Ω = [0, 2]×
[0, 1

5
]× [0, 1

10
]. The goal is to elevate the right quarter Ωright = [3

2
, 2]× [0, 1

5
]× [0, 1

10
]

to the height h = 0.2, which affects the third spatial coordinate x3. The other
coordinates x1 and x2 are free to change. A load may be applied only in the part
Ωleft = [0, 3

2
]× [0, 1

5
]× [0, 1

10
].

Figure 4.1. The bar in blue and red is the undeformed body Ω

and the bar in gray is the unknown deformed bar Ω̂. The red box
illustrates the desired height h = 0.2, where the red right part
Ωright has to be elevated to. The blue region indicates the part
Ωleft where the load may be applied.

Desired State

We start with a very common functional which is often found in literature on optimal
control.

4.1 Setting of the Optimal Control Problem 75

Definition 4.1.2 (Standard tracking type). Let a desired state Udes ∈ U be given,
that is we want the state U to match this desired state as much as possible. We
penalize differences between the two states with the weighted squared error

Qtrack(U) :=
1

2

∫
Ω

γ(x)‖U(x)−Udes(x)‖22 dx, (4.4)

with a weight function γ : Ω→ [0,∞) and the Euclidean norm ‖·‖2. The derivative
with respect to the state U is

Qtrack
,U (U)[δU] :=

∫
Ω

γ(x)
(
U(x)−Udes(x)

)>
δU(x) dx. (4.5)

The model can be easily extended by allowing a weight function γi for each spatial
coordinate xi.

We give the modeling of the introduction example 4.1.1 with a tracking-type quality
functional.

Example 4.1.3 (Bar: Standard tracking type). This simple example allows us to
give a desired state for the right quarter, e. g. Udes(x) = (0, 0, h)> and γ(x) = γ > 0
for x ∈ Ωright. It is not necessary to define Udes on the remaining left quarter, as
we set γ(x) = 0 for the remaining part anyway. We then have

Qtrack(U) :=
γ

2

∫
Ωright

‖U(x)− (0, 0, h)>‖22 dx,

and its derivative

Qtrack
,U (U)[δU] := γ

∫
Ωright

(
U(x)− (0, 0, h)>

)>
δU(x) dx.

This quality functional is very practical in various optimal control problems. How-
ever, in elasticity with large deformations, it has a drawback because the desired
state Udes is not easy to determine in some problems. For example, we want to
deform the mechanical body in such a way that it matches a certain shape. It is
not clear how to extend the desired shape to a unique Udes. Even material points
on the boundary Γ are not uniquely determined along the desired shape, see figure
4.2. A remedy to this would be to consider the desired state only on a subdomain.

Desired shape

Let a desired shape Γ̂des be given, that means we want to deform the body Ω in

such a way that its boundary is as “close” as possible to the desired shape Γ̂des. The

76 4 Optimal Control Problems in Elasticity

Udes ?

Figure 4.2. In this example the shape is given but we cannot
uniquely define the displacement for each point. This is true not
only for the boundary points, but also for the interior points.

essential question now is how to qualify what is meant that Γ and Γ̂des are “close”.
A possible choice could be the distance between both surfaces, e. g.

Qshape1(U) :=

∫
Γ

γ(x)d
(
x + U(x), Γ̂des

)
dS,

with a weight function γ : Γ → [0,∞) and a distance measure d between a point

x̂ = x + U and the desired shape Γ̂des. This might be easily computable for

certain simple shapes Γ̂des, but it is an enormous effort to determine the distance

d(x+U(x), Γ̂des) or the set Ω̂\Ω̂des for most shapes, let alone computing a derivative
which is needed in the optimization later.

Another choice could be the volume difference between the boundary Γ and Γ̂des,
e. g.

Qshape2(U) :=

∫
Ω̂\Ω̂des

dx +

∫
Ω̂des\Ω̂

dx,

the desired domain Ω̂des defined by the boundary Γ̂des. The problem here is the

computation of the domains Ω̂ \ Ω̂des and Ω̂des \ Ω̂, as this turns out to be very
complex.

Another measure to compare two shapes was suggested by Rumpf and Wirth (2009).
They considered the physical work which is needed to transform the current shape
into the desired shape. This problem alone is very challenging because there is
no mapping between the two shapes which could tell us where the points on the
boundary have to be moved to. To use this for a quality functional seems too
expensive.

Regional Penalization Another example is the penalization of certain regions which
should be avoided by the deformed body Ω. These could be areas where the deformed
body is not allowed or regions away from a desired shape.

4.1 Setting of the Optimal Control Problem 77

Definition 4.1.4 (Regional Penalization). Let q : R3 → [0,∞) be a continuous
function that allocates a certain penalty density q(x̂) to each spatial point x̂ ∈ R3.
The total penalty by the deformed body then is

Qpen(U) =

∫
Ω̂

q(x̂) dx̂ =

∫
Ω

q
(
x + U(x)

)
detF (x) dx. (4.6)

This quality functional can also be interpreted as a penalty method for a state-
constrained optimal control problem with the constrain that the deformed body
must not occupy a certain region.

Computing the derivative with respect to the state U directly yields

Qpen
,U (U)[δU] =

∫
Ω

∇̂q
(
x + U(x)

)
detF (x)

+ q
(
x + U(x)

)
cof F (x)−> : ∇δU dx.

(4.7)

However, this formula does not reveal an important feature of this quality func-

tional: The change of the value of Qpen depends only on how the boundary Γ̂
changes. For example, if the boundary does not change, that is δU

∣∣
Γ

= 0, the

change Qpen
,U (U)[δU] is zero as well. Hence, only the change of the exterior shape Γ

has an influence on the optimization, not the deformation inside the body. This is
proven in the next theorem.

Theorem 4.1.5 (Change of regional penalization). Let q : R3 → [0,∞) be a con-
tinuous function and Qpen : U → [0,∞) with Qpen from (4.6). Then the formal
directional derivative of Qpen is

Qpen
,U (U)[δU] =

∫
Γ

q
(
x + U(x)

)
δU(x)> cof F (x)n(x) dS. (4.8)

Proof. We start by stating the Hadamard representation of shape derivatives to
describe a derivative with respect to a perturbation of U . This follows the ideas
presented in Soko lowski and Zolésio (1992) or (Eppler, 2010, Sec. 2.11.). We consider

the quality functional (4.6) formulated of the deformed domain Ω̂, that is

Qpen(U) =

∫
Ω̂

q(x̂) dx̂.

78 4 Optimal Control Problems in Elasticity

One approach for the shape calculus is a perturbation of identity on the domain Ω̂:

We regard δÛ : Ω̂→ R3 as a perturbation of the deformed domain Ω̂, that is

Ω̂δ :=
{
x̂δ = x̂ + δÛ(x̂), x̂ ∈ Ω̂

}
.

Rewriting this expression on the undeformed domain and using δÛ(x̂(x)) = δU(x)
yields

Ω̂δ = {x̂δ = x + U(x) + δU(x), x ∈ Ω} .
One can see that a perturbation δÛ of the deformed domain Ω̂ can be viewed as a
perturbation δU of the displacement U . The shape gradient representation of the

Eulerian derivative in direction δÛ is

Qpen
,U (U)[δÛ] =

∫
Γ̂

q(x̂) δÛ(x̂)>n̂(x̂) dŜ.

This expression is transformed to the undeformed domain, that is

Qpen
,U (U)[δU]

=

∫
Γ

q
(
x + U(x)

)
δU(x)>

F (x)−>n(x)

‖F (x)−>n(x)‖ detF (x)‖F (x)−>n(x)‖ dS

=

∫
Γ

q
(
x + U(x)

)
δU(x)>

(
F (x)−>n(x)

)
detF (x) dS.

Example 4.1.6 (Bar: Regional Penalization). We consider the distance to the
desired box in the 1-norm, e. g.

q(x̂) = d(x̂3, [h, c+ h]),

where d is the distance of a point to an interval. We restrict the integral such that
only the right quarter is considered, e. g.

Qpen(U) =

∫
Ωright

q(x + U(x)) detF (x) dx.

Remark 4.1.7 (Difficulties for the numerical integration). The numerical integra-
tion, which we will eventually use to compute the quality functional Qpen and its
derivative Qpen

,U , might face difficulties for certain penalization functions q. We il-
lustrate this with figure 4.3. In the left sketch the element lies in the region where
q is zero, which is also the result of the numerical integration. The center sketch
shows the case where the penalty function q is still zero in the integration point but

the element is partly in the region where q is positive. Even more, the gradient ∇̂q

4.1 Setting of the Optimal Control Problem 79

in the derivative Qpen
,U from (4.7) is undefined. Here, the numerical and analytical

integration yield different results for Qpen. The right sketch shows the case if Qpen
,U

is computed by the formula from theorem 4.1.5. Here, the numerical integration
over the boundary returns the correct result. Of course, these errors in the com-
putation of Qpen become smaller with a finer discretization or by using quadrature
formulas that are adapted to this kind of integrals. On the other hand, we expect
the deformed body to be very close to the region where q > 0.

As a consequence, the numerical integration to evaluate Qpen might have errors if
the deformed body is close to the region where q > 0. These errors might cause
problems in an optimization algorithm which assumes an exact evaluation of the
objective function. A remedy to this problem could be a smoothing of q. This is
observed in our numerical experiment in section 6.2.2.

q q q

x

q(x)

x x

q(x) q(x)

Figure 4.3. Illustration of the difficulties for the numerical inte-
gration of Qpen from (4.6). The black triangle is a finite element
with its green integration point and the red curve indicates the
value of the penalization function q.

Desired Direction

Example 4.1.8 (Heliotropism). The next example is motivated by biology. In
certain flowers, called heliotropic flowers, a phenomenon called heliotropism causes
them to align their flower heads to the sun during the day, that means they move
themselves in order to follow the movement of the sun from east to west, see Raven
et al. (2001). The movement of the flower is caused by motor cells in a flexible
part of the stem below the flower. The motor cells control the water balance of
nearby cells, for example by pumping potassium ions into these cells and changing
the osmotic water flow and thereby the turgor pressure.

The probably most popular example for this flower movement is the sun flower
(Helianthus annuus), though there is an old misconception: The fully formed head
of a sunflower does not follow the sun movement, see the left picture of figure 4.4.
The uniform alignment of a blooming field of sunflowers is actually static to the
east, making them “living compasses”. The alignment to the east is caused by the
fact that only the buds (earlier development stage before the head) track the sun

80 4 Optimal Control Problems in Elasticity

across the sky. The last alignment of the buds is normally towards east. For more
details and experiments we refer to Lang and Begg (1979).

In general, there have been proposed several hypotheses what causes floral he-
liotropism, e. g. pollinator attraction and warmth management by Kevan (1975),
though this might not apply to all flowers, see the work of Totland (1996). Other
examples for heliotropism are the arctic poppy (Papaver radicatum), the sensitive
plant (Mimosa pudica) and the meadow buttercup (Ranunculus acris).

Figure 4.4. Left picture: blooming sunflower at sunset with the
sun in its back (photo: Heiko Günnel). Right picture: arctic
poppies bending towards the sun (photo: Phil Wickens/Quark
Expeditions)

Let us consider an undeformed body Ω which points into the direction s. We seek
to find a deformation such that the body points into a desired direction sdes ∈ R3,
see figure 4.5.

In order to measure the direction of the body, we choose a surface Γs and the
tracking-type functional

Qs(U) = 1
2

∫
Γs

‖ŝ
(
x̂(x)

)
− sdes‖22 dS. (4.9)

In this case, there are two ways to formulate the direction ŝ of the deformed body.

(1) Let s be a direction like a fiber. During the deformation, this direction
becomes

ŝ
(
x̂(x)

)
=

F (x)s

‖F (x)s‖2
. (4.10)

4.1 Setting of the Optimal Control Problem 81

s
s s

des

Figure 4.5. Sketch of a plant that points towards the direction
s (left). The direction of the sun is the arrow sdes in yellow. He-
liotropism causes the plant to bend such that the current direction
ŝ matches the desired direction sdes (right).

(2) The normal n on Γs is the direction s of the undeformed body. The
current normal n̂ of the deformed body

n̂
(
x̂(x)

)
=

F (x)−>n(x)

‖F (x)−>n(x)‖2
, (4.11)

then gives the direction ŝ = n̂ of the deformed body.

Comparing the equations (4.10) and (4.11), they yield the same results for orthog-
onal matrices F , that is the deformation gradient is only a rotational matrix on
the surface Γs. This assumption might be reasonable for certain problems. In our
later numerical test in section 6.2.3, we will assume F to be orthogonal. This is
mainly due to the fact that the expected solution changes the shape of the surface
Γs negligibly. We can then simplify the quality functional to

Qs(U) = 1
2

∫
Γs

‖F (x)s(x)− sdes‖22 dS. (4.12)

The first derivative of Qs is

Qs
,U (U)[δU] =

∫
Γs

s(x)>∇δU(x)>
(
F (x)s(x)− sdes) dS.

This simplification has no considerable influence on the solution of the optimal
control problem in section (4.10), as comparative computations have shown. Of
course, it is also possible to choose a part Ωs ⊂ Ω instead of the surface Γs, e. g.

Qs(U) = 1
2

∫
Ωs

‖ŝ
(
x̂(x)

)
− sdes‖22 dx.

In this case, we take the first formulation of ŝ because the surface normal n is not
available for the interior of Ωs.

Enclosed Volume

82 4 Optimal Control Problems in Elasticity

Let us consider a thin plate Ω = Ω2D × (−d, d) of thickness 2d which is clamped
at its rim ΓD = ∂Ω2D × [−d, d]. Due to its deformation, a certain volume is gained
because the deformed plate makes room for it. A two-dimensional illustration can
be found in figure 4.6. We seek to maximize this volume.

Ω

Ω

n

n V

nV
ΓV

ΓV

Figure 4.6. Two-dimensional sketch of the enclosed volume: the
undeformed plate Ω in blue, with the surface ΓV and the normal

n, and the deformed plate Ω̂ in red, with the surface Γ̂V and the
normal n̂. The volume V in green is enclosed by the two surfaces

ΓV and Γ̂V.

To model this, let ΓV := Ω2D × {−d} be the lower surface of the undeformed plate

and Γ̂V := x̂(Ω) the lower surface of the deformed plate. As the plate is clamped

at its rim ΓD,both surfaces enclose a domain V with the boundary ∂V = ΓV ∪ Γ̂V.
We are interested in the volume of V, that is

|V| =
∫
V

1 dx.

As the domain V depends on Γ̂V, which itself depends on the displacement U ,
we can use the volume |V| for a quality functional QV(U). However, we need a
representation of the volume |V| in terms of the displacement U .

Theorem 4.1.9 (Volume enclosed by a surface). Let V be a domain enclosed by

the surfaces ΓV and Γ̂V. The volume of V is

|V| =
∫

ΓV

x3[n(x)]3 dS −
∫

Γ̂V

x̂3[n̂(x̂)]3 dŜ, (4.13)

with the outer normals n and n̂ of the surfaces ΓV respectively Γ̂V.

Proof. Green’s identity from lemma (A.1) with the function (0, 0,x3)> over the
domain V reads

|V| =
∫
V

1 dx =

∫
V

div(0, 0,x3)> dx =

∫
∂V

(0, 0,x3)nV(x) dS =

∫
∂V

x3[nV(x)]3 dS,

4.1 Setting of the Optimal Control Problem 83

where nV is the outer normal of V, which is nV = n on ΓV and nV = −n̂ on Γ̂V,

see figure 4.6. Finally, we insert the splitting ∂V = ΓV ∪ Γ̂V and obtain

|V| =
∫

ΓV

x3[n(x)]3 dS −
∫

Γ̂V

x̂3[n̂(x̂)]3 dŜ,

as claimed.

The first term of the sum in (4.13) can be simplified to∫
ΓV

x3[n(x)]3 dS =

∫
Ω2D

ddx1dx2, (4.14)

because x3 = −d and n = (0, 0,−1)> on ΓV = Ω2D × {−d}. The second term can
be transformed back to the current configuration and simplified to∫

Γ̂V

x̂3[n̂(x̂)]3 dŜ =

∫
ΓV

(
x3 + [U(x)]3

)[
cof F (x)n(x)

]
3

dS

=

∫
Ω2D

(
− d+ [U(x1,x2,−d)]3

)[
cof F (x1,x2,−d) (0, 0,−1)>

]
3

dx1dx2

=−
∫

Ω2D

(
− d+ [U(x1,x2,−d)]3

)[
cof F (x1,x2,−d)

]
33

dx1dx2.

Finally, the quality functional to describe the volume that is enclosed by ΓV and Γ̂V

with respect to the deformation U reads

QV(U) :=

∫
Ω2D

d+
(
− d+ [U(x1,x2,−d)]3

)[
cof F (x1,x2,−d)

]
33

dx1dx2. (4.15)

This formula could be directly differentiated with respect to U , however, there is
an easier way to obtain the first derivative QV

,U .

Theorem 4.1.10 (First derivative of the enclosed volume). Let QV be given from
(4.15). Its formal first derivative with respect to the displacement U is

QV
,U (U)[δU] :=

∫
Ω2D

δU(x1,x2,−d)> cof F (x1,x2,−d)(0, 0,−1)> dx1dx2. (4.16)

Proof. Again, we use the Hadamard representation as in the proof of theorem

4.1.5. The perturbation δÛ : Ω̂ → R3 restricted on the boundary Γ̂V will be

the perturbation of identity of the domain V. That means a point x̂ ∈ Γ̂V on the

84 4 Optimal Control Problems in Elasticity

boundary Γ̂V is moved to x̂+δÛ(x̂). This is consistent with δU being a perturbation
of the displacement U , because

x̂(x) + δÛ
(
x̂(x)

)
= x + U(x) + δU(x).

The quality functional QV is the volume of the domain V, so we have

QV = |V| =
∫
V

1 dx.

Soko lowski and Zolésio (1992) or (Eppler, 2010, sec. 2.11.) state the Hadamard
representation of the shape gradient of the Eulerian derivative of |V| in direction

δÛ , that is (
|V|)′

[
δÛ] =

∫
Γ̂V

δÛ(x̂)>n̂(x̂) dŜ,

because the perturbation only acts on the boundary Γ̂V and thus the part of the in-
tegral over ΓV vanishes. We transform the integral back to the current configuration
and obtain the first derivative

QV
,U (U)[δU] :=

∫
ΓV

δU(x)> cof F (x)n(x) dS.

Inserting ΓV = Ω2D × {−d} yields the claim

QV
,U (U)[δU] :=

∫
Ω2D

δU(x1,x2,−d)> cof F (x1,x2,−d)(0, 0,−1)> dx1dx2.

4.1.2. Cost or Penalty Functionals

The cost or penalty functional has to be chosen for the control C, otherwise the op-
timal control problem might be unbounded. We will consider the standard squared
L2-norm of the control, that is

P (f)(f) :=

∫
Ω

γ(f)(x) f(x)>f(x) dx, with γ(f) : Ω→ (0,∞),

P (g)(g) :=

∫
Γ

γ(g)(x) g(x)>g(x) dS, with γ(g) : Γ→ (0,∞),

P (t)(t) :=

∫
Ω

γ(t)(x)
(
t(x)

)2
dx, with γ(t) : Ω→ (0,∞),

P (m)(m) :=

∫
Ω

γ(m)(x)
(
m(x)

)2
dx, with γ(m) : Ω→ (0,∞).

(4.17)

4.2 Lagrange-Newton: An All-at-once Approach 85

To unify the notation for the various controls, we simply write P (C) and γ(C).

Remark 4.1.11. In some cases, the control might not be defined on the whole
domain Ω respectively ΓN . In such cases the control C can be restricted to Ωctrl ⊂ Ω
respectively Γctrl ⊂ ΓN by restricting the integral in the energy functional W (C),
e. g.

W (f)(U ,f) =

∫
Ωctrl

f>U dx.

4.2 Lagrange-Newton: An All-at-once Approach

Our first method to solve the optimal control problem (4.2) is a Lagrange-Newton
method, see Alt (1990) and Alt and Malanowski (1993) for a reference. The method
is based on the Lagrange functional and seeks to find a root of the first derivative.

Definition 4.2.1 (Lagrange functional). Let the optimal control problem (4.2) be
given. The corresponding Lagrange function L : U × C ×U → R to this constrained
optimization problem is

L(U ,C,Z) := I(U ,C) +W,U (U ,C)[Z], (4.18)

with the state U ∈ U , the state C ∈ C and the multiplier Z ∈ U . We abbreviate
the triple X := (U ,C,Z) and X ∈ X := U × C × U .

Under certain regularity assumptions, see Alt (1990), the Lagrange principle states
that a minimum X? = (U?,C?,Z?) of the optimal control problem satisfies

L,X(X?)[δX] = 0 ∀δX ∈ X . (4.19)

The formal first derivatives L,X are

L,U (U ,C,Z)[δU] = I,U (U ,C)[δU] +W,UU (U ,C)[Z, δU]

L,C(U ,C,Z)[δC] = I,C(U ,C)[δC] +W,UC(U ,C)[Z, δC]

L,Z(U ,C,Z)[δZ] = W,U (U ,C)[δZ].

(4.20)

The behavior of the Lagrange-Newton method is mesh-independent under certain
assumptions, see Alt (2001). This implies that the convergence behavior will not
worsen on sufficiently refined meshes. For a general discussion on local convergence
we refer to Alt (1994). As we already mentioned in remark 3.3.4, the local quadratic
convergence of Newton’s method is with respect to the iteration number assuming
that the Newton system is solved accurately. If we use an inexact Newton’s method,
the computation costs tend to grow for the last iterations because the Newton system
has to be solved more and more accurately.

86 4 Optimal Control Problems in Elasticity

4.2.1. Solving the Lagrange Equation

The nonlinear Lagrange system (4.19) can be solved by Newton’s method, that is

Xk+1 = Xk + αk∆Xk, (4.21)

with a step length αk and the search direction ∆X satisfying

L,XX(Xk)[δX,∆Xk] = −L,X(Xk)[δX] ∀δX ∈ X . (4.22)

This leads to algorithm 4.2.2.

Algorithm 4.2.2 (Lagrange-Newton method to solve L,X(X?) = 0).

Input: initial X0, Lagrange functional L, k = 0
Output: X := (U ,C,Z)

1: while (‖L,X(Xk)‖X∗ is too large) do
2: get ∆Xk by solving L,XX(Xk)[δX,∆Xk] = −L,X(Xk)[δX]
3: choose step length αk by a line search
4: set Xk+1 := Xk + α∆Xk
5: set k := k + 1
6: end while
7: return Xk := (Uk,Ck,Zk)

As a stopping criterion, we choose a relative or absolute tolerance for the right-hand
side L,X(Xk), e. g.

‖L,X(Xk)‖X∗
‖L,X(X0)‖X∗

≤ rTol or ‖L,X(Xk)‖X∗ ≤ aTol, (4.23)

with a user defined relative tolerance rTol > 0 and absolute tolerance aTol > 0,
which do not have to be the same as the tolerances for the MinRes method.

Since all derivatives are evaluated at the same point Xk = (Uk,Ck,Zk), we drop
the references to the point Xk and to the perturbation δX = (δU , δC, δZ) for better
readability. The Lagrange-Newton system then reads

L,UU L,UC L,UZ

L,CU L,CC L,CZ

L,ZU L,ZC 0

∆Uk

∆Ck

∆Zk

 = −

L,UL,C
L,Z

 . (4.24)

4.2 Lagrange-Newton: An All-at-once Approach 87

The single entries of the Newton matrix from (4.24), evaluated at the point Xk =
(Uk,Ck,Zk), are

L,UU [δU ,∆Uk] = I,UU [δU ,∆Uk] + W,UUU [Zk, δU ,∆Uk]

L,UC [δU ,∆Ck] = I,UC [δU ,∆Ck] + W,UUC [Zk, δU ,∆Ck]

L,UZ [δU ,∆Zk] = W,UU [∆Zk, δU]

L,CU [δC,∆Uk] = I,CU [δC,∆Uk] + W,UCU [Zk, δC,∆Uk]

L,CC [δC,∆Ck] = I,CC [δC,∆Ck] + W,UCC [Zk, δC,∆Ck]

L,CZ [δC,∆Zk] = W,UC [∆Zk, δC]

L,ZU [δZ,∆Uk] = W,UU [δZ,∆Uk]

L,ZC [δZ,∆Ck] = W,UC [δZ,∆Ck].

(4.25)

Please note that the mixed derivative I,CU are zero for the objective functional
I(U ,C) = Q(U) + P (C) and that for the presented controls from table 2.1 the
second derivatives W,CC are zero as well. This simplifies the system toI,UU +W,UUU W,UUC W,UU

W,UCU 0 W,UC

W,UU W,UC 0

∆Uk

∆Ck

∆Zk

 = −

I,U +W,UU

I,C +W,UC

W,U

 .
In order to solve the Lagrange-Newton system (4.24), it is important to know that
the corresponding linear operator L,XX ∈ L(X ,X ∗) is symmetric and indefinite.
Therefore, we apply the MinRes method from section 3.3 to solve the system (4.24).
As the MinRes method depends on the inner product of X = U ×C ×U , we choose
the canonical product induced by the inner products of the state space U and the
control space C, e. g.

(X1, X2)X := sU (U1,U2)U + sC (C1,C2)C + sZ (Z1,Z2)U , (4.26)

with Xi = (U i,Ci,Zi), i = 1, 2, the inner products (·, ·)U from (2.28) and (·, ·)C
from table 2.2, and scaling factors sC , sU , sZ > 0. This choice is equivalent to the
block preconditioner

P =

sUKlin.elast

sCMC
sZKlin.elast

 , (4.27)

with the stiffness matrix Klin.elast from the linear elasticity model and the mass
matrix MC induced by the inner product (·, ·)C . The scaling factors sC , sU , sZ are
user-defined such that the block preconditioner P is “similar” to the Lagrange-
Newton matrix from the operator L,XX . Instead of an analysis of the lower and

88 4 Optimal Control Problems in Elasticity

upper bound in the spectral equivalence between these two matrices, we run nu-
merical tests on the convergence behavior of the overall algorithm for a collection of
scalings sC , sU , sZ and choose the scaling triple with the smallest number of Krylov
iterations. This testing procedure is reduced by setting sU = 1 and varying sC , sZ
as the overall scaling of the preconditioner P has no influence on the convergence
behavior. However, one has to be aware that as the preconditioner P defines the
dual norm, e. g. ‖L,X(Xk)‖P−1 , the stopping criteria changes too. More details will
be given in section ??.

Line Search

The Lagrange-Newton step (4.21) has a step length αk which has not been discussed
yet. Fixing αk = 1 might be a bad idea as we risk failure of the Lagrange-Newton
algorithm 4.2.2 due to the nonlinearity of the Lagrange-Newton function itself or due
to possible negative local volume change J < 0 (which renders the elasticity model
physically meaningless). There are some methods to deal with these problems:

• The problem with a negative local volume change J < 0 can be redeemed
by using the guiding criterion from (3.4).

• As discussed in (Nocedal and Wright, 2006, ch. 15.4-15.6), we could use a
merit function and add a penalty functional for the equation 0 = W,U (U ,C)
to the objective functional and employ a strategy to control the factor in
front of the penalty functional.

• Another method is an augmented Lagrangian-SQP (sequential quadratic
programming) suggested by Ito and Kunisch (1996a), Ito and Kunisch
(1996b) and others. Here we add a penalty functional on the multiplier
Z to the original Lagrange function, for more details we refer to the work
cited before.

In our later numerical experiments in section 6.2, the guiding criterion was sufficient
for the convergence of the Lagrange-Newton method. However, if it turns out that
a more sophisticated method is necessary, a merit function like in (Nocedal and
Wright, 2006, ch. 15.4-15.6) could be implemented.

4.2.2. Discretization

To solve the first order optimality L,X = 0 from (4.19) numerically, we use a finite
element method to discretize it, like we did for the forward problem in section 3.4.
We replace the space X by the discretizations of state and control space, that is
Xh := Uh × Ch × Uh. The finite element base of Xh is denoted by {ϕi}NXi=1, with its
dimension NX = dimXh = NU + NC + NU . The first NU basis functions are the
ones for U , the next NC basis functions for U and the last NU basis functions for
Z. The Lagrange system (4.22) in Xh becomes the linear system of equations

A~x = ~b, (4.28)

4.3 Quasi-Newton: A Reduced Formulation 89

with the coefficient matrix A ∈ RNX×NX , the solution vector ~x ∈ RNX and the

right-hand side ~b ∈ RNX , that is

[A]ij = L,XX [ϕi, ϕj] i, j = 1, . . . , NX

[~b]i = L,X [ϕi] i = 1, . . . , NX .
(4.29)

The discretized solution then is

Xh =

NX∑
i=1

[~x]iϕi ∈ X . (4.30)

The block preconditioner from (4.27) is applied separately for the three blocks.
Solving with the stiffness matrixKlin.elast is approximated by a V-cycle of a multigrid
method, see 3.5. The mass matrix MC is a diagonal matrix for P0-elements, hence
we can directly solve this block.

Nested Iterations

We can apply the idea of nested iterations (alg. 3.5.6) for the forward solver for the
Lagrange-Newton again, see algorithm 4.2.3.

Algorithm 4.2.3 (Lagrange-Newton method with nested iterations).

Input: initial X
(0)
0 , nested spaces X0 ⊂ X1 ⊂ . . . ⊂ XL

Output: X(L)

1: for ` := 0, 1, . . . , L do

2: compute X` by solving prob. (4.2) with alg. 4.2.2 starting with X
(`)
0

3: if ` < L then
4: set X

(`+1)
0 := p`→`+1X

(`) ∈ X(`+1)

5: else
6: return X(L)

7: end if
8: end for

4.3 Quasi-Newton: A Reduced Formulation

The idea of a reduced formulation is to reformulate the constrained optimization
problem (4.2) into a unconstrained optimization problem, for example see Hinze
and Kunisch (2004) and Herzog and Kunisch (2010). This is done by introducing
a solution operator to eliminate the constraint 0 = W,U from the optimization
problem.

90 4 Optimal Control Problems in Elasticity

Definition 4.3.1 (Solution operator). Let the state equation 0 = W,U (U ,C) be
given. We assume the existence and (local) uniqueness of the state U ∈ U for every
given C ∈ C. Then we can define a solution operator S : C → U by

S(C) = U ⇔ 0 = W,U (U ,C)[δU] ∀ δU ∈ U , (4.31)

that means U solves the state equation for a given C.

Remark 4.3.2. The assumption of existence of a solution U ∈ U for a given C ∈ C
is ensured by the Ball’s existence theorem 2.2.9. Still we assume the local uniqueness
of the solution by the following reasoning. In order to solve the state equation, we
use Newton’s method (algorithm 3.1.1) which gives us a single solution U for a given
C. See remark 2.2.11 for a brief discussion.

With the solution operator S, we can eliminate the constraint 0 = W,U by replacing
the state U with S(C), which results in a free optimization problem.

Definition 4.3.3 (Reduced Optimal Control Problem). Let the optimal control
problem (4.2) be given. The reduced optimal control problem is

min
C∈C

Ired(C) := I(S(C),C), (4.32)

with the corresponding solution operator S : C → U .

Later, we want to apply derivative based optimization methods, which would require
the computation of the derivative Ired

,C (C) or the gradient ∇CI
red(C) of the reduced

objective function. Before we continue we would like to point out the difference
between derivative and gradient and their relationship. The derivative of the reduced
objective functional Ired with respect to C is a linear, bounded operator Ired

,C (C) ∈
C∗, while the gradient ∇CI

red(C) ∈ C is an element of the primal control space C.
They both are linked by the linear equation

[Ired
,C (C), δC]C∗,C =

(
∇CI

red(C), δC
)
C

∀δC ∈ C. (4.33)

Equation (4.33) basically states that the gradient is the Riesz representative of the
derivative in the Hilbert space C. For a discretized control space Ch, solving this
linear equation is basically solving with the mass matrix of Ch, which is very cheap
in the case of P0-elements because the mass matrix is a diagonal matrix.

The question remains, whether we use the derivative or the gradient in the derivative
based optimization algorithms. Although the term “derivative based“ optimization
might suggest the use of the derivative, many algorithms actually work with the
gradient. For example, the steepest descent method chooses the search direction to
be −∇CI

red(C) ∈ C. It cannot use the derivative Ired
,C (C) ∈ C∗ directly as a search

direction because the search direction has to be an element of the control space C,

4.3 Quasi-Newton: A Reduced Formulation 91

so Ired
,C (C) ∈ C∗ cannot be used in the update on the current solution. However, this

incompatibility of the derivative as a search direction is often overlooked in the space
Rn with the Euclidean scalar product. Here, the mass matrix is an identity matrix
and therefore the derivative and the gradient are identified as the same. On the
other hand, there are methods that use the derivative instead of the gradient because
the derivative is not directly used textitas the search direction but rather used to
compute the search direction. An example is Newton’s method in optimization.
Here, the derivative is the right-hand side of a Newton system with the search
direction as the solution.

FEniCS, the program that we use to implement our algorithms, offers the possibil-
ity of automatic differentiation (AD, also called algorithmic differentiation) which
makes the computation of the derivatives very easy for the user. Since we can di-
rectly compute the derivatives and we use a quasi-Newton method later, it seems
more natural to work with derivatives instead of the gradients. Later, this choice
will have consequences for the adjoint operator (otherwise it would be the Hilbert
space adjoint) and for the formulation of the BFGS update.

In order to compute the derivative Ired
,C , we apply the chain rule, that is

Ired
,C (C)[δC] =

∂

∂C

(
I(S(C),C)

)
[δC]

=I,U (S(C),C)[S,C(C)[δC]] + I,C(S(C),C)[δC]

= [I,U (S(C),C), S,C(C)[δC]]U∗,U + [I,C(S(C),C), δC]C∗,C ,

(4.34)

with a linearization S,C(C) of the solution operator, that is a linear (bounded)
operator S,C(C) ∈ L(C,U) at the current control C. Before we continue with
the derivation of a representation of Ired

,C (C), we show how the linear operator
S,C(C) can be computed. In the following, we abbreviate the current point by
(∼) := (S(C),C) for easier reading.

Theorem 4.3.4 (The linearized solution operator S,C(C)). The (formal) lineariza-
tion S,C(C) ∈ L(C,U) of the solution operator S : C → U in (4.31) at the point C
is

S,C(C)[δC] = δU ⇐⇒ 0 =W,UU (S(C),C)[V , δU]

+W,UC(S(C),C)[V , δC] ∀V ∈ U .
(4.35)

Proof. We regard δC as a small perturbation of the control C and seek to determine
the change δU for the state U = S(C), that is

0 = W,UU (∼)
[
V , S,C(C)[δC]

]
+W,UC(∼)[V , δC] ∀V ∈ U .

92 4 Optimal Control Problems in Elasticity

Setting δU := S,C(C)[δC] yields (4.35). Under the assumption of the Fréchet-
differentiability of W,U , this can also be viewed as the application of the implicit
function theorem, which is stated for example in Zeidler (1986).

In order to get a practical representation of Ired
,C (C), we need to shift the linearized

solution operator S,C(C)[δC] in equation (4.34) onto I,U . This can be done by the
adjoint operator.

Definition 4.3.5 (Adjoint Operator). Let U and C be Hilbert spaces with the
duality pairings [·, ·]U∗,U , respectively [·, ·]C∗,C . Furthermore, let S,C(C) ∈ L(C,U)

be a linear operator. The adjoint operator S,C(C)∗ ∈ L(U∗, C∗) is defined by

[V , S,C(C)[δC]]U∗,U = [S,C(C)∗V , δC]C∗,C ∀ δC ∈ C,V ∈ U∗. (4.36)

The next theorem states an equation to represent the adjoint S,C(C)∗.

Theorem 4.3.6 (Adjoint of the linearized solution operator S,C(C)). Let the lin-
earized solution operator S,C(C) ∈ L(C,U) from (4.35) be given. The adjoint
operator S,C(C)∗ ∈ L(U∗, C∗) is defined by

S,C(C)∗
[
I,U (∼)

]
:= W,UC(∼)[Z, ·]

with W,UU (∼)[V ,Z] + I,U (∼)[V] = 0 ∀ V ∈ U .
(4.37)

Proof. Inserting V = Z into the linearized solution operator (4.35) and inserting
V = δU into the adjoint equation (4.37) yields

W,UU (∼)[Z, δU] +W,UC(∼)[Z, δC] = 0

and W,UU (∼)[δU ,Z] + I,U (∼)[δU] = 0.

Due to symmetry of the second derivatives the first terms of both equation are
identical, leaving the equation

W,UC(∼)[Z, δC] = I,U (∼)[δU].

Inserting
[
S,C(C)∗

[
I,U (∼)

]
, δC

]
C∗,C = W,UC(∼)[Z, δC] from (4.37) and δU =

S,C(C)[δC] from (4.35) yields[
S,C(C)∗

[
I,U (∼)

]
, δC

]
C∗,C = [I,U (∼), S,C(δC)]U∗,U ,

which is the definition of the adjoint operator.

The linear equation in (4.37) is also called adjoint equation. Having a computable
representation of S′∗, we can continue with the derivation of the reduced derivative

4.3 Quasi-Newton: A Reduced Formulation 93

in (4.34), that is[
Ired
,C (C), δC

]
C∗,C

= [I,U (∼), S,C(C)[δC]]U∗,U + [I,C(∼), δC]C∗,C

=
[
S,C(C)∗

[
I,U (∼)

]
, δC

]
C∗,C + [I,C(∼), δC]C∗,C

=
[
S,C(C)∗

[
I,U (∼)

]
+ I,C(∼), δC

]
C∗,C .

Finally we get the reduced derivative

Ired
,C (C) = S,C(C)∗

[
I,U (S(C),C)

]
+ I,C

(
S(C),C

)
∈ C∗. (4.38)

This implies the following steps in order to compute the reduced derivative:

(1) apply the solution operator U = S(C) from (4.31), that is solving the
(nonlinear) state equation 0 = W,U (U ,C) for a given C ∈ C

(2) solve the (linear) adjoint equation (4.37) to get the adjoint state Z ∈ U
(3) finalize the derivative Ired

,C (C) = W,UC

(
S(C),C

)
[Z, ·] + I,C

(
S(C),C

)
from (4.38).

We are now able to compute the reduced objective functional Ired and its derivative
Ired
,C (C). As we like to avoid a high number of function and gradient evaluations,

we do not choose methods like steepest descent or nonlinear CG methods. We also
try to avoid the very expensive computation of the second derivative of the reduced
objective function. Hence a quasi-Newton method with an approximation for the
second derivative could be a compromise.

4.3.1. Quasi-Newton Method

We start by presenting a quasi-Newton method for the reduced objective functional
Ired for the control space C. Again, this optimize-then-discretize-approach will offer
insight into the choice of scalar products as well as norms for the convergence criteria.

In a quasi-Newton method in the k-th iteration with the current control Ck, the
search direction ∆Ck is computed by minimization of a quadratic model M : C → R
at Ck, e. g.

min
∆C

M(∆C) = Ired(Ck) + Ired
,C (Ck)[∆C] + [Bk ∆C,∆C]C∗,C , (4.39)

with a self-adjoint and positive definite (coercive) linear operator Bk ∈ L(C, C∗), the
control space C and its dual space C∗. The first order optimality condition is

Bk∆Ck = −Ired
,C (Ck) ∈ C∗,

or ∆Ck = −B−1
k Ired

,C (Ck) ∈ C.
(4.40)

94 4 Optimal Control Problems in Elasticity

The positive definiteness of Bk ∈ L(C, C∗), and thus B−1
k ∈ L(C∗, C) as well, ensures

that ∆Uk is a descent direction, that is for Ired
,C (Ck) 6= 0 we have

Ired
,C (Ck)[∆Ck] =

[
Ired
,C (Ck),∆Ck

]
C∗,C

= −
[
Ired
,C (Ck), B−1

k Ired
,C (Ck)

]
C∗,C
≤ −c‖Ired

,C (Ck)‖2C∗ < 0,

where c is the constant from the coercivity inequality for Bk ∈ L(C, C∗). After
computing the search direction ∆Ck we perform a line search to get a step length
α > 0 for the update

Ck+1 = Ck + α∆Ck.

If the operator Bk is chosen to be the Hessian Ired
,CC(Ck), one would get a standard

Newton’s method. However, since computing the exact Hessian is very expensive,
we choose Bk to be an approximation by a BFGS-update formula. Here, we also
have the possibility to directly use the inverse

Hk := B−1
k , (4.41)

Hk : C∗ → C, which allows us to avoid solving the linear system. Before we formulate
the BFGS-update for the control space C, we introduce the standard version in Rn.

4.3.2. Broyden-Fletcher-Goldfarb-Shanno-Update

The idea for the Broyden-Fletcher-Goldfarb-Shanno update formula was indepen-
dently discovered by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno
(1970). Since then, the BFGS method became very popular and is used in a wide
range of applications. For a derivation of the method, we refer to Nocedal and
Wright (2006), Geiger and Kanzow (1999) and Kelley (1999). First we present the
method in Rn as it is used in most of the literature. We then translate it to the
function space C and will see that, if the spaces are chosen well, the algorithm after
the discretization resembles the algorithm in Rn.

Example 4.3.7 (BFGS-update formula). We consider Rn with the Euclidean scalar
product and the free optimization problem

min
x∈Rn

f(x),

and apply a quasi-Newton method with a BFGS-update formula for the matrix
Bk ∈ Rn×n. As Bk will be symmetric positive definite (more details on this will
follow), the search direction ∆xk can be computed by

Bk∆xk = −∇f(xk).

We avoid solving this system of linear equation with the inverse Hk := B−1
k , that

means
∆xk = −Hk∇f(xk),

4.3 Quasi-Newton: A Reduced Formulation 95

by using the so-called inverse BFGS -update formula

Hk+1 =(I − ρk sk y>k)Hk (I − ρk yk s>k) + ρk sk s
>
k ,

with sk :=xk+1 − xk
yk :=∇f(xk+1)−∇f(xk)

ρk :=1/(y>k sk).

As mentioned before, the matrix Bk is required to be symmetric positive definite,
thus Hk = B−1

k as well. The symmetry follows directly from the BFGS-update
formula, while the positive definiteness can be ensured by the condition

y>k sk > 0 ⇐⇒ ∇f(xk+1)>∆xk > f(xk)>∆xk,

for a proof, see (Nocedal and Wright, 2006, pg. 141). This curvature condition can
be satisfied by a Wolfe-Powell line search. Still, this formula is not satisfactory for
our problem since we have a large scale problem and the matrices Hk will be dense,
meaning that the memory usage and the computational time for the matrix-vector
multiplication will scale quadratically with the dimension of the discretized control
space Ch. Both effects being undesirable, we use a matrix-free version of the update
formula to compute the product Hk∇f(xk), which uses the history of sk and yk.
Since this history increases with the quasi-Newton iteration, we store only the last
m of sk and yk, also called limited-memory BFGS (LM-BFGS). Algorithm 4.3.8
shows the matrix-free (recursive) and limited-memory version of the inverse BFGS-
update formula, proposed by Nocedal (1980). If the input is the gradient ∇f(xk),
the output p is the search direction ∆xk.

Algorithm 4.3.8 (Limited-Memory-BFGS for Hk v ∈ Rn).

Input: {si}k−1
i=k−m, {yi}k−1

i=k−m, initial H0, v ∈ Rn
Output: Hk v

1: set q := v
2: for i := k − 1, k − 2, . . . , k −m do
3: set αi := ρi q

>si
4: set q := q − αi yi
5: end for
6: set p := H0 q
7: for i := k −m, 1, . . . , k − 1 do
8: set β := ρi y

>
i p

9: set p := p+ (αi − β) si
10: end for
11: return p

96 4 Optimal Control Problems in Elasticity

Broyden et al. (1973) have shown that the quasi-Newton method with BFGS-update
has local q-superlinear convergence under certain conditions. Even though the ap-
proximations Hk usually does not converge towards the inverse of the Hessian at
the solution, the approximation in the direction of ∆Ck converges and is enough for
the q-superlinear convergence. However, this proof does not apply for the limited-
memory BFGS-update.

Algorithm 4.3.8 for the BFGS update has to be adapted for the quasi-Newton
method in the Hilbert space C instead of Rn. Work on the formulation of the
quasi-Newton method in Hilbert space was done by Turner and Huntley (1976),
Turner and Huntley (1977), Kelley and Sachs (1989), Kelley et al. (1991) and refer-
ences therein. However, they applied the quasi-Newton method to optimal control
problems with ordinary differential equations and not PDEs like in our case.

The iterates xk correspond to Ck ∈ C and the search directions ∆xk = p to ∆Ck ∈
C. Hence {si}k−1

i=k−m belongs to the control space C, too. However, the vector v

(the vector to which HK is multiplied) and the vectors {yi}k−1
i=k−m can be chosen

to belong either to the control space C or its dual C∗, yielding to slightly different
versions of the LM-BFGS algorithm 4.3.8. Since we decided earlier to use derivatives
rather than gradients, the {yi}k−1

i=k−m will be differences of the derivatives and the

vector v corresponds to the derivative Ired
,C (Ck). We summarize these thoughts in

the following.

Definition 4.3.9 (BFGS-auxiliary functions s and y). In a quasi-Newton method
with a BFGS-update, we define s ∈ C to be the change in the iterates Ck ∈ C and
y ∈ C∗ to be the change in the derivatives Ired

,C (Ck) ∈ C∗, that is

sk :=Ck+1 −Ck ∈ C

yk :=Ired
,C (Ck+1)− Ired

,C (Ck) ∈ C∗

ρk :=1/ [yk, sk]C∗,C .

(4.42)

Algorithm 4.3.10 shows the LM-BFGS-update for Hk : C∗ → C. First, we can
see that the algorithm works in the dual control space C∗ in the first half, then it
switches to the control space C by the initial operator H0 : C∗ → C and then stays in
C. Here it becomes clear, that H0 plays an essential role, more than the algorithm
in Rn would suggest2.

2Most authors, e. g. (Nocedal and Wright, 2006, pg. 178), Geiger and Kanzow (1999) and (Kelley,
1999, ch. 4.2), suggest computing an initial Hessian matrix, which could serve the purpose of the
transition from C∗ to C but is far too expensive (and dense!). Some also suggest to take a scaled
identity matrix, but this choice could not ensure mesh independence of our quasi-Newton method.

4.3 Quasi-Newton: A Reduced Formulation 97

Algorithm 4.3.10 (Limited-Memory-BFGS for Hk v ∈ C).
Input: {si}k−1

i=k−m ⊂ C, {yi}
k−1
i=k−m ⊂ C

∗, initial H0 : C∗ → C, v ∈ C∗
Output: Hk v ∈ C

1: set q := v ∈ C∗
2: for i := k − 1, k − 2, . . . , k −m do
3: set αi := ρi [q, si]C∗,C
4: set q := q − αi yi ∈ C∗
5: end for
6: set p := H0 q ∈ C
7: for i := k −m, 1, . . . , k − 1 do
8: set β := ρi [yi, p]C∗,C
9: set p := p+ (αi − β) si ∈ C

10: end for
11: return p ∈ C

A simple idea for the initial H0 : C∗ → C is a scaled Riesz operator for C. For this
choice, p := H0 q means solving the linear system

sC (r, δC)C = [q, δC]C∗,C ∀δC ∈ C. (4.43)

If the discretized control space Ch is build on P0-elements, solving the system (4.43)
simply means solving with a diagonal mass matrix. The scaling sC > 0 is given
by the user and tries to compensate the magnitude of order of the actual Hessian
Ired
,CC(C0). A guess could be the penalty parameter γ(C) from (4.17).

4.3.3. Simple Wolfe-Powell Line Search

In the k-th iteration of the quasi-Newton method, we have the current iterate Ck ∈ C
and the search direction ∆Ck ∈ C. The line search tries to determine a step length
α ≥ 0 such that the update

Ck+1 = Ck + α∆Ck,

satisfies certain conditions, which are

(1) having a sufficient decrease in the reduced objective functional Ired (oth-
erwise the quasi-Newton might not converge) and

(2) ensuring a curvature condition so that the operator Hk remains positive
definite.

Both demands can be taken care of by the Wolfe-Powell conditions. For easier
reading, we define the reduced objective functional ϕ : [0,∞)→ R along ∆Ck, that
is

ϕ(α) := Ired(Ck + α∆Ck),

ϕ′(α) := Ired
,C (Ck + α∆Ck)[∆Ck].

(4.44)

98 4 Optimal Control Problems in Elasticity

Definition 4.3.11 (Wolfe-Powell Conditions). Let the function ϕ from (4.44) be
given. The Wolfe-Powell conditions are

ϕ(α) ≤ ϕ(0) + c1αϕ
′(0) (sufficient decrease)

ϕ′(α) ≥ c2ϕ(0) (curvature condition),
(4.45)

with constants 0 < c1 < c2 < 1. The sufficient decrease condition is also known as
the Armijo condition.

Figure 4.7 illustrates an example for the Wolfe-Powell conditions.

α

ϕ

ϕ(0) + c1αϕ
′(0)

ϕ(α)

c2ϕ
′(0)

admissible

Figure 4.7. The Wolfe-Powell conditions from definition 4.3.11
with the parameters c1 = 0.2 and c2 = 0.8. The reduced objective
functional ϕ(α) along the search direction is shown as the black
curve. The Armijo condition is illustrated by the red line and the
curvature condition by the blue slope. The green region is the
set of admissible step lengths that satisfy both conditions, that is
points of the curve are below the red line and have a steeper slope
than the blue line.

There exists a step length α which satisfies the Wolfe-Powell conditions with con-
stants 0 < c1 < c2 < 1 given by the user and can be determine by algorithm 4.3.12,
a bisection version based on (Geiger and Kanzow, 1999, Alg. 6.2) and (Nocedal and
Wright, 2006, Alg. 3.5 and 3.6). For easier reading, we use the abbreviations ϕ(α)
and ϕ′(α) from (4.44).

Algorithm 4.3.12 (Simple Wolfe-Powell line search).

Input: obj. function ϕ : [0,∞)→ R, 0 < c1 < c2 < 1, expansion factor cα > 1
Output: step length α that satisfies the Wolfe-Powell cond. (4.45)

4.3 Quasi-Newton: A Reduced Formulation 99

1: set α := 1, done(A) := false , done(A) := false
2: repeat
3: if ϕ(α) ≥ ϕ(0) + c1 αϕ

′(0) then
4: set a := 0, b := α and done(A) := true
5: else
6: if ϕ′(α) ≥ c2 ϕ(0) then
7: set done(A) := true and done(A) := true
8: else
9: set α := cα α

10: end if
11: end if
12: until done(A)

13: while not done(B) do

14: Choose α := 1
2
(a+ b)

15: if ϕ(α) ≥ ϕ+ c1 αϕ
′(0) then

16: set b := α
17: else
18: if ϕ′(α) ≥ c2 ϕ(0) then
19: set done(B) := true
20: else
21: set a := α
22: end if
23: end if
24: end while
25: return α

Remark 4.3.13 (Simple Wolfe-Powell line search in algorithm 4.3.12). The first
phase (A), line 2-12, aims to extend the initial search interval [0, 1] to [0, b] in order
to guarantee that at least one admissible step length α exists. If an admissible
step length α is found, the algorithm immediately stops and returns α. The second
phase (B), line 13-24, tries to find an admissible step length by shrinking the search
interval subsequently while ensuring that the search interval retains an admissible
step length.

Remark 4.3.14 (Evaluating ϕ(α) and ϕ′(α)). Computing ϕ(α) for a given step
length α includes the update Ctemp = Ck + α∆Ck, solving the forward problem
U temp = S(Ctemp) by the forward solver (algorithm 3.1.1), and finally evaluating
I(U temp,Ctemp). As the derivative ϕ′(α) always follows the evaluation of ϕ(α), the
state U temp already matches the control Ctemp and we only need to solve the adjoint
equation (4.37) and compute Ired

,C (Ctemp) by (4.38).

100 4 Optimal Control Problems in Elasticity

Finally, we summarize the function space quasi-Newton method presented in this
section in algorithm (4.3.15). As a convergence criterion we choose a relative de-
crease of the norm of Ired

,C (Ck), e. g.

‖Ired
,C (Ck)‖C∗
‖Ired
,C (C0)‖C∗

≤ rTol or ‖Ired
,C (Ck)‖C∗ ≤ aTol, (4.46)

for user defined relative tolerance rTol > 0 and absolute tolerance aTol > 0. These
do not have to be the same as in the CG or MinRes method.

Algorithm 4.3.15 (Quasi-Newton method).

Input: red. obj. func. Ired, initial C0, various parameters needed in the sub
routines

Output: solution C
1: set k := 0
2: solve U0 := S(C0) with alg. 3.1.1
3: solve adjoint equation (4.37) and compute Ired

,C (C0) from (4.38)

4: while (‖Ired
,C (Ck)‖C∗ is too large) do

5: set ∆Ck := −HkIred
,C (Ck) by the BFGS-update in alg. 4.3.10

6: determine α by the Wolfe-Powell line search in alg. 4.3.12
7: set Ck+1 := Ck + αCk

8: store auxiliary functions sk and yk from (4.42)
9: set k := k + 1

10: end while

4.3.4. Discretization

As described in section 3.4, we replace the infinite dimensional state space U and
control space C by their discretizations Uh respectively Ch. All functions of Uh and
Ch are represented by their coefficient vectors from RNU respectively RNC , where
NU = dimUh and NC = dim Ch.

The Forward Problem.

The numerical solver for the solution operator (4.31) directly follows the algorithm
3.1.1, for more details see section 3.4.

Adjoint Equation.

The adjoint equation (4.37) uses the same stiffness matrix as the Newton solver
for the forward problem, because W,UU (S(Ck),Ck) had to be computed during the
algorithm 3.1.1. As W,UU (S(Ck),Ck) is at least positive semi-definite, a CG solver
can be used to compute the adjoint Z which then is used to assemble the reduced
derivative Ired

,C (Ck).

BFGS-Update.

4.3 Quasi-Newton: A Reduced Formulation 101

Since we decided to work with the derivatives instead of the gradients, we give a

brief overview on the discretized dual control space C∗h := (Ch)∗. The base {ψj}NCj=1

of C∗h is the dual of the base {ϕi}NCi=1 of Ch, that means

ψj(ϕi) = δij =

{
1 for i = j
0 else

.

In the following, we drop the range of the summation and only state the name of
the index, e. g.

∑
i means

∑NC
i=1.

Lemma 4.3.16 (Duality pairing and the Euclidean scalar product). Let p ∈ C∗h
and δC ∈ Ch be discretized by

p =
∑
j

pjψj , ~p = (pj)
NC
j=1, δC =

∑
i

ciϕi, ~c = (ci)
NC
i=1.

Then the duality pairing can be evaluated by the Euclidean scalar product between
the two coefficient vectors,

[p, δC]C∗
h
,Ch

= ~p> ~d.

Proof. A direct calculation using the linearity of the duality pairing gives

[p, δC]C∗
h
,Ch

=

[∑
j

pjψj ,
∑
i

ciϕi

]
C∗
h
,Ch

=
∑
j

(
pj
∑
i

ci [ψj , ϕi]C∗
h
,Ch

)
=
∑
j

(
pj
∑
i

ciδij

)
=
∑
j

pjcj = ~p>~c.

Next, we illustrate the fact that automatic (or algorithmic) differentiation (AD)
yields objects which belong to the discretized dual space C∗h and not the primal space
Ch. Let P : C → R be a directional differentiable function. With the discretization
of C, the discretized function Ph : RNC → R can be defined such that

Ph(~c)=P

(∑
i

ciϕi

)
= P (C).

The AD, see Griewank (2000) for an general introduction and Logg et al. (2012a)
for details on FEniCS, computes the partial derivatives of Ph with respect to the

102 4 Optimal Control Problems in Elasticity

coefficient vector ~c belonging to δC, that is

∂Ph
∂cj

(~c) =
∂Ph
∂~c

(~c)[~ej] = lim
h→0

Ph(~c+ h~ej) − Ph(~c)

h

= lim
h→0

P
(∑

i ciϕi + hϕj
)
− P

(∑
i ciϕi

)
h

= lim
h→0

P (C + hϕj) − P (C)

h
= P,C(C)[ϕj].

One can already see that testing P,C ∈ C∗ with the base functions ϕj produces an
object belonging to the dual space, like the right-hand side (3.21) in the forward
problem. To make it more clear, we define the values of directional derivatives

pj := P,C(C)[ϕj], ~p = (pj)
NC
j=1,

and can decompose the derivative

P,C(C) =
∑
j

pjψj .

To see this, we insert pj = P,C(C)[ϕj] into the above equation and test it with ϕi,
i = 1, . . . , NC ., i. e.[∑

j

P,C(C)[ϕj]ψj , ϕi

]
C∗
h
,Ch

=
∑
j

P,C(C)[ϕj] [ψj , ϕi]C∗
h
,Ch

= P,C(C)[ϕi]

We conclude by stating that automatic differentiation computes coefficient vectors
of the derivative which belong to the dual space C∗. Hence, the duality pairing
is evaluated by the Euclidean scalar product between the coefficient vectors ~y for
y ∈ Ch∗ and ~s for s ∈ Ch, that is

[y, s]C∗
h
,Ch

= ~y>~s. (4.47)

This follows from the decision to work with the derivative rather than the gradient
of the reduced objective functional Ired. Otherwise, the duality pairing would be
replaced by the inner product in Ch, which would mean multiplying with the mass
matrix MC , e. g. ~y>MC~s. Of course, the BFGS-update from algorithm 4.3.10 with
a diagonal mass matrix MC is not computationally expensive and the choice of
the version has hardly an influence on the overall computational time. However,
this might change if MC is not diagonal. In this case of discontinuous Lagrange
elements, solving with the mass matrix can still be done by a direct solver because
MC consists of several small blocks which can be solved separately. Otherwise, in the
case of continuous elements, the mass matrix could be approximated by a diagonal
matrix of its diagonal entries [MC]ii.

Wolfe-Powell Line Search.

4.3 Quasi-Newton: A Reduced Formulation 103

The Wolfe-Powell line search (algorithm 4.3.12) assumes an exact evaluation of the
reduced objective functional Ired and its derivative Ired

,C , otherwise the existence
of admissible step lengths satisfying the Wolfe-Powell conditions (4.45) cannot be
guaranteed and the line search might fail, see also (Kelley, 2003, pg. 14). For
example, if the error in ϕ(0) is too large, there might be no step length satisfying
the Armijo condition. The same holds true for the error in ϕ′(0) and the curvature
condition, and especially if we seek a step length satisfying both conditions. Relaxing
these conditions is difficult as we use the curvature condition to ensure the positive
definiteness of Hk, which we might risk if the curvature condition does not hold.

Since the exact solution cannot be obtained by an iterative solver, we assume that we
can overcome this problem by setting the tolerance in the forward solver (alg. 3.1.1)
and the iterative solvers sufficiently small. Moreover, we force the forward solver
and the linear solvers to do at least one iteration even though the absolute stopping
criterion might already be met. This ensures that a new state U and a new derivative
Ired
,C is used for the evaluation of the objective function, otherwise the line search

might fail. For example, let Ck be very close to the solution, hence the search
direction ∆Ck might be very small, that is Ck+1 ≈ Ck. This could cause the
forward solver to assume that the state Uk already solves the problem if the absolute
stopping criterion is satisfied before the first iteration. The same applies to the linear
solvers. Let us assume that the state is not updated, hence the value of quality
functional remains Q(Uk+1) = Q(Uk), and the change ∆Ck causes the penalty
functional P to increase, e. g. P (Ck+1) > P (Ck), then the line search is stuck as
the Armijo-condition in (4.45) cannot be satisfied.

5 Implementation in FEniCS

Contents

5.1 Introduction to FEniCS 105

5.2 Weak Formulations and UFL 109
5.2.1. Mutual Definitions 110
5.2.2. Objective Functions 113
5.2.3. Forward Problem 115
5.2.4. Lagrange Problem 118
5.2.5. Reduced Optimal Control Problem 121
5.2.6. Automatic Differentiation vs. Differentiation by Hand 124
5.2.7. Parametrization 126
5.2.8. Hierarchical Plate Model 131

5.3 Solver Routines 137
5.3.1. Multigrid Method 137
5.3.2. CG and MinRes Method 140
5.3.3. Forward Problem 141
5.3.4. Lagrange-Newton Problem 142
5.3.5. Reduced Problem 144

5.4 An Experimental Preconditioner 147

This chapter gives an overview on the implementation of the presented algorithms
into the finite element library FEniCS. The FEniCS Project is a collection of open-
source software for the automation to solve mathematical problems based on dif-
ferential equations, see Alnæs et al. (2009), Logg and Wells (2010), Logg (2007),
Alnæs and Mardal (2010) and Kirby (2004). The most important aspect for us is
the Unified Form Language (UFL, see Alnæs et al. (2013)) which allows to generate
assembly routines by providing only the variational equation. This is an enormous
saving of human resources which would be spent if one implements and tests the
assembly routines for bilinear forms like W,UU by hand. Another big advantage of
the UFL is the possible use of automatic differentiation (AD) in order to avoid the
implementation of long formulas which are associated with errors in calculation and
implementation. Besides that, FEniCS offers a wide range of high-end routines that
allow the user to solve simple problems quite easily in a few lines of code. However,
we still have to implement the presented algorithms anew, mainly to their special

5.1 Introduction to FEniCS 105

usage of the multigrid package FMG. The FMG package was developed by Ospald
(2012) and offers the computational structures for a geometrical multigrid method
in FEniCS, as well as high-end solver routines for linear problems.

In this work, we use the FEniCS version 1.2.0. A newer version 1.3.0 was released
recently (January 2014), when the implementation of all presented algorithms in
this work was already done. Also, the geometrical multigrid package FMG was only
supported up to version 1.2.0. Therefore we did not port our implementation to the
new version.

We will start with a simple example in section 5.1 to illustrate the work flow in
FEniCS with the example of a problem in linear elasticity. First, the user has to
provide the variational equation in a UFL file which will be compiled to generate the
assembly routines. Then, the solver routine is called in a C++ code. We will give
details on the UFL files for our problems in section 5.2 and the implementation of
the solver routine in section 5.3. Of course, we will concentrate on the functionalities
of the methods rather than stating them in detail.

The last section 5.4 is about an experimental preconditioner. So far, we said that
the preconditioner for the forward problem is based on the linear model of elasticity.
However, as the linear and nonlinear model differ for large deformations, we cannot
expect that this preconditioner works well for very large deformations. Here we
suggest a strategy how to use the current stiffness matrix from the nonlinear model as
an experimental preconditioner with a precautional criterion if the current stiffness
matrix turns out to be indefinite.

5.1 Introduction to FEniCS

We consider an example from linear elasticity to illustrate how it can be solved with
the FEM-toolbox FEniCS.

Example 5.1.1 (Linear Elasticity: Steel Bar). We consider a steel bar of dimension
1m×10cm×10cm which is clamped at x1 = 0, i. e. ΓD = {0}×[0, 10]×[0, 10]. A dead
load f ≡ (0, 0,−g ρ)> acts on the whole body Ω, with the gravity acceleration g and
the material density ρ. The material behavior is assumed to be described by the
linear model of elasticity from (2.50). We seek the displacement U ∈ U = H1

0 (Ω)3.

First, let us recall the variational formulation (2.50) of the linear elasticity model.
We seek to solve the linear equation

∫
Ω

λ tr(∇U) tr(∇V) + 2µ
(
ε(U) : ε(V)

)
dx =

∫
Ω

f>V dx, ∀V ∈ U , (5.1)

106 5 Implementation in FEniCS

where λ and µ are the Lamé constants and the linearized strain is ε(U) := 1
2
(∇U +

∇U>). This implies the bilinear form

a(U ,V) :=

∫
Ω

λdivU divV + 2µε(U) : ε(V) dx, (5.2)

and the linear form

b(V) :=

∫
Ω

f>V dx. (5.3)

Both forms can be written in a Unified Form Language (UFL) file named Elasticity.ufl.

1 # define the finite element

2 elem_U = VectorElement("Lagrange", tetrahedron , dim=3, degree =1)

3

4 # define variables

5 U = TrialFunction(elem_U)

6 V = TestFunction(elem_U)

7
8 # define the load and the Lame constants

9 f = Constant(tetrahedron)

10 lmbda = Constant(tetrahedron)

11 mu = Constant(tetrahedron)

12

13 # define a function which return eps(u)

14 def eps(U):

15 return sym(grad(U))

16

17 # define the bilinear and linear forms

18 a = lmbda*div(U)*div(V)*dx + 2*mu*inner(eps(U), eps(V))*dx

19 L = inner(V, f)*dx

20
21 # name the forms which have to be assembled

22 forms = [a, L]

The UFL uses the syntax of Python, that means comments start with a #. Let us
first explain the lines in the UFL file Elasticity.ufl.

2: The finite elements elem U for the state space U = H1
0 (Ω)3 are vector-

valued, continuous and piecewise linear Lagrange elements defined on
tetrahedra.

5-6: The solution U and the test function V are defined on the finite element
elem.

9-11: The volume load f and the Lamé constants λ and µ are defined as
Constant on the elements. The name lambda is already used in the UFL
and therefore avoided.

5.1 Introduction to FEniCS 107

14-15: We define a function for the operator ε(·) for easier use. The gradient of a
function can be accessed by the command grad which returns the Jacobi
matrix of the vector field U.

18-19: The variational formulations of the forms a and L can be directly written
in the UFL file. The command div returns the divergence of a vector
field and inner(,) is the inner product between tensors, e. g. vectors or
matrices. The integration over the domain Ω is called by *dx, while *ds

is used to integrate over the boundary ∂Ω.
22: Finally, we name the forms which need to be assembled. This allows the

declaration of multiple forms in one UFL file and the use of auxiliary
quantities which might not be assembled themselves.

The UFL file Elasticity.ufl is compiled by the FEniCS Form Compiler (FFC, see
Logg et al. (2012b)) to yield the assembly routines and function space definitions in
form of the header file Elasticity.h that can be included into a C++ program. The
FFC has various features, very noticeable, for example, is the tensor optimization
which cuts down the number of arithmetic operations by rearranging the formulas
of the numerical integration.

FEniCS has already several routines included, so solving the equation (2.50) can
be done in a few lines of C++ code, here named main.cpp.

1 #include <dolfin.h>

2 #include "Elasticity.h"

3
4 using namespace dolfin;

5
6 // Define Gamma^D where the body is clamped

7 class GammaD : public SubDomain

8 { bool inside(const Array <double >& x, bool on_boundary) const

9 { return on_boundary && (x[0] < 0.0 + DOLFIN_EPS); }

10 };

11
12 int main()

13 {

14 // Define the mesh and the function space on it

15 BoxMesh mesh(0,0,0, 5,1,1, 20,4,4);

16 Elasticity :: FunctionSpace V_U(mesh);

17
18 // Define variational forms

19 Elasticity :: BilinearForm a(V_U , V_U);

20 Elasticity :: LinearForm L(V_U);

21 Function U(V);

22

23 // Set the material constants and the load

108 5 Implementation in FEniCS

24 double E = 2.1e5;

25 double nu = 0.3;

26 Constant lmbda(nu * E / ((1+nu)*(1-2*nu)));

27 Constant mu(E / (2*(1+ nu)));

28 Constant f(0, 0, -9.81*7.85e-6);

29

30 a.lmbda = lmbda; a.mu = mu;

31 L.f = f;

32

33 // Assign clamping boundary condition

34 GammaD gammaD;

35 Constant U0(0, 0, 0);

36 DirichletBC bc(V, U0 , left);

37
38 // Compute solution

39 solve(a == L, U, bc);

40

41 // save the solution

42 File file_U("U.pvd");

43 displacement_file << u;

44

45 return 0;

46 }

Again, we give some brief comments on the code.

1-2: The FEniCS packages as well as the assembly routines and function space
definitions from the previously generated Elasticity.h are included.

7-10: The definition of the Dirichlet boundary ΓD is done by a boolean function
inside the class Left, where x is the coordinate of a point for which is
checked whether it belongs to ΓD or not.

15-16: The triangulation Th is a structured mesh generated by the built-in routine
BoxMesh, which generates an axis-aligned box defined by the two points
(0, 0, 0) and (1000, 100, 100) (unit of length is mm). There are 20 divisions
in x1- and 4 in x2- and x3-direction, yielding a mesh with 21 × 5 × 5
vertices. The function space Uh =V U is defined by the finite elements
declared earlier in Elasticity.h.

19-21: Bilinear and linear forms defined in Elasticity.h need the discretized
space Uh to be accessed. Inside these classes are the assembly routines
for the stiffness matrix Klin.elast and the right-hand side vector. The dis-
cretized solution Uh =U is defined as a function on Uh.

24-28: We consider a ferrite steel with a Young’s modulus of E = 2.1·105 N
mm2 and

a Poisson’s ratio of ν = 0.3. The volume load f is the dead load of the body
with a gravity acceleration g = 9.81 m

s2
and a density of ρ = 7.85·10−6 kg

mm3 .

5.2 Weak Formulations and UFL 109

30-31: We set the Lamé constants λ and µ in the bilinear form and the load f in
the linear form.

34-36: The boundary ΓD is defined by the subdomain gammaD which is a member
of the class GammaD from line 7-10. The homogeneous values UD ≡ 0 are
defined by the constant U0. Finally, the Dirichlet boundary conditions are
collected in the object bc.

39: The solve function internally calls the constructor of a linear variational
problem and a direct solver to compute the solution Uh. This also includes
the assembly of the stiffness matrix and the right-hand side.

42-43: The solution is saved in the pvd format (ParaView data object) which is
a pointer to possibly multiple vtu files1.

The plot of the solution Uh can be seen in figure 5.1.

Figure 5.1. The numerical solution of the example 5.1.1. The
transparent bar is the undeformed body. The displacement U has
been scaled by a factor 200 to visualize the deformation.

In this introduction, we used many high-end routines from FEniCS which already
have certain options that the user can adapt to the problem. However, we will see
that the solver routines have to be modified or newly written to incorporate the
algorithms with their ideas and techniques from the previous chapters.

5.2 Weak Formulations and UFL

In this section we give some details on the UFL files that are needed for the forward
problem as well as the optimal control problem. The UFL file itself depends on
some choices, namely

• which control/load C is chosen (see table 2.1),
• which goal function is chosen (see section 4.1.1) and,
• whether a parametrization of the domain Ω is used (see section 2.4),
• whether the hierarchical plate model is used or a full 3D model.

1vtu is an XML-based file format used by Visualization ToolKit (VTK), the u stands for unstruc-
tured mesh.

110 5 Implementation in FEniCS

5.2.1. Mutual Definitions

Large parts of the code is mutual for all of the above cases and will be collected in
a Python file named common.py which is imported in the other UFL files. We first
start with the finite element definitions, as these are repeatedly used in all UFL
files.

Finite Element Types

1 # 3D elements

2 cell3 = tetrahedron

3 elem3F0 = FiniteElement("DG", cell3 , degree =0)

4 elem3V0 = VectorElement("DG", cell3 , degree=0, dim=3)

5 elem3V1 = VectorElement("Lagrange", cell3 , degree=1, dim=3)

Elements defined by FiniteElement have one component while those with VectorElement

have three components (see dim). The option "DG" marks discontinuous, while
"Lagrange" is used for continuous elements. The "degree" refers to the polynomial
order of the Lagrange ansatz function.

Energy Formulation

The material behavior is described by the energy density w, see section 2.2.2. We
recall the density (2.18) and the material parameter choices (2.23) with respect to
the Lamé constants λ and µ, that is

w(F) = a︸︷︷︸
µ
2
−λ

8

‖F‖2F + b︸︷︷︸
λ
8

‖cof F‖2F + c︸︷︷︸
λ
8

(detF)2 − d︸︷︷︸
µ+λ

2

ln(detF) + e.︸︷︷︸
− 3µ

2
−λ

8

In the UFL file common.py, we write a function for the energy density that depends
on the current deformation gradient F = I +∇U and the Lamé constants λ and µ.
The backslash \ is used to continue long statements over multiple lines in Python.

1 # energy density w

2 def EnergyDensity(F,mu,lmbda):

3 a = 0.5*mu -0.125* lmbda

4 b = 0.125* lmbda

5 c = 0.125* lmbda

6 d = 0.5* lmbda+mu

7 e = 1.5*mu +0.125* lmbda

8 return a*tr(F.T*F) +b*tr(cof(F.T*F)) \

9 +c*det(F)**2 -d*ln(det(F)) -e

Remark 5.2.1 (Cofactor in FEniCS 1.2.0). The command cofac is implemented
wrongly in FEniCS 1.2.0, as it computes detFF−1 instead of cof F := detFF−>.
We compensate this bug by a new function cof that calls cofac(F.T).

5.2 Weak Formulations and UFL 111

1 # cofac in FEniCS 1.2.0 returns (det F)*F^-1 instead of (det F)*F

^-T

2 def cof(F):

3 return cofac(F.T)

We will later use the first derivative w,F (F)[G] and second derivative w,FF (F)[G,H]
of the energy density w. There are two ways to gain them: automatic differentiation
(AD) or differentiation by hand, see lemma A.2.1.

1 # 1st derivative of the energy density w in direction G

2 def EnergyDensity_1st(F,G,mu ,lmbda):

3 a = 0.5*mu -0.125* lmbda

4 b = 0.125* lmbda

5 c = 0.125* lmbda

6 d = 0.5* lmbda+mu

7 W_F = (2*a + 2*b*tr(F.T*F))*F - 2*b*F*F.T*F \

8 + (2*c*det(F)-d/det(F))*cof(F)

9 return inner(W_F , G)

1 # 2nd derivative of the energy density w in directions G, H

2 def EnergyDensity_2nd(F,G,H,mu,lmbda):

3 a = 0.5*mu -0.125* lmbda

4 b = 0.125* lmbda

5 c = 0.125* lmbda

6 d = 0.5* lmbda+mu

7 W_FF = (2*a+2*b*inner(F,F))*G \

8 + 4*b*inner(F,G)*F \

9 - 2*b*(F*(F.T*G+G.T*F)+G*F.T*F) \

10 + 4*c*cof(F)*inner(cof(F),G) \

11 + (d/(det(F))**2-2*c)*cof(F)*G.T*cof(F)

12 return inner(W_FF ,H)

We now do the same for the energy term of the loads. While the terms W (f) for
the volume load and W (g) for the boundary load are very easy to implement in the
UFL and do not require a new function, the terms W (t) for the inner pressure and
W (m) for the fiber tension are part of common.py, as well as their first and second
derivatives from the lemmas A.2.2 and A.2.3. The integration over the domain Ω
will be done in the UFL file for the problem itself. This applies to all forms that we
write in common.py, in order to allow more flexibility with the integration. As both
energy densities depend only on the deformation gradient, both expressions can be
understood as densities similar to the energy density. The derivatives are then with
respect to the deformation gradient F , thus the variables G and H are gradients, e. g.
G= ∇δU or H= ∇∆U .

112 5 Implementation in FEniCS

1 # inner pressure (turgor) and its derivatives

2 def Turgor(F):

3 return -det(F)

4 def Turgor_1st(F,G):

5 return -inner(cof(F), G)

6 def Turgor_2nd(F,G,H):

7 return -(inner(cof(F),G)*inner(cof(F),H) \

8 -inner(cof(F.T)*G,H.T*cof(F)))/(det(F))

1 # fiber tension and its derivatives

2 def Fiber(F,a):

3 Fa = F*a

4 aFFa= inner(Fa,Fa)

5 return -0.5*ln(aFFa)

6 def Fiber_1st(F,G,a):

7 Fa = F*a

8 Ga = G*a

9 aFFa= inner(Fa,Fa)

10 return -inner(Fa, Ga)/aFFa

11 def Fiber_2nd(F,G,H,a):

12 Fa = F*a

13 Ga = G*a

14 Ha = H*a

15 aFFa= inner(Fa,Fa)

16 return -(inner(Ha ,Ga) -2*inner(Fa,Ga)*inner(Fa,Ha)/aFFa)/aFFa

The next part is the inner product (·, ·)U of the state space U . It was defined in (2.28)
by the linear model of elasticity. The stiffness matrix Klin.elast will be assembled
with the help of this function.

1 # the linearized strain eps(U)

2 def eps(U):

3 return sym(grad(U))

4
5 # the inner product of the state space U (from linear elasticity)

6 def LEscal(U,V,mu,lmbda):

7 return lmbda*div(U)*div(V) + 2*mu*inner(eps(U), eps(V))

The line search in section 3.1 with the guiding criterion (3.4) requires the guiding
function G from (3.5). We also include the offset β|Ω| into the guiding function for
an easier usage in the solver routines.

1 # define guiding function including the offset beta*vol(Omega)

2 def guiding(F,beta):

3 return beta + abs(ln(det(F)))

5.2 Weak Formulations and UFL 113

5.2.2. Objective Functions

The penalty/cost terms P (C) for the control C can be found in (4.17). As they are
quite simple we do not write a new function but rather integrate these lines directly
in each of the later UFL files for the forward or optimal control problems.

1 # penalty parameter

2 gamma_C = Coefficient(elem3F0) # (piecewise constant)

3

4 # penalty/cost terms P for the objective functions

5 P = 0.5* gamma_C*inner(C,C)*dx # if C is f,t or m

6 P = 0.5* gamma_C*inner(C,C)*ds # if C is g (pick only one line)

We give some examples for quality terms Q from section 4.1.1 and how to implement
them into a UFL file.

Example 5.2.2 (Standard Tracking Type). We extend the standard tracking type
Qtrack from (4.4) such that each spatial dimension is penalized separately, that is

Qtrack(U) :=
1

2

∫
Ω

3∑
i=1

γi(x)
(
U i(x)−Udes

i (x)
)2

dx,

with a vector-valued penalty parameter γ : Ω→ [0,∞)3.

1 # define penalty parameter and the desired state

2 gamma_U = Coefficient(elem3V0)

3 U_des = Coefficient(elemU)

4

5 # define the quality term Q

6 Q = (0.5* gamma [0]*(U[0]-Udes [0]) **2 \

7 +0.5* gamma [1]*(U[1]-Udes [1]) **2 \

8 +0.5* gamma [2]*(U[2]-Udes [2]) **2)*dx

9 # and its first derivative I_U

10 I_U = (gamma [0]*(U[0]-Udes [0])*(testU [0]) \

11 +gamma [1]*(U[1]-Udes [1])*(testU [1]) \

12 +gamma [2]*(U[2]-Udes [2])*(testU [2]))*dx

Example 5.2.3 (Regional Penalization). The regional penalization Qpen from (4.6)
is the quality functional

Qpen(U) =

∫
Ω

q(x + U(x)) det(I +∇U(x)) dx,

114 5 Implementation in FEniCS

with a continuous function q : R3 → [0,∞), which can be implemented in the UFL
file. The following function will be later used in section 6.2.2. There, we have a half
plane

H :=
{
x ∈ R3 : x1 − x3 − 2 ≥ 0

}
,

which is described by the penalization function

q(x) = [x1 − x3 − 2]+ε ,

where [·]+ε is the (smoothed) positive part

[x]+ε :=
1

2

(√
x2 + ε2 + x

)
.

1 # the smoothed positive part function

2 def PositivePartSmoothed(a,eps):

3 return (sqrt(a**2+ eps **2)+a)/2

4

5 eps = Constant(cell3)

6 q = PositivePartSmoothed(x[0]+U[0]-x[2]-U[2]-2,eps)

With the penalty q we can define the regional penalization Qpen in the UFL file.

1 # define the position on the undeformed domain Omega

2 x_ref = cell3.x

3

4 # define the quality term Q

5 Q = det(F)*q(x_ref+U)*dx

The derivatives then can be gained by AD because it can also generate the
derivatives of the function q. Alternatively, as shown in theorem 4.1.5, the
derivative Q,U can be implemented as an integral over the boundary.

1 # the first derivative of the quality term

2 I_U = gamma_U*q*inner(testU ,cof(F)*n)*ds

Currently, it is not possible to define q outside the UFL file since q is evaluated at
x̂ = x + U(x) and a Coefficient in FEniCS is always evaluated at an integration
point xint and not at xint + U(xint).

Example 5.2.4 (Desired Direction). The simplified quality functional (4.12) for
the desired direction sdes is

Qs(U) =

∫
Γs

1
2
‖F (x)s(x)− sdes‖22 dS,

5.2 Weak Formulations and UFL 115

and its first derivative

Qs
,U (U)[δU] =

∫
Γs

s(x)>∇δU(x)
(
F (x)s(x)sdes)2

2
dS,

can be directly implemented in the UFL file. The reference direction s is provided
by the user.

1 # reference and desired direction

2 s = Coefficient(elem3V0)

3 s_des = Coefficient(elem3V0)

4 # the quality term Q and its first derivative I_U

5 Q = 0.5* gamma_U*inner(F*s-s_des ,F*s-s_des)*ds

6 I_U = gamma_U*inner(grad(testU)*a,F*a-s_des)*ds

Example 5.2.5 (Enclosed volume). The fourth quality functional was the volume
between two surfaces. In the case of a plate, the formula has been simplified to the
quality term (4.14), that is∫

ΓV

x3[n(x)]3 dS =

∫
Ω2D

ddx1dx2,

A representation of the first derivative of QV was shown in theorem 4.1.10, that is

QV
,U (U)[δU] :=

∫
Ω2D

δU(x1,x2,−d)> cof F (x1,x2,−d)(0, 0,−1)> dx1dx2.

1 # the subindex d refers to the lower surface

2 U_d = Plate1(U,-1)

3 cofF_d = cof(Identity (3) + MyGrad(U,-1))

4 n_d = as_vector([0, 0, -1])

5
6 # define the quality term Q

7 Q = -gamma_U *(U_d[2]-d)cofF_d [2,2]*dx + gamma_U*d*dx

8 # and its first derivative I_U

9 I_U = -gamma_U*inner(Plate1(testU ,-1),cofF_d*n_d)*dx

5.2.3. Forward Problem

We seek to solve the forward problem (2.46),

0 = W,U (U?)[δU], ∀δU ∈ U ,

116 5 Implementation in FEniCS

with algorithm 3.1.1, that is Newton’s method with a line search strategy. There-
fore, the UFL file Elasticity.ufl has to contain the bilinear and linear forms of
the Newton system (3.2), the functions for a line search and the form for the precon-
ditioner induced by the inner product (·, ·)U . Let us start with the basic definitions
in Elasticity.ufl.

1 from common import *

2

3 # define the state space , the test and the trial function

4 elemU = elem3V1

5 testU = TestFunction(elemU)

6 trialU =TrialFunction(elemU)

7

8 # current iterate U

9 U = Coefficient(elemU)

10

11 # Lame constants

12 lmbda = Constant(cell3)

13 mu = Constant(cell3)

14
15 # deformation gradient F

16 F = Identity (3) + grad(U)

Let us briefly comment these lines.

1: We load the file common.py to have access to the mutual definitions.
4-6: Since the state space U is an H1-space, we discretize it with P1-elements,

these are continuous, piecewise linear elements on tetrahedra. This applies
to the test functions testU as well as the solution ∆Uk =trialU.

9: Since we have a nonlinear problem where most forms depend on the current
iterate Uk in the Newton’s method, we define it as a Coefficient.

We will incorporate all four different loads, that are volume loads f , boundary loads
g, inner pressures t and fiber tensions m. Since all control spaces are L2-spaces, we
discretize them with P0-elements, these are piecewise constant elements. Please
note that f and g are vector fields, while t and m are scalar fields. The direction
for the fibers are discretized like m with P0-elements.

1 # loads: f (volume), g (boundary), t (pressure), m (fiber tension

)

2 f = Coefficient(elem3V0)

3 g = Coefficient(elem3V0)

4 t = Coefficient(elem3F0)

5 m = Coefficient(elem3F0)

6

5.2 Weak Formulations and UFL 117

7 # the direction a of the fibers

8 a = Coefficient(elem3V0)

We continue with the stored energy W from (2.45).

1 # stored energy W

2 W = EnergyDensity(F,mu,lmbda)*dx -inner(f, U)*dx -inner(g, U)*ds

\

3 +t*Turgor(F)*dx +m*Fiber(F,a)*dx

FEniCS offers automatic differentiation (AD) to gain the first W,U = W U and the
second derivative W,UU = W UU of the stored energy W . The command derivative

can be applied to the stored energy W and again on its first derivative W,U = W U to
get the directional derivatives.

1 # use AD to get the derivatives W_U and W_UU

2 W_U = derivative(W, U, testU)

3 W_UU = derivative(W_U , U, trialU)

The alternative is a differentiation by hand. We already defined the first and second
derivatives of the energy density w and certain energy terms which we can now use
to define the derivatives of the stored energy W . A comparison between AD and
differentiation by hand will be given in the section 5.2.6.

1 # define the derivatives W_U and W_UU by hand

2 W_U = EnergyDensity_1st(F,grad(testU),mu,lmbda)*dx \

3 -inner(f, testU)*dx -inner(g, testU)*ds \

4 +t*Turgor_1st(F,grad(testU))*dx \

5 +m* Fiber_1st(F,grad(testU),a)*dx

6 W_UU = EnergyDensity_2nd(F,grad(testU),grad(trialU),mu,lmbda)*dx

\

7 +t*Turgor_2nd(F,grad(testU),grad(trialU))*dx\

8 +m* Fiber_2nd(F,grad(testU),grad(trialU),a)*dx

The remaining parts are the guiding function G from (3.5) as a possible line search
and the preconditioner Klin.elast. Although the preconditioner Klin.elast is given by
the bilinear form a prec, we define a dummy right-hand side L prec. This is just due
to convenience so that we can use the built-in routine SystemAssembler in FEniCS
to assemble the stiffness matrix Klin.elast and apply the Dirichlet boundary data
symmetrically on it (see section 3.4.4). The routine SystemAssembler requires both,
bilinear and linear forms, and assembles the matrix Klin.elast as well as a dummy
vector which is ignored afterwards. Of course, modifying the assembly routine is
also possible but the additional computational work to assemble the dummy vector
is negligible.

118 5 Implementation in FEniCS

1 # guiding function

2 beta = Constant(tetrahedron)

3 G = guiding(F,beta)*dx

4
5 # preconditioner: bilinear and (dummy) linear forms

6 a_prec = LEscal(testU ,trialU ,mu,lmbda)*dx

7 L_prec = testU [0]*dx

Finally we state the list of forms which are used later in the main.cpp. The UFL file
is compiled with FFC to get the header file Elasticity.h which then is included in
the main.cpp in section 5.3.3.

1 # name the forms that have to be assembled

2 forms = [a_elast , L_elast , a_prec , L_prec , W, G]

5.2.4. Lagrange Problem

In this section we give details on the UFL-file that we use in the all-at-once approach
and the Lagrange-Newton algorithm 4.2.2. First let us recall the Lagrange function
(4.18)

L(U ,C,Z) := I(U ,C) +W,U (U ,C)[Z],

and the Lagrange equation (4.19)

L,X(X?)[δX] = 0 ∀δX ∈ X ,

with the abbreviations X := (U ,C,Z) ∈ X and X := U × C × U . The Lagrange-
Newton method computes the search direction ∆Xk in the update Xk+1 := Xk +
α∆Xk by solving the (linear) Lagrange-Newton system (4.22)

L,XX(Xk)[δX,∆Xk] = −L,X(Xk)[δX] ∀δX ∈ X .

Therefore we need the bilinear form L,XX(Xk) and the linear form L,X(Xk), which
is written in the UFL file ElasticityLagrange.ufl. We start with the definition of
the finite elements.

1 from common import *

2 # define finite elements

3 elemU = elem3V1

4 elemC = elem3V0 # if C is f or g

5 elemC = elem3F0 # if C is t or m (pick only one line)

6 element = MixedElement ([elemU ,elemC ,elemU])

7

5.2 Weak Formulations and UFL 119

8 # current iterate X and its split into state , control & adjoint

state

9 X = Coefficient(element)

10 U, C, Z = split(X)

11
12 # test and trial function

13 trialX = TrialFunction(element)

14 testX = TestFunction(element)

We give some comments on these lines.

4-5: Depending on whether the control C is vector-valued or scalar-valued, we
choose the appropriate finite element.

6: FEniCS has the feature to use mixed function spaces like Xh which is
defined by discretizing the state space Uh and the control space Ch.

9-10: A function defined on the mixed function space Xh can be split into its
subfunctions U∈ Uh, C∈ Ch, Z∈ Uh, which can then be used in the forms.

13-14: We define the test function δX =testX and trial function ∆Xk =trialX.

The next part defines the Lamé constant and a possible fiber direction,

1 # Lame constants

2 mu = Constant(cell3)

3 lmbda = Constant(cell3)

4 # the direction a of the fibers

5 a = Coefficient(elem3V0)

Parts of the code from section (5.2.2) have to be inserted for the objective functions.

1 # define the objective function

2 Q = ... # see section 5.2.2 on quality terms

3 P = ... # see section 5.2.2 on penalty terms

4 I = P + Q

Next, we define the variational equation where the multiplier Z takes the role of the
test function.

1 # deformation gradient F

2 F = Identity (3) + grad(U)

3
4 # characteristic function to describe the control subdomain

5 char_C = Coefficient(elem3F0)

6
7 # the state equation tested with the multiplier Z

8 elast = EnergyDensity_1st(F,grad(Z),mu,lmbda)*dx \

9 -char_C*inner(C,Z)*dx # if the control is a volume load f

120 5 Implementation in FEniCS

10 -char_C*inner(C,Z)*ds # ... boundary load g

11 +char_C*C*Turgor_1st(U,Z)*dx # ... inner pressure t

12 +char_C*C* Fiber_1st(U,Z,a)*dx # ... fiber tension m

Remark 4.1.11 mentioned the possibility that the control might be restricted to
Ωctrl ⊂ Ω respectively Γctrl ⊂ ΓN, which can be done by a characteristic function
χctrl : Ω→ {0, 1} respectively χctrl : ΓN → {0, 1} such that

χctrl(x) =

{
1 if x ∈ Ωctrl

0 else
, or χctrl(x) =

{
1 if x ∈ Γctrl

0 else
. (5.4)

This characteristic function χctrl will be integrated in lines 9-12 from the previous
code fragment into the energy terms W (C) to restrict the integral in order to the
control subdomain Ωctrl ⊂ Ω respectively Γctrl ⊂ ΓN.

Now we can build the Lagrange function (4.18) and its first and second derivative
with the help of AD.

1 # Lagrange function and its 1st and 2nd derivatives

2 L = elast + I

3 L_X = derivative(L, u, testX)

4 L_XX = derivative(L_X , u, trialX)

The guiding criterion as a line search method requires the guiding function G.

1 # guiding function

2 beta = Constant(cell3)

3 G = guiding(F,beta)*dx

The preconditioner (4.27) consists of the stiffness matrix Klin.elast and the mass
matrix MC , which are defined by bilinear forms a prec U and a prec C. Again, we
use a dummy linear form L prec U for the convenient use of the built-in routine
SystemAssembler forKlin.elast. This is not necessary for the mass matrixMC because
we have no Dirichlet boundary conditions that need to be applied here. The scaling
sU , sC , sZ of the blocks of the preconditioner is done in the solver routine.

1 # block preconditioner

2 trialU = TrialFunction(elemU)

3 testU = TestFunction(elemU)

4 trialC = TrialFunction(elemC)

5 testC = TestFunction(elemC)

6

7 # bilinear form for the stiffness matrix K_linelast , and the

dummy rhs

8 a_prec_U = LEscal(testU ,trialU ,mu,lmbda)*dx

9 L_prec_U = teU [0]*dx

5.2 Weak Formulations and UFL 121

10

11 # bilinear form for the mass matrix M_C

12 a_prec_C = inner(testC ,trialC)*dx # if C is f, t or m

13 a_prec_C = inner(testC ,trialC)*ds \ #(pick only one line)

14 + 0.00001* inner(teC ,trC)*dx # if C is g

Remark 5.2.6 (Pertubation of the L2(Γ) inner product). Line 14 concerns the
boundary load g which only acts on the boundary ΓN. Even though FEniCS allows
the definition of boundary functions which only live on the boundary ∂Ω, the current
UFL specification does not allow boundary and standard functions in a single form.
Therefore, even though g is only defined on ΓN, we implement it as a function
discretized on Ω. The degrees of freedom in the interior of Ω do not show up in the
energy term W (g) (and the forward Newton system) or the optimal control problem
itself. Hence these values remain zero if we use an iterative Krylov method like
CG or MinRes in Newton’s method. Even the Lagrange-Newton system remains
solvable, it is singular. Hence our Krylov subspace method MinRes still works fine.
But we need to take care of the mass matrix MC as we use a direct solver in the
block preconditioner. Either

• we modify the solving routine to ignore those inner nodes, or
• we use a projection into the boundary first, solve with the mass matrix
MC on the boundary and set the inner nodes zero, or

• we perturb the mass matrix MC by adding the standard inner product of
L2(Ω).

We choose the last option since it can be easily implemented. However, one might
have to modify the factor in front of the L2(Ω) inner product since both quantities
have a different order of magnitude, depending on the triangulation Th.

We finalize the UFL file ElasticityLagrange.ufl by stating the list of required
forms.

1 # name the forms that have to be assembled

2 forms = [L_X , L_XX , G, I, a_prec_U , L_prec_U , a_prec_C]

5.2.5. Reduced Optimal Control Problem

In order to solve the reduced optimal control problem (4.32) numerically, we need
the finite elements for the state space Uh and control space Ch and assembly routines
for

• the solution operator U = S(C) from (4.31),
• the adjoint equation (4.37),
• the derivative Ired

,C from (4.38),

122 5 Implementation in FEniCS

• the stiffness matrix Klin.elast from (2.28) for the preconditioner and the
inner product (·, ·)C from table 2.2 for the mass matrix MC which is used
in the BFGS-update and the norms ‖·‖C and ‖·‖C∗ .

These will be obtained by the UFL file ElasticityReduced.ufl which starts with
basic definitions of the finite elements.

1 from common import *

2
3 # define the state space (continuous , piecewise linear)

4 elemU = elem3V1

5 testU = TestFunction(elemU)

6 trialU = TrialFunction(elemU)

7

8 # define the control space (piecewise constant)

9 elemC = elem3V0 # if C is f or g

10 elemC = elem3F0 # if C is t or m (pick only one line)

11 testC = TestFunction(elemC)

12 trialC = TrialFunction(elemC)

13

14 # current iterates U, C and Z

15 U = Coefficient(elemU) # state

16 C = Coefficient(elemC) # control

17 Z = Coefficient(elemU) # adjoint

Next the Lamé constants µ, λ and possible fiber directions a are defined.

1 # Lame constants

2 mu = Constant(cell3)

3 lmbda = Constant(cell3)

4
5 # the direction a of the fibers

6 a = Coefficient(elem3V0)

The code for objective function can be taken from section (5.2.2). Instead of using
AD, one can also write the differentiation by hand.

1 # define the objective function

2 Q = ... # see section 5.2.2 on quality terms

3 P = ... # see section 5.2.2 on penalty terms

4 I = P + Q

5 I_U = derivative (I, U, testU)

6 I_C = derivative (I, C, testU)

The forward problem is analogous to the part in section 5.2.3, the only difference is
the name C of the control and the characteristic function char C=χctrl.

5.2 Weak Formulations and UFL 123

1 # deformation gradient F

2 F = Identity (3) + grad(U)

3

4 # characteristic function to describe the control subdomain

5 char_C = Coefficient(elem3F0)

6

7 # stored energy W (as possible line search)

8 W = EnergyDensity(F,mu,lmbda)*dx \

9 -char_C*inner(C, U)*dx # if the control is a volume load

f

10 -char_C*inner(C, U)*ds # ... boundary load

g

11 +char_C*C*Turgor(F)*dx # ... inner pressure

t

12 +char_C*C* Fiber(F,a)*dx # ... fiber tension

m

13

14 # define the derivatives W_U and W_UU by hand

15 W_U = EnergyDensity_1st(F,grad(testU),mu,lmbda)*dx \

16 -char_C*inner(C, testU)*dx # if C =

f

17 -char_C*inner(C, testU)*ds # if C =

g

18 +char_C*C*Turgor_1st(F,grad(testU))*dx # if C =

t

19 +char_C*C* Fiber_1st(F,grad(testU),a)*dx # if C =

m

20 W_UU = EnergyDensity_2nd(F,grad(testU),grad(trialU),mu,lmbda)*dx

\

21 +char_C*C*Turgor_2nd(F,grad(testU),grad(trialU))*dx #if C

=t

22 +char_C*C* Fiber_2nd(F,grad(testU),grad(trialU),a)*dx #if C

=m

The preconditioner Klin.elast for the forward problem and adjoint problem and the
mass matrix MC is implemented the same way as in section 5.2.4.

1 # bilinear form for the stiffness matrix K_linelast , and the

dummy rhs

2 a_prec_U = LEscal(testU ,trialU ,mu,lmbda)*dx

3 L_prec_U = testU [0]*dx

4
5 # bilinear form for the mass matrix M_C

6 a_prec_C = inner(testC ,trialC)*dx # if C is f, t or m

124 5 Implementation in FEniCS

7 a_prec_C = inner(testC ,trialC)*ds + 0.00001* inner(teC ,trC)*dx #

if g

After computing the adjoint state Z, we can build the derivative Ired
,C of the reduced

objective function Ired by (4.38).

1 # first derivative of the reduced objective function I

2 I_1st = char_C*inner(testC ,Z)*dx + I_C # if C = f

3 I_1st = char_C*inner(testC ,Z)*ds + I_C # if C = g

4 I_1st = -char_C*testC*Turgor_1st(F,grad(Z))*dx + I_C # if C = t

5 I_1st = -char_C*testC* Fiber_1st(F,grad(Z),a)*dx + I_C # if C = m

An alternative line search method to the Armijo backtracking is the guiding criterion
with the guiding function G.

1 # guiding function

2 beta = Constant(cell3)

3 G = guiding(F,beta)*dx

Finally, we list all forms that we later need.

1 forms = [W_UU , W_U , G, W, I, I_U , a_prec_U , L_prec_U , a_prec_C ,

I_1st]

5.2.6. Automatic Differentiation vs. Differentiation by Hand

In this section we compare the AD and the differentiation by hand in FEniCS.
While the AD is very easy for the user in contrast to a differentiation by hand, it
might not be as fast as an analytically given derivative. We consider the following
benchmark to compare the two approaches.

Let the domain Ω be a unit cube [0, 1]3. We assemble the stiffness matrix A from
(3.20) for the nonlinear problem by three different ways:

(1) Full-AD: Differentiate the stored energy twice

use AD to get the derivative W_UU

W = EnergyDensity(F,mu,lmbda)*dx \

+t*Turgor_1st(F,grad(testU))*dx \

+ m*Fiber_1st(F,grad(testU),a)*dx

W_U1= derivative(W, U, testU)

A_1 = derivative(W_U1 , U, trialU)

(2) AD on the analytical representation of the first derivative w,F

5.2 Weak Formulations and UFL 125

define the derivatives W_U by hand and gain W_UU by AD

W_U = EnergyDensity_1st(F,grad(testU),mu ,lmbda)*dx \

+t*Turgor_1st(F,grad(testU))*dx \

+ m*Fiber_1st(F,grad(testU),a)*dx

A_2 = derivative(W_U , U, trialU)

(3) Analytical representation

define the derivatives W_UU by hand

A_3=EnergyDensity_2nd(F,grad(testU),grad(trialU),mu,lmbda)

*dx\

+t*Turgor_2nd(F,grad(testU),grad(trialU))*dx \

+ m*Fiber_2nd(F,grad(testU),grad(trialU),a)*dx

Table 5.2.6 shows the results for a mesh with 51 × 51 × 51 vertices. The time was
measured for the assembly of the matrix associated with the second derivative of
each of the single energy terms W (T),W (t),W (m) from the table 2.1 individually
and the total stored energy W = W (T) +W (t) +W (m). The FFC options to compile
the UFL file were

-f split -O -f eliminate_zeros -f precompute_basis_const

time in sec. for W
(T)
,UU W

(t)
,UU W

(m)
,UU W,UU w/o -O

(1) full-AD 41 16 16 45 40

(2) AD on W,U 21 16 16 26 58

(3) analytical 20 16 16 26 45

Table 5.1. Computational times to assemble the stiffness matrix
by (1) Full-AD, (2) AD on the analytical first derivative, (3) ana-
lytical representation. The last column states the time for W,UU

if the option -O is disabled.

Besides that, we checked the correctness of the formulas by comparing the relative
errors between the matrices in the Frobenius norm, which all were of the order of
the machine accuracy. We draw the following conclusions from these experiments:

• For terms like W (t) or W (m) using AD is a practical method to get first
and second derivatives without having to deal with differentiation by hand.

126 5 Implementation in FEniCS

This includes derivatives not only of simple terms like F : F = ‖F‖2F but
also of terms like detF .

• For more “difficult” terms like ‖cof F‖2F, applying AD twice still gets the
right matrix though the computational time might be larger than applying
AD on the first analytic derivative or an analytic representation of the
second derivative.

• The assembly time for the analytical representation depends on the UFL
code. It seems to be a good idea to avoid matrix inner products and
multiple evaluation of identical terms by grouping as much as possible.

• The built-in optimizer of FFC, called by the -O option, reduces the total
number of arithmetic operation drastically (about the factor 100 to 400 for
the above example). However, a big part of the assembly time, around 13
to 14 seconds in the above example, seems to be used for basic operations
like computing the Jacobi matrix of the transformation from reference to
world element or inserting the local stiffness matrices to the global stiffness
matrix. This can also be observed for dummy forms which have virtually
almost no computational effort, for example

A_4=testU [0]* trial [0]*dx

5.2.7. Parametrization

The usage of a parametrization x = x(x̃) was introduced in section 2.4. First, in
order to implement the parametrized model into FEniCS, we have to choose how
we want to handle the parametrization. The most important quantities for the

formulation of the parametrized weak formulation 2.58 are the local volume det G̃

and the inverse Jacobi matrix G̃−1, but the question is what the user provides and
what he leaves to FEniCS to calculate. We will illustrate this with the cylindrical
parametrization from example 2.4.1, that is

x(x̃1, x̃2, x̃3) =

x̃1 cos x̃2

x̃1 sin x̃2

x̃3

 ,

with the Jacobi matrix G̃ and ts inverse G̃−1,

G̃(x̃) =

cos x̃2 −x̃1 sin x̃2 0

sin x̃2 x̃1 cos x̃2 0
0 0 1

 , G̃−1(x̃) =

 cos x̃2 sin x̃2 0

− 1
x̃1 sin x̃2 1

x̃1 cos x̃2 0
0 0 1

 ,

and its inverse G̃−1 and the local volume det G̃(x̃1, x̃2, x̃3) = x̃1.

5.2 Weak Formulations and UFL 127

Example 5.2.7 (Passing det G̃ and G̃−1 to the UFL). The user provides both, the

local volume det G̃ and the inverse Jacobi matrix G̃−1, directly to FEniCS.

1 # define the cylindrical parametrization

2 elem3T0 = TensorElement("DG", cell3 , degree=0, shape =

(3,3))

3 detG = Coefficient(elem3F0)

4 invG = Coefficient(elem3T0)

This requires the definition of det G̃ and G̃−1 in the C++ code.

1 // define the determinant of the Jacobi matrix G

2 class Cylinder_detG : public Expression

3 { public: Cylinder_detG () : Expression () {}

4 void eval(Array <double >& det , const Array <double >& x_p)

const

5 { det[0] = x_p [0]; }

6 };

7

8 // define the inverse of the Jacobi matrix G

9 class Cylinder_invG : public Expression

10 { public: Cylinder_invG () : Expression (3,3) {}

11 void eval(Array <double >& g, const Array <double >& x_p)

const

12 { g[0] = cos(x_p [1]); g[1] = sin(x_p [1]); g[2] = 0.0;

13 g[3] = -sin(x_p [1])/x_p [0]; g[4] = cos(x_p [1])/x_p [0];

g[5] = 0.0;

14 g[6] = 0.0; g[7] = 0.0; g[8] = 1.0; // | 0 1 2 |

15 // the ordering in the matrix is invG = | 3 4 5 |

16 // | 6 7 8 |

17 }

18 };

Example 5.2.8 (Passing G̃ to the UFL). The user has to provide the Jacobi matrix

G̃ and passes it as a Coefficient to FEniCS.

1 elem3T0 = TensorElement("DG", cell3 , degree=0, shape =

(3,3))

2 # define the cylindrical parametrization by its Jacobi

matrix

3 G_p = Coefficient(elem3T0)

4 detG = det(G_p)

5 invG = inv(G_p)

128 5 Implementation in FEniCS

Here we have to provide the Jacobi matrix G̃ in the C++ code.

1 // define the Jacobi matrix G

2 class Cylinder_G : public Expression

3 { public: Cylinder_G () : Expression (3,3) {}

4 void eval(Array <double >& g, const Array <double >& x_p)

const

5 { g[0] = cos(x_p [1]); g[1] =-x_p [0]* sin(x_p [1]); g[2] =

0.0;

6 g[3] = sin(x_p [1]); g[4] = x_p [0]* cos(x_p [1]); g[5] =

0.0;

7 g[6] = 0.0; g[7] = 0.0; g[8] =

1.0;

8 }

9 };

Example 5.2.9 (Full Implementation in the UFL). In this approach the
parametrization x(x̃) is coded into the UFL file and all calculations are done by
FEniCS. A change of the parametrization then requires a recompilation of the UFL
file with the FFC.

1 # define the cylindrical parametrization

2 def Cylindrical(x_p):

3 x1 = x_p [0]* cos(x_p [1])

4 x2 = x_p [0]* sin(x_p [1])

5 x3 = x_p[2]

6 return as_vector ((x1 ,x2,x3))

7
8 # get the parameter from the FE-mesh

9 x_p = cell3.x

10 # define the global parameter

11 x = Cylindrical(x_p)

12 # define the Jacobi matrix G_p , its inverse and determinant

13 G_p = grad(x)

14 detG = det(G_p)

15 invG = inv(G_p)

It is not possible to just pass the parametrization x(x̃) to FEniCS as a Coefficient

because it cannot use AD to generate the Jacobi matrix G̃ from a Coefficient in

the C++ code (like the code for G̃). Objects of the class Expression in FEniCS
are a black-box that can only be evaluated.

Comparison of the Three Methods

5.2 Weak Formulations and UFL 129

The major difference between the methods from examples 5.2.7 - 5.2.9 might be the
assembly time of the matrices and vectors, mainly of the stiffness matrix. We use
the following example for comparison.

Example 5.2.10 (Half tube). Let Ω be a half tube with inner radius r1 = 0.5,
outer radius r2 = 1 around the x3-axis and height h = 2, see figure 5.2. The body
is clamped at x3 = 0 and a volume force f = (0, 1

100
, 0)> acts on the whole body.

We solve the problem on a coarse mesh with 3 × 13 × 9 vertices and L = 3 mesh
refinements. We do not use nested iterations as we are primarily interested in the
differences of the assembly times.

Figure 5.2. The left mesh is the coarse mesh with 3 × 13 × 9
vertices for the parameters (b̃x1, b̃x2, b̃x3). The solution is shown
in the right blue mesh.

Remark 5.2.11 (Comparing parametrized and unparametrized formulations of the
forward model). At first glance, it seems easy to compare this model with an un-

parametrized model, which can be obtained if we move the parameter mesh Ω̃ to
the reference configuration Ω first and then solve the problem on Ω. But a closer
look at the finite elements and the implementation reveals two problems.

The first problem commonly occurs while refining meshes whose boundaries are
originally from curved surfaces. Let x(x̃) be curvilinear coordinates to describe

the domain Ω = x(Ω̃). Let us consider the case where the parameter space Ω̃
is a polyhedron and the boundary of the domain Ω is curved in some parts. We

discretize the parameter space Ω̃ into the mesh T̃0 and move its nodes x̃glob
i by the

parametrization to the new coordinates x(x̃glob
i) and obtain the mesh T0.

130 5 Implementation in FEniCS

time in sec. for assembly solving total

example 5.2.7 83 14 107

example 5.2.8 83 14 107

example 5.2.9 69 14 93

unparametrized 61 15 86

Table 5.2. Computational times (in seconds) to solve the defor-
mation problem from example 5.2.10. The unparametrized model
is based on a prior mesh move, see remark 5.2.11 for more details.

When we refine the coarse meshes T̃0 or T0, the new elements are generated by a
uniform refinement of triangles respectively tetrahedra. This causes no problems

for a polyhedral parameter space Ω̃, but if the boundary of the domain Ω is curved,
the refinement algorithm does not have the information of the curved boundary, so
new nodes are not on the boundary ∂Ω. Therefore, if we would move the nodes

of the refined mesh T̃1 by the parametrization again, we get a different mesh than
the refined mesh T1. This does not only hold true for the boundary, even inner
nodes might differ as well. But eventually we would solve two different problems
because the boundary of the undeformed body is not the same in the two models.
As a remedy, one could move the new nodes to their “right” position or generate

the meshes T` by refining T̃` first and then moving the nodes.

The second problem is that the base functions ϕi transformed on a (world) element
T0 ⊂ Ω differ between the two models. For example, if we choose continuous,

piecewise linear finite elements P1 on T̃0, the transformed base functions in the
world mesh are not necessarily linear, but rather nonlinear due to the curvilinear
parametrization. Of course, this difference vanishes with decreasing element sizes.
However, we will not further discuss which discretization might be “better” for a
problem, as this depends on the parametrization and problem itself.

We summarize these thoughts by saying that even though the parametrized and the
unparametrized model both describe the same problem, their discretization with
finite elements and thus the solution might differ.

Conclusions

5.2 Weak Formulations and UFL 131

We can see that the unparametrized model uses the least time for the assembly. This
is not surprising as a parametrization means additional computational work. Let us

recall that the Jacobi matrix G̃ enters the deformation gradient by F̃ = I+∇̃ŨG̃−1

from equation 2.57. Computing a term like the second derivative w,FF from lemma

A.2.1 means a lot of calculations because G̃−1 enters each F , G and H in the formula.
Considering this idea, the assembly times of the parametrized model seem quite
reasonable compared to the unparametrized model. It certainly means additional
computational costs, but not more than a third.

Comparing the three methods from examples 5.2.7 - 5.2.9, the third has the smallest
assembly time in the example. Here, we implemented the parametrization into the

UFL file. The advantage was the following: The Jacobi matrix G̃ as well as its

inverse G̃−1 have four zero entries. When compiling the UFL file with the FFC,
it can recognize theses zeros and discards any multiplication with a zero. This
shortens the assembly formula and thus the computational costs. In the first and
second method, the FFC cannot recognize any matrix entries as potential zeros,
because they are given as a Coefficient and therefore might be non-zero.

5.2.8. Hierarchical Plate Model

In Section 2.5 we introduced the hierarchical plate model with the ansatz

U(x) =

D2D∑
i=0

pi(
1
d
x3)U2D

i (x1,x2) (x1,x2) ∈ Ω2D,x3 ∈ [−d, d].

The coefficients pi(
1
d
x3) in front of U2D

i in the ansatz (2.62) are the Legendre
polynomials from remark 2.5.3 and their derivatives which are part of the common.py.

1 # define Legendre polynomials

2 def pol1(x):

3 return x

4 def pol2(x):

5 return 0.5*(3*x**2 -1)

6 def pol3(x):

7 return 0.5*(5*x**2 -3*x)

8 def pol4(x):

9 return 0.125*(35*x**4 -30*x**2+3)

10 # define the derivatives of the Legendre polynomials

11 def pol1_1(x):

12 return 1

13 def pol2_1(x):

14 return 3*x

15 def pol3_1(x):

16 return 0.5*(15*x-3)

132 5 Implementation in FEniCS

17 def pol4_1(x):

18 return 0.5*(35*x**3 -15*x)

The weak formulation (2.66) is a nonlinear PDE in the two-dimensional domain
Ω2D, so we declare some basic two dimensional finite elements.

1 # 2D elements for the plate model

2 cell2 = triangle

3 elem2F0 = FiniteElement("DG", cell2 , degree =0)

4 elem2V0 = VectorElement("DG", cell2 , degree=0, dim=3)

5 elem2V1 = VectorElement("Lagrange", cell2 , degree=1, dim=3)

The displacement functions U2D
i are discretized by piecewise linear finite elements

P1. Depending on the degree D2D of the plate model, we have mixed elements of
the following kind.

1 # finite elements for the state space for the plate model of

degree D

2 elemU = MixedElement ([elem2V1 ,elem2V1]) #

1

3 elemU = MixedElement ([elem2V1 ,elem2V1 ,elem2V1]) #

2

4 elemU = MixedElement ([elem2V1 ,elem2V1 ,elem2V1 ,elem2V1]) #

3

5 elemU = MixedElement ([elem2V1 ,elem2V1 ,elem2V1 ,elem2V1 ,elem2V1]) #

4

A function of type elemU is a vector-valued function with 3(D2D + 1) components.
The chosen sorting is (

U2D
0 ,U2D

1 , . . . ,U2D
D2D

)
.

Instead of using the split command, we define an auxiliary function U i which
returns U2D

i for a given i.

1 # return the function U_i with the index i

2 def U_i(u,i):

3 return as_vector ([u[3*i],u[3*i+1],u[3*i+2]])

With this function U i and the Legendre polynomials pol, we define the function
Plate to evaluate an ansatz function at a given point x= 1

d
x3, for the numerical

integration over the thickness.

1 def Plate1(u,x): # displacement ansatz for degree 1

2 return U_i(U,0) + pol1(x)*U_i(U,1)

3 def Plate2(u,x): # displacement ansatz for degree 2

5.2 Weak Formulations and UFL 133

4 return U_i(U,0) + pol1(x)*U_i(U,1) + pol2(x)*U_i(U,2)

5 def Plate3(u,x): # displacement ansatz for degree 3

6 return U_i(U,0) + pol1(x)*U_i(U,1) + pol2(x)*U_i(U,2) \

7 + pol3(x)*U_i(U,3)

8 def Plate4(u,x): # displacement ansatz for degree 4

9 return U_i(U,0) + pol1(x)*U_i(U,1) + pol2(x)*U_i(U,2) \

10 + pol3(x)*U_i(U,3) + pol4(x)*U_i(U,4)

Likewise, we can define the gradient from (2.64).

1 # auxiliary function for the sorting in the gradient

2 # a is the gradient wrt x_1 ,x_2

3 # b is the gradient wrt x_3 , 2d is the thickness

4 def as_plate_grad(a,b,d)

5 return as_matrix ([[a[0,0],a[0,1],b[0]/d],\

6 [a[1,0],a[1,1],b[1]/d],\

7 [a[2,0],a[2,1],b[2]/d]])

8

9 # gradient for plate model of degree 1

10 def Plate1Grad(u,x,d):

11 a = grad(U_i(U,0)) + pol1(x)*grad(U_i(U,1))

12 b = pol1_1(x)*U_i(U,1)

13 return as_plate_grad(a,b,d)

14
15 # gradient for plate model of degree 2

16 def Plate2Grad(u,x,d):

17 a = grad(U_i(U,0)) + pol1(x)*grad(U_i(U,1)) + pol2(x)*grad(U_i(

U,2))

18 b = pol1_1(x)*U_i(U,1) + pol2_1(x)*U_i(U,2)

19 return as_plate_grad(a,b,d)

20
21 # gradient for plate model of degree 3

22 def Plate3Grad(u,x,d):

23 a = grad(U_i(U,0)) +pol1(x)*grad(U_i(U,1)) +pol2(x)*grad(U_i(U

,2))\

24 +pol3(x)*grad(U_i(U,3))

25 b = pol1_1(x)*U_i(U,1) +pol2_1(x)*U_i(U,2) \

26 +pol3_1(x)*U_i(U,3)

27 return as_plate_grad(a,b,d)

28 # gradient for plate model of degree 4

29 def Plate4Grad(u,x,d):

30 a = grad(U_i(U,0)) +pol1(x)*grad(U_i(U,1)) +pol2(x)*grad(U_i(U

,2))\

31 +pol3(x)*grad(U_i(U,3)) +pol4(x)*grad(U_i(U

,4))

32 b = pol1_1(x)*U_i(U,1) +pol2_1(x)*U_i(U,2) \

134 5 Implementation in FEniCS

33 +pol3_1(x)*U_i(U,3) +pol4_1(x)*U_i(U,4)

34 return as_plate_grad(a,b,d)

The next part concerns the integration over the thickness, see remark 2.5.5. This
can be done in two ways: either we pass the integration point xj as a Constant in
the UFL file and then assemble the Gauss quadrature formula in the C++ code, or
we write the Gauss quadrature into the UFL file. The first allows a more flexible
switch between the degrees DGL of the Gauss quadrature and saves lines in the
UFL and .h header files since we need only one assembly routine for integrals where
only the integration point xj varies. On the other hand, as we have seen in the
conclusions of section 5.2.6, the offset time for the assembly is noticeable. Therefore
it might be better to write the Gauss quadrature into the UFL file and run the
assembly routine only once.

We start with the definition of the integration points xj and weights ωj from the
Gauss-Legendre quadrature formula from table 2.4. We denote the values xj and
wj of the formula with degree i in the UFL by x int{i}{j} and w int{i}{j}, e. g.

x int23= x3 = 1
5

√
15 for degree 2. These values are saved in the UFL file common.py.

We start by collecting the integration points and weights for easier use. The factor
d from the quadrature formula (2.68) is included in the weights w {i}.

1 # Gauss -Legendre degree D^GL = 2

2 d = thick *0.5

3 x_1 = x_int21

4 x_2 = x_int22

5 w_1 = w_int21*d

6 w_2 = w_int22*d

7 # Gauss -Legendre degree D^GL = 3

8 d = thick *0.5

9 x_1 = x_int31

10 x_2 = x_int32

11 x_3 = x_int33

12 w_1 = w_int31*d

13 w_2 = w_int32*d

14 w_3 = w_int33*d

15 # ... (analogously for higher degrees)

For a unified usage of later terms, we define a functions MyPlate and MyGrad to
evaluate the displacement from (2.62) and the plate gradient from (2.64).

1 def MyPlate(U,x): # choose only one line

2 return Plate1(U,x) # for plate degree = 1

3 return Plate2(U,x) # for plate degree = 2

4 return Plate3(U,x) # for plate degree = 3

5 return Plate4(U,x) # for plate degree = 4

5.2 Weak Formulations and UFL 135

6

7 def MyGrad(U,x): # choose only one line

8 return Plate1Grad(U,x,d) # for plate degree = 1

9 return Plate2Grad(U,x,d) # for plate degree = 2

10 return Plate3Grad(U,x,d) # for plate degree = 3

11 return Plate4Grad(U,x,d) # for plate degree = 4

With these auxiliary functions in the UFL file common.py, we can write the terms of
the sum in the quadrature formula as individual terms and finally add them. First
we specify some basic definitions.

1 # define test and trial function

2 testU = TestFunction(elemU)

3 trialU =TrialFunction(elemU)

4
5 # solution of the previous iteration

6 U = Coefficient(elemU)

7
8 # material constants and thickness 2d

9 mu = Constant(cell2)

10 lmbda = Constant(cell2)

11 thick = Constant(cell2)

12

13 # loads

14 f = Coefficient(elem2V0)

15 g = Coefficient(elem2V0)

We demonstrate the integration over the thickness with the stored energy W =
W (T) + W (f) + W (g). Recalling (2.69), the quadrature formula for the first part

W (T) reads

W (T)(U) =

∫
Ω

w(F (x)) dx =
DGL∑
j=1

dωj

∫
Ω2D

w
(
F (x1,x2, d xj)︸ ︷︷ ︸

=:Fj(x1,x2)

)
dx1dx2

=
DGL∑
j=1

dωj

∫
Ω2D

w
(
Fj(x1,x2)

)
dx1dx2.

Hence we will define the Fj := F (x1,x2, d xj) in the UFL file to re-use them later
for the energy term.

1 F1 = Identity (3) + MyGrad(U,x_1)

2 F2 = Identity (3) + MyGrad(U,x_2)

3 # ... continue with more terms for more integration points

136 5 Implementation in FEniCS

The energy term W (f) for a volume load f , which we assume to be constant over
the thickness, was integrated in (2.70), that is

W (f)(U) =

∫
Ω

f(x)>U(x) dx =

DGL∑
j=1

dωj

∫
Ω2D

f(x1,x2) ·U(x1,x2, d xj)︸ ︷︷ ︸
=MyPlate(U,x j)

dx1dx2.

We assumed that the boundary load g acts only on ΓN = Ω2D × {−d, d}, that is
the upper and lower surface, and is equal on both surfaces, compare the discussion
prior to equation (2.71). The energy term W (g) then is

W (g)(U) =

∫
ΓN

g(x) ·U(x)dS

=

∫
Ω2D

g(x1,x2) ·
(
U(x1,x2,−d)︸ ︷︷ ︸

=MyPlate(U,-1)

+U(x1,x2, d)︸ ︷︷ ︸
=MyPlate(U,1)

)
dx1dx2.

Finally, we sum up the terms W (T), W (f) and W (g) to get the stored energy

1 # define the terms for the sum

2 W1 = EnergyDensity(F1,mu,lmbda)*dx -inner(f, MyPlate(testU ,x_1)

)*dx

3 W2 = EnergyDensity(F2,mu,lmbda)*dx -inner(f, MyPlate(testU ,x_2)

)*dx

4 # ...

5 # build the sum of the quadrature formula

6 W = w_1*W1 + w_2*W2 \ # + ...

7 -inner(g, MyPlate(testU ,-1))*dx \

8 -inner(g, MyPlate(testU , 1))*dx

The same procedure can be applied for the first derivative W,U and the second
derivative W,UU of the stored energy W , see lemma (A.2.1).

1 # define the first derivative W_U

2 W_U1 = EnergyDensity_1st(F1 ,MyGrad(testU ,x_1),mu,lmbda)*dx \

3 -inner(f, MyPlate(testU ,x_1))*dx

4 W_U2 = EnergyDensity_1st(F2 ,MyGrad(testU ,x_2),mu,lmbda)*dx \

5 -inner(f, MyPlate(testU ,x_2))*dx

6 # ...

7 # build the sum of the quadrature formula

8 W_U = w_1*W_U1 + w_2*W_U2 \ # ...

9 -inner(g, MyPlate(testU ,-1)+MyPlate(testU ,1))*dx

5.3 Solver Routines 137

1 # define the second derivative W_UU

2 W_UU1 = EnergyDensity_2nd(F1,MyGrad(testU ,x_1),

3 MyGrad(trialU ,x_1),mu,lmbda)*dx

4 W_UU2 = EnergyDensity_2nd(F2,MyGrad(testU ,x_2),

5 MyGrad(trialU ,x_2),mu,lmbda)*dx

6 # ...

7 W_UU = w_1*W_UU1 + w_2*W_UU2 # + ...

Other forms like a guiding function or a preconditioner can be handled analogously.

1 # guiding function

2 beta = Constant(cell2)

3 G1 = guiding(F1,beta)*dx

4 G2 = guiding(F2,beta)*dx

5 # ...

6 G = w_1*G1 + w_2*G2 # + ...

7
8 # the preconditioner

9 a_prec1 = LEscal(MyGrad(testU ,x_1),MyGrad(trialU ,x_1),mu ,lmbda)*

dx

10 a_prec2 = LEscal(MyGrad(testU ,x_2),MyGrad(trialU ,x_2),mu ,lmbda)*

dx

11 # ...

12 a_prec = w_1*a_prec1 + w_2*a_prec2 # + ...

We complete the UFL file by stating which forms are assembled.

1 forms = [W_UU , W_U , a_prec , L_prec , G]

5.3 Solver Routines

This section concerns the implementation of the solver algorithms in the C++ code.
We will not give too many details but rather show the basic ideas how the routines
work. The presented code fragments will omit various lines and will not be complete
in most cases. We concentrate on the core ideas and illustrate the functionalities of
the routines.

5.3.1. Multigrid Method

We introduced the multigrid V-cycle (alg. 3.5.5) in section 3.5 as a preconditioner for
the CG and MinRes method. Ospald (2012) implemented a geometrical multigrid
method called FMG for FEniCS 1.2.0. The project homepage (Ospald (2014)) on
Launchpad offers the latest version with instructions and demos. The following code
is built on basic routines of FMG:

138 5 Implementation in FEniCS

• the multigrid level structure mg level including the Galerkin interpolation
for A` and the V-cycle algorithm itself,

• the assembly routine for the prolongation matrix p`→`+1,
• the adaptor to adjust the variational problems on the different meshes2

(which is a modified version of the one from FEniCS 1.0.0, see (Ospald,
2012, ch. 3.2)),

• the smoothing operators.

The Class mg level

The hierarchy of the different multigrid levels ` = 0, 1, . . . , L is stored in the class
mg level which contains information on the following:

• pointer to the next coarser and finer level `− 1 and `+ 1.
• the prolongation matrix p`,`+1.
• the (current) coefficient matrix A` of the linear system.
• the smoothing operators from FMG.
• the Dirichlet BCs on the level `.

We illustrate the initialization of the class mg level with an example: we have a lin-
ear variational equality a(u, v) = l(v) stored in the class LinearVariationalProblem
and construct a multigrid hierarchy for it. For example, the bilinear form a could
represent the preconditioner a prec from section 5.2.3. The following code is called
at the beginning of the program and not only refines the mesh, but also adapts the
variational problems, that means the bilinear and linear forms are updated to the
new levels. The results are the meshes and adapted problems on each level, as well
as the multigrid structure of class mg level. The levels and problems are stored in
a std::vector for an easier access later.

1 // passed objects:

2 // LinearVariationalProblem* _problem - the variational problem

3 // int L - the number of mesh levels/refinements

4 ...

5 // init. vectors for an easier access of the different levels

6 std::vector <boost ::shared_ptr <mg_level > > levels;

7 std::vector <boost ::shared_ptr <LinearVariationalProblem > >

problems;

8 levels.resize(L+1);

9 problems.resize(L+1);

10 // pass the problem to the coarsest level

11 problems [0]. reset(new LinearVariationalProblem (* _problem));

12
13 // pointer for the current mesh

2An object Form in FEniCS is always defined on a discretized function space. Refining the under-
lying mesh requires an adaptation of the forms which is done by the FMG-routine adaptor.

5.3 Solver Routines 139

14 const Mesh* mesh_i = problems [0]-> test_space ()->mesh().get();

15
16 for (int i = 0; i <= L; i++)

17 { // create new level

18 levels[i]. reset(new mg_level ());

19 if (i > 0)

20 { // set parent/child relation between levels

21 levels[i-1]-> set_child(levels[i]);

22 // adapt mesh

23 fmg:: Adaptor ::adapt(* mesh_i);

24 mesh_i = &(mesh_i ->child ());

25 // adapt problem

26 fmg:: Adaptor ::adapt(* problems[i-1], *mesh_i);

27 problems[i]. reset(new

28 LinearVariationalProblem(problems[i-1]->child())

);

29 }

30 // set function space

31 levels[i]->space = problems[i]->test_space ();

32 // init prolongation

33 if (i > 0)

34 levels[i-1]-> init_prolongation ();

35 }

We omitted several lines here, like the handling of the Dirichlet boundary data
(which has to be adapted too) and the initialization of certain vectors. In case of
the nonlinear problem 0 = W,U , we also have to include lines for the adaptation of
the preconditioner, the guiding function and other forms.

For a compatibility with PETSc routines, we define the preconditioner with the
appropriate class.

1 // multigrid preconditioner

2 class mg_prec : public PETScUserPreconditioner

3 { public:

4 mg_prec(boost :: shared_ptr <mg_level > _level0) : level0(_level0)

{}

5 void solve(PETScVector& x, const PETScVector& b)

6 { level0 ->recursive_mg(x, b); } // apply one V-.cycle

7 protected:

8 boost::shared_ptr <mg_level > level0;

9 };

140 5 Implementation in FEniCS

Before calling the preconditioner, the matrices A` have to be set on the multigrid
levels ` = 0, . . . , L. Instead of assembling the matrices on each level, we assem-
ble only the matrix AL on the finest level and compute the Galerkin assembly of
{A`}L−1

`=0 recursively, see equation (3.25).

1 // assemble A and b on the finest mesh and store it in levels[L]

2 assembler.assemble (*(levels[L]->A), *(levels[L]->b0),

3 *(problems[L]->bilinear_form ()), *(problems[L]->residual_form ())

);

4
5 // do Galerkin assembly on coarser levels

6 for (int i = L-1; i >= 0; i--)

7 levels[i]->init_Galerkin_A ();

8

9 // init coarse level solver and smoothers

10 levels[0]-> init_solver ();

11 for (std:: size_t i = 1; i < L+1; i++) {

12 levels[i]->init_smoother ();

13

14 mg_prec p(levels[c_level_it]);

With these pieces of information, the routine mg level has everything in order
to perform the V-cycle from algorithm 3.5.5. For example, in a Krylov subspace
method, the preconditioner is applied on a residual ~r to compute the preconditioned
residual ~w, that can be called by:

// call of the preconditioner

// r - the residual

// w - the preconditioned residual

p->solve(w,r);

5.3.2. CG and MinRes Method

There are PETSc implementations for the CG and MinRes method, but we im-
plemented both methods again due to the following deficiencies:

• There is a stopping criterion with the “preconditioned norm” in the PETSc-
CG and -MinRes, but it actually computes the Euclidean l2-norm of the
preconditioned residual ~w = P−1~r, even though the norm of the residual
can be easily computed by

‖r‖2U∗ = ~r>P−1~r = ~r> ~w.

• The implementation of the CG method in PETSc does not incorporate
the option to stop when a negative curvature is detected (truncated CG).

5.3 Solver Routines 141

The implementation of a truncated CG method (algorithm 3.3.1) and a MinRes
method (algorithm 3.3.3) in C++ is straightforward.

5.3.3. Forward Problem

In order to solve the forward problem (2.46), that is

0 = W,U (U?)[δU], ∀δU ∈ U ,

we apply Newton’s method from algorithm 3.1.1. This includes a line search as well
as the truncated CG method with a multigrid V-cycle preconditioner. The Newton
system (3.2) as well as the bilinear form for the preconditioner are passed as a
variational problem to the Newton solver, along with a possible guiding function
and the number of refinements for the mesh.

1 // exemplary constructor for the Newton solver

2 fmgNewtonSolver solver(problem , prec_problem , G, L);

Due to the number of lines in the code for the Newton solver, we give a simplistic
pseudo-code in algorithm 5.3.1. The norm ‖W,U (Uk,C)‖U∗ from the stopping crite-

rion (3.3) is computed by the (dual) norm of the right-hand side ~b (the discretization

of W,U (Uk,C)) of the Newton system A~x = ~b, e. g.

‖W,U (Uk,C)‖U∗ = ~b>P−1~b = ‖~b‖Rh ,
where P−1 is the application of the preconditioner, which has the same role as the
discretized Riesz operator Rh = P−1.

Algorithm 5.3.1 (Newton forward solver).

Input: problem, prec problem, I, G, L
Output: solution: displacement U and control C

1: refine the mesh and initialize the multigrid levels for problem, prec problem, I
and G

2: if (nested iterations are used) then
3: Start on T0

4: else
5: Start on TL
6: end if
7: k := 0, set U0 ≡ 0 if not given otherwise
8: assemble the matrix P for the preconditioner
9: while (not converged) do

10: assemble the Newton matrix A and rhs ~b at the current iterate Uk

(this includes a symmetrical modification from the Dirichlet BCs)
11: solve the Newton system with a truncated CG method

142 5 Implementation in FEniCS

12: perform a line search to compute a step length α
13: set Uk+1 := Uk + α∆Uk

14: assemble the rhs ~b
15: if (‖W,U (Uk,C)‖U∗ = ‖~b‖Rh satisfies the stopping criterion) then
16: set converged := true
17: end if
18: if (nested iterations are used and converged = true) then
19: increase the current level `→ `+ 1
20: interpolate Uk to the new level
21: assemble the matrix P for the preconditioner on the new level
22: set converged := false
23: end if
24: set k := k + 1
25: end while
26: return Uk and Ck

Remark 5.3.2 (On algorithm 5.3.1). The right-hand side ~b is assembled twice in
each Newton iteration. The reason for this lies in the assembly routines of FEniCS.
As we use a CG or MinRes method, we need to have symmetric matrices, so
the Dirichlet BCs have to be applied symmetrically on A, which is done by the
FEniCS built-in routine SystemAssembler which needs bilinear and linear forms

simultaneously and assembles both, matrix A and right-hand side ~b. The symmetric
application of the Dirichlet BCs in this routine is done locally on the elements, since
a modification of rows and columns is cheaper for the element matrix than for the
global matrix A.

However, if we would have inhomogeneous Dirichlet BCs and they are not met yet,

we have to assemble the matrix A because the modification of the right-hand side ~b
depends on the matrix A. On the other hand, if the Dirichlet BCs are not met, we
do not have to check the stopping criterion because Newton’s method is not finished
anyway.

5.3.4. Lagrange-Newton Problem

The C++ implementation of the Lagrange-Newton method from algorithm 4.2.2
is very similar to the C++ code in algorithm 5.3.1 for the forward system. The
main two differences are the additional term for the objective function I and the
different handling of the block preconditioner (4.27). As the objective function is
quite straightforward to implement, the block preconditioner requires some addi-
tional work, for example the scaling factors sC , sU , sZ > 0 and the extraction of the
three components U ,C,Z from the PETSc vector X = (U ,C,Z), though we will

5.3 Solver Routines 143

not go into detail on the last point. The C++ code for the block preconditioner
(without the lines for the extraction) then reads:

1 // Block preconditioner with multigrid

2 class block_UCZ_mg_prec : public PETScUserPreconditioner

3 {

4 public:

5 block_UCZ_mg_prec(mg_level _level0 , GenericMatrix diag ,

6 double* _scaling) :

7 level0(_level0), diag(_diag), scaling(_scaling) {}

8 void solve(PETScVector& X, const PETScVector& b)

9 { // get the sub -vectors rhsU , rhsC and rhsZ from b

10 // (lines are omitted)

11
12 // direct solver for the C-block (diagonal mass matrix)

13 LinearSolver lsolver("lu");

14 lsolver.solve (*diag , *C, *rhsC);

15 // multigrid V-cycle for the U block and the Z block

16 level0 ->recursive_mg (*U, *rhsU);

17 level0 ->recursive_mg (*Z, *rhsZ);

18 // apply the scaling on the blocks

19 *U *= 1.0/ scaling [0];

20 *C *= 1.0/ scaling [1];

21 *Z *= 1.0/ scaling [2];

22

23 // rebuild the vector X from (U,C,Z) (lines are omitted)

24
25 return;

26 }

27 };

Stopping Criterion and Scaling Factors

The choice of the scaling factors sU , sC , sZ influences the norm ‖·‖X∗ of the stopping
criterion of the Lagrange-Newton (LN). In order to test different combinations of
sU , sC , sZ , we set the scaling factors to sU = sC = sZ = 1 so that the stopping
criterion stays the same and we can compare the performance for different scalings.
The testing itself is done by fixing sU = 1 and varying sC , sZ , for example in
powers of 10. Then the overall computational time is measured, next to the number
of LN and MinRes iterations. Figure 5.3 shows an example for the optimal control
problem from section 6.2.1. We can see that the number of MinRes iterations is
more sensitive with respect to the factor sC than the factor sZ in this example.
Furthermore, the plots for the Lagrange-Newton iterations and the overall running
time resemble this figure quite well. Still, we are careful with the choice of the

144 5 Implementation in FEniCS

scaling factors as combinations like sU = 1, sC = 10−10, sZ = 1010 are likely to
cause problems due to numerical rounding errors.

10
−5

10
0

10
5

10
10

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
3

10
4

10
5

10
6

scaling s
C

scaling s
Z

#
 K

ry
lo

v
 i

te
ra

ti
o
n
s

Figure 5.3. Plot of the total number of MinRes iterations
against the scaling factors sZ , sC .

5.3.5. Reduced Problem

This section will illustrate the C++ implementation of the quasi-Newton solver
from algorithm 4.3.15 to solve the reduced optimal control problem 4.32. Again, we
will not give the code at length but rather show the main structure.

We start by naming the required objects that are passed to the solver. We have

• the variational problem fwrd problem for the problem U = S(C) from
(4.31),

• the preconditioner for the state U and the derivative I,U both merged into
a variational problem prec U problem,

• the mass matrixMC and the construction of the derivative Ired
,C from (4.38),

both merged into bilinear and linear forms in the variational problem
prec C problem,

• the objective function I as a form I,
• a possible guiding function G as a form G,
• and the number of mesh refinements L.

5.3 Solver Routines 145

The merging of the preconditioner with I,U and the mass matrix MC with Ired
,C as

variational problems is a rather convenient implementation and does not necessarily
represent a variational problem which has to be solved.

Besides the multigrid levels, several intermediate/current functions are stored, among
them the state U, the control C, the adjoint Z, the derivative I 1st= Ired

,C and the
auxiliary functions si ∈ C and yi ∈ C∗ for the BFGS-update. The solver itself is
divided into several subroutines, among them are the following:

init levels()

This subroutine is called at the beginning and refines the mesh and builds the
multigrid levels for the three variational problems fwrd problem, prec U problem

and prec C problem, as well as for the forms I, G and L.

SolveFwrd()

This call uses the forward solver from section 5.3.3 to solve the forward problem
given in fwrd problem. The result is the state U = S(C) associated with the
current control C. This includes the line search with a guiding function G as
well as a truncated CG method with the multigrid V-cycle preconditioner from
prec U problem. As we mentioned earlier, we have to solve the forward system
preferably accurately so that the Wolfe-Powell conditions (4.45) can be satisfied.

SolveAdj()

When the current state U = S(C) solves the forward problem with the current
control C, the adjoint equation can be solved to compute the adjoint state Z. The
coefficient matrix for the (linear) adjoint equation is the last Newton matrix from
the forward solver SolveFwrd and therefore it does not need to be re-assembled.
The right-hand side of the system is the derivative I,U which is stored as the linear
form of the variational problem prec U problem.

Since we assume that Uk is a local minimum of the energy minimization problem,
the stiffness matrix A is assumed to be positive (semi-)definite. Therefore we can use
a CG method to solve the adjoint system, though we still pay attention to negative
curvature. Like the forward system, we have to solve the adjoint system quite
accurately so that the Wolfe-Powell conditions (4.45) can be satisfied. Afterwards,
the reduced derivative Ired

,C is assembled, using the just computed adjoint Z and the
linear form of prec C problem.

inv LM BFGS update()

This subroutine performs the inverse, limited-memory BFGS-update from algorithm
4.3.10 on the (negative) derivative −Ired

,C to compute the search direction ∆C. The

BFGS-auxiliary functions si and yi and the scalars ρi = (y>i si)
−1 are each stored in

a std::vector for an easier handling. As this subroutine is rather short, we show
it exemplarily.

146 5 Implementation in FEniCS

1 void fmgQuasiNewtonSolver :: inv_lm_BFGS_update(boost::shared_ptr <

const Vector > I_1st , boost ::shared_ptr <Function > p)

2

3 std:: size_t k = s.size(); // current number of BFGS -functions

4 double alpha[k];

5 double beta;

6 Vector q(*I_1st); // copy vector

7
8 for (int i=k-1; i>=0; i--)

9 { alpha[i] = rho[i]* q.inner(*(s[i]->vector ()));

10 q.axpy(-alpha[i], *(y[i]));

11 }

12 // Applying H_0 means solving with the mass matrix M_C

13 LinearSolver lsolver("lu");

14 lsolver.solve (*(prec_C_levels[c_level_it]->A), *p->vector (), q);

15
16 for (std:: size_t i=0; i<k; i++)

17 { beta = rho[i]* y[i]->inner(*(p->vector ()));

18 p->vector ()->axpy((alpha[i]-beta), *(s[i])->vector ());

19 }

Wolfe Powell linesearch()

The Wolfe-Powell line search from algorithm 4.3.12 along the search direction ∆Ck

is used to find a step length satisfying the Wolfe-Powell conditions (4.45). The
implementation is quite straightforward, still we give some remarks on it.

We store the starting points Ck and Uk and modify the variable holding the current
control C= Ck + α∆Ck. Whenever the control is changing, we need to “update”
the current state by solving the forward problem, i. e. SolveFwrd(). This is manda-
tory for the evaluation of the reduced objective function Ired as well as for the
computation of the reduced derivative Ired

,C .

In case of divergence of the forward solver, which might happen if the new control
Ck+1 = Ck + α∆Ck is too large to yield a reasonable deformation, the step length
α is drastically reduced, e. g. by a factor 1

10
. This can also be interpreted as a

line search for the forward solver which simply “tries” whether Newton’s method
succeeds in a given number of iterations, hence it could be understood as a very
simple trial and error approach to the globalization problem discussed in section
3.2.

As the Wolfe-Powell line search calls the forward solver SolveFwrd() and the adjoint
solver SolveAdj(), the main computational work occurs during this line search.
Also, once an admissible step length α is found, the control is already updated to
Ck+1 = Ck + α∆Ck, as well as the state U = S(Ck+1) and the reduced derivative
Ired
,C (Ck+1).

5.4 An Experimental Preconditioner 147

solve()

The quasi-Newton algorithm 4.3.15 itself is called by solve(). It starts the op-
timization, uses the previous subroutines and manages the handling of the BFGS
auxiliary functions si ∈ C and yi ∈ C∗ which are stored in lists of type std::Function
respectively std::vector. The implementation directly follows the algorithm.

5.4 An Experimental Preconditioner

So far, we used the linear model of elasticity as a preconditioner for U , or to be more
precise, an approximation by a multigrid V-cycle. The advantage of this choice is
clearly its positive definiteness, though it might not be very “similar” to the stiffness
matrix Ah of the nonlinear model, defined in (3.20). Of course, we expect both
models to differ from each other for large deformations, so we can expect that the
choice P = Klin.elast might be not as good for large deformations as it was for small
deformations. On the other hand, a V-cycle with the current stiffness matrix Ah
of the nonlinear model might be “closer” to the matrix Ah itself, but we cannot
guarantee its positive definiteness, which is a requirement for a preconditioner in a
CG and MinRes methods. Therefore, if we use a V-cycle of Ah as a preconditioner
P , we have to take some precautions. Let ~r be the current residual and ~w = P−1~r
the preconditioned residual. The scalar product ~r> ~w = ~r>P−1~r shows up in the CG

(alg. 3.3.1) and the MinRes method (alg. 3.3.3). In both methods, the term
√
~r> ~w

is computed, either for the stopping criterion in the CG method or the scaling γ1 in
the MinRes method. If the square root does not exist because the scalar product
~r> ~w < 0 is negative, both methods cannot be expected to continue to work, since
a symmetric positive definite preconditioner is a requirement in both. This leads to
the following idea.

“Truncated” Idea for the Preconditioner

We first consider the forward solver with a truncated CG method to solve the
Newton system. Similar to the idea of the truncated CG, we stop the CG method
if we detect the scalar product ~r> ~w to be negative. This can be understood as
a (second) negative curvature check for the (inverted) preconditioner P−1. Until
this point, the matrix Ah has a positive curvature in the Krylov subspace as well
as for the (inverted) preconditioner P−1. Hence, we are still in the context of a
truncated CG method, but now with a possibly earlier stop if the preconditioner
is not positive definite. Still, the same arguments from the truncated CG can
be applied here again. If the negative curvature for P−1 is detected in the first
iteration, we perform a V-cycle with the stiffness matrix Klin.elast from (2.28) as
a preconditioner which is guaranteed to be positive definite. This then can be
understood as a safety preconditioner to which the algorithm falls back in case the
preconditioner P = Ah does not work.

148 5 Implementation in FEniCS

Of course, the experimental preconditioner P = Ah has an influence on the norm
‖·‖R in the stopping criterion of the CG method, because the choice of the Riesz
operator R = P−1 is equivalent to the choice of the preconditioner. However, we
keep the norm based on Klin.elast for the stopping criterion (3.3) of the Newton
solver, e. g.

‖W,U (Uk,C)‖
K−1

lin.elast

‖W,U (U0,C)‖
K−1

lin.elast

≤ rTol or ‖W,U (Uk,C)‖
K−1

lin.elast
≤ aTol.

This requires an (additional) application of the preconditioner with Klin.elast, i. e. a
multigrid V-cycle with Klin.elast, in each Newton step.

We can employ the same idea for the Lagrange-Newton method. The preconditioner
P = Ah takes the U and Z block in the block preconditioner, that is

P =

sUAh sCMC
sZAh

 .
Again, a negative scalar product ~r> ~w < 0 will cause the MinRes method to break
down, so we could stop the method at this point and return the intermediate so-
lution. If this happens in the first iteration, we perform a V-cycle with the earlier
mentioned (safety) block preconditioner (4.27). Another strategy could be a MinRes
method with the safety block preconditioner, though this might result in a higher
number of MinRes iterations. The stopping criterion for the Lagrange-Newton
method itself remains to be based on this safety preconditioner.

For the quasi-Newton method, we apply the same strategy for the solution opera-
tor SolveFwrd that we already suggested for the forward solver. As for the adjoint
solver, we still assume the (semi-)positive definiteness of Ah at a local solution
Uk = S(Ck), so we use a CG method with the new preconditioner which, of course,
changes the norm in the stopping criterion of this CG method. However, the norm
‖·‖C in the stopping criterion of the quasi-Newton solver is independent of the pre-
conditioner.

We test the experimental preconditioner P = Ah and compare it to the previous
preconditioner Klin.elast with the following example 5.4.1.

Example 5.4.1 (Bar with Fibre Tension). Let Ω = (0, 5)× (0, 1)× (0, 1) be a bar
with a fiber direction of a(x) = (1, 0, 0)> aligned along the bar. The fiber tension
m is given by

m(x1,x2,x3) = s 1
10

(x3 − 1
2
),

5.4 An Experimental Preconditioner 149

with an increment s ∈ [0, 1]. That means the fibers on the top tend to shorten while
the fibers at the bottom tend to elongate. We choose a coarse mesh with 11× 3× 3
vertices and a mesh refinement level of L = 2. The relative stopping criterion for
the linear solver is rTol = 10−8. The solutions for the increments s = 0, 1

10
, 2

10
, . . . , 1

are plotted in figure 5.4.

Figure 5.4. Solutions of the example 5.4.1 for the load incre-
ments s = 0, 1

10
, 2

10
, . . . , 1. The dark blue mesh is the solution for

the incremental s = 1.0 while the transparent red mesh in the
lower right corner is the undeformed body, i. e. s = 0.

The comparison of both preconditioners in terms of the total number of CG iter-
ations for each increment s ∈ { 1

10
, 2

10
, . . . , 1} is illustrated in figure 5.5. One can

clearly see that the number of CG iterations grows with the increment s. In the
case of the experimental preconditioner P = Ah, this results in about 7 to 9 CG
iterations per Newton step. For the preconditioner Klin.elast, the average number
of CG iterations per Newton step grows from 22 for s = 0.1 up to 70 for s = 0.8.
Here, the negative curvature occurred much more often in the truncated CG than
for P = Ah. Another reason for the better results of the experimental precondi-
tioner is the fact that the second derivative of the energy term W (m) contributes
to the stiffness matrix Ah. The preconditioner Klin.elast does not incorporate this
term because it might not be positive definite. Hence, a V-cycle of Klin.elast is only
a good approximation for Ah if the deformation and the fiber tension m are small.

150 5 Implementation in FEniCS

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

load increment

C
G

 it
er

at
io

ns

prec. based on linear model

experimental preconditioner

Figure 5.5. The total number of CG iterations in order to solve
the forward problem for an increment s ∈ { 1

10
, 2

10
, . . . , 1}.

6 Numerical Experiments

Contents

6.1 Experiments on the Forward Problem 153
6.1.1. Line Search and Iterates of Newton’s Method 153
6.1.2. Plate Model 156

6.2 Experiments on the Optimal Control Problem 159
6.2.1. Elevated Bar with Fiber Tension Control 159
6.2.2. Regional Penalization 167
6.2.3. Flower Movement by Turgor Pressure 170
6.2.4. Enclosed Volume 173

This chapter presents a couple of numerical experiments on the forward problem
and on the optimal control problem. First, in section 6.1, we compare the different
line search methods from section 3.2 with the example 3.2.1 of a thick plate which
results in divergence for a standard Newton’s method. The same example is then
used to test the hierarchical plate model from section 2.5 and compare it with the
full 3D model. Here we also regard a thinner plate to get an idea which degree D2D

of the plate model is needed to solve the forward problem to satisfactory accuracy.

In section 6.2, we present four optimal control problems each of which demonstrates
a certain aspect of this thesis. We start with the introductory example 4.1.1 from the
chapter on optimal control. We compare the Lagrange-Newton and quasi-Newton
methods by the performance to solve this optimal control problem numerically, fol-
lowed by a discussion on the advantages of both algorithms. The second example
illustrates the usage of the regional penalization objective from definition 4.1.4. We
give numerical solutions for a couple of penalty parameters of the control showing
the influence on the deformation of the solution. The third problem is the exam-
ple 4.1.8 on heliotropism, the movement of flowers towards the sun. Here we use
cylindrical coordinates to describe a simple model of the stem below the flower.
The fourth example will be on the enclosed volume by a deformed plate and its
reference configuration. We try to maximize the volume, though we add a penalty
term for the control in order to bound the optimization problem. We will then
vary the penalty parameter for the control to show the influence on the enclosed
volume. This example also demonstrates an optimal control problem on the basis
of the hierarchical plate model.

152 6 Numerical Experiments

Remark 6.0.2 (Settings for the forward solver (algorithm 3.1.1)).

• rTol = 10−8 for the stopping criterion (3.3) for Newton’s method.
• inexact Newton with rTol = min

{
10−4, ‖W,U (Uk,C)‖U∗

}
for the CG

method
• nested iterations from algorithm 3.5.6
• preconditioner with the current stiffness matrix Ah, see section 5.4
• guiding criterion from algorithm 3.2.6 with β = 0.1

Remark 6.0.3 (Settings for the Lagrange-Newton method (algorithm 4.2.2)).

• rTol = 10−6 for the stopping criterion (4.23) for the Lagrange-Newton
method.

• inexact Newton with rTol = min
{

10−4, ‖W,U (Uk,C)‖U∗
}

for the Min-
Res method

• nested iterations from algorithm 4.2.3
• block preconditioner with the current stiffness matrix Ah and the mass

matrix MC , see section 5.4
• guiding criterion from algorithm 3.2.6 with β = 10−2

Remark 6.0.4 (Settings for the quasi-Newton method (algorithm 4.3.15)).

• rTol = 10−5 for the stopping criterion (4.46) for the quasi-Newton method
• rTol = 10−6 for the stopping criterion for the linear solver
• guiding criterion from algorithm 3.2.6 for the forward solver with β = 0.1
• preconditioner with the current stiffness matrix Ah, see section 5.4
• BFGS history maximum m = 50, initial scaling sC = 1
• Wolfe-Powell line search parameters c1 = 10−3, c2 = 0.9

Remark 6.0.5 (Standard material parameters).

If not otherwise stated, we choose for the material parameters a Young’s modulus
of E = 1 N mm−2 and a Poisson’s ratio of ν = 0.3, that are the Lamé parameters

µ =
E

2(1 + ν)
=

5

13

N

mm2
, λ =

Eν

(1 + ν)(1− 2ν)
=

15

26

N

mm2
.

This gives the material parameters

a =
25

208

N

mm2
, b =

15

208

N

mm2
, c =

15

208

N

mm2
, d =

35

52

N

mm2
, e = −135

208

N

mm2
,

for the polyconvex energy density (2.18). The choice of the Young’s modulus E is
not essential to our numerical experiments because eventually E is a scaling of the

6.1 Experiments on the Forward Problem 153

control C, because E enters the polyconvex energy linearly just like the control C.
The Poisson’s ratio of ν = 0.3 is a simple example for a compressible material.

All computations were done in FEniCS 1.2.0 on an Intel Xeon Dual Core CPU
with 16 GB RAM. If not stated otherwise, we use the following settings for the
algorithms.

6.1 Experiments on the Forward Problem

6.1.1. Line Search and Iterates of Newton’s Method

As we already announced in section 3.2, we compare the presented globalization
strategies. Of course, the behavior of these techniques depends on the example
itself and there are situations where one strategy works better than the other while
in another example it might fail. We used example 3.2.1 earlier to show that a
standard Newton’s method with fixed step length α = 1 might diverge. Now, we
solve this problem with Newton’s method and with different globalization strategies:

INC is the incremental method from algorithm 3.2.3 with a simple equidistant
distribution for the scalings sk = k

n
, e. g. 0, 1

n
, 2
n
, . . . , n

n
with n + 1 steps

in total. The number of steps is chosen as the smallest number where
Newton’s method converges for s1 = 1

n
. We solve only the last increment

sN = 1 accurately, the increments before have a larger relative tolerance
of rTol2 = 10−4.

SIB is the simple backtracking algorithm 3.2.4.
ARM is the Armijo backtracking from algorithm 3.2.5 on the stored energy W .

The parameter inside the criterion is chosen to be σ = 0.1.
GUI is the backtracking algorithm 3.2.6 with the guiding function G and the

parameter β = 0.1.

In all backtracking line search methods (SIB, ARM, GUI) we choose the factor to
decrease the step length to be sα = 0.9.

We expect the solution U to be symmetric, thus we exploit this symmetry by working
only on a quarter of Ω, e. g. (0, 1)× (0, 1)× (0, 1

10
) and set symmetric Dirichlet BCs

on the new boundary, e. g.

[U]1 = 0 on ΓD
1 = 1× [0, 1]× [0, 1

10
]

[U]2 = 0 on ΓD
2 = [0, 1]× 1× [0, 1

10
].

The domain Ω is discretized by a structured mesh with 11×11×3 vertices. The mesh
is uniformly refined twice, i. e. L = 2. We do not use nested iterations here because
the later usage of the globalization strategies inside an optimization algorithm would

154 6 Numerical Experiments

not allow that.1 The results of the line search test can be found in table 6.1 and a
plot of a few iterates are shown in figure 6.1

Newton Krylov total
strategy iter. iter. time in s remarks

INC 22 255 52
SIB (sα = 0.9) - - - no convergence
SIB (sα = 0.5) 17 155 33 6× neg. curv. in the CG

ARM 6 76 15
GUI 6 78 15

Table 6.1. Numerical results for testing the globalization strate-
gies from section 3.2. The second and third columns refer to the
total number of iterations for Newton’s method and the truncated
CG method. The time is the total running time of the program.

Figure 6.1. The upper plot shows the solution of the example
3.2.1. The lower plots show the first four iterates of Newton’s
method with GUI. The last two iterates (the 5th and 6th) are not
visually distinguishable from the fourth iterate.

Conclusions

1There, a nested iteration would be applied on the optimization method itself, not on the sub-
routines of it.

6.1 Experiments on the Forward Problem 155

In the example 3.2.1, local negative volume change J < 0 was the main reason for
divergence of a standard Newton’s method. The results clearly show the neces-
sity for a globalization strategy. We are looking for a method to deal with large
deformations, i. e. it can reliably find a solution.

The incremental method does not meet our demands as it is difficult for it to adapt
itself to a given control. Fixing the number of increments is not an option for the
optimal control problem and a trial and error approach seems very costly. Therefore,
we will not use this strategy.

The simple backtracking SIB behaves rather unpredictably. The only user-defined
parameter in SIB is the factor sα which controls the new trial step length α := sαα.
This however is not sufficient to control the line search to behave desirably. Larger
values of sα might cause the method to accept step lengths that produce updates
with a locally very small volume change J ≈ 0. This produces bad starting points
and Newton’s method diverges. If this is the case, we could set sα smaller in the
hope that the iterates stay away from J ≈ 0. However, this might result in very
small sα so Newton’s method is too strongly damped. As a conclusion, we find SIB
to be unsatisfactory for large deformation.

The Armijo backtracking line search and the guiding criterion behave very simi-
larly. Therefore, we increase the volume load to f = (0, 0, 1)>, so that the problem
becomes more difficult to solve, see the results in table 6.2. GUI seems to offer a
better criterion than ARM for Newton’s method to solve example 3.2.1.

Newton Krylov total
strategy iter. iter. time in s

ARM 10 109 24
GUI 7 106 18

Table 6.2. Numerical results similar to table 6.1, but with an
increased volume load f = (0, 0, 1)>.

As a final conclusion, the Armijo backtracking and the guiding criterion are both
reliable line search methods for the globalization of Newton’s method. The Armijo
backtracking has the advantage that it arises naturally in Newton’s method for the
energy minimization. Thus it fits in the known and well studied context of line
search methods in nonlinear optimization, with the theoretical foundations about
existence of an admissible step length and sufficient decrease of the energy to ensure
convergence of Newton’s method.

The guiding criterion on the other hand, does not consider the energy minimization
but rather is a special damping strategy to avoid certain unfavorable step lengths.

156 6 Numerical Experiments

In particular, this means local negative volume change in elasticity models for large
deformations. Even without the theoretical basis, numerical experiments suggest
that the guiding criterion is a reliable strategy.

So far, the guiding function G from (3.5), that was

G(U) =

{ ∫
Ω

∣∣ ln (det(I +∇U(x))
)∣∣ dx

∞ if the integral is not defined

has only considered the local volume change J . However, if the volume change is
not a good criterion to judge a step length, it is possible to add other terms like
‖F‖2F or ‖cof F‖2F to the guiding function G. This could help to prevent too large
Newton steps and therefore serve as a globalization strategy for Newton’s method.

6.1.2. Plate Model

We reconsider the thick plate from example 3.2.1 and apply the hierarchical plate
model to it. First we will compare the solutions from the standard full 3D model and
the hierarchical plate model for a few degrees D2D. We note that such comparisons
should be viewed carefully since a 3D model differs from a 2D model. However, the
hierarchical plate model can be understood as imposing a certain structure on the 3D
displacement U : Ω → R3. This structure is defined by functions U2D

i : Ω2D → R3

which happen to be two-dimensional. Still, the displacement U with the hierarchical
ansatz is a vector field defined on Ω. This is the reason why we can plug the
hierarchical ansatz U =

∑
i pU

2D
i into the 3D model in the first place.

The forward problem was formulated as an energy minimization problem “minW”
in this work. It seems natural to compare solutions from different discretizations
by the value of their stored energy W . This allows us not only to compare different
meshes and degrees D2D of the hierarchical plate model, but also to compare the
full 3D model with the plate model.

We triangulate the midsurface by the coarse mesh shown in figure 6.2. To have a
fair comparison with the full 3D model, we do not choose boundary layers near the
rim ∂Ω2D in order to improve the quality of the discretization. On the base of other
numerical experiments, the degree of the Gauss-Legendre quadrature is chosen to
be DGL = D2D + 1.

We note that the deformations in this example can be considered “large”, as seen
in figure 6.1. A plot of the stored energy W of the solutions for the full 3D model
and the hierarchical plate model up to degree 4 can be found in figure 6.3. First,
we can see that each plate degree tends to converge to a certain value of the stored
energy W . This suggests that the discretization of the midsurface Ω2D converges
and that there exists a lower bound for W for each degree D2D. This is exactly the
behavior one would expect if the hierarchical plate model is viewed as a reduction

6.1 Experiments on the Forward Problem 157

Figure 6.2. The coarse mesh of the midsurface Ω2D.

technique: by an increase in the degree D2D of the model, the approximation of the
full model improves. The figure also suggests that there is only a small difference
between degrees 3 and 4 in this example. This means that the structure of the
deformation is well resolved with the degree D2D = 3. In comparison, the full 3D
model needs many more degrees of freedom to achieve similar values of the stored
energy W than the plate model with degree D2D = 3. This shows the advantage of
the hierarchical plate model over the full 3D model even for plates with a thickness
of 2d = 0.1.

Thin Plates

Next, we will shrink the thickness 2d to get an idea which degree D2D is actually
needed for a good approximation of a thin plate. The volume load f = (0, 0, 1

4
)>

stays the same during this test, that means the total force acting on the body scales
with the thickness 2d. With shrinking thickness, the plate loses its bending stiffness
and behaves more and more like a membrane. Figure 6.4 shows a comparison of
the degrees D2D of the plate model for the thickness 2d = 0.01. We can see that a
degree of D2D = 1 already yields a good approximation and additional degrees offer
only a minor improvement. The full 3D model behaves even worse for thin plates.
The value of the stored energy of the full 3D model is always above the values of
similar levels of the plate model. The effect will become even worse for thinner
plates and is often called locking. For thin plates, this means that the discretized
elasticity model behaves “stiffer” as the thickness decreases.

So far, we discussed the quality of the discretization with respect to the degree D2D.
However, computional costs are important for practical problems as well. In order
to compare the different models, we regard the computational time per number
of degrees of freedom (dofs). Figure 6.5 shows this quantity with respect to the
thickness 2d. First, the computational costs increase with the degree D2D of the
plate model. This is mostly due to the fact that more CG iterations are necessary to
solve the linear system in Newton’s method. This suggests that the preconditioner
depends on the degree D2D, that means on the degree of the Legendre polynomials

158 6 Numerical Experiments

10
2

10
3

10
4

10
5

10
6

10
7

−0.016

−0.015

−0.014

−0.013

−0.012

−0.011

−0.01

#dofs

st
or

ed
 e

ne
rg

y
W

full 3D
degree 1
degree 2
degree 3
degree 4

Figure 6.3. The stored energy W of the solutions of example
3.2.1 for the full 3D model and the hierarchical plate model with
the degrees D2D ∈ {1, 2, 3, 4}, plotted against the number of de-
grees of freedom NU .

pi. This dependency of the multigrid method on the polynomial degree of the ansatz
functions is also observed in other discretizations, for example NURBS, see Gahalaut
et al. (2013). In their work, the iteration numbers for a full V-cycle multigrid method
on a Poisson problem increases with the polynomial degree of the NURBS, though
they show independence with respect to the mesh size.

In the results of figure 6.5, the plate degrees D2D = 1, 2 show a mesh indepent
behavior of the overall runnning time with respect to the degrees of freedom. The
multigrid V-cycle might not be such a good approximation for the higher degrees
D2D = 3, 4 and their results do not show the mesh independency as clearly as lower
degrees. Though the results do not suggest that their runnning time per number
of dofs continues to grow like in the case of the full 3D model. Here, the low
computational costs grow with decreasing thickness of the plate.

Conclusions

As we have seen in figure 6.4, a hierarchical plate degree of D2D = 1 already gives
very good results for a plate where the ratio of thickness and a characteristic length

6.2 Experiments on the Optimal Control Problem 159

10
2

10
3

10
4

10
5

10
6

10
7

−1.5

−1
x 10

−3

#dofs

st
or

ed
 e

ne
rg

y
W

full 3D
degree 1
degree 2
degree 3
degree 4

Figure 6.4. The stored energy W of the solutions of example
3.2.1 with the thickness 2d = 0.01, for the full 3D model and the
plate model, plotted against the number of degrees of freedom
NU .

(e. g. the length or width) is about 1
100

. Higher degrees D2D > 1 are barely needed
in this example and the higher computional costs would not justify them. Moreover,
we can see that the full 3D-model is not practical for thin plates with respect to
quality of the descritization and the computational costs.

6.2 Experiments on the Optimal Control Problem

6.2.1. Elevated Bar with Fiber Tension Control

In section 4.1 we introduced an optimal control problem with the example 4.1.1 of
a bar whose right part is elevated, which we are going to solve with a Lagrange-
Newton method (LN) and a quasi-Newton method (QN). As a load, we choose the
fiber tension m, so one could imagine the movement of a tongue behind the example
4.1.1. As a fiber direction, we set a(x) = (1, 0, 0)>, that means the fibres are aligned
to the length of the bar. The load can only be applied in the left part Ωleft and the

160 6 Numerical Experiments

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

5

6

7
x 10

−3

thickness 2d

tim
e

in
 s

ec
on

ds
 p

er
 #

 d
of

s

full 3D

degree 1

degree 2

degree 3

degree 4

Figure 6.5. Computational costs per number of degrees of free-
dom for different degrees of the plate model and the full 3D model,
with respect to the thickness 2d (L = 3 total mesh refinements).

penalty term is

P (m)(m) := 1
10

∫
Ωleft

(
m(x)

)2
dx.

The quality term Q will be a standard tracking type

Qtrack(U) :=
1

2

∫
Ω

γ(x)‖U(x)−Udes(x)‖22 dx,

with the desired displacement

Udes(x) = (0, 0, 1
5
)>,

and the weight function

γ(x) =

{
1 if x ∈ Ωright

0 else
.

We discretize the domain Ω = (0, 2)×(0, 1
5
)×(0, 1

10
) by a coarse mesh with 21×3×3

vertices. We use the standard settings from remarks 6.0.3 and 6.0.4 for the LN
and QN algorithm, except for the relative tolerance rTol = 10−6 for the stopping
criterion of the QN method. Additionally we set the scaling factors of the block
preconditioner in the Lagrange-Newton method to sU = 1, sC = 10, sZ = 10−3 and
the initial scaling of the BFGS update in the quasi-Newton method to sC = 10.

6.2 Experiments on the Optimal Control Problem 161

All three methods converged visually to the same solution, plotted in figure 6.6.
The numerical results and the convergence of the residual norm can be found in

• table 6.3 and figure 6.7 for the Lagrange-Newton method (LN),
• table 6.4 and figure 6.8 for the Lagrange-Newton method with nested

iterations (LNnest),
• table 6.5 and figure 6.9 for the quasi-Newton method (QN).

Figure 6.6. The solution to the optimal control problem from
4.1.1 on the finest mesh level L = 4. The red box illustrates the
desired height h = 0.2, where the red right part Ωright has to be
elevated to.

total #dofs obj. value total total time in %
(U ,m,Z) I? · 107 LN-it. Krylov it. time in s ass. / solve

1 614 5.63837 6 317 1 79 / 21
9 990 2.26274 7 2524 26 38 / 62

70 086 1.43993 8 3455 285 32 / 68
524 934 1.24786 9 4146 2921 28 / 72

4 063 494 1.19886 9 4238 24467 28 / 72

Table 6.3. [LN] Numerical results for the Lagrange-Newton
method: The total number of degrees of freedom refer to the
unknown Xh = (Uh,mh,Zh). The optimal objective function
value is given by I∗. The total number of iterations in the LN
algorithm and in the MinRes method are found in the third and
fourth columns. The total time is the running time of the pro-
gram and the last column states the proportions of the times for
assembly and solving.

162 6 Numerical Experiments

1 2 3 4 5 6 7 8 9
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Lagrange−Newton iteration

re
si

du
al

 n
or

m
 ||

 L ,X
 ||

X
*

 L = 0

L = 1

L = 2

L = 3

L = 4

Figure 6.7. [LN] Norm of the residual ‖L,X‖X∗ over the
Lagrange-Newton iterations for the mesh refinement levels L =
0, 1, . . . , 4. The dotted line is the value for the relative stopping
criterion.

total #dofs obj. value total total time in %
(U ,m,Z) I? · 107 LN-it. Krylov it. time in s ass. / solve

1 614 5.63837 6 317 1 78 / 22
9 990 2.26279 +3 +1101 13 42 / 58

70 086 1.43993 +3 +1273 120 34 / 66
524 934 1.24786 +2 + 866 756 32 / 68

4 063 494 1.19886 +2 + 856 5963 31 / 69

Table 6.4. [LNnest] Numerical results for the Lagrange-Newton
method with nested iterations: The notation is the same as in
table 6.3. The numbers of new iterations in the LNnest algorithm
and in the MinRes method on a level are found in the third and
fourth columns.

Interpretations of the results

First of all, we notice that the optimal objective value I? is quite the same for
all three methods. Minor differences could be diminished by lowering the relative
tolerance rTol in the stopping criteria of the LN, LNnest and QN methods.

We can see that the Lagrange-Newton (LN) method without the nested iterations
shows a mesh independent behavior, that means the number of LN iterations is
bounded from above. Even more, the number of iterations of the MinRes method

6.2 Experiments on the Optimal Control Problem 163

0 5 10 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Lagrange−Newton iteration

re
si

du
al

 n
or

m
 ||

 L ,X
 ||

X
*

 L = 0

L = 1

L = 2

L = 3

L = 4

Figure 6.8. [LNnest] Norm of the residual ‖L,X‖X∗ over the
Lagrange-Newton iterations for the mesh refinement levels L =
0, 1, . . . , 4 and with nested iterations. The dotted line is the value
for the relative stopping criterion.

state obj. value total total time in %
#dofs U I? · 107 QN-it. Krylov it. time in s ass. / solve

567 5.63838 24 79 1 63 / 26
3 075 2.26279 27 1846 11 76 / 18

19 683 1.43993 23 1429 78 66 / 32
139 587 1.24787 17 1564 750 67 / 32

1 048 707 1.19887 19 1327 4986 62 / 35

Table 6.5. [QN] Numerical results for the quasi-Newton method:
The notation is the same as in table 6.3. Since the forward and
adjoint systems have to be solve in Uh, only the degrees of freedom
of Uh matter.

seems bounded too. In this example, one LN step needed around 400-500 MinRes
iterations on average, which shows that the block preconditioner might not work
that well for the example. However, the computational work can be reduced to a
quarter by using nested iterations (LNnest). Here we can observe that the number
of LNnest iterations on the new level is much smaller compared to LN, it even tends
to decrease with the growing levels.

The quasi-Newton method (QN) shows a mesh independent behavior too. The CG
iterations are the total number of Krylov iterations during the QN method, that is

164 6 Numerical Experiments

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

re
si

du
al

 n
or

m
 ||

 I ,Cre
d ||

C
*

 L = 0

L = 1

L = 2

L = 3

L = 4

Figure 6.9. [QN] Norm of the residual ‖Ired
,C ‖C∗ over the quasi-

Newton iterations for the mesh refinement levels L = 0, 1, . . . , 4.
The dotted line is the value for the relative stopping criterion on
the level L = 4.

the truncated CG iterations in the forward Newton solver and the CG iterations for
the adjoint solver. One QN step needed around 60-70 CG iterations on average in
this example. Most of them are used in the beginning of the QN method because here
the Wolfe-Powell line search rejects a few step lengths, which requires the forward
problem to be solved multiple times. In the end, when the solution converges towards
the solution, the Wolfe-Powell line search is likely to accept the step length α = 1 and
the forward system is normally solved in one or two Newton steps. Furthermore, the
CG method for the adjoint equation is faster if we start with the previous solution
of the adjoint state Z as an initial guess for the adjoint equation. Therefore one
can notice that the last steps take less computational time than the beginning, see
figure 6.10. However, as the quasi-Newton method with LM-BFGS update offers
at best q-superlinear local convergence, which itself depends on the accuracy of the
CG methods, we cannot expect that a decrease in the relative tolerance rTol for the
quasi-Newton method comes at only little additional computational costs.

The costs for the BFGS update are less then 0.5% of the total run time, including
the update itself and the handling of the storage of the auxiliary BFGS vectors.
This allows to set the maximum number of BFGS vectors quite high, since it is
very cheap compared to the other computational costs. However, the BFGS history
makes it difficult to apply nested iterations. On the new level, we could discard the
history and just start at a better initial guess, but this advantage turns out to be
not beneficial. It takes a couple of iterations for a good BFGS approximation of the
reduced (inverse) Hessian matrix, see table 6.6. It would be certainly better to use
the information of the BFGS history on the old level. A straightforward idea could

6.2 Experiments on the Optimal Control Problem 165

0 5 10 15 20
0

20

40

60

80

100

120

140

Quasi-Newton iteration

C
G

it
er
a
ti
o
n
s

0 5 10 15 20
1

2

3

4

5

6

7

8

9

tim
e

in
 s

ec
on

ds

CG iterarions
time in a QN−iteration
assembly time in a QN−iter.

Figure 6.10. Computational work load over the iterations of the
quasi-Newton method for the mesh level ` = 2. The gray bars are
the number of CG iterations in a QN iteration while the red and
blue lines indicate the total time and time for assembly in a QN
iteration.

be to interpolate the auxiliary BFGS vectors (~s`i)i and (~y`i)i from level ` to the new
level ` + 1. This is straightforward for the increments (~s`i)i because they represent
elements of a discretized control space, e. g.

~s`+1
i = p`→`+1~s

`
i .

This would not work for the increments (~y`i)i. Please recall that (~y`i)i are discretiza-
tions of elements of the dual space C∗. We would need to pull-back (~y`i)i to the primal
space C, i. e. (M `)−1

C ~y`i , prolongate, i. e. p`→`+1M
−1
C ~y`i , and then push-forward to

the dual space C∗ again, that is

~y`+1
i = M `+1

C p`→`+1M
−1
C ~y`i .

However, the prolongated increments (~y`i)i do not work well in the quasi-Newton
method, as the number of iterations of the new level are not lower, see table 6.6.
This is caused by the fact that the prolongated (~y`+1

i)i are not the increments of

the derivatives belonging to the increments (~s`+1
i)i, see figure 6.11. However, this

is a requirement for the BFGS update to work properly. Computing the derivatives
to build (~y`+1

i)i would require to restore the iterates Ck from the iterates (~s`+1
i)i

and solving the forward problem and adjoint equation for each iterate Ck on the
new level `+ 1. These are the same computational costs as a normal quasi-Newton
method started on the level `+ 1, but without the line search. Considering that we
have to continue in the QN on the new level, this is hardly an advantage compared

166 6 Numerical Experiments

to the QN without nested iterations. Furthermore, the fact that these new iterates
were not checked by the Wolfe-Powell line search reveals another possible problem:
the new BFGS history (~s`+1

i)i and (~y`+1
i)i might not satisfy the curvature condition

(~y`+1
i)>~s`+1

i > 0 which guarantees the positive definiteness of the BFGS matrix Hk.
Therefore, using the information of the BFGS history on the old level ` to build a
history on the new level `+ 1 is not straightforward.

discarding BFGS history interpolating BFGS history no nested
level (QN-iterations) (QN-iterations) iterations

` = 0 24 24 24
` = 1 +33 +42 27
` = 2 +25 +29 23
` = 3 +25 +44 17
` = 4 +19 +36 19

Table 6.6. Iteration numbers of the quasi-Newton method with
nested iterations. Two methods were tested: discarding the BFGS
history from the previous level and building it anew, or interpolat-
ing the BFGS history from the previous level. (The initial residual
norm ‖Ired

,C (C0)‖C∗ on the coarse mesh level ` = 0 was used for
the stopping criteria on the other levels as well, in order to have
the same stopping criteria across all levels.)

Figure 6.11. Nested iterations in the quasi-Newton method by
interpolating the BFGS history: The gray mesh shows the dis-
placement of the solution of the optimal control problem on mesh
level ` = 0. The displacements of the first (blue) and second
(green) quasi-Newton iteration on the mesh level ` = 1 show a left
or right drift, which is an artifact from the interpolation from the
coarse mesh.

6.2 Experiments on the Optimal Control Problem 167

We conclude the following: both methods, nested Lagrange-Newton and quasi-
Newton, are quite comparable to the overall runtime of the optimization. However,
most of the time in the LN is used for the solution of the linear system, mostly be-
cause the block preconditioner is not as good as the preconditioner for the forward
problem. On the other hand, the large part of the time in the QN method is spent
for assembly, mostly for the stiffness matrix K in the forward solver. Another differ-
ence is the memory usage of both algorithms. The LN needed about three times as
much working memory than the QN. The observed main differences between both
methods are shown in table 6.7.

Lagrange-Newton quasi-Newton

requires W,FFF for L,XX approximation of the reduced Hessian
Ired
,CC by a BFGS update formula

“only” block preconditioner “established” preconditioner

nested iterations work well how to interpolate the BFGS history?

high working memory load lower memory load

rTol of the MinRes method deter-
mined by inexact Newton

accuracy in CG method is needed for
the Wolfe-Powell line search

Table 6.7. Comparison of the Lagrange-Newton and quasi-
Newton method, based on the numerical results from section 6.2.1

6.2.2. Regional Penalization

A case where a desired state Udes is not available is given in the next example 6.2.1.

Example 6.2.1 (Bar and Plane). Let Ω = (0, 5) × (0, 1) × (0, 1) be a bar that is
clamped at the left boundary ΓD := {0} × (0, 1) × (0, 1). The control is the fiber
tension m along the fiber direction a = (1, 0, 0)>. We seek a control m such that
the deformed body avoids the half plane

H :=
{
x ∈ R3 : x1 − x3 − 2 ≥ 0

}
.

We penalize this region by the quality functional

Qpen(U) =

∫
Ω

q
(
x + U(x)

)
detF (x) dx,

168 6 Numerical Experiments

with the penalization function

q(x) = [x1 − x3 − 2]+ε ,

where [·]+ε is the (smoothed) positive part

[x]+ε :=
1

2

(√
x2 + ε2 + x

)
.

We use theorem 4.1.5 to provide the first derivative

Qpen
,U (U)[δU] =

∫
Γ

q
(
x + U(x)

)
δU(x)>F (x)−>n(x) detF (x) dS.

Figure 6.12 shows the undeformed body Ω and the half plane H.

Figure 6.12. The undeformed body Ω and the half plane H from
example 6.2.1. The colored scaling indicates the value of the pe-
nalization function q.

We solve this problem with a coarse mesh of 11 × 3 × 3 vertices and L = 3 mesh
refinements, yielding 70227 degrees of freedom of the state U on the finest mesh.
We choose the smoothing parameter ε = 0.01 and vary the penalty parameter γ(m)

of the cost functional

P (m)(m) := γ(m)

∫
Ω

(
m(x)

)2
dx,

to illustrate the dependence of the solution on the parameter γ(m). We choose the
quasi-Newton algorithm with the standard settings from remark 6.0.4. The solutions
are plotted in figure 6.13.

6.2 Experiments on the Optimal Control Problem 169

Figure 6.13. Deformations of the solutions of the optimal con-
trol problem with regional penalization for the penalty parameters
γ(m) = 10−1, 1, 10, 102, from left to right. The red plane is the
boundary of the half plane H.

Figure 6.14 shows the dependency of the functional value Q of the solution with
respect to the penalty parameter γ(m). For smaller values of γ(m), the regional
penalization Q tends to zero while the penalty term P slightly increases. Please
note that the optimal control problem would be unbounded for γ(m) = 0 because
of the smoothed positive part [·]+ε . On the other hand, for large values of γ(m),
the penalty term P tends to zero while the regional penalization Q converges to
≈ 3.16700 which is the value for the undeformed body, that is Q(0) ≈ 3.16700.

10
0

10
2

10
4

10
6

0

1

2

3

4

penalty paramater γ(g)

Q
(U

)

10
0

10
2

10
4

10
6

0

2

4

6

8
x 10

−3

P
(C

)

Q

P

Figure 6.14. Values of the quality function Q of the state and the
penalty function P for the control of the solution of the optimal
control problem with respect to the penalty parameter γ(m).

170 6 Numerical Experiments

Remark 4.1.7 already discussed possible problems in the numerical algorithm due to
numerical integration in the quality term Q. The smoothing of the positive part is
important for the behavior of the numerical algorithm. For example, setting ε = 0
yields the standard positive part function [x]+ := 1

2
(|x| + x). We demonstrate this

by a sequence ε ∈ {10−4, 10−5, 10−6, 10−7, 10−8} for the smoothing parameter in

[x]+ε := 1
2

(√
x2 + ε2 + x

)
. Table 6.8 shows the results. The failures in the Wolfe-

Powell line search are caused by errors in the quality term Qpen due to the numerical
integration.

ε QN-it comments

10−4 10 stopping criterion satisfied
10−5 15 stopping criterion satisfied
10−6 (10) failure in the Wolfe-Powell line search
10−7 (12) failure in the Wolfe-Powell line search
10−8 (11) failure in the Wolfe-Powell line search

Table 6.8. Convergence results for the regional penalization with
varying smoothing parameter ε in [x]+ε := 1

2

(√
x2 + ε2 + x

)
.

6.2.3. Flower Movement by Turgor Pressure

Example 4.1.8 introduced heliotropism: the movement of flowers towards the sun
by a turgor pressure in the stem below the flower. This biological phenomenon
motivated the quality term (4.9) of a desired direction. We will model an optimal
control problem based on heliotropism in the following way.

Example 6.2.2 (Part of a Flower Stem). Let us consider a part of a hollow stem
which is the tube with an inner radius r1 = 0.7, an outer radius r2 = 1 and length
h = 5. We use cylindrical coordinates

x(x̃1, x̃2, x̃3) =

x̃1 cos x̃2

x̃1 sin x̃2

x̃3

 x̃ ∈ Ω̃ := (r1, r2)× (0, 2π)× (0, h),

to describe the reference configuration Ω := x(Ω̃). There are Dirichlet boundary

conditions applied to the bottom, that is x3 = 0, respectively Γ̃D = (r1, r2) ×
(0, 2π) × {0}. The control is the inner pressure t from table 2.1 and we allow

it to act between the heights h = 0.5 and h = 4.5, that is the control domain

Ω̃ctrl := (r1, r2)× (0, 2π)× (h, h). We seek to align the top part of the stem with a
given direction sdes ∈ R3 which points towards the sun, see figure 6.15.

6.2 Experiments on the Optimal Control Problem 171

Figure 6.15. Front and back view of a triangulation of half of
the hollow stem. The yellow arrow is the desired direction sdes

which points towards the sun. We seek a deformation where the
top of the stem bends in the direction of sdes.

To solve this problem, we exploit the rotational symmetry of the stem Ω and rotate
the coordinate system such that the direction sdes lies in the x1-x3-plane. As
we assume sdes to be normalized, we can describe it uniquely by an angle, e. g.
sdes = (sin θ, 0, cos θ)> with θ ∈ [0, π

2
]. Additionally, as we expect a symmetric

solution with respect to this plane, we exploit this mirror-symmetry. This means
we consider only half of the tube

Ω ∩
{
x ∈ R3 : x2 > 0

}
.

The corresponding parameter space is

Ω̃ = (r1, r2)× (0, π)× (0, h),

and the additional symmetry boundary conditions are

[U]2 = 0 on Γsym := (r1, r2)× {0, π} × (0, h).

We summarize the optimal control problem which we use to compute our example
of the turgor pressure in a flower stem. In the following, the reference domain Ω
already includes the symmetry exploitation, that means Ω is only half of the stem.

The same applies for the parameter space Ω̃.

• The finite elements are defined in the parameter space Ω̃ := (r1, r2) ×
(0, π)× (0, h).

172 6 Numerical Experiments

• The Dirichlet boundary conditions are

U = 0 ∈ R3 on ΓD := (r1, r2)× (0, π)× {0}
and [U]2 = 0 ∈ R on Γsym := (r1, r2)× {0, π} × (0, h).

• The reference domain Ω := x(Ω̃) is parametrized by cylindrical coordi-

nates with its Jacobian G̃, see (2.52). This influences the gradient oper-
ator ∇, therefore the deformation gradient F , and the volume and area
transformations.

• The control C is the inner pressure t acting in Ω̃ctrl := (r1, r2)× (0, π)×
(h, h).

• The reference direction is s := (0, 0, 1)> and the desired direction pointing
to the sun is sdes := (sin θ, 0, cos θ)> with θ = π

6
. They are used to

formulate the objective function I = P +Q, with the penalty term

P (t) :=

∫
Ω

t(x)2 dx =

∫
Ω̃

t
(
x(x̃)

)2∣∣ det G̃(x̃)
∣∣dx̃,

and the quality term

Q(U) =

∫
Γtop

‖F (x)s− sdes‖22 dS

=

∫
Γ̃top

‖F̃ (x̃)s− sdes‖22
∣∣det G̃(x̃)

∣∣‖G̃−>(x̃)ñ(x̃)‖2︸ ︷︷ ︸
from the area transformation

dS̃,

with the top surface Γtop := x(Γ̃top) and Γ̃top := (r1, r2) × (0, π) × {h}.
Please note that the transformation of the gradient operator ∇ is included

in the deformation gradient F̃ , see formula (2.57).
• For simplification, we assume an isotropic, elastic material behavior which

can be described by the polyconvex energy density (2.18), with the stan-
dard material parameters from remark 6.0.5.

Numerical solution

The parameter space Ω̃ is discretized by a structured mesh with 3× 9× 11 vertices
as seen in figure 6.15. We use the quasi-Newton method to solve the optimal control
problem on the mesh refinement levels L = 0, 1, . . . , 4 and the standard settings
from remark 6.0.4, except that we set the relative tolerance rTol = 10−4 for the
stopping criterion of the quasi-Newton method. The results can be seen in table
6.9. Again we can observe that the convergence of the quasi-Newton method does
not deteriorate with increasing mesh refinement level L.

Figure 6.16 shows a plot of the solution on the finest level L = 4 for half of the
stem. We can see that the side facing the sun has a negative turgor pressure which

6.2 Experiments on the Optimal Control Problem 173

state obj. value total total
dofs U I? · 103 QN-it Krylov it. time in s

891 5.40817 16 59 1
5 355 4.25306 16 1551 17

36 531 3.99353 19 1984 184
268 515 3.92927 18 1942 1472

2 056 131 3.91472 17 1912 11293

Table 6.9. Numerical results from the quasi-Newton method for
the optimal control problem of the stem with turgor pressure.

causes the cells to contract and hence shorten this side of the stem. The opposite
side (averted from the sun) has a positive turgor pressure, leading to an increase
of the cell volume in this region and therefore stretching this side. As a result, the
stem bends towards the direction sdes of the sun.

6.2.4. Enclosed Volume

This experiment deals with the enclosed volume between a deformed plate and its
reference configuration, see the part Enclosed Volume in section 4.1.1. Let Ω =
Ω2D × (−d, d) be a plate of thickness 2d = 0.01 with the midsurface Ω2D := (0, 1)×
(0, 1) and a Young’s modulus of E = 100 N mm−2. The plate is clamped at the rim
ΓD := ∂Ω2D × (−d, d). The control is a boundary force g : ΓN :→ R3 acting on the
lower surface ΓN := Ω2D × {−d}. During the deformation, the undeformed lower

surface ΓN and the deformed lower surface Γ̂N enclose a domain whose volume we
seek to maximize. The quality term Q is the volume of the enclosed domain from
(4.15), that is

QV(U) :=

∫
Ω2D

d+
(
− d+ [U(x1,x2,−d)]3

)[
cof F (x1,x2,−d)

]
33

dx1dx2.

In order that the optimization problem does not become unbounded, we add a
penalty term for the control g, that is

P (g)(g) :=

∫
ΓN

g(x)>g(x) dS =

∫
Ω2D

g(x1,x2)>g(x1,x2) dx1dx2.

Hence we seek to minimize the objective functional

I(U , g) = −QV(U) + γ(g)P (g)(g),

with a penalty parameter γ(g) > 0. We are interested in the connection between
the penalty parameter γ(g) and the volume Q of the solution.

174 6 Numerical Experiments

Figure 6.16. The solution of the optimal control problem of a
stem with a turgor pressure. The yellow arrow indicates the de-
sired direction towards the sun. The blue region indicates a rise
and the red region a decrease in the turgor pressure t. One can
also see the thickening and thinning of these regions.

Numerical Solution

We use the hierarchical plate model from section 2.5 to model the forward problem.
The coarse mesh for the midsurface Ω2D is shown in figure 6.17. We use simle
boundary layers in this example to enhance the quality of the discretization. The
numerical tests on the plate model in section 6.1.2 suggest to use the degree D2D = 1
for the thickness 2d = 0.01. The optimal control problem is solved with the quasi-
Newton method with the standard settings from remark 6.0.4.

Figure 6.18 shows the undeformed and deformed plate of the solution for a penalty
parameter of value γ(g) = 2−5. Most of the load is concentrated in the center of the
plate and pulls it upwards.

Next, we vary the penalty parameter γ(g) to illustrate its influence on the solution
of the optimal control problem. Figure 6.19 shows the deformed plates of several
solutions for a couple of values of the penalty parameter γ(g). As γ(g) increases, the
weight of the cost term P in the objective functional I = −Q+ γ(g)P increases and

6.2 Experiments on the Optimal Control Problem 175

Figure 6.17. The coarse mesh of the midsurface Ω2D with smaller
elements at the rim to improve the quality of the discretization.

Figure 6.18. The undeformed and deformed plate (in blue) at-
tached with arrows which represent the boundary load g. Red
arrows correspond to a larger load than white arrows.

the volume Q of the solution shrinks. This monotone relation is plotted in figure
6.20.

176 6 Numerical Experiments

Figure 6.19. Half of the deformed plates of the solutions of
the optimal control problem for penalty parameters γ(g) =
2−5, 2−4, . . . , 26 in red to blue and the undeformed plate in gray.

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

penalty paramater γ(g)

en
cl

os
ed

 v
ol

um
e

Q

volume Q

Figure 6.20. Plot of the volume Q of the solution with respect
to the penalty parameter γ(g).

7 Conclusions and Perspectives

This dissertation is devoted to numerical algorithms to solve optimal control prob-
lems in elasticity with large deformations.

Forward Problem

The forward problem of a large elastic deformation is a nonlinear variational equal-
ity derived from an energy minimization. The standard loads, exterior volume or
boundary loads, cannot be used to model certain phenomena in biology, like tur-
gor pressure or muscle tension. We gave models for both of these interior loads in
the case of large elastic deformations. In order to incorporate these new loads into
the energy minimization, we formulated corresponding energy functionals for these
loads.

The computation of the solution of the forward problem by Newton’s method can
be challenging for large deformations. Here, we proposed a new line search based
on a guiding criterion that is applicable in many situations and solves the problem
of a local negative local volume change J < 0. The underlying guiding function G
can be adapted to other elastic models as well, e. g. by adding terms like ‖cof F‖2F.

Newton’s method requires the repeated solution of linear systems. The underlying
linear operators are self-adjoint but not necessarily positive definite. Hence, the
usage of the current stiffness matrix Ah for a multigrid V-cycle preconditioner might
result in a failure of a MinRes or CG method. Still, the current stiffness matrix Ah
offers a faster convergence than the stiffness matrix Klin.elast of the linear elasticity
model. We proposed a strategy similar to the idea behind a truncated CG method
to use a multigrid approximation of Ah as a preconditioner as long as it does not
prove to be indefinite.

Optimal Control Problem

During this work, we use an optimize-then-discretize approach. That means we
formulated Newton’s method and the MinRes and CG method in the Hilbert space
U . This allows us not only to formulate the appropriate stopping criterion, but also
shows the importance of the initial Hessian H0 in the BFGS update. At the end, this
results in optimization algorithms which show no mesh dependence with respect to
iteration numbers and convergence behavior. Combined with a fast forward solver,
this even allows the solution of large scale problems in a reasonable time.

The standard tracking-type objective functional does not always work in elasticity
with large deformations because we might not be able to provide a desired state

178 7 Conclusions and Perspectives

Udes. We demonstrated the modeling of three alternative functionals suitable for
different problems. Numerical experiments were performed to show how these qual-
ity functionals work. Additionally, we incorporated a parametrization by curvilinear
coordinates and a hierarchical plate model into the forward problem and the optimal
control problem.

179

Outlook

One application of optimal control of elasticity from Lubkoll et al. (2012) is the shape
reconstruction of facial structures by implants. Here, the problem remains how to
measure the shape of the facial structure and how to match it. The difficulties
of this approach were discussed in the paragraph Desired Shape in section 4.1.1.
The representation of the shape depends on the measuring method and might not
be directly included into a quality term that quantifies the difference between the
current shape and the desired shape.

In this work, we assume an isotropic and elastic material behavior modeled by
a polyconvex energy density. However, this model might still be a simplification
for problems with biological tissues (see Holzapfel and Ogden (2006) and Balzani
et al. (2006)) or fiber-reinforced composite material (see for example Bunsell and
Renard (2005)). In order to prevent the damage of a tissue or plastic deformation
of a mechanical component, we could consider constraints in the optimal control
problem, for example an upper bound on the von-Mises stress.

Another potential application is the deep-drawing process of plates. Here, not only
the plasticity plays a central role but also the elasticity, for example in the unde-
sirable spring-back effect. Work on this has been done by Wachsmuth (2012a) and
Wachsmuth (2012b) for the case of small deformations, though a simulation and
optimization requires further techniques like plate models that can deal with plas-
ticity and corresponding material laws to describe the behavior of a deep-drawing
process. Eventually, it can be expected that the computational work to optimize
deep-drawing process is huge due to very complex models.

The quality of the solution obtained by the finite element method depends strongly
on the discretization, i. e. the elements and the mesh. Here, improvements could be
gained by using adaptive mesh refinement methods. First, one would need an error
estimator made for the forward problem, see Meyer (2007). Taking the estimator
from the linear model is not an option as both models differ too much for large
deformations. Even more, the implementation of an adaptive mesh refinement is not
straightforward for nonlinear problems, let alone optimal control problems. Another
promising approach could be full multigrid on the optimal control problem, see for
example Schöberl et al. (2011) and Pillwein and Takacs (2014).

The bottleneck in the Lagrange-Newton method is clearly the preconditioner for the
MinRes method. Even with the current stiffness matrix Ah, the MinRes method
needs a large number of iterations with the block preconditioner. A reduction
of these iteration numbers by a better preconditioner would highly improve the
Lagrange-Newton method. Also, the scaling of the blocks is very difficult because
spectral estimates of the Lagrange system matrix are hardly known. A method to
determine good scaling factors for the blocks of the preconditioner would be very
desirable.

180 Conclusions and Perspectives

On the other hand, the unfortunate handicap of the quasi-Newton method was the
incompatibility of the BFGS history with the idea of nested iterations. An idea how
to gain information from a previous mesh level could improve the performance of
this optimization algorithm even further.

The idea of combining curvilinear coordinates and the hierarchical plate model could
be a promising way to deal with shells like thin tubes. For example, one could use
the plate model of the parameter space which is then mapped to the reference
configuration. The intriguing point in this approach is the fact that it does not need
the curvature information of the shell, which is a common element in shell models
and might be quite challenging.

A Appendix

A.1 Matrix Calculus

In this section we recall some calculation rules for matrices and derivatives with
respect to matrices, as they are repeatedly used in this work.

Lemma A.1.1 (Basic calculus for matrices). Let A,B ∈ Rn×n be regular matrices
and let Q ∈ Rn×n be orthogonal, e. g. Q>Q = I, with positive determinant detQ =
1. Then we have the following identities:

(1) tr(AB) = tr(BA)
(2) A : B = A> : B> = B : A
(3) A : (BC) = (B>A) : C = (AC>) : B
(4) ‖QA‖F = ‖A‖F
(5) cof(AB) = cof(A) cof(B)
(6) cof Q = Q
(7) ‖cof F‖2F = 1

2
(F : F)2 − 1

2
tr(F>F)2

Proof.

(1) We have [AB]ij = [A]ik[B]kj and hence the trace operator is

tr(AB) =

n∑
ik

AikBki =

n∑
ik

BkiAik = tr(BA).

(2) Using the definition for A : B := tr(B>A) from section 1.3, (1) and
trA = trA> gives

A : B = tr(A>B) = tr(BA>) = B> : A>

= tr(B>A) = B : A.

(3) A direct calculation gives

A : (BC) = tr(A>BC) = (B>A) : C

= tr(CA>B) = (AC>) : B

(4) With the definition of the Frobenius norm we have

‖QA‖2F := (QA) : (QA) = tr(A>Q>QA) = tr(A>A) = A : A = ‖A‖2F.

182 A Appendix

(5) The definition of the cofactor gives

cof(AB) = det(AB)(AB)−> = (detA)A−> (detB)B−> = cof A cof B.

(6) Using the definition of the cofactor gives cof Q = detQQ−> = 1Q = Q.
(7) See (Ciarlet, 1988, pg. 186).

The next lemma states some formulas for the differentiation with respect to matrices.

Lemma A.1.2 (Formulas for the differentiation with respect to matrices). Let
f : M3

+ → R be a differentiable function. Then we have the identities for the
following derivatives with respect to F ∈ M3

+ in direction G ∈ M3:

(1) ∂
∂F

(
F : F

)
[G] = 2F : G

(2) ∂
∂F

(
F>
)
[G] = G>

(3) ∂
∂F

(
tr(AFB)

)
[G] = AGB

(4) ∂
∂F

(
detF

)
[G] = (detF)F−> : G = (cof F) : G

(5) ∂
∂F

(
ln detF

)
[G] = F−> : G

(6) ∂
∂F

(
F−1

)
[G] = −F−1GF−1

(7) ∂
∂F

(
‖cof F‖2F

)
[G] = 2(F : F)(F − F F>F) : G

(8) ∂
∂F

(
F−>

)
[G] = −F−>G>F−>

(9) ∂
∂F

(
cof F

)
[G] = (cof F : G)F−> − cof F G>F−>

Proof. For (1) - (6), we refer to K.M. Petersen (2008). For (7), we use A.1.1-(1),
A.1.1-(6), (1), (3) and the product rule to get

∂‖cof F‖2F
∂F

[G] =
∂

∂F

(1

2
(F : F)2 − 1

2
tr(F>FF>F)

)
= 2(F : F)(F : G) −1

2
tr(G>FF>F)− 1

2
tr(F>GF>F)

−1

2
tr(F>F G>F)− 1

2
tr(F>FF>G)

= 2(F : F)(F : G) −2 tr(F>F F>) : G

= 2(F : F)(F : G) −2(F F>F) : G = 2(F : F)(F − F F>F) : G.

For (8), we use (6) and (2) to get the proposition, e. g.

∂

∂F

(
F−>)[G] =

∂

∂F>
(
F−>)[G>] = −F−>G>F−>.

Formula (9) is the application of the product rule, (4) and (8), e. g.

∂

∂F

(
cof F

)
[G] =

∂

∂F

(
detF F−>

)
[G] = (cof F : G)F−> − (detF)F−>G>F−>.

A.2 Derivatives of Energy Functionals 183

A.2 Derivatives of Energy Functionals

The following lemmas deal with the derivatives of certain energy terms.

Lemma A.2.1 (Derivatives of the energy density w). The first and second deriva-
tive of w from (2.18) are

w,F (F)[G] =
(

2aF + 2b(F : F)F − 2b F>FF> + c(detF)2F−> − dF−>
)

: G,

and

w,FF (F)[G,H] =(
(2a+ 2b F : F)G+ 4b(F : G)F − 2b(F (F>G+G>F) +GF>F)

+ 4c cof F (G : cof F) + (d(detF)−2 − 2c) cof(F)G> cof(F)
)

: H.

Proof. Applying lemma A.1.2 yields for the first derivative

w,F (F)[G] =
∂

∂F

(
a‖F‖2F + b‖cof F‖2F + c(detF)2 − d ln(detF) + e

)
[G]

=
(

2aF + 2b(F : F)F − 2bFF>F + 2c(detF)2F−> − dF−>
)

: G.

The second derivative w,F can be obtained by

w,FF (F)[G,H] =
∂

∂F

(
2aF : G+ 2b(F : F)F : G− 2b(F F>F) : G

+ 2c(detF)2F−> : G− dF−>
)
[H]

=2a(G : H) + 2b(F : F)(G : H) + 4b(F : G)(F : H)

− 2b
(
(H F>F) + (F H>F) + (F F>H)

)
: G

+ 2c(detF)2(F−> : G)(F−> : H)− 2c(detF)2(F−>H>F−>) : G

− d(F−>H>F−>) : G

=2a(G : H) + 2b(F : F)(G : H) + 4b(F : G)(F : H)

− 2b
(
F (F>H +H>F) +H F>F

)
: G

+ 2c(cof F : G)(cof F : H)− (2c+ d(detF)−2)(cof FH> cof F) : G,

and some simple re-arrangements.

Lemma A.2.2 (Derivatives of the inner pressure). The first and second derivative

of W
(t)
,U from (2.39) are

W
(t)
,U [δU] = −

∫
Ω

t(x)
(

cof F (x) : ∇δU(x)
)
dx,

184 A Appendix

and (omitting the argument “(x)”)

W
(t)
,UU [δU , δV] =−

∫
Ω

t
(
F−> : ∇δU

)(
cof F : ∇δV

)
−
(
F−1∇δU

)
:
(
∇δV > cof F

)
dx.

Proof. The first derivative follows directly from A.1.2-(4) and for the second deriv-
ative we apply the product rule and A.1.2-(9), e. g. with G = ∇δU and H = ∇δV ,

∂

∂F

(
cof F : G

)
[H] =(cof F : H)F−> : G− (cof FH>F−>) : G

=(cof F : H)F−> : G− (cof FH>) : (F−1G).

Lemma A.2.3 (Derivatives of the fiber tension). The first and second derivatives

of W
(m)
,U from (2.44) is

W
(m)
,U [δU] = −

∫
Ω

m(x)

(
a(x)>F>(x)∇δU(x)a(x)

)
‖F (x)a(x)‖22

dx

and (omitting the argument “(x)”)

W
(m)
,UU [δU , δV] = −

∫
Ω

m

(
a>∇δV >∇δUa

)
‖Fa‖22

−2m

(
a>F>∇δUa

) (
a>F>∇δV a

)
‖Fa‖42

dx

Proof. We omit the argument “(x)” to a better readability in the following. We

rewrite W (m) as

W (m)(U ,m) =−
∫
Ω

m ln
(
a>F>Fa

) 1
2 dx

=−
∫
Ω

1

2
m ln

(
a>F>Fa

)
dx,

and apply the chain rule to obtain

W
(m)
,U (U ,m)[δU]

= −
∫
Ω

1

2
m
(
a>F>Fa

)−1
2
(
Fa
)>

(∇δUa) dx

= −
∫
Ω

m

(
a>F>∇δUa

)
‖Fa‖22

dx.

A.2 Derivatives of Energy Functionals 185

The second derivative is gained by the quotient rule, i. e.

W
(m)
,UU (U ,m)[δU , δV]

=−
∫
Ω

m

(
a>∇δV >∇δUa

)
− 2

(
a>F>∇δUa

) (
a>F>∇δV a

)
‖Fa‖42

dx.

Lemma A.2.4 (Green’s formulas). Let Ω ⊂ Rn be a bounded and non-empty
set with piecewise continuous boundary ∂Ω and the outer normal vector n. Let
furthermore u, v : Ω→ R be two continuous differentiable scalar fields and V : Ω→
R be a continuous differentiable vector field. Then we have the equations∫

Ω

u(x)v,i(x) dx = −
∫
Ω

u,i(x)v(x) dx +

∫
∂Ω

u(x)v(x)ni(x) dS

and ∫
Ω

divV (x) dx =

∫
∂Ω

V (x)>n(x) dS. (A.1)

Proof. Green’s identity is a direction implication of integrating by parts.

B Theses

(1) This thesis regards numerical aspects of optimal control problems with
large deformation elasticity. The forward problem is modeled by an en-
ergy minimization based on a polyconvex energy density, whose first order
optimality conditions are a nonlinear partial differential equation. The
framework of an energy minimization has the advantage that we can view
the forward problem as an optimization problem, which allows new algo-
rithms and ensures the positive semi-definiteness of the stiffness matrix in
a solution.

(2) The conventional volume and boundary loads are not sufficient to describe
certain phenomena in biology, e. g. turgor pressure or muscle tension. We
model both of these internal loads and incorporate them into the energy
minimization by deriving corresponding energy terms for the loads, show-
ing that they are conservative.

(3) Some problems are conveniently formulated in curvilinear coordinates. We
show how such parametrizations of the coordinates x = x(x̃) can be
included into the framework of the forward problem. Furthermore, we
demonstrate how the hierarchical plate model is viewed as a reduction
technique which imposes a certain structure on the displacement field U .
Therefore, the hierarchical plate model can be integrated into the full 3D
model of elasticity.

(4) To solve the (nonlinear) forward system, we apply Newton’s method. How-
ever, a globalization strategy is required to ensure the convergence of New-
ton’s method. We give an overview of popular strategies and suggest a new
one: a guiding criterion based on the guiding function G. This method can
be applied in many situations and shows a similar behavior to an Armijo
line search on the stored energy W .

(5) The preconditioner based on the linear model of elasticity does not be-
have well for large deformations, since the linear and nonlinear model of
elasticity differ too much in these cases. An experimental preconditioner
is suggested which allows the usage of the current stiffness matrix Ah and

187

improves the convergence of the CG and MinRes method noticeably.

(6) In the optimal control problem, the standard tracking type functional
with a desired state Udes might not work for certain problems because the
desired state Udes is unknown. We give three alternative quality function-
als based on a regional penalization, a desired direction and an enclosed
volume. We also derive representations of the first derivatives of these
functionals by the Hadamard calculus. These formulas are not only sim-
pler than a direct differentiation, but also reveal the dependencies of the
first derivatives.

(7) Two methods are presented to solve the optimal control problem: an all-at-
once approach with a Lagrange-Newton method and a reduced formulation
with a quasi-Newton method. In the latter, the state U is eliminated by a
solution operator S. In the quasi-Newton method, we work with the deriv-
ative Ired

,C of the reduced objective function instead of the gradient∇CI
red.

(8) Newton’s method and the CG and MinRes methods are formulated in
a function space setting. This follows the “optimize-then-discretize” ap-
proach and appears to be a natural approach for these optimal control
problems. This is useful in order to derive algorithms that are mesh inde-
pendent. We can observe this in our numerical experiments.

(9) The finite element software FEniCS is used to implement the algorithms
and the problem formulations themselves. Here we demonstrate how the
different problems can be written in a joint framework that allows an easy
incorporation of parametrizations and the hierarchical plate model.

C Curriculum Vitæ

Personal information

Name Andreas Günnel
Date of Birth March 12, 1986
Place of Birth Zwickau, Germany
Marital Status Unmarried

Citizenship German

Education

2010 Diploma in Technomathematics from TU Chemnitz of Technology,
Germany. Title:
Adaptive Mesh Design in Shape Optimization with the Discrete Ad-
joint Method
Supervisor: Dr. René Schneider

2008–2009 Studies in Physics and Mathematics, Aberystwyth University of
Wales, United Kingdom

2004–2010 Studies in Technomathematics (Minors: Mechanics), TU Chem-
nitz, Germany

1996–2004 Abitur (A-levels) at Georgengymnasium Zwickau (later Käthe-Kollwitz-
gymnasium), mark 1,4

Professional record

2010–present Scientific assistant, TU Chemnitz, Department of Mathematics
• SFB 393, A11: Gemischte Formulierungen: adaptive anisotrope

finite Elemente und parallele Löser
• BMBF project: Differenziertes Mentoring- und Betreuungspro-

gramm (Qualitätspakt Lehre)
• DFG project: Cluster of Excellence MERGE, Interacting Re-

search Domain F: Modelling, Integrative Simulation and Op-
timisation

2006–2010 Student assistant, TU Chemnitz, Department of Mathematics

Teaching experience

2012-2013 Coordinator and Tutor, Learning Center for Mathematics

189

2012-2013 Teaching Assistant, Optimization for Non-mathematicians
2012-2013 Tutor, Preparatory courses for Business Administration students
2011-2012 Teaching Assistant, Nonlinear Optimization
2011-2012 Teaching Assistant, Statistics for Business Administration students

2010, 2012 Teaching Assistant, Mathematics for CS, IT and ET students
2007–2008 Tutor for athletes, Higher Mathematics
2006–2012 Teaching Assistant, Higher Mathematics

Diploma theses co-supervised

Sarah Stoppe, 2012 Simulation elastoplastischer Verformungen unter großen
Deformationen

Philipp Menzel, 2013 Geometrische Verfahren für Hamiltonsche Systeme: The-
orie und Anwendungen

Anna Bauer, 2013 Optimierungsverfahren für die ressourceneffiziente Pla-
nung von Montageanlagen

Publications in Journals

[1] A. Günnel, R. Herzog and E. Sachs. A Note on Preconditioners and Scalar
Products in Krylov Subspace Methods for Self-Adjoint Problems in Hilbert
Space. Electronic Transactions on Numerical Analysis, 41:13–20, 2014.

Presentations

Presentations at Conferences and in Minisymposia

(1) Optimal Control of Large Deformation Elasticity by Fibre Tension, 85th
Annual Meeting of GAMM, March 10-14, 2014, Erlangen, Germany

(2) Numerical Aspects of Plates under Large Deformations, 25th FEM-Symposium
September 24-26, 2012, Chemnitz, Germany

(3) Optimal Control of Elasticity with Large Deformations, 5th International
Conference on High Performance Scientific Computing, March 5-9, 2012,
Hanoi, Vietnam

(4) Contact Problem for Elasticity with large Deformations, 24th FEM-Symposium
September 28-20, 2011, Holzhau, Germany

Colloquium and Seminar Talks

(5) Optimal Control of Elasticity for Large Deformations, Research Seminar
Numerics, January 7, 2014, TU Chemnitz

(6) Elasticity for Large Deformations: Modelling and Optimal Control, Re-
search Seminar Numerics, July 2, 2013, TU Chemnitz

(7) Elasticity for Large Deformations: Modelling and Optimal Control, Chem-
nitzer Seminar zur Optimalsteuerung March 02-09, 2013, Haus in Ennstal,
Austria

190 C Curriculum Vitæ

(8) Formulations of Elasticity for Large Deformations, Research Seminar Nu-
merics, January 22, 2013, TU Chemnitz

(9) Numerical Aspects of Plates under Large Deformations, Research Seminar
Scientific Computing, July 13, 2012, TU Chemnitz

(10) Optimal Control of Elasticity with large deformations, Chemnitzer Semi-
nar zur Optimalsteuerung February 11-18, 2012, Haus in Ennstal, Austria

(11) Optimal Control of Elasticity with Large Deformations, Research Seminar
Numerics, January 10, 2012, TU Chemnitz

(12) Contact Problem for Elasticity with large Deformations, Research Seminar
Numerics, July 5, 2011, TU Chemnitz

(13) Differential Geometry and Large Deformations, June 24, 2011, Koopera-
tionsseminar Chemnitz-Magdeburg, MPI Magdeburg

(14) An Introduction to three-dimensional Differential Geometry, Chemnitzer
Seminar zur Optimalsteuerung March 6-13, 2010, Haus in Ennstal, Austria

(15) Plate Equation with Large Deformations, Research Seminar Numerics,
January 18 2011, TU Chemnitz

(16) Adaptive Mesh Design in Shape Optimization with the Discrete Adjoint
Method, Chemnitzer Seminar zur Optimalsteuerung March 6-13, 2010,
Haus in Ennstal, Austria

Organizing

2013 3. European Conference on Computational Optimization, TU Chem-
nitz, Germany

2011–2014 Chemnitzer Seminar zur Optimalsteuerung, Haus im Ennstal, Aus-
tria

2011–2012 FEM-Symposium, Holzhau an TU Chemnitz, Germany

Committee work and volunteer activities

2014–present Member of the examination board, Department of Mathematics,
TU Chemnitz

2013–present Member of the library commission, TU Chemnitz
2012–2014 Board member of the VAMC (Vertretung akademischer Mittelbau

der TU Chemnitz)
2012–present Member of the study commission Integrated International Master

and PhD Program in Mathematics, TU Chemnitz
2010–present Coordinator, Korrespondenzzirkel für Mathematik (Klassenstufe 11

und 12),

Bibliography

Alnæs, M. S., Logg, A., Mardal, K.-A., Skavhaug, O., and Langtangen, H. P. (2009).
Unified framework for finite element assembly. International Journal of Compu-
tational Science and Engineering, 4(4):231–244.

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N. (2013). Uni-
fied form language: A domain-specific language for weak formulations of partial
differential equations. ACM Transactions on Mathematical Software, To appear.

Alnæs, M. S. and Mardal, K.-A. (2010). On the efficiency of symbolic computations
combined with code generation for finite element methods. ACM Transactions on
Mathematical Software, 37(1).

Alt, W. (1990). The Lagrange-Newton method for infinite-dimensional optimization
problems. Numerical Functional Analysis and Optimization. An International
Journal, 11(3-4):201–224.

Alt, W. (1994). Local convergence of the Lagrange-Newton method with applica-
tions to optimal control. Control and Cybernetics, 23(1-2):87–105. Parametric
optimization.

Alt, W. (2001). Mesh-independence of the Lagrange-Newton method for nonlinear
optimal control problems and their discretizations. Annals of Operations Research,
101:101–117. Optimization with data perturbations, II.

Alt, W. and Malanowski, K. (1993). The Lagrange-Newton method for nonlin-
ear optimal control problems. Computational Optimization and Applications. An
International Journal, 2(1):77–100.

Antman, S. S. (1984). Nonlinear Problems of Elasticity. Springer, New York.

Arnold, D. N. and Falk, R. S. (1989). A uniformly accurate finite element method
for the Reissner-Mindlin plate. SIAM Journal on Numerical Analysis, 26(6):1276–
1290.

Babuška, I., D’Harcourt, J. M., and Schwab, C. (1993). Optimal shear correction
factors in hierarchical plate modelling. Mathematical Modelling and Scientific
Computing, 1(1-2):1–30.

Babuška, I. and Li, L. (1991). The problem of plate modelling - theoretical and
computational results. Comput. Methods Appl. Mech. Engrg., 100:249–273.

192

Babuška, I., Szabó, B. A., and Actis, R. L. (1992). Hierarchic models for lami-
nated composites. International Journal for Numerical Methods in Engineering,
33(3):503–535.

Babuška, I., Whiteman, J. R., and Strouboulis, T. (2011). Finite elements. Oxford
University Press, Oxford. An introduction to the method and error estimation.

Ball, J. M. (1976/1977). Convexity conditions and existence theorems in nonlinear
elasticity. Archive for Rational Mechanics and Analysis, 63(4):337–403.

Balzani, D., Neff, P., Schröder, J., and Holzapfel, G. A. (2006). A polyconvex frame-
work for soft biological tissues. Adjustment to experimental data. International
Journal of Solids and Structures, 43(20):6052–6070.

Bertram, A. (2008). Elasticity and Plasticity of Large Deformations: An Introduc-
tion. Springer, Berlin Heidelberg.

Bower, A. T. (2009). Applied Mechanics of Solids. CRC Press, Taylor and Francis
Group, Boca Bato.

Bower, A. T. (2012). Applied mechanics of solids. http://solidmechanics.org/.

Braess, D. (2007). Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, Cambridge.

Braess, D. and Hackbusch, W. (1983). A new convergence proof for the multigrid
method including the V -cycle. SIAM journal on numerical analysis, 20(5):967–
975.

Brenner, S. and Scott, L. (2002). The Mathematical Theory of Finite Element
Methods. Springer, New York, second edition.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms. II. The new algorithm. Journal of the Institute of Mathematics and
its Applications, 6:222–231.

Broyden, C. G., Dennis, Jr., J. E., and Moré, J. J. (1973). On the local and
superlinear convergence of quasi-Newton methods. Journal of the Institute of
Mathematics and its Applications, 12:223–245.

Bunsell, A. R. and Renard, J. (2005). Fundamentals of Fibre Reinforced Composite
Materials. MPG Book Ltd., Bodmin, Cornwall.

Campbell, N. A. (1997). Biologie. Spektrum Akademischer Verlag, Heidelberg,
Berlin, Oxford.

http://solidmechanics.org/

193

Ciarlet, P. G. (1988). Mathematical elasticity. Vol. I, volume 20 of Studies in Math-
ematics and its Applications. North-Holland Publishing Co., Amsterdam. Three-
dimensional elasticity.

Ciarlet, P. G. (1997). Mathematical elasticity. Vol. II, volume 27 of Studies in
Mathematics and its Applications. North-Holland Publishing Co., Amsterdam.
Theory of plates.

Ciarlet, P. G. (2005). An introduction to differential geometry with applications to
elasticity. Springer, Dordrecht.

Ciarlet, P. G. and Geymonat, G. (1982). Sur les lois de comportement en élasticité
non linéaire compressible. Comptes Rendus des Séances de l’Académie des Sci-
ences. Série II. Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de
la Terre, 295(4):423–426.

Daniel, J. W. (1967). The conjugate gradient method for linear and nonlinear
operator equations. SIAM J. Numer. Anal., 4:10–26.

Deuflhard, P. (2004). Newton methods for nonlinear problems, volume 35 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin. Affine invariance
and adaptive algorithms.

Elman, H., Silvester, D., and Wathen, A. (2005). Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Numerical Mathe-
matics and Scientific Computation. Oxford University Press, New York.

Eppler, K. (2010). On Hadamard shape gradient representations in linear elastic-
ity. Technical Report SPP1253-104, Priority Program 1253, German Research
Foundation.

Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer
Journal, 13(3):317–322.

Gahalaut, K. P. S., Kraus, J. K., and Tomar, S. K. (2013). Multigrid methods
for isogeometric discretization. Computer Methods in Applied Mechanics and
Engineering, 253:413–425.

Geiger, C. and Kanzow, C. (1999). Numerische Verfahren zur Lösung unre-
stringierter Optimierungsaufgaben. Springer, New York.

Gergelits, T. and Strakoš, Z. (2013). Composite convergence bounds based on
Chebyshev polynomials and finite precision conjugate gradient computations. Nu-
mer. Algorithms, pages 1–24.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational
means. Mathematics of Computation, 24:23–26.

194

Griewank, A. (2000). Evaluating Derivatives. SIAM, Philadelphia.

Günnel, A., Herzog, R., and Sachs, E. (2014). A note on preconditioners and scalar
products in Krylov subspace methods for self-adjoint problems in Hilbert space.
Electronic Transactions on Numerical Analysis, 41:13–20.

Hackbusch, W. (1980). Multi-grid Methods and Applications. Numerical Mathemat-
ics and Scientific Computation. Springer-Verlag, Berlin.

Herzog, R. and Kunisch, K. (2010). Algorithms for PDE-constrained optimization.
GAMM Reports, 33(2):163–176.

Herzog, R., Meyer, C., and Wachsmuth, G. (2013). B- and strong stationarity for op-
timal control of static plasticity with hardening. SIAM Journal on Optimization,
23(1):321–352.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. J. Research Nat. Bur. Standards, 49:409–436 (1953).

Hinze, M. and Kunisch, K. (2004). Second order methods for boundary control of
the instationary Navier-Stokes system. ZAMM, 84(3):171–187.

Holzapfel, G. A. and Ogden, R. W. (2006). Mechanics of Biological Tissue. Springer,
Berlin.

Ito, K. and Kunisch, K. (1996a). Augmented Lagrangian-SQP methods for non-
linear optimal control problems of tracking type. SIAM Journal on Control and
Optimization, 34:874–891.

Ito, K. and Kunisch, K. (1996b). Augmented Lagrangian-SQP Methods in Hilbert
spaces and application to control in the coefficients problem. SIAM Journal on
Optimization, 6(1):96–125.

Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations, volume 16
of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA. With separately available software.

Kelley, C. T. (1999). Iterative methods for optimization, volume 18 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA.

Kelley, C. T. (2003). Solving nonlinear equations with Newton’s method, volume 1
of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA.

Kelley, C. T. and Sachs, E. W. (1989). A pointwise quasi-Newton method for
unconstrained optimal control problems. Numerische Mathematik, 55(2):159–176.

195

Kelley, C. T., Sachs, E. W., and Watson, B. (1991). Pointwise quasi-Newton method
for unconstrained optimal control problems. II. Journal of Optimization Theory
and Applications, 71(3):535–547.

Kevan, P. G. (1975). Sun-tracking solar furnaces in high arctic flowers: Significance
for pollination and insects. Science, 189(4204):723–726.

Kirby, R. C. (2004). Algorithm 839: Fiat, a new paradigm for computing finite
element basis functions. ACM Transactions on Mathematical Software, 30(4):502–
516.

Kirchhoff, G. (1850). Über das Gleichgewicht und Bewegung einer elastischen
Scheibe. J. Reine Angew. Math., 40:51–58.

K.M. Petersen, M. P. (2008). The Matrix Cookbook. Technical University of Den-
mark.

Lang, A. R. G. and Begg, J. E. (1979). Movements of helianthus annuus leaves and
head. Journal of Applied Ecology, 16(1):299–305.

Lee, P.-S. and Bathe, K.-J. (2010). The quadratic MITC plate and MITC shell
elements in plate bending. Advances in Engineering Software, 21:712–728.

Logg, A. (2007). Automating the finite element method. Archives of Computational
Methods in Engineering, 14(2):93–138.

Logg, A., Mardal, K.-A., Wells, G. N., et al. (2012a). Automated Solution of Dif-
ferential Equations by the Finite Element Method. Springer.

Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N. (2012b). FFC: the
FEniCS Form Compiler, chapter 11. Springer.

Logg, A. and Wells, G. N. (2010). Dolfin: Automated finite element computing.
ACM Transactions on Mathematical Software, 37(2).

Love, A. E. H. (1888). On the small free vibrations and deformations of elastic
shells. Philosophical trans. of the Royal Society (London), N17:491–549.

Lubkoll, L., Schiela, A., and Weiser, M. (2012). An optimal control problem in
polyconvex hyperelasticity. Technical report, Konrad-Zuse-Zentrum für Informa-
tionstechnik Berlin.

Meyer, A. (2007). Grundgleichungen und adaptive Finite-Elemente-Simulation bei
“großen deformationen”. Chemnitz Scientific Computing Preprints.

Mindlin, R. D. (1945). Influence of rotatory inertia and shear on flexural motions
of isotropic elastic plate. J. Appl. Mech., 18:31–38.

196

Nagaiah, C., Kunisch, K., and Plank, G. (2013). Optimal control approach to ter-
mination of re-entry waves in cardiac electrophysiology. Journal of Mathematical
Biology, 67(2):359–388.

Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathe-
matics of Computation, 35(151):773–782.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer, New York,
second edition.

Ogden, R. W. (1972). Large deformation isotropic elasticity: On the correlation of
theory and experiment for compressible rubber-like solids. Mathematical Proceed-
ings of the Cambridge Philosophical Society, A328:567–583.

Ogden, R. W. (1984). Non-Linear Elastic Deformations. Dover Publications, Mi-
neola, New York.

Ospald, F. (2012). Implementation of a geometric multigrid method for FEniCS
and its application. Diploma thesis, Technische Universität Chemnitz, Germany.

Ospald, F. (2014). FMG. http://www.launchpad.net/fmg.

Ovtchinnikov, E. E. and Xanthis, L. S. (1995). Effective dimensional reduction
for elliptic problems. Comptes Rendus de l’Académie des Sciences. Série I.
Mathématique, 320(7):879–884.

Paige, C. and Saunders, M. (1975). Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12(4):617–629.

Paumier, J.-C. and Raoult, A. (1997). Asymptotic consistency of the polynomial
approximation in the linearized plate theory. Application to the Reissner-Mindlin

model. In Élasticité, viscoélasticité et contrôle optimal (Lyon, 1995), volume 2 of
ESAIM Proc., pages 203–213 (electronic). Soc. Math. Appl. Indust., Paris.

Penzler, P., Rumpf, M., and Wirth, B. (2012). A phase-field model for compliance
shape optimization in nonlinear elasticity. ESAIM. Control, Optimisation and
Calculus of Variations, 18(1):229–258.

Pillwein, V. and Takacs, S. (2014). A local Fourier convergence analysis of a multi-
grid method using symbolic computation. Journal of Symbolic Computation, 63:1–
20.

Plato, R. (2004). Numerische Mathematik kompakt. Vieweg, Wiesbaden, second
edition.

Raven, P., Evert, R., and Eichhorn, S. (2001). Biology of Plants. W.H. Freeman
and Company Publishers, New York, 7th edition.

http://www.launchpad.net/fmg

197

Reissner, E. (1944). On the theory of bending of elastic plates. Journal of Mathe-
matics and Physics, 23:184–191.

Reissner, E. (1945). The effect of transverse shear deformation on the bending of
elastic plates. J. Appl. Mech., 12:A–69–A–77.

Rückert, J. (2013). Kirchhoff plates and large deformations – modelling and C1-
continuous discretization. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-
121275.

Rumpf, M. and Wirth, B. (2009). A nonlinear elastic shape averaging approach.
SIAM Journal on Imaging Sciences, 2(3):800–833.

Rumpf, M. and Wirth, B. (2011). An elasticity-based covariance analysis of shapes.
International Journal of Computer Vision, 92(3):281–295.

Salenco, J. (2001). Handbook of Continuum Mechanics. Springer, Berlin Heidelberg.

Schöberl, J., Simon, R., and Zulehner, W. (2011). A robust multigrid method
for elliptic optimal control problems. SIAM Journal on Numerical Analysis,
49(4):1482–1503.

Schwab, C. and Wright, S. (1995). Boundary layers of hierarchical beam and plate
models. Journal of Elasticity. The Physical and Mathematical Science of Solids,
38(1):1–40.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function mini-
mization. Mathematics of Computation, 24:647–656.

Simo, J. C. and Hughes, T. J. R. (1998). Computational Inelasticity. Springer, New
York.

Soko lowski, J. and Zolésio, J.-P. (1992). Introduction to Shape Optimization.
Springer, New York.

Spencer, A. J. M. (2004). Continuum mechanics. Dover Publications Inc., Mineola,
NY.

Totland, Ö. (1996). Flower heliotropism in an alpine population of ranunculus
acris (ranunculaceae): Effects on flower temperature, insect visitation, and seed
production. American Journal of Botany, 83(4):452–458.

Trottenberg, U., Oosterlee, C. W., and Schüller, A. (2001). Multigrid. Academic
Press Inc., San Diego, CA. With contributions by A. Brandt, P. Oswald and K.
Stüben.

198

Turner, P. R. and Huntley, E. (1976). Variable metric methods in Hilbert space
with applications to control problems. Journal of Optimization Theory and Ap-
plications, 19(3):381–400.

Turner, P. R. and Huntley, E. (1977). Direct-prediction quasi-Newton methods in
Hilbert space with applications to control problems. Journal of Optimization
Theory and Applications, 21(2):199–211.

Wachsmuth, G. (2012a). Optimal control of quasistatic plasticity with linear kine-
matic hardening, part I: Existence and discretization in time. SIAM Journal on
Control and Optimization, 50(5):2836–2861.

Wachsmuth, G. (2012b). Optimal control of quasistatic plasticity with linear kine-
matic hardening, part II: Regularization and differentiability. submitted.

Weiser, M., Deuflhard, P., and Erdmann, B. (2007). Affine conjugate adaptive New-
ton methods for nonlinear elastomechanics. Optimization Methods & Software,
22(3):413–431.

Weisstein, E. W. (2014). Legendre-Gauss quadrature. from Mathworld–A Wolfram
Web Resource. http://mathworld.wolfram.com/Legendre-GaussQuadrature.

html.

Wesseling, P. (1992). An introduction to multigrid methods. Pure and Applied
Mathematics (New York). John Wiley & Sons Ltd., Chichester.

Zeidler, E. (1986). Nonlinear functional analysis and its applications. I. Springer-
Verlag, New York. Fixed-point theorems, Translated from the German by Peter
R. Wadsack.

Zeidler, E. (2013). Springer-Taschenbuch der Mathematik. Springer Spektrum, third
edition.

Zwillinger, D., editor (2003). CRC standard mathematical tables and formulae.
Chapman & Hall/CRC, Boca Raton, FL, st edition.

http://mathworld.wolfram.com/Legendre-GaussQuadrature.html
http://mathworld.wolfram.com/Legendre-GaussQuadrature.html

	Acknowledgments
	Abstract
	Chapter 1. Introduction
	Motivation
	Outline of the Thesis
	Notation
	Nomenclature

	Chapter 2. A Mathematical Model of Elasticity with Finite Deformations
	Modeling of Finite Deformations
	Models for Elastic Material Behavior
	2.2.1. Balance-of-Forces Approach
	2.2.2. Energy Minimization Approach
	2.2.3. Loads (Volume, Boundary, Inner Pressure, Fiber Tension)

	Comparison to Linear Elasticity
	Parametrization of the Reference Configuration
	Hierarchical Plate Model

	Chapter 3. Numerical Methods to Solve the Forward Problem
	Newton's Method
	Globalization by a Line Search
	Krylov Subspace Methods
	Discretization
	Preconditioner and Multigrid Method

	Chapter 4. Optimal Control Problems in Elasticity
	Setting of the Optimal Control Problem
	4.1.1. Quality functionals
	4.1.2. Cost or Penalty Functionals

	Lagrange-Newton: An All-at-once Approach
	4.2.1. Solving the Lagrange Equation
	4.2.2. Discretization

	Quasi-Newton: A Reduced Formulation
	4.3.1. Quasi-Newton Method
	4.3.2. Broyden-Fletcher-Goldfarb-Shanno-Update
	4.3.3. Simple Wolfe-Powell Line Search
	4.3.4. Discretization

	Chapter 5. Implementation in FEniCS
	Introduction to FEniCS
	Weak Formulations and UFL
	5.2.1. Mutual Definitions
	5.2.2. Objective Functions
	5.2.3. Forward Problem
	5.2.4. Lagrange Problem
	5.2.5. Reduced Optimal Control Problem
	5.2.6. Automatic Differentiation vs. Differentiation by Hand
	5.2.7. Parametrization
	5.2.8. Hierarchical Plate Model

	Solver Routines
	5.3.1. Multigrid Method
	5.3.2. CG and MinRes Method
	5.3.3. Forward Problem
	5.3.4. Lagrange-Newton Problem
	5.3.5. Reduced Problem

	An Experimental Preconditioner

	Chapter 6. Numerical Experiments
	Experiments on the Forward Problem
	6.1.1. Line Search and Iterates of Newton's Method
	6.1.2. Plate Model

	Experiments on the Optimal Control Problem
	6.2.1. Elevated Bar with Fiber Tension Control
	6.2.2. Regional Penalization
	6.2.3. Flower Movement by Turgor Pressure
	6.2.4. Enclosed Volume

	Chapter 7. Conclusions and Perspectives
	Appendix A. Appendix
	Matrix Calculus
	Derivatives of Energy Functionals

	Appendix B. Theses
	Appendix C. Curriculum Vitæ
	Bibliography

