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ABSTRACT

Science and technology have profoundly influenced the course of human civilization on
earth and opened a new horizon of enormous possibilities in various fields of applica-
tion. Almost all technological applications require a solid understanding of processes,
components, and the physical and dynamical features of the concerned systems. Math-
ematical models are the key towards representing our knowledge and understanding of
dynamical systems. In most of those applications, such models become extremely huge
and complex and sometime impossible to handle for the purpose of simulation, analysis
or control system design. A solution to simplify the preceding task in both fields of
simulation and system analysis is to find a low order approximation of the original
high order complex model that still preserves the input-output behavior of the original
complex model as good as possible. This is the basic concept of model reduction.

This dissertation concerns the model reduction of linear periodic descriptor systems
both in continuous and discrete-time case. Linear periodic descriptor systems represent
a broad class of time evolutionary processes in micro-electronics and circuit simulation.
They are suitable models for several natural as well as man-made phenomena, and
have applications in modeling of periodic time-varying filters and networks, multirate
sampled-data systems, circuit simulation, micro-electronics, aerospace realm, control of
industrial processes and communication systems.

In this dissertation, mainly the projection based approaches are considered for model
order reduction of linear periodic time varying descriptor systems. Krylov based projec-
tion method is used for large continuous-time periodic descriptor systems and balancing
based projection technique is applied to large sparse discrete-time periodic descriptor
systems to generate the reduce systems.

For very large dimensional state space systems, both the techniques produce large
dimensional solutions. Hence, a recycling technique is used in Krylov based projection
methods which helps to compute low rank solutions of the state space systems and also
accelerate the computational convergence. The outline of the proposed model order
reduction procedure is given with more details. The accuracy and suitability of the
proposed method is demonstrated through different examples of different orders and
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the results are compared and discussed.

Model reduction techniques based on balance truncation require to solve matrix equa-
tions. For periodic time-varying descriptor systems, these matrix equations are pro-
jected generalized periodic Lyapunov equations and the solutions are also time-varying.
Solving these periodic Lyapunov equations requires the computation the the kronecker-
like canonical forms of the periodic matrix pairs associated with the periodic systems
and then to solve the resulting periodic Sylvester equations. Rather than this approach,
the cyclic lifted representation of the periodic time-varying descriptor systems is con-
sidered in this dissertation and the resulting lifted projected Lyapunov equations are
solved to achieve the periodic reachability and observability Gramians of the original
periodic systems. The main advantage of this solution technique is that the cyclic struc-
tures of projected Lyapunov equations can handle the time-varying dimensions as well
as the singularity of the period matrix pairs very easily. Another nice feature about
the use of this lifting isomorphism is that one can exploit the theory of time-invariant
systems for the control of periodic ones, provided that the results achieved can be easily
reinterpreted in the periodic framework.

Since the dimension of cyclic lifted system becomes very high for large dimensional
periodic systems, one needs to solve the very large scale periodic Lyapunov equations
which also generate very large dimensional solutions. Hence iterative techniques,
which are the generalization and modification of alternating directions implicit method
and generalized Smith method, are implemented to obtain low rank Cholesky factors
of the solutions of the periodic Lyapunov equations. Also the application of the solvers
in balancing-based model reduction of discrete-time periodic descriptor systems is
discussed. Numerical results are given to illustrate the efficiency and accuracy of the
proposed methods.
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A ⊕ B the direct sum of A and B

{(Ek,Ak)}K−1
k=0 the periodic matrix pairs for k = 0, . . . ,K − 1

(E,A) the set of {(Ek,Ak)}K−1
k=0

(E f ,A f ) the set containing all finite eigenvalues of {(Ek,Ak)}K−1
k=0

(E∞,A∞) the set containing all infinite eigenvalues of {(Ek,Ak)}K−1
k=0

Σ(E,A,B,C) realization of a system
λE −A cyclic lifted pencil
(E,A) short form of the cyclic lifted pencil λE −A.

Norms

‖u‖p := p
√∑n

i=1 |ui| for n-tuples u and 1 ≤ p < ∞
‖u‖∞ the maximum norm, i.e., the maximum absolute value of

components (u an n-tuple) or function values (u a continuous
function)

‖A‖2 := sup ‖Ax‖
‖x‖ = σmax(A) the spectral matrix norm of A
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‖A‖p := sup
{
‖Au‖p : ‖u‖p = 1

}
for operators A (including matrices)

and 1 ≤ p ≤ ∞

‖A‖F :=
√∑

i, j a2
i j =

√
tr (A∗A) the Frobenius-norm of A ∈ Rm×n

‖G(iω)‖H∞ H∞ norm of G(iω)





CHAPTER

ONE

INTRODUCTION

Motivation. Various complicated systems which arise in many engineering applica-
tions (microelectronics, micro-electro-mechanical systems (MEMS), aerospace realm,
computer control of industrial processes, chemical processes, communication systems,
etc.) are composed of large numbers of separate devices and they are described by very
large mathematical models consisting of more and more mathematical systems with
very large dimensions. Simulations of such systems can be unacceptably expensive
and time-consuming due to limited computer memory and CPU consumption. Model
reduction is concerned with replacing a large complex model by a much smaller one
which can be fast and efficiently simulated and which has nearly the same response
characteristics compare to the original large model.

As the mathematical model of a device gets more detailed and the model is composed
of a large system of ordinary differential equations (ODEs), or a set of partial differential
equations (PDEs), it is quite common that the concerned mathematical model may
consist a vast amount of redundant information that have very little importance in
the input-output characterization of the device. Model reduction is an efficient tool
to eliminate those redundant parts from the original model so that the size of the
reduced model becomes smaller compare to the original one and it is then amenable for
simulation and analysis.

Linear systems, in continuous or discrete-time, in very simple language, are systems
of linear differential or difference equations. A systems is called time-varying when
the behavior and characteristics of that system varies over time. Almost every natural
or technical process, however, is more or less nonlinear in nature, and therefore is
actually time-variant (see Subsection 2.1.1 in Chapter 2 for detail). In recent years,
scientists and engineers have put a lot of attention on the analysis and control of linear
periodic time-varying (LPTV) systems as they explain several man made and natural
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phenomena [36, 63, 66, 68, 73, 94, 115].

In this thesis, efficient implementations for model order reduction of certain large-scale,
LPTV descriptor systems, both for continuous and discrete-time case, have been studied.
A continuous-time LPTV descriptor system in general has the form

E(t)ẋ(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t), (1.1)

where x(t) ∈ Rn, called the descriptor vector, u(t) is the system input, y(t) is the system
output, and n is the system order at any given time t. All the system matrices are
time-varying, periodic with period K ≥ 1 and the matrices E(t) and A(t) can be singular
at any given time t.

Analogous to the continuous-time case, a discrete-time LPTV descriptor system defined
on the time interval [0,K] has the form

Ekxk+1 = Akxk + Bkuk,
yk = Ckxk + Dkuk,

(1.2)

where k = 0, 1, . . . , and k ∈ N0. For each k, xk is an nk-dimensional vector of descriptor
variables, uk is an pk-dimensional vector of input variables, and

∑K−1
k=0 nk = n. The system

matrices are time-varying, periodic with period K ≥ 1 and the matrices Ek and Ak can
be singular at any sampling time point k. For both type descriptor systems the matrices
D(t) or Dk do not have any affect on the dynamics of the corresponding systems. Hence
they are considered zero in most references and we will omit them in the description of
LPTV descriptor systems in the consequent chapters.

Formally speaking, a reduced-order system of order r for system (1.1) (omitting D(t))
would be a system of the form

Ẽ(t) ˙̃x(t) = Ã(t)x̃(t) + B̃(t)u(t),
ỹ(t) = C̃(t)x̃(t). (1.3)

The system is of potentially smaller dimension, i.e., r << n, and thus lower compu-
tational cost, than the original system (1.1), but it is now in a form suitable for use
in higher level simulation. Analogous to the continuous-time case, a reduced-order
system of dimension r for system (1.2) (omitting Dk) would be a system of the form

Ẽkx̃k+1 = Ãkx̃k + B̃kuk,
ỹk = C̃kx̃k, k ∈ Z, (1.4)

where for each k, x̃k is an rk-dimensional vector,
∑K−1

k=0 rk = r and r � n. Apart from
having much smaller state-space dimension, the reduced-order system preserves some
essential and important characteristics of the original system.

The system is called single input single output (SISO) if it has only one input and one
output, otherwise it is called multiple input and multiple output (MIMO). It is easier
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to analysis the system dynamics and behavior for systems not containing any singular
pencil (Ek,Ak). For a singular system, the overall process becomes more complicated. In
that case, usual model order reduction techniques can not be used directly to generate
a reduced-order model. This dissertation is concerned with the model order reduction
techniques of such singular descriptor systems which arise both in continuous-time and
discrete-time case.

In this thesis, mainly the projection based approaches are considered for model order
reduction of LPTV descriptor systems. Krylov based projection method is used for large
continuous-time LPTV descriptor system and balancing based projection technique is
applied to large sparse discrete-time LPTV descriptor system to generate the reduce
systems.

For very large dimensional state space systems, both the techniques produce large
dimensional solutions. Hence, a recycling technique is used in Krylov based projection
methods which helps to compute low rank solutions of the state space system and also
accelerate the computational convergence.

Model reduction techniques based on balance truncation require to solve matrix equa-
tions. We need to solve the very large scale periodic Lyapunov equation which also
generates very large dimensional solution. Hence an iterative technique, which is a
generalization and modification of alternating directions implicit (ADI) method, is im-
plemented to obtain low rank Cholesky factors of the solutions of the periodic Lyapunov
equations.

Chapter Outline. The thesis is organized in the following way:

Chapter 2 introduces some test examples and model problems which describe the
physical phenomena and system structures from where the LPTV descriptor systems can
arise. The models are mainly sketched and more detailed descriptions are referenced.
The modeling of nonlinear circuit models is described very detailed where we linearize
the nonlinear model around some equilibrium trajectory and use discretization in the
time domain.

In Chapter 3 we review some basic concepts of system and control theory for linear
time-invariant (LTI) descriptor systems, both for continuous- and discrete-time systems,
which will be needed later in the period settings by the subsequent chapters of this
thesis. The main idea behind this is that the description in the LTI structures will help
more precisely to understand their corresponding periodic structures. We summarize
some necessary definitions and introduce functions of generalized matrix pencils and
their decompositions. We also introduce the projected generalized periodic Lyapunov
equations and their roles in applications of model order reduction.

Chapter 4 is devoted to LPTV discrete-time descriptor systems. In this chapter we
review the concept of stability with the help of periodic matrix pencils and discuss the
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decomposition of the periodic matrix pencils regarding their finite and infinite eigen-
values. We study the concepts of periodic reachability and observability Gramians of
LPTV discrete-time descriptor systems in a different way. Also the structures and char-
acteristics of periodic projected Lyapunov equations and the periodic transfer functions
are discussed in this chapter.

Chapter 5 introduces the time-invariant reformulation of the LPTV discrete-time de-
scriptor systems which is known as lifted system. In this thesis, we consider only the
cyclic lifted representation of the LPTV discrete-time descriptor systems, which is intro-
duced by Park and Verriest [79] in 1989 and Flamm [38] in 1991, known as Cyclic
lifting representation of discrete-time LPTV systems. We reconstruct the concepts of sta-
bility as well as the reachability and observability Gramians of LPTV descriptor system
regarding its cyclic lifted LTI model. Lifted representation of periodic Lyapunov equa-
tions and the transfer function are also discussed. A short discussions is given at the
end of this chapter to clarify the relationship of LPTV descriptor system and its lifting
isomorphism.

In Chapter 6 we consider the introductory idea of model reduction for the LTI case
and generalizes this idea to our LPTV descriptor system. First, we describe the system
theoretical background of model reduction approach via projection onto a rational
Krylov subspace, and then the Balanced Truncation (BT) method, which requires exact
system Gramians. We focus on descriptor systems and recall some basic information
about the transfer functions and system norms.

Chapter 7 provides one of the main important contributions of this thesis. We develop
efficient implementations of Krylov subspace based projection methods for model order
reduction. The algorithmic realization of the method employes recycling techniques for
shifted Krylov subspaces and their invariance properties. The efficiency and accuracy
of the developed algorithm is illustrated by numerical examples and compared to other
Krylov based projection methods used for model reduction.

Chapter 8 then provides another main contribution of this thesis. In this chapter we
develop efficient implementations of balancing-related methods for model order re-
duction of discrete-time linear periodic descriptor systems. Efficient algorithms for
solving projected periodic discrete-time algebraic Lyapunov equations via their lifted
LTI representations are discussed here. We discuss the modified concepts of the peri-
odic Gramians and the resulting concepts of Hankel singular values. We illustrate the
behavior of the suggested model reduction technique using numerical examples.

Chapter 9 motivates the low rank approximation of the solution to large scale projected
periodic discrete-time algebraic Lyapunov equations in lifted form. We start with short
review of the ADI method and give detail derivation of the generalized ADI method
to the projected lifted discrete-time algebraic Lyapunov equations with large sparse
matrix coefficients. The generalized Cayley transformation is introduced which copes
up with the singularity of the matrix equations. The column compression technique for
the optimal memory requirements and computational effort are discussed. The chapter
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includes numerical results on how well the low rank ADI approximation captures the
original solution of the projected periodic discrete-time algebraic Lyapunov equations
and implementations in model reduction technique.

Chapter 10 offers some conclusions and briefly discusses possibilities for improvements
and future research.
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This chapter introduces the different model problems and test examples, where periodic
descriptor systems have specific applications and demands. We describe model prob-
lems of three different areas that have set the stage for renewed interest in the study of pe-
riodic descriptor systems, both in continuous and discrete-time [36, 63, 66, 68, 73, 94, 115],
in the last twenty years. The main goal is to familiarize the real life problems where the
mathematical model demands periodic descriptor settings.

2.1. Nonlinear Circuit Models

The most common components for model reduction of linear time-varying (LTV) sys-
tems are the radio frequency (RF) communication circuits, where the systems are de-
signed to have nearly linear responses, but may exhibit strongly nonlinear behaviors
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for the strong local oscillator signals. The nonlinear responses present there are con-
sidered as redundant terms in the modeling of RF communication circuits, and hence
they need to be removed. An usual approach to get ride of these redundant terms is
the linearization of a nonlinear circuit model around the time-varying large signal, and
hence, the resulting model is an LTV model. In the second half of last century and
also in recent years, RF communication circuits such as mixer, switched-capacitor filters
[73, 78, 84, 86, 128] have taken a lot attention as prime components of LTV model order
reduction. In the following subsection we briefly discuss the linearization of nonlinear
circuit systems.

2.1.1. Linearization of Nonlinear Circuit Systems

Let us consider a nonlinear system that describes a circuit equation whose input is the
sum of two periodic signals, uL(t) + us(t), where uL(t) is an arbitrary periodic waveform
with period TL and us(t) is a small signal of frequency fs. Using modified nodal analysis
(MNA) [53], the differential equations for the circuit can be written as,

f (v(t)) +
d
dt

q(v(t)) = uL(t) + us(t), (2.1)

where uL(t),us(t) are the vectors of large and small signal input sources, v(t) describes
the node voltages, f () and q() are nonlinear functions describing the charge/flux and
resistive terms, respectively.

If us(t) is assumed to be zero, then the periodic steady state (PSS) solution vL(t) is the
solution of (2.1) which also satisfies the periodic property

v(TL) = v(0). (2.2)

Now, assume that us(t) is not zero, but is small. We consider that the new perturbed
solution vL(t) + vs(t) also satisfies (2.1), i.e.,

f (vL(t) + vs(t)) +
d
dt

q(vL(t) + vs(t)) = uL(t) + us(t), (2.3)

where vs(t) is the difference between the exact solution to (2.1) and the solution com-
puted assuming us(t) = 0.

Linearizing around the steady state solution vL(t), which is accurate only if us(t) is small,
yields a time-varying linear system of the form

d f (vL(t))
dvL

vs(t) +
d
dt

(
dq(vL(t))

dvL
vs(t)) = us(t) (2.4)

for vs(t). Here, vs(t) can be interpreted as the small signal response to us(t).
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Figure 2.1. Schematic view of a simple RF receiver.
image source: http://jap.hu/electronic/sregrcvr.html

Defining the time-varying conductance and capacitance matrices, as

Ḡ(t) =
d f (vL(t))

dvL
and C̄(t) =

dq(vL(t))
dvL

, (2.5)

respectively, the linearized LTV system takes the familiar form

Ḡ(t)v +
d
dt

(C̄(t)v) = u(t), (2.6)

where the notations vs(t) = v and us(t) = u are used for simplicity. To relate to the
standard notations analogous to (1.1), we may make the identification E(t) = C̄(t),
A(t) = −(Ḡ(t) + ˙̄C(t)).

Figure 2.1 shows a schematic view of a simple RF receiver which is composed of
several capacitors, conductors and many other micro-machined devices. This simple
RF receiver is mainly used for low-distance digital radio receiver application. A model
TDA1572T/V3 integrated AM receiver in shown in Fig. 2.2, which was released by NXP
Semiconductors in May 1992, and designed for use in mains-fed home receivers and car
radios.

2.1.2. Model Example of RF Circuit Systems

We consider here a simple example where the data are obtained from small RF circuit
simulator. The circuit system consist of n = 5 nodes, and is excited by a local oscillator
at 2 KHz driving the mixer, while the RF input is fed into the I-channel buffer. The
time-varying system is obtained around a steady state of the circuit at the oscillatory
frequency; a total of N = 129 harmonics are considered for the time-variation.

http://jap.hu/electronic/sregrcvr.html


10 Chapter 2. Model Problems and Test Examples

Figure 2.2. TDA1572T/V3 AM Radio Receiver, manufactured by NXP Semiconductors.
image source: http://parts.digikey.com

”The TDA1572T/V3 integrated AM Receiver, manufactured by NXP Semiconductors, performs all the
active function and part of the filtering required of an AM radio receiver. It is intended for use in mains-
fed home receivers and car radios. The circuit can be used for oscillator frequencies upto 50MHz and
can handle RF signals up to 500mV.” -source: http://www.nxp.com/documents/data_sheet/TDA1572T_
CNV.pdf.

Figure 2.3. Transfer functions: full versus reduced system.

To specify an output function, the sample function is taken over a 1-ms period. Essen-
tially the final model is a real LTI system [84], which has the size, nN = 645.

A Krylov based projection technique [84, 113, 87, 88] has been used to find a reduced-
order model. The reduced model is generated by machining four moments on the
imaginary axis. The reduced system has order, r = 3. Fig. 2.3 shows the transfer
functions of full- and reduced order systems. The relative error is bounded by the

http://parts.digikey.com
http://www.nxp.com/documents/data_sheet/TDA1572T_CNV.pdf
http://www.nxp.com/documents/data_sheet/TDA1572T_CNV.pdf
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Figure 2.4. M− fold Decimator (downsampler).

magnitude 10−10. We discuss more details of this calculation in Chapter 7.

2.2. Multirate Data Sampling Models

One of the major motivations for theoretical study of LPTV systems is multirate data
sampling. The process of converting or sampling of the given rate of data or a signal into
a different rate is called sampling rate conversion. Systems that employ multiple sampling
rates in the processing of data or digital signals are called multirate sampled-data control
systems, or multirate digital control systems, respectively.

In the signal processing area, multirate digital filters and filter banks have applications
in communications, speech processing, image compression, and in the digital audio
industry they have vast applications and great demand [4, 73, 115]. In control theory,
multirate data sampling is largely used in multirate feedback systems, also named as
sampled-data control systems in the literature.

2.2.1. Components in Multirate Sampling

The fundamental components in multirate data sampling are decimators and interpola-
tors [39, 115]. Decimetors are used to reduce the sampling rate which is called sampling
rate decimation, or simply decimation.

Let us consider the sampling rate of a discrete signal x(n) reduced by a factor M by taking
only every M-th value of the signal. The relationship between the resulting signal y(m)
and the original signal x(n) is as follows:

y(m) = x(mM). (2.7)

Fig. 2.4 shows a signal flow representation of this process. The quadratic symbol in
Fig. 2.4, with the arrow pointing downwards, is called a downsampler. The output
signal y(m) is a downsampled signal with respect to the input signal x(n). For many
problems, it is possible to decrease the bandwidth of a signal with a low-pass filter
before downsampling it. Fig. 2.5 shows a decimator which uses a filter with an impulse
response h(n) and a downsampler with a factor M. An input signal u(n) is converted
into a decimated signal y(m).
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Figure 2.5. Decimator consisting of anti-aliasing filter h(n) and downsampler M.

It is natural that an input signal u(n) with an unacceptably large bandwidth can have
redundant components, known as aliasing, that can change the signal irreversibly. Af-
ter filtering with a low-pass filter, these unwanted components can be reduced to an
acceptable level. We can then treat the signals as if they were really band-limited [39].
The signal thus obtained after filtering,

x(n) = u(n) ∗ h(n) =

∞∑
k=−∞

u(k)h(n − k),

can be downsampled as given by (2.7). The entire decimation process is thus

y(m) =

∞∑
k=−∞

u(k) h(mM − k).

The downsampler shown in Fig. 2.5 is a linear system, but it is not time-invariant. By
choosing the input as a series

x(n) = δ(n) =

{
1 for n = 0,
0 for n , 0,

we obtain the output as

y(m) = x(mM) =

{
1 for m = 0 ,
0 for m , 0.

Hence the impulse response is the impulse series y(m). Now assume that in the impulse
series there is a delay and it is n0. Upon excitation from this delay, the resulting input
series

x(n) = δ(n − n0) =

{
1 for n = n0,
0 for n , n0,

gives the output of the sampler as

y(m) =

{
1 for m = m0 with m0 = n0/M,
0 otherwise.
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Here m0 is an integer, and the response clearly depends on the delay n0. The down-
sampler is thus a time-dependent system. However, it is a periodically time-invariant
system. With time delay which are multiples of M, we obtain a delayed output, which
is a downsampled version of the input signal.

The sampling rate also needs to be increased if a narrow-band signal is to be observed
with a finer resolution in the time-domain. This is useful, for instance, for detecting
zero-crossings of the signals. Interpolators are used to increase the sampling rate of a
signal, which is called interpolation, and consists of upsampling, followed by anti-imaging
filtering.

Suppose that the sampling rate of a discrete signal y(m) is increased by a factor L by
placing L − 1 equally spaced zeroes between each pair of samples. The resulting signal
u(n) is then given by

u(n) =

{
y(n/L) for n = mL, m integer,
0 otherwise.

Figure 2.6. L-fold Interpolator (upsampler).

Fig. 2.6 shows a signal flow representation of this process. The upsampling signal
generally contains redundant spectra, called image spectra. Therefore, this upsampled
signal is then passed through a low-pass filter with a cutoff frequency to generate an
ideally interpolated signal.

Figure 2.7. Interpolation using an upsampler L and anti-imaging filter g(n)

It can be easily figured out that both decimators and interpolators are simple time-
varying systems and they are not periodic in general. However, when a decimator and
interpolator with the same sampling rate appear in cascade, even separated by other
samplers or filters, they form a LPTV system as a whole.
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Figure 2.8. Cascade filters: a decimator with filter HD(n), a kernel filter HK(n) and an
interpolator with filter HI(n)

Figure 2.9. Philips SAA7220P/B digital filter, used in superb sound Marantz CD Player.
image source: http://www.marantzphilips.nl

”The SAA7220P/B digital filter, was slightly improved released of its previous version SAA7220P/A
by Philips. These new digital filters conformed to the 28kHz DAT sampling rate, and plans were
implemented to improve the precision of DACs. It was incorporated into the Marantz CD-94 after
its initial release and also used in the Marantz CD94ltd and Marantz CDA-94”. source: http://www.
marantzphilips.nl

2.2.2. Model Example of Digital Audio Systems

This example is taken from [115]. Changing the sampling rates of band-limited se-
quences is a very common demand in audio industry. For example, assume that the sig-
nificant information of a certain music waveform xa(t) is in the band 0 ≤ |Ω|/2π ≤ 22kHz.
For the better quality and performance a minimum sampling rate of 44kHz is suggested
(Fig. 2.10(a)). Hence one needs to perform analog filtering before sampling to eliminate
aliasing of out-of-band noise.

Hence, an analog filter Ha( jΩ) (Fig. 2.10(b)) is used. It has a fairly flat passband and a
narrow transition band and hence xa( jΩ) is not distorted and only a small amount of
unwanted energy can pass through. A suitable choice in such a case can be optimal
filters (see [115] and references therein). But they have very high nonlinear phase
response around the bandedge (i.e., around 22kHz). In high quality music this is not

http://www.marantzphilips.nl
http://www.marantzphilips.nl
http://www.marantzphilips.nl
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Figure 2.10. (a) Spectrum of xa(t). (b) Antialiasing filter response for sampling at 44
kHz. (c) Antialiasing filter response for sampling at 88 kHz. (d) improved
scheme for A/D stage of digital audio system. image source: [115]

acceptable and considered as objectionable.

A usual method to overcome this problem is to oversample xa(t) by a factor of two (and
often four). Then the filter Ha( jΩ) have much wider transition band (Fig. 2.10(c)), so
that the nonlinearity in the phase-response is very low. Now a simple analog linear
filter (i.e., Bessel filter) can be used to recover the signal from the unwanted nonlinearity
(which is acceptably low) still present in it. The sequence x1(n) so generated is then
passed through a digital filter H(z) . Hence the signal is lowpass filtered (Fig. 2.10(d)) by
H(z) and after that it is decimated (downsampled) by the same factor of two to obtain
the final digital signal x(n) (see [115] for details).

The reason of using a digital filter H(z) at the last part of the above process is that, since
H(z) is digital, it can be designed to remove all the nonlinear phase-response of the signal
for its linear phase, while at the same time providing the desired degree of sharpness
and quality. The resulting is superb sound quality from digital audio systems.
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2.3. Orbital Motion Modelling of Spacecraft

In order to track satellites through space, it is important to know their orientations in
space to carryout mission planning and design. The path a rocket or guided missile
takes during powered flight is directly influenced by its attitude, that is its orientation
in space. During the atmospheric portion of flight, fins may deflect to steer a missile.
Outside the atmosphere, changing the direction of thrust by articulating exhaust nozzles
or changing the rocket’s attitude influences its flight path. Therefore, the spacecraft’s
attitude must be stabilized and controlled not only for the survival of a satellite, but
also for a satisfactory achievement of mission goals.

Several possible approaches have been developed the recent years in the field of control
system engineering of spacecrafts and it has become a most interesting topics for several
research now-a-days. Among all these possible approaches, a particularly effective and
reliable one is constituted by use of electromagnetic actuators. The reason is that it
turn out to be specially suitable for tracking and controlling the low Earth orbit (LEO)
satellites. Such actuators are time-varying and their control is periodic. The feasibility of
periodic techniques has opened a door of vast possibilities of applications and research
in the field of attitude control system (ACS) of small satellites [17, 68, 69, 94].

2.3.1. Spacecraft Attitude Control Dynamics

The attitude dynamics of a rigid spacecraft is nonlinear, and generally described by
well-known Euler’s equations, as follows [130, 94]:

Iω̇ = −ω × Iω + Tcontr + Tdist, (2.8)

where ω ∈ R3 is the vector of spacecraft angular rate ( expressed in the body frame),
I ∈ R3×3 is the inertia matrix, Tdist ∈ R

3 is the vector of external disturbing torques, and
Tcontr ∈ R3 is the vector of magnetic control torques.

The attitude kinematics of the spacecraft can be described by means of possible param-
eterisations [68]. The most common parametrization is given by four Euler parameters,
which gives the following representation for the attitude kinematics

q̇ = 1
2 W(ω)q, (2.9)

where q = [q1 q2 q3 q4]T is the vector of Euler parameters with unit norm (qTq = 1), and

W(ω) =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 . (2.10)
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For the ACS of an earth pointing spacecraft in a circular orbit the following reference
frames are considered: the orbital axes (Xe,Ye,Ze), and the satellite body axes (X,Y,Z).
The satellite’s center of mass is the origin for both axes systems. The ACS of the satellite
in space is determined by considering both the reference frames [94].

The magnetic attitude control torques generated by the set of three magnetic coils
aligned with the spacecraft principal axes can be represented as [130, 69]

Tmag = m × b = B(b)m, (2.11)

where m ∈ R3 is the vector of magnetic dipoles of the coils , b ∈ R3 is the vector formed
with the components of the Earth’s magnetic field in the body frame of reference and

B(b) =


0 bz −by
−bz 0 bx
by −bx 0

 . (2.12)

We assume for the spacecraft a momentum bias configuration (i.e., one momentum
wheel, aligned with the body z-axis, with moment of inertia J ∈ R3 and angular velocity
ν). Hence, the modified system’s dynamics takes the form

Iω̇ = −ω × [Iω + Jν] + Tcontr + Tdist. (2.13)

It is also natural that external disturbance torque will occur which may deflect the ACS.
These disturbance torque can come through different sources, such as gravity gradient,
aerodynamics, solar radiation and residual magnetic dipoles. Hence the question rises
how to store the accurate momentum. Among inertial torques, it is possible to distin-
guish those that occur as disturbances and those that provide controllable torques to
store momentum. The external disturbance torques that come from disturbing resources
(i.e., gravity gradient, aerodynamics, solar radiation), can be separated into a secular
component (i.e., a part with nonzero mean around each orbit) and a cyclic component
(i.e., with zero mean, periodic part).

Introducing now the state vector x = [q′, ω′]′ and considering small displacements from
the nominal values of the vector part of the attitude quaternion q1 = q2 = q3 = 0, q4 = 1,
and small deviations of the body rates from the nominal ones ωx = ωy = 0, ωz = −Ω,
(Ω being the angular frequency associated with the orbit period), we can linearize the
attitude dynamics for the system as [94]

δ̇x = Aδ(x) +

[
0

I−1

]
(Tcontr + Tdist), (2.14)

where

A =
∂ f (x, t)
∂x

|x=xnorm =


∂q̇
∂q

∂q̇
∂ω

∂ω̇
∂q

∂ω̇
∂ω

 |x=xnorm . (2.15)
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Figure 2.11. TOPEX/Poseidon, made for precise measurements of the ocean surface.
image source: http://topex-www.jpl.nasa.gov/mission/topex.html

Considering the control torques generated by the magnetic coils as in (2.11), the overall
linearized model take the form

δ̇x = Aδ(x) +

[
0

I−1

]
(B(b)m + Tdist). (2.16)

If the time variation of the magnetic field is periodic, then this model can be considered
as a linear-periodic model.

2.3.2. Periodic Attitude Control of Topex/Poseidon Satellite

TOPEX/Poseidon (launched in 1992) was a joint satellite mission between NASA, the
U.S. space agency, and CNES, the French space agency, to map ocean surface topog-
raphy. It was the first major oceanographic research vessel into space which helped
revolutionize oceanography by proving the value of satellite ocean observations [51].

From orbit 1,336 kilometers above Earth, TOPEX/Poseidon provided measurements of
the surface height of 95 percent of the ice-free ocean to an accuracy of 3.3 centimeters.
TOPEX/Poseidon made it possible for the first time to determine the patterns of ocean
circulation by observing how heat stored in the ocean moves from one place to another.
Comparing the satellite based computer models of ocean circulation with actual global
observations, TOPEX/Poseidon opened the door of vast possibilities to improve climate
predictions.

The onboard ACS controls the orientation of the TOPEX/Poseidon satellite in space (see
Figure 2.12). First of all, the orientation of the satellite is observed by the ACS. This
orientation is determined from star trackers, the digital fine sun sensor, gyros, magne-
tometers, and the Earth Sensor Assembly Module. Then, the observed information is

http://topex-www.jpl.nasa.gov/mission/topex.html
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Figure 2.12. Block diagram of ACS for TOPEX/Poseidon .
image source: http://www.tsgc.utexas.edu/spacecraft/topex/atti.html

Figure 2.13. TOPEX/Poseidon: periodic orbital motion (Ground track view).
image source: http://topex-www.jpl.nasa.gov/mission/mission.html

carried to the Propulsion Module of the satellite where it uses reaction wheels, magnetic
torquer bars, and the thrusters to control the attitudes of the satellite. This ensures the
satellite to place the altimeter antenna accurately at the desired point (place) on the
surface of the Earth right underneath the satellite for the data acquisition with efficient
accuracy at all times.

Fig. 2.13 shows the controlled orbital periodic motion of TOPEX/Poseidon satellite in
space. The dashed part of the orbit path shows where the satellite is in the earth’s
shadow, and the full part is where it is sunlit.

http://www.tsgc.utexas.edu/spacecraft/topex/atti.html 
http://topex-www.jpl.nasa.gov/mission/mission.html 
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In this chapter we introduce some basic concepts of system and control theory for
LTI descriptor systems, both for continuous and discrete-time systems, which will be
needed later in the period settings by the subsequent chapters of this thesis. The periodic
reformulations of these basic contents will be discussed in Chapter 4. The main idea
behind this is that the description in the LTI structures will help more precisely to
understand their corresponding periodic structures in the subsequent chapters.

We start with some important definitions of LTI descriptor systems and discuss some of
their basic properties. We then discuss the generalized matrix pencils and some of their
decomposition techniques that we will use in the periodic case. The canonical form and
the deflating subspaces corresponding to the generalized matrix pencil are discussed in
this chapter.

The Lyapunov equations, which are projected Lyapunov equations in our case, are
discussed later. Important theorems that guarantee the existence and uniqueness of
these projected Lyapunov equations are also presented. We put some important notes
and remarks at the end of this chapter.
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3.1. Linear Descriptor Systems

Descriptor systems present a general mathematical framework for the modelling, sim-
ulation and control of complex dynamical systems arising in many areas of mechanical,
electrical and chemical engineering. They have received a lot of importance and atten-
tion in last several decades.

A linear time-invariant continuous-time system is characterized by the equation

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0,
y(t) = Cx(t), (3.1)

and a linear time-invariant discrete-time system is characterized by the equation

Exk+1 = Axk + Buk, x(0) = x0,
yk = Cxk,

(3.2)

where x(t), xk ∈ R
n are descriptor variables, u(t),uk ∈ R

p (p ≤ n) are system inputs,
y(t), yk ∈ R

q are system outputs, n is the system order, and p and q are the numbers of
system inputs and outputs, respectively. The matrices E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n

are the time-invariant system matrices. Both the systems are shortly referred to as
Σ(E,A,B,C). For SISO systems, p, q=1, the matrices B and C change to vectors b and cT,
respectively.

Linear dynamical systems, where the input-to-state equation is written with a leading
matrix E, are called generalized state space systems or singular systems. For E being singular
(3.1) and (3.2) are called descriptor systems. If E = In, then systems (3.1) and (3.2) are
called standard state space systems.

Assume that the matrices E, A present is systems (3.1) and (3.2) are nonsingular. The
output function for u to y for system (3.1) can be defined as ȳ(s) = H(s)ū(s), where ū(s)
and ȳ(s) are the Laplace transforms of u(t) and y(t) with x(0) = 0, and

H(s) = C(sE − A)−1B

is called the transfer function of the system. The transfer function matrix for a discrete-
time system (3.2) can be expressed as

H(z) = C(zE − A)−1B.

It is obtained by taking the z-transformation of the system.

Clearly, the Laplace transform maps the continuous-time system into frequency domain
representation, whereas the z-transform maps the discrete-time system into frequency
domain representation and the transfer functions relate inputs to outputs via y(.) =
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H(.)u(.) in the frequency domain. Here y(.) and u(.) are the corresponding Laplace
transformation/z-transformation for u and y in (3.1) and (3.2), respectively.

Two systems Σ(E,A,B,C) and Σ̄(Ē, Ā, B̄, C̄) are called restricted system equivalence if there
exist nonsingular matrices W,T ∈ Rn×n such that

Ē = WET, Ā = WAT, B̄ = WB, C̄ = CT. (3.3)

The pair (W,T) is called system equivalence transformation. A characteristic quantity of (3.1)
and (3.2) is system invariant if it is preserved under a system equivalence transformation.
The transfer function H(s) is system invariant, since

H(s) = C(sE − A)−1B = C̄T−1(sW−1ĒT−1
−W−1ĀT−1)−1W−1B̄

= C̄T−1T(sĒ − Ā)−1)−1WW−1B̄
= C̄(sĒ − Ā)−1B̄.

Similar expression can be obtained also for H(z). All representations of the same system
(that can be transformed into each other) are called realizations of the system. A real-
ization Σ(E,A,B,C) of order n̄ is called minimal if n̄ is the smallest possible dimension
under all possible realizations. This minimal number of states is called the McMillan
degree of the realization.

An LTV system consequently is a system where the system matrices may depend on
time as well.

3.2. Generalized Matrix Pencils

A matrix pencil αE− βA, denoted by (E,A), associated with the descriptor systems (3.1)
and (3.2) is called regular if E and A are square, and det(αE−βA) , 0 for some (α, β) ∈ C2,
otherwise, (E,A) is called singular. A pair (α, β) ∈ C2�(0, 0) is said to be a generalized
eigenvalue of (E,A) if det(αE − βA) = 0, and a finite eigenvalue λ of (E,A) is given by
λ = α/β, for β , 0. If β = 0, then the pair (α, 0) represents an infinite eigenvalue of λE−A.
Singularity of the matrix E leads to infinite eigenvalue(s) of the pencil λE−A. The set of
all generalized eigenvalues (finite and infinite) of the pencil λE−A is called the spectrum
of λE − A and denoted by Λ(E,A).

Definition 3.2.1:
A matrix pencil (E,A) associated with the system (3.1) is called c-stable if it is regular
and all its finite eigenvalues lie in the open left half-plane. ♦

Example 3.2.1:
Consider

E =

[
1 1
0 −1

]
and A =

[
−2 0
0 1

]
(3.4)
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The matrix pencil (E,A) is regular and its eigenvalues are−2,−1. Since all eigenvalues
of (E,A) have negative real part, the pencil is c-stable. ♦

Example 3.2.2:
Consider

E =

[
1 1
0 0

]
and A =

[
−2 1
0 1

]
(3.5)

The matrix pencil (E,A) is regular, and it has two eigenvalues, −2 and∞. The pencil
is c-stable since its only finite eigenvalue has negative real part. ♦

Definition 3.2.2:
The continuous-time descriptor system (3.1) is called asymptotically stable if lim

t→∞
x(t) =

0 for all solutions x(t) of the system Eẋ(t) = Ax(t). ♦

The trivial solution x(t) ≡ 0 of system (3.1) is asymptotically stable if and only if the
corresponding matrix pencil (E,A) is c-stable.

Definition 3.2.3:
A matrix pencil (E,A) associated with the system (3.2) is called d-stable if it is regular
and all its finite eigenvalues lie inside the unit circle. ♦

Example 3.2.3:
Let

E =

[
1 1
0 −1

]
and A =

[
0.4854 0.1419
0.8003 0.4218

]
. (3.6)

The matrix pencil (E,A) is regular and it has eigenvalues 0.9590 and −0.0951. All
eigenvalues have magnitude less then 1. Hence, the pencil is d-stable. ♦

Example 3.2.4:
Consider

E =

[
0.5 1
0 0

]
and A =

[
0.9157 0.9595
0.7922 0.6557

]
(3.7)

The regular matrix pair (E,A) has eigenvalues 0.3439 and ∞. The pencil is d-stable
since its finite eigenvalue has magnitude less than 1. ♦

Definition 3.2.4:
The discrete-time descriptor system (3.2) is called asymptotically stable if lim

k→∞
xk = 0

for all solutions xk of the system Exk+1 = Axk. ♦

The trivial solution xk ≡ 0 of system (3.2) is asymptotically stable if and only if the
corresponding matrix pencil (E,A) is d-stable.
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3.2.1. Matrix Decompositions

Generalized Schur Decomposition. Given square matrices A and E in Cn×n, the
generalized Schur decomposition factorizes both matrices as

A = QSZT and E = QTZT, (3.8)

where Q and Z are orthogonal matrices, and S is quasi-upper triangular with 1-by-
1 and 2-by-2 blocks on the diagonal, and T is upper triangular with non-negative
diagonal entries. The generalized Schur decomposition is also sometimes called the QZ
decomposition [43]. The 1-by-1 diagonal blocks of (S,T) contain real eigenvalues of (E,A)
and the 2-by-2 diagonal blocks of (S,T) contain conjugate pairs of complex eigenvalues
of (E,A).

If A and E are complex, then Q and Z are unitary matrices in (3.8), and S and T are
upper triangular. In that case the generalized eigenvalue λ that solves the generalized
eigenvalue problem Ax = λEx (where x is unknown nonzero vector) can be computed
from the ratio of the diagonal elements of S and T. That is, using subscripts to denote
matrix elements, the i-th generalized eigenvalue λi satisfies

λi = Sii/Tii.

In the periodic setting, we define the periodic Schur decomposition and it has a very
wide application is periodic control systems, especially for pole placement of periodic
systems [98, 19], multirate sampling and in optimal control of periodic systems [4, 63,
73, 115].

Generalized Singular Value Decomposition. One of the most useful matrix decompo-
sitions used in linear control systems and in model reduction techniques is the singular
value decomposition (SVD). The generalized singular value decomposition (GSVD) is the
generalization and extension of SVD.

The generalized (or quotient) singular value decomposition of an m × n real matrix A
and a p × n real matrix E is given by the pair of factorizations

A = U
[
Σ1 0
0 0

]
QT and E = V

[
Σ2 0
0 0

]
QT,

where U ∈ Rm×m,V ∈ Rp×p, Q ∈ Rn×n are orthogonal matrices, and Σ1 and Σ2 are
diagonal matrices of dimension r with positive, decreasing diagonal elements. Here
r ≤ n is the rank of [AT,ET].

If Σ1 = diag(α1 ≥ α2 ≥ · · · ≥ αr) > 0 and Σ2 = diag(β1 ≥ β2 ≥ · · · ≥ βr) > 0, then the
ratios σi = αi/βi are called generalized singular values of the pencil (E,A).

If A and E are complex, matrices U,V,Q are unitary instead of orthogonal, and QT

should be replaced by QH in the pair of factorizations. In linear control system theory,
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the singular value decomposition is an important factorization of a rectangular real or
complex matrix, with many applications in signal processing and system approximation
as well as determining rank, range and null space of a matrix.

Generalized QR Decomposition. Let A be a n × m matrix, E be a n × p matrix. Then
there exist orthogonal matrices Q (n × n) and Z (p × p) such that

A = QR, and E = QTZ,

where R has the form

m

R =
m

n −m

[
R11
0

]
,

if n ≥m,

or

n m − n
R = n

[
R11 R12

]
,

if n < m,

where R11 is upper triangular matrix. T has the form

p − n n
T = n

[
0 T12

]
,

if n ≤ p,

or
p

T =
n − p

p

[
T11
T21

]
,

if n > p,

where T12 or T21 is an upper triangular matrix.

3.2.2. Deflating Subspaces

A k-dimensional subspace S ⊆ Rn is called deflating subspace for the pencil λE − A if the
subspace {Ax + Ey : x, y ∈ S} has dimension k or less (k ≤ n). Deflating subspaces are a
generalization of invariant subspaces.

Suppose that E,A are complex matrices and S ∈ Cn is a deflating subspace of λE − A of
dimension k. Then there exist unitary matrices V and W such that the first k columns of
W span S, and

V∗AW =

[
A11 A12
0 A22

]
, V∗EW =

[
E11 E12
0 E22

]
, (3.10)

where A11 and E11 are of order k [102]. Note that if λ is an eigenvalue of λE11 − A11,
then it is not an eigenvalue of λE22−A22. That means the deflating subspace S of λE−A
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has deflated it into two smaller pencils (have no common eigenvalues) by unitary
equivalences. A special case of the representation (3.10) is that the eigenvalue of the
pencil λE11−A11 are finite, while the pencil λE22−A22 contains only infinite eigenvalues.
This can happen when the matrix E is singular. We will discuss this special case in the
next subsection.

3.3. Canonical Form of Matrix Pencils

The Kronecker canonical form (KCF) describes the generalized eigenvalues and gen-
eralized eigenspace of the pencil λE − A in detail. A regular pencil λE − A can be
represented by a canonical decomposition,

P(λE − A)Q = λ

[
In f 0
0 N

]
−

[
J 0
0 In∞

]
, (3.11)

where P and Q are nonsingular, J corresponds to the finite eigenvalues of λE − A
(including zero eigenvalues) and the nilpotent N corresponds to the infinite eigenvalues
of λE − A. The index ν of the pencil λE − A is defined as Nν−1 , 0 and Nν = 0. If E is
nonsingular, then λE − A has index zero.

The canonical representation (3.11) of the matrix pencil λE−A can be used to define the
decomposition of Fn into two complementary deflating subspaces corresponding to the
finite and infinite eigenvalues of the matrix pencil λE − A. The matrices

Pl = P
[
In f 0
0 0

]
P−1, Pr = Q−1

[
In f 0
0 0

]
Q, (3.12)

are the spectral projectors onto the left and right deflating subspaces of λE − A corre-
sponding to the finite eigenvalues.

In many applications, it is also required that the deflated pencils λE11 − A11, and
λE22 − A22 in (3.10) should have some specific block structures. If the pencil λE − A
is regular, we can always have the more suitable form of the deflated pencils, which
is known as Generalized upper triangular form (GUPTRI) [34, 35] of generalized matrix
pencil, and defined as,

V∗EW =

[
E f Eu
0 E∞

]
, V∗AW =

[
A f Au
0 A∞

]
, (3.13)

where V and W are unitary matrices, the pencilλE f −A f is quasi-triangular and has only
finite eigenvalues, while the pencil λE∞ −A∞ is triangular and has infinite eigenvalues.
The GUPTRI form is a special case of the generalized Schur form for a regular pencil.
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3.4. Projected Generalized Matrix Equations

Lyapunov equations play an important role in the context of stability of linear systems,
as well as for descriptor systems. The generalized continuous-time- and discrete-time
algebraic Lyapunov equations associated with the descriptor systems (3.1) and (3.2) can
be expressed as

E∗XA + A∗XE = −G, (3.14)

and

A∗XA − E∗XE = −G, (3.15)

respectively, where X is an unknown solution matrix. The continuous-time algebraic
Lyapunov equation (3.14) has a unique solution for every G if the matrix E is nonsingular
and all the eigenvalues of the pencil λE − A have negative real part. For (3.15), the
unique solution exists for every G if the matrix E is nonsingular and all the eigenvalues
of the pencil λE − A have modulus smaller than one.

The situation differs when E is singular. In that case (3.14) may have no solutions even
if all the finite eigenvalues of λE − A have negative real part and a solution, if it exists,
is not unique. For the discrete-time case analogous problems arise when both E and A
are singular. Equation (3.15) may have no solutions even if all the eigenvalues of the
pencil λE − A lie inside the unit circle and a solution, if it exists, is not unique.

To overcome these difficulties, we consider the following projected generalized continuous-
time algebraic Lyapunov equation

E∗XA + A∗XE = −P∗rGPr,
X = XPl

(3.16)

and the projected generalized discrete-time algebraic Lyapunov equation

A∗XA − E∗XE = −P∗rGPr + ξ(I − Pr)∗G(I − Pr),
P∗l X = XPl

(3.17)

with ξ = −1, 0, 1. Here Pl and Pr are the spectral projectors onto the left and right
deflating subspace of the matrix pencil λE − A corresponding to its finite eigenvalues.
The projector on the right-hand sides of equations (3.16) and (3.17) ensure that they are
solvable and the unique solutions exists. Also existence and uniqueness of solutions
are independent of the index of the pencil λE − A . The following theorems give the
necessary and sufficient conditions for the existence and uniqueness and of the solutions
of (3.16) and (3.17).
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Theorem 3.4.1:
[103] Let λE − A be a regular pencil with finite eigenvalues λ1, . . . , λn f counted according
to their multiplicities and let Pl and Pr be the spectral projections as in (3.12). The projected
generalized continuous-time algebraic Lyapunov equation (3.16) has a solution for every G
if and only if λ j + λ̄k , 0 for all j, k = 1, . . . ,n f . Moreover, if the solution X of (3.16) satisfies
X = XPl, then it is unique. ♦

Proof. See [103]. �

The condition λ j + λ̄k , 0 in (3.16) implies that the pencil λE−A has no eigenvalues on
the imaginary axis. If the pencil λE−A is c-stable and the matrix G in (3.16) is Hermitian,
positive (semi)definite, then the solution X is also Hermitian, positive (semi)definite.

Theorem 3.4.2:
[103] Let λE − A be a regular pencil with finite eigenvalues λ1, . . . , λn f counted according
to their multiplicities and let Pl and Pr be the spectral projections as in (3.12). The projected
generalized discrete-time algebraic Lyapunov equation (3.17) has a solution for every G if
and only if λ jλ̄k , 1 for all j, k = 1, . . . ,n f . Moreover, if the solution X of (3.16) satisfies
P∗l X = XPl, then it is unique. ♦

Proof. See [103]. �

The condition λ jλ̄k , 1 in (3.17) implies that the pencil λE − A has no eigenvalues on
the unit circle. If the pencil λE − A is d-stable and the matrix G in (3.17) is Hermitian,
positive (semi)definite, then the solution X is also Hermitian, positive (semi)definite on
Im Pl.

3.5. Remarks and Notes

Note that we will only consider the case ξ = 1 in (3.17) in the subsequent chapters
and also in the periodic setting of (3.17). The other two cases ξ = −1, and ξ = 0 will
be neglected. The reason is that if λE − A is d-stable and G is positive definite, then
the solution X of (3.17) with ξ = −1 is positive definite on Im Pl and negative definite
on Ker Pl. For ξ = 0, the solution of (3.17) is positive definite on Im Pl and positive
semidefinite on Fn. The solution of (3.17) is positive definite on Fn when ξ = 1 [103].
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We now discuss the most theoretical part of this thesis. In this chapter we generalize
the context of Chapter 3 for periodic time-varying setting, both for continuous-time and
discrete-time systems. We start with an introduction of Floquet theory for LPTV systems
of ODEs and describe the stability of LPTV systems of ODEs with Floquet decomposi-
tion. After that we discuss the extension of Floquet theory for LPTV continuous-time
systems of differential algebraic equations (DAEs). Here we show that the Floquet the-
ory can transform the LPTV continuous-time systems of DAEs (index-1) into a system
with constant coefficients. We also deduce that the whole behaviour of the solutions
of the LPTV continuous-time systems of DAEs (index-1) can be described with the
corresponding constant coefficient of DAE system.

We then discuss the system dynamics of the LTV discrete-time descriptor systems in the
next section. We start by reviewing some basic concepts of LTV discrete-time descriptor
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systems and then discuss the spectral decomposition technique to decompose an LTV
discrete-time descriptor system into two subsystems: causal subsystem and noncausal
subsystem.

We then discuss the periodic reachability and observability Gramians of LTV discrete-
time descriptor systems exploiting the structures of their periodic decomposed subsys-
tems. The periodic projected Lyapunov equations are presented with more details in
the last section.

4.1. LPTV Continuous-Time Descriptor Systems

A time-varying continuous-time periodic descriptor system is the generalized state-
space model

E(t)ẋ(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t), (4.1)

where E(t), A(t), B(t), C(t) are matrices of order compatible with x(t), u(t), and y(t) and
are assumed to be continuous functions of time. All the above matrices are periodic
with a period T > 0 and the matrices E(t) are allowed to be singular.

In the context of integrated circuits, E(t) and A(t) describe the conductive and capacitive
lumped elements [78, 114] in the circuit, and system (4.1) is represented as more usual
form :

d
dt

(C̄(t)x(t)) = −Ḡ(t)x(t) + B(t)u(t),

z(t) = LTx(t), (4.2)

where u(t) is the vector of signal input sources, x(t) describes the internal states, and
C̄(t), Ḡ(t) are the time-varying capacitance and conductance matrices, respectively. The
output z of the system can be any arbitrary node voltage and L is a selected vector that
maps the set of variables to the output node.

Usually these circuit models come from the linearization of nonlinear circuit systems on
its unperturbed orbit (see, e.g., Chapter 2 and also in [78, 84, 114]), or from harmonic
balance analysis (HB) [42, 58] of nonlinear circuits.

The general theory of time-varying linear differential equation is an amazing task which
is still a leading issue to investigate the behaviors and natures of periodic systems. In
the 19th century, two mathematicians Gaston Floquet 1

1 Achille Marie Gaston Floquet (December 15, 1847 - October 7, 1920) was a French mathematician, best
known for his work in mathematical analysis, especially in theory of differential equations. source:
http://en.wikipedia.org.

http://en.wikipedia.org
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and Aleksandr Mikhailovic Lyapunov 2 established their celebrated theorem on the
structure of solutions of periodic differential equations, now named after them Floquet-
Lyapunov Theory [31]. Although this theory was first introduced for linear ODEs with
periodic coefficient matrices, an equivalent representation can be established for peri-
odic time-varying systems of linear DAEs [62, 33].

In the next section we first discuss the Floquet theory and some related results for
periodically time-varying systems of linear ODEs and later we establish an equivalent
representation of Floquet theory (and some related results) for periodic-time varying
systems of linear DAEs.

4.1.1. Floquet Theory for LPTV Systems of ODEs

Consider the n-dimensional inhomogeneous linear system of ODEs

ẋ = A(t)x + b(t), x(t0) = x0, (4.3)

where A(t) ∈ Rn×n and b(t) ∈ Rn are continuous. The homogeneous system correspond-
ing to Equation (4.3) is given by

ẋ = A(t)x, (4.4)

The initial value problems (4.3) and (4.4) satisfy the Picard-Lindelöf existence and
uniqueness theorem [25, 22]. Hence, they have unique solutions with initial condi-
tion x(0) = x0 ∈ Rn.

Let x1(t), . . . , xn(t) be n linearly independent solutions of (4.4). Then, X(t) = [x1(t), . . . , xn(t)]
is called a fundamental matrix. We say X(t) is the state transition matrix for (4.4) when
X(0) = In. The state transition matrix is denoted by Φ(t, 0). The solution φ of (4.3)
satisfying the initial condition x(0) = x0 can be represented by Φ(t, 0), and it is given by

x(t) = φ(t, x0) = Φ(t, 0)x0 +

t∫
0

Φ(t, τ)b(τ)dτ (4.5)

Now consider (4.4) is periodic with period T > 0, i.e. A(t + T) = A(t) for t ∈ R. The state
transition matrix Φ(t, τ) then satisfies

Φ̇(t, τ) = A(t) Φ(t, τ), Φ(τ, τ) = I. (4.6)

Here X(t, τ) := Φ(t + T, τ) is the fundamental matrix, which satisfies X(t, τ) := Φ(t, τ) · C.
Here C = Φ(T, 0) is a nonsingular matrix, called monodromy matrix. Moreover it satisfies

2 Aleksandr Mikhailovich Lyapunov (June 6, 1857 - November 3, 1918) was a Russian mathematician,
mechanician and physicist. His surname is sometimes romanized as Ljapunov, Liapunov or Ljapunow.
Lyapunov is known for his development of the stability theory of a dynamical system, as well as for his
many contributions to mathematical physics and probability theory. source: http://en.wikipedia.org.

http://en.wikipedia.org
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the following conditions [22]:

Φ(t + T, 0) = Φ(t, 0) · Φ(T, 0) (4.7)
Φ(t2, t0) = Φ(t2, t1) · Φ(t1, t0) (4.8)
Φ(t0, t1) = Φ−1(t1, t0) (4.9)
Φ(t1, t0) = Φ(t1, 0) · Φ(0, t0) = Φ(t1, 0) · Φ−1(t0, 0) (4.10)

Φ(t + T,T) = Φ(t, 0) (4.11)

Floquet in 1883 derived the decomposition technique of the state transition matrix for
periodically time-varying ODEs. Floquet theory for continuous-time linear periodic
systems can be summarized in the following theorem and discussions.

Theorem 4.1.1:
[31, 33] (The unified Floquet Decomposition)

Given the linear periodic system

ẋ = A(t)x, A(t + T) = A(t). (4.12)

Then the state transition matrix Φ(t, τ) of (4.12) can be written as

Φ(t, τ) = U(t) exp (D · (t − τ)) V(τ),
V(t) = U−1(t), (4.13)

where U(t) is a T-periodic matrix and D is a constant matrix.

Proof. The proof proceeds by finding a (constant) matrix D such that the state transition
matrix over one period, i.e., the monodromy matrix Φ(T, 0) =: exp (D · T). To justify the
existence of such a matrix D we refer to [31] (see Theorem 3.5 therein). We write Φ(t, 0)
as Φ(t, 0) =: Φ(t, 0) exp(−D · t) exp(D · t) and define the matrix U(t) by

U(t) = Φ(t, 0) exp(−D.t).

Since the exponential functions exp(−D · T) and exp(−D · t) are commutative, the peri-
odicity of U(t) can be shown easily as

U(t + T) = Φ(t + T, 0) exp(−D · (t + T))
= Φ(t, 0) Φ(T, 0) exp(−D · T) exp(−D · t)
= Φ(t, 0) exp(−D · t) = U(t)

Hence, the state transition matrix Φ(t, 0) can be written as: Φ(t, 0) = U(t) exp(D · t). From
(4.10), it finally follows that

Φ(t, τ) = Φ(t, 0) ·Φ−1(τ, 0),
= U(t) exp(D · t) exp(−D · τ)U−1(t),
= U(t) exp (D · (t − τ)) V(τ),

which completes the proof. �
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Corollary 4.1.1:
We define the adjoint system corresponding to (4.4) given by

˙̂x = −AT(t)x̂. (4.14)

The state transition matrix Φ̂(τ, t) of the adjoint system (4.14) in terms of the state transition
matrix Φ(t, τ) of Equation (4.4) can be written as

Φ̂(τ, t) = VT(t) exp(DT
· (τ − t)) UT(τ), (4.15)

where U, V are defined in Equation (4.13). ♦

Remark 4.1:
The eigenvalues µi of D are called the characteristic (Floquet) exponents of (4.12) and
the eigenvalues of exp(D · T): λi = exp(µiT) are called the characteristic (Floquet)
multipliers. ♦

With the Floquet theorem, it can be shown that any homogeneous LPTV systems of
ODEs can be transformed into a system of constant coefficients [33]. The following
theorem shows the summarized result of the Floquet theory in LPTV continuous-time
systems of ODEs.

Theorem 4.1.2:
(Lyapunov, 1982) The periodic matrix U(t) := Φ(t, 0) exp(−D.t) with the coordinate trans-
formation x = U(t)x̂ transforms the homogeneous periodic system (4.12) into a homogeneous
system with constant coefficient.

Proof. We sketch the proof from [22]. The proof proceeds with the substitution of
x = U(t)x̂ in ẋ = A(t)x, which gives the following differential equation:

˙̂x = U−1(A U − U̇)x̂ (4.16)

We simply observe that

U−1(A U − U̇) = exp(D · t) Φ−1 (A Φ exp(−D · t) − Φ̇ exp(−D · t) + Φ D exp(−D · t))
= exp(D · t) Φ−1 Φ D exp(−D · t) = D.

(4.17)
Here we used the commutative argument of exp(D · t) and D, and this finally completes
the proof. �

Hence, the homogeneous periodic system (4.12) is transformed into a homogeneous
system with constant coefficient ˙̂x = Dx̂. Indeed, we see that through that coordinate
transformation x = U(t)x̂, the solution x(t) of (4.12) passing through x0 at t = 0 is given
by

x(t) = φ(t, x0) = Φ(t, 0)x0
= U(t)exp(D · t) x0

= U(t) φ̂(t, x0) = U(t)x̂(t)
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Thus x̂(t) = exp(D · t) x0.

Remark 4.2:
From Theorems 4.1.1- 4.1.2 and from discussions therein, we can conclude that the
behaviour of the solutions of the linear system with periodic coefficients such as (4.12)
can be characterized by the eigenvalues of the constant matrix D. These eigenvalues
have the form 1

T lnλ j, where λ j are the eigenvalues of the monodromy matrix Φ(T, 0).
Note that T is considered as the period in (4.12). ♦

Remark 4.3:
If exp(D.(t − τ)) is diagonalisable through similarity transformation, i.e.,

exp(D.(t − τ)) = X Λ(t − τ) X−1,

then the state transition matrix Φ(t, τ) with the substitutions U(t) X 7→ U(t) and
X−1 V(τ) 7→ V(τ) can be written as

Φ(t, τ) = U(t) Λ(t − τ) V(τ), Λ(t − τ) = diag [exp(µ1(t − τ)), . . . , exp(µn(t − τ))].
(4.18)
♦

Now consider that ui(t) be the columns of U(t) and vT
i (t) be the rows of V(t):

U(t) = [u1(t),u2(t), . . . ,un(t)], (4.19)
VT(t) = [v1(t), v2(t), . . . , vn(t)]. (4.20)

Then {u1(t),u2(t), . . . ,un(t)} forms a basis for U(t) and {v1(t), v2(t), . . . , vn(t)} forms a basis
for VT(t) and they together form a basis for Rn. Moreover, they satisfy the following
orthogonality conditions [32]:

vT
i (t)u j(t) = δi j, i = 1, . . . ,n, j = 1, . . . ,n,

for every t. Then the state transition matrix Φ(t, τ) in (4.18) can be rewritten in terms of
the basis vectors as

Φ(t, τ) =

n∑
i=1

exp(µi(t − τ)) ui(t) vT
i (τ), (4.21)

The monodromy matrix Φ(T, 0) for (4.12), which is nothing but the state transition matrix
evaluated at t = T, is given by

Φ(T, 0) =

n∑
i=1

exp(µiT) ui(T) vT
i (0) =

n∑
i=1

exp(µiT) ui(0) vT
i (0). (4.22)

Similarly, we can define the state transition matrix φ̂(τ, t) of the adjoint system (4.14)
which is simply given by φT(τ, t), where φ(t, τ) is the state transition matrix in (4.21) for
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the linear periodic system (4.12). The monodromy matrix for the adjoint system (4.14)
is given by

ΦT(0,T) =

n∑
i=1

exp(−µiT) vi(T) uT
i (T) =

n∑
i=1

exp(−µiT) vi(0) uT
i (0). (4.23)

The monodromy matrix is the basic tool in the stability analysis of the periodic systems.
Indeed, the stability of the LPTV system (4.12) can be defined with the characteristic of
the eigenvalues λi, i = 1, . . . ,n, of the monodromy matrix Φ(T, 0).

Stability of LPTV Systems of ODEs:

Let us consider the LPTV system (4.12) and its Floquet decomposition as in (4.13).
Consider the eigenvalues λi as in Remark 4.1. The sufficient condition for the stability
of the LPTV system (4.12) is then given by

|λi| < 1⇔ Re{µi} < 0,∀i = 1, 2, . . . ,n.

There is a relation between the product of the characteristic multipliers and the trace of
the coefficient matrix A(t) [22]:

n∏
i=1

λi = exp(

T∫
0

trace(A(τ))dτ). (4.24)

Hence, a necessary condition of the stability of the system (4.12) is given by,

Re {
∫ T

0 trace(A(τ))dτ} ≤ 0. (4.25)

4.1.2. Floquet Theory for LPTV DAEs of Index-1

We now consider the n-dimensional inhomogeneous linear system of DAEs

d
dt

(C̄(t)x) + Ḡ(t)x = b(t), (4.26)

where C̄(t) ∈ Rn×n is not necessarily full rank. We assume that its rank is a constant,
m ≤ n, as a function of t. C̄(t) and Ḡ(t) are T-periodic matrices. We assume that the
DAEs we are dealing with are index-1 [62]. The homogeneous system corresponding
to (4.26) is given by

d
dt

(C̄(t)x) + Ḡ(t)x = 0. (4.27)
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When C̄(t) is rank deficient, i.e., rank of C̄(t) is m and m ≤ n, Equation (4.27) does
not have solutions for all initial conditions x(0) = x0 ∈ Rn. Then, the solutions of the
homogeneous system ( 4.27) lie in an m-dimensional subspace defined by [62, 22]

R(t) = {z ∈ Rn :
( d
dt

C̄(t) + Ḡ(t)
)
z ∈ Im C̄(t)}. (4.28)

Also, every x(t) ∈ R(t) is a solution of (4.27). The the null space of C̄(t), denoted ny N(t),
can be defined as

N(t) = Ker C̄(t), (4.29)

which is an n−m = k-dimensional subspace. For index-1 DAEs, we have the following
relations, [72] and

R(t) ∩N(t) = {0}, R(t) ⊕N(t) = Rn, (4.30)

where ⊕ denotes the direct sum decomposition.

If L(t) = {l1(t), l2(t), . . . , lm(t)} forms a basis for R(t) and W(t) = {w1(t),w2(t), . . . ,wk(t)} is a
basis for N(t), then it follows from ( 4.30) that L(t) ∪W(t) forms a basis for Rn.

The adjoint system corresponding to (4.27) is given by

C̄T(t)
d
dt

x̂ − ḠT(t)x̂ = 0⇔
( d
dt

x̂T
)

C̄(t) − x̂T Ḡ(t) = 0 (4.31)

If x̂(t) is a solution of (4.31) and x(t) is a solution of (4.27), then we have

d
dt

(x̂T(t)C̄(t)x(t)) =
( d
dt

x̂T(t)
)

C̄(t)x(t) + x̂T(t)
d
dt

(C̄(t)x(t))

= x̂T(t)Ḡ(t)x(t) − x̂T(t)Ḡ(t)x(t) = 0.

Thus x̂T(t)C̄(t)x(t) = x̂T(0)C̄(0)x(0) for all t ≥ 0.

Let
RT(t) = {z ∈ Rn : ḠT(t)z ∈ Im C̄T(t)},

and
NT(t) = Ker CT(t).

Then RT(t) ∩NT(t) = {0} and RT(t) ⊕NT(t) = Rn.

The adjoint system plays an important role when computing the eigenvectors of special
Floquet multipliers. Consider two time-varying coordinate transformation matrices,
P(t) and Q(t). Then

d
dt

(P C̄ Q x̂) +
(
P Ḡ Q −

d
dt

P C̄ Q
)

x̂ = P b, (4.32)

is called the analytically equivalent system of (4.26).
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Definition 4.1.1:
The system (4.26) is said to be in canonical form, if it can be written in the following
form:

d
dt

( (I 0
0 N(t)

)
x
)

+

(
Ḡ(t) 0

0 I

)
x = f (t), (4.33)

where N is a strictly triangular nilpotent matrix.

Remark 4.4:
For our index-1 problem, N(t) = 0 in Definition 4.1.1. ♦

Theorem 4.1.3:
[23] Let us assume C̄, Ḡ to be analytically real. Then the DAE (4.26) is solvable, if and only
if it is analytically equivalent to a system (4.32) in canonical form, under a real analytical
coordinate transformation. ♦

Theorem 4.1.4:
[22] Let C̄, Ḡ be T-periodic real analytic matrices. The solution φ of the homogeneous system
(4.27) satisfying the initial condition x(0) = x0 ∈ S(0) is given by

φ(t, x0) = Φ(t, 0)x0, (4.34)

where the state transition matrix Φ(t, τ) is given by

Φ(t, τ) = U(t) Σ(t − τ) V(τ) C̄(τ), (4.35)

with

Σ(t − τ) =

(
exp(D(t − τ)) 0

0 0

)
, (4.36)

exp(D(t−τ)) = diag [exp(µ1(t−τ)), . . . , exp(µm(t−τ))], and U(t) : n×n and V(t) : n×n
are T-periodic nonsingular matrices (for all t), and satisfy

V(t)C̄(t)U(t) =

[
Im 0
0 0

]
. ♦

Proof. We sketch the proof from [22] with more detail. Let us consider the DAE (4.27).
Using the analytical equivalence transformation as in (4.32) we will find a canonical
representation of (4.27). There exists T-periodic analytical real matrices P(t) and Q(t)
such that the system (4.27) can be transformed to the following canonical form through
an analytical equivalence transformation [22]:(

Im 0
0 0

)
˙̂x(t) +

(
Ḡ f (t) 0

0 I

)
x̂(t) = 0
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For the above system, the state transition matrix for the ODE-part can be written (using
Theorem 4.1.1) as

Φ̂ f (t, τ) = Û f (t) exp (D.(t − τ)) Û−1
f (τ),

where Û f (t) is a T-periodic regular matrix . Therefore the state transition matrix for the
DAE can be written as

Φ(t, τ) = Q(t)
(
Û f (t)

I

) (
exp(D(t − τ))

0

) (
Û−1

f (τ)
I

)
Q−1(τ)

= Q(t)
(
Û f (t)

I

) (
exp(D(t − τ))

D̂ f (t, τ)

) (
Û−1

f (τ)
I

) (
Im

0

)
Q−1(τ)

Here D̂ f (t, τ) is an arbitrary matrix and therefore without loss of generality we take
D̂ f (t, τ) ≡ 0 ∀t, τ. This corresponds to an interpretation of the index-1 DAE as the limit
value of an ODE with infinite stiffness.

Now defining

U(t) := Q(t)
(
Û f (t)

I

)
, V(t) :=

(
Û−1

f (t)
I

)
P(t),

and with the identity

C̄(t) = P−1(t)
(
Im

0

)
Q−1(t),

finally follows the statement. This completes the proof. �

Remark 4.5:
The µ’s in Theorem 4.1.4 are called the characteristic (Floquet) exponents of (4.27),
and the eigenvalues λi = exp (µiT) are called the characteristic (Floquet) multipliers.
Note that (4.27) has k = n −m Floquet multipliers that are zero. ♦

Let ui(t) be the columns of U(t) and vT
i (t) be the rows of V(t):

U(t) = [u1(t), . . . ,um(t),um+1(t), . . . ,un(t)], (4.37)
VT(t) = [v1(t), . . . , vm(t), vm+1(t), . . . , vn(t)]. (4.38)

Then {u1(t), . . . ,um(t)} forms a basis for R(t) and {um+1(t), . . . ,un(t)} forms a basis for N(t).
Then x(t) = ui(t) exp(µit) is a solution of (4.27) with the initial condition x(0) = ui(0) for
1 ≤ i ≤ m. Similarly, {v1(t), . . . , vm(t)} is a basis for RT(t) and {vm+1(t), . . . , vn(t)} is a basis
for NT(t). Then, for 1 ≤ i ≤ m, x̂(t) = vi(t) exp(−µit) is a solution of (4.31) with the initial
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condition x̂(0) = vi(0). Moreover, we have the following orthogonality/biorthogonality
conditions [32]:

vT
j (t)C̄(t)ui(t) = δi j, i = 1, . . . ,m, j = 1, . . . ,m, (4.39)

vT
j (t)C̄(t)ui(t) = 0, i = 1, . . . ,m, j = m + 1, . . . ,n, (4.40)

vT
j (t)Ḡ(t)ui(t) = 0, i = m + 1, . . . ,n, j = 1, . . . ,m, (4.41)

Now the state transition matrix Φ(t, τ) in (4.35) can be written in a different form as

Φ(t, τ) =

m∑
i=1

exp(µi(t − τ)) ui(t) vT
i (τ)C̄(τ). (4.42)

Similarly, we can define the state transition matrix φ̂(t, τ) of the adjoint system (4.31).
For the DAEs (4.27), this is not simply given by ΦT(τ, t) in terms of the state transition
matrix Φ(t, τ) = U(t) Σ(t− τ) V(τ) C̄(τ) as it was in the ODEs case. Instead, it is given by
given by

ϕ(t, τ) = VT(t) ΣT(τ − t)) UT(τ) C̄T(τ) =

m∑
i=1

exp(−µi(t − τ))vi(t)uT
i (τ)C̄T(τ). (4.43)

Theorem 4.1.5:
[32] The solution φ of (4.26) satisfying the initial condition x(0) = x0 ∈ R(0) (for b(0) = 0)
is given by

φ(t, x0) = Φ(t, 0)x0 +

t∫
0

Ψ(t, τ) b(τ) dτ + Γ(t)b(t), (4.44)

where

Ψ(t, τ) = U(t)Σ(t − τ)V(τ) (4.45)

and Γ(t) ∈ Rn×n is a T-periodic matrix of rank k which satisfies

Γ(t)C̄(t)[u1(t), . . . ,um(t)] = 0,

i.e. the null space of Γ(t) is spanned by {C̄(t)u1(t), . . . , C̄(t)um(t)}.

Monodromy matrix. The monodromy matrix for system (4.27) is defined as Φ(T, 0), and
it is given by

Φ(T, 0) =

m∑
i=1

exp(µiT) ui(T)vT
i (0)C̄(0) =

m∑
i=1

exp(µiT) ui(0)vT
i (0)C̄(0). (4.46)
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Similarly, the monodromy matrix for the adjoint system (4.31) is defined as Φ̂(T, 0), and
it is given by

Φ̂(T, 0) =

m∑
i=1

exp(−µiT) vi(0)uT
i (0)C̄T(0). (4.47)

The eigenvalues of the monodromy matrix determine the stability of (4.27) and this
stability is very much important when the concerned DAEs describe the dynamics of an
electronic system or a mechanical system. In RF communication systems, for perturba-
tion analysis and phase noise characterization of RF component (i.e., an oscillator), one
needs to compute the steady-state periodic solutions of the DAEs associated with the
systems. We discuss more details of LTPV continuous-time DAEs and model reduction
approaches associated with those DAEs in Chapter 7.

4.2. LPTV Discrete-Time Descriptor Systems

Linear periodic systems, both continuous and discrete time, have a very long and
successful history in physics and mathematics going back to the contribution in the
second-half of the present century by several mathematicians and engineers. During this
time the vast and versatile development of systems and control theory, together with the
achievements of digital control and signal processing, have set renewed interest in the
study and analysis of periodic systems for their specific application demands, specially
in aerospace realm [68, 69, 94], control of industrial processes and communication
systems [4, 86], modeling of periodic time-varying filters and networks [78, 93, 115],
circuit simulation [17, 66, 132], micro-electronics [87, 86], and multirate sampled-data
systems [4, 39, 73].

A linear discrete-time periodic descriptor system with time-varying dimensions has the
form

Ekxk+1 = Akxk + Bkuk,
yk = Ckxk, k ∈ Z, (4.48)

where Ek ∈ R
µk+1×nk+1 , Ak ∈ R

µk+1×nk , Bk ∈ R
µk+1×pk , Ck ∈ R

qk×nk are time-varying, and
periodic with a period K ≥ 1 . Clearly,

∑K−1
k=0 µk =

∑K−1
k=0 nk = n. The matrices Ek are

allowed to be singular for all k.

The dynamics of the discrete-time periodic descriptor system (4.48) are often addressed
by the regularity and the eigenstructure of the set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 .
If all Ek are nonsingular, the eigenvalues (also called characteristic multipliers) of system
(4.48) are given by the eigenvalues of the matrix product (generally known as monodromy
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matrix)

E−1
K−1AK−1E−1

K−2AK−2 · · ·E−1
0 A0 (4.49)

associated with the periodic matrix pairs {(Ek,Ak)}K−1
k=0 . This product only yields a well-

defined matrix if all Ek are nonsingular. Even if they are, the formulation of that matrix
should be avoided for reasons of numerical stability. Note that even for some Ek being
singular, we use (4.49) in a formal way to denote a generalization of matrix pencils to this
periodic case (see [14] for details of this formal matrix product calculus). We compute
the eigenvalues of (4.49) via the generalized periodic Schur decomposition [19, 45, 56].

There exist unitary matrices Pk ∈ C
µk+1×µk+1 and Qk ∈ C

nk×nk , with Qk+K = Qk such that
the transformed matrices

Sk = P∗kAkQk, Tk = P∗kEkQk+1, k = 0, . . . ,K − 1, (4.50)

are all upper triangular [19, 99], where for the ease of notation we allow complex
arithmetic (in practice, however, computations can be performed in real arithmetic
leading to quasi-triangular structure of one of the Sk). Then the formal matrix product

T−1
K−1SK−1T−1

K−2SK−2 · · ·T−1
0 S0 (4.51)

is also block upper triangular, has the same eigenvalues as (4.49) and the sequence
{(Sk,Tk)}K−1

k=0 is said to be in generalized periodic real Schur form (GPRSF) of {(Ek,Ak)}K−1
k=0 .

The 1 × 1 and 2 × 2 blocks on the diagonals of the transformed matrices Sk and Tk are
used to define the real eigenvalues and complex eigenvalues of the periodic matrix pairs
{(Ek,Ak)}K−1

k=0 , respectively.

A real finite eigenvalue is given by

λl =

K−1∏
k=0

s(k)
ll

t(k)
ll

, (4.52)

provided t(k)
ll , 0 for k = 0, . . . ,K−1. Here s(k)

ll , t
(k)
ll are the diagonal entries of the periodic

matrices Sk and Tk for k = 0, . . . ,K − 1, respectively. An eigenvalue is called infinite if∏K−1
k=0 t(k)

ll = 0, but
∏K−1

k=0 s(k)
ll , 0.

For a pair of complex conjugate eigenvalues λl, λ̄l , t(k)
ll and s(k)

ll in (4.52) are 2× 2 blocks,
and

λl, λ̄l ∈ Λ
( K−1∏

k=0

t(k)−1

ll s(k)
ll

)
,
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provided t(k)
ll , 0, where Λ denotes the eigenspectrum of the corresponding matrix. In

finite precision arithmetic, it requires to avoid the underflow and overflow problems
when handling these 2 × 2 blocks to compute their eigenvalues explicitly [45].

4.2.1. Preliminaries

The regularity of the periodic matrix pairs is defined by the regularity of the monodromy
matrix (4.49), i.e., the regularity of the whole set of periodic matrix pairs associated with
the periodic system. A set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 , denoted by (E,A),
is called singular if there are 1 × 1 blocks on the diagonals of the transformed matrices
Sk and Tk in (4.50) for which both

∏K−1
k=0 s(k)

ll = 0 and
∏K−1

k=0 t(k)
ll = 0, otherwise the set of

matrix pairs is called regular. In the degenerate singular case, the eigenvalues become
ill-defined and we find the Kronecker canonical representation of the periodic matrix pairs
[123] to study the eigenvalue problem.

Definition 4.2.1:
Let (E,A) be the regular set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 . The periodic matrix
pairs {(Ek,Ak)}K−1

k=0 are called periodic stable (shortly, pd-stable) if (E,A) is regular and
all their finite eigenvalues lie inside the unit circle. ♦

Note that we are considering the regularity of the set of periodic matrix pairs, rather
then the regularity of individual matrix pairs (Ek,Ak). It is also to be noted that the
pd-stability of a periodic system depends on the spectrum of the whole set of periodic
matrix pairs {(Ek,Ak)}K−1

k=0 , not that of individual matrix pairs.

Example 4.2.1:
Consider the period K = 2 and

E0 =

[
2 0
0 1

]
, E1 =

[
4 0
0 16

]
,

and

A0 =

[
1 0
0 3

]
, A1 =

[
6 0
0 1/4

]
.

The set of matrix pairs, i.e., the monodormy matrix E−1
1 A1E−1

0 A0 has eigenvalues
0.0469 and 0.7500, both lie inside the unit circle. Hence, the periodic system is stable.
But the individual matrix pairs are not stable, because (E0,A0) has eigenvalues 0.5
and 3.0, and (E1,A1) has eigenvalues 0.0156 and 1.5. ♦

Definition 4.2.2:
Let the set (E,A) of periodic matrix pairs {(Ek,Ak)}K−1

k=0 be regular. The periodic
descriptor system (4.48) is asymptotically stable if and only if all finite eigenvalues of
the periodic matrix pairs {(Ek,Ak)}K−1

k=0 lie inside the unit circle. ♦
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In many applications, it is desirable to have the eigenvalues along the diagonal of the
GPRSF in a certain order. If the generalized periodic Schur form has its eigenvalues
ordered in a certain way as in (4.53), it is called an ordered GPRSF [45]. For example, if
we have

{(Sk,Tk)}K−1
k=0 =

{ S(k)
11 S(k)

12
0 S(k)

22

 , T(k)
11 T(k)

12
0 T(k)

22

 }K−1

k=0

, (4.53)

such that the upper left part {(S(k)
11 ,T

(k)
11 )}K−1

k=0 contains all the eigenvalues in the open unit
disk, then {(S(k),T(k))}K−1

k=0 is an ordered GPRSF.

One important application of this ordered GPRSF is the stable-unstable spectral separation
of a periodic discrete-time system for computing the numerical solution of discrete-time
periodic Lyapunov equations [103] in linear control theory.

4.2.2. Decomposition of Discrete-Time Descriptor Systems: Causal- and
Noncausal Subsystems

The spectral decomposition theorem we state here extends a well known result for time
invariant pencils to the periodic case.

Lemma 4.2.1:
[30] Let the set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 be regular. Then for k = 0, 1, . . . ,K− 1,
there exist nonsingular matrices Wk ∈ R

µk+1×µk+1 and Zk ∈ R
nk×nk such that

WkEkZk+1 =

In f
k+1

0

0 Eb
k

 , WkAkZk =

A f
k 0

0 In∞k

 , (4.54)

where ZK = Z0, A f
k+K−1A f

k+K−2 · · ·A
f
k = Jk is an n f

k × n f
k Jordan matrix corresponding

to the finite eigenvalues, Eb
kEb

k+1 · · ·E
b
k+K−1 = Nk is an n∞k × n∞k nilpotent Jordan matrix

corresponding to an eigenvalue at infinity, nk = n f
k + n∞k and µk+1 = n f

k+1 + n∞k . ♦

Proof. The proof is sketched from [30] with some more detail. For the pd-stable matrix
pairs, we can always obtain their upper triangular form using the periodic Schur algo-
rithm [19] which always exits. There exist orthogonal periodic matrices Vk ∈ R

µk+1×µk+1

and Uk ∈ R
nk×nk , with UK = U0, VK = V0 and for k = 0, 1, . . . ,K − 1, such that

VT
k EkUk+1 =

[
E11, k E12, k

0 E22, k

]
, VkAkUk =

[
A11, k A12, k

0 A22, k

]
, (4.55)
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where the matrices E11, k ∈ R
n f

k+1×n f
k+1 and A22, k ∈ R

n∞k ×n∞k are nonsingular and

(A22, k)−1 E22, k (A22, k+1)−1 E22, k+1 · · · (A22, k+K−1)−1 E22, k+K−1

are nilpotent for k = 0, 1, . . . ,K − 1. The spectrum Λ(E f ,A f ) contains all the finite
eigenvalues of the periodic matrix pairs {(Ek,Ak)}K−1

k=0 that lie inside the unit circle and
the spectrum Λ(E∞,A∞) contains only infinite eigenvalues of the periodic matrix pairs
{(Ek,Ak)}K−1

k=0 . Clearly, Λ(E f ,A f ) ∩ Λ(E∞,A∞) = ∅. We then construct the following
matrices:

[
E−1

11, k 0
0 A−1

22, k

] [
E11, k E12, k

0 E22, k

]
=

In f
k+1

Ê12, k

0 Ê∞k


and [

E−1
11, k 0
0 A−1

22, k

] [
A11, k A12, k

0 A22, k

]
=

Â f
k Â12, k

0 In∞k

 ,
where Ê12, k ∈ R

n f
k+1×n∞k+1 , Ê∞k ∈ R

n∞k ×n∞k+1 , Â f
k ∈ R

n f
k+1×n f

k , and Â12, k ∈ R
n f

k+1×n∞k .

We will prove that there exist periodic matrices Pk ∈ R
n f

k+1×n∞k and Qk ∈ R
n f

k×n∞k such
that

In f
k+1

Pk

0 In∞k

 In f
k+1

Ê12, k

0 Ê∞k

 In f
k+1

Qk+1

0 In∞k+1

 =

In f
k+1

0

0 Ê∞k

 , (4.56)

and In f
k+1

Pk

0 In∞k

 Â f
k Â12, k

0 In∞k

 In f
k

Qk

0 In∞k

 =

Â f
k 0

0 In∞k

 . (4.57)

Comparing both sides of (4.56) and (4.57), we obtain

Qk+1 + PkÊ∞k + Ê12, k = 0 (4.58)

and
Â f

k Qk + Pk + Â12, k = 0, (4.59)

for all k. From (4.59), we have Pk = −Â f
k Qk − Â12, k and substituting Pk in (4.58), we

obtain,

Qk+1 = Â f
k QkÊ∞k + Â12, kÊ∞k − Ê12, k = 0 (4.60)
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Hence, recursive computation of (4.60), with QK = Q0, gives

Q1 = (Â f
K−1Â f

K−2 · · · Â
f
0) Q0 (Ê∞0 Ê∞1 · · · Ê

∞

K−1) + G, (4.61)

where G is independent of any Qk. Since Ê∞k corresponds to the nilpotent part and
obviously Λ(Ê∞0 Ê∞1 · · · Ê

∞

K−1) = {0}, we can uniquely determine Q0 from (4.61), and the
other Qk from (4.60), and all the Pk from (4.59).

Using the Jordan decomposition with nonsingular K-periodic matrices Xk ∈ R
n f

k×n f
k and

Yk ∈ R
n∞k ×n∞k , we have the following Jordan forms

Jk = X−1
k (Â f

k+K−1Â f
k+K−2 · · · Â

f
k )Xk , (4.62)

and
Nk = Y−1

k (Ê∞k Ê∞k+1 · · · Ê
∞

k+K−1)Yk . (4.63)

Finally, defining

Wk =

[
X−1

k+1 0
0 Y−1

k

] In f
k+1

Pk

0 In∞k

 [E−1
11, k 0
0 A−1

22, k

]
VT

k ,

Zk = Uk

In f
k

Qk

0 In∞k

 [Xk 0
0 Yk

]
,

and
Eb

k = Y−1
k Ê∞k Yk+1, A f

k = X−1
k+1Â f

k Xk ;

we obtain the structure as in (4.54) and that completes the proof. �

Remark 4.6:
Note that if νk is the nilpotency of the matrix Nk for k = 0, 1, . . . ,K − 1, then
(ν0, ν1, . . . , νK−1) are called the indices of a regular set of periodic matrix pairs
{(Ek,Ak)}K−1

k=0 . Hence the index ν of system (4.48) is defined as ν = max(ν0, ν1, . . . , νK−1).
The periodic descriptor system (4.48) is of index at most 1 if ν ≤ 1, i.e., Ek are all
nonsingular or Nk = 0 for all k. ♦

For k = 0, 1, . . . ,K − 1, the matrices

Pr(k) = Zk

In f
k

0

0 0

 Z−1
k ∈ R

nk×nk , Pl(k) = W−1
k

In f
k+1

0

0 0

 Wk ∈ R
µk+1×µk+1 , (4.64)

are the spectral projectors onto the k-th right and left deflating subspaces of the periodic
matrix pairs {(Ek,Ak)}K−1

k=0 corresponding to the finite eigenvalues, and Qr(k) = I − Pr(k)
and Ql(k) = I − Pl(k) are the complementary projectors.
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For every k = 0, 1, . . . ,K−1, define the vector Z−1
k xk = [ (x f

k )T, (xb
k)T ]T and let the matrices

WkBk =

B f
k

Bb
k

 , CkZk =
[
C f

k , Cb
k

]
, (4.65)

be partitioned in blocks conformally to the periodic matrix pairs {(Ek,Ak)}K−1
k=0 in (4.54).

Under this transformation, system (4.48) can be decoupled into forward and backward
periodic subsystems

x f
k+1 = A f

k x f
k + B f

k uk, y f
k = C f

k x f
k , (4.66)

Eb
kxb

k+1 = xb
k + Bb

kuk, yb
k = Cb

kxb
k, (4.67)

respectively, with yk = y f
k + yb

k, k = 0, 1, . . . ,K − 1. The state transition matrix for the

forward subsystem (4.66) is given by Φ f (i, j) = A f
i−1A f

i−2 · · ·A
f
j for i > j and Φ f (i, i) = I

n f
i
.

For the backward subsystem (4.67), the state transition matrix is defined as Φb(i, j) =
Eb

i Eb
i+1 · · ·E

b
j−1 for i < j and Φb(i, i) = In∞i

. Using these matrices we can now define the
forward and backward fundamental matrices of the periodic descriptor system (4.48) as

Ψi, j =


Zi

[
Φ f (i, j + 1) 0

0 0

]
W j, i > j,

Zi

[
0 0
0 −Φb(i, j)

]
W j, i ≤ j.

(4.68)

These fundamental matrices play an important role in the definition of the reachability
and observability Gramians of the periodic descriptor system (4.48) that we will consider
in the next section.

4.3. Gramians and Matrix Equations for LPTV Discrete-Time
Descriptor Systems

It is clear from the context above that the Gramians of the periodic discrete-time de-
scriptor system (4.48) are defined separately for its forward and backward subsystems
[30, 100]. Complete reachability and complete observability of the periodic descriptor
system (4.48) are also defined via the complete reachability and complete observability
of its forward and backward subsystems.

4.3.1. Reachability and Observability

Definition 4.3.1:
(i) The periodic descriptor system (4.48) is said to be reachable at time t if starting
from any initial state xs = 0, the system can be driven to any final state xt = x̄ ∈ Rnt ,
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choosing a set of control inputs {ui}
l
i=s and two integers s, l with s < t < l appro-

priately. The periodic descriptor system (4.48) is called completely reachable if it is
reachable at all times t.

(ii) The forward subsystem (4.66) is said to be reachable at time t if starting from

any initial state x f
s = 0, the system can be driven to any final state x f

t = x̄ f ∈ R
n f

t ,
choosing a set of control inputs {ui}

t−1
i=s and an integer s with s < t appropriately. The

forward subsystem (4.66) is called completely reachable if it is reachable at all times t.

(iii) The backward subsystem (4.67) is said to be reachable at time t if any state
x̄b ∈ R

n∞t can be reached at a finite time t, i.e., xb
t = x̄b, by choosing a set of control

inputs {ui}
l
i=t, and an integer l with l > t. The backward subsystem (4.67) is called

completely reachable if it is reachable at all times t. ♦

Remark 4.7:
The periodic discrete-time descriptor system (4.48) is completely reachable if and only
if both its forward and backward subsystems are completely reachable. ♦

Theorem 4.3.1:
[30] Consider the forward subsystem (4.66). The following statements are equivalent.

(1) The forward subsystem (4.66) is completely reachable.
(2) For t = 0, 1, . . . ,K − 1, the matrices

C f (t) =
[
B f

t−1, A f
t−1B f

t−2, . . . , Φ f (t, t − n f
t K + 1)B f

t−n f
t K

]
have full row rank.
(3) For t = 0, 1, . . . ,K − 1 and

B
f
t =

[
B f

t−1, A f
t−1B f

t−2, A f
t−1A f

t−1B f
t−3, . . . , Φ f (t, t − K + 1)B f

t−K

]
,

the matrices[
B

f
t , Φ f (t, t − K)B f

t , (Φ f (t, t − K))2B
f
t , . . . , (Φ f (t, t − K))n f

t −1B
f
t

]
have full row rank. ♦

Proof. For the proof, see [29]. �

Remark 4.8:
For discrete-time descriptor system with period K = 1, statement (2) implies

rank ([B f ,A f B f , · · · , (A f )n f−1B f ]) = n f ,
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and statement (3) implies rank ([λI−A f ]) = n f for anyλ ∈ Λ(A f ). Both the statements
ensure the complete reachability for the forward subsystem for K = 1 and they
coincide with the results for complete reachability of discrete-time descriptor systems
(see [65, 8, 107], and references therein). ♦

Theorem 4.3.2:
[30] Consider the backward subsystem (4.67). The following statements are equivalent.

(1) The backward subsystem (4.67) is completely reachable.
(2) For t = 0, 1, . . . ,K − 1, the matrices

Cb(t) =
[
Bb

t , Eb
t Bb

t+1, . . . , Φb(t, t + νK − 1)Bb
t+νK−1

]
have full row rank.
(3) For t = 0, 1, . . . ,K − 1 and

Bb
t =

[
Bb

t , Eb
t Bb

t+1, . . . , Φb(t, t + K − 1)Bb
t+K−1

]
,

the matrices [
Bb

t , Φb(t, t + K)Bb
t , (Φb(t, t + K))2Bb

t , . . . , (Φb(t, t + K))ν−1Bb
t

]
have full row rank. Note that Φb(t, t+K) = Eb

t Eb
t+1 · · ·E

b
t+K−1 and ν is the index of nilpotency

of system ( 4.48). ♦

Proof. For the proof, see [29]. �

Remark 4.9:
For K = 1, statement (2) implies

rank ([Bb,EbBb, · · · , (Eb)ν−1Bb]) = n∞,

where ν is the index of the periodic descriptor system, and statement (3) implies
rank ([λI − N,Bb]) = n∞ for any λ ∈ Λ(N). Both the results coincide with those for
the noncausal reachability of discrete-time descriptor systems [65, 8, 107]. ♦

Definition 4.3.2:
(i) The periodic descriptor system (4.48) is said to be observable at time t if the state
xt defined at time t, can be completely determined from the knowledge of the in-
put sequence, {ui}

l
i=s and the output sequence, {yi}

l
i=s, choosing two integers s, l with

s < t < l appropriately. The periodic descriptor system (4.48) is called completely
observable if it is observable at all times t.

(ii) The forward subsystem (4.66) is said to be observable at time t if the state xt
defined at time t, can be completely determined from the knowledge of the input
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sequence, {ui}
l
i=t and the output sequence, {yi}

l
i=t , choosing an integer l with l > t

appropriately. The forward subsystem (4.66) is called completely observable if it is
observable at all times t.

(iii) The backward subsystem (4.67) is said to be observable at time t if the state
xt defined at time t, can be completely determined from the knowledge of the input
sequence, {ui}

t
i=s and the output sequence, {yi}

l
i=s , choosing an integer s with s < t

appropriately. The backward subsystem (4.67) is called completely observable if it is
observable at all times t. ♦

Remark 4.10:
The periodic discrete-time descriptor system (4.48) is completely observable if and only
if both its forward and backward subsystems are completely observable. ♦

Theorem 4.3.3:
[30] Consider the forward subsystem (4.66). The following statements are equivalent.

(1) The forward subsystem (4.66) is completely observable.

(2) For t = 0, 1, . . . ,K − 1, the matrices

O f (t) =



C f
t

C f
t+1A f

t

C f
t+2A f

t+1A f
t

...

C f

t+n f
t K−1

Φ f (t + n f
t K − 1, t)



have full column rank.

(3) For t = 0, 1, . . . ,K − 1 and

C
f
t =



C f
t

C f
t+1A f

t

C f
t+2A f

t+1A f
t

...

C f
t+K−1 Φ f (t + K − 1, t)


,
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the matrices 

C
f
t

C
f
t Φ f (t + K, t)

C
f
t (Φ f (t + K, t))2

...

C
f
t (Φ f (t + K, t))n f

t −1


have full column rank.

Remark 4.11:
For K = 1, statement (2) implies

rank





C f

C f A f

C f (A f )2

...
C f (A f )n f−1




= n f ,

and statement (3) implies rank
([
λI − A f

C f

])
=n f , for any λ ∈ Λ(A f ). Both the statements

ensure the complete observability for the forward subsystem for K = 1 [65, 8, 108].

Theorem 4.3.4:
[30] Consider the backward subsystem (4.67). The following statements are equivalent.

(1) The backward subsystem (4.67) is completely observable.

(2) For t = 0, 1, . . . ,K − 1, the matrices

Ob(t) =



Cb
t

Cb
t−1Eb

t−1
Cb

t−2Eb
t−2Eb

t−1
...

Cb
t−νK+1 Φb(t − νK + 1, t)


have full column rank.

(3) For t = 0, 1, . . . ,K − 1 and

Cb
t =



Cb
t

Cb
t−1Eb

t−1
Cb

t−2Eb
t−2Eb

t−1
...

Cb
t−K+1 Φb(t − K + 1, t)


,
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the matrices 

Cb
t

Cb
t Φb(t, t + K)

Cb
t (Φb(t, t + K))2

...
Cb

t (Φb(t, t + K))ν−1


have full column rank.

Remark 4.12:
For K = 1, statement (2) implies

rank





Cb

CbEb

Cb(Eb)2

...
Cb (Eb)ν−1




= n∞,

and statement (3) implies rank
([
λI −N

Cb

])
=n∞ for any λ ∈ Λ(N). Both the statements

ensure the complete observability for the forward subsystem for K = 1 [65, 8, 108].

4.3.2. Periodic Reachability and Observability Gramians

In control theory and in balanced truncation model reduction, Gramians play a funda-
mental role [76, 108, 116, 121]. For the periodic descriptor system (4.48), the reachability
and observability Gramians have been first introduced in [30]. In this subsection, we dis-
cuss the periodic reachability and observability Gramians for the periodic discrete-time
descriptor system (4.48) regarding their corresponding forward and backward subsys-
tems as in (4.66) and (4.67), respectively. For forward subsystem, the periodic Gramians
are called causal Gramians and for backward subsystem, the periodic Gramians are
called noncausal Gramians.

Definition 4.3.3:
Suppose that the periodic matrix pairs {(Ek,Ak)}K−1

k=0 are pd-stable.

(i) For k = 0, 1, . . . ,K − 1, the causal reachability Gramians of the periodic descrip-
tor system (4.48) are defined by

Gcr
k =

k−1∑
j=−∞

Ψk, jB jB
T
j ΨT

k, j ∈ R
nk×nk .

(ii) For k = 0, 1, . . . ,K−1, the noncausal reachability Gramians of the periodic descriptor
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system (4.48) are defined by

Gncr
k =

k+νK−1∑
j=k

Ψk, jB jB
T
j ΨT

k, j ∈ R
nk×nk .

(iii) The complete reachability Gramians Gc
k are the sum of the causal and noncausal

Gramians, i.e.,
Gc

k = Gcr
k + Gncr

k

for k = 0, 1, . . . ,K − 1.

Definition 4.3.4:
Suppose that the periodic matrix pairs {(Ek,Ak)}K−1

k=0 are pd-stable.

(i) For k = 0, 1, . . . ,K − 1, the causal observability Gramians of the periodic descriptor
system (4.48) are defined by

Gco
k =

∞∑
j=k

ΨT
j,k−1CT

j C jΨ j,k−1 ∈ R
µk×µk .

(ii) For k = 0, 1, . . . ,K−1, the noncausal observability Gramians of the periodic descriptor
system (4.48) are defined by

Gnco
k =

k−1∑
j=k−νK

ΨT
j,k−1CT

j C jΨ j,k−1 ∈ R
µk×µk .

(iii) The complete observability Gramians Go
k are the sum of the causal and noncausal

Gramians, i.e.,
Go

k = Gco
k + Gnco

k

for k = 0, 1, . . . ,K − 1.

The pd-stability of periodic matrix pairs {(Ek,Ak)}K−1
k=0 ensures that the infinite series that

appear in the definition of Gramians Gcr
k and Gco

k converge [121, 120]. The Gramians are
symmetric positive semi-definite matrices for all k. These Gramians are used to define
the Hankel singular values of the periodic discrete-time descriptor system (4.48), which
we will use in the next consecutive chapters for balanced transformations and model
order reduction.
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Remark 4.13:
For period K = 1 and a regular matrix pair (E, A), Definitions 4.3.3 and 4.3.4 are equal
to the Gramians defined for generalized discrete-time descriptor system in [107]. ♦

4.3.3. Periodic Matrix Equations

It is well established that the Gramians of discrete-time descriptor systems satisfy
some projected generalized discrete-time Lyapunov equations with special right-hand
sides [103]. A similar result also holds for periodic descriptor systems. The following
theorem shows that the Gramians Gcr

k , Gncr
k , Gco

k and Gnco
k of the periodic descriptor

system (4.48) satisfy some projected generalized discrete-time periodic Lyapunov equa-
tions with special right-hand sides.

Theorem 4.3.5 (Thm. 4.1 in [30]):
Consider the periodic discrete-time descriptor system (4.48), where the periodic matrix pairs
{Ek,Ak}

K−1
k=0 are pd-stable.

(1) For k = 0, 1, . . . ,K − 1, the causal and noncausal reachability Gramians {Gcr
k }

K−1
k=0 and

{Gncr
k }

K−1
k=0 are the unique symmetric, positive semidefinite solutions of the generalized pro-

jected periodic discrete-time algebraic Lyapunov equations (PPDALEs)

AkGcr
k AT

k − EkGcr
k+1ET

k = −Pl(k)BkBT
k Pl(k)T,

Gcr
k = Pr(k)Gcr

k Pr(k)T,
(4.69)

and
AkGncr

k AT
k − EkGncr

k+1ET
k = Ql(k)BkBT

k Ql(k)T,

Gncr
k = Qr(k)Gncr

k Qr(k)T,
(4.70)

respectively, where Gcr
K = Gcr

0 , Gncr
K = Gncr

0 , Ql(k) = (Iµk+1 −Pl(k)), and Qr(k) = (Ink −Pr(k)).

(2) For k = 0, 1, . . . ,K − 1, the causal and noncausal observability Gramians {Gco
k }

K−1
k=0

and {Gnco
k }

K−1
k=0 are the unique symmetric, positive semidefinite solutions of the generalized

PPDALEs
AT

k Gco
k+1Ak − ET

k−1Gco
k Ek−1 = −Pr(k)TCT

k CkPr(k),

Gco
k = Pl(k − 1)TGco

k Pl(k − 1),
(4.71)

and
AT

k Gnco
k+1Ak − ET

k−1Gnco
k Ek−1 = Qr(k)TCT

k CkQr(k),

Gnco
k = Ql(k − 1)TGnco

k Ql(k − 1),
(4.72)

respectively, where Gco
K = Gco

0 , Gnco
K = Gnco

0 , E−1 = EK−1, Pl(−1) = Pl(K − 1) and
Ql(−1) = Ql(K − 1).
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(3) For k = 0, 1, . . . ,K− 1, the reachability and observability Gramians {Gc
k}

K−1
k=0 and {Go

k}
K−1
k=0

are the unique symmetric, positive semidefinite solutions of the generalized PPDALEs

AkGc
kAT

k − EkGc
k+1ET

k = −Pl(k)BkBT
k Pl(k)T + Ql(k)BkBT

k Ql(k)T,

Gc
k = Qr(k)Gc

kQr(k)T,
(4.73)

and

AT
k Go

k+1Ak − ET
k−1Go

kEk−1 = −Pr(k)TCT
k CkPr(k) + Qr(k)TCT

k CkQr(k),

Go
k = Ql(k − 1)TGo

kQl(k − 1),
(4.74)

respectively. ♦

Proof. We only give the proof of (4.69). The other proofs are analogous. The proof is
sketched from [30] with more details.

Let the pd-stable matrix pairs {Ek,Ak}
K−1
k=0 be in Weierstrass canonical from (4.54), where

the eigenvalues of Jk = A f
k+K−1A f

k+K−2 · · ·A
f
k lie inside the unit circle and Nk = Eb

kEb
k+1 · · ·E

b
k+K−1

is nilpotent and contains only zero eigenvalues. Let the matrices

Z−1
k Gcr

k Z−T
k =

[
G11, k G12, k
G21, k G22, k

]
(4.75)

be partitioned in blocks such that G11, k ∈ R
n f

k×n f
k and G22, k ∈ R

n∞k ×n∞k . Then using (4.54)
and (4.64), we can rewrite (4.69) into the following matrix equations:

G11,k+1 − A f
k G11,k (A f

k )T = B f
k (B f

k )T, (4.76)

G12,k+1(Eb
k)T
− A f

k G12,k = 0, (4.77)

Eb
kG21,k+1 − G21,k (A f

k )T = 0, (4.78)

Eb
kG22,k+1(Eb

k)T
− G22,k = 0. (4.79)

Since all eigenvalues of Jk lie inside the unit circle and Nk contains all zero eigenvalues,
the Lyapunov equations (4.76) and (4.79) have unique solutions G11,k and G22,k, respec-
tively. Taking into account that Jk and Nk have disjoint spectra, equations (4.77) and
(4.78) are solvable and have trivial solutions.

Now from Gcr
k = Pr(k)Gcr

k Pr(k)T, it follows that

Gcr
k = Zk

[
G11, k G12, k
G21, k G22, k

]
ZT

k = Pr(k)Gcr
k Pr(k)T,

= Zk

In f
k

0

0 0

 Z−1
k Zk

[
G11, k G12, k
G21, k G22, k

]
ZT

k Z−T
k

In f
k

0

0 0

 ZT
k ,

= Zk

[
G11,k 0

0 0

]
ZT

k ;
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i.e., G12,k = G21,k = G22,k = 0.

Thus, the matrices

Gcr
k = Zk

[
G11, k 0

0 0

]
ZT

k

are the unique symmetric solutions of the generalized PPDALEs (4.76) with Gcr
k =

Pr(k)Gcr
k Pr(k)T.

To show that the causal reachability Gramians Gcr
k satisfy the generalized PPDALEs

(4.76), we can use the direct substitution of (4.54) and (4.68) into the left hand-side of
the first equation of (4.76), which gives

AkGcr
k AT

k − EkGcr
k+1ET

k

= Ak

 k−1∑
i=−∞

Ψk,iBiBT
i ΨT

k,i

 AT
k − Ek

 k∑
i=−∞

Ψk+1,iBiBT
i ΨT

k+1,i

 ET
k

= AkZk

 k−1∑
i=−∞

[
Φ f (k, i + 1) 0

0 0

]
WiBiBT

i WT
i

[
Φ f (k, i + 1)T 0

0 0

] ZT
k AT

k

−EkZk+1

 k∑
i=−∞

[
Φ f (k + 1, i + 1) 0

0 0

]
WiBiBT

i WT
i

[
Φ f (k + 1, i + 1)T 0

0 0

] ZT
k+1ET

k

= W−1
k

A f
k 0

0 In∞k


 k−1∑

i=−∞

[
Φ f (k, i + 1) 0

0 0

] [
B f

i
Bb

i

] [
B f

i
Bb

i

]T [
Φ f (k, i + 1)T 0

0 0

]
(A f

k )T 0
0 In∞k

 W−T
k

−W−1
k

In f
k+1

0

0 Eb
k


 k∑

i=−∞

[
Φ f (k + 1, i + 1) 0

0 0

] [
B f

i
Bb

i

] [
B f

i
Bb

i

]T [
Φ f (k + 1, i + 1)T 0

0 0

]In f
k+1

0

0 (Eb
k)T

 W−T
k

= W−1
k

[∑k−1
i=−∞Φ f (k + 1, i + 1)B f

i (B f
i )TΦ f (k + 1, i + 1)T 0

0 0

]
W−T

k

−W−1
k

[∑k
i=−∞Φ f (k + 1, i + 1)B f

i (B f
i )TΦ f (k + 1, i + 1)T 0

0 0

]
W−T

k

= −W−1
k

[
B f

i (B f
i )T 0

0 0

]
W−T

k , since, Φ f (k + 1, k + 1) = I
n f

k+1

= −Pl(k)BkBT
k Pl(k)T,
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and similar substitutions into the second equation of (4.76) gives

Pr(k)Gcr
k Pr(k)T

= Zk

In f
k

0

0 0

 Z−1
k

 k−1∑
i=−∞

Ψk,iBiBT
i ΨT

k,i

 Z−T
k

In f
k

0

0 0

 ZT
k

= Zk

[∑k−1
i=−∞Φ f (k, i + 1)B f

i (B f
i )TΦ f (k, i + 1)T 0

0 0

]
ZT

k

= Gcr
k ,

for all k, where k = 0, 1, . . . ,K − 1. Hence the proof is complete. �

The complete reachability and observability of the periodic descriptor system (4.48) can
be described via the corresponding Gramians. The following theorem establishes the
statement.

Theorem 4.3.6 (Thm. 4.2 in [30]):
Let us consider the periodic matrix pairs {(Ek,Ak)}K−1

k=0 of the periodic descriptor system (4.48)
and assume that they are pd-stable.

(i) The periodic descriptor system (4.48) is completely reachable if and only if the reachability
Gramians Gc

k are positive definite for k = 0, 1, . . . ,K − 1.

(ii) The periodic descriptor system (4.48) is completely observable if and only if the observ-
ability Gramians Go

k are positive definite for k = 0, 1, . . . ,K − 1. ♦

Proof. [30] We sketch here the proof of statement (i). The proof of statement (ii) is
analogous to the proof of statement (i).

Consider the generalized PPDALEs in (4.73). Premultiplying (4.73) by Wk and postmul-
tiplying again by WT

k , we obtain

WkAkGc
kAT

k WT
k −WkEkGc

k+1ET
k WT

k = −WkPl(k)BkBT
k Pl(k)TWT

k + WkQl(k)BkBT
k Ql(k)TWT

k .
(4.80)

It follows that

WkAkZkḠc
kZT

k AT
k WT

k −WkEkZk+1Ḡc
k+1ZT

k+1ET
k WT

k =

[
−B f

k (B f
k )T 0

0 0

]
+

[
0 0
0 Bb

k(Bb
k)T

]
,

(4.81)
where Ḡc

k = Z−1
k Gc

kZ−T
k . Now from the definition of causal reachability Gramians as in

Definition 4.3.3, we can see

Ḡc
k = Z−1

k Gc
kZ−T

k =

[
Ḡcr

1,k 0
0 Ḡncr

2,k

]
, (4.82)
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with

Ḡcr
1,k =

k−1∑
i=−∞

Φ f (k, i + 1)B f
i (B f

i )TΦ f (k, i + 1)T,

Ḡncr
2,k =

k+νK−1∑
i=k

Φb(k, i)Bb
i (Bb

i )TΦb(k, i)T.

Following (4.54) and (4.82), we can decompose (4.81) into two periodic Lyapunov
equations,

A f
k Ḡcr

1,k(A f
k )T
− Ḡcr

1,k+1 = −B f
k (B f

k )T, (4.83)

Ḡncr
2,k − Eb

kḠcr
2,k+1(Eb

k)T = Bb
k(Bb

k)T, (4.84)

for k = 0, 1, . . . ,K − 1.

Since the matrix pairs {Ek,Ak}
K−1
k=0 are pd-stable, the matrices Jk = A f

k+K−1A f
k+K−2 · · ·A

f
k ,

(k = 0, 1, . . . ,K − 1), contain only eigenvalues lying inside the unit circle and Nk =
Eb

kEb
k+1 · · ·E

b
k+K−1, for k = 0, 1, . . . ,K − 1, contains only zero eigenvalues. Therefore, Ḡcr

1,k
and Ḡncr

2,k are the symmetric positive definite solutions of (4.83) and (4.84), respectively.

Equivalently, following (4.82), we can easily show that the reachability Gramians Gc
k are

symmetric positive definite for all values of k (k = 0, 1, . . . ,K− 1). Followed by Theorem
4.3.3- 4.3.4, we conclude that the forward and backward subsystems define by (4.83)
and (4.84) respectively, are completely reachable. Hence the periodic descriptor system
(4.48) is completely reachable. This completes the proof. �

The projected periodic discrete-time algebraic Lyapunov equations in ( 4.73) and ( 4.74)
play an important role in the balanced truncation model order reduction approach. We
will discuss more details in Chapter 8.
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LTI REPRESENTATION OF LPTV DESCRIPTOR SYSTEMS
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This chapter introduces the time-invariant reformulation of LPTV discrete-time descrip-
tor systems and establishes some properties that link the two system representations.
This time-invariant reformulation, often called lifted system.

We first discuss the available LTI reformulation techniques [124, 122] for LPTV discrete-
time systems. In this thesis, we consider only the cyclic lifted representation of LPTV
discrete-time descriptor systems, and hence, we analyse the system dynamics of the
periodic descriptor system using its cyclic lifted representation.

In Section 5.2 we first study the concepts of solvability and conditionability of LPTV
discrete-time descriptor systems in terms of the corresponding cyclic matrix pencil. We
then give a characterization of stability for LPTV discrete-time descriptor systems in
cyclic lifted structure in Subsection 5.2.2. We also discuss the links of solvability, condi-
tionability and stability of LPTV discrete-time descriptor systems to those of the corre-
sponding cyclic lifted system. Subsection 5.2.4 then represents the periodic Gramians
and the matrix equations using cyclic lifted structure. We discuss the forward-backward
reachability and observability Gramians of the cyclic lifted system and then represent
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the cyclic lifted representations of the period matrix equations that we have already
discussed in Chapter 4 in the period setting. In this subsection we establish the relation-
ships of periodic Gramians and matrix equations of LPTV descriptor system with those
of cyclic lifted system representations. The transfer function for lifted periodic system
is discussed in Subsection 5.2.5. A short discussion about the index of periodic matrix
pairs and the relationship of transfer functions of different lifted systems is presented
in Section 5.3.

5.1. Lifted Representations of LPTV Descriptor Systems

In the last few decades, increasing attention and interest have been devoted for the
development of numerical algorithms for analysis and control of linear periodic discrete-
time systems [20, 46, 101]. Various possible computational approaches and algorithms
have been developed, but among them the most prominent and useful technique is the
lifting isomorphism, which reformulate a time-varying discrete-time periodic system as
an equivalent time-invariant discrete-time system of increased dimensions [73, 46, 79].
Using the lifting isomorphism one can exploit the theory of time-invariant systems for
the analysis and control of periodic systems, provided that the results achieved can be
easily re-interpreted in a periodic framework.

The lifted representation of discrete-time periodic descriptor systems plays an impor-
tant role in extending many theoretical results for descriptor systems to the periodic
setting [117, 18, 125]. They are also used to define concepts which correspond to those
for period discrete-time descriptor systems. There are several lifted representations
available in the literature on LPTV descriptor systems [18, 124, 122].

Standard Lifted Representation: Let us recall the original discrete-time periodic de-
scriptor system

Ekxk+1 = Akxk + Bkuk,
yk = Ckxk, k ∈ Z, (5.1)

where Ek ∈ R
µk+1×nk+1 , Ak ∈ R

µk+1×nk , Bk ∈ R
µk+1×pk , Ck ∈ R

qk×nk are time-varying, and
periodic with a period K ≥ 1 . Clearly,

∑K−1
k=0 µk =

∑K−1
k=0 nk = n. The matrices Ek are

allowed to be singular for all k.

For the standard lifted representation, the matrices Ek are required to be nonsingular. This
lifted system was first introduced in [73] and corresponds to the time-lifted system
discussed in [18]. The input-output vectors in this lifting approach are defined over
time intervals of length K. For a given sampling time k, the corresponding

∑K−1
k=0 pk-

dimensional input vector and
∑K−1

k=0 qk-dimensional output vector, and nk-dimensional
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state vector are

UL
k (h) = [uT(k + hK),uT(k + hK + 1), . . . ,uT(k + hK + K − 1)]T,

YL
k (h) = [yT(k + hK), yT(k + hK + 1), . . . , yT(k + hK + K − 1)]T,

XL
k (h) = x(k + hK),

where k, h are two integers. To define the lifted system we denote the state transition
matrix of system (5.1) as

φ( j, i) = E−1
j−1A j−1E−1

j−2A j−2 · · ·E−1
i Ai,

where φ(i, i) = Ini . Then the standard lifted system at a sampling time k is defined as

ΣL
k :

 XL
k (h + 1) = AL

kX
L
k (h) + BL

kU
L
k (h),

YL
k (h) = CL

kX
L
k (h),

(5.2)

where

AL
k = φ(k + K, k),

BL
k = [φ(k + K, k + 1)E−1

k Bk, φ(k + K, k + 2)E−1
k+1Bk+1, . . . ,E−1

k+K−1Bk+K−1],

CL
k =


Ck

Ck+1 Φ(k + 1, k)
...

Ck+K−1 Φ(k + K − 1, k)

 ,
The transfer function matrix (TFM) of the periodic system (5.1) at sampling time k is
defined as the TFM of the lifted system (5.2),

HL
k (z) = CL

k (zInk −AL
k )−1BL

k , (5.3)

which depends on the sampling time k. The associated system pencil is defined as

WL
k (z) =

[
AL

k − zInk BL
k

CL
k 0

]
, (5.4)

which also depends on the sampling time k. The zeros and poles as well as reachability
and observability of the period system (5.1) can be defined regarding its standard lifted
representation [122, 125]. If the system (5.1) is minimal, then the lifted system (5.2) is
also minimal and the converse is also true [18, 17].

Stacked Lifted Representation: The stacked lifted representation of the LPTV discrete-
time descriptor system (5.1) is a time-invariant descriptor system representation of the
form

ΣS
k :


ES

kX
S
k (h + 1) = AS

kX
S
k (h) + BS

kU
S
k (h),

YS
k (h) = CS

kX
S
k (h),

(5.5)
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where

BS
k = diag(Bk,Bk+1, . . . ,Bk+K−1),

CS
k = diag(Ck,Ck+1, . . . ,Ck+K−1),

and

ES
k =



0 0
... 0
...

. . .
0

Ek+K−1


, AS

k =


Ak −Ek 0

. . .
. . .

Ak+K−2 −Ek+K−2
Ak+K−1

 . (5.6)

The subscript k in the calligraphic notations of the matrices (vectors) does not mean the
time-variance of the corresponding matrix (vector), but it denotes the starting time of
the lifted formulation. The stacked lifted representation was first introduced in [46] in
the context of standard state space systems (Ek = Ink+1). This lifting uses again the input-
output behavior of the system over time intervals of length K. For a given sampling
time k, the corresponding

∑K−1
k=0 pk-dimensional input vector and

∑K−1
k=0 qk-dimensional

output vector are the same as for the standard lifted system but an
∑K−1

k=0 nk-dimensional
state vector is defined as

XS
k (h) = [xT(k + hK), xT(k + hK + 1), . . . , xT(k + hK + K − 1)]T.

Assume the square pencil AS
k − zES

k is regular, i.e., det(AS
k − zES

k ) , 0, then the TFM of
the stacked lifted system is defined as

HS
k (z) = CS

k (zES
k −AS

k )−1BS
k , (5.7)

and the associated system pencil is defined as

WS
k (z) =

[
AS

k − zES
k BS

k
CS

k 0

]
, (5.8)

which both depend on the sampling time k.

Cyclic Lifted Representation: We now introduce another LTI representation of the
LPTV discrete-time descriptor systems, using the method first introduced in [79].

For notational convenience, we introduce the following script notation

Xk := diag(Xk,Xk+1, . . . ,Xk+K−1),

which associates the block-diagonal matrix Xk to the cyclic matrix sequence Xi, i =
k, k + 1, . . . , k + K − 1 starting at time moment k, and a concatenated vector rk:

rk := [rT
k , r

T
k+1, · · · , r

T
k−K+1]T.
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Then the LPTV discrete-time descriptor system (5.1) can be written as

Ekxk+1 = Akxk + Bkuk, (5.9)
yk = Ckxk, (5.10)

k ∈ Z, and is merely K copies of (5.1) running in parallel, successively offset in time-
index by one. Next, we introduce two cyclic shift matrices Mµk and Nnk , which are the
generators of a cyclic group of order K:

Mµk =


0 Iµk

Iµk+1
...

. . .
...

0 Iµk+K−1 0

 , Nnk =


0 Ink+1 0
...

. . .
Ink+K−1

Ink 0

 , (5.11)

and perform the following transformation (similar as done in [101] for constant dimen-
sions):

• xk = Nk−1
nk

x̄k,

• premultiply (5.9) by Mk
µk

,

• uk = Nk−1
pk

ūk, and

• premultiply (5.12) by Nk
qk

.

Due to the identities

MµkEkNnk = Ek+K−1, MµkAkNnk = Ak+K−1,

MµkBkNpk = Bk+K−1, MqkCkNnk = Ck+K−1,

Equations (5.9) and (5.10) yield, rather pleasantly, an LTI system of the form

ΣC
k :

 EC
k x̄k+1 = AC

k x̄k + BC
k ūk,

ȳk = CC
k x̄k,

(5.12)

where
EC

k : = Mk
µk

EkN
k
nk
, AC

k := Mk
µk

AkN
k−1
nk

BC
k : = Mk

µk
BkN

k
pk
, CC

k := Mk
qk

CkN
k−1
nk
.

(5.13)

Equation (5.12) represents the cyclic lifted representation of the LPTV discrete-time de-
scriptor system (5.1) at time k, with

∑K−1
k=0 pk inputs and

∑K−1
k=0 qk outputs. The state

dimension of the system is
∑K−1

k=0 µk =
∑K−1

k=0 nk = n and its TFM is

HC
k (z) = CC

k (zEC
k −AC

k )−1BC
k .
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The cyclic lifted system can take different forms depending on its starting time k. For
example, the cyclic lifted system starting at k = 1 have the following form:

ΣC
1 :

 EC
1 x̄k+1 = AC

1 x̄k + BC
1 ūk,

ȳk = CC
1 x̄k,

(5.14)

where

EC
1 : = Mk

µk
EkN

k
nk

= Mµ1E1Nn1 = E0,

AC
1 : = Mk

µk
AkN

k−1
nk

= Mµ1A1,

BC
1 : = Mk

µk
BkN

k
pk

= Mµ1B1Np1 = B0,

CC
1 : = Mk

qk
CkN

k−1
nk

= Mq1C1.

(5.15)

The essence of the cyclic lifted system is putting inputs, states and outputs of the original
LPTV descriptor system at cyclic places (depending on the starting time k ) of those of
the lifted LTI system. In any cyclic reformulation starting at time k, the matrix EC

k has
to block diagonal and AC

k is a block cyclic matrix, while BC
k , and CC

k can be either block
diagonal or block cyclic, which depends on the relative places of input, state and output
of the original LPTV system in those of the cyclic lifted system.

Remark 5.1:
The construction of the cyclic lifted system avoids matrix multiplication and only one
LTI representation is needed for representing the system dynamics of the original
LPTV system. But for the cyclic lifted LTI model, the number of states is much larger
than that of the original LPTV system. ♦

In this thesis we consider only the cyclic lifted system for the LTI representation of
LPTV discrete-time descriptor systems (5.1). Hence, we reserve the script notations (i.e.,
without superscripts) for the cyclic lifted representation ΣC

1 . We write Equation (5.14)
in more usual form [12] as follows:

EXk+1 = AXk + BUk,
Yk = CXk,

(5.16)

where

E = diag(E0,E1, . . . ,EK−1), B = diag(B0,B1, . . . ,BK−1),

A =


0 · · · 0 A0

A1 0
. . .

...
0 AK−1 0

 , C =


0 · · · 0 C0

C1 0
. . .

...
0 CK−1 0

 .
(5.17)
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The descriptor vector, system input and output of (5.16) are related to those of (5.1) via

Xk = [xT
1 , . . . , x

T
K−1, x

T
0 ]T, (5.18)

Uk = [uT
0 ,u

T
1 , . . . ,u

T
K−1]T, (5.19)

Yk = [yT
0 , y

T
1 , . . . , y

T
K−1]T, (5.20)

respectively. The transfer function of the lifted system (5.16) can be rewritten as

H(z) = C(zE −A)−1B. (5.21)

5.2. Cyclic Lifted System Analysis

The cyclic lifted system (5.16) describes the eigenstructure and system dynamics of the
LPTV discrete-time descriptor system (5.1). In this content, regularity of the set of
periodic matrix pairs {(Ek,Ak)}K−1

k=0 , i.e., (E,A), can be described by the cyclic matrix
pencil. The set (E,A) is said to be regular when det(M(α, β)) . 0, where

M(α, β) :=



α0E0 0 . . . 0 −β0A0
−β1A1 α1E1 0

. . .
. . .

0 0 −βK−1AK−1 αK−1EK−1


(5.22)

with α = (α0, α1, . . . , αK−1), β = (β0, β1, . . . , βK−1), and αk, βk are complex variables for
k = 0, 1, . . . ,K − 1.

Definition 5.2.1:
Let (E,A) be a regular set of matrix pairs. If there exist α = (α0, α1, . . . , αK−1),
β = (β0, β1, . . . , βK−1), where αk, βk are complex variables for k = 0, 1, . . . ,K − 1, which
satisfy

det(M(α, β)) = 0,

then the pair (πα, πβ) =
(∏K−1

k=0 αk,
∏K−1

k=0 βk

)
, (0, 0), is an eigenvalue pair of {(Ek,Ak)}K−1

k=0 .♦

Note that if πβ , 0, then z = πα/πβ is a finite eigenvalue, otherwise (πα, 0) represents
an infinite eigenvalue of {(Ek,Ak)}K−1

k=0 (see [30] for details). The set of periodic matrix
pairs (E,A) is said to be pd-stable if it is regular and all its finite eigenvalues lie inside
the unit circle. System (5.1) is asymptotically stable if the corresponding set of periodic
matrix pairs {(Ek,Ak)}K−1

k=0 is pd-stable.
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5.2.1. Solvability and Conditionability

Two most important concepts associated with original periodic system (5.1), which
characterize their well behaviors are solvability and conditionability. Both the concepts
can be described by the corresponding cyclic lifted structure of (5.1). For LPTV discrete-
time descriptor systems of constant dimensions, both the concepts have been briefly
discussed in [71, 97].

It is clear that the original system (5.1) with period K can be re-interpreted by the system
represented by K equations, and these can be written out in block matrix form as

−A0 E0
−A1 E1

. . .
. . .
−AK−2 EK−2

−AK−1 EK−1


.


x0
x1
...

xK−1
xK


=


B0

B1
. . .

BK−1




u0
u1
...

uK−1

 .
(5.23)

Analogous to the work of [71, 97], we can also define the solvability and conditionability
of system (5.1). The solvability matrix of (5.1), denoted by S(0,K), is the coefficient
matrix of (5.23). System (5.1) is said to be solvable if S(0,K) is of full rank for every K > 0.

Similarly, the conditionability matrix of (5.1), denoted by C(0,K), is the submatrix of
S(0,K) obtained by deleting the first and last block columns. System (5.1) is said to be
conditionable if C(0,K) is of full rank for every K > 0.

Solvability and conditionability of system (5.1) depend only on its homogeneous system

Ekxk+1 = Akxk, k = 0, . . . ,K − 1, (5.24)

and they are dual concepts. This in turns implies that the LPTV system (5.24) is solvable
if and only if it is conditionable [71, 97]. The solvability and conditionability of the
LPTV discrete-time descriptor system (5.1) can be directly linked to the corresponding
properties of the cyclic lifted system.

Definition 5.2.2:
The LPTV discrete-time descriptor system (5.1) is said to be solvable (conditionable)
if the pencil

αE − βA :=



αE0 0 . . . 0 −βA0
−βA1 αE1 0

. . .
. . .

0 0 −βAK−1 αEK−1


(5.25)

is regular, where α, β are complex variables, i.e., ∃ α, β ∈ C so that det(αE− βA) , 0.♦
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The following theorem establishes the relationship of the concepts of solvability and
conditionability between the LPTV discrete-time descriptor system (5.1) and its corre-
sponding cyclic lifted system (5.16).

Theorem 5.2.1:
The following statements are equivalent:

1. The LPTV descriptor system (5.1) is solvable (conditionable).

2. The cyclic lifted system (5.16) is solvable (conditionable). ♦

Proof. (1⇔ 2) We sketch the proof for system (5.1) of time-varying dimensions which
is analogous to the proof of Theorem 2. in [97] given for constant dimensions. Let us
consider the homogeneous form of the cyclic lifted system (5.16), i.e.,

EXk+1 = AXk,
Yk = CXk, k = 0, . . . ,K − 1. (5.26)

The solvability matrix of system ( 5.26), over an interval of length l, can be written as
−A E

−A E
. . .

. . .
−A E

−A E




l block rows. (5.27)

Modulo row and column permutations, it is identical to

diag{S(0, l),S(1, l), . . . ,S(K − 1, l)}, (5.28)

where the S(i, l) refer to solvability matrices of the LPTV system (5.1) [97, 71]. This
shows that (5.27) is of full rank iff (5.28) is. Since this holds for all l > 0, we conclude
that (5.16) is solvable iff (5.1) is.

The argument for conditionability can be derived similarly. The conditionability matrix
of (5.16) is the submatrix of (5.27) obtained by deleting the first and last block columns.
Rearranging rows and columns as before, it is identical to

diag{C(0, l),C(1, l), . . . ,C(K − 1, l)}, (5.29)

where the C(i, l) refer to conditionability matrices of (5.1). This shows that (5.27) is of full
rank iff (5.29) is. Since this holds for all l > 0, we conclude that (5.16) is conditionable iff
(5.1) is. �

The solvability and conditionability of the cyclic lifted system (5.16) are also duel con-
cepts. The cyclic lifted system (5.16) is solvable iff it is conditionable [71]. The reverse
implication also holds.
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5.2.2. Stability

Stability of the cyclic lifted system (5.16) is defined by the regularity of the cyclic matrix
pencil zE −A, defined as

z


E0

E1
. . .

EK−1

 −


A0
A1

. . .
AK−1

 . (5.30)

The cyclic matrix pencil zE−A is said to be regular when det(zE−A) , 0, for any z ∈ C.

Definition 5.2.3:
The cyclic lifted system (5.16) is asymptotically stable iff zE − A is regular and all its
finite eigenvalues lie inside the unit circle. ♦

Stability of the original LPTV discrete-time descriptor system (5.1) is directly linked to
the stability of the corresponding cyclic lifted system (5.16). Regularity of the periodic
matrix pairs {(Ek,Ak)}K−1

k=0 implies the regularity of the cyclic matrix pair (E,A) [59]. The
reverse argument also holds true. With this concept, the periodic descriptor system
(5.1) is said to be asymptotically stable iff the cyclic pencil (5.22) is regular and all its
finite eigenvalues lie inside unit circle.

Remark 5.2:
The eigenvalues of zE − A are identical to the eigenvalues of αE − βA and they are
the K-th roots of the eigenvalues of the monodromy matrix (4.49) in Chapter 4, when
it exists. This means that

Λ
(
{(Ek,Ak)}K−1

k=0

)
= {(αK, βK) | det(αE − βA) = 0}. (5.31)

5.2.3. Reachability and Observability

Reachability and observability of the periodic descriptor system (5.1) can be redefined
with the cyclic matrix pairs of system (5.16). For convenience, let us recall the forward-
backward periodic subsystems of Chapter 4:

x f
k+1 = A f

k x f
k + B f

k uk, y f
k = C f

k x f
k , (5.32)

Eb
kxb

k+1 = xb
k + Bb

kuk, yb
k = Cb

kxb
k, (5.33)

for k = 0, 1, . . . ,K − 1. Using the periodic decomposition of the periodic matrix pairs as
defined in (4.54), reachability and observability of the periodic descriptor system (5.1)
can be redefined with the cyclic matrices of Equation (5.16) as described in the following
two theorems.
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Theorem 5.2.2:
[30] (1) The forward subsystem (5.32) is completely reachable if for

∏K−1
i=0 αi ∈ Λ(Φ f (K, 0))

the matrix

C f (α0, · · · , αK−1) :=



α0I
n f

1
· · · 0 −A f

0

−A f
1 α1I

n f
2

0
. . .

...

0 −A f
K−1 αK−1I

n f
0

B f
0

B f
1

. . .

B f
K−1



has full row rank.

(2) The backward subsystem (5.33) is completely reachable if the pair (Eb,Bb) is reachable,
where

Eb =


0 Eb

0
...

...
. . .

0 0 Eb
K−2

Eb
K−1 0 · · · · · · 0

 , Bb =


Bb

0
Bb

1
. . .

Bb
K−1

 . (5.34)

♦

Proof. See [29, 65]. �

Similarly, forward and backward observability of the periodic descriptor system can be
defined.
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Theorem 5.2.3:
[30] (1) The forward subsystem (5.32) is completely observable if for

∏K−1
i=0 αi ∈ Λ(Φ f (K, 0))

the matrix

O f (α0, · · · , αK−1) :=



α0I
n f

0
· · · 0 −A f

K−1

−A f
0 α1I

n f
1

0
. . .

...

0 −A f
K−2 αK−1I

n f
K−1

C f
0

C f
1

. . .

C f
K−1


has full column rank.

(2) The backward subsystem (5.33) is completely observable if the pair (Eb,Cb) is observable,
where

Eb =


0 Eb

0
...

...
. . .

0 0 Eb
K−2

Eb
K−1 0 · · · · · · 0

 , Cb =


Cb

0
Cb

1
. . .

Cb
K−1

 . (5.35)

♦

Proof. See [29, 65]. �

Remark 5.3:
However, if the system (5.1) is reachable at time k, the cyclic lifted system (5.16) is
not necessarily reachable. The appropriate statement is that system (5.1) is reachable
(observable) at each time k = 0, 1, . . . ,K − 1, if and only if system (5.16) is reachable
(observable) [see [18] for details]. ♦

5.2.4. Gramians and Matrix Equations

The periodic reachability and observability Gramians of the periodic descriptor system
(5.1) can be recovered from the block diagonal solutions of the reachability and observ-
ability type projected lifted discrete-time algebraic Lyapunov equations (PLDALEs)
of system (5.16), respectively. It is shown in [57, 121] that the Gramians of standard
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periodic systems satisfy the lifted form of the periodic Lyapunov equations and the so-
lutions of these equations are diagonal matrices. The idea can be extended to the LPTV
discrete-time descriptor system (5.1) and the corresponding cyclic lifted system (5.16).
The periodic Gramians Gcr

k , Gncr
k , Gco

k and Gnco
k of the periodic descriptor system (5.1)

satisfy the projected lifted discrete-time algebraic Lyapunov equations (PLDALEs) of
system (5.16).

The following theorem describes the block diagonal structures of the solutions of peri-
odic Lyapunov equations in lifted form and their relations to the corresponding solutions
of generalized PPDALEs in Theorem 4.3.5 of Chapter 4.

Theorem 5.2.4:
Consider the periodic discrete-time descriptor system (5.1) and its cyclic lifted representation
(5.16), where the set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 is pd-stable. The causal and
noncausal reachability Gramians Gcr and Gncr of (5.16) satisfy the generalized PLDALEs

AGcrAT
− EGcrET = −PlBBTPT

l , Gcr = PrG
crPT

r , (5.36)

AGncrAT
− EGncrET = QlBBTQT

l , Gncr = QrG
ncrQT

r , (5.37)

respectively, where E, A, B are as in (5.17) and

Gcr = diag(Gcr
1 , . . . ,G

cr
K−1,G

cr
0 ), Gncr = diag(Gncr

1 , . . . ,Gncr
K−1,G

ncr
0 ),

Pl = diag(Pl(0),Pl(1), . . . ,Pl(K − 1)), Ql = I − Pl,

Pr = diag(Pr(1), . . . ,Pr(K − 1),Pr(0)), Qr = I − Pr.

(5.38)

♦

Proof. We will only give an outline of the proof. Let us consider a period-3 LPTV system
(k = 0, 1, 2). We rewrite the first equation of (5.36) as its cyclic lifted structure: 0 0 A0

A1 0 0
0 A2 0


G

cr
1 0 0

0 Gcr
2 0

0 0 Gcr
0


 0 0 A0
A1 0 0
0 A2 0


T

−

E0 0 0
0 E1 0
0 0 E2


G

cr
1 0 0

0 Gcr
2 0

0 0 Gcr
0


E0 0 0

0 E1 0
0 0 E2


T

=

Pl(0)B0 0 0
0 Pl(1)B1 0
0 0 Pl(2)B2


Pl(0)B0 0 0

0 Pl(1)B1 0
0 0 Pl(2)B2


T

(5.39)
By a straightforward computation and then equating the corresponding terms from

both the sides, we obtain

A0Gcr
0 AT

0 − E0Gcr
1 ET

0 = −Pl(0)B0BT
0 Pl(0)T,

A1Gcr
1 AT

1 − E1Gcr
2 ET

1 = −Pl(1)B1BT
1 Pl(1)T, (5.40)

A2Gcr
2 AT

2 − E2Gcr
0 ET

2 = −Pl(2)B2BT
2 Pl(2)T.
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Equation (5.40) is nothing but the periodic projected Lyapunov equations

AkGcr
k AT

k − EkGcr
k+1ET

k = −Pl(k)BkBT
k Pl(k)T,

for k = 0, 1, 2 of Equation (4.69). The same holds true for any k, where k = 0, 1, . . . ,K− 1.
Since the periodic matrix pairs {(Ek,Ak)}K−1

k=0 are pd-stable, the matrix pencil zE − A

associated with the cyclic lifted system (5.16) is regular and all its eigenvalues lie inside
the unit circle. Then the Lyapunov equation (5.36) has a unique solution.

Using again the block structures of Gcr and Pr, simple calculation shows that the
second equation of (5.36) is equivalent to the unique symmetric property, i.e., Gcr

k =

Pr(k)Gcr
k Pr(k)T for k = 0, 1, . . . ,K− 1 of Equation (4.69). Therefore, the causal reachability

Gramian Gcr is the unique symmetric positive semidefinite solution of the generalized
PLDALEs (5.36). The proof for Gncr can be treated similarly. �

For the observability Gramians, the situation becomes a bit more complex. In that case
we take a backward time-shift of the original lifted system as done in [121, 119] for
standard case (Ek = Ink+1). The reason is that we do not want to destroy the block diagonal
structure of the lifted solutions and we would like to retrieve the periodic observability
Gramians of the periodic descriptor system (5.1) from these lifted solutions.

The backward time-shift of the original lifted system is performed by taking the K-cyclic
backward-shift of the cyclic matricesMµk andNnk in (5.11), and then using relation (5.15).
We denote with σE the K-cyclic shift ofE in (5.16) and similarly the others. The simplified
representation of these K-cyclic shift matrices are as follows:

σE =


EK−1

E0
. . .

EK−2

 , σA =


0 · · · 0 AK−1

A0 0
. . .

...
0 AK−2 0

 ,

σB =


BK−1

B0
. . .

BK−2

 , σC =


0 · · · 0 CK−1

C0 0
. . .

...
0 CK−2 0

 .
(5.41)

In that case the states, inputs and outputs of the original lifted system are also changed
(due to K-cyclic backward-shift) by the relations described after Equation (5.11). Con-
sidering the periodic matrix pairs {(Ek,Ak)}K−1

k=0 are pd-stable, we can show that the
causal and noncausal observability Gramians Gco and Gnco of (5.16) satisfy the projected
PLDALEs

σATGcoσA − σETGcoσE = −(σPr)TσCTσC(σPr), Gco = (σPl)TGco(σPl),
σATGncoσA − σETGncoσE = (σQr)TσCTσC(σQr), Gnco = (σQl)TGnco(σQl),
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respectively, where σE, σA, σC are defined in (5.41), and the projectors
σPl = diag(Pl(K − 1),Pl(0), . . . ,Pl(K − 2)), σPr = diag(Pr(0),Pr(1), . . . ,Pr(K − 1)), σQr =
I − σPr, σQl = I − σPl, and

Gco = diag(Gco
0 , . . . ,G

co
K−1), Gnco = diag(Gnco

0 , . . . ,Gnco
K−1). (5.42)

Note that the lifted solutions Gco and Gnco have also block diagonal structures, but now
the diagonal blocks appear in different order.

Contrary to the backward time-shift of the original lifted system, we have observed that
it is possible to recover the periodic observability Gramians of the periodic descriptor
system (5.1) from the block diagonal solutions of the observability type PLDALEs of the
original lifted system (5.16) by reformulating only the matrix C on the right-hand side.
Our observation is summarized in the following theorem.

Theorem 5.2.5:
Consider the periodic discrete-time descriptor system (5.1) and its cyclic lifted representation
(5.16), where the periodic matrix pairs {(Ek,Ak)}K−1

k=0 are pd-stable. The causal and noncausal
observability Gramians Gco and Gnco of (5.16) satisfy the generalized PLDALEs

ATGcoA − ETGcoE = −PT
r Ĉ

TĈPr, Gco = PT
l G

coPl, (5.43)

ATGncoA − ETGncoE = QT
r Ĉ

TĈQr, Gnco = QT
l G

ncoQl, (5.44)

respectively, where E and A are as in (5.17), the projectors Pl, Pr, Ql and Qr are as in ( 5.38),
Ĉ = diag(C1, . . . ,CK−1,C0) and

Gco = diag(Gco
1 , . . . ,G

co
K−1,G

co
0 ), Gnco = diag(Gnco

1 , . . . ,Gnco
K−1,G

nco
0 ). (5.45)

♦

Proof. The proof is analogous to the previous proof of Theorem 5.2.4. �

The periodic Gramians inside the block diagonal solutions in (5.45) appear in different
order than in (5.42). The cyclic lifted representation (5.16) of the periodic descriptor
system (5.1) can be considered as a generalized LTI system in descriptor form. Hence,
analogous to the generalized descriptor case [103], the complete reachability Gramian
of the cyclic lifted system (5.16) is defined as the sum of the causal and noncausal
reachability Gramians, i.e.,

Gc = Gcr + Gncr,

and the complete observability Gramian of the cyclic lifted system (5.16) is the sum of
the causal and noncausal observability Gramians, i.e.,

Go = Gco + Gnco.
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Remark 5.4:
The structural properties of the cyclic lifted system (5.16) are determined by the
structural properties of the original periodic descriptor system (5.1) [16, 18, 79]. In
particular, system (5.16) is completely reachable (observable) if and only if system
(5.1) is completely reachable (observable) [79, 18].

5.2.5. Transfer Function

As we have already discussed in Section 5.1, the transfer function of the cyclic lifted
system (5.16) can be described as

H(z) = C(zE −A)−1B, (5.46)

and the associated system pencil is defined as

WC(z) =

[
A − zE B

C 0

]
. (5.47)

It follows from Remark 5.4 and from [18] that if periodic descriptor system (5.1) is
minimal (i.e., completely reachable and completely observable), then the lifted system
(5.16) is minimal, too, and the converse is also true. The zeros and poles of the minimal
periodic system (5.1) can be easily defined from the TFM corresponding to the associated
cyclic lifted system (5.16) [125].

The H∞-norm of the cyclic lifted system (5.16) is defined by

‖H‖H∞ = max
ω∈[0,2π]

σmax(H(eiω)), (5.48)

where σ(.) denotes the singular values of the corresponding matrix. We can compute the
H∞-norm of the periodic descriptor system (5.1) by making use of the corresponding
cyclic lifted system (5.16). The following lemma clarifies the connection.

Lemma 5.2.1:
The cyclic lifted system described by (5.16) has the same H∞-norm as the periodic descriptor
system (5.1). ♦

Proof. See Lemma 1 and Lemma 2 in [101]. �

The TFMs corresponding to various lifted systems and their relations with the asso-
ciated periodic descriptor systems are briefly discussed in [125, 122]. Also, the TFM
of a particular lifted system can be easily determined from the TFM of another lifted
system [122].
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5.3. Discussions Regarding the LPTV Descriptor System and
Corresponding Cyclic Lifted System

Index of Periodic Matrix Pairs: We would like to point out that the indexes ν j for the
elements of regular periodic matrix pairs are not necessarily equal. Each individual
pair of the set {(Ek,Ak)}K−1

k=0 may have different index. For example, the matrix pairs
{(Ek,Ak)}1k=0 with Ak = I2, k = 0, 1 and

E0 =

[
0 1
0 1

]
, E1 =

[
0 1
0 0

]
,

have indexes ν0 = 1 and ν1 = 2.

As shown in Chapter 4 and in the preceding part of this chapter, the monodromy
matrices

J j =

j∏
k= j+K−1

A f
k and N j =

j+K−1∏
k= j

Eb
k , j = 0, . . . ,K − 1,

play an important role for defining the indexes for the regular set of periodic matrix
pairs {(Ek,Ak)}K−1

k=0 of system (5.1). Also note that the indexes of the cyclic forms as in
(5.25) are not appropriate to define the indexes the periodic matrix pairs {(Ek,Ak)}K−1

k=0 .
For example, consider the above periodic matrix pairs. Reconstructing the cyclic form
(5.25) for these periodic matrix pairs, we get

ind∞

([
E0 0
0 E1

]
,

[
0 A0

A1 0

])
= ind∞

([
E1 0
0 E0

]
,

[
0 A1

A0 0

])
= 3,

which is neither equal to the nilpotency of E0E1 not to the nilpotency of E1E0. Note that
nilpotency of E0E1 is 1 and nilpotency of E1E0 is 2. Appropriate method for defining
the indexes of periodic matrix pairs using their corresponding cyclic form is discussed
in [59] for discrete-time descriptor systems of constant dimensions. Developing such
a representation ( see Section 2 and Definition 2.1 in [59]) for discrete-time descriptor
systems of time-varying dimensions is more computational task and we restrict our
discussion to the time-varying case.

TFMs of Different Lifted Systems: Let us consider the TFM (5.3) and the associated
system pencil (5.4) of the standard lifted system (5.2). Obviously, HL

k+K(z) = HL
k (z)

and we have the following relation for TFMs computed at two successive values of k
[46, 125]:

HL
k+1(z) =

[
0 IJ

zIqk 0

]
HL

k (z)
[

0 z−1Ipk

IR 0

]
, (5.49)

where J =
∑k+K−1

i=k+1 qk, and R =
∑k+K−1

i=k+1 pk.
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The TFMs of different lifted systems are directly linked to each other. It can be shown
that the TFMs of the stacked and standard lifted systems are the same, i.e.,HS

k (z) = HL
k (z).

Similarly, the relationship between the TFMs of standard and cyclic lifted systems is
given by

HC
k (z) = 4qk(z

−1) HL
k (zK) 4pk(z), (5.50)

where 4 jk(x) = diag(I jk , xI jk+1 , . . . , x
K−1I jk+K−1).

Thus, to avoid matrix multiplications in the computation of HL
k (zK) using (5.3), one can

first compute the TFM HC
k (z) of the cyclic lifted system, and then compute HL

k (zK) using
relation (5.50) and finally replace zK by z.
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This chapter is intended to introduce the basic notations and the most common concepts
of model order reduction (MOR) for LTI descriptor systems. The main idea behind this
is that the theoretical and mathematical concepts in the LTI structures will help more
precisely to understand their corresponding periodic interpretations in the subsequent
chapters.

We first give a short introduction of MOR and present the available approaches for
MOR. We introduce the two most competing projection based approaches for generating
reduced-order models for LTI systems: the Krylov-subspace methods and the Balanced
Truncation (BT) methods.
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Figure 6.1. Order reduction for the purpose of simulation.

In Section 6.3 we first study the moment-matching approach via orthogonalized Krylov-
subspace methods, which is one of the best choices for MOR of large scale systems. We
will present the theoretical background and proofs to match the moments about different
points. We also discuss the necessary numerical algorithms to calculate the projection
matrices.

The BT approach for order reduction of LTI systems is briefly discussed in Section
6.4. In this section, we will represent the basic concepts of the BT approach and give
the physical interpretations of the reachability and observability Gramians and Hankel
singular values. We also represent the basic numerical algorithm for order reduction of
singular systems using the BT approach, and discuss the stability and approximation
error of the reduced systems.

In the last section we demonstrate the efficiencies and drawbacks of both the methods
and compare them according to their fields of applications.

6.1. Introduction

Accurate modelling of an original system is a necessary part in many applications of
modern engineering. Simulation and analysis of a high order model is difficult due
to the lack of powerful computers, efficient algorithms, and the higher complexity
induced in the model. In many cases simulation and analysis of such models are even
impossible. A solution to simplify the preceding task in both fields of simulation and
system analysis is to find a low order approximation of the original high order model.
The procedure of order reduction is shown in Figure 6.1.

The main goal of the reduction is to replace the given mathematical model of a system
or a process by a much smaller model which preserves certain crucial properties of the
original system, such as stability or passivity, etc. Some other issues are also involved,
such as the data structure of the original model, and the efficient and numerically stable
computation of the model. Of course, the smallest possible approximation error in the
reduced-order model compared to the original model is one of the main issues of MOR.
The basic schematic view of MOR is shown in Figure 6.2.

Several methods have been proposed for reduction of LTI systems in different fields
like control engineering, micro-systems and applied mathematics. We would like to
mention the recent surveys [3, 48, 40, 41] and the references therein on that topic. The
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Figure 6.2. Order reduction by minimization the difference of the outputs.

order reduction procedures of LTI systems that have been discussed there fall into two
major categories:

1. projection-based methods

2. non-projection based methods

The first category consists of such methods as Krylov-subspace (moment matching
methods), BT method, Proper Orthogonal Decomposition (POD) methods, etc. The sec-
ond category consists of Hankel optimal model reduction method, Singular perturbation
method, and various optimization-based methods. The vast majority of model reduc-
tion methods are projection-based. In the next sections we will discuss briefly the two
major competing projection based approaches: Krylov-subspace (moment-matching)-
based methods and BT methods for order reduction of LTI descriptor systems.

6.2. Projection-Based Model Reduction Methods

Before proceeding with projection methods, the generalized state space form will be
briefly described. This will help to create a more general framework for the projection
techniques. Let us recall the LTI descriptor systems in the generalized state space form
as defined in Equation (3.1) of Chapter 3. A continuous-time descriptor system of order
n, with p inputs and q outputs, in generalized state space form is described by the
equations,

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0,
y(t) = Cx(t), (6.1)

and has the transfer function

H(s) = C(sE − A)−1B. (6.2)

A discrete-time descriptor system of order n, with p inputs and q outputs, in generalized



82 Chapter 6. Model Reduction

state space form is described by the equations,

Exk+1 = Axk + Buk, x(0) = x0,
yk = Ckxk,

(6.3)

and the transfer function is given by

H(z) = C(zE − A)−1B. (6.4)

If E is invertible, (6.1) and (6.3) can be easily converted to standard state space form.
The reduced-order system of order r (r < n) for system (6.1) should have the form

Ẽ ˙̃x(t) = Ãx̃(t) + B̃u(t),
ỹ(t) = C̃x̃(t), (6.5)

with the transfer function
H̃(s) = C̃(sẼ − Ã)−1B̃.

Similarly, the reduced-order system of order r (r < n) for system (6.3) should have the
form

Ẽx̃k+1 = Ãx̃k + B̃uk,
ỹk = C̃x̃k, k ∈ Z, (6.6)

with the transfer function
H̃(z) = C̃(zẼ − Ã)−1B̃.

A projection method reduces (6.1) (also (6.3)) by choosing two r-dimensional projection
spaces, S1,S2 ⊆ Rn, so that the solution space is projected onto S2, x̃ ∈ S2, and the
residual of (6.1) is orthogonal to S1. The projection can be considered as follows:

x = Ux̃,
U ∈ Rn×r, x ∈ Rn, x̃ ∈ Rr.

(6.7)

By applying this projection to system (6.1) (also (6.3)) and then pre-multiplying by VT,
a realization of the reduced-order system of order r satisfies the projection equations

Ẽ = VTEU, Ã = VTAU, B̃ = VTB, C̃ = C U, (6.8)

where the columns of V and U form bases for S1 and S2, respectively,

colspan(V) = S1, V ∈ Rn×r, colspan(U) = S2, U ∈ Rn×r.

Note that for the SISO case, the matrices B and C change to vectors b and cT, respectively.
If S1 = S2, the projection is orthogonal, otherwise oblique. The matrices V and U are
refered to as the left truncation matrix and the right truncation matrix, respectively. The
following proposition shows that the choice of basis for S1 and S2 is not important.
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Proposition 6.1:
If the columns of V̂ also form a basis for S1, and the columns of Û also form a basis for S2, then
the reduced order system obtained by projection with V̂ and Û according to (6.8), is equivalent
to (has the same transfer function as) the reduced order model obtained by projection with V
and U. ♦

Proof. Let us consider two nonsingular r × r matrices, W and T, such that

V = V̂W, U = ÛT.

Then the transfer function H̃(s) can be represented as

H̃(s) = CU(s VTEU − VTAU)−1 VTB

= CÛ T(s WTV̂TEÛ T −WTV̂TAÛ T)−1 WTV̂TB

= CÛ(s V̂TEÛ − V̂TAÛ)−1 V̂TB

= Ĥ(s).

This completes the proof. �

Hence, the input-output properties of the reduced system in (6.5) depend only on the
column spans of V and U, that is, only on the choice of the projection subspaces S1 and
S2. The projection matrices are enforced to be bi-orthogonal, i.e., VTU = I.

6.3. Krylov-Subspace Based MOR

Nowadays, moment matching using Krylov subspaces is one of the best choices in order
reduction of large scale systems and it was first proposed in [126]. In this approach, the
lower order model is obtained by matching the moments (and/or Markov parameters) of
the original and reduced-order systems where the moments are the coefficients of the
Taylor series expansion of the transfer function about a suitable expansion point. When
the expansion point tends to infinity, the coefficients are called Markov parameters. Well
established algorithms, such as Arnoldi [40, 36], Lanczos [40, 5] or two-sided Arnoldi
[91] can be used to compute a projection framework for the reduced-order system. A
very recent release of the Krylov subspaces based order reduction technique is global
Arnoldi [21], which approximates the large, sparse systems (specially MIMO systems)
to significantly small order. In Figure (6.3), the steps of reduction for moment matching
are shown.

6.3.1. Transfer Function Moments

Let us assume that system (6.1) is a MIMO system with transfer function as in (6.2). By
assuming that A is nonsingular, the Taylor series expansion of the transfer matrix (6.2)
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Figure 6.3. The main steps of Krylov subspace methods.

about zero is,

H(s) = −CA−1B − C(A−1E)A−1B s − · · · − C(A−1E)iA−1B si
− · · · (6.9)

The coefficients of this series, without negative sign, are called moments.

Definition 6.3.1:
In system (6.1), suppose that A is nonsingular, then the i-th moment (about zero) of
this system is given by

mi = C(A−1E)iA−1B, i = 0, 1, . . . , (6.10)

where mi is a q × p matrix in the MIMO case and a scalar mi, in the SISO case. ♦

Moments can be defined about different interpolation points σ , 0 by rewriting the
transfer matrix with the shifted variable s − σ, i.e.,

H(s) = C[(s − σ)E − (A − σE)]−1B =

∞∑
i=0

(s − σ)i mi, (6.11)

where
mi = C{(A − σE)−1E}i (A − σE)−1B, i = 0, 1, . . . ,

assuming that A− σE is nonsingular. These moments are called shifted moments. In fact,
the moments of H(s) about σ are the moments of H(s + σ) about zero and σ should not
be a generalized eigenvalue of the pair (E,A) [47].
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When σ → ∞, a different series results from (6.2). In that case, we set s = 1/ξ in (6.2)
and expanding the Taylor series about ξ = 0. The series is then

H(s) = CE−1B s−1 + C(E−1A)E−1B s−2 + · · · + C(E−1A)iE−1B s−i + · · · ,

and its coefficients are called Markov parameters if E is nonsingular.

Definition 6.3.2:
In system (6.1), suppose that E is nonsingular, then the i-th Markov parameter is
defined as

Mi = C(E−1A)iE−1B, i = 0, 1, . . . (6.12)

In simple words, moments about zero reflect the behavior of a system at low frequencies,
while the Markov parameters reflect the behavior of a system at higher frequencies.

6.3.2. Krylov Subspaces and Moment Matching

The reduced-order model is computed applying suitable projections to system (6.1). We
will calculated these projections via Krylov subspaces, defined in the following:

Definition 6.3.3:
The order m Krylov subspace is the space defined as

Km(A, b) = span{b,Ab,A2b, ......,Am−1b}, (6.13)

where A ∈ Rn×n and b ∈ Rn is called the starting vector. The vectors
b,Ab,A2b, ......,Am−1b that construct the subspace, are called basic vectors. ♦

It is assumed that the basic vectors in a Krylov subspace are linearly independent, that
means the i-th basic vector in the Krylov subspace (6.13) is a linear combination of the
previous i − 1 vectors. Those independent basic vectors form a basis of the Krylov
subspace. But it is also possible that all the basic vectors in a Krylov subspace are not
linearly independent. In that case the first independent basic vectors can be considered
as a basis of the Krylov subspace.

Definition 6.3.4:
The block Krylov subspace of order m is the space defined as

Km(A,B) = span{B,AB,A2B, ......,Am−1B}, (6.14)

where A ∈ Rn×n and B ∈ Rn×p. The columns of B are the starting vectors. Note that
rank(Km(A,B)) ≤ p ·m. ♦

The block Krylov subspace with p starting vectors can be considered as a union of p
Krylov subspaces defined for each starting vector.
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The following theorems demonstrate how to choose the projection matrices to find the
reduced-order system and explain details of matching the moments of the original and
reduced-order systems.

Theorem 6.3.1:
If the columns of the matrix U used in (6.8) form a basis for the order ra Krylov subspace
Kra(A−1E,A−1B) and the matrix V is chosen such that Ã is nonsingular, then the first ra
moments (about zero) of the original and reduced-order systems match. ♦

Proof. See the proof of Theorem 5 in [90]. �

The subspace Kra(A−1E,A−1B) is called input Krylov subspace and order reduction using
a bases of this subspace for projection is called one-sided Krylov subspace, where V is
chosen optionally so that Ã is nonsingular.

Remark 6.2:
The order r of the reduced-order system is the dimension of the Krylov subspace
which is at most p · ra in the MIMO case. It can be less if there are dependent basic
vectors in Kra(A−1E,A−1B) and then only ra moments of the original and reduced-
order systems match. ♦

It is possible to match even more than ra moments by appropriate choice of V. For this,
we introduce another type of Krylov subspace, known as output Krylov subspace and use
it in the following theorem.

Theorem 6.3.2:
If the columns of the matrix V form a basis for the order rb Krylov subspaceKrb(A

−TET,A−TCT)
and the matrix U is chosen such that Ã is nonsingular, then the first rb moments (about zero)
of the original and reduced-order order systems match. ♦

Proof. See [90] for the proof. �

The subspace Krb(A
−TET,A−TCT) is called output Krylov subspace. Now combining The-

orems 6.3.1 and 6.3.2, we summarize in the following theorem.

Theorem 6.3.3:
Assumed that A and Ã are invertible. If the columns of the matrices U and V used in (6.8),
form bases for Kra(A−1E,A−1B) and Krb(A

−TET,A−TCT), respectively, then the reduced-
order transfer function H̃(s) = C̃(sẼ − Ã)−1B̃ matches the first (ra + rb) moments of the
original transfer function H(s) = C(sE − A)−1B. ♦

Proof. See [90, 47] �
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Order reduction by using both input and output Krylov subspaces for projection is
called two-sided Krylov subspace method.

Remark 6.3:
In MIMO system with p inputs and q outputs, each moment is a matrix of p ·q entries.
Therefore, we have multiple moments matching in MIMO case, and the number of
matching moments is p · q · r

p = q · r for Theorem 6.3.1 and p · q · ( r
p + r

q ) = (q · r + p · r)
for Theorem 6.3.3. Hence, choosing only the first r columns of U and V, one can find
a reduced model of order r; because each column of U and V is responsible to match
one more row or column of the moment matrices (for details see [90]). ♦

The idea of moments matching (about zero) using Theorem 6.3.3 can be easily extended
to match the moments about different interpolation points σ , 0 by substituting A by
A − σE in the definition of moments and Krylov subspaces. Before going into detail of
this shifted moment matching, we would like to discuss two more important properties
of Krylov subspaces.

6.3.3. Preconditioning and Shift-Invariance

Preconditioning is sometime essential to generate better projection subspaces (yield
faster convergence) without drastically complicating the construction of the Krylov
subspaces. In that case one solves the problem F Ax = F b, rather than solving the
problem Ax = b, where F ∈ Rn×n is the preconditioner. If F exactly equals A−1, then the
solution is x = F b. In general, F is chosen such a way that the transformed system is
hopefully easier to solve (iteratively) compare to the original system.

Let us consider the transformations with preconditioner F such that the preconditioned
system is

F Eẋ(t) = F Ax(t) + F Bu(t),
y(t) = C x(t). (6.15)

Note that (6.1) and (6.15) both describe the same system and the generalized eigenvalues
of (FA,FE) and (A,E) are identical. Now consider the reduced-order model with this
new description, which is given by

WTF EU ˙̃x(t) = WTF AUx̃(t) + WTF Bu(t),
ỹ(t) = C Ux̃(t), (6.16)

where the matrix U ∈ Rn×r now satisfies

colspan{U(s)} = Kr(F(A − sE), FB)
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and the matrix W ∈ Rn×r satisfies

colspan{W(s)} = Kr((A − sE)TFT, CT).

The reduced-order system described by (6.16) is different than (6.5), although (6.1) and
(6.15) describe the same original system. This happens because of the presence of the
preconditioned matrix F in (6.16) and the modifications of the projection matrices U and
W. If we chose V = FTW rather than (6.8), then the new reduced-order model in (6.16)
can be written in the desired form of (6.5) [47].

A special type of preconditioner, known as exact preconditioner, are generally used in
the frequency dependent problems. This is the exact inverse of the matrix pencil, F =
(A−σE)−1, at a fixed interpolating point σ (scalar). These exact preconditioners are very
important if rational interpolation is to be used for the projection matrices [47, 84, 114].
An important property of exact preconditioning is presented in Lemma 6.3.1.

Lemma 6.3.1:
[47] For any value of s and σ,

(A − σE)−1 (A − sE) = I + (σ − s)(A − σE)−1 E.

♦

In other words, applying an exact preconditioner F = (A − σE)−1 to the pencil (A − sE)
leads to the simpler transformed pencil which consists of a scaled matrix FE shifted by
the identity matrix. An important property of Krylov subspaces is its shift-invariance
property which says that shifting the original matrix pencil by an identity matrix does
not affect the original Krylov subspace.

Lemma 6.3.2 (Krylov subspace shift-invariance [47]):
For any matrix A, starting vectors B and nonzero scalar η,

Km(ηA + I,B) = Km(A,B)

♦

Proof. The proof for the SISO case is given in the Appendix of [47]. The proof for the
MIMO case is analogous to that. �

Now using Lemmas 6.3.1 and 6.3.2, we can summarize that

Km ((A − σE)−1 (A − sE), (A − σE)−1B) = Km ((A − σE)−1 E, (A − σE)−1B) (6.17)

and

Km ((A − σE)−T (A − sE)T, (A − σE)−TCT) = Km ((A − σE)−T ET, (A − σE)−TCT). (6.18)
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Hence, the preconditioned projection subspaces on the left sides of (6.17) and (6.18) are
equivalent to the frequency-independent subspace on the right sides of (6.17) and (6.18),
respectively.

The frequency-independent subspaces in (6.17) and (6.18) can be used to match the
shifted moments (about σ , 0) of the original and reduced-order systems. We proceed
with two fundamental lemmas and later combine them in Theorem 6.3.5 to get our
desire result. The proofs for Lemmas 6.3.3 and 6.3.4 can be found in the Appendix of
[47].

Lemma 6.3.3:
If Kra ((A − σE)−1 E, (A − σE)−1B) ⊆ colspan {U}, then

{(A − σE)−1 E}i (A − σE)−1B = U {(Ã − σẼ)−1Ẽ}i (Ã − σẼ)−1B̃

for i = 0, 1, . . . , ra − 1. Here Ẽ, Ã, B̃ are the matrices of the corresponding reduced-order
system. ♦

Lemma 6.3.4:
If Krb ((A − σE)−T ET, (A − σE)−TCT) ⊆ colspan {V}, then

C (A − σE)−1
{E (A − σE)−1

}
i = C̃(Ã − σẼ)−1

{Ẽ (Ã − σẼ)−1
}
i

for i = 0, 1, . . . , rb − 1. ♦

Combining Lemmas 6.3.3 and 6.3.4 leads to the following lemma. The proof can be
found in [47].

Lemma 6.3.5:
If Kra ((A−σE)−1 E, (A−σE)−1B) ⊆ colspan {U}, and Krb ((A−σE)−T ET, (A−σE)−TCT) ⊆
colspan {V}, then the first (ra + rb) moments (about σ , 0) of the original and reduced-order
systems match. ♦

Matching moments about multiple interpolation points requires multiple Krylov sub-
spaces. Treating these points concurrently and constructing these multiple subspaces
may give rise to complications, but these difficulties can be avoided through a proper
computational approach. The following theorem connects projection via Krylov sub-
spaces and the matching of moments at points σ1, σ2, . . . , σk̄ , ∞.

Theorem 6.3.4:
[47] If

k̄⋃
k=1

Krk
a

((A − σkE)−1 E, (A − σkE)−1B) ⊆ colspan {U}, (6.19)
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and

k̄⋃
k=1

Krk
b

((A − σkE)−T ET, (A − σkE)−TCT) ⊆ colspan {V}, (6.20)

then the moments of the original and reduced-order models satisfy

C{(A − σkE)−1 E}ik (A − σkE)−1B = C̃{(Ã − σkẼ)−1 Ẽ}ik (Ã − σkẼ)−1B̃, (6.21)

for ik = 0, 1, . . . , (rk
a + rk

b) − 1 and k = 1, 2, . . . , k̄. ♦

Proof. For the proof, see [47]. �

Remark 6.4:
One important point in MIMO problem it is not necessary that the same number of
moments match for Krylov subspaces generated for different interpolation points σk
in (6.21). ♦

6.3.4. Computational Aspects for Krylov Subspaces

In most application related models, choosing a suitable basis for the concerned Krylov
subspace is the most crucial task, since it guarantees the better approximation of the
reduced-order model. In one-sided methods, the most popular algorithm is the Arnoldi
algorithm which finds an orthonormal basis for a Krylov subspace [5, 41, 92].

The classical Arnoldi method [5, 41] finds a set of orthonormal vectors that can be
considered as a basis for a given Krylov subspace with one starting vector. The gen-
eralization of this method for more than one starting vector is known as block Arnoldi
method. In the following, we briefly describe a version of the Arnoldi algorithm [92]
for more than one starting vector B = [b1, · · · , bp], in which the resulting matrix of basis
vectors is orthonormal.



6.3. Krylov-Subspace Based MOR 91

Algorithm 6.1 Arnoldi algorithm with deflation using modified Gram-Schmidt [92]
Input: A, B = [b1, · · · , bp]
Output: Orthonormal basis U, block Hessenberg matrix H

1: Delete all linearly dependent starting vectors to find p1 independent starting vectors
for the Krylov subspace.

2: Set
u1 =

b1√
bT

1 b1

,

where b1 is the first starting vector after deleting the dependent starting vectors.
3: for j = 2, 3, . . . , do
4: if j ≤ p1 then
5: r j = b j
6: else
7: r j = Au j−p1

8: end if
9: set û j = r j

10: for i = 1 to j − 1 do
11: hi, j−1 = ûT

j ui

12: û j = û j − hi, j−1 ui
13: end for
14: if û j = 0 then
15: set p1 ← p1 − 1
16: if p1 , 0 then
17: go to step 3
18: else
19: break
20: end if
21: else if û j , 0 then
22: h j, j−1 = ‖û j‖2

23: u j =
û j

h j, j−1

24: end if
25: increase j and go to step 3
26: end for

Consider the Krylov subspace Kr (A,B) with p starting vectors. The algorithm finds a
set of vectors with length one that are orthogonal to each other, UT U = I, where the
columns of the matrix U are the basis for the given Krylov subspace. The specialization
of Algorithm 6.1 is that it can be used for SISO systems as well as MIMO systems, too.
More details about this algorithm and about the construction of orthonormal basis can
be found in [92].
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Remark 6.5:
In Algorithm 6.1, in each step one more vector orthogonal to all other previous
vectors is constructed and then it is normalized to have length one. In a general case,
when dimension r of Kr (A,B) is not small enough, it can happen that not all of the
basic vectors are linearly independent. Then, linearly dependent vectors must be
deleted during the iterations (=deflation). In Algorithm 6.1, Step 14 occurs in case of
deflation. ♦

Other suitable methods for generating reduced-order models using Krylov subspaces
are the two-sided Arnoldi method and the Lanczos method, where the methods find two
bases for the input and output Krylov subspaces. The two-sided Arnoldi method [41,
47, 92] uses Algorithm 6.1 twice, first for the calculation of a basis U of the input Krylov
subspace, then for the calculation of a basis V for the output Krylov subspace and then
reduces the model using (6.8). Lanczos methods are also very popular when using
two-sided methods for the reduced-order model [5, 41]. It finds two bases for input and
output Krylov subspaces that are orthogonal to each other.

In the general case, specially for MIMO systems, when r is not small enough, it can
happen that with repetitive multiplications by a fixed matrix, it is no longer possible in
finite precision to introduce additional new information into the reduced-order model.
This loss of information due to repetitive multiplications manifests itself through ill-
conditioned Hankel matrices in the explicit moment matching equations. The same
situation may arise in case of multipoint rational interpolations of K ((A−σkE)−1 E, (A−
σkE)−1B) using Theorem 6.3.4 for k = 0, 1, . . . , k̄. For example, forming um by simply
multiplying um−1 by (A−σkE)−1 E will quickly make the columns of U linear dependent
in finite precision. In that case one may experience rank deficiency in the computed U
or V. It is seen in [47] that one really has no need to form U of size n to find a minimal
realization of system (6.1). In the context of the Lanczos method, a loss of rank in U or
V is termed immediate breakdown [5]. There are multiple sources for rank-deficient U
or V discussed in [47].

6.3.5. Stability and Passibity

Recall from the discussion in Chapter 3 that, for singular E, stability of the continuous-
time descriptor system (6.1) can be characterized in terms of the finite eigenvalues of
the matrix pencil λE − A. More precisely we have the following theorem.

Theorem 6.3.5:
The continuous-time descriptor system (6.1) is stable if and only if, the following two condi-
tions are satisfied:
(i) All finite eigenvalues λ of the pencil λE − A satisfy Re(λ) ≤ 0.
(ii) All finite eigenvalues λ of λE − A with Re(λ) = 0 are simple. ♦
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In view of Theorem 6.3.5, stability of system (6.1) is characterized by the finite eigen-
values of the pencil λE − A, and the infinite eigenvalues of λE − A have no effect on
stability. These infinite eigenvalues of λE − A result only in impulsive motions, which
tend to zero when t → ∞. In using Krylov Krylov methods to reduce the order of a
stable models, there is no general guarantee to find a stable reduced-order model except
under some special conditions [6, 7] .

An important property to be preserved in order reduction is passivity of the original
system. In general speaking, a system is passive if it does not generate energy. For
descriptor systems as in (6.1) with identical numbers of inputs and outputs (i.e., p = q),
passivity is characterized by the positive realness of the transfer function H(s).

Definition 6.3.5:
A square (p = q) transfer matrix H(s) : C 7→ (Cp×p

∪∞) is positive real if
(i) H(s) has no poles in C+.
(ii) H(s∗) = (H(s))∗ for all s ∈ C.
(iii) Re(wHH(s)w) ≥ 0 for all s ∈ C with Re(s) > 0 and w ∈ Cp. ♦

The following theorem establishes that the descriptor system (6.1) can be stable and
passive in some restricted cases.

Theorem 6.3.6:
[92] In the system (6.1), if A + AT

� 0 and E = ET
� 0, then the reduced-order system

(6.5) using a one-sided method with the choice V = U, is stable and furthermore, the transfer
matrix H̃(s) = BTU(sUTEU −UTAU)−1UTB is positive real. ♦

Proof. See [40] for the proof. �

Hence we can conclude that for certain passive (stable) systems, one-sided Krylov
subspace methods can be used to find passive (stable) reduced-order models.

6.4. Balanced Truncation MOR

A popular model reduction technique for linear state space system is the BT approach
where the original state space system is transformed into a balanced form whose reacha-
bility and observability Gramians become diagonal and equal. The balanced truncation
method truncates all those states of the balanced system that are both difficult to reach
and to observe. An important property of this method is that asymptotic stability is
preserved in the reduced order system and an a priori error bound can be computed.
In the following subsections we will briefly review some important concepts of the
balanced truncation model reduction technique which are applicable for linear discrete-
time singular systems. A similar description can be found in [75, 106, 108] for linear
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continuous-time descriptor systems.

6.4.1. Basics of Balanced Truncation

We consider again the linear discrete-time descriptor system of order n, with p inputs
and q outputs, in generalized state space form (with nonsingular E) as described by
Equation (6.3) and its transfer function described by Equation (6.4). We will assume
that system (6.3) is d-stable.

Definition 6.4.1:
A transfer function H(z) ad described in (6.4) proper if lim

z→∞
H(z) < ∞, and improper,

otherwise. If lim
z→∞

H(z) = 0, then H(z) is said to be strictly proper. ♦

The main idea of balanced truncation model reduction is to rewrite the system (6.4) using
a system equivalence transformation T called balancing transformation. Such a balanced
transformation is defined by the property that both the reachability and observability
Gramians of system (6.4) are diagonal and equal. In this coordinate system one has

TGcTT = T−TGoT−1 = Σ = diag(σ1, σ2, . . . , σn),

where σ1 ≥ σ2 . . . σn > 0, the σi are the Hankel singular values of (6.3) and Gc and Go
are the reachability and observability Gramians of (6.3), respectively. Note that these
Gramians are given by the solutions of the two dual Stein equations

AGcAT
− EGcET = −BBT, ATGoA − ETGoE = −CTC.

A natural question now arises: why are balanced state space representations so interest-
ing? We will answer this question from [129] by assuming system (6.3) in its standard
state space representation (i.e., assume E = I) in order to make the understanding more
easier. Then the reachability and observability Gramians associated with the system
Σ(A,B,C) can be represented as

Gc :=
∞∑

k=0

AkBBT(AT)k, Go :=
∞∑

k=0

(AT)kCTC(A)k,

respectively. Let us have a look at the interpretation of the reachability and observability
Gramians. The system Σ(A,B,C) with input u = 0 and initial state x(0) = x0 produces as
its output the trajectory yk = CAkx0 for k ≥ 0. The L2 norm of this output is given by

‖y‖22 :=
∞∑

k=0

xT
0 (AT)kCTCAkx0 = xT

0 Gox0 (6.22)

and it represents the observation energy of the state x0. Hence, the observability Gramian
measures the effect of initial states on the output of the system when the input u = 0. If
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Go is nearly singular, then there exist states which have low observation energy in the
sense that ‖y‖2 will be small.

We can give an interpretation of the reachability Gramian by considering the minimal
energy control problem given by

J(u) :=
−1∑

k=−∞

uT
k uk, (6.23)

where one needs to compute the minimum cost J subject to the constraint that the
control u can steer the state x to x0 at sampling time k = 0. Therefore, such a minimal
energy control problem and the minimal cost relate only with state equation

xk+1 = Axk + Buk

at sampling times k < 0. The minimum norm solution to this problem is given by

uopt
k = BT(AT)−1−kG−1

c x0, k < 0,

and the resulting cost
J(uopt) = xT

0 G−1
c x0. (6.24)

Hence, we can see that the inverse reachability Gramian reflects the minimal cost to
reach a state x0 by applying suitable (past) input signals. If Gc is nearly singular then
there exist states x0 that are difficult to reach as the minimal control energy needed to
reach these states may become large.

We now investigate both the issues for a balanced system. Now suppose that the system
is balanced. In that case we have

Gc = Go = Σ = diag(σ1, σ2, . . . , σn)

with σ1 ≥ σ2 . . . ≥ σn > 0. Then the minimal energy cost to reach the i-th state component

x0 = ei = [0 . . . 1 0 . . . 0]

(with the 1 at the i-th position) is given by the number

eT
i G−1

c ei = eT
i Σ−1ei = σ−1

i . (6.25)

The corresponding output energy for this i-th state is given by

‖y‖22 = eT
i Goei = eT

i Σei = σi. (6.26)

Since the Hankel singular values for a balanced system appear in descending order, we
notice that state components with low indices (like e1, e2, etc.) are easy to observe (in the
sense that the output energy is large) and at the same time easy to reach (in the sense
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that the minimal energy to reach these states is small). Similarly, state components with
high indices (like en, en−1, etc.) are difficult to observe (in the sense that the observation
energy is small) and at the same time difficult to reach (in the sense that the minimal cost
to reach these states is large).

Therefore, in a balanced state space representation the following relations are followed

eT
1 G−1

c e1 ≤ eT
2 G−1

c e2 ≤ . . . ≤ eT
nG−1

c en,

eT
1 Goe1 ≥ eT

2 Goe2 ≥ . . . ≥ eT
nGoen.

(6.27)

In general speaking, in a balanced state space representation, the states that are easy
to reach are also easy to observe, and states that are difficult to reach are also difficult
to observe. In this sense reachability and observability properties are balanced in a
balanced state space representation.

We would like to discuss one more interesting fact from [28] regarding the balanced
realization and its balanced state truncation. Let us consider system (6.3) as in gen-
eralized descriptor form and assume that it is balanced, i.e., Gc and Go are equal and
diagonalized. Consider now the energy functions described by the Gramians Gc and
Go associated with system (6.3). As we know from previous considerations, the reach-
ability and observability Gramians measure to what degree each state is excited by an
input, and each state excites future outputs, respectively. For a given stable system (6.3),
the energy functions for any state x can be described as [28]

∆c(x) = (xTG−1
c x)

1
2 , ∆o(x) = (xTGox)

1
2 , (6.28)

where ∆c(x) is the smallest amount of energy needed to steer the system from 0 to x,
and ∆o(x) is the largest amount of energy obtained by observing the output of the free
system with the initial condition x. If we define the energy storage efficiency at state x0
(x0 is the state at time t = 0) by

∆(x0) =
xT

0 Gox0

xT
0 G−1

c x0
, (6.29)

then the maximization of ∆(x0) with respect to x0 results the generalized eigenproblem

Gox0 = G−1
c ∆(x0)x0,

or, more simply,
GcGox0 = ∆(x0)x0.

Hence, ∆(x0) takes an extremum value for x0 at an eigenvector of GcGo (or, equivalently
a generalized eigenvector of the pair (Go,G−1

c )). Therefore, the extremum value of ∆(x0)
corresponds to the maximal eigenvalue of the product GcGo, and hence the square root
of the largest Hankel singular value σ1 of the considered system.
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Figure 6.4. The effect of a balancing transformation T on the reachability and observ-
ability ellipsoids. image source:[28]

It is shown in [76] that for non-minimal systems the reachable subspace and the unob-
servable subspace are the image and the kernel of Gc and Go, respectively. The balancing
transformation T transforms the observability and reachability ellipsoids to an identical
ellipsoid aligned with principal axes along the coordinate axes as shown in Figure 6.4.

After balancing the system, a reduced-order model is obtained by truncating the least
reachable and observable states, corresponding to the smallest Hankel singular values
and having little effect on the input/output behavior. Hence, for a reduced-order model
the original state x = (x1, . . . , xn)T is reduced to x̃ = (x1, . . . , xr)T , where r� n.

We summarize the procedure of balanced truncation in Algorithm 6.2.

Remark 6.6:
Note that Ẽ = Ir and needs not be computed. The balancing transformation matrices
for the generalized discrete-time systems (6.3) are not unique [106, 111]. ♦

6.4.2. Balanced Truncation for Singular Systems

Balanced truncation model reduction for singular systems (i.e., E is singular in (6.3) are
more involved than the order reduction approach explained in Algorithm 6.2. In that
case we use the spectral decomposition technique which reduces the original system
into two subsystems: the forward subsystem and the backward subsystem. Very basics
of this spectral decomposition technique can be found in Chapter 3 of this thesis and
also in [9, 107]. Computing the reduced-order system for the stable system (6.3) can be
interpreted as performing a system equivalence transformation (Ŵ, T̂) such that

[
Ŵ(zE − A)T̂ ŴB

CT̂

]
=


zE f − A f 0 B f

0 zE∞ − A∞ B∞
C f C∞

 , (6.30)
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Algorithm 6.2 Balanced truncation for discrete-time system
Input: Σ(E,A,B,C) realization of the original system of order n such that zE − A is
stable and a reduced-order r.

Output: Σ(Ẽ, Ã, B̃, C̃) reduced-order system realization.

1: Solve the Stein equations

AGcAT
− EGcET = −BBT, ATGoA − ETGoE = −CTC.

for R and L, where Gc = RRT and Go = LLT are full rank factorizations.
2: Compute the SVD

LTER = UΣVT = [U1,U2]
[
Σ1 0
0 Σ2

]
[V1,V2]T,

where the matrices [U1,U2] and [V1,V2] have orthonormal columns,

Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn).

3: Compute the projection matrices

WL = LU1Σ
−

1
2

1 , TR = RV1Σ
−

1
2

1 .

4: Compute the reduced-order model

(Ẽ, Ã, B̃, C̃) = (WT
L ETR, WT

L ATR, WT
L B, CTR).

where the pencil zE f − A f contains only those eigenvalues of zE − A which lie inside
the unit circle, all eigenvalues of zE∞ −A∞ are infinite, and the matrices ŴB and CT̂ are
partitioned in blocks conformally to the matrix pencil zE−A. Then we reduce the order
of the forward subsystem Σ(E f ,A f ,B f ,C f ) and the backward subsystem Σ(E∞,A∞,B∞,C∞)
separately. The Gramians that correspond to the forward subsystems are called causal
Gramians and those that corresponds to the backward subsystem are called noncausal
Gramians.

The decoupling of the system matrices described above is equivalent to the additive
decomposition of the transfer function as H(z) = Hsp(z) + P(z), where

Hsp(z) = C f (zE f − A f )−1B f , and P(z) = C∞(zE∞ − A∞)−1B∞

are the strictly proper part and the polynomial part of H(z), respectively. The Hankel
singular values corresponding to the strictly proper part Hsp(z) are called causal Hankel
singular values and Hankel singular values that correspond to the improper part P(z) are
called noncausal Hankel singular values of system (6.3).
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Then the transfer function of the reduced-order system (6.6) has the form H̃(z) = H̃sp(z)+
P̃(z), where

H̃sp(z) = C̃ f (zẼ f − Ã f )−1B̃ f and P̃(z) = C̃∞(zẼ∞ − Ã∞)−1B̃∞.

A short overview of the order reduction procedure for singular systems can be repre-
sented as follows: we first balance both the forward and backward subsystems using
similar type algorithm as Algorithm 6.2 and then truncate the balanced proper part to
get the reduced-order forward subsystem. Unfortunately, we can not do the same for
the backward subsystem. The equations associated with the noncausal Hankel singu-
lar values describe constraints of the system, i.e., they define a manifold in which the
solution dynamics takes place. If we truncate the states that correspond to the small
non-zero noncausal Hankel singular values, then the pencil for the reduced-order sys-
tem may get finite eigenvalues outside the unit circle which will lead to additional errors
in the system approximation. Hence, P̃(z) is not the reduced part of P(z) but balanced.

Last of all we combine the reduced forward subsystem with the unreduced but balanced
backward subsystem. The order of the reduced system is the sum of the order of the
forward reduced system and of the order of the balanced backward subsystem. Some
suitable numerical algorithms for balanced truncation of singular systems using the
above concept can be found in [15, 75, 109, 108] for the continuous-time case.

It is shown in [103, 107] that the causal and noncausal Gramians of the discrete-time
descriptor system (6.3) satisfy some projected generalized discrete-time Lyapunov equa-
tions with special right-hand side.

Theorem 6.4.1:
[103] Consider the discrete-time descriptor system (6.3), where the pencil λE−A is d-stable.
(1) The causal and noncausal reachability Gramians Gcr and Gncr are the unique symmetric,
positive semidefinite solutions of the projected generalized discrete-time Lyapunov equations

AGcrAT
− EGcrET = −PlBBTPT

l ,

Gcr = PrGcrPT
r ,

(6.31)

and
AGncrAT

− EGncrET = (I − Pl)BBT(I − Pl)T,

Gncr = (I − Pr)Gncr(I − Pr)T,
(6.32)

respectively.
(2) The causal and noncausal observability Gramians Gco and Gnco are the unique symmetric,
positive semidefinite solutions of the projected generalized discrete-time Lyapunov equations

ATGcoA − ETGcoE = −PT
r CTCPr,

Gco = PT
l GcoPl,

(6.33)
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and
ATGncoA − ETGncoE = (I − Pr)TCTC(I − Pr),

Gnco = (I − Pl)TGnco(I − Pl),
(6.34)

respectively. ♦

Proof. See [103, 105]. �

Remark 6.7:
Note that Gc = Gcr + Gncr and Go = Gco + Gnco for the complete reachability and
observability Gramians. ♦

Solving these projected Lyapunov equations mentioned in Theorem 6.4.1 is also a
challenging and tricky job. Two well known methods, the Bartels-Stewart method and
Hammarling’s method for solving these PGDLEs have been discussed in [103]. The
causal and noncausal Gramians are now used to define Hankel singular values for the
descriptor system (6.3) that are of great importance in model reduction via balanced
truncation.

It has been shown in [107] that all the eigenvalues of the matrices GcrETGcoE and
GncrATGncoA are real and non-negative. The square roots of the largest n f eigenvalues
of the matrix GcrETGcoE, denoted by σ j, are called causal Hankel singular values of the
discrete-time descriptor system (6.3). The square roots of the largest n∞ eigenvalues of
the matrix GncrATGncoA, denoted by θ j, are called noncausal Hankel singular values of the
discrete-time descriptor system (6.3).

For symmetric and positive semidefinite Gramians we also have the full rank Cholesky
factorizations

Gcr = RcRT
c , Gco = LcLT

c ,

Gncr = RiR
T
i , Gnco = LiL

T
i ,

(6.35)

where the lower triangular matrices Rc, Lc, Ri, Li are the Cholesky factors of the Grami-
ans. In this case the causal Hankel singular values can be computed as the n f largest
singular values of the matrix LT

c ERc, and the noncausal Hankel singular values can be
computed as the n∞ largest singular values of the matrix LT

i ARi, see [107]. In that case,
we define a balanced realization of the discrete-time descriptor system (6.3).

Definition 6.4.2:
A realization Σ(E,A,B,C) of the discrete-time descriptor system (6.3) is called balanced
if

Gcr = Gco =

[
Σ 0
0 0

]
, Gncr = Gnco =

[
0 0
0 Θ

]
where Σ = diag(σ1, . . . , σn f ) and Θ = diag(θ1, . . . , θn∞). ♦
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For a minimal realization Σ(E,A,B,C) with d-stable pencil zE−A, we can find nonsingu-
lar WL and TR such that the transformed realization Σ(WT

L ETR, WT
L ATR, WT

L B, CTR) is
balanced. Note that we do not need to transform the descriptor system into a balanced
form explicitly in order to perform order reduction. It is sufficient to determine the
subspaces associated with the dominant causal and non-zero noncausal Hankel singu-
lar values and project the descriptor system onto these subspaces. We summarize the
whole order reduction process in Algorithm 6.3.

Remark 6.8:
(i) The order of the reduced-order model computed using Algorithm 6.3 is r = r f + l∞.

(ii) Since we do not truncate any non-zero noncausal Hankel singular value, the
equality P(z) = P̃(z) holds. The reduced-order system computed using Algorithm 6.3
is minimal and the pencil zẼ − Ã is d-stable. ♦

6.4.3. Stability and Approximation Error

One advantageous characteristic of balanced truncation order reduction techniques as
compared to the moment matching techniques is that it preserves the stability of the
original model and an a-priori error bound for the reduced-order system can be easily
chosen. One can easily show that the reduced-order system computed by this method is
asymptotically stable, minimal and balanced [75, 108]. Moreover, several error norms
for the reduced system can be defined [107, 118, 28].

The H∞-norm of the transfer function H(z) ∈H∞ is defined by [107]

‖H‖H∞ = sup
ω∈[0,2π]

σmax(H(eiω)) = sup
ω∈[0,2π]

‖H(eiω)‖2.

Then, the a-priori error bound can be given for the error between the original and the
reduced-order system:

‖H − H̃‖H∞ = sup
ω∈[0,2π]

‖H(eiω) − H̃(eiω)‖2 ≤ 2 trace(Σ2), (6.36)

where ‖.‖2 denotes the spectral norm of matrices and Σ2 contains the truncated causal
Hankel singular values. We can also define a computable upper bound of the error
system by computing the H2 norm. For the H2 norm we use the following formula:

‖H‖2H2
= trace(BTGoB) = trace(CGcCT),

where Gc and Go are respectively the reachability and observability Gramians of the
system. To compute the H2 norm of the error system, one needs to solve again another
Lyapunov equation for one Gramian of this error system which leads computational
cost of order (n + r)3. One suitable and efficient method which only needs the Gramian
of the original method has been proposed in [1]. Several representations for the H2
norm of the error system using this proposed method are derived in [28].
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Algorithm 6.3 Balanced truncation for discrete-time descriptor (singular) systems
Input: Σ(E,A,B,C) realization of the original system of order n such that zE − A is
d-stable and a reduced-order r.
Output: Σ(Ẽ, Ã, B̃, C̃) reduced-order system realization.

1: Solve (6.31) and (6.32) for Gcr and Gncr, respectively.
2: Solve (6.33) and (6.34) for Gco and Gnco, respectively.
3: Compute the Cholesky factors Rc and Ri for the reachability Gramians

Gcr = RcR
T
c , Gncr = RiR

T
i .

4: Compute the Cholesky factors Lc and Li for the observability Gramians

Gco = LcL
T
c , Gnco = LiL

T
i .

5: Compute the skinny SVD

LT
c ERc = UΣVT = [U1,U2]

[
Σ1 0
0 Σ2

]
[V1,V2]T,

where the matrices [U1,U2] and [V1,V2] have orthonormal columns,

Σ1 = diag(σ1, . . . , σr f ), Σ2 = diag(σr+1, . . . , σn f )

with n f = rank(LT
c ERc).

6: Compute the skinny SVD
LT

i ARi = U3ΘVT
3

where U3 and V3 have orthonormal columns, Θ = diag(θ1, . . . , θl∞) with l∞ =
rank(LT

i ARi).
7: Compute the projection matrices

WL = [LcU1Σ
−

1
2

1 , LiU3Θ−
1
2 ] TR = [RcV1Σ

−
1
2

1 , RiV3Θ−
1
2 ].

8: Compute the reduced-order model

(Ẽ, Ã, B̃, C̃) = (WT
L ETR, WT

L ATR, WT
L B, CTR).

6.5. Discussion

Krylov subspace-based order reduction techniques are suitable for model reduction for
large scale linear dynamical systems, especially those that arise in the simulation of
electric circuits and of micro-electro-mechanical systems. Although Krylov subspace
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methods seem to be superior to balanced truncation in numerical efficiency with cheaper
computational costs, but the stability of the original system may be lost and there is no
general error bound similar to balanced truncation except under some special conditions
[6, 7].

On the other hand, the most prominent characteristics of balanced truncation approach
are: first, for a reasonable small or medium order system (say a few hundred), it gives
a satisfactory approximation; second, this approximation can be obtained at relatively
reasonable computational cost; and thirdly, an a-priori upper bound for the error be-
tween the original and reduced-order systems exists for the H∞-norm. Stability of the
original system is preserved in the reduced system almost in all cases.

But the drawbacks of the BT approach are that it requires (in most cases) to solve the
matrix equation (well known as Lyapunov equations or Stein equations) which seems
to have computational complexity of huge order when the order of the system is very
high, i.e., n > O(104). Also for singular systems, reduction to stable and unstable modes
of the original system takes numerous efforts. But there are several iterative techniques
available (See Chapter 9 of this thesis, and also in [67, 13, 70, 82, 49, 110, 10] for more
details) which approximate the solutions of those matrix equations with a prescribed
tolerance.
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Krylov subspace projection method is one of the best choices for model reduction of time-
varying systems in the field of signal analysis and electrical interconnections. Balanced
truncation methods [76, 93] can also be applied, but there is some doubt about the
effective implementation of these techniques. Therefore, a lot of work has been devoted
to developing the techniques of model reduction using rational approximations and the
projection formulations [88, 47, 41].

In this chapter we focus on the problems that result from the linearization of nonlinear
circuit problems and the resulting models are periodically linear time-varying. Our
implementations and application examples also focus on these systems. In Section 7.1,
we discuss the LTV signal analysis for a small response and discuss the frequency-
domain matrix formulation of the system which gives the concept for the model reduction
procedure. In Section 7.2, we choose a projection framework using a finite discretization
method, known as time-domain matrix formulation of the LPTV systems. This section
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also discusses an approximation scheme using Krylov subspaces to approximate the
appropriate subspaces and discuss how to compute them more efficiently. We also
show that the model based on approximate multipoint Krylov subspace methods can
be efficiently achieved from the approximated subspace. Then in Section 7.3, we discuss
our proposed model order reduction procedure in detail. In the last section we give
numerical examples of the proposed model reduction technique. We generalize the
method from [84] to differential-algebraic equations.

7.1. Background

Let us recall the linear time-invariant MIMO system in differential-algebraic form

E(t)ẋ(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t), (7.1)

where x(t) ∈ Rn contains the descriptor variables, u(t) ∈ Rp (p ≤ n), is the system input,
y(t) ∈ Rq is the system output, n is the system order, and p and q are the numbers
of system inputs and outputs, respectively. E(t), A(t), B(t), C(t) are matrices of order
compatible with x(t), u(t), and y(t) and assumed to be continuous functions of time. All
the above matrices are periodic with a period T > 0 and the matrices E(t) are allowed to
be singular. For SISO systems, p, q=1, the matrices B and C change to vectors b and cT,
respectively.

Simply speaking, we can consider obtaining a reduced-order system in similar form by
applying a projection operation with matrices V and U just as in LTI case

Ẽ(t) ˙̃x(t) = Ã(t)x̃(t) + B̃(t)u(t),
y(t) = C̃(t)x̃(t), (7.2)

where
Ẽ(t) = VT(t)E(t)U(t), Ã(t) = VT(t)A(t)U(t),
B̃(t) = VT(t)B(t), C̃(t) = C(t) U(t). (7.3)

Similar to the LTI case, the dimension r of the reduced-order system is smaller than
the original system (7.1). Hence, the reduced-order system requires lower computation
cost and suitable for higher level simulation.

In integrated circuit applications, the most common basis for generating reduced-order
LPTV macromodels is mainly based on the concept of time-varying system (TVS) func-
tion [133, 78], denoted by h(s, t). In circuit applications, h(s, t) is time-varying and peri-
odical in t, and hence classical steady-state approaches can be involved to compute the
compact transient representation of the system. Two well known approaches based on
frequency- and time-domain formulations are mainly used for such transformations; the
frequency-domain approach uses the idea of the harmonic balance (HB) [58, 42, 87], and



7.1. Background 107

the time-domain formulation uses a collocation-based finite-differences (FD) method
[84, 87, 78]. A reduced-order LPTV macromodels is then carried out by a reduced-order
approximation of h(s, t) via appropriate Krylov-subspace approximation techniques.

We have already shown in Chapter 2 that in the field of integrated circuits, the model
LPTV systems in the time-domain are typically carried out using the MNA approach
which casts the linearized LTV systems into the familiar forms

Ḡ(t)v +
d
dt

(C̄(t)v) = Bu(t), (7.4)

for a small signal v, where u(t) represents the input signal, Ḡ(t) and C̄(t) are the time-
varying conductance and capacitance matrices, respectively. The output, y(t), of the
LPTV system can be an arbitrary node voltage and can be written as

y(t) = C(t)v(t), (7.5)

where C(t) contains the vectors that link the set of variables to the output nodes. To
relate to the standard notation as in (7.1), we may make the identification E(t) = C̄(t),
A(t) = −(Ḡ(t) + ˙̄C(t)).

Most of the work in model reduction for LPTV macromodels using LTI framework
has been done on the basis of rational approximations of the time-varying transfer
functions, which were introduced by L. Zadeh [133] to describe the response of LTV
systems. According to Zadeh’s formalism, the transfer path from the input u(t) to the
output y(t) can be described by the TVS function h(s, t) [133, 84], where the response of
the system due to an input of the form

u(t) = est, (7.6)

is given by
v(t) = est h(s, t). (7.7)

Substituting (7.6) and (7.7) into (7.4), we get an equation for h(s, t) as

Ḡ(t)h(s, t) +
d
dt

(C̄(t)h(s, t)) + sC̄(t)h(s, t) = B(t). (7.8)

Hence, the transfer path of the system from the input u(t) to the output y(t) can be
represented by the time-varying transfer function Φ(s, t) where,

Φ(s, t) = C(t)h(s, t). (7.9)

It is clear from (7.9) that a full characterization of the system transfer functions can be
obtained by solving (7.4) with substitution of s by j2π f , and solving the corresponding
LPTV system. This process is repeated for all possible frequency values f of interest.
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In the frequency-domain representation, all the time varying coefficient matrices in (7.8)
are represented in Fourier series as

C̄(t) =
∑
∞

i=−∞ C̄i e jiω0t,

Ḡ(t) =
∑
∞

i=−∞ Ḡi e jiω0t,

h(s, t) =
∑
∞

i=−∞Hi(s) e jiω0t.

(7.10)

Substituting (7.10) into (7.8) we get the following system of equations

[sCFD + (GFD + ΩCFD)]HFD(s) = BFD, (7.11)

where

CFD =



...
...

...
· · · C̄0 C̄−1 C̄−2 · · ·

· · · C̄1 C̄0 C̄−1 · · ·

· · · C̄2 C̄1 C̄0 · · ·

...
...

...


, GFD =



...
...

...
· · · Ḡ0 Ḡ−1 Ḡ−2 · · ·

· · · Ḡ1 Ḡ0 Ḡ−1 · · ·

· · · Ḡ2 Ḡ1 Ḡ0 · · ·

...
...

...


,

Ω = jω0 diag[· · · ,−2I,−I, 0, I, 2I, · · · ], HFD(s) = [· · · ,H−1(s),H0(s),H1(s), · · · ]T,

BFD = [· · · , 0,BT, 0, · · · ]T.
(7.12)

Now defining
KFD = GFD + ΩCFD, (7.13)

Equation (7.11) can be written as

[sCFD + KFD]HFD(s) = BFD, (7.14)

where KFD and CFD both work as continuous operators. Representation (7.11), or
equivalently (7.14) is known as the frequency-domain matrix form of the LTV transfer
functions. However, it is also possible to get the above expression from the finite-
difference formulations [85, 87] in the limit as the time step goes to zero.

Remark 7.1:
The time-varying transfer function Φ(s, t) can be represented in the Fourier expansion
[87] as

Φ(s, t) =

∞∑
i=−∞

Hi(s) e jiω0t. (7.15)

Equation (7.15) implies that any LPTV system can be decomposed into LTI systems
followed by simple multiplications with e jiω0t. The quantities Hi(s) are called baseband-
referred transfer functions. ♦
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7.2. Model Reduction for LTV Systems

Model reduction of LPTV systems has been proposed in [84, 87, 77] by analyzing the
transfer characteristics of such systems efficiently. The key task of generating small LTV
macromodels is essentially that of constructing reduced-order approximation for Φ(s, t).

We assume that the time-varying transfer functions Φ(s, t) considered here are ratio-
nal functions. Therefore, from (7.9) we can notice that h(s, t) are also rational. Hence,
the reduced-order model will be obtained from the same sorts of rational approxima-
tions that have been suitable for reduction of LTI systems. Therefore, we first find an
equivalent LTI representation of the time-varying transfer functions in terms of finite-
dimensional matrices.

7.2.1. Discretization of Transfer Function

The rational matrix function can be obtained by discretizing the operators KFD and CFD.
Since, we focus our work to LPTV systems, we need to specify C(t) and B(t) over a
fundamental period, T. We construct a time-domain version of the equation in (7.14)
by collocating h(s, t) over time samples t ∈ [0,T] at M sample time points t1, . . . , tM, with
periodicity tM = T.

Using linear multistep formula (e.g., backward Euler [114, 113]) and considering the
periodicity of h(s, t), i.e., h(s, t) = h(s, tM), we get the representation of (7.8) in terms of
finite-dimensional matrices

(s ETD − ATD)H(s) = BTD, (7.16)

with

ATD = −(GTD + ∆ETD), (7.17)

GTD =


Ḡ1

Ḡ2
. . .

ḠM

 , ETD =


C̄1

C̄2
. . .

C̄M

 , (7.18)

∆ =


1
41

I −
1
41

I

−
1
42

I 1
42

I
. . .

. . .

−
1
4M

I 1
4M

I

 , (7.19)

H(s) =
[
hT

1 (s), hT
2 (s), . . . , hT

M(s)
]T
, (7.20)

BTD = [BT
1 , BT

2 , . . . ,B
T
M]T, (7.21)
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where Ḡ j = Ḡ(t j), C̄ j = C̄(t j), B j = B(t j), h j(s) = h(s, t j), and 4 j is the jth time step.

Setting additionally
CTD = [C1 C2 . . .CM]T, (7.22)

where C j = C(t j), the matrix of baseband-referred transfer functions HTD(s) is given by

HTD(s) = CTDH(s) = CTD(s ETD − ATD)−1BTD. (7.23)

Equation (7.23) is called time-domain matrix form of of the LTV transfer functions. The
discretization procedure has converted the n dimensional time-varying system of (7.14)
to an equivalent LTI system of dimension N = nM, which is larger by a factor equal to
the number of time steps M in the discretization. Equation (7.23) can be used directly
for reduced-order modelling. At that point algorithmic approaches that can be used for
the model reduction of LTI systems, can be applied to matrices defined in (7.17)-(7.23).

7.2.2. Approximation by Krylov Subspace Methods

Following the work in [114], the transfer function for a small-signal steady-state re-
sponse of the periodic time-varying system is obtained by solving the finite-difference equa-
tions


C̄1
41

+ Ḡ1 −
C̄M
41
· α(s)

−
C̄1
42

C̄2
42

+ Ḡ2
. . .

. . .

−
C̄M−1
4M

C̄M
4M

+ ḠM




ṽ(t1)
ṽ(t2)
...

ṽ(tM)

 =


B̃(s, t1)
B̃(s, t2)
...

B̃(s, tM)

 , (7.24)

where α(s) ≡ e−sT, T is the fundamental period, and B̃(s, tk) = estkB. The transfer function
h(s, t) is then given by h(s, t) = e−stṽ(t).

Although (7.24) can be solved using sparse matrix techniques, but we look for a more
efficient approach which exploits the fact that the matrix is mostly block lower triangular
and is typically solved for the shift of frequencies. To describe this approach, we first
find a suitable representation of (7.24) in the time-domain matrix form.

For this purpose, we decompose the coefficient matrix of (7.17) into two triangular parts,
ATD = L + U, where L be the nonsingular lower triangular portion and U is the upper
triangular portion of ATD in (7.17), i.e.,

L =


C̄1
41

+ Ḡ1

−
C̄1
42

C̄2
42

+ Ḡ2
. . .

. . .

−
C̄M−1
4M

C̄M
4M

+ ḠM

 , (7.25)
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and

U =


0 . . . 0 −

C̄M
41

0
. . . 0 0

...
. . .

...
0 . . . 0 0

 . (7.26)

Using the expressions for L and U, we can represent (7.24) in the time-domain matrix
form

(L + α(s)U)ṽ = B̃(s). (7.27)

If we define a small-signal modulation operator ψ(s),

ψ(s) =


Iest1

0 Iest2

. . .
. . .
0 IestM

 (7.28)

then we obtain an expression of the transfer function as follows,

H(s) = ψH(s)ṽ(s) (7.29)

and also
B̃(s) = ψ(s)BTD.

Now we can obtain an approximation from the finite-difference discretization as

(s ETD − ATD) ≈ ψH(s)[L + α(s)U]ψ(s). (7.30)

The difference between the two sides of (7.30) depends on the treatment of the small
signal that has been applied to the test. The left hand side represents a spectral dis-
cretization, and the right hand side represents a finite-difference discretization.

It is briefly discussed in [85, 84] that the spectral form (7.16) that is ameanable to
model reduction is less convenient to work with. If we even use the Krylov subspace
scheme and use a lower-triangular preconditioner, at each different frequency point the
preconditioner needs to be reconstructed. That means we need to re-factor the diagonal
blocks, and the computational cost as well as the problem size increases (see [114]).

To resolve this dilemma assume the projection matrix V is not a basis for the Krylov
subspace generated by (s ETD − ATD)−1, but instead for a nearby matrix. In that case,
the reduced-order model would still be a projection of the original, having some small
error in it. As long as the model is not evaluated in the neighborhood of a pole, it can be
expected that the additional errors introduce into the model are small enough. Hence,
instead of choosing the spectral form, the basis for the projector in the model reduction
procedure can be obtained from the finite-difference equations.
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7.2.3. Preconditioning and Recycling of Krylov Subspaces

Our interest is to see how the finite difference method approximates the appropriate
basis V for the reduced-order system. Suppose we need to solve (7.27) for some dif-
ferent B̃. Again following [114], consider preconditioning with the matrix L. Then the
preconditioned system can be written as

(I + α(s)L−1U)ṽ = L−1B̃(s) (7.31)

As L is lower triangular, its inverse is easily applied by factoring the diagonal blocks
and then back-solving. The structure of (7.31) suggests to explore the shift-invariance
property of Krylov subspaces [see Chapter 6, Lemma 6.3.2 of this thesis]. It says that the
Krylov subspace of a matrix A is invariant with respect to shifts of the form A→ A +αI,
for α being any nonzero scaler. This recycled Krylov subspace method also enables us to use
the same Krylov subspace to solve (7.31) at multiple frequency points. In that context
we would like to introduce the following corollary to clarify the fact.

Corollary 7.2.1:
[114] The Krylov subspace spanned by the vectors

{p0, (I + α(s)L−1U) p0, (I + α(s)L−1U)2 p0, . . . , (I + α(s)L−1U)m−1 p0
} (7.32)

is identical to the Krylov subspace spanned by the vectors

{p0, (L−1U) p0, (L−1U)2 p0, . . . , (L−1U)m−1 p0
} (7.33)

independent of α, where p0 is vector. ♦

Proof. The proof follows from the shift-invariance property of Krylov subspaces and
can be found in [47]. �

Hence, the subspace spanned by L−1U is invariant to shifts of the form
L−1U → I + α(s)L−1U, for α(s) being any nonzero scaler. The question now arises
how we make use of the result in Theorem 7.2.1 to solve (7.31), where the matrix and
the right hand side are functions of a variable (=swept) parameter. If we look inside the
problem (7.31), we see that the matrix-vector products for different frequency changes
in this problem are constrained, and so previous iterative solutions can be exploited. To
see this, we look at the following representation for two different frequencies s and s̄ :

β(I + α(s) L−1U) p0 + γp0 = (I + α(s̄) L−1U) p0, (7.34)

where β = α(s̄)/α(s) and γ = 1 − β. This implies that a matrix-vector product computed
using the matrix associated with frequency s can be converted into a matrix-vector
product using the matrix associated with frequency s̄ by a simple scalar multiplication.
Therefore, we have no extra cost to obtain the projectors from the expansions about
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multiple frequency-points (due to the reason of the recycling scheme) compared to
single frequency-point expansions [54].

The above discussion suggests that the basis for the projector in the model reduction
procedure can be obtained by using the finite-difference equations. All these lead us to
the proposed model reduction algorithm, Algorithm 7.1.

7.3. Outline of the Proposed Algorithm

In order to simplify the presentation, only real-valued expansion points are used in
Algorithm 7.1, and B(t j) is considered as a time-varying column vector for each time step.
The overall algorithm can be described in two stages. In the first stage, the algorithm
produces a matrix approximating the Krylov subspace for several si. Note that at each
iteration i ∈ [1,ns], Algorithm 7.1 generates m columns of the projection matrix V,
where m is the approximation-order of the Krylov subspace. Once the projection matrix
V is computed for several sk, it is used to construct the reduced-order model via the
projection equations.

Suppose we start with a particular frequency s1 form a set of different frequencies. At the
beginning, Step 9 takes BTD as its right side vector and generates the first column of V.
For the second column, it takes now ETD ·v as its right side vector, where v is the previous
orthonormal column generated for V. The process continues till m is reached for s1.
For the next frequency s2, Step 9 computes the first column and then orthonormalizes it
with respect to all the previously computed orthonormalized columns of V generated
for s1 (such an orthonormalization is efficient and fruitful because of the recycled Krylov
scheme used for multiple expansion points). The total number of such orthonormalized
columns is counted by k and it is initialized at the beginning of the algorithm.

As soon as the projection columns of V for a particular si are computed, the algorithm
run for the next frequency point. The projection matrix V is the union of all these
projections obtained for all si, where i runs form 1 to ns. Therefore , the number of
columns of the projection matrix V is m · ns. This can be expressed as

range(V) =

ns⋃
i=1

K (L−1U, B̃(si)) (7.35)

Remark 7.2:
In Algorithm 7.1, Step 9 uses recycling technique to produce the projection columns
of V. It is clear from the context that if a preconditioner L is not used to solve Step 9,
each new vector in the model reduction is obtained by an inner Krylov iteration with
the matrix ATD . Also, each new right-hand-sides ui is generated for each sweep of
frequency si. Due to the shift-invariance property, since each new right-hand-side ui
in the model reduction procedure is drawn from a Krylov subspace of Km(ATD,BTD)
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Algorithm 7.1 Approximate Multipoint Krylov-Subspace Model Reduction
Input: ATD,ETD,BTD,CTD,ns,m.
Output: V, ÃTD, ẼTD, B̃TD, C̃TD.

1: Set k = 1
2: for i = 1 to ns do
3: for j = 1 to m do
4: if j=1 then
5: w = BTD
6: else
7: w = ETD vk−1
8: end if
9: u = ψH(si)[L + α(si)U]−1ψ(si)w

10: for l = 1 to k − 1 do
11: u = u − vT

l u
12: end for
13: vk = u/‖u‖
14: k = k + 1
15: end for
16: end for
17: [V, R] = RRQR(V, τ)
18: ÃTD = −VTATD V, ẼTD = VTETD V,

B̃TD = VTBTD, C̃TD = CTD V.

for some m, it is reasonable that the next term in the space of Ki(ATD,BTD) is related
to the Km(ATD,BTD), where i slightly exceeds m [84]. ♦

The net result of the algorithm is an N × mns projection matrix V with orthonormal
columns. We use the rank revealing QR factorization (RRQR) [43] with prescribed
tolerance τ for the formulation of the projected matrix V. Because, the matrix V, we
have obtained from the direct use of the proposed algorithm, has linear dependent
columns. The rank revealing QR factorization truncates those redundant constraints
and produces an orthonormal basis of the projected matrix for the reduced-order system.
Last of all the reduced-order system is generated through the projection with V.

7.4. Numerical Results

To test the time-varying model reduction procedure, the proposed algorithm has been
implemented in a time-domain RF circuit simulator. The large-signal periodic steady
state is calculated using a shooting method [113]. The LTV system is discretized using
second-order backward-difference formulas. The data files for both the following model
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problems have been provided by Michael Striebel 1, former postdoctoral researcher, NXP
Semiconductors, High Tech Campus 37, NL-5656 AE Eindhoven, The Netherlands.

7.4.1. Simple RF Circuit

We consider here a simple example where the data is obtained from small RF circuit
simulator. The circuit system consists of 5 nodes, and is excited by a local oscillator
(LO) at 2 KHz driving the mixer, while the RF input is fed into the I-channel buffer. The
time-varying system is obtained around a steady state of the circuit at the oscillatory
frequency; a total of M = 129 timesteps are used to describe the steady-state waveform.
For the model reduction procedure, the input function B(t) is a constant column vector,
corresponding to the continuous small-signal input. To analyze the circuit, we consider
a period of T = 1ms for the steady state analysis. The final discretized model is a real
LTI system of order N = 645.

The assigned algorithm produces a very good approximation of the original model for
multiple frequency points. Three different expansion points on the positive real axis
at s = 2kHz, 4kHz, 6kHz are considered. The reduced-order model is generated by
matching four moments of the Krylov subspace generated for every expansion point.
We use the rank revealing QR factorization for the formulation of the projected matrix
with tolerance, tol = 10−5.

We obtain a reduced-order model of order r = 3 . The computing time for the reduced
model is very small and efficient compared to the original model. We plot the frequency
response of the transfer functions for both the original and reduced-order systems and
compare the relative error. Fig. 7.1 shows a very nice matching of the baseband transfer
functions HTD(s) and H̃TD(s), and the relative error in Fig. 7.2 is very small. The Bode
diagram and the step response in Fig. 7.3 and Fig. 7.4 show the better efficiency of the
reduced-order model.

7.4.2. Mixer Circuit

In this example, we apply the proposed algorithm on a multi-tone mixer circuit, con-
sisting of several functional component blocks. The circuit generates 43 equations in
the circuir simulator. 201 timesteps are needed for time-domain analysis, so that the
matrix ATD has rank N = 8643.

The mixing elements shift the input from the RF frequency to the mixer LO frequency.
For the model reduction procedure, the input function B(t) is chosen to be a constant
column vector, corresponding to the continuous small-signal input. To analyze the
circuit, a periodic steady state analysis is run with a T = 1ns period.

1Current address: Bergischen Universitt Wuppertal, Applied Mathematics / Numerical Analysis Gaustr.
20, 42119 Wuppertal; (michael.striebel@math.uni-wuppertal.de)
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Figure 7.1. Frequency response of transfer function: exact system versus reduced-order
system of order r = 3 (RF circuit).

Figure 7.2. Error in the frequency response of transfer function of reduced-order sys-
tem (RF circuit).
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Figure 7.3. Bode plots for the exact system and the reduced-order system of order
r = 3 (RF circuit).

Figure 7.4. Step response for exact system and the reduced-order system of order
r = 3 (RF circuit).
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Figure 7.5. Transfer function: exact system versus reduced-order system of order
r = 4 (Mixer circuit).

Figure 7.6. Error in the frequency response of transfer function of reduced-order sys-
tem (Mixer circuit).
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Figure 7.7. Bode plots for the exact system and the reduced-order system of order
r = 4 (Mixer circuit).

The proposed algorithm produces a very good approximation of the original model for
multiple frequency points. Five different expansion points on the positive real axis in
the range from s=2MHz to 6MHz are used. The reduced-order model is generated by
matching six moments of the Krylov subspace generated for every expansion point. We
use the rank revealing QR factorization for the formulation of the projected matrix with
tolerance tol = 10−6.

We obtain a reduced-order model of order r = 4. The computing time for the reduced-
order model is only 0.0037 CPU seconds, while the original model took almost 8 × 103

CPU seconds. We plot the transfer functions for both the original and reduced-order
systems in Fig. 7.5 and depict their relative error in Fig. 7.6. Both the transfer functions
match and the relative error is very small. In addition, the plotted Bode diagram and
the step response in Fig. 7.7 and Fig. 7.8 show the better efficiency of the reduced-order
model.

7.5. Discussion

The system model-design applied here is efficient for small-signal analysis and time
parameters. Therefore the model is capable of representing very complicated physical
dynamics in circuit problems. We observe that the proposed algorithm produces a very
good approximation of the original model and the reduced-order model is very small
and efficient compared to the original model.
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Figure 7.8. Step response for exact system and the reduced-order system of order
r = 4 (Mixer circuit).

There are several scopes for the future extensions of the ideas of this section. The
formalism and algorithms can be trivially extended to the case of quasi-periodic small
signal analysis [131].



CHAPTER

EIGHT

MODEL REDUCTION OF LPTV DISCRETE-TIME SYSTEMS
VIA BALANCED TRUNCATION

Contents
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2. Periodic Projected Lyapunov Equations and their Lifted Forms . . . 124

8.3. Solving for Reachability and Observability Gramians of LPTV Sys-
tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4. Hankel Singular Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.5. Balanced Truncation Model Reduction . . . . . . . . . . . . . . . . . . 133

8.5.1. Balancing of Periodic Descriptor Systems . . . . . . . . . . . . . 133

8.5.2. Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.6. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6.1. Model Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6.2. Model Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

In this chapter, we consider LPTV discrete-time descriptor systems and review some
basic concepts of LPTV discrete-time descriptor systems which link them to their cor-
responding cyclic lifted system. We also discuss a solution technique for PPDALEs in
lifted form which arise in model reduction of periodic descriptor systems and propose
a balanced truncation model reduction method for such systems. The behavior of the
suggested model reduction technique is illustrated using numerical examples.

In Section 8.1, we recall some definitions and basic concepts of LPTV discrete-time de-
scriptor systems and the corresponding cyclic lifted system representation from Chap-
ter 4 and 5. Section 9.2 then reviews the PPDALEs and the corresponding PLDALEs
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of these periodic Lyapunov equations along with their specific block diagonal solu-
tions. We then discuss an efficient method to solve those lifted Lyapunov equations in
Section 9.3. The periodic Hankel singular values and their relations with the periodic
Gramians are presented in Section 9.4. A balanced truncation model reduction method
for periodic descriptor systems is presented in Section 9.5. Section 9.6 contains numeri-
cal examples that illustrate the properties of the suggested model reduction technique.
We give a short discussion in the last section.

8.1. Introduction

Let us recall the linear discrete-time periodic descriptor system with time-varying di-
mensions of the form

Ekxk+1 = Akxk + Bkuk,
yk = Ckxk, k ∈ Z, (8.1)

where Ek ∈ R
µk+1×nk+1 , Ak ∈ R

µk+1×nk , Bk ∈ R
µk+1×pk , Ck ∈ R

qk×nk are periodic with a period
K ≥ 1 and

∑K−1
k=0 µk =

∑K−1
k=0 nk = n,

∑K−1
k=0 pk = p and

∑K−1
k=0 qk = q.

We already discussed in Chapter 4 that regularity and stability are two important
properties to handle the dynamics of the discrete-time periodic descriptor system (8.1).
Since the matrices Ek are allowed to be singular for all k, regularity and stability of the
periodic descriptor system (8.1) can only be defined via the cyclic lifted structure of the
periodic matrix pairs associated with system (8.1). In this context, we would like to
introduce shortly the cyclic lifted system associated with the periodic descriptor system
(8.1). The details of this lifting isomorphism of periodic descriptor systems can be found
in Chapter 5.

The cyclic lifted representation of the periodic descriptor system (8.1) to be used here is
given by

EXk+1 = AXk + BUk,
Yk = CXk,

(8.2)

where

E = diag(E0,E1, . . . ,EK−1), B = diag(B0,B1, . . . ,BK−1),

A =


0 · · · 0 A0

A1 0
. . .

...
0 AK−1 0

 , C =


0 · · · 0 C0

C1 0
. . .

...
0 CK−1 0

 .
(8.3)

The descriptor vector, system input and output of (8.2) are related to those of (8.1) via

Xk = [xT
1 , . . . , x

T
K−1, x

T
0 ]T, Uk = [uT

0 ,u
T
1 , . . . ,u

T
K−1]T, Yk = [yT

0 , y
T
1 , . . . , y

T
K−1]T,
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respectively. We also define a transfer function of the lifted system (8.2) as
H(z) = C(zE −A)−1B.

Note that system (8.1) can be said to be regular if the set (E,A) of periodic matrix
pairs {(Ek,Ak)}K−1

k=0 is regular, which can be equivalently defined by the regularity of the
cyclic matrix pencil zE − A, i.e., det(zE − A) , 0, for some z ∈ C (see Section 4.2 in
Chapter 4 for detail). The set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 is said to be pd-stable
if zE − A is regular and all its finite eigenvalues lie inside the unit circle. System (8.1)
is asymptotically stable if the corresponding set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 is
pd-stable.

It is shown in Chapter 4 that if the set of periodic matrix pairs {(Ek,Ak)}K−1
k=0 is regular, then

the periodic descriptor system (8.1) is equivalent to the canonical forward-backward
form (see Subsection 4.2.2 of Chapter 4) given by

x f
k+1 = A f

k x f
k + B f

k uk, y f
k = C f

k x f
k , (8.5)

Eb
kxb

k+1 = xb
k + Bb

kuk, yb
k = Cb

kxb
k, (8.6)

respectively, with

WkEkZk+1 =

In f
k+1

0

0 Eb
k

 , WkAkZk =

A f
k 0

0 In∞k

 ,
WkBk =

B f
k

Bb
k

 , CkZk =
[
C f

k , Cb
k

]
,

(8.7)

where Wk ∈ Rµk+1×µk+1 and Zk ∈ Rnk×nk are two nonsingular matrices for each k =

0, 1, . . . ,K − 1. Note that yk = y f
k + yb

k, nk = n f
k + n∞k and µk+1 = n f

k+1 + n∞k for such a
periodic decomposition . The index ν of the periodic descriptor system (8.1) is defined
as ν = max(ν0, ν1, . . . , νK−1), where (ν0, ν1, . . . , νK−1) are the indices of the regular set of
periodic matrix pairs {(Ek,Ak)}K−1

k=0 (see Remark 4.6 of Chapter 4).

For such a canonical representation of the periodic matrix pairs, we also define, for
k = 0, 1, . . . ,K − 1, the spectral projectors

Pr(k) = Zk

In f
k

0

0 0

 Z−1
k , Pl(k) = W−1

k

In f
k+1

0

0 0

 Wk,

onto the k-th right and left deflating subspaces of the periodic matrix pairs {(Ek,Ak)}K−1
k=0

corresponding to the finite eigenvalues, and Qr(k) = I − Pr(k) and Ql(k) = I − Pl(k) as
complementary projectors.

Similar to discrete-time descriptor systems [24], the finite pole structure of the periodic
system (8.1) is completely determined by the forward subsystems and the infinite pole
structure is determined by the backward subsystems. Computing the zeros and poles
of periodic descriptor systems are well studied in [125] using the lifted formulations
associated with the periodic system. Note that the finite eigenvalues of {(Ek,Ak)}K−1

k=0
coincide with the finite eigenvalues of the lifted pencil zE −A.



124 Chapter 8. Model Reduction of LPTV Discrete-Time Systems via BT

8.2. Periodic Projected Lyapunov Equations and their Lifted
Forms

In Chapter 4, we have shown that the periodic reachability and observability Gramians
for the periodic discrete-time descriptor system (8.1) satisfy some PPDALEs with special
right-hand sides. Considering the periodic discrete-time descriptor system (8.1) and the
set (E,A) of periodic matrix pairs {(Ek,Ak)}K−1

k=0 to be pd-stable, we have shown that the
causal reachability Gramians {Gcr

k }
K−1
k=0 are the unique symmetric, positive semidefinite

solutions of the generalized PPDALEs

AkGcr
k AT

k − EkGcr
k+1ET

k = −Pl(k)BkBT
k Pl(k)T,

Gcr
k = Pr(k)Gcr

k Pr(k)T,
(8.8)

for k = 0, 1, . . . ,K − 1, where Gcr
K = Gcr

0 , E−1 = EK−1, and Pl(−1) = Pl(K − 1). The proof of
(8.8) can be found in Subsection 4.3.3, Chapter 4.

The numerical solution of (8.8) has been considered in [30]. The method proposed
there extends the periodic Schur method [19, 20, 123, 119] and the generalized Schur-
Hammarling method [104] developed for periodic standard and projected generalized
Lyapunov equations, respectively. This method is based on an initial reduction of
the periodic matrix pairs {(Ek,Ak)}K−1

k=0 to the generalized periodic Schur form [56, 123]
and on solving the resulting generalized periodic Sylvester and Lyapunov equations
of (quasi)-triangular structure using the recursive blocked algorithms [44]. Computing
the Kronecker-like canonical forms of the periodic matrix pairs and solving the result-
ing periodic Sylvester equations are the most computationally expensive tasks in this
algorithm (Algorithm 5.1 of [30]).

On the other hand, since we have constructed a relationship between the Gramians
of the periodic systems and those of the cyclic lifted system as in Subsection 5.2.4
of Chapter 5, it is straightforward and also promising to solve the reachability and
observability Gramians of the lifted system for the corresponding LPTV Gramians. So
we focus on the lifted representation of the periodic projected Lyapunov equations that
we have discussed in Subsection 5.2.4 of Chapter 5.

Considering the periodic discrete-time descriptor system (8.1) and its cyclic lifted rep-
resentation (8.2), where the set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 is pd-stable, we
have shown that the causal reachability Gramians Gcr of (8.2) satisfy the generalized
PLDALEs

AGcrAT
− EGcrET = −PlBBTPT

l , Gcr = PrG
crPT

r , (8.9)

where E, A, B are as in (8.3) and

Gcr = diag(Gcr
1 , . . . ,G

cr
K−1,G

cr
0 ),

Pl = diag(Pl(0),Pl(1), . . . ,Pl(K − 1)), Ql = I − Pl,

Pr = diag(Pr(1), . . . ,Pr(K − 1),Pr(0)), Qr = I − Pr.

(8.10)
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Similarly, the noncausal reachability Gramians and the causal and noncausal observ-
ability Gramians of the periodic descriptor system (8.1) can be easily retrieved from the
block diagonal solutions of the corresponding PLDALEs. We discussed these PLDALEs
and their block diagonal solutions in Chapter 5 (see Theorem 5.2.4 and 5.2.5) with nec-
essary proofs. Note that for the lifted system (8.2) the complete reachability Gramian
Gr is defined as Gr = Gcr + Gncr, where Gcr is defined in (8.10) and Gncr is the noncausal
reachability Gramian of (8.2) defined in (5.38). The complete observability Gramian Go

of (8.2) is defined as Go = Gco + Gnco, where Gco and Gnco are the causal and noncausal
observability Gramians of (8.2) defined in (5.45).

8.3. Solving for Reachability and Observability Gramians of
LPTV Descriptor Systems

We generalizes the method from [103] to solve the generalized PLDALEs for periodic
reachability and observability Gramians. Let us consider the generalized PLDALE (8.9)
corresponding to the generalized PPDALEs (8.8) of the periodic descriptor system (8.1)
given by

AGcrAT
− EGcrET = −PlBBTPT

l , Gcr = PrG
crPT

r , (8.11)

where E,A,G ∈ Rn×n (the complex case is similar). Let the pencil λE −A be in GUPTRI
form (3.13) such that

λE −A = V

[
λE f −A f λEu −Au

0 λE∞ −A∞

]
UT, (8.12)

where U,V are orthogonal matrices. Note that the pencil λE−A is stable, and the pencil
λE f −A f is quasi-triangular and has only finite eigenvalues, while the pencil λE∞ −A∞
is triangular and has infinite eigenvalues. Clearly, E f ,A f ∈ R

n f×n f , E∞,A∞ ∈ Rn∞×n∞ ,
and n = n f + n∞.

In order to compute the left and right deflating subspaces of λE − A corresponding to
the finite eigenvalues we need to compute matrices Z,W ∈ Rn f×n∞ such that

[
I Z
0 I

] [
λE f −A f λEu −Au

0 λE∞ −A∞

] [
I −W
0 I

]
=

[
λE f −A f 0

0 λE∞ −A∞

]
, (8.13)

and (Z,W) is the solution of the generalized Sylvester equation

E f W − ZE∞ = Eu,
A f W − ZA∞ = Au.

(8.14)

Since the pencils λE f − A f and λE∞ − A∞ have no common eigenvalues, the solution
(Z,W) of the generalized Sylvester equation (8.14) is unique. Therefore the pencil λE−A
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can be transformed into the Kronecker-like form

λE −A = V

[
I −Z
0 I

] [
λE f −A f 0

0 λE∞ −A∞

] [
I W
0 I

]
UT

= M

[
λE f −A f 0

0 λE∞ −A∞

]
N,

(8.15)

where the matrices

M = V

[
I −Z
0 I

]
and N =

[
I W
0 I

]
UT (8.16)

are nonsingular. We argue that the matrices E f ,A f , E∞, and A∞ in (8.15) preserve the
following cyclic lifted structures,

E f =


E f

0
E f

1
. . .

E f
K−1

 , A f =


0 · · · 0 A f

0
A f

1 0 0
. . .

...

0 A f
K−1 0

 , (8.17)

and

E∞ =


0 E∞0

. . .
0 E∞K−2

E∞K−1 0 0

 , A∞ =


A∞0

A∞1
. . .

A∞K−1

 , (8.18)

where the periodic matrix pairs {(E f
k ,A

f
k )}K−1

k=0 contain only the finite eigenvalues of the
periodic matrix pairs {(Ek,Ak)}K−1

k=0 that lie inside the unit circle, and the periodic matrix
pairs {(E∞k ,A

∞

k )}K−1
k=0 contain only infinite eigenvalues.

Now to check whether such structure-preserving M,N exist, we consider the pd-stable
set {(Ek,Ak)}K−1

k=0 and the decompositions (8.7) (without orthogonalization) of the periodic
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matrices. Therefore we have

E =



W−1
0

[
E f

0 0
0 E∞0

]
Z−1

1

W−1
1

[
E f

1 0
0 E∞1

]
Z−1

2

. . .

W−1
K−1

[
E f

K−1 0
0 E∞K−1

]
Z−1

0



=


W−1

0
W−1

1
. . .

W−1
K−1





[
E f

0 0
0 E∞0

]
[
E f

1 0
0 E∞1

]
. . . [

E f
K−1 0
0 E∞K−1

]




Z−1

1
Z−1

2
. . .

Z−1
0



= W



[
E f

0 0
0 E∞0

]
[
E f

1 0
0 E∞1

]
. . . [

E f
K−1 0
0 E∞K−1

]


Z,

(8.19)

where W = diag(W−1
0 ,W−1

1 , . . . ,W−1
K−1) and Z = diag(Z−1

1 ,Z
−1
2 , . . . ,Z

−1
0 ).

Similarly, we have the following representation for A:

A = W



[
A f

0 0
0 A∞0

]
[
A f

1 0
0 A∞1

]
. . . [

A f
K−1 0
0 A∞K−1

]


Z. (8.20)

Hence using appropriate permutation matrices Π1 and Π2 we can reorder the blocks of
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λE −A [123] such that

λE −A = λWΠ1



E f
0

E f
1

. . .

E f
K−1

0 E∞0
. . .

0 E∞K−2
E∞K−1 0 0


Π2Z

−WΠ1



0 A f
0

A f
1

. . .

0 A f
K−1 0

A∞0
A∞1

. . .
A∞K−1


Π2Z.

(8.21)

Comparing (8.15) and (8.21), we can make the following identifications

M = WΠ1, N = Π2Z.

Therefore, the spectral projections Pl and Pr onto the left and right deflating subspaces
of λE −A are given by

Pl = M

[
I 0
0 0

]
M−1, Pr = N−1

[
I 0
0 0

]
N. (8.22)

Now substituting M and N from (8.16) into (8.22), we get

Pl = V

[
I Z
0 0

]
VT, Pr = U

[
I W
0 0

]
UT. (8.23)

Hence, setting

UTGcrU =

Gcr
11 Gcr

12

Gcr
21 Gcr

22

 , VTB =

B11

B12

 ,
we obtain from the PLDALE (8.9) the following system of matrix equations

A fG
cr
11A

T
f − E fG

cr
11E

T
f = −(B11 + ZB12) (B11 + ZB12)T + E fG

cr
12E

T
u + EuG

cr
21E

T
f + EuG

cr
22E

T
u

−A fG
cr
12A

T
u −AuG

cr
21A

T
f −AuG

cr
22A

T
u , (8.24)

A fG
cr
12A

T
∞ − E fG

cr
12E

T
∞ = AuG

cr
22E

T
∞ −AuG

cr
22A

T
∞, (8.25)

A∞G
cr
22A

T
∞ − E∞G

cr
22E

T
∞ = 0. (8.26)



8.3. Solving for Reachability and Observability Gramians of LPTV Systems 129

Since Λ(λE f−A f )∩Λ(λE∞−A∞) = ∅, and Λ(λE∞−A∞) contains only infinite eigenvalues,
we have from (8.26) that

Gcr
22 = 0. (8.27)

Hence Equation (8.25) can be simplified to

A fG
cr
12A

T
∞ − E fG

cr
12E

T
∞ = 0. (8.28)

It can be easily verified that Gcr
21 = (Gcr

12)T [104] and the solution of (8.28) is given by

Gcr
12 = 0. (8.29)

Using (8.27) and (8.29), (8.24) can be simplified and rewritten as

A fG
cr
11A

T
f − E fG

cr
11E

T
f = −(B11 + ZB12) (B11 + ZB12)T. (8.30)

Therefore, the solution of the generalized PLDALE (8.9) is given by

Gcr = U

Gcr
11 Gcr

12

Gcr
21 Gcr

22

UT = U

Gcr
11 0

0 0

UT, (8.31)

where Gcr
11 is the unique symmetric positive semidefinite solution of the generalized

periodic Lyapunov equation (8.30). It follows from (8.22) and (8.31) that the solution Gcr

satisfies Gcr = PrG
crPT

r .

Now suppose that R11 is the Cholesky factor of Gcr
11, i.e., Gcr

11 = R11R
T
11. If rank(R11) = ns

and ns < n f , then we use Householder or Givens transformations [43] to compute the full
column rank matrix R1 from the QR decomposition

RT
11 = QR1

[
RT

1
0

]
,

where QR1 ∈ R
n f×n f and R1 ∈ R

n f×ns . Otherwise, R1 = R11. Then the full column rank
factor Rcr is given by

Rcr = U

[
R1
0

]
. (8.32)

We summarize the whole precess in Algorithm 8.1. The numerical solution of the
generalized PLDALEs (5.37), (5.43), and (5.44) can be treated similarly and following
the work in [104].

Remark 8.1 (about Algorithm 8.1):
(i) In Step 1, one may not directly get such a structure using only the GUPTRI
algorithm [34, 35]. It requires to multiply the block matrix pencil by two permutation
matrices from its right and left sides to get the the structure as in Step 1 (see (8.21)).
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Algorithm 8.1 Generalized Schur-Hammarling method for the PLDALE (8.9) and
PPDALEs (8.8).
Input: A real d-stable pencil λE −A and a real matrix B (complex case is similar).
Output: Full column rank Cholesky factors Rcr

k of the solution Gcr
k = Rcr

k (Rcr
k )T

(k = 0, 1, . . . ,K − 1).

1: Use the GUPTRI algorithm [34, 35] to compute (8.12), i.e.,

λE −A = V

[
λE f −A f λEu −Au

0 λE∞ −A∞

]
UT,

where U,V are orthogonal matrices, E f ,A f ∈ R
n f×n f , E∞,A∞ ∈ Rn∞×n∞ as in (8.17)

and (8.18), respectively.
2: Compute the generalized Sylvester equation

E f W − ZE∞ = Eu,
A f W − ZA∞ = Au.

3: Compute the matrix

VTB =

B11

B12

 .
4: Use the generalized Hammarling method [50, 104] to compute the Cholesky factor

R11 of the solution Gcr
11 = R11(R11)T of the PLDALE (8.11)

A fG
cr
11A

T
f − E fG

cr
11E

T
f = −(B11 + ZB12) (B11 + ZB12)T.

5: If rank(R11)= ns < n f , then use the Householder or Givens transformations [43] to
compute the full column rank matrix R1 from the QR decomposition

RT
11 = QR1

[
RT

1
0

]
,

where QR1 ∈ R
n f×n f and R1 ∈ R

n f×ns . Otherwise, R1 = R11.
6: Compute the full column rank factor Rcr given by

Rcr = U

[
R1
0

]
.

7: Identify the full column rank periodic factors Rcr
k from Rcr, where

Rcr = diag(Rcr
1 , . . . ,R

cr
K−1,R

cr
0 ),

and Gcr
k = Rcr

k (Rcr
k )T for k = 0, 1, . . . ,K − 1.
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(ii) Step 6 needs to be computed more technical way such that the periodic factors

Rcr
k ∈ R

nk×n f
k receive full column rank and Gcr

k = Rcr
k (Rcr

k )T
∈ Rnk×nk (k = 0, 1, . . . ,K−1).

One can also follow the explicit formulations (not in lifted form) of these periodic
factors of Step 6 from [30] (see Steps 5 and 6, Algorithm 5.1 therein).

The full column rank Cholesky factors computed using Algorithm 8.1 preserve the block
diagonal structure of their original lifted Gramians. For the computed Cholesky factor
using Algorithm 8.1, we have

Gcr = Rcr(Rcr)T = diag(Rcr
1 (Rcr

1 )T, . . . ,Rcr
K−1(Rcr

K−1)T,Rcr
0 (Rcr

0 )T ),

where Gcr
k = Rcr

k (Rcr
k )T and Rcr

k are the full column rank Cholesky factors of the periodic
Gramians Gcr

k for k = 0, 1, . . . ,K − 1. The same holds true for the solutions of the
generalized PLDALEs (5.37), (5.43), and (5.44).

Remark 8.2:
We generalize the Schur-Hammarling method from [50, 104] to our periodic discrete-
time case in lifted form. A solution technique which deals directly with the periodic
matrix equations (not in lifted form) has been proposed in [30]. Solving the periodic
Sylvester equations and the periodic projected Lyapunov equations in that proposed
algorithm are the most computational expensive tasks, especially when the system
has periodic matrix pairs with time varying-dimensions, and the input and output
are also time-varying (see, Algorithm 5.1 of [30]). On the other hand, our proposed
method, which works with the lifted forms of the periodic matrix equations, can
handle those time-varying periodic matrix pairs even if all Ek (or at least one Ek) are
singular and also the time-varying input and output very easily during the solution
process. ♦

8.4. Hankel Singular Values

Analogous to the standard periodic discrete-time systems [121] and continuous-time
descriptor systems [106, 75], the reachability and observability Gramians of the periodic
discrete-time descriptor system (8.1) can be used to define the periodic Hankel singular
values of system (8.1). These Hankel singular values are then used find a reduced-order
model of (8.1) using the balanced truncation method. Analogous to continuous-time
descriptor systems [106, 75], the following result holds for system (8.1).

Theorem 8.4.1:
[30] Let the periodic matrix pairs {(Ek,Ak)}K−1

k=0 be pd-stable. Then the causal and noncausal
matrices Mc

k = Gcr
k ET

k−1Gco
k Ek−1 and Mnc

k = Gncr
k AT

k Gnco
k+1Ak , k=0, 1, . . . ,K−1, have real and

nonnegative eigenvalues. ♦
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Proof. We sketch the proof from [30] to show that the fundamental matrices defined
for the forward and backward subsystems in (4.68) are directly linked to the Hankel
singular values of the periodic discrete-time descriptor system (8.1). Let us consider the
periodic Gramians defined in Chapter 4, Section 4.3.2. Using the definitions of Gcr

k and
Gco

k , we can write

Mc
k =

k−1∑
j=−∞

Ψk, jB jB
T
j ΨT

k, j ET
k−1

∞∑
j=k

ΨT
j,k−1CT

j C jΨ j,k−1Ek−1 (8.33)

Now using the forward fundamental matrices defined in (4.68), we can represent (8.33)
more simply as

Mc
k = Zk

[
Ḡcr

1,kḠco
1,k 0

0 0

]
Z−1

k , (8.34)

where
Ḡcr

1,k =
∑k−1

i=−∞Φ f (k, i + 1)B f
i (B f

i )TΦ f (k, i + 1)T,

Ḡco
1,k =

∑
∞

i=k Φ f (i, k)T(C f
i )TC f

i Φ f (i, k).

The matrices Ḡcr
1,k and Ḡco

1,k are symmetric positive semidefinite (see the proof of Theo-
rem 4.3.6 in Chapter 4 for details), hence the matrices Mc

k for k = 0, 1, . . . ,K−1, have real
nonnegative eigenvalues. Similarly, we can show that all Mnc

k have real and nonnegative
eigenvalues. �

The real nonnegative eigenvalues of Mc
k and Mnc

k are used to define the causal and
noncausal Hankel singular values of system (8.1).

Definition 8.4.1:
Let the set of periodic matrix pairs {(Ek,Ak)}K−1

k=0 be pd-stable. For k = 0, 1, . . . ,K−1, the

square roots of the largest n f
k eigenvalues of the matrix Mc

k , denoted by σk, j, are called
the causal Hankel singular values and the square roots of the largest n∞k eigenvalues
of Mnc

k , denoted by θk, j, are called the noncausal Hankel singular values of the periodic
descriptor system (8.1). ♦

Similar to continuous-time descriptor systems, the causal and noncausal Hankel singu-
lar values of the periodic descriptor system (8.1) are invariant under system equivalence
transformation. For a completely reachable and completely observable periodic system
(8.1), the ranks of the matrices Gcr

k and Gco
k equal n f

k , which is also the rank of Mc
k. Also the

ranks of Gncr
k and Gnco

k equal n∞k , which is then also the rank of Mnc
k , for k = 0, 1, . . . ,K−1.

Since the causal and noncausal reachability and observability Gramians are symmetric
and positive semidefinite, there exist the Cholesky factorizations

Gcr
k = RkRT

k , Gco
k = LT

k Lk, Gncr
k = ŘkŘT

k , Gnco
k = ĽT

k Ľk. (8.35)
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Simple calculations [30] show that

σk, j =
√
λ j(Gcr

k ET
k−1Gco

k Ek−1) = ζ j(LkEk−1Rk),

θk, j =
√
λ j(Gncr

k AT
k Gnco

k+1Ak) = ζ j(Ľk+1AkŘk),
(8.36)

where λ j(.) and ζ j(.) denote the eigenvalues and singular values of the corresponding
product matrix, and σk, j and θk, j are the causal and noncausal Hankel singular values of the
periodic descriptor system (8.1), respectively.

8.5. Balanced Truncation Model Reduction

Model order reduction (MOR) is an approach, where the original system is approxi-
mated by a reduced-order system that is in some measure close to the original model.
For system (8.1), a reduced-order model of dimension r would be a system of the form

Ẽkx̃k+1 = Ãkx̃k + B̃kuk,
ỹk = C̃kx̃k, k ∈ Z, (8.37)

where Ẽk ∈ R
γk+1×rk+1 , Ãk ∈ R

γk+1×rk , B̃k ∈ R
γk+1×pk , C̃k ∈ R

qk×rk are K-periodic matrices,∑K−1
k=0 γk =

∑K−1
k=0 rk = r and r� n. Apart from having a much smaller state-space dimen-

sion, it is also important that the reduced-order model preserves physical properties of
the original system such as regularity and stability, and that the approximation error
is small. In this section, we present a generalization of a balanced truncation model
reduction method to periodic descriptor systems.

8.5.1. Balancing of Periodic Descriptor Systems

For a balanced system, the reachability and observability Gramians are both equal to
a diagonal matrix [76, 108]. Balanced truncation for periodic standard discrete-time
systems has been considered in [37, 121]. An extension of such important concepts
as balanced realization and Hankel singular values to periodic descriptor systems has
been presented in [30]. We will follow here the derivation in [30].

Definition 8.5.1:
A realization (Ek,Ak,Bk,Ck) of a periodic descriptor system (8.1) is called balanced if

Gcr
k = Gco

k =

[
Σk 0
0 0

]
, Gncr

k = Gnco
k+1 =

[
0 0
0 Θk

]
,

where Σk = diag(σk,1, . . . , σk,n f
k
) and Θk = diag(θk,1, . . . , θk,n∞k

), k = 0, 1, . . . ,K − 1. ♦
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Consider the Cholesky factorizations (8.35) of the reachability and observability Grami-
ans [30] and let

LkEk−1Rk = UkΣkVT
k , Ľk+1AkŘk = ǓkΘkV̌T

k (8.38)

be the singular value decompositions of the matrices LkEk−1Rk and Ľk+1AkŘk for k =
0, 1, . . . ,K−1. Here Uk,Vk, Ǔk, V̌k are orthogonal, and Σk and Θk are diagonal. Moreover,
we can can easily show from Theorem 4.3.5 and Equation (4.64) that

Gcr
k = Pr(k)Gcr

k Pr(k)T, Gco
k = Pl(k − 1)TGco

k Pl(k − 1),
Pr(k)Gncr

k = 0, Gnco
k Pl(k − 1) = 0,

Ek−1Pr(k) = Pl(k − 1)Ek−1, AkPr(k) = Pl(k)Ak.

Then using these relations, we have for k = 0, 1, . . . ,K − 1, that

Gnco
k Ek−1Gcr

k = Gco
k Ek−1Gncr

k = 0, Gnco
k+1AkGcr

k = Gco
k+1AkGncr

k = 0,

which also imply

ĽkEk−1Rk = 0, LkEk−1Řk = 0, Ľk+1AkRk = 0, Lk+1AkŘk = 0,

for k = 0, 1, . . . ,K − 1.

If a realization Σ(Ek,Ak,Bk,Ck) with pd-stable matrix pairs {(Ek,Ak)}K−1
k=0 is minimal, i.e.,

Σk and Θk are nonsingular, then there exist nonsingular periodic matrices Sk ∈ R
µk+1×µk+1

and Tk ∈ R
nk×nk defined as

Sk = [LT
k+1Uk+1Σ−1/2

k+1 , ĽT
k+1ǓkΘ

−1/2
k ], Tk = [RkVkΣ

−1/2
k , ŘkV̌kΘ

−1/2
k ], (8.39)

such that the transformed realization

(ST
k EkTk+1,ST

k AkTk,ST
k Bk,CkTk) (8.40)

is balanced [30]. Note that as in the case of standard state space systems, the balanc-
ing transformation matrices for periodic discrete-time descriptor system (8.1) are not
unique.

8.5.2. Model Reduction

Model reduction via balanced truncation is discussed very widely for standard discrete-
time periodic systems [57, 121] and also for continuous-time descriptor systems [75, 108].
For a balanced system, truncation of states related to the small causal Hankel singular
values does not change system properties essentially. Unfortunately, we can not do
the same for the noncausal Hankel singular values. If we truncate the states that
correspond to the small non-zero noncausal Hankel singular values, then the pencil for
the reduced-order system may get finite eigenvalues outside the unit circle that will
lead to additional errors in the system approximation. Therefore, we truncate only the
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zero noncausal Hankel singular values and all the non-zero noncausal Hankel singular
values are kept unaltered (without any truncation).

Assume that the periodic matrix pairs {(Ek,Ak)}K−1
k=0 are pd-stable. Consider the Cholesky

factorizations in (8.35). Let

LkEk−1Rk = [Uk,1,Uk,2]
[
Σk,1

Σk,2

]
[Vk,1,Vk,2]T, Ľk+1AkŘk = ǓkΘkV̌T

k , (8.41)

be singular value decompositions of LkEk−1Rk and Ľk+1AkŘk, where

Σk,1 = diag(σk,1, . . . , σk,r f
k
), Σk,2 = diag(σ

k,r f
k+1
, . . . , σ

n f
k
),

with σk,1 ≥ · · · ≥ σ
k,r f

k
> σ

k,r f
k+1
≥ . . . ≥ σ

k,n f
k
> 0, and Θk = diag(θk,1, . . . , θk,r∞k

) is

nonsingular for k = 0, 1, . . . ,K− 1. Note that for MOR, σ
k,n f

k
= 0 is possible and allowed,

although for such a case balancing transformation does not exist.

Similar to continuous-time descriptor systems [108], the number of non-zero noncausal
Hankel singular values of (8.1) for k = 0, 1, . . . ,K − 1 is equal to

r∞k = rank(L̂k+1AkR̂k) ≤ min(νkpk, νkqk, n∞k ), (8.42)

where νk are the indices of the regular set of periodic matrix pairs {(Ek,Ak)}K−1
k=0 . This

estimate shows that if for k = 0, 1, . . . ,K − 1, the nilpotency index νk of a regular pe-
riodic matrix pair {(Ek,Ak)}K−1

k=0 times the number pk of inputs or the number qk of the
outputs is much smaller than the dimension n∞k of its k-th periodic deflating subspace
corresponding to the infinite eigenvalues, then the order of system (8.1) can be reduced
significantly.

The reduced-order system can be computed as [30]

Ẽk = ST
k,rEkTk+1,r, Ãk = ST

k,rAkTk,r, B̃k = ST
k,rBk, C̃k = CkTk,r, (8.43)

where
Sk,r = [ LT

k+1Uk+1,1Σ−1/2
k+1,1, ĽT

k+1ǓkΘ
−1/2
k ] ∈ Rµk+1,rk+1 ,

Tk,r = [ RkVk,1Σ−1/2
k,1 , ŘkV̌kΘ

−1/2
k ] ∈ Rnk,rk ,

with rk = r f
k + r∞k .

Let H̃(z) be the transfer function of the reduced-order lifted system formed from the
reduced-order subsystems in (8.43). Since our model reduction approach does not
truncate any nonzero state from the noncausal Hankel singular values, the error bound
for the reduced system will be defined over the causal part of the original and reduced-
order transfer functions. Also the reduced-order system computed by this method is
stable and balanced. Hence the error bound can be obtained similarly to the standard
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periodic state space case [61, 121, 60]. Then we have the following H∞-norm error
bound

‖H − H̃‖H∞ = sup
ω∈[0,2π]

‖H(eiω) − H̃(eiω)‖2 ≤ 2 trace (diag(Σ0,2, . . . ,ΣK−1,2)), (8.44)

where ‖.‖2 denotes the spectral matrix norm and Σk,2, k = 0, 1, . . . ,K − 1, contains the
truncated causal Hankel singular values.

8.6. Numerical Results

In this section we consider numerical examples to illustrate the reliability of the pro-
posed model reduction method for periodic time-varying discrete-time descriptor sys-
tems. For such systems we solve the periodic projected Lyapunov equations ( i.e., the
PPDALEs in Theorem 4.3.5) using their corresponding lifted forms (i.e., the PLDALEs
in Theorem 5.2.4 and 5.2.5) that we have discussed in Section 9.3. The solutions of
these projected lifted Lyapunov equations have specific block diagonal structure and
the diagonal blocks of these lifted solutions correspond to the solutions of the periodic
projected Lyapunov equations (see, Theorems 5.2.4 and 5.2.5, and the proofs therein).
We pick up the periodic Gramians, i.e., Gcr

k ,G
ncr
k ,Gco

k , and Gnco
k , k = 0, 1, . . . ,K − 1, from

the block diagonal solutions of these projected lifted Lyapunov equations, i.e., from
Gcr,Gncr,Gco, and Gnco, respectively. These periodic Gramians are used to find a bal-
anced realization of the periodic time-varying discrete-time descriptor systems using
the procedure described in [30]. Finally, a balancing based model reduction method
is discussed and a reduced-order model is obtained by the algorithms that we have
described in Section 9.5. Note that for MOR, it is not necessary to find a balanced
realization of the periodic time-varying discrete-time descriptor systems explicitly. One
can omit the explicit formulation of the balancing steps for MOR.

We consider here two artificial problems because real life problems were very difficult to
collect from prescribed application fields. The first test example is a small dimensional
problem taken from [30], and the second test problem is a self-generated artificial
problem.

8.6.1. Model Problem 1

We consider a periodic discrete-time descriptor system with µk = nk = 10, pk = 2, qk = 3,
and period K = 3 as presented in [30, Example 1]. The periodic matrix pairs {(Ek,Ak)}K−1

k=0

are pd-stable with n f
k = 8 and n∞k = 2 for k = 0, 1, 2. The original lifted system has order

n = 30. The sparsity patterns of E and A of the corresponding lifted system are plotted
in Figure 8.1.
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(a) (b)

Figure 8.1. (a) Sparsity pattern of A, (b) sparsity pattern of E (Model problem 1).

The norms of the computed solutions of the periodic Lyapunov equations and the
corresponding residuals, e.g.,

ρcr
k = ‖AkGcr

k AT
k − EkGcr

k+1ET
k + Pl(k)BkBT

k Pl(k)T
‖2, (8.45)

are shown in Table 8.1 and Table 8.2.

Table 8.1. Norms and absolute residuals for the reachability Gramians
(Model problem 1)

k ‖ Gcr
k ‖2 ρcr

k ‖ Gncr
k ‖2 ρncr

k

0 5.8182 × 102 6.1727 × 10−12 1.3946 × 101 1.5444 × 10−14

1 8.2981 × 104 8.2172 × 10−12 1.3660 × 101 1.7508 × 10−14

2 7.1107 × 103 3.0961 × 10−12 1.4308 × 101 3.3847 × 10−14

Table 8.2. Norms and absolute residuals for the observability Gramians
(Model problem 1)

k ‖ Gco
k ‖2 ρco

k ‖ Gnco
k ‖2 ρnco

k

0 9.7353 × 101 2.7678 × 10−13 1.6866 × 100 1.3372 × 10−15

1 1.1373 × 103 7.7003 × 10−14 1.7406 × 100 2.1113 × 10−15

2 9.6984 × 100 1.7859 × 10−14 1.6866 × 100 1.1626 × 10−15

Figure 8.2 shows the causal Hankel singular values of the different subsystems for
k = 0, 1, 2. We see that they decay gradually, and, hence the system (8.1) can be well
approximated by a reduced-order model. We have 24 causal Hankel singular values
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Figure 8.2. Causal Hankel singular values for different subsystems (Model problem 1).

for the original lifted system and the remaining 6 are noncausal Hankel singular values
which are positive. We approximate system (8.1) to the tolerance 10−2 by truncating the
states corresponding to the smallest 7 causal Hankel singular values.

The computed reduced-order model has subsystems of orders, r = (7, 8, 8). Figure
8.3 shows the finite eigenvalues of the original and reduced-order lifted systems. We
observe that stability is preserved for the reduced-order system.

In Figure 8.4, we present the norms of the frequency responses H(eiω) and H̃(eiω) of the
original and reduced-order lifted systems for a frequency range [0, 2π]. We observe nice
match of the system norms.

In Figure 8.5, we display the absolute error ‖H(eiω) − H̃(eiω)‖2 and the error bound
(8.44). One can see that the absolute error is smaller than the error bound. Note that
the absolute error curve is flat in Figure 8.5. This is due to the reason that the absolute
error ‖H(eiω) − H̃(eiω)‖2 computed at different frequency points in the frequency range
[0, 2π] lies between 6.91 × 10−3 and 6.92 × 10−3. These small absolutes errors produce
almost a flat line in the frequency range [0, 2π].

8.6.2. Model Problem 2

Model problem 2 is an artificial periodic discrete-time descriptor system with µk = nk =
404, pk = 10, qk = 15, and period K = 10. The periodic matrices Ek and Ak are dense
matrices for each k = 0, 1, . . . , 9. The matrix pairs {(Ek,Ak)}K−1

k=0 are pd-stable with n f
k = 400

and n∞k = 4 for every k = 0, 1, . . . , 9. The original lifted system has order n = 4040. The
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Figure 8.3. Finite eigenvalues of the original and the reduced-order lifted systems
(Model problem 1).

Figure 8.4. The frequency responses of the original and the reduced-order lifted systems
(Model problem 1).
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Figure 8.5. Absolute error and error bound (Model problem 1).

(a) (b)

Figure 8.6. (a) Sparsity pattern of A, (b) sparsity pattern of E (Model problem 2).

sparsity patterns of E and A of the corresponding lifted system are plotted in Figure 8.6.

The norms of the computed solutions of the periodic Lyapunov equations and the corre-
sponding residuals are shown in Table 8.3. Similar results also hold for the observability
Gramians.

We compute the causal Hankel singular values of the original system in lifted form.
These Hankel singular values are the combination of all the Hankel singular values
given by different subsystems, for k = 0, 1, . . . , 9. The Hankel singular values decay fast,
and, hence the original system can be well approximated by a reduced-order model. We
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Table 8.3. Norms and absolute residuals for the approximate Gramians
(Model problem 2)

k ‖ Gcr
k ‖2 ρcr

k ‖ Gncr
k ‖2 ρncr

k

0 2.009 × 100 9.123 × 10−11 1.094 × 100 9.103 × 10−12

1 2.122 × 101 4.247 × 10−10 2.655 × 100 1.563 × 10−12

2 8.803 × 100 1.303 × 10−10 2.701 × 10−1 1.300 × 10−13

3 2.337 × 100 1.518 × 10−11 4.587 × 10−1 3.289 × 10−13

4 2.698 × 100 1.193 × 10−11 1.390 × 100 2.726 × 10−12

5 4.765 × 100 1.910 × 10−10 4.856 × 100 2.084 × 10−11

6 8.876 × 101 6.688 × 10−10 1.137 × 101 2.887 × 10−12

7 3.786 × 101 1.345 × 10−10 6.047 × 10−1 1.441 × 10−13

8 1.146 × 101 1.267 × 10−11 3.415 × 10−1 2.074 × 10−13

9 3.776 × 100 8.574 × 10−12 3.464 × 10−1 1.680 × 10−12

have 4000 causal Hankel singular values for the original lifted system and the remaining
40 are noncausal Hankel singular values which are positive. We plot them in Figure 8.8.

Figure 8.7. Causal Hankel singular values for original and reduced-order lifted systems
(Model problem 2).
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Figure 8.8. Noncausal Hankel singular values for original and reduced-order lifted
systems (Model problem 2).

We approximate the original system to the tolerance 10−2 by truncating the states corre-
sponding to the smallest 2007 causal Hankel singular values. For different subsystems,
the numbers of the computed non-zero noncausal Hankel singular values are the same
and r∞k = 4 for k = 0, 1, . . . , 9. The computed reduced-order model has subsystems
of order, r = (192, 197, 228, 232, 220, 192, 186, 194, 195, 197). The causal Hankel singular
values for original and reduced-order lifted systems are plotted in Figure 8.7.

Figure 8.9 shows the finite eigenvalues of the original and reduced-order lifted systems.
One can see that stability is preserved for the reduced-order system.

In Figure 8.10, we present the norms of the frequency responses H(eiω) and H̃(eiω)
of the original and reduced-order lifted systems for a frequency range [0, 2π]. We
observe a nice match of the system norms. In Figure 8.11, we display the absolute error
‖H(eiω) − H̃(eiω)‖2 and the error bound (8.44). One can see that the absolute error is
smaller than the error bound.

To investigate the efficiency of the reduced-order system, we plot the frequency re-
sponses and the deviation of the frequency responses for the individual component of
the transfer function H(eiω) and H̃(eiω) in Figure 8.12. For example, Figure 8.12(a) shows
the magnitudes of the frequency responses of original (full) and the reduced-order
model for H10,1(eiω) and H̃10,1(eiω), and Figure 8.12(b) shows their deviation. Similarly,
we plot the frequency responses for the other component of H(eiω) and H̃(eiω).
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Figure 8.9. Finite eigenvalues of the original and the reduced-order lifted systems
(Model problem 2).

Figure 8.10. The frequency responses of the original and the reduced-order lifted systems
(Model problem 2).
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Figure 8.11. Absolute error and error bound (Model problem 2).

8.7. Discussion

In this chapter, we have considered the reachability and observability Gramians as well
as Hankel singular values for periodic discrete-time descriptor systems. For such sys-
tems, a balanced truncation model reduction method has been presented. We solve the
periodic projected Lyapunov equations via their corresponding lifted representations
which can handle the time-varying periodic matrix pairs and the time-varying input and
output very easily during the solution process. The solutions of these projected lifted
Lyapunov equations have specific block diagonal structures and the diagonal blocks of
these lifted solutions are the solutions of the periodic projected Lyapunov equations (i.e,
the periodic Gramians). These periodic Gramians are then used to find a reduced-order
model of the original system.

The proposed balanced truncation model reduction method delivers a reduced-order
model that preserves the regularity and stability properties of the original system.
A computable global error bound for the approximate system is also available.

The main drawback of this method is that one has to solve the large dimensional
PLDALEs which has the computational complexity of O(Kn̄3), where n̄ = max(µk,nk).
Therefore, the proposed direct method (dense computation) is suitable for problems
of small and medium size. For large dimensional problems, we will introduce an
efficient iterative method to compute the approximate solutions of the resulting very
large dimensional PLDALEs in Chapter 9.
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(a) Frequency responses for H10,1(eiω) (b) Deviation of frequency responses for
H10,1(eiω)

(c) Frequency responses for H5,5(eiω) (d) Deviation of frequency responses for
H5,5(eiω)

(e) Frequency responses for H1,15(eiω) (f) Deviation of frequency responses for
H1,15(eiω)

Figure 8.12. Frequency responses for original and reduced-order systems for individual
components of H(eiω) and respective deviations (Model Problem 2).
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This chapter presents iterative methods for solving large sparse projected generalized
discrete-time periodic Lyapunov equations in lifted form which arise in Chapter 8 in the
context of model reduction of periodic descriptor systems. These iterative methods are
based on the generalization of the alternating direction implicit method and the Smith
method used for large-scale projected continuous-time Lyapunov equations in [110, 81].
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We present a low-rank version of the alternating direction implicit method and the
generalized Smith method to compute low-rank approximations to the solutions of
projected generalized discrete-time periodic Lyapunov equations in lifted form with
low-rank right-hand side. We also discuss the application of the solvers in balancing-
based model reduction of discrete-time periodic descriptor systems. Numerical results
are given to illustrate the efficiency and accuracy of the proposed methods.

The chapter outline is as follows. In Section 9.2, we briefly review the basic ADI
iteration and its application to Lyapunov equations. In Sections 9.3 and 9.4, we discuss
the numerical solution of the causal and noncausal lifted Lyapunov equations using
the ADI method and the Smith method, respectively. Low-rank versions of these
methods are also presented that can be used to compute low-rank approximations
to the solutions of projected periodic Lyapunov equations in lifted form with low-rank
right-hand side. A balanced truncation model reduction method for periodic descriptor
systems is considered in Section 9.5. Section 9.6 contains numerical examples that
illustrate the properties of the described iterative methods for lifted projected Lyapunov
equations and their application to model reduction.

9.1. Motivation

In Chapter 8 we have discussed the numerical solutions of large-scale projected discrete-
time periodic Lyapunov equations in lifted form which arise in model reduction of
periodic descriptor systems. We have observed that the lifted forms of those large-scale
projected Lyapunov equations have some sparsity patterns in their matrix coefficients.
In practice, it is not very efficient to use direct methods to generate the numerical
solutions of large-scale PLDALEs described in Theorem 5.2.4 and 5.2.5 of Chapter 5.
One should avoid direct methods because the computational complexity for solving
such a PLDALE using directs methods is of at least O(Kn̄3), where n̄ = max(µk,nk),
and they require extensive storage. Therefore, we will develop iterative methods for
such equations, which can exploit the sparse structures of system matrices to gener-
ate well approximating solutions (with prescribed tolerance), and have low memory
requirements and low computational cost.

Recently, increasing attention has been devoted to the numerical solution of large-
scale sparse Lyapunov equations using the alternating directions implicit (ADI) method
[67, 82], the Smith method [49, 82, 96], and Krylov subspace methods [55, 95]. For an
overview and further references, see [13]. Many of these methods have also been gen-
eralized to projected Lyapunov equations [110, 112]. On the other hand, an extension of
the Smith method and the Krylov subspace method based on a block Arnoldi algorithm
to standard periodic Lyapunov equation has been presented in [57]. These methods can-
not be directly applied to the projected periodic Lyapunov equations. Here, we consider
the projected periodic Lyapunov equations in lifted form and propose a generalization
of the ADI iteration and the Smith method for solving such equations.
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9.2. Background

The basic version of the ADI method has been proposed in [80] to solve linear systems
arising from the discretization of elliptic boundary value problems and then used in
[67, 70, 82, 110] to solve standard continuous-time Lyapunov equations. For the discrete-
time case, the ADI method is suggested in [64, 10]. In this section, we present a short
discussion of the basic ADI iteration in case of standard continuous-time Lyapunov
equations.

The ADI iteration is generally used to solve linear systems like

Ly = b,

where L is a symmetric positive definite matrix and can be split into the parts, i.e.,
L = L1 + L2, where L1 and L2 both are symmetric positive definite matrices for which
the following iteration converges.

y0 = 0,
(L1 + τ jI) y j− 1

2
= b − (L2 − τ jI) y j−1,

(L2 + η jI) y j = b − (L1 − η jI) y j− 1
2
, for j = 1, 2, . . . , J.

Here τ j and η j are suitably chosen shift parameters and they are determined from the
spectral bounds of L1 and L2 to increase the convergence rate for the solutions y j [49].
This is known as ADI model problem when the matrices L1 and L2 commute.

Now consider a Lyapunov equation of the form

FX + XFT = −BBT (9.1)

with stable F, i.e., all eigenvalues of F have negative real part. One can consider (9.1) as a
model ADI problem because it is a linear system involving the sum of two commutating
operators acting on the unknown X, which is a matrix in this case. Therefore, the ADI
iteration produces the approximation X j to the Lyapunov solution X according to the
two step iteration as follows:

(F + τ jI)X j− 1
2

= −BBT
− X j−1(FT

− τ jI)
(F + τ jI)X j = −BBT

− XT
j− 1

2
(FT
− τ jI),

(9.2)

where τ1, τ2, . . . , τ j ∈ C
− are called ADI shift parameters.

To keep the final ADI approximation X j f inal real, it is assumed that each shift parameter
is either real or comes as a part of a complex conjugate pair {τ j, τ j+1} with τ j+1 = τ̄ j,
where τ̄ j denotes the complex conjugate of τ j. Note that the intermediate matrix X j− 1

2
in (9.2) may not be symmetric, but X j−1 and X j are symmetric.
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The main idea behind the low-rank version of an ADI iteration is to write the two step
iteration (9.2) into a one step iteration

X j = −2 Re(τ j) (F + τ jI)−1BBT(F + τ̄ jI)−T

+(F + τ jI)−1(F − τ̄ jI)Z j−1ZT
j−1(F − τ jI)T(F + τ̄ jI)−T,

(9.3)

which is symmetric. Now assuming X j = Z jZT
j and X0 = 0, we can write (9.3) in terms

of the factors Z j as

Z1 =
√
−2Re(τ1) (F + τ1I)−1B,

Z j = [
√
−2Re(τ j) (F + τ jI)−1B, (F + τ jI)−1(F − τ̄ jI)Z j−1].

Hence we work on the factors Z j which have comparably low column rank instead of
working with the square matrices X j. One can also show that only the new columns
need to be processed in every iteration step [82]. The convergence of the ADI iteration
is determined by the spectral radius ρadi = ρ(Πi

j=1 (F + τ jI)−1(F − τ̄ jI)) where i is the
number of shifts used [49], and depends strongly on the choice of ADI parameters.
The minimization of ρadi with respect to shift parameters τ j leads to the ADI minimax
problem:

{τ1, τ2, . . . , τi} = arg min
τ1,τ2,...,τi∈C−

max
λ∈Λ(F)

∣∣∣∣∏i
j=1

(λ−τ̄ j)
(λ+τ j)

∣∣∣∣ .
The details about the solution of the ADI minimax problem will be given in the next
section and contributions to the solution of the ADI minimax problem can also be found
in [127, 70, 82]. For a diagonalizable F, it can be shown that the i-th iterate satisfies the
following convergence relation [67]

‖X − Xi‖F ≤ ‖M‖2 ‖M−1
‖

2 ρ2
adi ‖X‖F,

where M is the matrix of eigenvectors of F. A good stopping criterion of the ADI
iteration can be determined by the evaluation of the residual norm

‖FZ jZT
j + Z jZT

j FT + BBT
‖F

‖BBT‖F
< ε,

for a given tolerance ε or a stagnation of the normalized residual norms is observed.
If the number of shift parameters is smaller than the number of iterations required
to achieve accuracy upto a certain tolerance, then these shift parameters are reused
again in a cyclic manner. In the following section we generalize the ADI method to the
PLDALEs with large and sparse matrix coefficients.

9.3. ADI Method for Causal Lifted Lyapunov Equations

Let us consider the PLDALE

AGcrAT
− EGcrET = −PlBBTPT

l , Gcr = PrG
crPT

r , (9.4)
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in (8.9), where all the finite eigenvalues of the pencil λE−A lie inside the unit circle. If E
is nonsingular, then the PLDALE (9.4) can be transformed to the standard discrete-time
Lyapunov equation by the multiplication from the left and right with E−1 and (E−1)T.
This equation can be solved by the ADI method [10, 26] or the Smith method [49, 82, 96].
However, for the descriptor system (8.1), the matrix E = diag(E0, . . . ,EK−1) is singular.
If the pencil λE − A has no zero eigenvalues, then A is nonsingular and (9.4) can be
transformed to a standard discrete-time Lyapunov equation by the multiplication from
the left and right with A−1 and (A−1)T. Note that λE − A is stable since all its finite
eigenvalues lie inside unit circle. Then the Smith iteration [110]

Gcr
i+1 = A−1(−PlBBTPT

l + EGcr
i E

T)A−T, Gcr
0 = PrBBTPT

r (9.5)

can be used to compute the approximate solution of (9.4) provided A is invertible.
But the negative semidefinite term inside the bracket of (9.4) may lead to indefinite
intermediate approximations. Also in this case both the ADI and Smith iterations fail to
converge for the resulting Lyapunov equation, because A−1E has eigenvalues outside
the unit circle. This problem can be circumvented by considering the generalized Cayley
transformation of the lifted system. In the sequel, we will introduce the generalized
Cayley transformation and some of its important properties that we will exploit in our
ADI model problem reformulation.

9.3.1. Cayley Transformation

Let us consider a standard discrete-time system with realization Σd = (Ad,Bd,Cd) . Using
the bilinear transformation

s =
z − 1
z + 1

,

we get its continuous-time counterpart as

Σc =
(
Ac = (Ad + I)−1(Ad − I), Bc =

√

2(Ad + I)−1Bd, Cc =
√

2Cd(Ad + I)−1
)
. (9.6)

The bilinear transformation above is known as Cayley transformation, see, e.g., [52, 1].
The concept can be extended to generalized systems. LetλdEd−Ad be a matrix pencil of a
generalized discrete-time system. Then by generalized Cayley transformationC(Ed,Ad),
we get its continuous-time counterpart as

C(Ed,Ad) := λcEc − Ac = λd(Ad − Ed) − (Ed + Ad), (9.7)

which connects the generalized Lyapunov equations in the continuous-time and discrete-
time cases [74, 103]. It can be proved that analogous to the standard case, the Cayley
transformation preserves Gramians in the generalized case too, i.e. the Gramians Xc of a
generalized continuous-time Lyapunov equation equals to its discrete-time counterpart
Xd, obtained by using transformation (9.7). So analysis of the Gramians and the eigen-
structure of a generalized discrete-time LTI system can be studied with its generalized
continuous-time counterpart.
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Note that the generalized Cayley transformation only changes the eigenvalues but not
the eigenvectors (it even does not change the deflating subspaces when the pencil is
singular, if the deflating subspaces exist in singular case) [74]. Thus the generalized
eigenvector matrices of λdEd − Ad and λcEc − Ac are the same, while the generalized
eigenvalues of λcEc − Ac are

λc =
λd + 1
λd − 1

.

Hence, we introduce the following proposition to summarize the relations between the
eigenvalues of the pencil λEc − Ac and λEd − Ad.

Proposition 9.1:
[103] Consider the generalized Cayley transformation (9.7) for the pencil λdEd − Ad of a
generalized discrete-time LTI system. Then

1. the finite eigenvalues of λdEd − Ad inside and outside the unit circle are mapped to
eigenvalues of λcEc − Ac with negative real part and positive real part, respectively;

2. the finite eigenvalues of λdEd − Ad on the unit circle except λd = 1 are mapped to
eigenvalues of λcEc − Ac on the imaginary axis and the eigenvalue λd = 1 is mapped
to∞;

3. the infinite eigenvalues of λdEd − Ad are mapped to eigenvalues at 1 of λcEc − Ac. ♦

In the next subsection, we will use the generalized Cayley transformation for the cyclic
lifted pencil λE−A and generate an approximate solution of (9.4) using the continuous-
time counterpart of (9.4).

9.3.2. Derivation of the ADI Method for Cayley Transformed Systems

We just have observed that the generalized Cayley transformation given by

C(E,A) = λ(A − E) − (A + E), (9.8)

transfers the projected discrete-time Lyapunov equation to a projected continuous-time
Lyapunov equation. Indeed, Gcr is the solution of the PLDALE (9.4) if and only if it
satisfies the projected continuous-time Lyapunov equation (PCALE)

EGcrAT + AGcrET = −2PlBBTPT
l , Gcr = PrG

crPT
r , (9.9)

where λE − A = λ(A − E) − (A + E) is the Cayley-transformed pencil. Now, the fi-
nite eigenvalues of λE − A lying inside the unit circle are mapped to eigenvalues of
λE−A in the open left half-plane, and the eigenvalues of λE−A at infinity are mapped
to λ = 1. Moreover, the spectral projectors Pl and Pr are preserved by the Cayley
transformation and now are the projectors onto the left and right deflating subspaces of
λE −A corresponding to the finite eigenvalues with negative real part.
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IfλE−A is pd-stable, the matrices E and A are both nonsingular ( see [74], and references
therein). Using the relation Pl E = E Pr, we can transform the PCALE (9.9) to the
projected standard Lyapunov equation

(E−1A)Gcr + Gcr(E−1A)T = −2PrE−1B(E−1B)TPT
r , Gcr = PrG

crPT
r . (9.10)

In this case, the solutions of (9.9) and (9.10) are identical and an approximate solution
of (9.9) can be computed by the ADI method applied to (9.10). The ADI iteration for
(9.10) is given by

Gcr
i = (E−1A + τiI)−1(E−1A − τ̄iI)Gcr

i−1(E−1A − τiI)T(E−1A + τ̄iI)−T

−4Re(τi)(E−1A + τiI)−1PrE−1B(E−1B)TPT
r (E−1A + τ̄iI)−T, (9.11)

with an initial matrix Gcr
0 = 0 and the shift parameters τ1, τ2, . . . , τi ∈ C

−. It follows from

Pr(E−1A − τ̄iI) = (E−1A − τ̄iI)Pr,
Pr(E−1A + τiI)−1 = (E−1A + τiI)−1Pr,

that Gcr
i = PrG

cr
i P

T
r , i.e., the second equation in (9.9) is satisfied. Iteration (9.11) can be

written as

Gcr
i = (A + τiE)−1(A − τ̄iE)Gcr

i−1(A − τiE)T(A + τ̄iE)−T

−4Re(τi)(A + τiE)−1PlBBTPT
l (A + τ̄iE)−T. (9.12)

Similarly to [110], we can establish the convergence of the ADI iteration (9.12).

Proposition 9.2:
Consider the periodic discrete-time descriptor system (8.1) and its cyclic lifted representation
(8.2), where the set of periodic matrix pairs {Ek,Ak}

K−1
k=0 is pd-stable. If τ1, τ2, . . . , τi ∈ C

−,
then the ADI iteration (9.12) converges to the solution Gcr of the projected PCALE (9.9). ♦

Proof. Let Gcr be the solution of the projected PCALE (9.9). After the i-th iteration, the
error Gcr

i − Gcr can be computed from (9.12) recursively as

Gcr
i − Gcr = RiG

crR∗i , (9.13)

with
Ri = Pr(A + τiE)−1(A − τ̄iE) · · · (A + τ1E)−1(A − τ̄1E). (9.14)

Since the periodic descriptor system (8.1) is asymptotically stable, the Cayley trans-
formed pencil λE −A has only eigenvalues with negative real part plus the eigenvalue
λ = 1 (due to Proposition 9.1). Thus, it can be transformed into Weierstrass canonical
form

E = W
[
I f 0
0 I

]
Z, A = W

[
J 0
0 J1

]
Z, (9.15)
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where the matrices W and Z are nonsingular, J has eigenvalues with negative real part
and J1 has the eigenvalue λ = 1 only. In that case the projectors Pl and Pr can be
represented as

Pl = W
[
I 0
0 0

]
W−1, Pr = Z−1

[
I 0
0 0

]
Z. (9.16)

Substituting (9.15) and (9.16) in (9.14), we obtain that

Ri = Z−1
[
Ji 0
0 0

]
Z, (9.17)

with
Ji = (I + τiJ)−1(I − τ̄iJ) · . . . · (I + τ1J)−1(I − τ̄1J). (9.18)

Since all eigenvalues of J have negative real part, then all eigenvalues of (I+τlJ)−1(I−τ̄lJ),
l = 1, . . . , i, lie inside the unit circle. Therefore,

lim
i→∞

Ri = 0,

and, hence, the right-hand side of equation (9.13) tends to zero. In other words, Gcr
i

converges to the solution Gcr. �

Proposition 9.3:
Consider the PCALE (9.9). Assume that the pencil λE−A is in Weierstrass canonical form
(9.15), where J is diagonal. Then the i-th iterate Gcr

i of the ADI method (9.12) satisfies the
estimate

‖Gcr
i − Gcr

‖2 ≤ κ
2(Z)ρ2(Ri)‖Gcr

‖2, (9.19)

where κ(Z) = ‖Z‖2‖Z−1
‖2 is the spectral condition number of the right transformation matrix

Z in (9.15) and ρ(Ri) is the spectral radius of the matrix Ri in (9.14). ♦

Proof. From (9.13), we have

‖Gcr
i − Gcr

‖2 := ‖RiG
crR∗i ‖2 ≤ ‖Ri‖2 ‖G

cr
‖2 ‖R∗i ‖2. (9.20)

Now using (9.17), we can show that

‖Ri‖2 ‖G
cr
‖2 ‖R∗i ‖2 ≤ ‖Z

[
Ji 0
0 0

]
Z−1
‖2 ‖G

cr
‖2 ‖Z−∗

[
Ji 0
0 0

]∗
Z∗‖2

≤ ‖Z‖2 ρ(Ri) ‖Z−1
‖2 ‖G

cr
‖2 ‖Z−1

‖2 ρ(Ri) ‖Z‖2

≤ ‖Z‖22 ρ
2(Ri) ‖Z−1

‖
2
2 ‖G

cr
‖2

= κ2(Z)ρ2(Ri)‖Gcr
‖2.

Hence, estimate (9.19) is established. �

Remark 9.4:
The solutions of PLDALE (9.4) and PCALE (9.9) are identical and have block diagonal
structure. Hence, an approximation of the solution of (9.9) also means that this is an
approximation of the solution of the projected lifted Lyapunov equation (9.4). ♦
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9.3.3. Computing Shift Parameters

The convergence rate of the ADI iteration (9.12) is determined by the spectral radius of
the matrix Ri and depends strongly on the choice of ADI parameters. The minimization
of this spectral radius with respect to the shift parameters τ1, τ2, . . . , τi ∈ C

− leads to the
generalized minimax problem

{τ1, τ2, . . . , τi} = arg min
τ1,τ2,...,τi∈C−

max
t∈Sps(E,A)

i∏
j=1

∣∣∣(t − τ̄ j)
∣∣∣∣∣∣(t + τ j)
∣∣∣ , (9.22)

where Sps(E,A) denotes the set of stable eigenvalues of the pencil λE − A, i.e., the
finite eigenvalues with negative real part. The bounds needed to compute the optimal
shift parameters are too expensive to compute exactly in case of large-scale systems
because they need to compute the whole spectrum of the pencil λE−A. An alternative
approach based on heuristics, which does not explicitly compute the eigenspectrum,
has been proposed in [82] for standard problems with E = I. It is based on replacing the
eigenspectrum by a set of largest and smallest in modulus Ritz values that approximate
the eigenvalues of A. The Ritz values can be computed by an Arnoldi process applied to
the matrices A and A−1. This approach can also be extended to the generalized problem
(9.22).

Since the pencilλE−A has finite eigenvalues with negative real part (stable eigenvalues)
and also an eigenvalue λ = 1, an equivalent expression for (9.22) can be written as

{τ1, τ2, . . . , τi} = arg min
τ1,τ2,...,τi∈C−

max
t∈ Λ(E−1A)\{1}

i∏
j=1

∣∣∣(t − τ̄ j)
∣∣∣∣∣∣(t + τ j)
∣∣∣ , (9.23)

Thus, the suboptimal ADI shift parameters τ1, τ2, . . . , τi can be computed by the heuristic
procedure [82] from the set of largest approximate stable eigenvalues of E−1A and A−1E.

9.3.4. Low-Rank ADI Method

Low-rank version of the ADI method has been proposed in [67, 82] to compute a low-
rank approximation to the solution of standard Lyapunov equations with large-scale
matrix coefficients. It is known as the low-rank alternating direction implicit (LR-ADI)
method. This method was extended to projected Lyapunov equations in [110].

It is observed in [110] that analogous to standard state space case [2, 83], the eigenvalues
of the symmetric solutions of projected Lyapunov equations with low-rank right-hand
sides often decay very rapidly, and such solutions can be well approximated by low-
rank matrices. That means that one can find a matrix Z with a small number of columns
such that ZZT is an approximation to the solution Gcr of PCALE (9.9). This matrix Z is
referred to as a low-rank Cholesky factor of the solution of (9.9).
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Since the matrices Gcr
i in the ADI iteration (9.12) are Hermitian and positive semidefinite,

a factor Zi of Gcr
i = ZiZ∗i can be represented as

Zi =
[
2
√
−Re(τi)(A + τiE)−1PlB, (A + τiE)−1(A − τ̄iE)Zi−1

]
, (9.24)

and Z0 = 0. Introducing the matrices Φ j = (A − τ̄ jE) and Ψ j = (A + τ jE)−1, we can
express the i-th iteration as

Zi =2[
√
−Re(τi)ΨiPlB,

√
−Re(τi−1)Ψi(ΦiΨi−1)PlB, . . . ,

√
−Re(τ1)ΨiΦi · · ·Ψ2(Φ2Ψ1)PlB].

Since Ψ j and Φ j commute, we can reorder these matrices and rewrite Zi in the form

Zi = [ G, Fi−1G, Fi−2Fi−1G, . . . , F1F2 · · · Fi−1G ],

where
G = 2

√
−Re(τi)(A + τiE)−1PlB

and

F j =

√
Re(τ j)

Re(τ j+1)
Ψ jΦ j+1 =

√
Re(τ j)

Re(τ j+1)

(
I − (τ j + τ j+1)(A + τ jE)−1E

)
.

Reenumerating the shift parameters in reverse order, we obtain Algorithm 9.1 for com-
puting the low-rank Cholesky factor of the solution of (9.9), which is also the solution
of the PLDALE (9.4).

Note that if the complex shift parameters appear in complex conjugate pairs
{τi, τi+1 = τi}, then performing a double step as described in [13, 110] we can keep
the low-rank Cholesky factor Zi to be real.

Algorithm 9.1 Low-rank ADI iteration (LR-ADI) for causal PLDALE.
Input: A,E,B,Pl and shift parameters τ1, τ2, . . . , τi.
Output: a low-rank Cholesky factor Zi such that Gcr

≈

ZiZ∗i .

1: V1 = 2
√
−Re(τ1))(A + τ1E)−1PlB

2: Z1 = V1
3: for i = 2, 3, . . . , do

4: Vi =
√

Re(τi)
Re(τi−1) (I − (τi + τ̄i−1)(A + τiE)−1E)Vi−1

5: Zi = [Zi−1, Vi]
6: end for

The ADI iteration can be stopped as soon as the normalized residual norm given by

η(Zi) =
‖AZiZ

T
i ET + EZiZ

T
i AT + 2PlBBTPT

l ‖F

‖2PlBBTPT
l ‖F

(9.25)
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satisfies the condition η(Zi) < tol with a user-defined tolerance tol or a stagnation of
normalized residual norms is observed. If the number of shift parameters is smaller
than the number of iterations required to attain a prescribed tolerance, then we reuse
these parameters in a cyclic manner.

If Gcr
i = ZiZ∗i converges to the solution of (9.9), then

lim
i→∞

ZiZ∗i = lim
i→∞

(Gcr
i − Gcr

i−1) = 0.

Therefore, the stopping criterion in Algorithm 9.1 can also be defined by the condition
‖Vi‖F ≤ tol or ‖Vi‖F/‖Zi‖F ≤ tol with some tolerance tol.

Note that we do not need to compute the matrices E and A explicitly in Algorithm 9.1.
Instead, we can rewrite the iteration for the original matrices E and A. Using E = A− E

and A = A + E, we have

(A + τiE)−1E =
(
(1 + τi)A + (1 − τi)E

)−1
(A − E).

Then Steps 1 and 4 in Algorithm 9.1 can be reformulated as

V1 = 2
√
−Re(τ1)

(
(1 + τ1)A + (1 − τ1)E

)−1
Pl B,

Vi =

√
Re(τi)

Re(τi−1)

(
Vi−1 − (τi + τ̄i−1)

(
(1 + τi)A + (1 − τi)E

)−1
(A − E)Vi−1

)
.

The minimax problem (9.23) for the ADI parameters can be reformulated accordingly.

Remark 9.5:
In exact arithmetic, the matrices Zi satisfy Zi = PrZi and, hence, the second equation
in (9.9) is fulfilled for the low-rank approximation ZiZ

T
i . However, in finite precision

arithmetic, a drift-off effect may occur. In this case, we need to project Vi onto
the image of Pr by pre-multiplication with Pr. In order to limit the additional
computation cost, we can do this, for example, at every second or third iteration
step. ♦

We observe that the ADI iteration does not preserve the block diagonal structure at
every iteration step in Algorithm 9.1. This is due to the specific structure of the matrices
E and A. But we can show that after the successful i-th iteration step, the approximate
Gramian Gcr

i = ZiZT
i has almost block diagonal structure analogous to the solution of

the PLDALE (9.4) given by Gcr
i = diag(Gcr

1 , . . . ,G
cr
K−1,G

cr
0 ), where Gcr

k are the periodic
solutions of the PPDALE (4.69) for k = 0, 1, . . . ,K − 1. Since Gcr

i is almost block diagonal
after the i-th iteration and Gcr

i = ZiZT
i , we let

Zi = [RT
i,1, . . . , RT

i,K−1, RT
i,0 ]T, (9.26)

with Ri,k ∈ R
nk×rc . For simplicity, we leave the scripts i and write (9.26) more simply as

Zi = [RT
1 , . . . , RT

K−1, RT
0 ]T,
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with Rk ∈ R
nk×rc . Then RkRT

k is an approximation to the causal reachability Gramian Gcr
k ,

k = 0, 1, . . . ,K − 1.

Remark 9.6:
We have claimed that after the successful iteration steps in Algorithm 9.1, the ap-
proximate Gramian has almost block diagonal structure analogous to the solution of
the PLDALE (9.4). Now suppose that after successful i-th iteration steps, we have the
Cholesky factor Zi given by Equation (9.26). Clearly, the periodic Cholesky factors
Ri,k, for k = 0, . . . ,K − 1, have off-diagonal columns. Consider now R̄i,k contains all
the off-diagonal columns of Ri,k for each k, where k = 0, . . . ,K − 1. Then it must be
the case that

lim
i→∞
‖ R̄i,k R̄T

i,l ‖2 = 0, (9.27)

for some pairs (k, l), k , l, and k = 0, . . . ,K − 1, l = 0, . . . ,K − 1. The same holds true
for observability type LR-ADI computation. ♦

9.3.5. Column Compression for the LR-ADI Method

For a fast convergence of the ADI iteration, it is very important to choose a set of
good shift parameters. Since we are working with suboptimal parameters, the desired
convergence in the LR-ADI iteration may not be achieved in few iteration steps and,
as a result, the number of columns of the approximate Cholesky factor may grow. In
order to keep the low-rank structure in Zi, we truncate those columns that do not carry
any additional information in the subsequent iteration steps. This truncation approach
saves memory space and lowers the computational cost, because residual computations
required in the stopping criteria will also incorporate these redundant columns.

Assume that Zi ∈ R
n×rc has the numerical rank rank(Zi, τ) = rn < rc with a prescribed

tolerance τ. Then we compute the rank-revealing QR decomposition (RRQR)

ZT
i = QiRiΠ

T
i , Ri =

[
Ri,11 Ri,12

0 Ri,22

]
,

where Qi is orthogonal, Πi is a permutation matrix, Ri,11 ∈ R
rn×rn is upper triangular

and ‖Ri,22‖F ≤ τ. Setting Ri,22 ≈ 0 and Z̃T
i = [Ri,11 Ri,12]ΠT

i , we find that Z̃iZ̃
T
i ≈ Gcr.

Note that we do not need to compute Qi, since this matrix cancels out in the product
Z̃iZ̃

T
i due to its orthogonality property. In practice, the rank determination has to be

performed on the basis of the truncation tolerance τ in the RRQR. In [15], it is shown
that a tolerance τ =

√
ε, where ε is the machine precision, is sufficient to achieve an

error of the machine precision magnitude for the solution Gcr of the PLDALE (9.4). We
summarize the resulting ADI iteration in Algorithm 9.2.
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Algorithm 9.2 Low-rank Cholesky factor ADI (LRCF-ADI) iteration for causal PLDALE.
Input: A,E,B,Pl and shift parameters τ1, τ2, . . . , τi.
Output: A low-rank Cholesky factor Zi such that Gcr

≈ ZiZ
T
i .

1: V1 = 2
√
−Re(τ1))

(
(1 + τ1)A + (1 − τ1)E

)−1
PlB

2: Z1 = V1
3: for i = 2, 3, . . . , do

4: Vi =

√
Re(τi)

Re(τi−1)

(
Vi−1 − (τi + τ̄i−1)

(
(1 + τi)A + (1 − τi)E

)−1
(A − E)Vi−1

)
5: Zi = [ Zi−1, Vi ]
6: [Ri,Πi, rn] = RRQR(ZT

i ,
√
ε)

7: Update Zi = ΠiR
T
i [ Irn , 0 ]T

8: end for

9.4. Smith Method for Solving Noncausal Lifted Lyapunov
Equations

Consider now the PLDALE

AGncrAT
− EGncrET = QlBBTQT

l , Gncr = QrG
ncrQT

r . (9.28)

For nonsingular A, this equation is equivalent to the PLDALE

Gncr
− (A−1E)Gncr(A−1E)T = QrA

−1BBTA−TQT
r , Gncr = QrG

ncrQT
r . (9.29)

In this case the relation QrA
−1E = A−1EQr holds [110] and such an equation can be

solved by the Smith method [96] given by

Gncr
1 = QrA

−1BBTA−TQT
r ,

Gncr
i = QrA

−1BBTA−TQT
r + (A−1E)Gncr

i−1(A−1E)T.

Note that Qr is the spectral projector onto the invariant subspace of the matrix A−1E

corresponding to the zero eigenvalues. Then QrA
−1E = A−1EQr is nilpotent with the

nilpotency index ν, where ν is the index of the periodic descriptor system (8.1). In this
case, after ν iterations we obtain

Gncr
ν =

ν−1∑
k=0

(A−1E)kQrA
−1BBTA−TQT

r ((A−1E)T)k = Gncr.

Therefore, the Cholesky factor X of the solution Gncr = XXT of (9.29) and also of the
PLDALE (9.28) takes the form

X = [QrA
−1B, A−1EQrA

−1B, . . . , (A−1E)ν−1QrA
−1B ]. (9.30)
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The computation of this factor is presented in Algorithm 9.3.

Algorithm 9.3 Generalized Smith method for noncausal PLDALE.
Input: A,E,B, spectral projector Qr.
Output: A low-rank Cholesky factor Xν such that Gncr = XνXT

ν .

1: W1 = QrA
−1B

2: X1 = W1
3: for i = 2, 3, . . . , ν do
4: Wi = A−1EWi−1
5: Xi = [Xi−1, Wi]
6: end for

We note that the iteration only continues up to the index ν of the descriptor system (8.1).
If the index ν is unknown, then Algorithm (9.3) can be stopped as soon as ‖Wi‖F ≤ tol
or ‖Wi‖F/‖Xi‖F ≤ tol with a user-defined tolerance tol. In practice, most of the systems
we handle are index-1 or index-2 problems. For an index-1 problem, the algorithm only
needs to compute the first block column of X in (9.30), and for an index-2 problem,
it computes only the first two block columns of X. In that sense, the solution can be
obtained with few computations.

Remark 9.7:
In order to guarantee that the second equation in (9.29) and also in (9.28) is satisfied
in finite precision arithmetic, we have to project Wi onto the image of Qr by pre-
multiplication with Qr. ♦

Note that the generalized Smith iteration does not preserve the block diagonal structure
at every iteration step in Algorithm 9.3, but the approximate Gramian Gncr

i = XiX
T
i has

block diagonal structure at each iteration step, i = 1, 2, . . . , ν. After ν iterations we obtain
Gncr
ν = Gncr and Gncr = XνXT

ν has block diagonal structure analogous to the solution of
the PLDALE (9.28) given by Gncr = diag(Gncr

1 , . . . ,Gncr
K−1,G

ncr
0 ), where Gncr

k are the periodic
solutions of the PPDALE (4.70) for k = 0, 1, . . . ,K − 1. Since Gncr = XνXT

ν has block
diagonal structure, we can partition the factor Xν as

Xν = [ X̃T
1 , . . . , X̃T

K−1, X̃T
0 ]T

with X̃k ∈ R
nk,νm. Then the noncausal reachability Gramians of system (8.1) can be

computed in factored form Gncr
k = X̃kX̃T

k .

Remark 9.8:
We have claimed that after each iteration step in Algorithm 9.3, the approximate
Gramian has block diagonal structure and after ν iterations we obtain Gncr

ν = Gncr

and Gncr = XνXT
ν has block diagonal structure analogous to the solution of the
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PLDALE (9.28). Hence we must observe the similar case as in the LR-ADI com-
putation (see Remark 9.6) that the norms of the product of off-diagonal matrices as
in (9.27) will be zero at each iteration step i, where i = 1, . . . , ν. The same holds true
for observability type Smith iteration. ♦

In the case of singular A, we can again use the generalized Cayley transformation (9.7)
and compute the Cholesky factor of the PLDALE (9.28) via the ADI iteration as in the
causal case.

Remark 9.9:
The causal and noncausal observabiliy Gramians of the periodic descriptor system
(8.1) can also be determined from the corresponding PLDALEs that are dual to
the PLDALE (9.4) and (9.28), see [12] for details. Applying Algorithm 9.2 and
Algorithm 9.3 to these equations, we find, respectively, the low-rank Cholesky factors
Lk of the causal observability Gramians Gco

k ≈ LkLT
k and the Cholesky factor Ỹk of the

noncausal observability Gramians Gnco
k = ỸkỸT

k . ♦

9.5. Application to Model Order Reduction

Consider now the low-rank Cholesky factors of the causal and noncausal Gramians of
the periodic descriptor system (8.1) obtained by using Algorithms 9.2 and 9.3, respec-
tively.

Assume that the set of periodic matrix pairs {(Ek,Ak)}K−1
k=0 is pd-stable. Consider the

Cholesky factorizations of the causal and noncausal Gramians

Gcr
k = RkRT

k , Gco
k = LkLT

k ,

Gncr
k = X̃kX̃T

k , Gncr
k = ỸkỸT

k .

Then the causal and noncausal Hankel singular values of the periodic descriptor system
(8.1) are defined as

σk, j =
√
λ j(Gcr

k ET
k−1Gco

k Ek−1) = ζ j(LT
k Ek−1Rk),

θk, j =
√
λ j(Gncr

k AT
k Gnco

k+1Ak) = ζ j(Ỹk+1AkX̃k),

respectively. Let

LT
k Ek−1Rk = [Uk,1,Uk,2]

[
Σk,1

Σk,2

]
[Vk,1,Vk,2]T,

ỸT
k+1AkX̃k = Uk,3ΘkVT

k,3,
(9.31)

be singular value decompositions, where [Uk,1,Uk,2], [Vk,1,Vk,2], Uk,3 and Vk,3 are or-
thogonal,

Σk,1 = diag(σk,1, . . . , σk,r f
k
), Σk,2 = diag(σ

k,r f
k+1
, . . . , σ

n f
k
),



162 Chapter 9. Low-Rank Solution of Large Scale Periodic Matrix Equations

with σk,1 ≥ · · · ≥ σ
k,r f

k
> σ

k,r f
k+1
≥ . . . ≥ σ

k,n f
k
> 0, and Θk = diag(θk,1, . . . , θk,r∞k

) is

nonsingular for k = 0, 1, . . . ,K − 1. Note that the number of non-zero noncausal Hankel
singular values of (8.1) is estimated by the relation (8.42) [11].

We compute the reduced-order system of (8.1) as

Ẽk = ST
k,rEkTk+1,r, Ãk = ST

k,rAkTk,r, B̃k = ST
k,rBk, C̃k = CkTk,r, (9.32)

where the projection matrices have the form

Sk,r = [ Lk+1Uk+1,1Σ−1/2
k+1,1, Ỹk+1Uk,3Θ−1/2

k ] ∈ Rµk+1,rk+1 ,

Tk,r = [ RkVk,1Σ−1/2
k,1 , X̃kVk,3Θ−1/2

k ] ∈ Rnk,rk ,

with rk = r f
k + r∞k . Similarly, we can define the H∞-norm error bound [11] for the

reduced-order system by relation

‖H − H̃‖H∞ = sup
ω∈[0,2π]

‖H(eiω) − H̃(eiω)‖2 ≤ 2
K−1∑
k=0

trace(Σk,2), (9.33)

where ‖.‖2 denotes the matrix spectral norm and Σk,2 contains the truncated causal
Hankel singular values.

Remark 9.10:
(i) For balanced truncation model order reduction, we use a tolerance to truncate
the Hankel singular values for having a reduced system with smaller dimension.
To achieve a good approximation, the Gramians, i.e., the Cholesky factors should
be computed as accurately as possible. Note that the tolerance τ =

√
ε, is a good

choice to compute the low-rank Cholesky factors using Algorithms 9.2, because in
that case the Gramian, i.e., the solution Gcr of the PLDALE (9.4) has error of machine
precision ε. For MOR application this is not a good choice, since we use the Cholesky
factors there, not the Garmians. So the Cholesky factors have to be computed more
accurately. If the reduced-order model is computed with less accuracy, then this does
not matter.

(ii) The error bound of the reduced-order system depends on the accuracy of the
computed Cholesky factors and also on the accuracy we have considered for the
reduced-order model. Therefore, we can only approximate the error bound. ♦

9.5.1. Numerical Results and Comparisons

In this subsection we consider numerical examples to illustrate the reliability of the pro-
posed iterative methods for model order reduction of periodic time-varying discrete-
time descriptor systems. The first test example is taken from [30], it is a small dimen-
sional problem that has already been considered in Chapter 8. The second test problem
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(a) (b)

Figure 9.1. (a) Finite eigenvalues of lifted system, (b) finite eigenvalues of Cayley trans-
formed system (Model problem 1).

is an artificial problem of medium size (n=4040), and the third problem is a very large
sparse problem (n=105) obtained from the discretization of a heat equation at different
sampling time.

9.5.2. Model Problem 1

We consider here the model problem 1 of Chapter 8. We compare the results of dense
computations with the results of LRCF-ADI iterative computations. The sparsity pat-
terns of E and A have been shown in Figure 8.1.

The eigenspectrum of the lifted system and the corresponding Cayley transformed
system are shown in Figure 9.1. We draw a line on the imaginary axis to show the nice
shifts of the eigenvalues of the lifted pencil into the Cayley transformed pencil. We
observe all the finite stable eigenvalues of the lifted pencil are shifted into the negative
half of the complex plane, and infinite eigenvalues of the lifted pencil are mapped to 1
as expected.

We solve the causal lifted Lyapunov equations using the LRCF-ADI iteration as in
Algorithm 9.2. The shift parameters are computed using the heuristic process discussed
in Section 9.3.3 and shown in Figure 9.2.

We have computed the normalized residual at each step of the ADI-iteration. The
iteration is stopped as soon as the normalized Lyapunov residual, computed by using
Equation (9.25), exceeds tol = 10−8.

We plot the norms of the products of off-diagonal matrices given by (9.27) to show that
the approximate Gramian has block diagonal structure analogous to its exact solution.
In Figure 9.4 we plot the norms of these off-diagonal matrices (i.e., norms of R̄i,k R̄T

i,l
for k , l given by (9.27) for k , l, and k, l = 0, 1, 2), along the Y-axis and the index of



164 Chapter 9. Low-Rank Solution of Large Scale Periodic Matrix Equations

Figure 9.2. Computed shift parameters (Model problem 1); ( eigs = eigenvalues, parm
= parameters).

Figure 9.3. Normalized residual norms for Lyapunov equations (Model problem 1);
(Cont. type = Reachability type, Obsr. type = Observability type).
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iterations along the X-axis (for reachability type LR-ADI computation). In each case we
notice that the norms tend to zero when the iteration steps increase. The same results
hold true for the observability type LR-ADI computation which are shown in Figure 9.5.

Since our model problem is an index-1 problem, we only need one iteration in Algo-
rithm 9.3. We then compute the norms of the products of the off-diagonal matrices and
we observe that the norms are zero for the noncausal case.

Figure 9.14 shows the causal Hankel singular values of the original system in lifted form.
These Hankel singular values are the combination of all the causal Hankel singular
values σk, j of the periodic descriptor system (8.1) given by its different subsystems for
k = 0, 1, 2. We observe that the Hankel singular values decay fast, and, hence system
(8.1) can be well approximated by a reduced-order model. We have 24 causal Hankel
singular values for the original lifted system and the remaining 6 are the noncausal
Hankel singular values which are computed using Algorithm 9.3. These noncausal
Hankel singular values are positive.

We approximate system (8.1) to the tolerance 10−2 by truncating the states corresponding
to the smallest 7 causal Hankel singular values. For different subsystems, the numbers
of the computed non-zero noncausal Hankel singular values are identical and r∞k = 2
for k = 0, 1, 2. The computed reduced-order model has subsystems of orders r = (7, 8, 8).
We observe that the reduced order system preserves the stability of the original system.
In Figure 9.7 we present the norms of the frequency responses H(eiω) and H̃(eiω) of the
original and reduced-order lifted systems for a frequency range [0, 2π]. To compare the
results obtained by using the LRCF-ADI model reduction technique, in Figure 9.7 we
also plot the norm of H̃(eiω) that we obtained by dense computations (see Chapter 8).
We observe a nice match of the system norms.

In Figure 9.8, we display the absolute error ‖H(eiω) − H̃(eiω)‖2 and the error bound
given in (9.33). One can see that the absolute error is smaller than the error bound. We
compare the absolute errors obtained using dense computation and LRCF-ADI iterative
computation. Although the absolute error in the LRCF-ADI iterative computation is
slightly higher than the absolute error of the dense computation, it is still bounded by
the error tolerance.

9.5.3. Model Problem 2

We consider an artificial periodic discrete-time descriptor system with µk = nk = 404,
pk = 2, qk = 3, and period K = 10. The periodic matrix pairs {(Ek,Ak)}K−1

k=0 are periodic

stable with n f
k = 400 and n∞k = 4 for every k = 0, 1, . . . , 9. The sparsity patterns of

the periodic matrix pair (E0,A0) are shown in Figure 9.9. The periodic matrices Ek
and Ak vary for different values of k, k = 0, 1, . . . ,K − 1, and the periodic matrix pairs
{(Ek,Ak)}K−1

k=1 , for different values of k, have almost the same sparsity patterns as shown
in Figure 9.9.
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Figure 9.4. Norms of off-diagonal matrices: reachability type (Model problem 1);
offdiag-01= norm of (R̄i,0 R̄T

i,1), and i is number of iterations.

Figure 9.5. Norms of off-diagonal matrices: observability type (Model problem 1)
offdiag-01= norm of (R̄i,0 R̄T

i,1), and i is number of iterations.
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Figure 9.6. Causal Hankel singular values for original system in lifted form (Model
problem 1).

Figure 9.7. The frequency responses of the original and the reduced-order lifted systems
(Model problem 1); (Red-Dense = Reduced system using dense computation,
Red-ADI = Reduced system using LRCF-ADI computation)

.
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Figure 9.8. Absolute error and error bound (Model problem 1);
( Error-Dense = Error system using dense computation

Error-ADI = Error system using LRCF-ADI computation).

(a) (b)

Figure 9.9. (a) Sparsity pattern of A0, (b) sparsity pattern of E0 (Model problem 2).



9.5. Application to Model Order Reduction 169

(a) (b)

Figure 9.10. (a) Sparsity pattern of A, (b) sparsity pattern of E (Model problem 2).

The original lifted system has order n = 4040. The sparsity patterns of E and A of the
corresponding lifted system are plotted in Figure 9.10.

The eigenspectrum of the lifted system and the corresponding Cayley transformed
system are shown in Figure 9.11. The shift parameters that are computed using the
heuristic process are shown in Figure 9.12.

The normalized Lyapunov residuals are computed at each step of the ADI-iteration by
using equation (9.25). The iteration is stopped as soon as the normalized Lyapunov
residual exceeds tol = 10−8.

Figures 9.13(a) and 9.13(b) show the decays of the normalized residual norms computed
at each step of the ADI-iteration for reachability and observability type causal lifted
Lyapunov equations. One can see that the solution of the PLDALE (8.9) (and also its
dual, the observability type PLDALE) can be approximated by a matrix of rank 25.

Figure 9.14 shows the causal Hankel singular values of the original lifted system (8.2).
These 4000 causal Hankel singular values are the combination of all the causal Hankel
singular values σk, j of the periodic descriptor system (8.1) given by its different sub-
systems for k = 0, 1, . . . , 9. In Figure 9.15, we present the largest 300 causal Hankel
singular values computed by solving the PLDALE (9.4) and its dual equation (5.43)
using the direct method (by dense computation) that we have discussed in Chapter 8.
One can see the Hankel singular values decay fast, and, hence system (8.1) can be
well approximated by a reduced-order model. In Figure 9.15, we also present the 157
approximate largest causal Hankel singular values computed from the singular value
decompositions of the matrices LT

k Ek−1Rk with the low-rank Cholesky factors Rk and Lk
of the causal reachability and observability Gramians determined by Algorithm 9.2.



170 Chapter 9. Low-Rank Solution of Large Scale Periodic Matrix Equations

(a) (b)

Figure 9.11. (a) Finite eigenvalues of lifted system, (b) finite eigenvalues of Cayley
transformed system (Model problem 2).

Figure 9.12. Computed shift parameters (Model problem 2); (eigs = eigenvalues, parm
= parameters).



9.5. Application to Model Order Reduction 171

(a) (b)

Figure 9.13. (a) Normalized residual norms for reachability Lyapunov equation,
(b) normalized residual norms for observability Lyapunov equation (Model
problem 2).

Figure 9.14. Causal Hankel singular values for original system in lifted form (Model
problem 2).
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Figure 9.15. Causal Hankel singular values for original, computed (with column com-
pression, CC) and reduced-order lifted systems (Model problem 2).

The number of non-zero noncausal Hankel singular values computed by Algorithm 9.3
is 20. These non-zero noncausal Hankel singular values are plotted in Figure 9.16. For
different subsystems, the numbers of the computed non-zero noncausal Hankel singular
values are identical and given by r∞k = 2 for k = 0, 1, . . . , 9.

We approximate system (8.1) to the tolerance 10−2 by truncating the states corresponding
to the smallest 75 causal Hankel singular values. The computed reduced-order model
has subsystems of orders (9, 10, 10, 11, 10, 9, 10, 11, 11, 11). Note that stability is preserved
in the reduced-order system. Figure 9.17 shows the norms of the frequency responses
H(eiω) and H̃(eiω) of the original and reduced-order lifted systems for a frequency range
[0, 2π]. We observe a good match of the system norms. Finally, in Figure 9.18, we
display the absolute error ‖H(eiω) − H̃(eiω)‖2 and the error bound given in (9.33). One
can see that the error bound is tight in this example.

9.5.4. Semi-Discretized Heat Equation

As a model problem we consider here the heat diffusion equation for the one-dimensional
(1D) PDE taken from the SLICOT1 benchmark collection for model reduction (problem
2.8 of [27]). The dimension of the original semi-discretized continuous-time system
is extended to a dimension of Nc = 104. That means, in our case the continuous-time
model has A ∈ RNc×Nc , B = (δi,Nc/3)i ∈ R

Nc , and C = (δi,2Nc/3)i ∈ R
Nc , where δi, j means that

1http://www.slicot.org
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Figure 9.16. Non-zero noncausal Hankel singular values for original system in lifted
form (Model problem 2).

Figure 9.17. The frequency responses of the original and the reduced-order lifted systems
(Model problem 2).
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Figure 9.18. Absolute error and error bound (Model problem 2).

the corresponding vector has nonzero element (which is 1 in that case) only at the place
where i = j, and all other entries are zeros for i , j. The semi-discretized continuous-
time system is then completely discretized using the Crank-Nicholson method and we
obtain a generalized discrete-time sparse system at every discretized sample time k,
where k is chosen arbitrarily from the time interval (0, 1). For each k, we have the pe-
riodic matrices (Ek,Ak,Bk,Ck). In this periodic formulation, we consider k = 0, 1 . . . , 9,
and period K = 10. More details about the benchmark example can be found in [27].
All the results for this test problem have been carried out in MATLAB 7.12.0 (R2011a)
on an Intel Xeon Dual-Core CPU with a 3.0GHz clock and 64 GB of RAM.

For the periodic system, the periodic matrix pairs {(Ek,Ak)}K−1
k=0 are pd-stable but have

no infinite eigenvalues. The reason of considering such an example is that we want to
test how our algorithms work and behave with very large sparse problem, and we like
to check the efficiency of these algorithms. It is clear form the discussion of Section 9.3
that the crucial part of our proposed algorithms lies in the computations of the low rank
Cholesky factors for the causal Gramians. We consider µk = nk = 104, pk = 1, qk = 1 for
k = 0, 1, . . . , 9. The sparsity patterns of the periodic matrix pair (E0,A0) are shown in
Figure 9.19. All other periodic matrix pairs have the same sparsity patterns.

The original lifted system has order n = 105. The sparsity patterns of E and A of the
corresponding lifted system are plotted in Figure 9.20.

We have solved the causal lifted Lyapunov equations using the LRCF-ADI iteration as in
Algorithm 9.2. The shift parameters are computed using the heuristic process discussed
in Section 9.3.3. We consider 50 shifts and these shifts are chosen from 100 Ritz values
obtained from the Arnoldi process applied to E−1A and 60 for its inverse. In addition, to
show the efficiency of Algorithm 9.2, we compute the low rank Cholesky factors of the
reachability Gramians for models of different dimensions, and compare the execution
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(a) (b)

Figure 9.19. (a) Sparsity pattern of A0, (b) sparsity pattern of E0 (heat equation).

(a) (b)

Figure 9.20. (a) Sparsity pattern of A, (b) sparsity pattern of E (heat equation).
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dimension (n) direct solver (sec) LRCF-ADI (sec)
1000 22.59 10.64
2000 188.73 54.21
5000 1.937 × 103 93.37
10000 > 2.16 × 104 1.80 × 102

100000 – 1.082 × 103

Table 9.1. Computational times for the Cholesky factors of reachability Gramians for
different dimensional systems using direct solver and LRCF-ADI (Heat equa-
tion).

times with the times needed to solve those using direct solvers. We represent them in
Table 9.1. In each case we notice the efficiency of our proposed algorithm. For a model
of dimension n = 105, we wait several days to solve the low-rank Cholesky factor of
the reachability Gramian but the computer still runs to generate solution, while using
Algorithm 9.2 we can solve this in 1.082 × 103 sec (≈ 18 mins).

For large-scale sparse problems, it is suggested in [13] that it is sufficient to terminate
the LRCF-ADI iteration when the relative change criterion

‖Zi − Zi−1‖F

‖Zi‖F
≤ ε, (9.34)

is satisfied for a tiny, positive constant ε. For the LRCF-ADI variants we observe that it
can be evaluated cheaply as well. The difference between the two consecutive factors
Zi and Zi+1 in Algorithm 9.2 is the new column block Vi. Hence the numerator in (9.34)
is just ‖Vi‖F. To do this we need not to compute ‖Zi‖F in each iteration step. Instead,
‖Zi‖F can be accumulated in the course of iteration as ‖Zi‖

2
F = ‖Zi−1‖

2
F + ‖Vi‖

2
F, which

ensures that at each step only ‖Vi‖F needs to be computed where Vi contains only very
few columns.

Figure 9.21 shows the relative changes that we have obtained for the results presented
in Table 9.1, i.e., from the computation of low-rank Cholesky factors of reachability
Gramians for systems of different dimensions using relation (9.34).

Remark 9.11:
While computing the low-rank Cholesky factors for models of different dimensions,
we have noticed that the relative change in the low-rank factor decays very slowly.
This is fast for model of small and medium dimensions (n ≤ 103), but this rate is
very very slow when the dimension of the system becomes higher, i.e, n ≥ 104. We
can hardly achieve a relative change of order O(10−3) for the model of dimension
n = 105 with 400 LRCF-ADI iteration steps using Algorithm 9.2. For large-scale
sparse problems, a Galerkin type projection method has been proposed in [89] in
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Figure 9.21. Relative change in low-rank factors of reachability Gramians (heat equa-
tion).

the computation of this low rank factors and to accelerate the convergence of the
normalized residuals (also the relative changes) up to a satisfactory prescribed tol-
erance. But in each inner iteration loop of this proposed Galerkin type projection
technique requires to solve a Lyapunov equation for the reformulated Cholesky
factor, which also requires that the reformulated system matrices of this Lyapunov
equation should have stable eigenvalues, i.e., the reformulated matrix pencil have
all eigenvalues with negative real part (details can be found in Subsection 4.4.2 of
[89]). This Galerkin type projection method is under our investigation. ♦

An important observation we want to state that in the MOR applications the convergence
speed (or relative change rate) in the LRCF-ADI iteration is not a major issue to concern.
In fact slower convergence may insure us to increase the accuracy of the MOR due to
adding more subspace information in the factors. Similar result have been observed
in [89] during the computations of low rank Cholesky factors of Gramians for large
dimensional sparse system.

In Figure 9.22, we present the 360 approximate largest causal Hankel singular values
computed from the singular value decompositions of the matrices LT

k Ek−1Rk with the
low-rank Cholesky factors Rk and Lk of the causal reachability and observability Grami-
ans determined by Algorithm 9.2. We approximate system (8.1) to the tolerance 10−6 by
truncating the states corresponding to the smallest 320 causal Hankel singular values.
The computed reduced-order model has subsystems of orders (4, 4, 3, 4, 4, 5, 4, 4, 4, 4).
We observe that stability is preserved in the reduced-order system.
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Figure 9.22. Causal Hankel singular values for computed (with column compression,
CC) and reduced-order lifted systems (heat equation).

Figure 9.23 shows the norms of the frequency responses H(eiω) and H̃(eiω) of the original
and reduced-order lifted systems for a frequency range [0, 2π]. The absolute error
‖H(eiω)− H̃(eiω)‖2 and the error bound are displayed in Figure 9.24. We observe that the
error bound is tight in this example.

To investigate the efficiency of the reduced-order system, we plot the frequency re-
sponses and the deviation of the frequency responses for the individual components
of the transfer functions H(eiω) and H̃(eiω) in Figure 9.25. For example, Figure 9.25(a)
shows the magnitudes of the frequency responses of the original (full) and the reduced-
order lifted systems for H1,1(eiω) and H̃1,1(eiω), and Figure 9.25(b) shows their deviation.
Similarly, we plot the frequency responses for the other components ofH(eiω) and H̃(eiω).
Note that H(eiω) and H̃(eiω) are the transfer functions of the original and reduced-order
lifted systems.

We approximate the original system of dimension n = 105 to the tolerances of different
scales and compute the reduced-order models with subsystems of different orders and
show them in Table 9.2.

Original system (n) MOR tolerence reduced-order (r) error bounds
105 10−5 (3, 2, 2, 3, 2, 2, 4, 2, 2, 3) 1.5196 × 10−4

105 10−6 (4, 4, 3, 4, 4, 5, 4, 4, 4, 4) 1.0528 × 10−5

105 10−7 (5, 6, 6, 5, 5, 5, 5, 5, 5, 5) 1.4927 × 10−6

Table 9.2. Reduced-order models for the system of dimension n = 105 with different
approximation tolerances (heat equation).
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Figure 9.23. The frequency responses of the original and the reduced-order lifted systems
(heat equation).

Figure 9.24. Absolute error and error bound (heat equation).
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(a) Frequency responses for H1,1(eiω) (b) Deviation of frequency responses for
H1,1(eiω)

(c) Frequency responses for H1,5(eiω) (d) Deviation of frequency responses for
H1,5(eiω)

(e) Frequency responses for H1,10(eiω) (f) Deviation of frequency responses for
H1,10(eiω)
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(g) Frequency responses for H5,1(eiω) (h) Deviation of frequency responses for
H5,1(eiω)

(i) Frequency responses for H10,1(eiω) (j) Deviation of frequency responses for
H10,1(eiω)

Figure 9.25. Frequency responses for original and reduced-order systems for individual
components of H(eiω) and respective deviations (heat equation).
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Figure 9.26. Computational time for different parts of the model reduction procedure
(heat equation).

We draw a pie chart showing the computational time for different parts of the model
reduction procedure (for the reduced-order model with MOR tolerance 10−6 in Ta-
ble 9.2) in Figure 9.26, which shows that almost 94% of the overall computational time
is consumed to compute the low-rank approximation of the Cholesky factors of the con-
trollability and observability Gramians, 5% of the overall computational time is needed
for the ADI shift parameters computation, and only 1% of the overall computational
time is needed to generate the lifted reformulation of the original periodic system and
to generate a reduced-order model after computing the low-rank Cholesky factors.

9.6. Discussion

Numerical iterative methods for computation of periodic reachability and observabil-
ity Gramians as well as Hankel singular values for periodic discrete-time descriptor
systems have been considered in this chapter. We have suggested iterative low-rank
algorithms based on the ADI and Smith iterations for computing the low-rank factors
of the Gramians. These factors have been used in a balanced truncation model reduc-
tion approach to find a reduced-order model for the periodic discrete-time descriptor
system. The proposed model reduction method delivers a reduced-order model that
preserves the regularity and stability properties of the original system. A computable
global error bound for the approximate system is also available.

Though several colleagues working in the field of periodic systems have been con-
tracted, so far it turned out to be impossible to collect large-scale sparse real-world
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problems of periodic discrete-time descriptor systems from the application field. It
remains therefore a task for further work to test the algorithms for real-world problems.
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10.1. Summary and Conclusions

In this thesis we have presented two important approaches for model reduction of
periodic time-varying descriptor systems. The Krylov subspace based projection tech-
nique and the balancing based projection technique for model reduction of time-varying
periodic descriptor systems have been considered. We first introduced the continuous-
time periodic descriptor system with time-varying dimensions and discussed their root
models from where (through linearization) the LPTV model problems are obtained. We
then discussed the dynamics of such a periodic descriptor system in terms of the DAEs
associated with the system. The stability analysis for the continuous-time periodic de-
scriptor system has been considered after an extension of the Floquet theory to LPTV
continuous-time systems of DAEs. We also showed that stability of such systems can be
characterized by the Floquet exponents of the periodic DAEs that describe the original
periodic system.

In Chapter 7 we focused on nonlinear circuit problems and analyse these problem so that
they can be easily fit to our model reduction framework. We have analysed the models
in the time-domain frame and discussed an approximation scheme based on Krylov
subspace methods to approximate the appropriate subspaces for model reduction and
discussed how to compute them more efficiently. We have also shown that the model
based on approximate multipoint Krylov subspace can be efficiently achieved from the
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approximated subspace. We have implemented a recycling technique to produce the
columns of the projection matrix. Each new vector in the model reduction was obtained
by an inner Krylov iteration. We have also shown that due to the shift-invariance
property, the Krylov subspace generated at a particular frequency point can be used to
generate the subspace at another frequency point. Hence, the approximation scheme
for multiple frequency points becomes much simpler and faster.

On the other hand, the balancing based projection technique for model reduction of
time-varying periodic descriptor systems has been considered for discrete-time case.
Such systems have received a lot of attention in the last 30 years. Control-theoretic
concepts including controllability and observability, Gramians, Hankel singular values
and efficient numerical methods for computing poles and zeros,L∞-norm, minimal and
balanced realizations have been developed for such systems in [30, 124, 125]. But all
these methods are based on the reduction of the periodic pairs {(Ek,Ak)}Kk=0 to a periodic
Kronecker-like form using the algorithm of [123], they are restricted to problems of
small or medium size. Also solving the resulting generalized periodic Sylvester and
the periodic projected Lyapunov equations of (quasi)-triangular structure using the
recursive blocked algorithms [44] are the most computational and complex tasks in
those proposed algorithms.

In Chapter 5 we have introduced the time-invariant reformulation of the LPTV discrete-
time descriptor systems called lifted system. We have considered the cyclic lifted system
in this thesis and showed that the dynamics and characteristics, such as solvability,
conditionability, regularity and stability of the original periodic system can be described
with its cyclic lifted reformulation. We have also discussed an analogous representation
of the periodic Gramians and the periodic projected matrix equations with the cyclic
lifted structure. We have proved that solving the periodic matrix equations using
their cyclic lifted structures (we call them lifted Lyapunov equations ) can handle the
period descriptor systems very easily even if all Ek (or at least one Ek) are singular. We
have shown that the solutions of those lifted Lyapunov equations have a specific block
diagonal structure so that we could easily pick up the periodic Gramians of the original
periodic projected Lyapunov equations for different values of k.

In Chapter 8 we have proposed a balanced truncation model reduction method for
periodic discrete-time descriptor systems. Instead of solving the periodic projected
Lyapunov equations, we have solved the corresponding projected lifted Lyapunov
equations to obtain the periodic Gramians. The solutions of these projected lifted
Lyapunov equations have a specific block diagonal structure and the diagonal blocks of
these lifted solutions are the solutions of the periodic projected Lyapunov equations (i.e,
the periodic Gramians). A solution technique which deals directly with the periodic
matrix equations (not in lifted form) has been proposed in [30]. Solving the periodic
Sylvester equations and the periodic projected Lyapunov equations in that proposed
algorithm produces more complexity, especially when the system has periodic matrix
pairs with time varying-dimensions, and the input and output are also time-varying
(see Algorithm 5.1 of [30]). On the other hand, our proposed method, which works
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with the lifted forms of the periodic matrix equations, can handle those time-varying
periodic matrix pairs and the time-varying input and output very easily during the
solution process.

We have used these periodic Gramians to find a reduced-order model of the original
system. For a balanced system, we truncated the states related to the small causal
Hankel singular values because those states require a large amount of input energy to
reach but they generate very small output energy. Unfortunately, we can not do the
same for the noncausal Hankel singular values. Truncation of the states that correspond
to the small non-zero noncausal Hankel singular values can lead to additional errors
in the system approximation. We have shown some numerical results to illustrate the
efficiency and accuracy of the proposed methods. We have observed that the reduced-
order model preserves the regularity and stability properties of the original system.
A computable global error bound for the approximate system is also available.

We have observed that the computational complexity of the approach described in
Chapter 8 to determine a minimal realization is O(Kn̄3), where n̄ = max(µk,nk), and it
requires extensive storage. Therefore, the proposed method we describe in Chapter 8
is suitable for small and medium size problems and that it produces a very efficient
approximation of the original systems by reduced systems with very small orders. But
one should always avoid that type of computation for very large systems. The most time-
consuming operation in that process is the solution of the two periodic lifted Lyapunov
equations satisfied by the periodic Gramians. Therefore, we have developed iterative
methods for such equations, which exploit the sparse structures of system matrices to
generate well approximating solutions (with prescribed tolerance) very efficiently.

In Chapter 9, we have presented iterative methods for solving these large-scale sparse
projected discrete-time periodic Lyapunov equations in lifted form. These iterative
methods are based on the generalization of the ADI method and the Smith method
used for large-scale projected continuous-time Lyapunov equations in [110, 81]. These
methods can not be directly applied to our projected periodic Lyapunov equations
because the direct use contradicted the positive definiteness of the causal solutions. We
have considered the Cayley transformation of our lifted system to resolve this problem
and then solved the transformed continuous-time lifted Lyapunov equation for the
causal solutions. For the noncausal solutions, we have considered the Smith method
and simplified the iterative computation exploiting the index of the system.

Low-rank versions of these methods have been also presented in Chapter 9. These
low-rank methods have been used to compute the low-rank approximations to the
solutions of projected periodic Lyapunov equations in lifted form with low-rank right-
hand side. A balanced truncation model reduction method for periodic descriptor
systems has been considered. We have numerical examples to illustrate the properties
of the described iterative methods for lifted projected Lyapunov equations and model
reduction technique. The proposed model reduction method delivers a reduced-order
model that preserves the regularity and stability properties of the original system. We
have compared the results of the dense computations (from Chapter 8) to the results
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of iterative computations of Chapter 9. We have observed that the iterative methods
produce a very good approximation of the original system by a reduced-order system.
A computable global error bound is also available for the approximate system.

10.2. Future Research Prospectives

There is room for future research both in the area of Krylov based model reduction
method and in low-rank approximation of Lyapunov equations with application to
balancing based model reduction of periodic descriptor systems.

In the case of Krylov based approximation schemes, a newly released global Arnoldi
method proposed in [21] for MIMO systems can be considered to approximate the
subspaces at multiple frequency points. Other iterative techniques suitable for solving
linear systems with multiple right-hand sides can be tested to construct the projection
matrix. But the acceptance of all these proposed methods depends on the efficient
computational cost and suitable reduced order with better accuracy as well as other
essential characteristics of the reduced-order model.

For balancing based model reduction, large-scale real-world problems are to be com-
puted to test the algorithms derived in this thesis. We have observed that for the
semi-discretized heat equation, the relative change in the low-rank factors is very slow.
This results very slow convergence of the LRCF-ADI computation to the exact solution.
A bad choice of the optimal shift parameters can be a reason for that slow convergency.
Other ADI parameter choice rules (see Section 4.3 of [89] for a summary and also the
references therein for details) need to be investigated further.

For the low-rank solution of projected lifted Lyapunov equations, the modified SVD
based low-rank Smith method proposed in [49] can be considered. But the key problem
is how to implement the iteration while preserving the cyclic structure of the system
matrices. Also, very recently a Krylov subspace based iterative method has been pro-
posed in [112] to solve projected Lyapunov equations. But the fact of preserving the
cyclic structure of system matrices in the iteration is again the key issue that should be
investigated.



APPENDIX

A

THESES

1. The thesis presents two important approaches for model reduction of periodic
time-varying descriptor systems. The Krylov subspace based projection technique
has been used for model reduction of time-varying continuous-time descriptor
systems and the balancing based projection technique has been used for model
reduction of time-varying discrete-time descriptor systems.

2. The modeling of nonlinear circuit models is described in detail where we linearize
the nonlinear model around some equilibrium trajectory and use discretization
in the time domain to get a LPTV continuous-time descriptor system. We then
discuss the dynamics of such a periodic descriptor system in terms of the DAEs
associated with the system. The stability analysis for the continuous-time periodic
descriptor system has been considered after an extension of the Floquet theory to
LPTV continuous-time systems of DAEs.

3. On the basis of the work of J. Phillips in [84], we have analysed the LPTV model in
the time-domain frame and discussed an approximation scheme based on Krylov
subspace methods to approximate the appropriate subspaces for model reduction
and discussed how to compute them more efficiently. We have implemented a
recycling technique to produce the columns of the projection matrix. We have also
shown that due to the shift-invariance property, the Krylov subspace generated
at a particular frequency point can be used to generate subspaces at another
frequency point. Hence, the approximation scheme for multiple frequency points
becomes much simpler and faster.

4. The balancing based projection technique has been considered for model reduction
of time-varying periodic descriptor systems in the discrete-time case. Control-
theoretic concepts including reachability and observability, Gramians, Hankel
singular values and efficient numerical methods for computing poles and zeros,
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L∞-norm, minimal and balanced realizations have been developed for such sys-
tems in [30, 124, 125]. But all these methods are based on the reduction of the
periodic pairs {(Ek,Ak)}Kk=0 to a periodic Kronecker-like form using the algorithm
of [123]. Hence, they are restricted to problems of small or medium size. Also
solving the resulting generalized periodic Sylvester and the periodic projected
Lyapunov equations of (quasi)-triangular structure using the recursive blocked
algorithms [44] are the most computational and complex tasks in those proposed
algorithms.

For easier computations, we have introduced the time-invariant reformulation of
the LPTV discrete-time descriptor systems called lifted system in Chapter 5. We
have considered the cyclic lifted system in this thesis and shown that the dynamics
and characteristics, such as solvability, conditionability, regularity and stability of
the original periodic system can be described with its cyclic lifted reformulation.
We have also discussed an analogous representation of the periodic Gramians and
the periodic projected matrix equations with the cyclic lifted structure. We have
proved that solving the periodic matrix equations using their cyclic lifted struc-
tures (we call them lifted Lyapunov equations ) can handle the periodic descriptor
systems very easily even if all Ek (or at least one Ek) are singular. We have shown
that the solutions of those lifted Lyapunov equations have a specific block diago-
nal structure so that we can easily pick up the periodic Gramians of the original
periodic projected Lyapunov equations for different values of k.

5. We have proposed a balanced truncation model reduction method for periodic
discrete-time descriptor systems. We have solved the lifted Lyapunov equations
and used the periodic Gramians to find a reduced model of the original system.
We have shown some numerical results to illustrate the efficiency and accuracy of
the proposed methods. We have observed that the reduced-order model preserves
the regularity and stability properties of the original system. A computable global
error bound for the approximate system is also available.

6. We have observed that the computational complexity of the approach described
in Chapter 8 to determine a minimal realization is O(Kn̄3), where n̄ = max(µk,nk),
and it requires extensive storage. The most time-consuming operation in that
process is the solution of the two periodic lifted Lyapunov equations satisfied
by the periodic Gramians. Therefore, we have developed iterative methods for
such equations, which exploit the sparse structures of system matrices to generate
well approximating solutions (with prescribed tolerance), and have low memory
requirements and low computational cost.

7. The iterative methods used to approximate the Gramians are based on the gener-
alization of the ADI method and the Smith method used for large-scale projected
continuous-time Lyapunov equations in [110, 81]. These methods can not be di-
rectly applied to our projected periodic Lyapunov equations because the direct use
contradicts the positive definiteness of the causal solutions. We have considered
the Cayley transformation of our lifted system to resolve this problem and then
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solved the transformed continuous-time lifted Lyapunov equation for the causal
solutions. For the noncausal solutions, we have considered the Smith method and
simplified the iterative computation exploiting the index of the system. Low-rank
versions of these methods have also been presented. These low-rank methods
have been used to compute the low-rank approximations to the solutions of pro-
jected periodic Lyapunov equations in lifted form with low-rank right-hand side.

8. Numerical examples have been presented to illustrate the properties of the de-
scribed iterative methods for lifted projected Lyapunov equations and model re-
duction. The proposed model reduction method delivers a reduced-order model
that preserves the regularity and stability properties of the original system. We
have compared the results of the dense computations (from Chapter 8) to the
results of iterative computations of Chapter 9. We have observed that the iter-
ative methods produces a very good approximation of the original system by a
reduced-order system. A computable global error bound is also available for the
approximate system.
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