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ABSTRACT

Science and technology have profoundly influenced the course of human civilization on
earth and opened a new horizon of enormous possibilities in various fields of applica-
tion. Almost all technological applications require a solid understanding of processes,
components, and the physical and dynamical features of the concerned systems. Math-
ematical models are the key towards representing our knowledge and understanding of
dynamical systems. In most of those applications, such models become extremely huge
and complex and sometime impossible to handle for the purpose of simulation, analysis
or control system design. A solution to simplify the preceding task in both fields of
simulation and system analysis is to find a low order approximation of the original
high order complex model that still preserves the input-output behavior of the original
complex model as good as possible. This is the basic concept of model reduction.

This dissertation concerns the model reduction of linear periodic descriptor systems
both in continuous and discrete-time case. Linear periodic descriptor systems represent
a broad class of time evolutionary processes in micro-electronics and circuit simulation.
They are suitable models for several natural as well as man-made phenomena, and
have applications in modeling of periodic time-varying filters and networks, multirate
sampled-data systems, circuit simulation, micro-electronics, aerospace realm, control of
industrial processes and communication systems.

In this dissertation, mainly the projection based approaches are considered for model
order reduction of linear periodic time varying descriptor systems. Krylov based projec-
tion method is used for large continuous-time periodic descriptor systems and balancing
based projection technique is applied to large sparse discrete-time periodic descriptor
systems to generate the reduce systems.

For very large dimensional state space systems, both the techniques produce large
dimensional solutions. Hence, a recycling technique is used in Krylov based projection
methods which helps to compute low rank solutions of the state space systems and also
accelerate the computational convergence. The outline of the proposed model order
reduction procedure is given with more details. The accuracy and suitability of the
proposed method is demonstrated through different examples of different orders and
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the results are compared and discussed.

Model reduction techniques based on balance truncation require to solve matrix equa-
tions. For periodic time-varying descriptor systems, these matrix equations are pro-
jected generalized periodic Lyapunov equations and the solutions are also time-varying.
Solving these periodic Lyapunov equations requires the computation the the kronecker-
like canonical forms of the periodic matrix pairs associated with the periodic systems
and then to solve the resulting periodic Sylvester equations. Rather than this approach,
the cyclic lifted representation of the periodic time-varying descriptor systems is con-
sidered in this dissertation and the resulting lifted projected Lyapunov equations are
solved to achieve the periodic reachability and observability Gramians of the original
periodic systems. The main advantage of this solution technique is that the cyclic struc-
tures of projected Lyapunov equations can handle the time-varying dimensions as well
as the singularity of the period matrix pairs very easily. Another nice feature about
the use of this lifting isomorphism is that one can exploit the theory of time-invariant
systems for the control of periodic ones, provided that the results achieved can be easily
reinterpreted in the periodic framework.

Since the dimension of cyclic lifted system becomes very high for large dimensional
periodic systems, one needs to solve the very large scale periodic Lyapunov equations
which also generate very large dimensional solutions. Hence iterative techniques,
which are the generalization and modification of alternating directions implicit method
and generalized Smith method, are implemented to obtain low rank Cholesky factors
of the solutions of the periodic Lyapunov equations. Also the application of the solvers
in balancing-based model reduction of discrete-time periodic descriptor systems is
discussed. Numerical results are given to illustrate the efficiency and accuracy of the
proposed methods.
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CHAPTER
ONE

INTRODUCTION

Motivation. Various complicated systems which arise in many engineering applica-
tions (microelectronics, micro-electro-mechanical systems (MEMS), aerospace realm,
computer control of industrial processes, chemical processes, communication systems,
etc.) are composed of large numbers of separate devices and they are described by very
large mathematical models consisting of more and more mathematical systems with
very large dimensions. Simulations of such systems can be unacceptably expensive
and time-consuming due to limited computer memory and CPU consumption. Model
reduction is concerned with replacing a large complex model by a much smaller one
which can be fast and efficiently simulated and which has nearly the same response
characteristics compare to the original large model.

As the mathematical model of a device gets more detailed and the model is composed
of a large system of ordinary differential equations (ODEs), or a set of partial differential
equations (PDEs), it is quite common that the concerned mathematical model may
consist a vast amount of redundant information that have very little importance in
the input-output characterization of the device. Model reduction is an efficient tool
to eliminate those redundant parts from the original model so that the size of the
reduced model becomes smaller compare to the original one and it is then amenable for
simulation and analysis.

Linear systems, in continuous or discrete-time, in very simple language, are systems
of linear differential or difference equations. A systems is called time-varying when
the behavior and characteristics of that system varies over time. Almost every natural
or technical process, however, is more or less nonlinear in nature, and therefore is
actually time-variant (see Subsection 2.1.1 in Chapter 2 for detail). In recent years,
scientists and engineers have put a lot of attention on the analysis and control of linear
periodic time-varying (LPTV) systems as they explain several man made and natural



2 Chapter 1. Introduction

phenomena [36, 63, 66, 68,73, 94, 115].

In this thesis, efficient implementations for model order reduction of certain large-scale,
LPTV descriptor systems, both for continuous and discrete-time case, have been studied.
A continuous-time LPTV descriptor system in general has the form

E(Dx(H) = A(t)x(t) + B(t)u(t),
y(t) = C(H)x(t) + D(Bu(t),

where x(t) € R", called the descriptor vector, u(t) is the system input, y(f) is the system
output, and 7 is the system order at any given time t. All the system matrices are
time-varying, periodic with period K > 1 and the matrices E(f) and A(t) can be singular
at any given time ¢.

(1.1)

Analogous to the continuous-time case, a discrete-time LPTV descriptor system defined
on the time interval [0, K] has the form

Ejxje ApXy + By, (1.2)

Yo = Cpxg + Dy, '
wherek =0,1,..., and k € INy. For eachk, xy is an ny-dimensional vector of descriptor
variables, 1y is an p-dimensional vector of input variables, and Zf:_ol nx = n. The system
matrices are time-varying, periodic with period K > 1 and the matrices E; and Ay can
be singular at any sampling time point k. For both type descriptor systems the matrices
D(t) or Dy do not have any affect on the dynamics of the corresponding systems. Hence
they are considered zero in most references and we will omit them in the description of
LPTV descriptor systems in the consequent chapters.

Formally speaking, a reduced-order system of order r for system (1.1) (omitting D(t))
would be a system of the form

E(t)x(t)

()

The system is of potentially smaller dimension, i.e., r << n, and thus lower compu-
tational cost, than the original system (1.1), but it is now in a form suitable for use

in higher level simulation. Analogous to the continuous-time case, a reduced-order
system of dimension r for system (1.2) (omitting D) would be a system of the form

AMx(t) + B()u(t),

C(Hx(t). (1.3)

Exfi1 = Ay + Biau,

i = G, keZz, (14)

where for each k, % is an r,-dimensional vector, Zsz_Ol 1y = rand r < n. Apart from
having much smaller state-space dimension, the reduced-order system preserves some
essential and important characteristics of the original system.

The system is called single input single output (SISO) if it has only one input and one
output, otherwise it is called multiple input and multiple output (MIMO). It is easier




to analysis the system dynamics and behavior for systems not containing any singular
pencil (Eg, Ay). For a singular system, the overall process becomes more complicated. In
that case, usual model order reduction techniques can not be used directly to generate
a reduced-order model. This dissertation is concerned with the model order reduction
techniques of such singular descriptor systems which arise both in continuous-time and
discrete-time case.

In this thesis, mainly the projection based approaches are considered for model order
reduction of LPTV descriptor systems. Krylov based projection method is used for large
continuous-time LPTV descriptor system and balancing based projection technique is
applied to large sparse discrete-time LPTV descriptor system to generate the reduce
systems.

For very large dimensional state space systems, both the techniques produce large
dimensional solutions. Hence, a recycling technique is used in Krylov based projection
methods which helps to compute low rank solutions of the state space system and also
accelerate the computational convergence.

Model reduction techniques based on balance truncation require to solve matrix equa-
tions. We need to solve the very large scale periodic Lyapunov equation which also
generates very large dimensional solution. Hence an iterative technique, which is a
generalization and modification of alternating directions implicit (ADI) method, is im-
plemented to obtain low rank Cholesky factors of the solutions of the periodic Lyapunov
equations.

Chapter Outline. The thesis is organized in the following way:

Chapter 2 introduces some test examples and model problems which describe the
physical phenomena and system structures from where the LPTV descriptor systems can
arise. The models are mainly sketched and more detailed descriptions are referenced.
The modeling of nonlinear circuit models is described very detailed where we linearize
the nonlinear model around some equilibrium trajectory and use discretization in the
time domain.

In Chapter 3 we review some basic concepts of system and control theory for linear
time-invariant (LTT) descriptor systems, both for continuous- and discrete-time systems,
which will be needed later in the period settings by the subsequent chapters of this
thesis. The main idea behind this is that the description in the LTI structures will help
more precisely to understand their corresponding periodic structures. We summarize
some necessary definitions and introduce functions of generalized matrix pencils and
their decompositions. We also introduce the projected generalized periodic Lyapunov
equations and their roles in applications of model order reduction.

Chapter 4 is devoted to LPTV discrete-time descriptor systems. In this chapter we
review the concept of stability with the help of periodic matrix pencils and discuss the
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decomposition of the periodic matrix pencils regarding their finite and infinite eigen-
values. We study the concepts of periodic reachability and observability Gramians of
LPTV discrete-time descriptor systems in a different way. Also the structures and char-
acteristics of periodic projected Lyapunov equations and the periodic transfer functions
are discussed in this chapter.

Chapter 5 introduces the time-invariant reformulation of the LPTV discrete-time de-
scriptor systems which is known as lifted system. In this thesis, we consider only the
cyclic lifted representation of the LPTV discrete-time descriptor systems, which is intro-
duced by Park and Verriest [79] in 1989 and Flamm [38] in 1991, known as Cyclic
lifting representation of discrete-time LPTV systems. We reconstruct the concepts of sta-
bility as well as the reachability and observability Gramians of LPTV descriptor system
regarding its cyclic lifted LTI model. Lifted representation of periodic Lyapunov equa-
tions and the transfer function are also discussed. A short discussions is given at the
end of this chapter to clarify the relationship of LPTV descriptor system and its lifting
isomorphism.

In Chapter 6 we consider the introductory idea of model reduction for the LIT case
and generalizes this idea to our LPTV descriptor system. First, we describe the system
theoretical background of model reduction approach via projection onto a rational
Krylov subspace, and then the Balanced Truncation (BT) method, which requires exact
system Gramians. We focus on descriptor systems and recall some basic information
about the transfer functions and system norms.

Chapter 7 provides one of the main important contributions of this thesis. We develop
efficient implementations of Krylov subspace based projection methods for model order
reduction. The algorithmic realization of the method employes recycling techniques for
shifted Krylov subspaces and their invariance properties. The efficiency and accuracy
of the developed algorithm is illustrated by numerical examples and compared to other
Krylov based projection methods used for model reduction.

Chapter 8 then provides another main contribution of this thesis. In this chapter we
develop efficient implementations of balancing-related methods for model order re-
duction of discrete-time linear periodic descriptor systems. Efficient algorithms for
solving projected periodic discrete-time algebraic Lyapunov equations via their lifted
LTI representations are discussed here. We discuss the modified concepts of the peri-
odic Gramians and the resulting concepts of Hankel singular values. We illustrate the
behavior of the suggested model reduction technique using numerical examples.

Chapter 9 motivates the low rank approximation of the solution to large scale projected
periodic discrete-time algebraic Lyapunov equations in lifted form. We start with short
review of the ADI method and give detail derivation of the generalized ADI method
to the projected lifted discrete-time algebraic Lyapunov equations with large sparse
matrix coefficients. The generalized Cayley transformation is introduced which copes
up with the singularity of the matrix equations. The column compression technique for
the optimal memory requirements and computational effort are discussed. The chapter




includes numerical results on how well the low rank ADI approximation captures the
original solution of the projected periodic discrete-time algebraic Lyapunov equations
and implementations in model reduction technique.

Chapter 10 offers some conclusions and briefly discusses possibilities for improvements
and future research.
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This chapter introduces the different model problems and test examples, where periodic
descriptor systems have specific applications and demands. We describe model prob-
lems of three different areas that have set the stage for renewed interest in the study of pe-
riodic descriptor systems, both in continuous and discrete-time [36, 63, 66, 68,73,94,115],
in the last twenty years. The main goal is to familiarize the real life problems where the
mathematical model demands periodic descriptor settings.

2.1. Nonlinear Circuit Models

The most common components for model reduction of linear time-varying (LTV) sys-
tems are the radio frequency (RF) communication circuits, where the systems are de-
signed to have nearly linear responses, but may exhibit strongly nonlinear behaviors
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for the strong local oscillator signals. The nonlinear responses present there are con-
sidered as redundant terms in the modeling of RF communication circuits, and hence
they need to be removed. An usual approach to get ride of these redundant terms is
the linearization of a nonlinear circuit model around the time-varying large signal, and
hence, the resulting model is an LTV model. In the second half of last century and
also in recent years, RF communication circuits such as mixer, switched-capacitor filters
[73,78, 84, 86, 128] have taken a lot attention as prime components of LTV model order
reduction. In the following subsection we briefly discuss the linearization of nonlinear
circuit systems.

2.1.1. Linearization of Nonlinear Circuit Systems

Let us consider a nonlinear system that describes a circuit equation whose input is the
sum of two periodic signals, u (t) + us(t), where uy (t) is an arbitrary periodic waveform
with period T;, and us(t) is a small signal of frequency f;. Using modified nodal analysis
(MNA) [53], the differential equations for the circuit can be written as,

FO) + L g00) = 1 0) + 00, @

where 1 (t), us(t) are the vectors of large and small signal input sources, v(t) describes
the node voltages, f() and g() are nonlinear functions describing the charge/flux and
resistive terms, respectively.

If uy(t) is assumed to be zero, then the periodic steady state (PSS) solution vy (t) is the
solution of (2.1) which also satisfies the periodic property

o(Tr) = v(0). (2.2)

Now, assume that u(t) is not zero, but is small. We consider that the new perturbed
solution vy (t) + vs(t) also satisfies (2.1), i.e.,

f(oL(t) +vs(t)) + %q(vL(t) +0s(t)) = ur(f) + us(t), (2.3)

where v(t) is the difference between the exact solution to (2.1) and the solution com-
puted assuming u(t) = 0.

Linearizing around the steady state solution v (t), which is accurate only if us(t) is small,
yields a time-varying linear system of the form

df (vL(t))
st(t) +

d dq(o(t)) _
a st(t)) = u,(t) (2.4)

for vy(t). Here, vs(t) can be interpreted as the small signal response to u(t).
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Figure 2.1. Schematic view of a simple RF receiver.
image source: http://jap.hu/electronic/sregrcvr.html

Defining the time-varying conductance and capacitance matrices, as

L _ dfu(t)

da t
oo - L 1)

and C(t) = I
L

, (2.5)

respectively, the linearized LTV system takes the familiar form
- d -
G(t)o + E(C(t)v) = u(t), (2.6)

where the notations vs(f) = v and us(t) = u are used for simplicity. To relate to the
standard notations analogous to (1.1), we may make the identification E(t) = C(t),

A() = —(G(t) + C(t)).

Figure 2.1 shows a schematic view of a simple RF receiver which is composed of
several capacitors, conductors and many other micro-machined devices. This simple
RF receiver is mainly used for low-distance digital radio receiver application. A model
TDA1572T/V3 integrated AM receiver in shown in Fig. 2.2, which was released by NXP
Semiconductors in May 1992, and designed for use in mains-fed home receivers and car
radios.

2.1.2. Model Example of RF Circuit Systems

We consider here a simple example where the data are obtained from small RF circuit
simulator. The circuit system consist of n = 5 nodes, and is excited by a local oscillator
at 2 KHz driving the mixer, while the RF input is fed into the I-channel buffer. The
time-varying system is obtained around a steady state of the circuit at the oscillatory
frequency; a total of N = 129 harmonics are considered for the time-variation.
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Figure 2.2. TDA1572T/V3 AM Radio Receiver, manufactured by NXP Semiconductors.

image source: http://parts.digikey.com

"The TDA1572T/V3 integrated AM Receiver, manufactured by NXP Semiconductors, performs all the
active function and part of the filtering required of an AM radio receiver. It is intended for use in mains-
fed home receivers and car radios. The circuit can be used for oscillator frequencies upto 50MHz and
can handle RF signals up to 500mV.” -source: http: //www.nxp.com/documents/data_sheet/TDA1572T_
CNV.pdf.
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Figure 2.3. Transfer functions: full versus reduced system.

To specify an output function, the sample function is taken over a 1-ms period. Essen-
tially the final model is a real LTI system [84], which has the size, nN = 645.

A Krylov based projection technique [84, 113, 87, 85] has been used to find a reduced-
order model. The reduced model is generated by machining four moments on the
imaginary axis. The reduced system has order, r = 3. Fig. 2.3 shows the transfer
functions of full- and reduced order systems. The relative error is bounded by the
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Figure 2.4. M- fold Decimator (downsampler).

magnitude 1071%. We discuss more details of this calculation in Chapter 7.

2.2. Multirate Data Sampling Models

One of the major motivations for theoretical study of LPTV systems is multirate data
sampling. The process of converting or sampling of the given rate of data or a signal into
a different rate is called sampling rate conversion. Systems that employ multiple sampling
rates in the processing of data or digital signals are called multirate sampled-data control
systems, or multirate digital control systems, respectively.

In the signal processing area, multirate digital filters and filter banks have applications
in communications, speech processing, image compression, and in the digital audio
industry they have vast applications and great demand [4, 73, 115]. In control theory,
multirate data sampling is largely used in multirate feedback systems, also named as
sampled-data control systems in the literature.

2.2.1. Components in Multirate Sampling

The fundamental components in multirate data sampling are decimators and interpola-
tors [39, 115]. Decimetors are used to reduce the sampling rate which is called sampling
rate decimation, or simply decimation.

Let us consider the sampling rate of a discrete signal x(1) reduced by a factor M by taking
only every M-th value of the signal. The relationship between the resulting signal (1)
and the original signal x(n) is as follows:

y(m) = x(mM). (2.7)

Fig. 2.4 shows a signal flow representation of this process. The quadratic symbol in
Fig. 2.4, with the arrow pointing downwards, is called a downsampler. The output
signal y(m) is a downsampled signal with respect to the input signal x(n). For many
problems, it is possible to decrease the bandwidth of a signal with a low-pass filter
before downsampling it. Fig. 2.5 shows a decimator which uses a filter with an impulse
response /i(n) and a downsampler with a factor M. An input signal u(n) is converted
into a decimated signal y(m).
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t(n) x(n)

_Mm ) w) , lM |

Figure 2.5. Decimator consisting of anti-aliasing filter h(n) and downsampler M.

It is natural that an input signal u(n) with an unacceptably large bandwidth can have
redundant components, known as aliasing, that can change the signal irreversibly. Af-
ter filtering with a low-pass filter, these unwanted components can be reduced to an
acceptable level. We can then treat the signals as if they were really band-limited [39].
The signal thus obtained after filtering,

[o0]

x(n) = u(n) = h(n) = Z u(k)h(n — k),

k=—00

can be downsampled as given by (2.7). The entire decimation process is thus

[o¢]

ym) =Y u(k) h(mM — k).

k=—o00

The downsampler shown in Fig. 2.5 is a linear system, but it is not time-invariant. By
choosing the input as a series

1 forn=0,
x(n):é(n):{ 0 forn+#0

we obtain the output as

1 form=0,
y(m) = x(mM) = { 0 form #0.
Hence the impulse response is the impulse series y(m). Now assume that in the impulse
series there is a delay and it is 9. Upon excitation from this delay, the resulting input
series

1 forn = ny,
0 forn # ny,

x(n) = 6(n —no) = {
gives the output of the sampler as

|1 form = mg with mg = no/M,
y(m) = { 0 otherwise.




2.2. Multirate Data Sampling Models 13

Here my is an integer, and the response clearly depends on the delay 9. The down-
sampler is thus a time-dependent system. However, it is a periodically time-invariant
system. With time delay which are multiples of M, we obtain a delayed output, which
is a downsampled version of the input signal.

The sampling rate also needs to be increased if a narrow-band signal is to be observed
with a finer resolution in the time-domain. This is useful, for instance, for detecting
zero-crossings of the signals. Interpolators are used to increase the sampling rate of a
signal, which is called interpolation, and consists of upsampling, followed by anti-imaging

filtering.
Suppose that the sampling rate of a discrete signal y(m) is increased by a factor L by

placing L — 1 equally spaced zeroes between each pair of samples. The resulting signal
u(n) is then given by

_ [ y(n/L) forn = mL, m integer,
u(n) = { 0 otherwise.

(m) TL u(n)

h 4

Figure 2.6. L-fold Interpolator (upsampler).

Fig. 2.6 shows a signal flow representation of this process. The upsampling signal
generally contains redundant spectra, called image spectra. Therefore, this upsampled
signal is then passed through a low-pass filter with a cutoff frequency to generate an
ideally interpolated signal.

—_— g(n) -

A A

W(m) T L u(n) x(n)

Figure 2.7. Interpolation using an upsampler L and anti-imaging filter g(n)

It can be easily figured out that both decimators and interpolators are simple time-
varying systems and they are not periodic in general. However, when a decimator and
interpolator with the same sampling rate appear in cascade, even separated by other
samplers or filters, they form a LPTV system as a whole.
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Figure 2.8. Cascade filters: a decimator with filter Hp(n), a kernel filter Hg(n) and an
interpolator with filter Hy(n)
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Figure 2.9. Philips SAA7220P/B digital filter, used in superb sound Marantz CD Player.

image source: http://www.marantzphilips.nl

"The SAA7220P/B digital filter, was slightly improved released of its previous version SAA7220P/A
by Philips. These new digital filters conformed to the 28kHz DAT sampling rate, and plans were
implemented to improve the precision of DACs. It was incorporated into the Marantz CD-94 after
its initial release and also used in the Marantz CD94ltd and Marantz CDA-94”. source: http://www.
marantzphilips.nl

2.2.2. Model Example of Digital Audio Systems

This example is taken from [115]. Changing the sampling rates of band-limited se-
quences is a very common demand in audio industry. For example, assume that the sig-
nificantinformation of a certain music waveform x,(t) isin theband 0 < |Q|/2n < 22kHz.
For the better quality and performance a minimum sampling rate of 44kHz is suggested
(Fig. 2.10(a)). Hence one needs to perform analog filtering before sampling to eliminate
aliasing of out-of-band noise.

Hence, an analog filter H,(jC2) (Fig. 2.10(b)) is used. It has a fairly flat passband and a
narrow transition band and hence x,(jQ2) is not distorted and only a small amount of
unwanted energy can pass through. A suitable choice in such a case can be optimal
filters (see [115] and references therein). But they have very high nonlinear phase
response around the bandedge (i.e., around 22kHz). In high quality music this is not



http://www.marantzphilips.nl
http://www.marantzphilips.nl
http://www.marantzphilips.nl

2.2. Multirate Data Sampling Models 15

xa(Q) :
minimum over-sampling
sampling rate ‘/I‘de

44 22 22 a4 ss = KHz

(a)

B
N -2'2_0—2|2 N
(b)

) L

/_K

T2 22 0 22 a4
()

() A S ) S Ty R [

» kHz

Analog Digital
LPF linear-phase |
FIR filter
(d)

Figure 2.10. (a) Spectrum of x,(t). (b) Antialiasing filter response for sampling at 44
kHz. (c) Antialiasing filter response for sampling at 88 kHz. (d) improved
scheme for A/D stage of digital audio system.  image source: [115]

acceptable and considered as objectionable.

A usual method to overcome this problem is to oversample x,(t) by a factor of two (and
often four). Then the filter H,(j{2) have much wider transition band (Fig. 2.10(c)), so
that the nonlinearity in the phase-response is very low. Now a simple analog linear
filter (i.e., Bessel filter) can be used to recover the signal from the unwanted nonlinearity
(which is acceptably low) still present in it. The sequence x1(1) so generated is then
passed through a digital filter H(z) . Hence the signal is lowpass filtered (Fig. 2.10(d)) by
H(z) and after that it is decimated (downsampled) by the same factor of two to obtain
the final digital signal x(r) (see [115] for details).

The reason of using a digital filter H(z) at the last part of the above process is that, since
H(z)is digital, it can be designed to remove all the nonlinear phase-response of the signal
for its linear phase, while at the same time providing the desired degree of sharpness
and quality. The resulting is superb sound quality from digital audio systems.




16 Chapter 2. Model Problems and Test Examples

2.3. Orbital Motion Modelling of Spacecraft

In order to track satellites through space, it is important to know their orientations in
space to carryout mission planning and design. The path a rocket or guided missile
takes during powered flight is directly influenced by its attitude, that is its orientation
in space. During the atmospheric portion of flight, fins may deflect to steer a missile.
Outside the atmosphere, changing the direction of thrust by articulating exhaust nozzles
or changing the rocket’s attitude influences its flight path. Therefore, the spacecraft’s
attitude must be stabilized and controlled not only for the survival of a satellite, but
also for a satisfactory achievement of mission goals.

Several possible approaches have been developed the recent years in the field of control
system engineering of spacecrafts and it has become a most interesting topics for several
research now-a-days. Among all these possible approaches, a particularly effective and
reliable one is constituted by use of electromagnetic actuators. The reason is that it
turn out to be specially suitable for tracking and controlling the low Earth orbit (LEO)
satellites. Such actuators are time-varying and their control is periodic. The feasibility of
periodic techniques has opened a door of vast possibilities of applications and research
in the field of attitude control system (ACS) of small satellites [17, 68, 69, 94].

2.3.1. Spacecraft Attitude Control Dynamics

The attitude dynamics of a rigid spacecraft is nonlinear, and generally described by
well-known Euler’s equations, as follows [130, 94]:

I = —w X Iw + Teontr + Taist, (2.8)

where w € RR? is the vector of spacecraft angular rate ( expressed in the body frame),
I € RS is the inertia matrix, Ty € IR? is the vector of external disturbing torques, and
Teontr € R is the vector of magnetic control torques.

The attitude kinematics of the spacecraft can be described by means of possible param-
eterisations [68]. The most common parametrization is given by four Euler parameters,
which gives the following representation for the attitude kinematics

§=3 W@, (2.9)

where q = [g1 2 g3 g4]” is the vector of Euler parameters with unit norm (q7q = 1), and
0 C()Z _a)y a)x
_ _(l)z 0 a)x a)y

W(w) = 0, ~wy 0 @ (2.10)
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For the ACS of an earth pointing spacecraft in a circular orbit the following reference
frames are considered: the orbital axes (X, Ye, Z.), and the satellite body axes (X, Y, Z).
The satellite’s center of mass is the origin for both axes systems. The ACS of the satellite
in space is determined by considering both the reference frames [94].

The magnetic attitude control torques generated by the set of three magnetic coils
aligned with the spacecraft principal axes can be represented as [130, 69]

Tinag = m X b = B(b)m, (2.11)

where m € R? is the vector of magnetic dipoles of the coils, b € R® is the vector formed
with the components of the Earth’s magnetic field in the body frame of reference and

O bz _by
Bb)=|-b, 0 by |. 2.12)
by _bx O

We assume for the spacecraft a momentum bias configuration (i.e., one momentum
wheel, aligned with the body z-axis, with moment of inertia | € IR* and angular velocity
v). Hence, the modified system’s dynamics takes the form

Lo = —w X [Iw + Jv] + Teontr + Taist- (2.13)

It is also natural that external disturbance torque will occur which may deflect the ACS.
These disturbance torque can come through different sources, such as gravity gradient,
aerodynamics, solar radiation and residual magnetic dipoles. Hence the question rises
how to store the accurate momentum. Among inertial torques, it is possible to distin-
guish those that occur as disturbances and those that provide controllable torques to
store momentum. The external disturbance torques that come from disturbing resources
(i.e., gravity gradient, aerodynamics, solar radiation), can be separated into a secular
component (i.e., a part with nonzero mean around each orbit) and a cyclic component
(i.e., with zero mean, periodic part).

Introducing now the state vector x = [¢’, @’]" and considering small displacements from
the nominal values of the vector part of the attitude quaterniongq; = g2 =q3 =0, g4 = 1,
and small deviations of the body rates from the nominal ones wy = w, = 0, w, = -0,
(Q being the angular frequency associated with the orbit period), we can linearize the
attitude dynamics for the system as [94]

) 0]
ox = Ad(X) + |11 | (Teontr + Taist), (2.14)
where
(29 %
df(x,t) Iq Jdo
A= - = =, 2.15
ax |X Xnorm i %0 |x Xnorm ( )
| Jg dw
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Figure 2.11. TOPEX/Poseidon, made for precise measurements of the ocean surface.
image source: http://topex-www.jpl.nasa.gov/mission/topex.html

Considering the control torques generated by the magnetic coils as in (2.11), the overall
linearized model take the form

bx = AS(x) + [I(‘)l] (B(b)m + Tist)- (2.16)

If the time variation of the magnetic field is periodic, then this model can be considered
as a linear-periodic model.

2.3.2. Periodic Attitude Control of Topex/Poseidon Satellite

TOPEX/Poseidon (launched in 1992) was a joint satellite mission between NASA, the
U.S. space agency, and CNES, the French space agency, to map ocean surface topog-
raphy. It was the first major oceanographic research vessel into space which helped
revolutionize oceanography by proving the value of satellite ocean observations [51].

From orbit 1,336 kilometers above Earth, TOPEX/Poseidon provided measurements of
the surface height of 95 percent of the ice-free ocean to an accuracy of 3.3 centimeters.
TOPEX/Poseidon made it possible for the first time to determine the patterns of ocean
circulation by observing how heat stored in the ocean moves from one place to another.
Comparing the satellite based computer models of ocean circulation with actual global
observations, TOPEX/Poseidon opened the door of vast possibilities to improve climate
predictions.

The onboard ACS controls the orientation of the TOPEX/Poseidon satellite in space (see
Figure 2.12). First of all, the orientation of the satellite is observed by the ACS. This
orientation is determined from star trackers, the digital fine sun sensor, gyros, magne-
tometers, and the Earth Sensor Assembly Module. Then, the observed information is



http://topex-www.jpl.nasa.gov/mission/topex.html

2.3. Orbital Motion Modelling of Spacecraft 19

Gyros | —
—+ Thrusters
Star Trackers i—o
Magnetometers » Attitude Control System Reaction Wheels

DigitalFine Sun Sensor | —» L Magnetic Torquer Bars

Earth Sensor Assembly Module |—'

Figure 2.12. Block diagram of ACS for TOPEX/Poseidon .

image source: http://www.tsgc.utexas.edu/spacecraft/topex/atti.html

Figure 2.13. TOPEX/Poseidon: periodic orbital motion (Ground track view).

image source: http://topex-www.jpl.nasa.gov/mission/mission.html

carried to the Propulsion Module of the satellite where it uses reaction wheels, magnetic
torquer bars, and the thrusters to control the attitudes of the satellite. This ensures the
satellite to place the altimeter antenna accurately at the desired point (place) on the
surface of the Earth right underneath the satellite for the data acquisition with efficient
accuracy at all times.

Fig. 2.13 shows the controlled orbital periodic motion of TOPEX/Poseidon satellite in
space. The dashed part of the orbit path shows where the satellite is in the earth’s
shadow, and the full part is where it is sunlit.
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In this chapter we introduce some basic concepts of system and control theory for
LTT descriptor systems, both for continuous and discrete-time systems, which will be
needed later in the period settings by the subsequent chapters of this thesis. The periodic
reformulations of these basic contents will be discussed in Chapter 4. The main idea
behind this is that the description in the LTI structures will help more precisely to
understand their corresponding periodic structures in the subsequent chapters.

We start with some important definitions of LTI descriptor systems and discuss some of
their basic properties. We then discuss the generalized matrix pencils and some of their
decomposition techniques that we will use in the periodic case. The canonical form and
the deflating subspaces corresponding to the generalized matrix pencil are discussed in
this chapter.

The Lyapunov equations, which are projected Lyapunov equations in our case, are
discussed later. Important theorems that guarantee the existence and uniqueness of
these projected Lyapunov equations are also presented. We put some important notes
and remarks at the end of this chapter.
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3.1. Linear Descriptor Systems

Descriptor systems present a general mathematical framework for the modelling, sim-
ulation and control of complex dynamical systems arising in many areas of mechanical,
electrical and chemical engineering. They have received a lot of importance and atten-
tion in last several decades.

A linear time-invariant continuous-time system is characterized by the equation

Ex(t)y = Ax(t)+ Bu(t), x(0) = xo, (3.1)
yit) = Cx(®), '
and a linear time-invariant discrete-time system is characterized by the equation
Expi1 - Axy + Buy,  x(0) = xo, (32)
yk - ka/

where x(t), x, € R" are descriptor variables, u(t),uy € R’ (p < n) are system inputs,
y(t), yx € RT are system outputs, n is the system order, and p and g are the numbers of
system inputs and outputs, respectively. The matrices E,A € R™", B € R??, C € R7"
are the time-invariant system matrices. Both the systems are shortly referred to as
L(E,A, B, C). For SISO systems, p,q=1, the matrices B and C change to vectors b and oI,
respectively.

Linear dynamical systems, where the input-to-state equation is written with a leading
matrix E, are called generalized state space systems or singular systems. For E being singular
(3.1) and (3.2) are called descriptor systems. If E = I,,, then systems (3.1) and (3.2) are
called standard state space systems.

Assume that the matrices E, A present is systems (3.1) and (3.2) are nonsingular. The
output function for u to y for system (3.1) can be defined as j(s) = H(s)ii(s), where ii(s)
and #(s) are the Laplace transforms of u(t) and y(t) with x(0) = 0, and

H(s) = C(sE— A)™'B
is called the transfer function of the system. The transfer function matrix for a discrete-

time system (3.2) can be expressed as

H(z) = C(zE — A)™'B.

It is obtained by taking the z-transformation of the system.

Clearly, the Laplace transform maps the continuous-time system into frequency domain
representation, whereas the z-transform maps the discrete-time system into frequency
domain representation and the transfer functions relate inputs to outputs via y(.) =
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H(.)u(.) in the frequency domain. Here y(.) and u(.) are the corresponding Laplace
transformation/z-transformation for # and y in (3.1) and (3.2), respectively.

Two systems X(E, A, B, C) and X(E, A, B, C) are called restricted system equivalence if there
exist nonsingular matrices W, T € R™" such that

E=WET, A=WAT, B=WB, C=CT. (3.3)

The pair (W, T) is called system equivalence transformation. A characteristic quantity of (3.1)
and (3.2) is system invariant if it is preserved under a system equivalence transformation.
The transfer function H(s) is system invariant, since

H(s)=CGSE-A)'B = CT'(sW'ET!'-W1AT)"'W-!B
= CT'T(sE-A)y"H)'Ww-1B
= C(sE-A)™'B.

Similar expression can be obtained also for H(z). All representations of the same system
(that can be transformed into each other) are called realizations of the system. A real-
ization X(E, A, B, C) of order 7 is called minimal if 1 is the smallest possible dimension
under all possible realizations. This minimal number of states is called the McMillan
degree of the realization.

An LTV system consequently is a system where the system matrices may depend on
time as well.

3.2. Generalized Matrix Pencils

A matrix pencil aE — BA, denoted by (E, A), associated with the descriptor systems (3.1)
and (3.2) is called regular if E and A are square, and det(aE — BA) # 0 for some (a, ) € C?,
otherwise, (E, A) is called singular. A pair (o, f) € €C>\(0,0) is said to be a generalized
eigenvalue of (E,A) if det(aE — BA) = 0, and a finite eigenvalue A of (E, A) is given by
A =a/B, for B # 0. If B = 0, then the pair (a, 0) represents an infinite eigenvalue of AE — A.
Singularity of the matrix E leads to infinite eigenvalue(s) of the pencil AE — A. The set of
all generalized eigenvalues (finite and infinite) of the pencil AE — A is called the spectrum
of AE — A and denoted by A(E, A).

Definition 3.2.1:
A matrix pencil (E, A) associated with the system (3.1) is called c-stable if it is regular
and all its finite eigenvalues lie in the open left half-plane. ¢
Example 3.2.1:
Consider

E:[(l) _11} and A:[_OZ (1)] (3.4)
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The matrix pencil (E, A) is regular and its eigenvalues are —2, —1. Since all eigenvalues

of (E, A) have negative real part, the pencil is c-stable. o
Example 3.2.2:

Consider

11 -2 1
E—[O O] and A—[O 1] (3.5)

The matrix pencil (E, A) is regular, and it has two eigenvalues, —2 and co. The pencil

is c-stable since its only finite eigenvalue has negative real part. o
Definition 3.2.2:

The continuous-time descriptor system (3.1) is called asymptotically stable if tlim x(t) =

0 for all solutions x(t) of the system Ex(t) = Ax(t). O

The trivial solution x(f) = 0 of system (3.1) is asymptotically stable if and only if the
corresponding matrix pencil (E, A) is c-stable.

Definition 3.2.3:
A matrix pencil (E, A) associated with the system (3.2) is called d-stable if it is regular
and all its finite eigenvalues lie inside the unit circle. ¢
Example 3.2.3:
Let
1 1 0.4854 0.1419
k= [o —1] and A= [0.8003 0.4218] ' (.6
The matrix pencil (E, A) is regular and it has eigenvalues 0.9590 and —0.0951. All
eigenvalues have magnitude less then 1. Hence, the pencil is d-stable. o
Example 3.2.4:
Consider
05 1 0.9157 0.9595
k= [ 0 0] and A= [0.7922 0.6557] 57
The regular matrix pair (E, A) has eigenvalues 0.3439 and co. The pencil is d-stable
since its finite eigenvalue has magnitude less than 1. 0
Definition 3.2.4:

The discrete-time descriptor system (3.2) is called asymptotically stable if klim xe =0

for all solutions x; of the system Exj,q = Axg. O

The trivial solution x; = 0 of system (3.2) is asymptotically stable if and only if the
corresponding matrix pencil (E, A) is d-stable.
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3.2.1. Matrix Decompositions

Generalized Schur Decomposition. Given square matrices A and E in C™", the
generalized Schur decomposition factorizes both matrices as

A=QSZ" and E=QTZ7, (3.8)

where Q and Z are orthogonal matrices, and S is quasi-upper triangular with 1-by-
1 and 2-by-2 blocks on the diagonal, and T is upper triangular with non-negative
diagonal entries. The generalized Schur decomposition is also sometimes called the QZ
decomposition [43]. The 1-by-1 diagonal blocks of (S, T) contain real eigenvalues of (E, A)
and the 2-by-2 diagonal blocks of (S, T) contain conjugate pairs of complex eigenvalues
of (E, A).

If A and E are complex, then Q and Z are unitary matrices in (3.8), and S and T are
upper triangular. In that case the generalized eigenvalue A that solves the generalized
eigenvalue problem Ax = AEx (where x is unknown nonzero vector) can be computed
from the ratio of the diagonal elements of S and T. That is, using subscripts to denote
matrix elements, the i-th generalized eigenvalue A; satisfies

Ai = Sii/T.

In the periodic setting, we define the periodic Schur decomposition and it has a very
wide application is periodic control systems, especially for pole placement of periodic
systems [98, 19], multirate sampling and in optimal control of periodic systems [4, 63,
73,115].

Generalized Singular Value Decomposition. One of the most useful matrix decompo-
sitions used in linear control systems and in model reduction techniques is the singular
value decomposition (SVD). The generalized singular value decomposition (GSVD) is the
generalization and extension of SVD.

The generalized (or quotient) singular value decomposition of an m X n real matrix A
and a p X n real matrix E is given by the pair of factorizations

0 O]Q and E—V[O O]Q,

where U € R™",V e RPP, Q € R”" are orthogonal matrices, and X; and X, are
diagonal matrices of dimension r with positive, decreasing diagonal elements. Here
r < n is the rank of [AT,ET].

a-ul

If ¥y = diag(ag > a2 > --- > a,) > 0 and I, = diag(fs > 2 > -+ > ;) > 0, then the
ratios o; = a;/p; are called generalized singular values of the pencil (E, A).

If A and E are complex, matrices U, V,Q are unitary instead of orthogonal, and QT
should be replaced by Q' in the pair of factorizations. In linear control system theory,
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the singular value decomposition is an important factorization of a rectangular real or
complex matrix, with many applications in signal processing and system approximation
as well as determining rank, range and null space of a matrix.

Generalized QR Decomposition. Let A be a n X m matrix, E be a n X p matrix. Then
there exist orthogonal matrices Q (n X n) and Z (p X p) such that

A=QR, and E=QTZ,

where R has the form

m
m [Rll] ifan,
R = ,
n—m 0
or
n m-—n

R= n [Rll Ris ], ifn<m,

where Ry; is upper triangular matrix. T has the form

pomom
T=n [0 T12], Hn=p,
or
p
n—p [T11:| ifl’l>p,
T= ,
p T

where T1; or T is an upper triangular matrix.

3.2.2. Deflating Subspaces

A k-dimensional subspace S C R" is called deflating subspace for the pencil AE — A if the
subspace {Ax + Ey : x, y € S} has dimension k or less (k < n). Deflating subspaces are a
generalization of invariant subspaces.

Suppose that E, A are complex matrices and S € C" is a deflating subspace of AE — A of
dimension k. Then there exist unitary matrices V and W such that the first k columns of
W span S, and

Al A

VAW = [ 0 Ay (3.10)

], V*EW:[EH E12],

0 Ex

where A1y and Eq; are of order k [102]. Note that if A is an eigenvalue of AEq; — Ay,
then it is not an eigenvalue of AEy — Ap,. That means the deflating subspace S of AE— A
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has deflated it into two smaller pencils (have no common eigenvalues) by unitary
equivalences. A special case of the representation (3.10) is that the eigenvalue of the
pencil AEq; — A1 are finite, while the pencil AE»; —A»> contains only infinite eigenvalues.
This can happen when the matrix E is singular. We will discuss this special case in the
next subsection.

3.3. Canonical Form of Matrix Pencils

The Kronecker canonical form (KCF) describes the generalized eigenvalues and gen-
eralized eigenspace of the pencil AE — A in detail. A regular pencil AE — A can be
represented by a canonical decomposition,

P(AE-A)Q=A [Igf 1(\)]] - [(]) IO ] (3.11)

where P and Q are nonsingular, | corresponds to the finite eigenvalues of AE — A
(including zero eigenvalues) and the nilpotent N corresponds to the infinite eigenvalues
of AE — A. The index v of the pencil AE — A is defined as N"™! # 0 and N” = 0. If E is
nonsingular, then AE — A has index zero.

The canonical representation (3.11) of the matrix pencil AE — A can be used to define the
decomposition of [F" into two complementary deflating subspaces corresponding to the
finite and infinite eigenvalues of the matrix pencil AE — A. The matrices

— I”f 0 -1 _ -1 Inf 0

are the spectral projectors onto the left and right deflating subspaces of AE — A corre-
sponding to the finite eigenvalues.

In many applications, it is also required that the deflated pencils AE;; — Ay, and
AEy» — Ap in (3.10) should have some specific block structures. If the pencil AE — A
is regular, we can always have the more suitable form of the deflated pencils, which
is known as Generalized upper triangular form (GUPTRI) [34, 35] of generalized matrix
pencil, and defined as,

Ef Eu

i i (3.13)

VEW:[ 0 Ao

|l )
where V and W are unitary matrices, the pencil AEf— A is quasi-triangular and has only
finite eigenvalues, while the pencil AE., — A is triangular and has infinite eigenvalues.
The GUPTRI form is a special case of the generalized Schur form for a regular pencil.
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3.4. Projected Generalized Matrix Equations

Lyapunov equations play an important role in the context of stability of linear systems,
as well as for descriptor systems. The generalized continuous-time- and discrete-time
algebraic Lyapunov equations associated with the descriptor systems (3.1) and (3.2) can
be expressed as

E*XA + A'XE = -G, (3.14)

and
A*XA - E*XE = -G, (3.15)

respectively, where X is an unknown solution matrix. The continuous-time algebraic
Lyapunov equation (3.14) has a unique solution for every G if the matrix E is nonsingular
and all the eigenvalues of the pencil AE — A have negative real part. For (3.15), the
unique solution exists for every G if the matrix E is nonsingular and all the eigenvalues
of the pencil AE — A have modulus smaller than one.

The situation differs when E is singular. In that case (3.14) may have no solutions even
if all the finite eigenvalues of AE — A have negative real part and a solution, if it exists,
is not unique. For the discrete-time case analogous problems arise when both E and A
are singular. Equation (3.15) may have no solutions even if all the eigenvalues of the
pencil AE — A lie inside the unit circle and a solution, if it exists, is not unique.

To overcome these difficulties, we consider the following projected generalized continuous-
time algebraic Lyapunov equation

E‘XA+A'XE = -P,GP,,

X = XP, (3.16)
and the projected generalized discrete-time algebraic Lyapunov equation
A'XA-E'XE = -P,GP,+&(1-P,)'GU - Py), (3.17)
PiX = XP ’

with £ = -1,0,1. Here P; and P, are the spectral projectors onto the left and right
deflating subspace of the matrix pencil AE — A corresponding to its finite eigenvalues.
The projector on the right-hand sides of equations (3.16) and (3.17) ensure that they are
solvable and the unique solutions exists. Also existence and uniqueness of solutions
are independent of the index of the pencil AE — A . The following theorems give the
necessary and sufficient conditions for the existence and uniqueness and of the solutions
of (3.16) and (3.17).
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Theorem 3.4.1:
[103] Let AE — A be a regular pencil with finite eigenvalues Ay, ..., Ay, counted according
to their multiplicities and let P; and P, be the spectral projections as in (3.12). The projected
generalized continuous-time algebraic Lyapunov equation (3.16) has a solution for every G
ifand only if Aj+ Ay # 0 forall j,k = 1,...,ns. Moreover, if the solution X of (3.16) satisfies
X = XDy, then it is unique. o

Proof. See [103]. O

The condition A; + Ax # 0in (3.16) implies that the pencil AE — A has no eigenvalues on
the imaginary axis. If the pencil AE—A is c-stable and the matrix G in (3.16) is Hermitian,
positive (semi)definite, then the solution X is also Hermitian, positive (semi)definite.

Theorem 3.4.2:
[103] Let AE — A be a regular pencil with finite eigenvalues Ay, ..., Ay, counted according
to their multiplicities and let P; and P, be the spectral projections as in (3.12). The projected
generalized discrete-time algebraic Lyapunov equation (3.17) has a solution for every G if
and only if AjAx # 1 for all j,k = 1,...,ns. Moreover, if the solution X of (3.16) satisfies
PiX = XPy, then it is unique. 0

Proof. See [103]. O

The condition AjA¢ # 1in (3.17) implies that the pencil AE — A has no eigenvalues on
the unit circle. If the pencil AE — A is d-stable and the matrix G in (3.17) is Hermitian,
positive (semi)definite, then the solution X is also Hermitian, positive (semi)definite on
ImP 1

3.5. Remarks and Notes

Note that we will only consider the case £ = 1in (3.17) in the subsequent chapters
and also in the periodic setting of (3.17). The other two cases & = —1, and & = 0 will
be neglected. The reason is that if AE — A is d-stable and G is positive definite, then
the solution X of (3.17) with £ = —1 is positive definite on Im P; and negative definite
on Ker P;. For & = 0, the solution of (3.17) is positive definite on Im P; and positive
semidefinite on IF". The solution of (3.17) is positive definite on [F" when & =1 [103].
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We now discuss the most theoretical part of this thesis. In this chapter we generalize
the context of Chapter 3 for periodic time-varying setting, both for continuous-time and
discrete-time systems. We start with an introduction of Floquet theory for LPTV systems
of ODEs and describe the stability of LPTV systems of ODEs with Floquet decomposi-
tion. After that we discuss the extension of Floquet theory for LPTV continuous-time
systems of differential algebraic equations (DAEs). Here we show that the Floquet the-
ory can transform the LPTV continuous-time systems of DAEs (index-1) into a system
with constant coefficients. We also deduce that the whole behaviour of the solutions
of the LPTV continuous-time systems of DAEs (index-1) can be described with the
corresponding constant coefficient of DAE system.

We then discuss the system dynamics of the LTV discrete-time descriptor systems in the
next section. We start by reviewing some basic concepts of LTV discrete-time descriptor
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systems and then discuss the spectral decomposition technique to decompose an LTV
discrete-time descriptor system into two subsystems: causal subsystem and noncausal
subsystem.

We then discuss the periodic reachability and observability Gramians of LTV discrete-
time descriptor systems exploiting the structures of their periodic decomposed subsys-
tems. The periodic projected Lyapunov equations are presented with more details in
the last section.

4.1. LPTV Continuous-Time Descriptor Systems

A time-varying continuous-time periodic descriptor system is the generalized state-
space model

E(D)x(t)
()

A(t)x(t) + B(t)u(t),
C(H)x(t),

(4.1)

where E(t), A(t), B(t), C(t) are matrices of order compatible with x(t), u(t), and y(t) and
are assumed to be continuous functions of time. All the above matrices are periodic
with a period T > 0 and the matrices E(t) are allowed to be singular.

In the context of integrated circuits, E(t) and A(t) describe the conductive and capacitive
lumped elements [78, 114] in the circuit, and system (4.1) is represented as more usual
form :

d, - -
7 (COx®) —G()x(t) + B()u(t),

z(t)

LTx(), (4.2)

where u(t) is the vector of signal input sources, x(t) describes the internal states, and
C(t), G(t) are the time-varying capacitance and conductance matrices, respectively. The
output z of the system can be any arbitrary node voltage and L is a selected vector that
maps the set of variables to the output node.

Usually these circuit models come from the linearization of nonlinear circuit systems on
its unperturbed orbit (see, e.g., Chapter 2 and also in [78, 84, 114]), or from harmonic
balance analysis (HB) [42, 58] of nonlinear circuits.

The general theory of time-varying linear differential equation is an amazing task which
is still a leading issue to investigate the behaviors and natures of periodic systems. In
the 19th century, two mathematicians Gaston Floquet !

1 Achille Marie Gaston Floquet (December 15, 1847 - October 7, 1920) was a French mathematician, best
known for his work in mathematical analysis, especially in theory of differential equations. source:
http://en.wikipedia.org.
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and Aleksandr Mikhailovic Lyapunov ? established their celebrated theorem on the
structure of solutions of periodic differential equations, now named after them Floquet-
Lyapunov Theory [31]. Although this theory was first introduced for linear ODEs with
periodic coefficient matrices, an equivalent representation can be established for peri-
odic time-varying systems of linear DAEs [62, 33].

In the next section we first discuss the Floquet theory and some related results for
periodically time-varying systems of linear ODEs and later we establish an equivalent
representation of Floquet theory (and some related results) for periodic-time varying
systems of linear DAEs.

4.1.1. Floquet Theory for LPTV Systems of ODEs

Consider the n-dimensional inhomogeneous linear system of ODEs
x=A()x+b(t), x(t) = xo, (4.3)

where A(t) € R™" and b(t) € R" are continuous. The homogeneous system correspond-
ing to Equation (4.3) is given by
x=A()x, (4.4)

The initial value problems (4.3) and (4.4) satisfy the Picard-Lindelof existence and
uniqueness theorem [25, 22]. Hence, they have unique solutions with initial condi-
tion x(0) = xp € R™.

Letxi(t), ..., x,(t)benlinearly independent solutions of (4.4). Then, X(t) = [x1(£), ..., xu(t)]
is called a fundamental matrix. We say X(t) is the state transition matrix for (4.4) when
X(0) = I,. The state transition matrix is denoted by ®(t,0). The solution ¢ of (4.3)
satisfying the initial condition x(0) = xg can be represented by ®(t, 0), and it is given by

t

x(t) = ¢(t, x0) = D(t, 0)xo + f D(t, 7)b(7)dT (4.5)

0

Now consider (4.4) is periodic with period T > 0,i.e. A(t +T) = A(t) for t € R. The state
transition matrix ®(t, t) then satisfies

O, 1) = At) D(t, 1), D(1,7) =1 (4.6)

Here X(t, 1) := ®(t + T, 1) is the fundamental matrix, which satisfies X(¢, 7) := ®(¢, 7) - C.
Here C = @(T, 0) is a nonsingular matrix, called monodromy matrix. Moreover it satisfies

2 Aleksandr Mikhailovich Lyapunov (June 6, 1857 - November 3, 1918) was a Russian mathematician,
mechanician and physicist. His surname is sometimes romanized as Ljapunov, Liapunov or Ljapunow.
Lyapunov is known for his development of the stability theory of a dynamical system, as well as for his
many contributions to mathematical physics and probability theory. source: http://en.wikipedia.org.
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the following conditions [22]:

Ot +T,0) = D(0) - O(T,0) (4.7)
D(ty, to) = D(t2,t1) - P(ty, to) (4.8)
D(to, t1) = D '(t, to) (4.9)
O(t1, 1)) = D(t1,0) - DO, ty) = D(t1,0) - D L(to, 0) (4.10)

Ot+T,T) = D(0) (4.11)

Floquet in 1883 derived the decomposition technique of the state transition matrix for
periodically time-varying ODEs. Floquet theory for continuous-time linear periodic
systems can be summarized in the following theorem and discussions.

Theorem 4.1.1:
[31, 33] (The unified Floquet Decomposition)
Given the linear periodic system

x = Alt)x, A@+T)=A(@). (4.12)
Then the state transition matrix O(t, t) of (4.12) can be written as

O(t1) = Ut)exp (D-(t-1)) V(1)

V) = Ui, (4.13)

where U(t) is a T-periodic matrix and D is a constant matrix.

Proof. The proof proceeds by finding a (constant) matrix D such that the state transition
matrix over one period, i.e., the monodromy matrix ®(T,0) =: exp (D - T). To justify the
existence of such a matrix D we refer to [31] (see Theorem 3.5 therein). We write ®(t,0)
as O(t,0) =: O(t,0) exp(=D - t) exp(D - t) and define the matrix U(t) by

U(t) = d(t, 0) exp(=D.t).

Since the exponential functions exp(—D - T) and exp(-D - t) are commutative, the peri-
odicity of U(t) can be shown easily as

Uit+T)

D(t+T,0) exp(=D - (t + T))
D(t,0) (T, 0) exp(=D - T) exp(=D - t)
D(t,0) exp(=D - t) = U(t)

Hence, the state transition matrix ®(t, 0) can be written as: ®(t,0) = U(t) exp(D-t). From
(4.10), it finally follows that

O(t, 1)

O(t,0) - D7 Y(7,0),
U(t) exp(D - t) exp(=D - T)U~L(t),
U(t) exp (D - (t 1) V(x),

which completes the proof. m|
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Corollary 4.1.1:
We define the adjoint system corresponding to (4.4) given by

£ = —AT(Hz. (4.14)

The state transition matrix ®O(t, t) of the adjoint system (4.14) in terms of the state transition
matrix O(t, 7) of Equation (4.4) can be written as

O(z,t) = VI(t) exp(DT - (7 - 1)) UL (1), (4.15)
where U, V are defined in Equation (4.13). o

Remark 4.1:
The eigenvalues y; of D are called the characteristic (Flogquet) exponents of (4.12) and
the eigenvalues of exp(D - T): A; = exp(u;T) are called the characteristic (Floquet)
multipliers. o

With the Floquet theorem, it can be shown that any homogeneous LPTV systems of
ODEs can be transformed into a system of constant coefficients [33]. The following
theorem shows the summarized result of the Floquet theory in LPTV continuous-time
systems of ODEs.

Theorem 4.1.2:
(Lyapunov, 1982) The periodic matrix U(t) := D(t,0) exp(—D.t) with the coordinate trans-
formation x = U(t)% transforms the homogeneous periodic system (4.12) into a homogeneous
system with constant coefficient.

Proof. We sketch the proof from [22]. The proof proceeds with the substitution of
x = U(t)% in x = A(t)x, which gives the following differential equation:

r=UYAU-U% (4.16)
We simply observe that
UNAU-U) = exp(D-t)@ ! (ADexp(-D-t)— Dexp(-D - t) + ®Dexp(-D - 1))
= exp(D-t)®@'®Dexp(-D-t) =D.
(4.17)
Here we used the commutative argument of exp(D - t) and D, and this finally completes
the proof. O

Hence, the homogeneous periodic system (4.12) is transformed into a homogeneous
system with constant coefficient £ = D%. Indeed, we see that through that coordinate
transformation x = U(t)%, the solution x(t) of (4.12) passing through x¢ at t = 0 is given
by

x(t) = ¢(t, xo) D(t,0)xg

U(t)exp(D - t) xo

A

U(t) p(t, xo) = U(E)X(E)
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Thus £(t) = exp(D - t) xo.

Remark 4.2:
From Theorems 4.1.1- 4.1.2 and from discussions therein, we can conclude that the
behaviour of the solutions of the linear system with periodic coefficients such as (4.12)
can be characterized by the eigenvalues of the constant matrix D. These eigenvalues
have the form %ln/\ j» where A; are the eigenvalues of the monodromy matrix ®(T, 0).
Note that T is considered as the period in (4.12). o

Remark 4.3:
If exp(D.(t — 7)) is diagonalisable through similarity transformation, i.e.,
exp(D.(t — 1)) = X At — 1) X7},

then the state transition matrix ®(t,7) with the substitutions U(t) X +— U(t) and
X1 V(1) = V(1) can be written as

D(t,7) = U(t) At — 1) V(1), At — 1) = diag [exp(u1(t — 1)), ..., exp(ua(t — 1))].

(4.18)
¢
Now consider that u;(t) be the columns of U(t) and ZJZT(t) be the rows of V(¢):
U(t) = [na @), uz(t), ..., un(b)], (4.19)
V() = [o1(), 02(8), - .., va(B)]. (4.20)

Then {uq(t), ux(t), ..., u,(t)} forms a basis for U(t) and {v1(¢), v2(), . .., vx(t)} forms a basis
for VI(t) and they together form a basis for R”. Moreover, they satisfy the following
orthogonality conditions [32]:

ol (huit) =06y, i=1,...n, j=1,...,n,

for every t. Then the state transition matrix @(¢, 7) in (4.18) can be rewritten in terms of

the basis vectors as
n

O(t,7) = Y exp(uilt — 7)) ui(t) o] (1), (4.21)
i=1

The monodromy matrix @(T, 0) for (4.12), which is nothing but the state transition matrix

evaluated att = T, is given by

n n

®(T,0) = Y exp(uiT) 1(T) 0 (0) = ) exp(u;T) ui(0) o} (0). (4.22)

i=1 i=1

Similarly, we can define the state transition matrix ¢(z,t) of the adjoint system (4.14)
which is simply given by ¢’ (7, t), where ¢(t, 7) is the state transition matrix in (4.21) for
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the linear periodic system (4.12). The monodromy matrix for the adjoint system (4.14)
is given by
n n
OT(0,T) = ) | exp(—pT) oi(T) u] (T) = Y exp(-iT) 0,(0) u] (0).  (4.23)

i=1 i=1

The monodromy matrix is the basic tool in the stability analysis of the periodic systems.
Indeed, the stability of the LPTV system (4.12) can be defined with the characteristic of
the eigenvalues A;,i = 1,...,n, of the monodromy matrix ®(T,0).

Stability of LPTV Systems of ODEs:
Let us consider the LPTV system (4.12) and its Floquet decomposition as in (4.13).

Consider the eigenvalues A; as in Remark 4.1. The sufficient condition for the stability
of the LPTV system (4.12) is then given by

Al <1 e Refui} <0,Vi=1,2,...,n.

There is a relation between the product of the characteristic multipliers and the trace of
the coefficient matrix A(t) [22]:

Y T
H Ai = exp( f trace(A(1))d). (4.24)
i=1 i

Hence, a necessary condition of the stability of the system (4.12) is given by,

Re {fOT trace(A(t))dt} < 0. (4.25)

4.1.2. Floquet Theory for LPTV DAEs of Index-1

We now consider the n-dimensional inhomogeneous linear system of DAEs
d - -
E(C(t)x) + G(t)x = b(t), (4.26)

where C(t) € R™" is not necessarily full rank. We assume that its rank is a constant,
m < n, as a function of t. C(t) and G(t) are T-periodic matrices. We assume that the
DAEs we are dealing with are index-1 [62]. The homogeneous system corresponding
to (4.26) is given by

%(C’(t)x) +G(tx = 0. (4.27)
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When C(t) is rank deficient, i.e., rank of C(t) is m and m < n, Equation (4.27) does

not have solutions for all initial conditions x(0) = xg € R". Then, the solutions of the
homogeneous system ( 4.27) lie in an m-dimensional subspace defined by [62, 2]

R(t)={zeR": (%C(t) +G(t))z € Im C(t)). (4.28)

Also, every x(t) € R(t) is a solution of (4.27). The the null space of C(t), denoted ny N(¢),
can be defined as

N(t) = Ker C(t), (4.29)
which is an n —m = k-dimensional subspace. For index-1 DAEs, we have the following
relations, [72] and

R(t)NN(t) =1{0}, R(t)® N()=R", (4.30)
where @ denotes the direct sum decomposition.

If L(t) = {l1(}), Ia(P), . . ., Lu(t)} forms a basis for R(t) and W(t) = {w1(f), wa(t), ..., wr(t)} is a
basis for N(t), then it follows from ( 4.30) that L(t) U W(t) forms a basis for R".

The adjoint system corresponding to (4.27) is given by

CT(t)%J? ~GThe=0e (%ﬂ) CH)-2T Gt =0 (4.31)

If %() is a solution of (4.31) and x(t) is a solution of (4.27), then we have

d - d -
(52(0) COx(t) + 27 () (C(bxe(t))
2T (OG(H)x(t) — 2T(H)GH)x(t) = 0.

d o
7 & (OCOx(®)

Thus £T(H)C(t)x(t) = £T(0)C(0)x(0) for all ¢ > 0.

Let
RT(t) = {zeR": GT(t)z e Im CT(t)},

and
NT(t) = Ker CT(t).

Then RT(t) N NT(t) = {0} and RT(t) ® NT(t) = R".

The adjoint system plays an important role when computing the eigenvectors of special
Floquet multipliers. Consider two time-varying coordinate transformation matrices,
P(t) and Q(t). Then

d . - d_ - ..
%(PCQX)+(PGQ—%PCQ)x_Pb, 4.32)

is called the analytically equivalent system of (4.26).
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Definition 4.1.1:
The system (4.26) is said to be in canonical form, if it can be written in the following
form: B
dl 0 G() 0y _
= (0 N t)) x) + ( 0 1) x = f(b), (4.33)
where N is a strictly triangular nilpotent matrix.
Remark 4.4:
For our index-1 problem, N(f) = 0 in Definition 4.1.1. O
Theorem 4.1.3:

[23] Let us assume C, G to be analytically real. Then the DAE (4.26) is solvable, if and only
if it is analytically equivalent to a system (4.32) in canonical form, under a real analytical
coordinate transformation. o

Theorem 4.1.4:
[22] Let C, G be T-periodic real analytic matrices. The solution ¢ of the homogeneous system
(4.27) satisfying the initial condition x(0) = xo € S(0) is given by

¢(t, x0) = D(t, 0)xo, (4.34)
where the state transition matrix O(t, 7) is given by
O(t, ) = U(t) X(t — 1) V(1) C(1), (4.35)
with

exp(D(t - 1)) 0) ’ (4.36)

Z(t—T):( 0 0

exp(D(t — 1)) = diag [exp(u1(t — 1)), ..., exp(um(t—1))], and U(t) : nXnand V(t) : nXn
are T-periodic nonsingular matrices (for all t), and satisfy

V(HCHU(t) = |Ig 8] .

Proof. We sketch the proof from [22] with more detail. Let us consider the DAE (4.27).
Using the analytical equivalence transformation as in (4.32) we will find a canonical
representation of (4.27). There exists T-periodic analytical real matrices P(t) and Q(t)
such that the system (4.27) can be transformed to the following canonical form through
an analytical equivalence transformation [22]:

(161 8)£(t)+((§6(t) (I))ﬁ(t):O
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For the above system, the state transition matrix for the ODE-part can be written (using
Theorem 4.1.1) as

ds(t,7) = Ufu)exp(zla-Tnlj;%rx

where U £(t) is a T-periodic regular matrix . Therefore the state transition matrix for the
DAE can be written as

O(t, 7)

~ -1
Q) (Uﬂf) 1) (exp(D(f—ﬂ) O) (”f © I)Q%)

~ _ (1
b (uf<t> 1) (exp<D<t o) Df(m))( 7@ 1) (zm 0) 00

Here D #(t,7) is an arbitrary matrix and therefore without loss of generality we take

D ¢(t,7) = 0 ¥t, 7. This corresponds to an interpretation of the index-1 DAE as the limit
value of an ODE with infinite stiffness.

Now defining
=0 (10 ), v - (a; 0 o,
and with the identity
Cy =P (I’” 0) Q)
finally follows the statement. This completes the proof. O
Remark 4.5:

The u’s in Theorem 4.1.4 are called the characteristic (Floquet) exponents of (4.27),
and the eigenvalues A; = exp (y;T) are called the characteristic (Floquet) multipliers.
Note that (4.27) has k = n — m Floquet multipliers that are zero. o

Let u;(t) be the columns of U(t) and viT(t) be the rows of V(t):

U(t) = [l/ll (t)/ sy Mm(t), Mm+1(t), sy ul’l(t)]/ (437)
VI®) = [01(8), .., o), Osr (B -, 0n(B)]: (4.38)

Then {u1(t), ..., un(t)} forms a basis for R(t) and {u,,+1(¢), . . ., u,(t)} forms a basis for N(t).
Then x(t) = u;(t) exp(u;t) is a solution of (4.27) with the initial condition x(0) = u;(0) for
1 <i < m. Similarly, {v1(f),...,vm(t)} is a basis for RT(t) and {v,41(t), ..., vu(t)} is a basis
for NT(t). Then, for 1 < i < m, £(t) = v;(t) exp(—p;t) is a solution of (4.31) with the initial
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condition £(0) = v;(0). Moreover, we have the following orthogonality/biorthogonality
conditions [32]:

v]T(t)C(t)ui(t) = &j, i=1,...,m j=1,...,m, (4.39)
v]T(t)C(t)ui(t) =0, i=1,....m j=m+1,...,n, (4.40)
v]T(t)G(t)ui(t) =0, i=m+1,...,n,j=1,...,m, (4.41)

Now the state transition matrix ®(¢, 7) in (4.35) can be written in a different form as

2 exp(ui(t — 1) ui(t) of (1)C(x). (4.42)

i=1

Similarly, we can define the state transition matrix qS(t, 7) of the adjoint system (4.31).
For the DAEs (4.27), this is not simply given by ®'(z, t) in terms of the state transition
matrix ®(t, 1) = U(t) £(t — 7) V(t) C(7) as it was in the ODEs case. Instead, it is given by
given by

Pt 1) = VIO ZT(r - ) UT(0) CT(1) = Y exp(—pui(t - Dol (CT (1), (4.43)
=1

Theorem 4.1.5:
[32] The solution ¢ of (4.26) satisfying the initial condition x(0) = xo € R(0) (for b(0) =
is given by

O(t, x0) = D(t, 0)xo + f W(t,7) b(7) dt + T(H)b(t), (4.44)

where

W(t,7)=UMHZ(Et - 1)V(7) (4.45)
and T'(t) € R™" is a T-periodic matrix of rank k which satisfies
IOCOa®), ..., umt)] =0,
i.e. the null space of T(t) is spanned by {C()u1(t), ..., C(H)um(t)}.
Monodromy matrix. The monodromy matrix for system (4.27) is defined as ®(T, 0), and

it is given by

=Y exp(uT) ui(T)o] O)C(0) = Y exp(uiT) ui(0)o] (0)C(0). (4.46)

i=1 =1
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Similarly, the monodromy matrix for the adjoint system (4.31) is defined as &(T,0), and
it is given by

m
&(T,0) = Z exp(-iT) vi(0)ul (0)CT(0). (4.47)
i=1

The eigenvalues of the monodromy matrix determine the stability of (4.27) and this
stability is very much important when the concerned DAEs describe the dynamics of an
electronic system or a mechanical system. In RF communication systems, for perturba-
tion analysis and phase noise characterization of RF component (i.e., an oscillator), one
needs to compute the steady-state periodic solutions of the DAEs associated with the
systems. We discuss more details of LIPV continuous-time DAEs and model reduction
approaches associated with those DAEs in Chapter 7.

4.2. LPTV Discrete-Time Descriptor Systems

Linear periodic systems, both continuous and discrete time, have a very long and
successful history in physics and mathematics going back to the contribution in the
second-half of the present century by several mathematicians and engineers. During this
time the vast and versatile development of systems and control theory, together with the
achievements of digital control and signal processing, have set renewed interest in the
study and analysis of periodic systems for their specific application demands, specially
in aerospace realm [68, 69, 94], control of industrial processes and communication
systems [4, 86], modeling of periodic time-varying filters and networks [78, 93, 115],
circuit simulation [17, 66, 132], micro-electronics [87, 86], and multirate sampled-data
systems [4, 39, 73].

A linear discrete-time periodic descriptor system with time-varying dimensions has the
form

Ajxy + By,
Ckxk, keZ,

ExXis1

" (4.48)

where E; € R#1X1 Ay € RM1 By € RM+1*Pk, Cp € R are time-varying, and
periodic with a period K > 1. Clearly, Zsz_Ol Uk = Zsz_Ol nx = n. The matrices Ej are
allowed to be singular for all k.

The dynamics of the discrete-time periodic descriptor system (4.48) are often addressed
by the regularity and the eigenstructure of the set of periodic matrix pairs {(E, Ak)}kK:‘Ol.
If all Ex are nonsingular, the eigenvalues (also called characteristic multipliers) of system
(4.48) are given by the eigenvalues of the matrix product (generally known as monodromy
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matrix)

Ext Ak Egl Ak -+ Ey' Ao (4.49)

associated with the periodic matrix pairs {(E, Ak)}kK:‘Ol. This product only yields a well-
defined matrix if all E; are nonsingular. Even if they are, the formulation of that matrix
should be avoided for reasons of numerical stability. Note that even for some Ej being
singular, we use (4.49) in a formal way to denote a generalization of matrix pencils to this
periodic case (see [14] for details of this formal matrix product calculus). We compute
the eigenvalues of (4.49) via the generalized periodic Schur decomposition [19, 45, 56].

There exist unitary matrices Py € CH+1*t+1 and Qy € C™, with Qg x = Q such that
the transformed matrices

Se=PAQy Ti=PEQu, k=0,...,K-1, (4.50)

are all upper triangular [19, 99], where for the ease of notation we allow complex
arithmetic (in practice, however, computations can be performed in real arithmetic
leading to quasi-triangular structure of one of the Si). Then the formal matrix product

lellsK—l TIZEZSK_z oo Talso (4.51)

is also block upper triangular, has the same eigenvalues as (4.49) and the sequence
{(St, Ti)},—y is said to be in generalized periodic real Schur form (GPRSF) of {(Ex, Ax)}—, -
The 1 X 1 and 2 X 2 blocks on the diagonals of the transformed matrices Sy and T are
used to define the real eigenvalues and complex eigenvalues of the periodic matrix pairs
{(Ex, Ak)}llfz‘ol, respectively.

A real finite eigenvalue is given by

Ay = —_ (4.52)

provided tg{) #0fork=0,...,K—1. Here sg(), tg{) are the diagonal entries of the periodic

matrices Sy and Ty for k = 0,...,K — 1, respectively. An eigenvalue is called infinite if
T 19 = 0, but [T s # 0.

For a pair of complex conjugate eigenvalues A, A;, tg() and sgf) in (4.52) are 2 X 2 blocks,
and

~
—_

- T .0k
Ay A€ A ( tgl) Sgl))’
0

o~
Il
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provided t;f) # 0, where A denotes the eigenspectrum of the corresponding matrix. In
finite precision arithmetic, it requires to avoid the underflow and overflow problems
when handling these 2 X 2 blocks to compute their eigenvalues explicitly [45].

4.2.1. Preliminaries

The regularity of the periodic matrix pairs is defined by the regularity of the monodromy
matrix (4.49), i.e., the regularity of the whole set of periodic matrix pairs associated with
the periodic system. A set of periodic matrix pairs {(Eg, Ak)}fz‘o1 , denoted by (E, A),
is called singular if there are 1 X 1 blocks on the diagonals of the transformed matrices
Sy and Ty in (4.50) for which both H,Ifz_ol sg() =0 and H,Ifz_ol tg() = 0, otherwise the set of
matrix pairs is called regular. In the degenerate singular case, the eigenvalues become
ill-defined and we find the Kronecker canonical representation of the periodic matrix pairs
[123] to study the eigenvalue problem.

Definition 4.2.1:
Let (E, A) be the regular set of periodic matrix pairs {(Ej, Ak)}fz‘ol. The periodic matrix
pairs {(E, Ak)},If:‘O1 are called periodic stable (shortly, pd-stable) if (IE, A) is regular and
all their finite eigenvalues lie inside the unit circle. o

Note that we are considering the regularity of the set of periodic matrix pairs, rather
then the regularity of individual matrix pairs (Ey, Ax). It is also to be noted that the
pd-stability of a periodic system depends on the spectrum of the whole set of periodic
matrix pairs {(Eg, Ak)}fz‘ol, not that of individual matrix pairs.

Example 4.2.1:
Consider the period K = 2 and

20 4 0
Eo = [o 1]' El‘[o 16]’

A = [(1) g] A1=[8 1(/)4]'

The set of matrix pairs, i.e., the monodormy matrix E 1A1E6 1Ay has eigenvalues
0.0469 and 0.7500, both lie inside the unit circle. Hence, the periodic system is stable.
But the individual matrix pairs are not stable, because (Ep, Ag) has eigenvalues 0.5
and 3.0, and (E1, A1) has eigenvalues 0.0156 and 1.5. ¢

and

Definition 4.2.2:
Let the set (E, A) of periodic matrix pairs {(E, Ak)}sz_ol be regular. The periodic
descriptor system (4.48) is asymptotically stable if and only if all finite eigenvalues of
the periodic matrix pairs {(E, Ak)}fz‘o1 lie inside the unit circle. o
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In many applications, it is desirable to have the eigenvalues along the diagonal of the
GPRSF in a certain order. If the generalized periodic Schur form has its eigenvalues
ordered in a certain way as in (4.53), it is called an ordered GPRSF [45]. For example, if
we have

® ok (k) (k)
{(sk,Tk)}kK;&={[551 ﬁ%] [Tél ?’5

K-1
} ) (4.53)
22 22 k=0

such that the upper left part {(S gkl), Tgkl))}{f:‘ol contains all the eigenvalues in the open unit

disk, then {(S®, T("))}]If:‘o1 is an ordered GPRSFE.

One important application of this ordered GPRSF is the stable-unstable spectral separation
of a periodic discrete-time system for computing the numerical solution of discrete-time
periodic Lyapunov equations [103] in linear control theory.

4.2.2. Decomposition of Discrete-Time Descriptor Systems: Causal- and
Noncausal Subsystems

The spectral decomposition theorem we state here extends a well known result for time
invariant pencils to the periodic case.

Lemma 4.2.1:
[30] Let the set of periodic matrix pairs {(Ex, Ax)}i—, be regular. Then fork =0,1,...,K~1,
there exist nonsingular matrices Wy, € RFe1>tket and 7). € R™ " such that

Iy 0 Al o
WkEka+1 =] " bl WkAka = k ’ (454)

0 Ek 0 In}‘f
where Zx = Zy, A£+K_1A£+K_2 . -A;: = Ji is an nl{ X ni Jordan matrix corresponding
to the finite eigenvalues, EZE;;H . --E£+K_1 = Ny is an n,° X n° nilpotent Jordan matrix
corresponding to an eigenvalue at infinity, ny = n;: + 0y and gy = n£+1 +ny. o

Proof. The proof is sketched from [30] with some more detail. For the pd-stable matrix
pairs, we can always obtain their upper triangular form using the periodic Schur algo-
rithm [19] which always exits. There exist orthogonal periodic matrices V) € R¥«+1>Hk+1
and U € R%*"% with Ug = Uy, Vk = Vopand fork=0,1,...,K — 1, such that

Ak A, k] (4.55)

E E
T _ B,k 12,k _
Vi Bkl = [ 0 Ep k], VAU = [ 0 Am k
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. f o oo '
where the matrices Eq ; € R"™+1™ "1 and Ay x € R™ "k are nonsingular and

- - -1
(A2, k)™ Ex k (A2, k41) E2o, ka1 (A2, kek=1)" E22, kak-1

are nilpotent for k = 0,1,...,K— 1. The spectrum A(Ef, Af) contains all the finite
eigenvalues of the periodic matrix pairs {(Ey, Ak)}f:‘ol that lie inside the unit circle and
the spectrum A(E, As) contains only infinite eigenvalues of the periodic matrix pairs
(B, ARty Clearly, A(Ef, Af) N A(Ew, Aw) = 0. We then construct the following
matrices:

[El_ll, k 0 HEH, v En, k] _ [I”Ll Eq, kl
0 Agzl, Wl 0 Ex, k 5
and
|EI11, k 0 HAH, ko A, k] _ [A£ Ay, kl
0 Ap il 0 Ank| |0 Le |’

. f wgoo A fond . Foeo
where Eqj j € R"1™ %, E° € R M, Ai € R, and Aqp x € RM1™k .

. . .1 . S n® fne
We will prove that there exist periodic matrices Py € R%1 " and Qi € Rk such
that

I P 1[I E I I 0
i 1k 2k (hy o Qe Ly 1 (4.56)
Ey

0 Inzo 0 EZO 0 I”/Zl 0
and
I P Af A I Af
Mo A4 Akt Qi - |4 0 (4.57)
0 InZ" 0 In;" 0 In;" 0 In;o

Comparing both sides of (4.56) and (4.57), we obtain

Qi+ PLEY +Epp =0 (4.58)

and
A{Qk + Py + Alz, =0, (459)

for all k. From (4.59), we have P, = —A{ Ok — Alz, r and substituting Py in (4.58), we
obtain,

Qi = AL QUES + Ay ES — E1 1 = 0 (4.60)
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Hence, recursive computation of (4.60), with Qx = Qo, gives

Qi = (AL AL - Al) Qo (EXEY - ES )+ G, (4.61)

where G is independent of any Q. Since E;" corresponds to the nilpotent part and
obviously A(Eg"ﬁ‘l"’ e El‘?_l) = {0}, we can uniquely determine Qp from (4.61), and the
other Q; from (4.60), and all the P; from (4.59).

font
Using the Jordan decomposition with nonsingular K-periodic matrices Xj € R and
Yy € R" ", we have the following Jordan forms

Jie =X 1(A£+K—1A£+K—2 " 'Ai)Xk , (4.62)
and
Nk = Y]:l(E;:OEZil e EZj—K—l)Yk . (4:63)
Finally, defining
Wi = [Xk+1 91] [Infn Px [Ell k _01 ] VT
0 Y I 0 Ap k
Ly Qkl[x 0
Zr = U™ k ,
¢ k [ 0 In;ol [ 0 Y
and , .
b _ v-1poco w1 2 .
Ec =Y Ef Y, A =X A4 Xk
we obtain the structure as in (4.54) and that completes the proof. 0O
Remark 4.6:

Note that if v is the nilpotency of the matrix Ny for k = 0,1,...,K — 1, then
(vo,v1,...,vk-1) are called the indices of a regular set of periodic matrix pairs
{(Ex, Ak)}kK:‘Ol. Hence the index v of system (4.48) is defined as v = max(vo, v1, ..., Vk-1)-
The periodic descriptor system (4.48) is of index at most 1 if v < 1, i.e., E; are all
nonsingular or Ny = 0 for all k. o

Fork=0,1,...,K—1, the matrices
Ly

e

Pr(k) = Z

0 Iy 0
0 Z e R, Pi(k) = W ”6+1 0 Wi € R+ tke1 - (4.64)

are the spectral projectors onto the k-th right and left deflating subspaces of the periodic
matrix pairs {(Eg, Ak)}llfz'o1 corresponding to the finite eigenvalues, and Q,(k) = I — P(k)
and Q(k) = I — P(k) are the complementary projectors.
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Foreveryk =0,1,...,K-1, define the vector Z,:lxk =[ (x{ )T, (xllj)T ]" and let the matrices

B/
WiBy = [ "], Gz =[], ct], (4.65)
BY k k
k
be partitioned in blocks conformally to the periodic matrix pairs {(E, Ak) Lin (4.54).
Under this transformation, system (4.48) can be decoupled into forward and backward

periodic subsystems

= AN eB f—ofyf
X, = Ax +Bu, y =Cx, (4.66)
Ekxk+1 = xlIZ + Blljuk, yk Ckxk, (4.67)
respectively, with y; = y£ + yi, k=0,1,...,K—1. The state transition matrix for the
forward subsystem (4.66) is given by (i, j) = Af IA{ 5 Af fori> jand ®(,i) = I ol
For the backward subsystem (4.67), the state transition matrlx is defined as ®y(i, j) =
EfEfH ]_ for i < j and @y(i,i) = I». Using these matrices we can now define the

forward and backward fundamental matrices of the periodic descriptor system (4.48) as

DOii,i+1) 0 L
Zi[fé O]W]-, i>],

W, = (4.68)

0 0 .
Zi[o —@b(i,j)}wj’ =

These fundamental matrices play an important role in the definition of the reachability
and observability Gramians of the periodic descriptor system (4.48) that we will consider
in the next section.

4.3. Gramians and Matrix Equations for LPTV Discrete-Time
Descriptor Systems

It is clear from the context above that the Gramians of the periodic discrete-time de-
scriptor system (4.48) are defined separately for its forward and backward subsystems
[30, 100]. Complete reachability and complete observability of the periodic descriptor
system (4.48) are also defined via the complete reachability and complete observability
of its forward and backward subsystems.

4.3.1. Reachability and Observability

Definition 4.3.1:
(i) The periodic descriptor system (4.48) is said to be reachable at time t if starting
from any initial state x; = 0, the system can be driven to any final state x; = ¥ € R™,
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choosing a set of control inputs {ui}i.:s and two integers s,/ with s < t < [ appro-
priately. The periodic descriptor system (4.48) is called completely reachable if it is

reachable at all times .

(ii) The forward subsystem (4.66) is said to be reachable at time t if starting from

o . . f
any initial state x; = 0, the system can be driven to any final state x, = Xy € R",
choosing a set of control inputs { ui}f;sl and an integer s with s < t appropriately. The

forward subsystem (4.66) is called completely reachable if it is reachable at all times .

(iii) The backward subsystem (4.67) is said to be reachable at time t if any state
%, € R™ can be reached at a finite time ¢, i.e., x! = %, by choosing a set of control

b=
inputs {ui}ﬁzt, and an integer | with [ > t. The backward subsystem (4.67) is called

completely reachable if it is reachable at all times ¢. o
Remark 4.7:

The periodic discrete-time descriptor system (4.48) is completely reachable if and only

if both its forward and backward subsystems are completely reachable. o
Theorem 4.3.1:

[30] Consider the forward subsystem (4.66). The following statements are equivalent.

(1) The forward subsystem (4.66) is completely reachable.
(2) Fort=0,1,...,K—1, the matrices

;oA B / /
€4(t) = [Bt_l, ALBL, .., plt,t=n{K+ 1B {K]

have full row rank.
(3) Fort=0,1,...,K—1and
f_[pf fgf faf gf f
B, = [Bt—l’ Ay 1By o Ay A By g, Pt - K4 1)Bt—K]’

the matrices

f
|8/, st t - K)B!, @, - 2B/, (@t t - Ky 19/ ]

have full row rank. ¢
Proof. For the proof, see [29]. O
Remark 4.8:

For discrete-time descriptor system with period K = 1, statement (2) implies

rank (B, A/B/,--. (A" 1B/]) = ng,
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and statement (3) implies rank ([A] A =n fforany A € A(AY). Both the statements
ensure the complete reachability for the forward subsystem for K = 1 and they
coincide with the results for complete reachability of discrete-time descriptor systems
(see [65, 8, 107], and references therein). 0

Theorem 4.3.2:
[30] Consider the backward subsystem (4.67). The following statements are equivalent.

(1) The backward subsystem (4.67) is completely reachable.
(2) Fort=0,1,...,K -1, the matrices

_ [t pogp b
Cy(t) = [Bt' EiB/yys--- s Pult b+ VK = 1)Bt+v1<—1]

have full row rank.
(3) Fort=0,1,...,K—1and
b_[gb Epbgb b
B! =B, E/BL,,, ..., Dyt t+K-1)BY, ],

the matrices
[BY, Dyt £+ K)BY, (Dy(t, ¢+ K)PBY, ..., (Dyt, t + K))' 180

have full row rank. Note that ®y(t,t+K) = EPEY - El . and v is the index of nilpotency

S B Y <
of system ( 4.48). o
Proof. For the proof, see [29]. |
Remark 4.9:

For K =1, statement (2) implies
rank ([Bbl EbBb/ Tty (Eb)v_le]) = Neo,

where v is the index of the periodic descriptor system, and statement (3) implies
rank ([AI = N, B®]) = n for any A € A(N). Both the results coincide with those for
the noncausal reachability of discrete-time descriptor systems [65, 8, 107]. o

Definition 4.3.2:
(i) The periodic descriptor system (4.48) is said to be observable at time ¢ if the state
x¢ defined at time t, can be completely determined from the knowledge of the in-
put sequence, {ui}ﬁzs and the output sequence, {yi}ﬁzs, choosing two integers s, [ with
s < t < | appropriately. The periodic descriptor system (4.48) is called completely
observable if it is observable at all times ¢.

(ii) The forward subsystem (4.66) is said to be observable at time t if the state x;
defined at time ¢, can be completely determined from the knowledge of the input
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sequence, {ui}gzt and the output sequence, {P/i}f‘:t , choosing an integer [ with [ > ¢

appropriately. The forward subsystem (4.66) is called completely observable if it is
observable at all times t.

(iii) The backward subsystem (4.67) is said to be observable at time t if the state
x¢ defined at time ¢, can be completely determined from the knowledge of the input
sequence, {u,-}lt.:S and the output sequence, {yi}gzs , choosing an integer s with s < ¢
appropriately. The backward subsystem (4.67) is called completely observable if it is
observable at all times t. O

Remark 4.10:

The periodic discrete-time descriptor system (4.48) is completely observable if and only
if both its forward and backward subsystems are completely observable. o

Theorem 4.3.3:

[30] Consider the forward subsystem (4.66). The following statements are equivalent.
(1) The forward subsystem (4.66) is completely observable.

(2) Fort=0,1,...,K -1, the matrices

cf
foaAf
Ct+1At

foaf af
O(t) = G

f L f
¢ Ot+nK=1p
L t |

have full column rank.

(3) Fort=0,1,...,K—1and

cf
foaf
Ct+1At

£ ouf At
¢f = c/ Al A

27 17 ’

_C{+K—1 st +K=1,1),
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the matrices
¢
cfs{ Df(t + K t)
C (Df(t + K, 1))

&f (@t + K By

have full column rank.

Remark 4.11:
For K =1, statement (2) implies
cf
cfaf
rank Cf(Af)y? = ny,
Cf @y
_Af

and statement (3) implies rank ([M o ]):n 7, forany A € A(AY). Both the statements

ensure the complete observability for the forward subsystem for K = 1 [65, 8, 108].

Theorem 4.3.4:
[30] Consider the backward subsystem (4.67). The following statements are equivalent.

(1) The backward subsystem (4.67) is completely observable.

(2) Fort=0,1,...,K -1, the matrices

C/
cb EP

—_ t_

Eb pb

t
b
Op(t) = CloE 2B

CY oy Dot —vK +1,1))

have full column rank.

(3) Fort=0,1,...,K—1and
Cc
ct Eb

t—17"t—
b Th b
(i? = Ct—zEt—2Et—1 ’

CY o Dp(t—K+1,1)]
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the matrices o
o (ttt +K)
@b t(q) b 2
{ (Dy(t, t + K))

€Y (Dy(t, t + K))' !

have full column rank.

Remark 4.12:
For K = 1, statement (2) implies

Cb
CPEP
rank Cb(Eb)z = Neo,

Cb (E:b)v—l
AI-N]\_
k o ])—noo for any A € A(N). Both the statements

ensure the complete observability for the forward subsystem for K =1 [65, 8, 108].

and statement (3) implies ran

4.3.2. Periodic Reachability and Observability Gramians

In control theory and in balanced truncation model reduction, Gramians play a funda-
mental role [76, 108, 116, 121]. For the periodic descriptor system (4.48), the reachability
and observability Gramians have been first introduced in [30]. In this subsection, we dis-
cuss the periodic reachability and observability Gramians for the periodic discrete-time
descriptor system (4.48) regarding their corresponding forward and backward subsys-
tems as in (4.66) and (4.67), respectively. For forward subsystem, the periodic Gramians
are called causal Gramians and for backward subsystem, the periodic Gramians are
called noncausal Gramians.

Definition 4.3.3:
Suppose that the periodic matrix pairs {(E, Ak)}llfz‘o1 are pd-stable.

(i) For k = 0,1,...,K — 1, the causal reachability Gramians of the periodic descrip-
tor system (4.48) are defined by

k-1
cr — V. B. T\I_[T c ]Rnkxnk
Gl Z k,]B ]B j T kj '

jE=o0

(ii) Fork = 0,1, ...,K—1, the noncausal reachability Gramians of the periodic descriptor
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system (4.48) are defined by

k+vK-1

ner _ B. T T. X1y
G Zk‘ W, BBIW . € R,
]:

(iii) The complete reachability Gramians G, are the sum of the causal and noncausal
Gramians, i.e.,
c _ C ncr
G, =G/ +G]

fork=0,1,...,K—1.

Definition 4.3.4:

Suppose that the periodic matrix pairs {(Ej, Ak)}]If:‘O1 are pd-stable.

(i) Fork=0,1,...,K -1, the causal observability Gramians of the periodic descriptor
system (4.48) are defined by

(o)

co _ T T Mg X g

Ge =) Wi Cclcw, | e Riw.
j=k

(ii) Fork =0,1,...,K~-1, the noncausal observability Gramians of the periodic descriptor
system (4.48) are defined by

k-1
nco _ T T X e
Gro= Y WL CTCW,, | € RH*,
j=k-vK

iii) The complete observability Gramians G° are the sum of the causal and noncausal
p Y k
Gramians, i.e.,
0 __ Cco nco
G, =G/ +G,

fork=0,1,...,K-1.

The pd-stability of periodic matrix pairs {(Ek, Ax) ]Ifz‘ol ensures that the infinite series that
appear in the definition of Gramians G;” and G;’ converge [121, 120]. The Gramians are
symmetric positive semi-definite matrices for all k. These Gramians are used to define
the Hankel singular values of the periodic discrete-time descriptor system (4.48), which
we will use in the next consecutive chapters for balanced transformations and model
order reduction.
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Remark 4.13:
For period K = 1 and a regular matrix pair (E, A), Definitions 4.3.3 and 4.3.4 are equal
to the Gramians defined for generalized discrete-time descriptor system in [107]. ¢

4.3.3. Periodic Matrix Equations

It is well established that the Gramians of discrete-time descriptor systems satisfy
some projected generalized discrete-time Lyapunov equations with special right-hand
sides [103]. A similar result also holds for periodic descriptor systems. The following
theorem shows that the Gramians Gf{r, GZ”, Gi“ and GZC" of the periodic descriptor
system (4.48) satisfy some projected generalized discrete-time periodic Lyapunov equa-
tions with special right-hand sides.

Theorem 4.3.5 (Thm. 4.1 in [30]):
Consider the periodic discrete-time descriptor system (4.48), where the periodic matrix pairs

(Ex, A}, are pd-stable.
(1) For k = 0,1,...,K =1, the causal and noncausal reachability Gramians {Gi’}sz‘O1 and
{Gl’zcr}sz‘O1 are the unique symmetric, positive semidefinite solutions of the generalized pro-

jected periodic discrete-time algebraic Lyapunov equations (PPDALEs)

AGTA] ~EG El = ~Pi(kBBPi(K), e
G?/ = Pr(k)GirPr(k)T, .
and . . ) )
AGHTA - EGIE. = QBB Q) w0

Gl = QMGQ,HT,
respectively, where G¢ = Gy, G = G{, Qi(k) = (Iy,, — Pi(k)), and Qy(k) = (I, — Py(k)).

(2) For k = 0,1,...,K = 1, the causal and noncausal observability Gramians {Gio}fz‘ol
and {GZ“’}K‘1 are the unique symmetric, positive semidefinite solutions of the generalized

k=0
PPDALE:s ; . o
A G A~ B GPE L = —Pl) G CP(K), @
Ge = Pyk—1)TGePk - 1),
and . . o
G ELGTE L = QR GEQR), @)

G = Qk-1TGQk-1),

respectively, where GY = Gy, G¢° = Gy, E.1 = Ex-1, Pi(-1) = P(K-1) and
Qi(=1) = QK =1).
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(3) Fork =0,1,...,K -1, the reachability and observability Gramians {Gi}{f_‘ol and {GZ}{;}

are the unique symmetric, positive semidefinite solutions of the generalized PPDALEs

AGAl —E G E] —Py(k)B BIP\(k)" + Qy(k)B,BIQi(K)T,

. (4.73)
G = QGQK),
and
AlG) A —El \GE,_ = —P.(k)TC[CP/(k)+Q:(k)TC/C Qi k), (74)
G = Quk-1)TGQik-1), ’
respectively. o

Proof. We only give the proof of (4.69). The other proofs are analogous. The proof is
sketched from [30] with more details.

Let the pd-stable matrix pairs {Eg, Ak}sz_ol be in Weierstrass canonical from (4.54), where

’Fhe gigenvalues of Ji = A£+ K_1A£+ k=2 Ai lie inside the unit ci.rcle and Ny = EiEfH . E£+ K1
is nilpotent and contains only zero eigenvalues. Let the matrices

G G
ZAGrz T = | 2k Iz k 4.75
koTkk [GZL Kk Gagk 4.75)
f f (o) o0
be partitioned in blocks such that Gy € R and Gy x € R" ¥k . Then using (4.54)

and (4.64), we can rewrite (4.69) into the following matrix equations:

Giijr — AlGux (AT = Bl(B]), (4.76)
G12,k+1(EZ)T_A£G12,k = 0 (4.77)
ElGorpet — Gk (ADT = 0, (4.78)
ElGyis1(ENT =Gy = 0. (4.79)

Since all eigenvalues of Ji lie inside the unit circle and Nj contains all zero eigenvalues,
the Lyapunov equations (4.76) and (4.79) have unique solutions Gy x and Gy, respec-
tively. Taking into account that J; and Ny have disjoint spectra, equations (4.77) and
(4.78) are solvable and have trivial solutions.

Now from G = Pr(k)GirPr(k)T, it follows that

[Gi1 k. Gio k| o1 T
Ccr — ’ v — cr
G = Zigmt G| 2 = PGP,

1 f 0 G G Iy 0
= Z nk Z—1Z 11, k 12, k ZTZ—T }’lk ZT,
- Ol k <k [GZL k G| F7F |0 0| *

- 7 Gk 0] 77
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ie., Giox = Gorp = Gog = 0.

Thus, the matrices

G, Of 7
oo

are the unique symmetric solutions of the generalized PPDALEs (4.76) with G,‘ir =
Pr(k)Gi’Pr(k)T.

To show that the causal reachability Gramians G;” satisfy the generalized PPDALEs
(4.76), we can use the direct substitution of (4.54) and (4.68) into the left hand-side of
the first equation of (4.76), which gives

T T
AkG;jA ~E,GYE!
= A, Z WBBIWT A

j=—00

k-1 . T
:Akzk(z[qnf(kzﬂ) o]wiBiBiTWiT[qnf(k,zﬂ) 0]

SApAEL T

i=—00

T AT
0 0 ZkAk

1=—00

Oek+1,i+1) 0 Oek+1,i+1DT 0
—Eka+1(Z| f 0 O]WiBiBZTWiT[ f 0 ol |ZEaEL

i:—OO

_walal o "i ki +1) 0] [B/[B/] [@ri+ 17 0]\ [T 0],
I U S | S 0 Of|B?||BY 0 Of]] 0  ILps| *
Ly 0] [@pk+1,i+1) O][B1[B] [@k+1,i+ 1T 0

—WH Z f ' A1 A
“lo  El, 0 0] [BY][BY 0 0
1=—00 1 1

_ zl__oo Ok +1,i+ DB/ (B Opk +1,i+ )T 0 W-T
0 o] k
[21_ o Dpk+ 1,0+ 1)%{ BT Ok +1,i+1)T 8] ot

= -W, W, since, @s(k+1,k+1) =1 ;

k+1

: [B{ (B)T 0]
0 0

Py(k)B, B[ Py(k)",
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and similar substitutions into the second equation of (4.76) gives

P,(K)G{ P, (k)"

Ly 0 v T | -1 |1/ 0 7
z|n % Z wyBB W7 17

j=—00

7 [Z;{:m Op(k,i+ 1)B{(B{)Tq)f(k,i +1)T O] Z]f
0 0

= GY,
for all k, where k = 0,1, ..., K — 1. Hence the proof is complete. O

The complete reachability and observability of the periodic descriptor system (4.48) can
be described via the corresponding Gramians. The following theorem establishes the
statement.

Theorem 4.3.6 (Thm. 4.2 in [30]):
Let us consider the periodic matrix pairs {(Eg, Ak)}{f;Ol of the periodic descriptor system (4.48)
and assume that they are pd-stable.

(i) The periodic descriptor system (4.48) is completely reachable if and only if the reachability
Gramians G,_are positive definite fork =0,1,..., K- 1.

(ii) The periodic descriptor system (4.48) is completely observable if and only if the observ-
ability Gramians G are positive definite fork = 0,1,..., K= 1. o

Proof.  [30] We sketch here the proof of statement (i). The proof of statement (ii) is
analogous to the proof of statement (i).

Consider the generalized PPDALEs in (4.73). Premultiplying (4.73) by Wy and postmul-
tiplying again by W', we obtain

WkAkGiAZWkT - WkEkGIC(HE{WkT = —WkPI(k)BkBZPl(k)TW[ + Wle(k)BszQl(k)TWkT.
(4.80)
It follows that

~c 7T ATIA/T =c T pTwT —Bf(Bf)T o[, [0 0
WAZIGZIATWE = WiE Zin G ZL ETWT = | 75x %0 | |,
K \P

(4.81)
where G{ = Z;lGiZ;T. Now from the definition of causal reachability Gramians as in
Definition 4.3.3, we can see

i G’ 0
Gi = lelGliZI:T = [ &k Gncr] ’ (4-82)
2,k
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with
k-1
G, = Zcpf(k,i+1)B{(B{)Tq>f(k,i+1)T,
o1
G = ) Dy(k, )BUBN Dy(k, i)
i=k

Following (4.54) and (4.82), we can decompose (4.81) into two periodic Lyapunov
equations,

AGHADT =Gy = BB, (4.83)
Gy~ ENCSq EDT = BB, (484
fork=0,1,...,K—1.
Since the matrix pairs {E, Ak}sz_ol are pd-stable, the matrices J; = A£+1<—1A£+1<—2 x -Ai,

(k =0,1,...,K = 1), contain only eigenvalues lying inside the unit circle and Ny =
EIEE,ZzH ‘e E£+K_1, fork =0,1,...,K -1, contains only zero eigenvalues. Therefore, Girk

and GE’Ck’ are the symmetric positive definite solutions of (4.83) and (4.84), respectively.

Equivalently, following (4.82), we can easily show that the reachability Gramians G| are
symmetric positive definite for all values of k (k = 0,1, ..., K—1). Followed by Theorem
4.3.3- 4.3.4, we conclude that the forward and backward subsystems define by (4.83)
and (4.84) respectively, are completely reachable. Hence the periodic descriptor system
(4.48) is completely reachable. This completes the proof. O

The projected periodic discrete-time algebraic Lyapunov equations in ( 4.73) and ( 4.74)
play an important role in the balanced truncation model order reduction approach. We
will discuss more details in Chapter 8.
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This chapter introduces the time-invariant reformulation of LPTV discrete-time descrip-
tor systems and establishes some properties that link the two system representations.
This time-invariant reformulation, often called lifted system.

We first discuss the available LTI reformulation techniques [124, 122] for LPTV discrete-
time systems. In this thesis, we consider only the cyclic lifted representation of LPTV
discrete-time descriptor systems, and hence, we analyse the system dynamics of the
periodic descriptor system using its cyclic lifted representation.

In Section 5.2 we first study the concepts of solvability and conditionability of LPTV
discrete-time descriptor systems in terms of the corresponding cyclic matrix pencil. We
then give a characterization of stability for LPTV discrete-time descriptor systems in
cyclic lifted structure in Subsection 5.2.2. We also discuss the links of solvability, condi-
tionability and stability of LPTV discrete-time descriptor systems to those of the corre-
sponding cyclic lifted system. Subsection 5.2.4 then represents the periodic Gramians
and the matrix equations using cyclic lifted structure. We discuss the forward-backward
reachability and observability Gramians of the cyclic lifted system and then represent
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the cyclic lifted representations of the period matrix equations that we have already
discussed in Chapter 4 in the period setting. In this subsection we establish the relation-
ships of periodic Gramians and matrix equations of LPTV descriptor system with those
of cyclic lifted system representations. The transfer function for lifted periodic system
is discussed in Subsection 5.2.5. A short discussion about the index of periodic matrix
pairs and the relationship of transfer functions of different lifted systems is presented
in Section 5.3.

5.1. Lifted Representations of LPTV Descriptor Systems

In the last few decades, increasing attention and interest have been devoted for the
development of numerical algorithms for analysis and control of linear periodic discrete-
time systems [20, 46, 101]. Various possible computational approaches and algorithms
have been developed, but among them the most prominent and useful technique is the
lifting isomorphism, which reformulate a time-varying discrete-time periodic system as
an equivalent time-invariant discrete-time system of increased dimensions [73, 46, 79].
Using the lifting isomorphism one can exploit the theory of time-invariant systems for
the analysis and control of periodic systems, provided that the results achieved can be
easily re-interpreted in a periodic framework.

The lifted representation of discrete-time periodic descriptor systems plays an impor-
tant role in extending many theoretical results for descriptor systems to the periodic
setting [117, 18, 125]. They are also used to define concepts which correspond to those
for period discrete-time descriptor systems. There are several lifted representations
available in the literature on LPTV descriptor systems [18, 124, 122].

Standard Lifted Representation: Let us recall the original discrete-time periodic de-
scriptor system

Exxie1 = Apxp + Bruy,

Yk Ckxk, ke Z, (51)

where E; € Rkt Ay € R, By € RM+1Pk, Cp € R are time-varying, and
periodic with a period K > 1. Clearly, ZkK:_Ol Uk = Z,Ifz_ol n, = n. The matrices Ej are
allowed to be singular for all k.

For the standard lifted representation, the matrices Ey are required to be nonsingular. This
lifted system was first introduced in [73] and corresponds to the time-lifted system
discussed in [18]. The input-output vectors in this lifting approach are defined over
time intervals of length K. For a given sampling time k, the corresponding ZkK:_Ol Pk~
dimensional input vector and Z,Ifz_ol gr-dimensional output vector, and n;-dimensional
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state vector are
Ur(h) = [u'(k+hK),u"(k+hK+1),...,u"(k+hK+K-1)]",
Yy = [y'(k+hK),y"(k+hK+1),...,y"(k+ hK+K-1)],
X (h) x(k + hK),

where k, h are two integers. To define the lifted system we denote the state transition
matrix of system (5.1) as

¢(j, i) = E}_llAj—1E]7_12Aj—z ~-ElA,;,

where ¢(i, i) = I,,. Then the standard lifted system at a sampling time k is defined as
. Xe(h+1) = ALXE(R) + B (h),
¥ (5.2)
Yy = eLxkn),

where

Ac = o+ KK,

Br = [pk+Kk+1E "By, ¢k + K k+2)E.} Bisa, ..., Eglx_1Braxal,

Ck
. Crn @k +1,K)
ek = . ’

Crix-1 Pk + K—1,k)

The transfer function matrix (TEM) of the periodic system (5.1) at sampling time k is
defined as the TFM of the lifted system (5.2),

Hi () = Cp(zly, — A ' By, (5.3)
which depends on the sampling time k. The associated system pencil is defined as

Al -zl B
Wh(z) = [ k L "l ] , (5.4)
which also depends on the sampling time k. The zeros and poles as well as reachability
and observability of the period system (5.1) can be defined regarding its standard lifted
representation [122, 125]. If the system (5.1) is minimal, then the lifted system (5.2) is
also minimal and the converse is also true [18, 17].

Stacked Lifted Representation: The stacked lifted representation of the LPTV discrete-
time descriptor system (5.1) is a time-invariant descriptor system representation of the
form
SS - 45%S Sq(S
EX(+1) = A (h) + BU(h), 55
Yph) = R (h),
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where
B]f = diag(Bk/ By, -y Bk+K—l)/
G]f = diag(ck/ Ck+1r sy Ck+K—l)/
and
0 0 A E 0
Kk —LEk
: 0 ) )
&= o A= - R . (5.6)
' : 0 Agsk—2  —Ekik—2
Akrk-1
| Ek+Kk-1

The subscript k in the calligraphic notations of the matrices (vectors) does not mean the
time-variance of the corresponding matrix (vector), but it denotes the starting time of
the lifted formulation. The stacked lifted representation was first introduced in [46] in
the context of standard state space systems (Ey = I,,,,,). This lifting uses again the input-
output behavior of the system over time intervals of length K. For a given sampling
time k, the corresponding ZkK:_Ol pr-dimensional input vector and Zsz_Ol gx-dimensional
output vector are the same as for the standard lifted system but an Zsz_Ol ng-dimensional
state vector is defined as

Xe(h) = [x"(k+hK),x"(k+hK +1),...,x"(k+ hK+ K- 1)]".

Assume the square pencil Alf - ZEIf is regular, i.e., det(fl,f - ZEIE) # 0, then the TFM of
the stacked lifted system is defined as

F(2) = € (€7 — A7) 1B, (5.7)

and the associated system pencil is defined as

s S @S
AL =28 Bk]’ 5.8

S(») =
Wi @) = [ e 0
which both depend on the sampling time k.
Cyclic Lifted Representation: We now introduce another LTI representation of the
LPTV discrete-time descriptor systems, using the method first introduced in [79].

For notational convenience, we introduce the following script notation
Xy = diag(Xy, Xx+1, - - Xpsk-1),

which associates the block-diagonal matrix Xj to the cyclic matrix sequence X;, i =
k,k+1,...,k+ K~ 1 starting at time moment k, and a concatenated vector ry:

RS N S, T
= [ ey gl
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Then the LPTV discrete-time descriptor system (5.1) can be written as

Eixip1 = Apxg + By, (5.9)
vi = Cixg (5.10)

k € Z, and is merely K copies of (5.1) running in parallel, successively offset in time-
index by one. Next, we introduce two cyclic shift matrices My, and N, , which are the
generators of a cyclic group of order K:

0 I, 0 L., 0
I . .
e+ . ..
N e
. . . Ink+K—1
0 IHkH(—l 0 I”k 0

and perform the following transformation (similar as done in [101] for constant dimen-
sions):

o X; = Nﬁ;l)_(k,

k
fx?

e premultiply (5.9) by M

o u; = N’;k‘lﬁk, and

e premultiply (5.12) by Nf;k.
Due to the identities

My ENy, = Bk, My ANy = Agik-1,
MkakNpk = Brik-1, quCank = Crrk-1,

Equations (5.9) and (5.10) yield, rather pleasantly, an LTI system of the form

c 81? Xpee1 = 'A'Ig X + Bl(c: Uy,
Zk : ~ co (5.12)
Y = ek Xk,
where
c. _ k k C._ k k—1
Ek o= MykEank' ‘Ak = M(JkAkN”k 513
fBC' _ MkBNk GC'_MkCNk_l ( )
ko~ [y T S A T

Equation (5.12) represents the cyclic lifted representation of the LPTV discrete-time de-
scriptor system (5.1) at time k, with Z,Ifz_ol pr inputs and Z,Ifz_ol gr outputs. The state
dimension of the system is Zf;ol Uk = Z,Ifz_ol ni = n and its TEM is

HE(z) = € (z€C — AT) I BE.
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The cyclic lifted system can take different forms depending on its starting time k. For
example, the cyclic lifted system starting at k = 1 have the following form:

o { o Xert = Aé: Xt B @ (5.14)
Ve = C Xk,
where
e = MLENS =My, BNy, = B,
As = MANT =M, (5.15)
BE: = MEBNE = M, BN, = By, '
ef: = MECNE! =M, Ch.

The essence of the cyclic lifted system is putting inputs, states and outputs of the original
LPTV descriptor system at cyclic places (depending on the starting time k ) of those of
the lifted LTI system. In any cyclic reformulation starting at time k, the matrix Slf has
to block diagonal and Alf is a block cyclic matrix, while Blf, and Glf can be either block
diagonal or block cyclic, which depends on the relative places of input, state and output
of the original LPTV system in those of the cyclic lifted system.

Remark 5.1:
The construction of the cyclic lifted system avoids matrix multiplication and only one
LTI representation is needed for representing the system dynamics of the original
LPTV system. But for the cyclic lifted LTI model, the number of states is much larger
than that of the original LPTV system. o

In this thesis we consider only the cyclic lifted system for the LTI representation of
LPTV discrete-time descriptor systems (5.1). Hence, we reserve the script notations (i.e.,
without superscripts) for the cyclic lifted representation Zf . We write Equation (5.14)
in more usual form [12] as follows:

EXkr1 = AXp+BU,,
Yy, = eX, (5.16)
where
&= diag(Eo, El, ooy EK—l)r B = diag(Bo, Bl, e /BK—l)r
0 ... 0 A 0 ... 0 G
A 0 C 0 (5.17)
A= ) ., €= ) -

0 Ax1 0 0 Ck1 O




5.2. Cyclic Lifted System Analysis 67

The descriptor vector, system input and output of (5.16) are related to those of (5.1) via

Xe=I[x], ..., xg 1,017, (5.18)
U = [uf,uf, ... up 1", (5.19)

Ye =10, Y1r--- Vil (5.20)
respectively. The transfer function of the lifted system (5.16) can be rewritten as

H(z) = C(z& — A)'B. (5.21)

5.2. Cyclic Lifted System Analysis

The cyclic lifted system (5.16) describes the eigenstructure and system dynamics of the
LPTV discrete-time descriptor system (5.1). In this content, regularity of the set of
periodic matrix pairs {(Ek,Ak)},Ifz‘Ol, i.e., (E, A), can be described by the cyclic matrix
pencil. The set (E, A) is said to be reqular when det(M(e, B)) # 0, where

[ OloE() 0 ce 0 —ﬁvo 1
—B1A1 aEq 0
M(a, B) := (5.22)
0 0 —Pk-1Ak-1 ak-1Ek-1]

with a = (a0, a1,...,ak-1), B = (Bo,P1,.--,Pk-1), and ay, fx are complex variables for
k=0,1,...,K-1.

Definition 5.2.1:
Let (E, A) be a regular set of matrix pairs. If there exist @ = (ap, a1,...,ak-1),
B = (Bo,P1,---,Pr-1), where ay, B are complex variables for k = 0,1,...,K — 1, which
satisfy

det(M(«e, B)) = 0,

then the pair (11, 7g) = ( Hsz_Ol Q, Hsz_Ol ﬁk) # (0,0),is an eigenvalue pair of {(Ey, Ak)},fj:—(}.o

Note that if 7z # 0, then z = 7,/7p is a finite eigenvalue, otherwise (714, 0) represents
an infinite eigenvalue of {(Ey, Ap)};_, (see [30] for details). The set of periodic matrix
pairs (IE, A) is said to be pd-stable if it is regular and all its finite eigenvalues lie inside
the unit circle. System (5.1) is asymptotically stable if the corresponding set of periodic
matrix pairs {(Ek,Ak)}f:‘Ol is pd-stable.
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5.2.1. Solvability and Conditionability

Two most important concepts associated with original periodic system (5.1), which
characterize their well behaviors are solvability and conditionability. Both the concepts
can be described by the corresponding cyclic lifted structure of (5.1). For LPTV discrete-
time descriptor systems of constant dimensions, both the concepts have been briefly
discussed in [71, 97].

Itis clear that the original system (5.1) with period K can be re-interpreted by the system
represented by K equations, and these can be written out in block matrix form as

—Ao EQ X0 BO 1o
-A1 Eq X1
By uq
-Axk—2 Eko XK-1
Bx_1 | |ug-
—Ag-1 Ex1f | xx k-1l
(5.23)

Analogous to the work of [71,97], we can also define the solvability and conditionability
of system (5.1). The solvability matrix of (5.1), denoted by S(0, K), is the coefficient
matrix of (5.23). System (5.1) is said to be solvable if S(0, K) is of full rank for every K > 0.

Similarly, the conditionability matrix of (5.1), denoted by C(0, K), is the submatrix of
5(0,K) obtained by deleting the first and last block columns. System (5.1) is said to be
conditionable if C(0, K) is of full rank for every K > 0.

Solvability and conditionability of system (5.1) depend only on its homogeneous system

Ekxk+1 = Akxk, k= 0, ‘e ,K - 1, (524)
and they are dual concepts. This in turns implies that the LPTV system (5.24) is solvable
if and only if it is conditionable [71, 97]. The solvability and conditionability of the
LPTV discrete-time descriptor system (5.1) can be directly linked to the corresponding
properties of the cyclic lifted system.

Definition 5.2.2:
The LPTV discrete-time descriptor system (5.1) is said to be solvable (conditionable)
if the pencil

[aEy 0 ... 0 —BAo]
—‘BAl aEl 0
al — PA = (5.25)
0 0 —BAk-1 aEg-1]

is regular, where ¢, § are complex variables, i.e., 4 a, f € C so that det(a€ — pA) # 0.0
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The following theorem establishes the relationship of the concepts of solvability and
conditionability between the LPTV discrete-time descriptor system (5.1) and its corre-
sponding cyclic lifted system (5.16).

Theorem 5.2.1:
The following statements are equivalent:

1. The LPTV descriptor system (5.1) is solvable (conditionable).
2. The cyclic lifted system (5.16) is solvable (conditionable). 0

Proof. (1 & 2) We sketch the proof for system (5.1) of time-varying dimensions which
is analogous to the proof of Theorem 2. in [97] given for constant dimensions. Let us
consider the homogeneous form of the cyclic lifted system (5.16), i.e.,

8xk+1 = ‘Axk/

Y = CXy, k=0,...,K-1. (5.26)

The solvability matrix of system ( 5.26), over an interval of length I, can be written as

-A £
-A &
.. I block rows. (5.27)
-A £
-A &

Modulo row and column permutations, it is identical to
diag({S(0,1),S(1,1),...,S(K=1,1)}, (5.28)

where the 5(i,[) refer to solvability matrices of the LPTV system (5.1) [97, 71]. This
shows that (5.27) is of full rank iff (5.28) is. Since this holds for all I > 0, we conclude
that (5.16) is solvable iff (5.1) is.

The argument for conditionability can be derived similarly. The conditionability matrix
of (5.16) is the submatrix of (5.27) obtained by deleting the first and last block columns.
Rearranging rows and columns as before, it is identical to

diag{C(0,1),C(1,1),...,C(K=1,1)}, (5.29)

where the C(i, I) refer to conditionability matrices of (5.1). This shows that (5.27) is of full
rank iff (5.29) is. Since this holds for all I > 0, we conclude that (5.16) is conditionable iff
(5.1) is. O

The solvability and conditionability of the cyclic lifted system (5.16) are also duel con-
cepts. The cyclic lifted system (5.16) is solvable iff it is conditionable [71]. The reverse
implication also holds.
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5.2.2. Stability

Stability of the cyclic lifted system (5.16) is defined by the regularity of the cyclic matrix
pencil zE€ — A, defined as

Eo Ao
2 ' - . : (5.30)
Ex-1 Ak

The cyclic matrix pencil z€ — A is said to be regular when det(z€ — A) # 0, for any z € C.

Definition 5.2.3:
The cyclic lifted system (5.16) is asymptotically stable iff zE — A is regular and all its
finite eigenvalues lie inside the unit circle. o

Stability of the original LPTV discrete-time descriptor system (5.1) is directly linked to
the stability of the corresponding cyclic lifted system (5.16). Regularity of the periodic
matrix pairs {(Eg, Ak)}f:_o1 implies the regularity of the cyclic matrix pair (€, A) [59]. The
reverse argument also holds true. With this concept, the periodic descriptor system
(5.1) is said to be asymptotically stable iff the cyclic pencil (5.22) is regular and all its
finite eigenvalues lie inside unit circle.

Remark 5.2:
The eigenvalues of zE€ — A are identical to the eigenvalues of a€ — A and they are
the K-th roots of the eigenvalues of the monodromy matrix (4.49) in Chapter 4, when
it exists. This means that

A(I(Ex, ADIS) = 1@X, B5) | det(aé — pA) = 0}, (5.31)

5.2.3. Reachability and Observability

Reachability and observability of the periodic descriptor system (5.1) can be redefined
with the cyclic matrix pairs of system (5.16). For convenience, let us recall the forward-
backward periodic subsystems of Chapter 4:

o _ AffLnf f_ff
X, = Ax +Bu, y =Cx, (5.32)
EZXIEH = x,}z + BZuk, yi = C,I:xi, (5.33)

fork=0,1,...,K - 1. Using the periodic decomposition of the periodic matrix pairs as
defined in (4.54), reachability and observability of the periodic descriptor system (5.1)
can be redefined with the cyclic matrices of Equation (5.16) as described in the following
two theorems.
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Theorem 5.2.2:
[30] (1) The forward subsystem (5.32) is completely reachable if for Hf-i_ol a; € A(Df(K, 0))
the matrix

aol o -Al |B] )
~AL 0 By
Cflag, -, ax1) = 2 _
. :
0 Ax aK_lIn{; B]I;_l

has full row rank.

(2) The backward subsystem (5.33) is completely reachable if the pair (€7, BY) is reachable,
where

0 0
: Do BY
eb= = , | B= t . (5.34)
00 EL -
EL. 0 0 B
0
Proof. See [29, 65]. O

Similarly, forward and backward observability of the periodic descriptor system can be
defined.
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Theorem 5.2.3:
[ZO] (1) The forward subsystem (5.32) is completely observable if for HZK:_Ol a; € A(DP¢(K,0))
the matrix

[ Oéolnjg ce 0 _A]I;—l
_AO Oélln{ 0
0 A£_2 ag-11 ¢
Of(a0/ Tty aK—l) = f K=
CO
f
Cl
f
CK—]

has full column rank.

(2) The backward subsystem (5.33) is completely observable if the pair (€7, C’) is observable,
where

0 E Ch
: Do ct
eb= = , = t : (5.35)
0 0 E% .
b b
Eb 0 0 cb_,
0
Proof. See [29, 65]. O

Remark 5.3:
However, if the system (5.1) is reachable at time k, the cyclic lifted system (5.16) is
not necessarily reachable. The appropriate statement is that system (5.1) is reachable
(observable) at each time k = 0,1, ...,K — 1, if and only if system (5.16) is reachable
(observable) [see [18] for details]. o

5.2.4. Gramians and Matrix Equations

The periodic reachability and observability Gramians of the periodic descriptor system
(5.1) can be recovered from the block diagonal solutions of the reachability and observ-
ability type projected lifted discrete-time algebraic Lyapunov equations (PLDALESs)
of system (5.16), respectively. It is shown in [57, 121] that the Gramians of standard
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periodic systems satisfy the lifted form of the periodic Lyapunov equations and the so-
lutions of these equations are diagonal matrices. The idea can be extended to the LPTV
discrete-time descriptor system (5.1) and the corresponding cyclic lifted system (5.16).
The periodic Gramians G}/, G}, G;° and G} of the periodic descriptor system (5.1)
satisfy the projected lifted discrete-time algebraic Lyapunov equations (PLDALEs) of
system (5.16).

The following theorem describes the block diagonal structures of the solutions of peri-
odic Lyapunov equations in lifted form and their relations to the corresponding solutions
of generalized PPDALEs in Theorem 4.3.5 of Chapter 4.

Theorem 5.2.4:
Consider the periodic discrete-time descriptor system (5.1) and its cyclic lifted representation

(5.16), where the set of periodic matrix pairs {(Ek,Ak)}IIf:‘O1 is pd-stable. The causal and

noncausal reachability Gramians G and G"" of (5.16) satisfy the generalized PLDALESs

AGTAT —egrel = P BBTPT, g =P ool (5.36)
AgncrAT _ 89ncr8T — Ql.BgTQZT, 9ncr — QrgnchZ"’ (537)

respectively, where £, A, B are as in (5.17) and

G = diag(GY,...,GY_,,G), §"" = diag(G!, ..., G, GI"),
Py = diag(P(0), Pi(1), ..., P(K=1)),  Q=I-7, (5.38)

Pr= diag(Pr(l)/ -, Pr(K=1),P(0)), Q =1-7,.

Proof. We will only give an outline of the proof. Let us consider a period-3 LPTV system
(k =0,1,2). We rewrite the first equation of (5.36) as its cyclic lifted structure:

0 0 A[GY 0 O0][0 0 A [EO 0 0][GY 0 O][E O o]T
A0 oflo Gy ofla 0o o -lo E of|l0o G oflo E o
0 A o]lo 0 cgjlo 4 o0 0 0 EJlo 0 cgjlo 0 E
P(0)By O 0 |[P(®B; 0 o T
=l o P@®B 0 0 P(B O ]
0 0 P@B| 0 0 P2)B»
(5.39)

By a straightforward computation and then equating the corresponding terms from
both the sides, we obtain

AGYA} -~ E,GYEL = —Pi(0)B B! Pi(0)T,
AGTAT —E GYET = -P(1)B,BIP,(1)T, (5.40)
A,GYAY —E,GJE] = -P|(2)B,BjP,(2)".
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Equation (5.40) is nothing but the periodic projected Lyapunov equations

AGYAL - EGYLEL = —Pi(k)B B Pi(K),

for k = 0,1,2 of Equation (4.69). The same holds true for any k, wherek = 0,1, ..., K- 1.
Since the periodic matrix pairs {(E, Ak)}f:‘o1 are pd-stable, the matrix pencil z€ — A

associated with the cyclic lifted system (5.16) is regular and all its eigenvalues lie inside
the unit circle. Then the Lyapunov equation (5.36) has a unique solution.

Using again the block structures of G and P,, simple calculation shows that the
second equation of (5.36) is equivalent to the unique symmetric property, i.e., G" =
P,(k)Gi’Pr(k)T fork=0,1,...,K-1 of Equation (4.69). Therefore, the causal reachability
Gramian §“ is the unique symmetric positive semidefinite solution of the generalized
PLDALEs (5.36). The proof for §" can be treated similarly. O

For the observability Gramians, the situation becomes a bit more complex. In that case
we take a backward time-shift of the original lifted system as done in [121, 119] for
standard case (Ex = I, ,). Thereasonis that we donot want to destroy the block diagonal
structure of the lifted solutions and we would like to retrieve the periodic observability
Gramians of the periodic descriptor system (5.1) from these lifted solutions.

The backward time-shift of the original lifted system is performed by taking the K-cyclic
backward-shift of the cyclic matrices M, and Ny, in (5.11), and then using relation (5.15).
We denote with o€ the K-cyclic shift of € in (5.16) and similarly the others. The simplified
representation of these K-cyclic shift matrices are as follows:

[Ex—1 ] 0 -+ 0 A4
Ep Ap 0
o = . ’ oA = . . s
Ex_>] 0 Ak 0
(5.41)
BK—l 0 0 CK_l
By Co 0
0B = ) , o0C=
Bk | 0 Ck—> O

In that case the states, inputs and outputs of the original lifted system are also changed
(due to K-cyclic backward-shift) by the relations described after Equation (5.11). Con-
sidering the periodic matrix pairs {(Ej, Ak)},If:‘O1 are pd-stable, we can show that the
causal and noncausal observability Gramians G and 3" of (5.16) satisfy the projected
PLDALEs

0ATG0A — 5€TG%6E = —(0P,)T0CT6C(cP)), G = (aP)TG°(cP)),
oATG" 05 A — c€TG"6E = (69,)T0CT6C(cQ,), gmeo = (6Q)TG"°(6Q)),
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respectively, where o€, oA, 0C are defined in (5.41), and the projectors
0P = diag(P)(K - 1), Py(0), ..., Pi(K - 2)), 0P, = diag(P,(0), P,(1),...,P,(K = 1)), 09Q, =
I-0P,, 09, =1-0P;, and

5 = diag(GY, ..., G2 ), §'° = diag(GI®,...,GI%). (5.42)

Note that the lifted solutions §° and §"“ have also block diagonal structures, but now
the diagonal blocks appear in different order.

Contrary to the backward time-shift of the original lifted system, we have observed that
it is possible to recover the periodic observability Gramians of the periodic descriptor
system (5.1) from the block diagonal solutions of the observability type PLDALEs of the
original lifted system (5.16) by reformulating only the matrix € on the right-hand side.
Our observation is summarized in the following theorem.

Theorem 5.2.5:
Consider the periodic discrete-time descriptor system (5.1) and its cyclic lifted representation
(5.16), where the periodic matrix pairs {(Ey, Ax)}<-! are pd-stable. The causal and noncausal

k=0
observability Gramians G and G of (5.16) satisfy the generalized PLDALESs
ATGOA - eTg0e = —PICTCP,,  §© =PIgop, (5.43)
AT A -glgmee = gfeTee, g =qfg™q, (5.44)

respectively, where € and A are as in (5.17), the projectors P;, P,, Q; and Q, are as in ( 5.38),
é = diag(Cl, ey CK_1, C()) and

G = diag(G{’, ..., G¥_1,Gy), §"° =diag(G}“, ..., Gg*, Gy). (5.45)
¢
Proof. The proof is analogous to the previous proof of Theorem 5.2.4. O

The periodic Gramians inside the block diagonal solutions in (5.45) appear in different
order than in (5.42). The cyclic lifted representation (5.16) of the periodic descriptor
system (5.1) can be considered as a generalized LTI system in descriptor form. Hence,
analogous to the generalized descriptor case [103], the complete reachability Gramian
of the cyclic lifted system (5.16) is defined as the sum of the causal and noncausal
reachability Gramians, i.e.,

SC — 9Ci’ + 97[0”

and the complete observability Gramian of the cyclic lifted system (5.16) is the sum of
the causal and noncausal observability Gramians, i.e.,

90 — 9CO + 97’!CO.
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Remark 5.4:
The structural properties of the cyclic lifted system (5.16) are determined by the
structural properties of the original periodic descriptor system (5.1) [16, 18, 79]. In
particular, system (5.16) is completely reachable (observable) if and only if system
(5.1) is completely reachable (observable) [79, 18].

5.2.5. Transfer Function

As we have already discussed in Section 5.1, the transfer function of the cyclic lifted
system (5.16) can be described as

H(z) = C(z& — A)'B, (5.46)

and the associated system pencil is defined as

(5.47)

W) = [A - z& 3]

¢ 0]

It follows from Remark 5.4 and from [18] that if periodic descriptor system (5.1) is
minimal (i.e., completely reachable and completely observable), then the lifted system
(5.16) is minimal, too, and the converse is also true. The zeros and poles of the minimal
periodic system (5.1) can be easily defined from the TFM corresponding to the associated
cyclic lifted system (5.16) [125].

The He-norm of the cyclic lifted system (5.16) is defined by

K, = mMax O (H(EY)), (5.48)
wel0,27]

where o(.) denotes the singular values of the corresponding matrix. We can compute the
He-norm of the periodic descriptor system (5.1) by making use of the corresponding
cyclic lifted system (5.16). The following lemma clarifies the connection.

Lemma 5.2.1:
The cyclic lifted system described by (5.16) has the same He-norm as the periodic descriptor
system (5.1). ¢

Proof. See Lemma 1 and Lemma 2 in [101]. O

The TFMs corresponding to various lifted systems and their relations with the asso-
ciated periodic descriptor systems are briefly discussed in [125, 122]. Also, the TFM
of a particular lifted system can be easily determined from the TFM of another lifted
system [122].
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5.3. Discussions Regarding the LPTV Descriptor System and
Corresponding Cyclic Lifted System

Index of Periodic Matrix Pairs: We would like to point out that the indexes v; for the
elements of regular periodic matrix pairs are not necessarily equal. Each individual
pair of the set {(Ej, Ak)}llfz‘o1 may have different index. For example, the matrix pairs
{(Ek’Ak)}ll:O with Ay =1, k=0,1 and

have indexes vg = 1 and v; = 2.

As shown in Chapter 4 and in the preceding part of this chapter, the monodromy
matrices

j j+K-1
Ji= [[ A and Nj= [ E, j=0,...K-1,
k=j+K-1 k=j

play an important role for defining the indexes for the regular set of periodic matrix
pairs {(E, Ak)}kK:‘O1 of system (5.1). Also note that the indexes of the cyclic forms as in
(5.25) are not appropriate to define the indexes the periodic matrix pairs {(Ey, Ak)}kK:‘Ol.
For example, consider the above periodic matrix pairs. Reconstructing the cyclic form

(5.25) for these periodic matrix pairs, we get

S A R e A

“\|0 E{|'|A1 O “\|0 Eo|'|[A0 O ’
which is neither equal to the nilpotency of EgE; not to the nilpotency of E;Ey. Note that
nilpotency of EoE; is 1 and nilpotency of E{Ey is 2. Appropriate method for defining
the indexes of periodic matrix pairs using their corresponding cyclic form is discussed
in [59] for discrete-time descriptor systems of constant dimensions. Developing such
a representation ( see Section 2 and Definition 2.1 in [59]) for discrete-time descriptor

systems of time-varying dimensions is more computational task and we restrict our
discussion to the time-varying case.

TFMs of Different Lifted Systems: Let us consider the TFM (5.3) and the associated
system pencil (5.4) of the standard lifted system (5.2). Obviously, .‘J—C,%JrK(z) = J{IE(Z)
and we have the following relation for TEMs computed at two successive values of k
[46, 125]:

0 I 0 z7
L _ J L Pk
J—Ck+l(z) = [Zlqk 0] J—Ck (2) [IR 0 ] , (5.49)

krK-1 keK-1
where [ = 2000 g, and R = Y070 e
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The TFMs of different lifted systems are directly linked to each other. It can be shown
that the TFMs of the stacked and standard lifted systems are the same, i.e.,ﬂ{,f (z) = G{IE (2).
Similarly, the relationship between the TFMs of standard and cyclic lifted systems is
given by
Cloy — -1y qL(K
I (2) = 0q,(z77) H(27) bp(2), (5.50)

where A (x) = diag(lj,, I, ..., X ;).

Thus, to avoid matrix multiplications in the computation of TJ{IE (zX) using (5.3), one can
tirst compute the TFM J—le(z) of the cyclic lifted system, and then compute T}le (zX) using
relation (5.50) and finally replace zX by z.
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This chapter is intended to introduce the basic notations and the most common concepts
of model order reduction (MOR) for LTI descriptor systems. The main idea behind this
is that the theoretical and mathematical concepts in the LTI structures will help more
precisely to understand their corresponding periodic interpretations in the subsequent

chapters.

We first give a short introduction of MOR and present the available approaches for
MOR. We introduce the two most competing projection based approaches for generating
reduced-order models for LTI systems: the Krylov-subspace methods and the Balanced
Truncation (BT) methods.
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Original complex . . Simulation,
Modelling Order reduction = 5 o
system High order model Low order model | OPtimzation, ...

Y

Figure 6.1. Order reduction for the purpose of simulation.

In Section 6.3 we first study the moment-matching approach via orthogonalized Krylov-
subspace methods, which is one of the best choices for MOR of large scale systems. We
will present the theoretical background and proofs to match the moments about different
points. We also discuss the necessary numerical algorithms to calculate the projection
matrices.

The BT approach for order reduction of LTI systems is briefly discussed in Section
6.4. In this section, we will represent the basic concepts of the BT approach and give
the physical interpretations of the reachability and observability Gramians and Hankel
singular values. We also represent the basic numerical algorithm for order reduction of
singular systems using the BT approach, and discuss the stability and approximation
error of the reduced systems.

In the last section we demonstrate the efficiencies and drawbacks of both the methods
and compare them according to their fields of applications.

6.1. Introduction

Accurate modelling of an original system is a necessary part in many applications of
modern engineering. Simulation and analysis of a high order model is difficult due
to the lack of powerful computers, efficient algorithms, and the higher complexity
induced in the model. In many cases simulation and analysis of such models are even
impossible. A solution to simplify the preceding task in both fields of simulation and
system analysis is to find a low order approximation of the original high order model.
The procedure of order reduction is shown in Figure 6.1.

The main goal of the reduction is to replace the given mathematical model of a system
or a process by a much smaller model which preserves certain crucial properties of the
original system, such as stability or passivity, etc. Some other issues are also involved,
such as the data structure of the original model, and the efficient and numerically stable
computation of the model. Of course, the smallest possible approximation error in the
reduced-order model compared to the original model is one of the main issues of MOR.
The basic schematic view of MOR is shown in Figure 6.2.

Several methods have been proposed for reduction of LTI systems in different fields
like control engineering, micro-systems and applied mathematics. We would like to
mention the recent surveys [3, 48, 40, 41] and the references therein on that topic. The




6.2. Projection-Based MOR 81

» Original system

"
u(t) —s (_>——>error

h 4

Reduced system

Figure 6.2. Order reduction by minimization the difference of the outputs.

order reduction procedures of LTI systems that have been discussed there fall into two
major categories:

1. projection-based methods

2. non-projection based methods

The first category consists of such methods as Krylov-subspace (moment matching
methods), BT method, Proper Orthogonal Decomposition (POD) methods, etc. The sec-
ond category consists of Hankel optimal model reduction method, Singular perturbation
method, and various optimization-based methods. The vast majority of model reduc-
tion methods are projection-based. In the next sections we will discuss briefly the two
major competing projection based approaches: Krylov-subspace (moment-matching)-
based methods and BT methods for order reduction of LTI descriptor systems.

6.2. Projection-Based Model Reduction Methods

Before proceeding with projection methods, the generalized state space form will be
briefly described. This will help to create a more general framework for the projection
techniques. Let us recall the LTI descriptor systems in the generalized state space form
as defined in Equation (3.1) of Chapter 3. A continuous-time descriptor system of order
n, with p inputs and g outputs, in generalized state space form is described by the
equations,

Ex(t)
()

and has the transfer function

Ax(t) + Bu(t), x(0) = xo,

Cx(t), ©6.1)

H(s) = C(sE — A)"'B. (6.2)

A discrete-time descriptor system of order n, with p inputs and g outputs, in generalized
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state space form is described by the equations,

Exgyr = Axg+ By,  x(0) = xo, 63)
e = Cixi '

and the transfer function is given by
H(z) = C(zE — A)™'B. (6.4)

If E is invertible, (6.1) and (6.3) can be easily converted to standard state space form.
The reduced-order system of order r (v < n) for system (6.1) should have the form

Ex(t) = Ax(t)

(t)

),
),

u(

t
%t (6.5)

Il
[@esl

with the transfer function
H(s) = C(sE — A)™'B.

Similarly, the reduced-order system of order r (r < n) for system (6.3) should have the
form ~ - _
EXy1 = AX + Buy,

Y = ka, keZ, (6.6)

with the transfer function
H(z) = C(zE - A)7'B.

A projection method reduces (6.1) (also (6.3)) by choosing two r-dimensional projection
spaces, S1,52 € R", so that the solution space is projected onto S;, ¥ € Sy, and the
residual of (6.1) is orthogonal to S1. The projection can be considered as follows:

x = UX,

U eR™, xeR", ¥R 6.7)

By applying this projection to system (6.1) (also (6.3)) and then pre-multiplying by V7,
a realization of the reduced-order system of order r satisfies the projection equations
E=V'EU A=VTAU B=V'B, C=CUl, (6.8)
where the columns of V and U form bases for 51 and Sy, respectively,
colspan(V) =S;, V eR™, colspan(U) =S, U e R™.
Note that for the SISO case, the matrices B and C change to vectors b and ¢’, respectively.
If S; = S,, the projection is orthogonal, otherwise oblique. The matrices V and U are

refered to as the left truncation matrix and the right truncation matrix, respectively. The
following proposition shows that the choice of basis for S; and S; is not important.
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Proposition 6.1:
If the columns of V also form a basis for Sy, and the columns of U also form a basis for Sy, then
the reduced order system obtained by projection with V and U according to (6.8), is equivalent
to (has the same transfer function as) the reduced order model obtained by projection with V
and U. o

Proof. Let us consider two nonsingular r X r matrices, W and T, such that
V=VW, Uu=UrT.
Then the transfer function H(s) can be represented as
H(s) = CUGVTEU-VTAU)'VTB
= CUT(WTIVTEUT - WTVTAUT) ' WTVTB
= CUGVTEU-VTAO) 1 VTB
= H(s).
This completes the proof. m|

Hence, the input-output properties of the reduced system in (6.5) depend only on the
column spans of V and U, that is, only on the choice of the projection subspaces S; and
S». The projection matrices are enforced to be bi-orthogonal, i.e., VU = I.

6.3. Krylov-Subspace Based MOR

Nowadays, moment matching using Krylov subspaces is one of the best choices in order
reduction of large scale systems and it was first proposed in [126]. In this approach, the
lower order model is obtained by matching the moments (and/or Markov parameters) of
the original and reduced-order systems where the moments are the coefficients of the
Taylor series expansion of the transfer function about a suitable expansion point. When
the expansion point tends to infinity, the coefficients are called Markov parameters. Well
established algorithms, such as Arnoldi [40, 36], Lanczos [40, 5] or two-sided Arnoldi
[91] can be used to compute a projection framework for the reduced-order system. A
very recent release of the Krylov subspaces based order reduction technique is global
Arnoldi [21], which approximates the large, sparse systems (specially MIMO systems)
to significantly small order. In Figure (6.3), the steps of reduction for moment matching
are shown.

6.3.1. Transfer Function Moments

Let us assume that system (6.1) is a MIMO system with transfer function as in (6.2). By
assuming that A is nonsingular, the Taylor series expansion of the transfer matrix (6.2)
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Original system

Reduced
system
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Krylov subspace(s)

Apply the
projection to the
original system

Apply numerical algorithm
to calculate the projection
matrix

Figure 6.3. The main steps of Krylov subspace methods.

about zero is,
H(s) = —-CA7'B-C(AT'E)A™'Bs —--- —C(A"'E))A™'Bs' — - - (6.9)
The coefficients of this series, without negative sign, are called moments.

Definition 6.3.1:
In system (6.1), suppose that A is nonsingular, then the i-th moment (about zero) of
this system is given by

m; = C(A"'E))A™'B, i=0,1,..., (6.10)

where m; is a g X p matrix in the MIMO case and a scalar m;, in the SISO case. o

Moments can be defined about different interpolation points o # 0 by rewriting the
transfer matrix with the shifted variable s — g, i.e.,

H(s) = Cl(s - 0)E — (A — 6E)]"'B = Z(s — o) m;, (6.11)
i=0

where
m; = C{(A —oE)'E}(A-6E)™'B, i=0,1,...,

assuming that A — oE is nonsingular. These moments are called shifted moments. In fact,
the moments of H(s) about ¢ are the moments of H(s + ¢) about zero and ¢ should not
be a generalized eigenvalue of the pair (E, A) [47].
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When ¢ — oo, a different series results from (6.2). In that case, we sets = 1/& in (6.2)
and expanding the Taylor series about & = 0. The series is then

H(s) = CET'Bs '+ C(E'A)E'Bs2+---+ C(E'AYE'Bs +---,

and its coefficients are called Markov parameters if E is nonsingular.

Definition 6.3.2:

In system (6.1), suppose that E is nonsingular, then the i-th Markov parameter is
defined as ‘
M; = C(E'AYE™'B, i=0,1,... (6.12)

In simple words, moments about zero reflect the behavior of a system at low frequencies,
while the Markov parameters reflect the behavior of a system at higher frequencies.

6.3.2. Krylov Subspaces and Moment Matching

The reduced-order model is computed applying suitable projections to system (6.1). We
will calculated these projections via Krylov subspaces, defined in the following;:

Definition 6.3.3:
The order m Krylov subspace is the space defined as

Km(A,b) = span{b, Ab, A%b, ......, A" b}, (6.13)

where A € R™ and b € R" is called the starting vector. The vectors
b, Ab, A?b, ......, A" 1b that construct the subspace, are called basic vectors. 0

It is assumed that the basic vectors in a Krylov subspace are linearly independent, that
means the i-th basic vector in the Krylov subspace (6.13) is a linear combination of the
previous i — 1 vectors. Those independent basic vectors form a basis of the Krylov
subspace. But it is also possible that all the basic vectors in a Krylov subspace are not
linearly independent. In that case the first independent basic vectors can be considered
as a basis of the Krylov subspace.

Definition 6.3.4:
The block Krylov subspace of order m is the space defined as

Km(A, B) = span{B, AB, A®B, ......, A" !B}, (6.14)

where A € R™" and B € R"™". The columns of B are the starting vectors. Note that
rank(X,,(A, B)) < p - m. ¢

The block Krylov subspace with p starting vectors can be considered as a union of p
Krylov subspaces defined for each starting vector.
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The following theorems demonstrate how to choose the projection matrices to find the
reduced-order system and explain details of matching the moments of the original and
reduced-order systems.

Theorem 6.3.1:
If the columns of the matrix U used in (6.8) form a basis for the order r, Krylov subspace
X, (A™'E, A7'B) and the matrix V is chosen such that A is nonsingular, then the first r,
moments (about zero) of the original and reduced-order systems match. o

Proof. See the proof of Theorem 5 in [90]. m|

The subspace X,,(A~'E, A"!B) is called input Krylov subspace and order reduction using
a bases of this subspace for projection is called one-sided Krylov subspace, where V is
chosen optionally so that A is nonsingular.

Remark 6.2:
The order r of the reduced-order system is the dimension of the Krylov subspace
which is at most p - 7, in the MIMO case. It can be less if there are dependent basic
vectors in X, (A'E, A7'B) and then only r, moments of the original and reduced-
order systems match. o

It is possible to match even more than r, moments by appropriate choice of V. For this,
we introduce another type of Krylov subspace, known as output Krylov subspace and use
it in the following theorem.

Theorem 6.3.2:
Ifthe columns of the matrix V form a basis for the order r, Krylov subspace X,,(A~TET, A=TCT)
and the matrix U is chosen such that A is nonsingular, then the first r, moments (about zero)
of the original and reduced-order order systems match. o

Proof. See [90] for the proof. |

The subspace K,,(A~TET, A=TCT) is called output Krylov subspace. Now combining The-
orems 6.3.1 and 6.3.2, we summarize in the following theorem.

Theorem 6.3.3:
Assumed that A and A are invertible. If the columns of the matrices U and V used in (6.8),
form bases for K, (A™'E, A7'B) and K,,(A"TET, A=ICT), respectively, then the reduced-
order transfer function H(s) = C(sE — A)™'B matches the first (r, + 1) moments of the
original transfer function H(s) = C(sE — A)™!B. O

Proof. See [90, 47] O
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Order reduction by using both input and output Krylov subspaces for projection is
called two-sided Krylov subspace method.

Remark 6.3:
In MIMO system with p inputs and g outputs, each moment is a matrix of p - g entries.
Therefore, we have multiple moments matching in MIMO case, and the number of
matching momentsisp-q- ’17 =g -rfor Theorem 6.3.1andp-q- (% + g) =(@q-r+p-7)
for Theorem 6.3.3. Hence, choosing only the first r columns of U and V, one can find
a reduced model of order r; because each column of U and V is responsible to match

one more row or column of the moment matrices (for details see [90]). o

The idea of moments matching (about zero) using Theorem 6.3.3 can be easily extended
to match the moments about different interpolation points o # 0 by substituting A by
A — oE in the definition of moments and Krylov subspaces. Before going into detail of
this shifted moment matching, we would like to discuss two more important properties
of Krylov subspaces.

6.3.3. Preconditioning and Shift-Invariance

Preconditioning is sometime essential to generate better projection subspaces (yield
faster convergence) without drastically complicating the construction of the Krylov
subspaces. In that case one solves the problem FAx = Fb, rather than solving the
problem Ax = b, where F € R is the preconditioner. If F exactly equals A7l then the
solution is x = Fb. In general, F is chosen such a way that the transformed system is
hopefully easier to solve (iteratively) compare to the original system.

Let us consider the transformations with preconditioner F such that the preconditioned
system is

ﬁ.j
i
==

=

|

F Ax(t) + F Bu(t),

Cx). (6.15)

<

—~
~~

N

Note that (6.1) and (6.15) both describe the same system and the generalized eigenvalues
of (FA,FE) and (A, E) are identical. Now consider the reduced-order model with this
new description, which is given by

WTF EU(t)
()

WTF AU#(t) + WTF Bu(t),

C Ux(), (6.16)

where the matrix U € R now satisfies

colspan{U(s)} = K,(F(A — sE), FB)
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and the matrix W € R satisfies

colspan{W(s)} = K,((A — sE)TFT, CT).

The reduced-order system described by (6.16) is different than (6.5), although (6.1) and
(6.15) describe the same original system. This happens because of the presence of the
preconditioned matrix F in (6.16) and the modifications of the projection matrices U and
W. If we chose V = FTW rather than (6.8), then the new reduced-order model in (6.16)
can be written in the desired form of (6.5) [47].

A special type of preconditioner, known as exact preconditioner, are generally used in
the frequency dependent problems. This is the exact inverse of the matrix pencil, F =
(A—0E)™, at a fixed interpolating point o (scalar). These exact preconditioners are very
important if rational interpolation is to be used for the projection matrices [47, 84, 114].
An important property of exact preconditioning is presented in Lemma 6.3.1.

Lemma 6.3.1:
[47] For any value of s and o,

(A-—0E) " (A—SE) =1+ (0 —s)(A—0E)'E.
0

In other words, applying an exact preconditioner F = (A — 0E)~! to the pencil (A — sE)
leads to the simpler transformed pencil which consists of a scaled matrix FE shifted by
the identity matrix. An important property of Krylov subspaces is its shift-invariance
property which says that shifting the original matrix pencil by an identity matrix does
not affect the original Krylov subspace.

Lemma 6.3.2 (Krylov subspace shift-invariance [47]):
For any matrix A, starting vectors B and nonzero scalar 1,

Kn(nA +1,B) = Kn(A, B)

Proof. The proof for the SISO case is given in the Appendix of [47]. The proof for the
MIMO case is analogous to that. |

Now using Lemmas 6.3.1 and 6.3.2, we can summarize that
Ky (A= 0E)™ (A = sE), (A - 0E)"'B) = X,, (A — 6E) ' E, (A — 6E)"'B) (6.17)
and

K (A —0E)T(A—-SsE)T, (A-oE)TC") = K, (A-0E)"TET, (A-6E)"TCT). (6.18)
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Hence, the preconditioned projection subspaces on the left sides of (6.17) and (6.18) are
equivalent to the frequency-independent subspace on the right sides of (6.17) and (6.18),
respectively.

The frequency-independent subspaces in (6.17) and (6.18) can be used to match the
shifted moments (about o # 0) of the original and reduced-order systems. We proceed
with two fundamental lemmas and later combine them in Theorem 6.3.5 to get our
desire result. The proofs for Lemmas 6.3.3 and 6.3.4 can be found in the Appendix of
[47].

Lemma 6.3.3:
IfX,, (A —0E)™'E, (A — 6E)™'B) C colspan {U}, then

{(A=0E)'E)\ (A-0E)'B=U{(A - 0E)'E}\ (A -0E)'B

fori=20,1,...,7, — 1. Here E, A, B are the matrices of the corresponding reduced-order
system. ¢

Lemma 6.3.4:
If X, (A—0E)™TET, (A - 6E)"ICT) C colspan {V'}, then

C(A-0E)™ME(A-oE) Y} = C(A - 6E) " HE(A - gE)7YY
fori=0,1,...,r, -1 ¢

Combining Lemmas 6.3.3 and 6.3.4 leads to the following lemma. The proof can be
found in [47].

Lemma 6.3.5:
IfX,, (A-0E)" E, (A=0E)™'B) C colspan {U}, and K,, (A—cE)"TET, (A-oE)ICT) C
colspan {V'}, then the first (r, + r,) moments (about o # 0) of the original and reduced-order
systems match. o

Matching moments about multiple interpolation points requires multiple Krylov sub-
spaces. Treating these points concurrently and constructing these multiple subspaces
may give rise to complications, but these difficulties can be avoided through a proper
computational approach. The following theorem connects projection via Krylov sub-
spaces and the matching of moments at points 01,0, ..., 07 # .

Theorem 6.3.4:
[47]If

k
| ) % (A - 0B E, (A= 0xE)'B) € colspan (U1}, (6.19)
k=1
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and

k
g Ky (A= E) TET, (A = 0xE)CT) € colspan {V), (6.20)
k=1

then the moments of the original and reduced-order models satisfy

C{(A — 0xE) ™ E}* (A — 6xE)"'B = C{(A — 0xE) ' E}* (A — o E)'B, (6.21)

forik:0,1,...,(r’;+rll§)—1andk:1,2,...,7(. o

Proof. For the proof, see [47]. O
Remark 6.4:

One important point in MIMO problem it is not necessary that the same number of
moments match for Krylov subspaces generated for different interpolation points oy
in (6.21). ¢

6.3.4. Computational Aspects for Krylov Subspaces

In most application related models, choosing a suitable basis for the concerned Krylov
subspace is the most crucial task, since it guarantees the better approximation of the
reduced-order model. In one-sided methods, the most popular algorithm is the Arnoldi
algorithm which finds an orthonormal basis for a Krylov subspace [5, 41, 92].

The classical Arnoldi method [5, 41] finds a set of orthonormal vectors that can be
considered as a basis for a given Krylov subspace with one starting vector. The gen-
eralization of this method for more than one starting vector is known as block Arnoldi
method. In the following, we briefly describe a version of the Arnoldi algorithm [92]
for more than one starting vector B = [by,- -+, by], in which the resulting matrix of basis
vectors is orthonormal.
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Algorithm 6.1 Arnoldi algorithm with deflation using modified Gram-Schmidt [92]
Input: A, B =[by,---,by]
Output: Orthonormal basis U, block Hessenberg matrix H
1: Delete all linearly dependent starting vectors to find p; independent starting vectors
for the Krylov subspace.
2: Set

b

N

where b is the first starting vector after deleting the dependent starting vectors.
3: forj=23,...,do

u =

4:  if j < p; then

5 ri= b]‘

6: else

7 1= Ay

8: endif

9: setilj=r;j

10: fori=1toj—-1do
11: hi,j—l = fl? Uu;

12: Ifl]' = ﬁ]‘ - ]’li,]'_1 u;

13:  end for
14 if 1; = 0 then

15: setp; «p1—1
16: if p; # 0 then
17: go to step 3
18: else
19: break
20: end if
21:  elseif il; # 0 then
22: hjj-1 =114l

ll]'
23: Ll]‘ = m
24:  end if
25:  increase j and go to step 3
26: end for

Consider the Krylov subspace X, (A, B) with p starting vectors. The algorithm finds a
set of vectors with length one that are orthogonal to each other, UT U = I, where the
columns of the matrix U are the basis for the given Krylov subspace. The specialization
of Algorithm 6.1 is that it can be used for SISO systems as well as MIMO systems, too.
More details about this algorithm and about the construction of orthonormal basis can
be found in [92].
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Remark 6.5:
In Algorithm 6.1, in each step one more vector orthogonal to all other previous
vectors is constructed and then it is normalized to have length one. In a general case,
when dimension r of X, (A, B) is not small enough, it can happen that not all of the
basic vectors are linearly independent. Then, linearly dependent vectors must be
deleted during the iterations (=deflation). In Algorithm 6.1, Step 14 occurs in case of
deflation. o

Other suitable methods for generating reduced-order models using Krylov subspaces
are the two-sided Arnoldi method and the Lanczos method, where the methods find two
bases for the input and output Krylov subspaces. The two-sided Arnoldi method [41,
47,92] uses Algorithm 6.1 twice, first for the calculation of a basis U of the input Krylov
subspace, then for the calculation of a basis V for the output Krylov subspace and then
reduces the model using (6.8). Lanczos methods are also very popular when using
two-sided methods for the reduced-order model [5, 41]. It finds two bases for input and
output Krylov subspaces that are orthogonal to each other.

In the general case, specially for MIMO systems, when r is not small enough, it can
happen that with repetitive multiplications by a fixed matrix, it is no longer possible in
finite precision to introduce additional new information into the reduced-order model.
This loss of information due to repetitive multiplications manifests itself through ill-
conditioned Hankel matrices in the explicit moment matching equations. The same
situation may arise in case of multipoint rational interpolations of X (A —oxE) ™1 E, (A —
oxE)™!B) using Theorem 6.3.4 for k = 0,1,...,k. For example, forming u,, by simply
multiplying u,,—1 by (A — 0xE)~! E will quickly make the columns of U linear dependent
in finite precision. In that case one may experience rank deficiency in the computed U
or V. Itis seen in [47] that one really has no need to form U of size n to find a minimal
realization of system (6.1). In the context of the Lanczos method, a loss of rank in U or
V is termed immediate breakdown [5]. There are multiple sources for rank-deficient U
or V discussed in [47].

6.3.5. Stability and Passibity

Recall from the discussion in Chapter 3 that, for singular E, stability of the continuous-
time descriptor system (6.1) can be characterized in terms of the finite eigenvalues of
the matrix pencil AE — A. More precisely we have the following theorem.

Theorem 6.3.5:
The continuous-time descriptor system (6.1) is stable if and only if, the following two condi-
tions are satisfied:
(i) All finite eigenvalues A of the pencil AE — A satisfy Re(A) < 0.
(ii) All finite eigenvalues A of AE — A with Re(A) = 0 are simple. o
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In view of Theorem 6.3.5, stability of system (6.1) is characterized by the finite eigen-
values of the pencil AE — A, and the infinite eigenvalues of AE — A have no effect on
stability. These infinite eigenvalues of AE — A result only in impulsive motions, which
tend to zero when t — co. In using Krylov Krylov methods to reduce the order of a
stable models, there is no general guarantee to find a stable reduced-order model except
under some special conditions [6, 7] .

An important property to be preserved in order reduction is passivity of the original
system. In general speaking, a system is passive if it does not generate energy. For
descriptor systems as in (6.1) with identical numbers of inputs and outputs (i.e., p = g),
passivity is characterized by the positive realness of the transfer function H(s).

Definition 6.3.5:
A square (p = g) transfer matrix H(s) : C — (CP** U o0) is positive real if
(i) H(s) has no polesin C*.
(il) H(s*) = (H(s))* for all s € C.
(iii) Re(w"H(s)w) > 0 for all s € C with Re(s) > 0 and w € C”. o

The following theorem establishes that the descriptor system (6.1) can be stable and
passive in some restricted cases.

Theorem 6.3.6:
[92] In the system (6.1), if A+ AT < 0 and E = ET > 0, then the reduced-order system

(6.5) using a one-sided method with the choice V = U, is stable and furthermore, the transfer
matrix H(s) = BTU(sUTEU — UTAU)~'U"B is positive real. o

Proof. See [40] for the proof. O

Hence we can conclude that for certain passive (stable) systems, one-sided Krylov
subspace methods can be used to find passive (stable) reduced-order models.

6.4. Balanced Truncation MOR

A popular model reduction technique for linear state space system is the BT approach
where the original state space system is transformed into a balanced form whose reacha-
bility and observability Gramians become diagonal and equal. The balanced truncation
method truncates all those states of the balanced system that are both difficult to reach
and to observe. An important property of this method is that asymptotic stability is
preserved in the reduced order system and an a priori error bound can be computed.
In the following subsections we will briefly review some important concepts of the
balanced truncation model reduction technique which are applicable for linear discrete-
time singular systems. A similar description can be found in [75, 106, 108] for linear
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continuous-time descriptor systems.

6.4.1. Basics of Balanced Truncation

We consider again the linear discrete-time descriptor system of order n, with p inputs
and g outputs, in generalized state space form (with nonsingular E) as described by
Equation (6.3) and its transfer function described by Equation (6.4). We will assume
that system (6.3) is d-stable.

Definition 6.4.1:
A transfer function H(z) ad described in (6.4) proper if lim H(z) < oo, and improper,
Z—00
otherwise. If lim H(z) = 0, then H(z) is said to be strictly proper. ¢
Z—>00

The main idea of balanced truncation model reduction is to rewrite the system (6.4) using
a system equivalence transformation T called balancing transformation. Such a balanced
transformation is defined by the property that both the reachability and observability
Gramians of system (6.4) are diagonal and equal. In this coordinate system one has

TG.TT = TTG,T™ = * = diag(o1,02,...,0),

where 01 > 0;...0, > 0, the o; are the Hankel singular values of (6.3) and G, and G,
are the reachability and observability Gramians of (6.3), respectively. Note that these
Gramians are given by the solutions of the two dual Stein equations

AG.AT - EG.ET = -BBT, ATG,A-ETG,E=-C'C.

A natural question now arises: why are balanced state space representations so interest-
ing? We will answer this question from [129] by assuming system (6.3) in its standard
state space representation (i.e., assume E = ]) in order to make the understanding more
easier. Then the reachability and observability Gramians associated with the system
L(A, B, C) can be represented as

Ge = kZ_O‘AkBBT(AT)k, Gy 1= ;;(AT)"CTC(A)I‘,

respectively. Let us have alook at the interpretation of the reachability and observability
Gramians. The system X(A, B, C) with input u = 0 and initial state x(0) = xo produces as
its output the trajectory y; = CAFxq for k > 0. The IL, norm of this output is given by

I = )" 2 (AT)CTCAkxy = 2] Gyxo (6.22)

k=0
and it represents the observation energy of the state xo. Hence, the observability Gramian
measures the effect of initial states on the output of the system when the input u = 0. If
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G, is nearly singular, then there exist states which have low observation energy in the
sense that ||y|]> will be small.

We can give an interpretation of the reachability Gramian by considering the minimal
energy control problem given by

-1

JGn) = Y uu, (6.23)

k=—0c0

where one needs to compute the minimum cost J subject to the constraint that the
control u can steer the state x to xo at sampling time k = 0. Therefore, such a minimal
energy control problem and the minimal cost relate only with state equation

Xpp1 = Axp + Buy
at sampling times k < 0. The minimum norm solution to this problem is given by
P = BTAN) G, k<0,

and the resulting cost
J(u°PY) = x{ G xq. (6.24)

Hence, we can see that the inverse reachability Gramian reflects the minimal cost to
reach a state xo by applying suitable (past) input signals. If G, is nearly singular then
there exist states xo that are difficult to reach as the minimal control energy needed to
reach these states may become large.

We now investigate both the issues for a balanced system. Now suppose that the system
is balanced. In that case we have

Gc = G, = X = diag(o1,02,...,04)

withoy > 07... > 0, > 0. Then the minimal energy cost to reach the i-th state component

x0=¢=1[0...10...0]

(with the 1 at the i-th position) is given by the number
el.TGc_lei = eiTZ‘lei = ai_l. (6.25)

The corresponding output energy for this i-th state is given by

Iyll5 = ] Goe:i = €] Ze; = 0. (6.26)
Since the Hankel singular values for a balanced system appear in descending order, we

notice that state components with low indices (like 1, e, etc.) are easy to observe (in the
sense that the output energy is large) and at the same time easy to reach (in the sense
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that the minimal energy to reach these states is small). Similarly, state components with
high indices (like e, e,—1, etc.) are difficult to observe (in the sense that the observation
energy is small) and at the same time difficult to reach (in the sense that the minimal cost
to reach these states is large).

Therefore, in a balanced state space representation the following relations are followed

T -1 T -1 T -1
e;Gler e, Gl <. < e,G ey,
T T T (6.27)
e;Goer 2 e,Goer = ... 2 e, Goey.

In general speaking, in a balanced state space representation, the states that are easy
to reach are also easy to observe, and states that are difficult to reach are also difficult
to observe. In this sense reachability and observability properties are balanced in a
balanced state space representation.

We would like to discuss one more interesting fact from [28] regarding the balanced
realization and its balanced state truncation. Let us consider system (6.3) as in gen-
eralized descriptor form and assume that it is balanced, i.e., G, and G, are equal and
diagonalized. Consider now the energy functions described by the Gramians G, and
G, associated with system (6.3). As we know from previous considerations, the reach-
ability and observability Gramians measure to what degree each state is excited by an
input, and each state excites future outputs, respectively. For a given stable system (6.3),
the energy functions for any state x can be described as [28]

Ac) = (TG 1x)2,  Ao(x) = ((TGo¥)3, (6.28)

where A.(x) is the smallest amount of energy needed to steer the system from 0 to x,
and A,(x) is the largest amount of energy obtained by observing the output of the free
system with the initial condition x. If we define the energy storage efficiency at state xo
(xo is the state at time t = 0) by

X} Goxo

Alxp) = (6.29)

To—1,."
x, GZ X0

then the maximization of A(xp) with respect to x¢ results the generalized eigenproblem
Goxo = G; " A(xo)xo,

or, more simply,
GCGOJCQ = A(XQ)X().

Hence, A(xp) takes an extremum value for xj at an eigenvector of G.G, (or, equivalently
a generalized eigenvector of the pair (G,, G-!)). Therefore, the extremum value of A(xg)
corresponds to the maximal eigenvalue of the product G.G,, and hence the square root
of the largest Hankel singular value o1 of the considered system.
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Figure 6.4. The effect of a balancing transformation T on the reachability and observ-
ability ellipSOidS. image source:[28]

It is shown in [76] that for non-minimal systems the reachable subspace and the unob-
servable subspace are the image and the kernel of G, and G,, respectively. The balancing
transformation T transforms the observability and reachability ellipsoids to an identical
ellipsoid aligned with principal axes along the coordinate axes as shown in Figure 6.4.

After balancing the system, a reduced-order model is obtained by truncating the least
reachable and observable states, corresponding to the smallest Hankel singular values
and having little effect on the input/output behavior. Hence, for a reduced-order model
the original state x = (xy,..., xn)T is reduced to ¥ = (x4, ... ,xr)T , where r < n.

We summarize the procedure of balanced truncation in Algorithm 6.2.

Remark 6.6:
Note that E = I, and needs not be computed. The balancing transformation matrices
for the generalized discrete-time systems (6.3) are not unique [106, 111]. o

6.4.2. Balanced Truncation for Singular Systems

Balanced truncation model reduction for singular systems (i.e., E is singular in (6.3) are
more involved than the order reduction approach explained in Algorithm 6.2. In that
case we use the spectral decomposition technique which reduces the original system
into two subsystems: the forward subsystem and the backward subsystem. Very basics
of this spectral decomposition technique can be found in Chapter 3 of this thesis and
also in [9, 107]. Computing the reduced-order system for the stable system (6.3) can be
interpreted as performing a system equivalence transformation (W, T) such that

A - 2E; - A 0 B
WEE-AT | WB | | =/ 7 - /
T = 0  zEw—As | Bw |, (6.30)
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Algorithm 6.2 Balanced truncation for discrete-time system

Input: X(E, A, B,C) realization of the original system of order n such that zE — A is
stable and a reduced-order r.

Output: X(E, A, B, C) reduced-order system realization.

1: Solve the Stein equations
AG.A" - EG.E" =-BB", A'G,A-E'G,E=-C'C.

for R and L, where G. = RRT and G, = LL” are full rank factorizations.
2: Compute the SVD

LTER = UxVvT = [Uy, Us] [201 ZO ] [Vy, Vo,
2

where the matrices [U7, Uy] and [V, V] have orthonormal columns,
X1 = diag(oy,...,0r), Xo=diag(or41,...,00).

3: Compute the projection matrices

1 -
W, =LUiZ,?, Tgr=RViZ”.

S

4: Compute the reduced-order model

(E,A,B,C) = (W ETr, W[ ATg, W] B, CTy).

where the pencil zE; — Ay contains only those eigenvalues of zE — A which lie inside
the unit circle, all eigenvalues of zE., — A are infinite, and the matrices WB and CT are
partitioned in blocks conformally to the matrix pencil zE — A. Then we reduce the order
of the forward subsystem X(Ef, As, Bf, Cs) and the backward subsystem E(Ec, Aco, Boo, Coo)
separately. The Gramians that correspond to the forward subsystems are called causal
Gramians and those that corresponds to the backward subsystem are called noncausal
Gramians.

The decoupling of the system matrices described above is equivalent to the additive
decomposition of the transfer function as H(z) = Hs(z) + P(z), where

Hy(z) = C(zEf = Af)'By, and P(2) = Coo(zEco — Aco) 'Beo

are the strictly proper part and the polynomial part of H(z), respectively. The Hankel
singular values corresponding to the strictly proper part Hgy,(z) are called causal Hankel
singular values and Hankel singular values that correspond to the improper part P(z) are
called noncausal Hankel singular values of system (6.3).
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Then the transfer function of the reduced-order system (6.6) has the form H(z) = I:Isp (z)+
P(z), where

Hy(z) = Cf(zEf = Ap)'Bf and P(z) = Coo(zEw — Aco) ' Bo.

A short overview of the order reduction procedure for singular systems can be repre-
sented as follows: we first balance both the forward and backward subsystems using
similar type algorithm as Algorithm 6.2 and then truncate the balanced proper part to
get the reduced-order forward subsystem. Unfortunately, we can not do the same for
the backward subsystem. The equations associated with the noncausal Hankel singu-
lar values describe constraints of the system, i.e., they define a manifold in which the
solution dynamics takes place. If we truncate the states that correspond to the small
non-zero noncausal Hankel singular values, then the pencil for the reduced-order sys-
tem may get finite eigenvalues outside the unit circle which will lead to additional errors
in the system approximation. Hence, P(z) is not the reduced part of P(z) but balanced.

Last of all we combine the reduced forward subsystem with the unreduced but balanced
backward subsystem. The order of the reduced system is the sum of the order of the
forward reduced system and of the order of the balanced backward subsystem. Some
suitable numerical algorithms for balanced truncation of singular systems using the
above concept can be found in [15, 75, 109, 108] for the continuous-time case.

It is shown in [103, 107] that the causal and noncausal Gramians of the discrete-time
descriptor system (6.3) satisfy some projected generalized discrete-time Lyapunov equa-
tions with special right-hand side.

Theorem 6.4.1:
[103] Consider the discrete-time descriptor system (6.3), where the pencil AE — A is d-stable.
(1) The causal and noncausal reachability Gramians G¢, and Gy, are the unique symmetric,
positive semidefinite solutions of the projected generalized discrete-time Lyapunov equations

AG,AT —EG,ET = -P,BBTPI,
(6.31)
Go = PchrPI/
and
AGuAT —EG,uET = (I-P)BBT(I-P)T,
(6.32)
Guer = (I - Pr)Gncr(I - Pr)T/
respectively.

(2) The causal and noncausal observability Gramians G, and Gy, are the unique symmetric,
positive semidefinite solutions of the projected generalized discrete-time Lyapunov equations

ATG,A — ETG,E -PICTcp,,
(6.33)

Gco = PlTGcoPl/
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and
ATGncoA - ETGncoE = (I - Pr)TCTC(I - Pr),
T (6.34)
Gueo = (I - Pl) Gnco(I - Pl)/
respectively. O
Proof. See [103, 105]. O
Remark 6.7:
Note that G; = G4 + Guer and G, = Gg + Gyeo for the complete reachability and
observability Gramians. o

Solving these projected Lyapunov equations mentioned in Theorem 6.4.1 is also a
challenging and tricky job. Two well known methods, the Bartels-Stewart method and
Hammarling’s method for solving these PGDLEs have been discussed in [103]. The
causal and noncausal Gramians are now used to define Hankel singular values for the
descriptor system (6.3) that are of great importance in model reduction via balanced
truncation.

It has been shown in [107] that all the eigenvalues of the matrices GoETG,E and
GuerATG oA are real and non-negative. The square roots of the largest n 7 eigenvalues
of the matrix G,ELG,E, denoted by o;, are called causal Hankel singular values of the
discrete-time descriptor system (6.3). The square roots of the largest 1., eigenvalues of
the matrix G, AT Ge0A, denoted by 0, are called noncausal Hankel singular values of the
discrete-time descriptor system (6.3).

For symmetric and positive semidefinite Gramians we also have the full rank Cholesky
factorizations
Gor = RCRE/ Geo = LCLZ/

6.35
GVlC?’ = RZ'R;'T/ GHCO = LZ'L;'T/ ( )

where the lower triangular matrices R,, L, R;, L; are the Cholesky factors of the Grami-
ans. In this case the causal Hankel singular values can be computed as the 1 largest
singular values of the matrix LI ER., and the noncausal Hankel singular values can be
computed as the 1. largest singular values of the matrix LZ.TARi, see [107]. In that case,
we define a balanced realization of the discrete-time descriptor system (6.3).

Definition 6.4.2:

Arealization X(E, A, B, C) of the discrete-time descriptor system (6.3) is called balanced
if

2 0 0 0
Gcr = Gco = [0 0] ’ Gncr = Gnco = [0 ®]

where X = diag(oy, ... ,an/) and © = diag(01,...,0,,). o
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For a minimal realization X(E, A, B, C) with d-stable pencil zE — A, we can find nonsingu-
lar W and TR such that the transformed realization E(WLTETR, WLTATR, WLTB, CTgR) is
balanced. Note that we do not need to transform the descriptor system into a balanced
form explicitly in order to perform order reduction. It is sufficient to determine the
subspaces associated with the dominant causal and non-zero noncausal Hankel singu-
lar values and project the descriptor system onto these subspaces. We summarize the
whole order reduction process in Algorithm 6.3.

Remark 6.8:
(i) The order of the reduced-order model computed using Algorithm 6.3 is 7 = 7f + /.

(ii) Since we do not truncate any non-zero noncausal Hankel singular value, the
equality P(z) = P(z) holds. The reduced-order system computed using Algorithm 6.3
is minimal and the pencil zE — A is d-stable. o

6.4.3. Stability and Approximation Error

One advantageous characteristic of balanced truncation order reduction techniques as
compared to the moment matching techniques is that it preserves the stability of the
original model and an a-priori error bound for the reduced-order system can be easily
chosen. One can easily show that the reduced-order system computed by this method is
asymptotically stable, minimal and balanced [75, 108]. Moreover, several error norms
for the reduced system can be defined [107, 118, 28].

The He-norm of the transfer function H(z) € Ho, is defined by [107]

IHllE, = sup oma(H(E?) = sup [[H(E®)ll.
wel0,27] wel0,2m]
Then, the a-priori error bound can be given for the error between the original and the
reduced-order system:

IH - Al = sup [IHE®) - HE)ll < 2trace(L,), (6.36)
wel0,2m]

where ||.|[ denotes the spectral norm of matrices and X contains the truncated causal
Hankel singular values. We can also define a computable upper bound of the error
system by computing the IH, norm. For the IH, norm we use the following formula:

||H||]IZ{2 = trace(BT G,B) = trace(CG.CT),

where G, and G, are respectively the reachability and observability Gramians of the
system. To compute the H, norm of the error system, one needs to solve again another
Lyapunov equation for one Gramian of this error system which leads computational
cost of order (1 + r)®. One suitable and efficient method which only needs the Gramian
of the original method has been proposed in [1]. Several representations for the IH,
norm of the error system using this proposed method are derived in [28].
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Algorithm 6.3 Balanced truncation for discrete-time descriptor (singular) systems

Input: X(E, A, B,C) realization of the original system of order n such that zE — A is
d-stable and a reduced-order r.
Output: Z(E", A, B, C) reduced-order system realization.

1: Solve (6.31) and (6.32) for G, and Gy, respectively.
2: Solve (6.33) and (6.34) for G, and Gy, respectively.
3: Compute the Cholesky factors R. and R; for the reachability Gramians

Ge =R.RR!, Gue=RR.

4: Compute the Cholesky factors L. and L; for the observability Gramians
Geo = L.LY, Gueo=LL].

5: Compute the skinny SVD

LTER, = UZVT = [Uy, U] [751 ;2] [V1, VoI,

where the matrices [U7, U,] and [V, V»] have orthonormal columns,
1= diag(al,...,arf), Yo = diag(arﬂ,...,anf)

withny = rank(LTER,).
6: Compute the skinny SVD
LTAR; = U0V}
where U3 and V3 have orthonormal columns, ® = diag(0y,...,0,,) with l, =
rank(LiTARi).
7: Compute the projection matrices

-1 _1
Wi = [LUL X, 7, Liu3®_%] Tr = [R.V1E,?, R‘V3®‘%],
8: Compute the reduced-order model

(E,A,B,C) = (W ETg, W[ AT, W] B, CTy).

6.5. Discussion

Krylov subspace-based order reduction techniques are suitable for model reduction for
large scale linear dynamical systems, especially those that arise in the simulation of
electric circuits and of micro-electro-mechanical systems. Although Krylov subspace
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methods seem to be superior to balanced truncation in numerical efficiency with cheaper
computational costs, but the stability of the original system may be lost and there is no
general error bound similar to balanced truncation except under some special conditions
[6, 71.

On the other hand, the most prominent characteristics of balanced truncation approach
are: first, for a reasonable small or medium order system (say a few hundred), it gives
a satisfactory approximation; second, this approximation can be obtained at relatively
reasonable computational cost; and thirdly, an a-priori upper bound for the error be-
tween the original and reduced-order systems exists for the He-norm. Stability of the
original system is preserved in the reduced system almost in all cases.

But the drawbacks of the BT approach are that it requires (in most cases) to solve the
matrix equation (well known as Lyapunov equations or Stein equations) which seems
to have computational complexity of huge order when the order of the system is very
high, i.e., n > O(10%). Also for singular systems, reduction to stable and unstable modes
of the original system takes numerous efforts. But there are several iterative techniques
available (See Chapter 9 of this thesis, and also in [67, 13, 70, 82, 49, 110, 10] for more
details) which approximate the solutions of those matrix equations with a prescribed
tolerance.
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Krylov subspace projection method is one of the best choices for model reduction of time-
varying systems in the field of signal analysis and electrical interconnections. Balanced
truncation methods [76, 93] can also be applied, but there is some doubt about the
effective implementation of these techniques. Therefore, a lot of work has been devoted
to developing the techniques of model reduction using rational approximations and the
projection formulations [88, 47, 41].

In this chapter we focus on the problems that result from the linearization of nonlinear
circuit problems and the resulting models are periodically linear time-varying. Our
implementations and application examples also focus on these systems. In Section 7.1,
we discuss the LTV signal analysis for a small response and discuss the frequency-
domain matrix formulation of the system which gives the concept for the model reduction
procedure. In Section 7.2, we choose a projection framework using a finite discretization
method, known as time-domain matrix formulation of the LPTV systems. This section
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also discusses an approximation scheme using Krylov subspaces to approximate the
appropriate subspaces and discuss how to compute them more efficiently. We also
show that the model based on approximate multipoint Krylov subspace methods can
be efficiently achieved from the approximated subspace. Then in Section 7.3, we discuss
our proposed model order reduction procedure in detail. In the last section we give
numerical examples of the proposed model reduction technique. We generalize the
method from [84] to differential-algebraic equations.

7.1. Background

Let us recall the linear time-invariant MIMO system in differential-algebraic form

E(t)x(t)
y(b)

A(t)x(t) + B(t)u(t),

C(tyx(t), 1)

where x(t) € R” contains the descriptor variables, u(t) € R? (p < n), is the system input,
y(t) € R7 is the system output, n is the system order, and p and g are the numbers
of system inputs and outputs, respectively. E(t), A(t), B(t), C(t) are matrices of order
compatible with x(t), u(t), and y(t) and assumed to be continuous functions of time. All
the above matrices are periodic with a period T > 0 and the matrices E(t) are allowed to
be singular. For SISO systems, p, g=1, the matrices B and C change to vectors b and ¢,
respectively.

Simply speaking, we can consider obtaining a reduced-order system in similar form by
applying a projection operation with matrices V and U just as in LTI case

Emit) = AWM+ Btu(®),
yt) = CHx(®), (7.2)
where ) ]
Et) = VIMEMU®), A®) = VI(HADUC), -

B(t) = VT®)B(@), C(t) = C(t) U(b).

Similar to the LTI case, the dimension r of the reduced-order system is smaller than
the original system (7.1). Hence, the reduced-order system requires lower computation
cost and suitable for higher level simulation.

In integrated circuit applications, the most common basis for generating reduced-order
LPTV macromodels is mainly based on the concept of time-varying system (TVS) func-
tion [133, 78], denoted by h(s, t). In circuit applications, k(s, t) is time-varying and peri-
odical in t, and hence classical steady-state approaches can be involved to compute the
compact transient representation of the system. Two well known approaches based on
frequency- and time-domain formulations are mainly used for such transformations; the
frequency-domain approach uses the idea of the harmonic balance (HB) [58, 42, 87], and
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the time-domain formulation uses a collocation-based finite-differences (FD) method
[84,87,78]. A reduced-order LPTV macromodels is then carried out by a reduced-order
approximation of h(s, t) via appropriate Krylov-subspace approximation techniques.

We have already shown in Chapter 2 that in the field of integrated circuits, the model
LPTV systems in the time-domain are typically carried out using the MNA approach
which casts the linearized LTV systems into the familiar forms

Gt + %(C(t)v) = Bu(t), (7.4)

for a small signal v, where u(t) represents the input signal, G(t) and C(t) are the time-
varying conductance and capacitance matrices, respectively. The output, y(t), of the
LPTV system can be an arbitrary node voltage and can be written as

y(t) = C(t)o(t), (7.5)

where C(t) contains the vectors that link the set of variables to the output nodes. To
relate to the standard notation as in (7.1), we may make the identification E(t) = C(t),

A() = —(G(t) + C(t)).

Most of the work in model reduction for LPTV macromodels using LTI framework
has been done on the basis of rational approximations of the time-varying transfer
functions, which were introduced by L. Zadeh [133] to describe the response of LTV
systems. According to Zadeh'’s formalism, the transfer path from the input u(t) to the
output y(t) can be described by the TVS function h(s, t) [133, 84], where the response of
the system due to an input of the form

u(t) = e, (7.6)

is given by
o(t) = e h(s, t). (7.7)

Substituting (7.6) and (7.7) into (7.4), we get an equation for h(s, t) as
G(t)h(s,t) + %(C(t)h(s, t)) + sC(t)h(s, t) = B(t). (7.8)

Hence, the transfer path of the system from the input u(t) to the output y(t) can be
represented by the time-varying transfer function @(s, t) where,

(s, t) = C(Hh(s, t). (7.9)

It is clear from (7.9) that a full characterization of the system transfer functions can be
obtained by solving (7.4) with substitution of s by j2rf, and solving the corresponding
LPTV system. This process is repeated for all possible frequency values f of interest.
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In the frequency-domain representation, all the time varying coefficient matrices in (7.8)

are represented in Fourier series as

Cit) = Zz_mciejia)otl

Gty = L2, Gielo,
hs,t) = L o Hi(s)el™".

Substituting (7.10) into (7.8) we get the following system of equations

[sCrp + (Grp + QCrp)]Hrp(S) = Brp,

where
i Gy Cy Cpy e i Gy Gy Gy -
Cp = |- G G Caq |, Gm=| G G G -,
. Gy G Cp - i Gy Gy Gy -

Q = jwodiagl---,-2I,—1,0,1,2L,---], Hrp(s) =[---,H_1(s), Ho(s), Hi(s), - -

Bpp = [---,0,B7,0,---]".

Now defining
Krp = Grp + QCpp,

Equation (7.11) can be written as

[sCrp + KrplHFD(S) = Brp,

(7.10)

(7.11)

1",

(7.12)

(7.13)

(7.14)

where Krp and Crp both work as continuous operators. Representation (7.11), or
equivalently (7.14) is known as the frequency-domain matrix form of the LTV transfer
functions. However, it is also possible to get the above expression from the finite-

difference formulations [85, 87] in the limit as the time step goes to zero.

Remark 7.1:

The time-varying transfer function @(s, t) can be represented in the Fourier expansion

[87] as
D(s, t) = Z Hi(s) efieot,

i=—o00

(7.15)

Equation (7.15) implies that any LPTV system can be decomposed into LTI systems
followed by simple multiplications with e//“°!. The quantities H;(s) are called baseband-

referred transfer functions.

o
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7.2. Model Reduction for LTV Systems

Model reduction of LPTV systems has been proposed in [84, 57, 77] by analyzing the
transfer characteristics of such systems efficiently. The key task of generating small LTV
macromodels is essentially that of constructing reduced-order approximation for @(s, t).

We assume that the time-varying transfer functions @(s, t) considered here are ratio-
nal functions. Therefore, from (7.9) we can notice that k(s, t) are also rational. Hence,
the reduced-order model will be obtained from the same sorts of rational approxima-
tions that have been suitable for reduction of LTI systems. Therefore, we first find an
equivalent LTI representation of the time-varying transfer functions in terms of finite-
dimensional matrices.

7.2.1. Discretization of Transfer Function

The rational matrix function can be obtained by discretizing the operators Krp and Crp.
Since, we focus our work to LPTV systems, we need to specify C(t) and B(t) over a
fundamental period, T. We construct a time-domain version of the equation in (7.14)
by collocating h(s, t) over time samples t € [0, T] at M sample time points ty, ..., tpr, with
periodicity tp = T.

Using linear multistep formula (e.g., backward Euler [114, 113]) and considering the
periodicity of h(s,t), i.e., h(s,t) = h(s, tpm), we get the representation of (7.8) in terms of
finite-dimensional matrices

(sErp — Arp)H(s) = Brp, (7.16)
with
Arp = —(Grp + AErp), (7.17)
>61 _ C1 _
GZ Cz
Grp = . , Erp= . p (7.18)
GM CM
1 _1
A A1
17 iy
A= | 82 B , (7.19)
“al ol
T
HE) = [h{©), K6), .. hL6)] (7.20)
Brp = [B], By, ... ,Byl", (7.21)
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where G]- = G(t]-), C]- = C_f(t]-), B; = B(tj), hj(s) = h(s, tj), and 4A; is the jth time step.

Setting additionally
Crp =[C1Cy...Cul7, (7.22)

where C; = C(t;), the matrix of baseband-referred transfer functions Hrp(s) is given by

Hrp(s) = CrpH(s) = Crp(s Erp — Arp) ™ 'Brp. (7.23)

Equation (7.23) is called time-domain matrix form of of the LTV transfer functions. The
discretization procedure has converted the n dimensional time-varying system of (7.14)
to an equivalent LTI system of dimension N = nM, which is larger by a factor equal to
the number of time steps M in the discretization. Equation (7.23) can be used directly
for reduced-order modelling. At that point algorithmic approaches that can be used for
the model reduction of LTI systems, can be applied to matrices defined in (7.17)-(7.23).

7.2.2. Approximation by Krylov Subspace Methods

Following the work in [114], the transfer function for a small-signal steady-state re-
sponse of the periodic time-varying system is obtained by solving the finite-difference equa-
tions

G~ c _
a T —% a2 et B(s, t1)
G G A . 7
n mte o)) | B ) | (7.24)
Cu1  Cum, A o(t B ,'t
~Ga Gy Gy o(tm) (s, tm)

where a(s) = =T, T is the fundamental period, and B(s, t) = ¢*B. The transfer function
h(s, t) is then given by h(s, t) = e~S'd(2).

Although (7.24) can be solved using sparse matrix techniques, but we look for a more
efficient approach which exploits the fact that the matrix is mostly block lower triangular
and is typically solved for the shift of frequencies. To describe this approach, we first
find a suitable representation of (7.24) in the time-domain matrix form.

For this purpose, we decompose the coefficient matrix of (7.17) into two triangular parts,
Arp = L + U, where L be the nonsingular lower triangular portion and U is the upper
triangular portion of Arp in (7.17), i.e.,

% + G1
C_l C_z ~
-1 =24G
L=| = =7 , (7.25)
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and e
0 .. 0 -Su

u=0 - 0 0 (7.26)
0 ... 0 0

Using the expressions for L and U, we can represent (7.24) in the time-domain matrix
form
(L + a(s)U)d = B(s). (7.27)

If we define a small-signal modulation operator 1(s),

Iest]

0 etz
P(s) = o (7.28)

O. Iestm
then we obtain an expression of the transfer function as follows,
H(s) = ¢ (s)d(s) (7.29)

and also
B(s) = {(s)Brp.

Now we can obtain an approximation from the finite-difference discretization as
(s Erp = Arp) » Y ($)[L + a(s)ULY (). (7.30)

The difference between the two sides of (7.30) depends on the treatment of the small
signal that has been applied to the test. The left hand side represents a spectral dis-
cretization, and the right hand side represents a finite-difference discretization.

It is briefly discussed in [85, 84] that the spectral form (7.16) that is ameanable to
model reduction is less convenient to work with. If we even use the Krylov subspace
scheme and use a lower-triangular preconditioner, at each different frequency point the
preconditioner needs to be reconstructed. That means we need to re-factor the diagonal
blocks, and the computational cost as well as the problem size increases (see [114]).

To resolve this dilemma assume the projection matrix V' is not a basis for the Krylov
subspace generated by (s Erp — Arp)~!, but instead for a nearby matrix. In that case,
the reduced-order model would still be a projection of the original, having some small
error in it. Aslong as the model is not evaluated in the neighborhood of a pole, it can be
expected that the additional errors introduce into the model are small enough. Hence,
instead of choosing the spectral form, the basis for the projector in the model reduction
procedure can be obtained from the finite-difference equations.
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7.2.3. Preconditioning and Recycling of Krylov Subspaces

Our interest is to see how the finite difference method approximates the appropriate
basis V for the reduced-order system. Suppose we need to solve (7.27) for some dif-
ferent B. Again following [114], consider preconditioning with the matrix L. Then the
preconditioned system can be written as

(I + a(s)L™MU)5 = L71B(s) (7.31)

As L is lower triangular, its inverse is easily applied by factoring the diagonal blocks
and then back-solving. The structure of (7.31) suggests to explore the shift-invariance
property of Krylov subspaces [see Chapter 6, Lemma 6.3.2 of this thesis]. It says that the
Krylov subspace of a matrix A is invariant with respect to shifts of the form A — A +al,
for @ being any nonzero scaler. This recycled Krylov subspace method also enables us to use
the same Krylov subspace to solve (7.31) at multiple frequency points. In that context
we would like to introduce the following corollary to clarify the fact.

Corollary 7.2.1:
[114] The Krylov subspace spanned by the vectors

%, [+ a@)L70) p°, (I + as) LU0, ..., (I + as)LTU)"1 p0) (7.32)
is identical to the Krylov subspace spanned by the vectors
(WU p”, (U, (LT ) (7.33)

independent of a, where p" is vector. o

Proof. The proof follows from the shift-invariance property of Krylov subspaces and
can be found in [47]. O

Hence, the subspace spanned by L7!U is invariant to shifts of the form
LU — I+ a(s)L7'U, for a(s) being any nonzero scaler. The question now arises
how we make use of the result in Theorem 7.2.1 to solve (7.31), where the matrix and
the right hand side are functions of a variable (=swept) parameter. If we look inside the
problem (7.31), we see that the matrix-vector products for different frequency changes
in this problem are constrained, and so previous iterative solutions can be exploited. To
see this, we look at the following representation for two different frequencies s and 3 :

B+ as) LU p° + yp° = (1 + aG) L7U) p°, (7.34)

where = a(3)/a(s) and y = 1 — B. This implies that a matrix-vector product computed
using the matrix associated with frequency s can be converted into a matrix-vector
product using the matrix associated with frequency 5 by a simple scalar multiplication.
Therefore, we have no extra cost to obtain the projectors from the expansions about
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multiple frequency-points (due to the reason of the recycling scheme) compared to
single frequency-point expansions [54].

The above discussion suggests that the basis for the projector in the model reduction
procedure can be obtained by using the finite-difference equations. All these lead us to
the proposed model reduction algorithm, Algorithm 7.1.

7.3. Outline of the Proposed Algorithm

In order to simplify the presentation, only real-valued expansion points are used in
Algorithm 7.1, and B(t;) is considered as a time-varying column vector for each time step.
The overall algorithm can be described in two stages. In the first stage, the algorithm
produces a matrix approximating the Krylov subspace for several s;. Note that at each
iteration i € [1,n,], Algorithm 7.1 generates m columns of the projection matrix V,
where m is the approximation-order of the Krylov subspace. Once the projection matrix
V is computed for several s, it is used to construct the reduced-order model via the
projection equations.

Suppose we start with a particular frequency s form a set of different frequencies. Atthe
beginning, Step 9 takes Brp as its right side vector and generates the first column of V.
For the second column, it takes now E7p-v as its right side vector, where v is the previous
orthonormal column generated for V. The process continues till m is reached for s;.
For the next frequency s, Step 9 computes the first column and then orthonormalizes it
with respect to all the previously computed orthonormalized columns of V generated
for s1 (such an orthonormalization is efficient and fruitful because of the recycled Krylov
scheme used for multiple expansion points). The total number of such orthonormalized
columns is counted by k and it is initialized at the beginning of the algorithm.

As soon as the projection columns of V for a particular s; are computed, the algorithm
run for the next frequency point. The projection matrix V is the union of all these
projections obtained for all s;, where 7 runs form 1 to n;. Therefore , the number of
columns of the projection matrix V is m - ns. This can be expressed as

range(V) = U K (LU, B(s;)) (7.35)
i=1

Remark 7.2:
In Algorithm 7.1, Step 9 uses recycling technique to produce the projection columns
of V. Itis clear from the context that if a preconditioner L is not used to solve Step 9,
each new vector in the model reduction is obtained by an inner Krylov iteration with
the matrix Arp . Also, each new right-hand-sides u; is generated for each sweep of
frequency s;. Due to the shift-invariance property, since each new right-hand-side u;
in the model reduction procedure is drawn from a Krylov subspace of X,,(Arp, Brp)
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Algorithm 7.1 Approximate Multipoint Krylov-Subspace Model Reduction

Input: Arp, Erp, Brp, Crp, ns, m.
Output: V,Arp, Erp, Brp, Crp.
1: Setk=1
2: fori=1tonsdo
3: forj=1tomdo

4: if j=1 then

5: w = Brp

6: else

7: w = Erp v

8: end if

9: u = PH(s)[L + a(s;) U] (s))w
10: for/=1tok—1do
11: u=u-ovu
12: end for
13: vk = u/|lull

14: k=k+1

15:  end for

16: end for

17: [V, R] = RRQR(V, 1)

18: ATD = —VTATD V, ETD = VTETD V,
Brp =V™Brp, Crp=CrpV.

for some m, it is reasonable that the next term in the space of K;(Arp, Brp) is related
to the X,,(Atp, Brp), where i slightly exceeds m [84]. o

The net result of the algorithm is an N X mn; projection matrix V with orthonormal
columns. We use the rank revealing QR factorization (RRQR) [43] with prescribed
tolerance 7 for the formulation of the projected matrix V. Because, the matrix V, we
have obtained from the direct use of the proposed algorithm, has linear dependent
columns. The rank revealing QR factorization truncates those redundant constraints
and produces an orthonormal basis of the projected matrix for the reduced-order system.
Last of all the reduced-order system is generated through the projection with V.

7.4. Numerical Results

To test the time-varying model reduction procedure, the proposed algorithm has been
implemented in a time-domain RF circuit simulator. The large-signal periodic steady
state is calculated using a shooting method [113]. The LTV system is discretized using
second-order backward-difference formulas. The data files for both the following model




7.4. Numerical Results 115

problems have been provided by Michael Striebel I former postdoctoral researcher, NXP
Semiconductors, High Tech Campus 37, NL-5656 AE Eindhoven, The Netherlands.

7.4.1. Simple RF Circuit

We consider here a simple example where the data is obtained from small RF circuit
simulator. The circuit system consists of 5 nodes, and is excited by a local oscillator
(LO) at 2 KHz driving the mixer, while the RF input is fed into the I-channel buffer. The
time-varying system is obtained around a steady state of the circuit at the oscillatory
frequency; a total of M = 129 timesteps are used to describe the steady-state waveform.
For the model reduction procedure, the input function B(t) is a constant column vector,
corresponding to the continuous small-signal input. To analyze the circuit, we consider
a period of T = 1ms for the steady state analysis. The final discretized model is a real
LTI system of order N = 645.

The assigned algorithm produces a very good approximation of the original model for
multiple frequency points. Three different expansion points on the positive real axis
at s = 2kHz, 4kHz, 6kHz are considered. The reduced-order model is generated by
matching four moments of the Krylov subspace generated for every expansion point.
We use the rank revealing QR factorization for the formulation of the projected matrix
with tolerance, tol = 107°.

We obtain a reduced-order model of order r = 3. The computing time for the reduced
model is very small and efficient compared to the original model. We plot the frequency
response of the transfer functions for both the original and reduced-order systems and
compare the relative error. Fig. 7.1 shows a very nice matching of the baseband transfer
functions Hrp(s) and Hrp(s), and the relative error in Fig. 7.2 is very small. The Bode
diagram and the step response in Fig. 7.3 and Fig. 7.4 show the better efficiency of the
reduced-order model.

7.4.2. Mixer Circuit

In this example, we apply the proposed algorithm on a multi-tone mixer circuit, con-
sisting of several functional component blocks. The circuit generates 43 equations in
the circuir simulator. 201 timesteps are needed for time-domain analysis, so that the
matrix Arp has rank N = 8643.

The mixing elements shift the input from the RF frequency to the mixer LO frequency.
For the model reduction procedure, the input function B(f) is chosen to be a constant
column vector, corresponding to the continuous small-signal input. To analyze the
circuit, a periodic steady state analysis is run with a T = 1ns period.

!Current address: Bergischen Universitt Wuppertal, Applied Mathematics / Numerical Analysis Gaustr.
20, 42119 Wuppertal; (michael.striebel@math.uni-wuppertal.de)
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Figure 7.1. Frequency response of transfer function: exact system versus reduced-order
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Figure 7.2. Error in the frequency response of transfer function of reduced-order sys-
tem (RF circuit).
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Figure 7.5. Transfer function: exact system versus reduced-order system of order
r = 4 (Mixer circuit).
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Figure 7.7. Bode plots for the exact system and the reduced-order system of order
r = 4 (Mixer circuit).

The proposed algorithm produces a very good approximation of the original model for
multiple frequency points. Five different expansion points on the positive real axis in
the range from s=2MHz to 6MHz are used. The reduced-order model is generated by
matching six moments of the Krylov subspace generated for every expansion point. We
use the rank revealing OR factorization for the formulation of the projected matrix with
tolerance tol = 107°.

We obtain a reduced-order model of order r = 4. The computing time for the reduced-
order model is only 0.0037 CPU seconds, while the original model took almost 8 x 103
CPU seconds. We plot the transfer functions for both the original and reduced-order
systems in Fig. 7.5 and depict their relative error in Fig. 7.6. Both the transfer functions
match and the relative error is very small. In addition, the plotted Bode diagram and
the step response in Fig. 7.7 and Fig. 7.8 show the better efficiency of the reduced-order
model.

7.5. Discussion

The system model-design applied here is efficient for small-signal analysis and time
parameters. Therefore the model is capable of representing very complicated physical
dynamics in circuit problems. We observe that the proposed algorithm produces a very
good approximation of the original model and the reduced-order model is very small
and efficient compared to the original model.




120 Chapter 7. Model Reduction via Krylov Subspaces

4 Step Response
x 10
8 T T T T T
— Exact
~~'reduced| 7
st 4
1k 4
0 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
Time (sec) x10°

Figure 7.8. Step response for exact system and the reduced-order system of order
r =4 (Mixer circuit).

There are several scopes for the future extensions of the ideas of this section. The
formalism and algorithms can be trivially extended to the case of quasi-periodic small
signal analysis [131].
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In this chapter, we consider LPTV discrete-time descriptor systems and review some
basic concepts of LPTV discrete-time descriptor systems which link them to their cor-
responding cyclic lifted system. We also discuss a solution technique for PPDALESs in
lifted form which arise in model reduction of periodic descriptor systems and propose
a balanced truncation model reduction method for such systems. The behavior of the
suggested model reduction technique is illustrated using numerical examples.

In Section 8.1, we recall some definitions and basic concepts of LPTV discrete-time de-
scriptor systems and the corresponding cyclic lifted system representation from Chap-
ter 4 and 5. Section 9.2 then reviews the PPDALEs and the corresponding PLDALEs
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of these periodic Lyapunov equations along with their specific block diagonal solu-
tions. We then discuss an efficient method to solve those lifted Lyapunov equations in
Section 9.3. The periodic Hankel singular values and their relations with the periodic
Gramians are presented in Section 9.4. A balanced truncation model reduction method
for periodic descriptor systems is presented in Section 9.5. Section 9.6 contains numeri-
cal examples that illustrate the properties of the suggested model reduction technique.
We give a short discussion in the last section.

8.1. Introduction

Let us recall the linear discrete-time periodic descriptor system with time-varying di-

mensions of the form
Exxie1 = Arxp + Bruy,

Ye = Ckxk, kEZ, (8.1)

where E; € R1M1 Ay € R, By € RM+1Pk, C. € R are periodic with a period
K-1 K-1 K-1 K-1
K>1and Zk:o Mk = Zk:o N =1, Zk:o px = p and Zk:() ek =4

We already discussed in Chapter 4 that regularity and stability are two important
properties to handle the dynamics of the discrete-time periodic descriptor system (8.1).
Since the matrices Ey are allowed to be singular for all k, regularity and stability of the
periodic descriptor system (8.1) can only be defined via the cyclic lifted structure of the
periodic matrix pairs associated with system (8.1). In this context, we would like to
introduce shortly the cyclic lifted system associated with the periodic descriptor system
(8.1). The details of this lifting isomorphism of periodic descriptor systems can be found
in Chapter 5.

The cyclic lifted representation of the periodic descriptor system (8.1) to be used here is
given by

EXkry1 = AXp+BU,,
8.2
9 = CXy, ®2)
where
&= diag(Eo, E1, ceey EK—l)r B = diag(Bo, Bl, e /BK—l);

0 . 0 Ay 0 cee 0 Co

Aq 0 C1 0 (8.3)
A= ., €= . .-
0 A1 0 0 Ck.q O

The descriptor vector, system input and output of (8.2) are related to those of (8.1) via

T T T9T T ,T T 1T T T T 1T
xk:[xll"'/xK_lle] ’ uk: [u0/u1/“‘luK_1] 7 Hk:[y()/ylw--/yK_l] ’
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respectively.  We also define a transfer function of the lifted system (8.2) as
H(z) = C(z€ — A)~!B.

Note that system (8.1) can be said to be regular if the set (IE, A) of periodic matrix
pairs {(Ex, Ak)}kK:‘O1 is regular, which can be equivalently defined by the regularity of the
cyclic matrix pencil z€ — A, i.e., det(z€ — A) # 0, for some z € C (see Section 4.2 in
Chapter 4 for detail). The set of periodic matrix pairs {(Ey, Ax) fz‘ol is said to be pd-stable
if z€ — A is regular and all its finite eigenvalues lie inside the unit circle. System (8.1)
is asymptotically stable if the corresponding set of periodic matrix pairs {(Ey, Ak)}kK:‘O1 is
pd-stable.

Itis shown in Chapter 4 that if the set of periodic matrix pairs {(Ey, Ax) f:_ol isregular, then
the periodic descriptor system (8.1) is equivalent to the canonical forward-backward
form (see Subsection 4.2.2 of Chapter 4) given by

f _ Aff o nf f_cf.f
X1 = Akxk + Bkuk, v, = Ckxk, (8.5)
EZxZH = x,l: + B,ljuk, yZ = C,lzx]l:, (8.6)
respectively, with
Ly 0 Al o
WiEiZjir = | "k , WiAZ=| k ,
kEkLi+1 [0 EZ] KAkl [O I
of (8.7)
I —[f b
WiBy = IBZ ;o CeZg = [Ck, Ck],
where Wy € RH+1*t1 and Z; € R™™ are two nonsingular matrices for each k =

0, 1,‘...‘,K - 1. No?e .that Yk :‘yir + yi, ne = n{ ‘+ n]‘:" and Hkﬂ = niﬂ + fpr sth a
periodic decomposition . The index v of the periodic descriptor system (8.1) is defined
as v = max(vo, v1,...,Vk-1), Where (vo,v1,...,vg-1) are the indices of the regular set of

periodic matrix pairs {(Ej, Ak)}fz_o1 (see Remark 4.6 of Chapter 4).

For such a canonical representation of the periodic matrix pairs, we also define, for
k=0,1,...,K—1, the spectral projectors

r=z|"  Clz2 pw=w|a Clw
r k 0 0 k7’ l k 0 0 ks

onto the k-th right and left deflating subspaces of the periodic matrix pairs {(Ex, Ax) fz‘ol
corresponding to the finite eigenvalues, and Q,(k) = I — P,(k) and Q;(k) = I — Py(k) as
complementary projectors.

Similar to discrete-time descriptor systems [24], the finite pole structure of the periodic
system (8.1) is completely determined by the forward subsystems and the infinite pole
structure is determined by the backward subsystems. Computing the zeros and poles
of periodic descriptor systems are well studied in [125] using the lifted formulations
associated with the periodic system. Note that the finite eigenvalues of {(Ek,Ak)}f:‘O1
coincide with the finite eigenvalues of the lifted pencil z€ — A.
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8.2. Periodic Projected Lyapunov Equations and their Lifted
Forms

In Chapter 4, we have shown that the periodic reachability and observability Gramians
for the periodic discrete-time descriptor system (8.1) satisty some PPDALEs with special
right-hand sides. Considering the periodic discrete-time descriptor system (8.1) and the
set (IE, A) of periodic matrix pairs {(Ej, Ak)}kK:_O1 to be pd-stable, we have shown that the
causal reachability Gramians {Glccr}sz_Ol

solutions of the generalized PPDALEs

are the unique symmetric, positive semidefinite

T T = ‘ !
AGIA —EGLE, = —PiBB, Pi(k), ®.8)
G = P(k)GIP k)T, '

fork=0,1,...,K—-1, where Gf = GB’, E_y = Ex—1, and Pi(-1) = P(K — 1). The proof of
(8.8) can be found in Subsection 4.3.3, Chapter 4.

The numerical solution of (8.8) has been considered in [30]. The method proposed
there extends the periodic Schur method [19, 20, 123, 119] and the generalized Schur-
Hammarling method [104] developed for periodic standard and projected generalized
Lyapunov equations, respectively. This method is based on an initial reduction of
the periodic matrix pairs {(Ek,Ak)}]If:_o1 to the generalized periodic Schur form [56, 123]
and on solving the resulting generalized periodic Sylvester and Lyapunov equations
of (quasi)-triangular structure using the recursive blocked algorithms [44]. Computing
the Kronecker-like canonical forms of the periodic matrix pairs and solving the result-
ing periodic Sylvester equations are the most computationally expensive tasks in this
algorithm (Algorithm 5.1 of [30]).

On the other hand, since we have constructed a relationship between the Gramians
of the periodic systems and those of the cyclic lifted system as in Subsection 5.2.4
of Chapter 5, it is straightforward and also promising to solve the reachability and
observability Gramians of the lifted system for the corresponding LPTV Gramians. So
we focus on the lifted representation of the periodic projected Lyapunov equations that
we have discussed in Subsection 5.2.4 of Chapter 5.

Considering the periodic discrete-time descriptor system (8.1) and its cyclic lifted rep-
resentation (8.2), where the set of periodic matrix pairs {(E, Ak)}sz‘O1 is pd-stable, we
have shown that the causal reachability Gramians G of (8.2) satisfy the generalized
PLDALEs

AGTAT —eg7el = —p BBTP!, §7 =9 .G7P], (8.9)

where &, A, B are as in (8.3) and

5 = diag(GY,...,GY_,, GT),
P = diag(Py(0), P(1), ..., K =1)),  Q=1-P, (8.10)

:Pr = diag(Pr(l), .. .,Pr(K - 1),Pr(0)), Qr = I_ Tr.
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Similarly, the noncausal reachability Gramians and the causal and noncausal observ-
ability Gramians of the periodic descriptor system (8.1) can be easily retrieved from the
block diagonal solutions of the corresponding PLDALEs. We discussed these PLDALEs
and their block diagonal solutions in Chapter 5 (see Theorem 5.2.4 and 5.2.5) with nec-
essary proofs. Note that for the lifted system (8.2) the complete reachability Gramian
G" is defined as §" = G + ", where G is defined in (8.10) and §" is the noncausal
reachability Gramian of (8.2) defined in (5.38). The complete observability Gramian §°
of (8.2) is defined as G° = G + G"°, where G and §"“ are the causal and noncausal
observability Gramians of (8.2) defined in (5.45).

8.3. Solving for Reachability and Observability Gramians of
LPTV Descriptor Systems

We generalizes the method from [103] to solve the generalized PLDALESs for periodic
reachability and observability Gramians. Let us consider the generalized PLDALE (8.9)
corresponding to the generalized PPDALEs (8.8) of the periodic descriptor system (8.1)
given by

AGTAT —eg7el = P BBTP!, §7 =P .G7P], (8.11)

where &, A, § € R (the complex case is similar). Let the pencil A€ — A be in GUPTRI
form (3.13) such that

AE-—A=7V 0 Ao — Aus

uf, (8.12)

where U, V are orthogonal matrices. Note that the pencil A€ — A is stable, and the pencil
A€ — Ay is quasi-triangular and has only finite eigenvalues, while the pencil A€ — Ao
is triangular and has infinite eigenvalues. Clearly, £¢, Af € R" X € oy Ao € RMXMe0
and 1 = 15 + feo.

In order to compute the left and right deflating subspaces of A€ — A corresponding to
the finite eigenvalues we need to compute matrices Z, W € R"/*"~ such that

I Z|[A&p - Ay A&y - AL ][T -W] _[A&f - Ay o 313)
0 I]| "0 = Aew-Ax|[0 I 0 2w~ Aw

and (Z, W) is the solution of the generalized Sylvester equation

EW —ZEx = &,
AW = Z Ao = Ay, ®.14)
Since the pencils A&y — Af and A€« — Ac have no common eigenvalues, the solution
(Z, W) of the generalized Sylvester equation (8.14) is unique. Therefore the pencil A€ —A
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can be transformed into the Kronecker-like form

_ I -Z||A&f— Ay 0 I W{,
Ae-A = V[o 1] o /\em—AooHo 1]“
(8.15)
_ MASf—Af 0 N
- 0 N —Ac|™
where the matrices
PN VR / I W, r
M—V[O I] and N_[O I]u (8.16)

are nonsingular. We argue that the matrices fr A fr €, and A in (8.15) preserve the
following cyclic lifted structures,

E] 0 0o Al
E/ Al 0 0
& = . , As= . 1, (8.17)
f Foo
El 0 AL 0
and
0 EY A
. AP
Eoo = ] Aw= . , (8.18)
(9) Ex_, - .
EQ, O 0 A2

where the periodic matrix pairs {(E{ ,A{ )}]If:‘o1 contain only the finite eigenvalues of the
periodic matrix pairs {(Ej, Ak)}llfz‘o1 that lie inside the unit circle, and the periodic matrix

pairs { (EOO'AZO)}fz_Ol contain only infinite eigenvalues.

Now to check whether such structure-preserving M, N exist, we consider the pd-stable
set {(Ex, A k)}kK:‘O1 and the decompositions (8.7) (without orthogonalization) of the periodic
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matrices. Therefore we have
[ f
By 0,0
WO [ 00 ESO] Zl
0
E
W—l 1 7-1
£ = ! [ 0 E?’] ’
f
W—l EK—l 0 Z—l
K-1{ ¢ E?—l 0
5 &
Wg' i o zy!
N 5 ) &
Wiky E o Z'
i i
[/
¥
0 Ej
¥ 5]
= W 0 E? 2,
f
Ex, O
0  EZ.]l
(8.19)
where W = diag(Wal, Wl‘l, el lell) and Z = diag(Z;l,Zgl, ... ,Zal).
Similarly, we have the following representation for A:
f
A, 0
0 Ay
5
A=WI|L0 AP Z. (8.20)
f
A, 0
0 A%,

Hence using appropriate permutation matrices I'ly and I'l, we can reorder the blocks of
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AE — A [123] such that

- ef
E/ )
E]
. ;
AE—A = AWIL K-=1 ILZ
0 Ey
0 ES,
ES, 0 0
(8.21)
[ 0 Al
Al
0 Al 0
—WIT; K-1 ILZ.
AY
AT
A

Comparing (8.15) and (8.21), we can make the following identifications

M =WIT;, N=ILhZ.

Therefore, the spectral projections P; and P, onto the left and right deflating subspaces
of A& — A are given by

I 0

0 0

Tl:M[ 0 0

] ML, P =Nt [I O] N. (8.22)
Now substituting M and N from (8.16) into (8.22), we get

I Z

ﬂ)lzv[o 0

]VT, ?r:u[é WO]uT. (8.23)

Hence, setting
9C1’ cr B
UTGrY = l 11 12]/ VTR = [ 11}’

2 9 B1
we obtain from the PLDALE (8.9) the following system of matrix equations
AfSHAL = €fSTEL = ~(Bun +ZB12) (B + ZB12)' + 7558, + EuS5EL + EuG5HEL
—A G5 AL = AuSHAT — AuSSAL (8.24)
AfGHAL - €550eL = ALS%EL - ALSHAL, (8.25)

AcGSHAL — E85EL = 0. (8.26)
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Since A(A€ f—A)NA(AEw—Acx) = 0, and A(A€x—Ax) contains only infinite eigenvalues,
we have from (8.26) that
5 =0. (8.27)

Hence Equation (8.25) can be simplified to
AfGLAL —e500el = 0. (8.28)
It can be easily verified that 557 = ( E’Z)T [104] and the solution of (8.28) is given by
1 =0. (8.29)
Using (8.27) and (8.29), (8.24) can be simplified and rewritten as
.Af Lﬂfl}; - Ef i’ig}" = —(311 + 2312) ('BH + Z'Blz)T. (830)
Therefore, the solution of the generalized PLDALE (8.9) is given by

cr cr cr 0
gr=u| TRyt =yt U, (8.31)
n 9 0 0

where 9?1 is the unique symmetric positive semidefinite solution of the generalized
periodic Lyapunov equation (8.30). It follows from (8.22) and (8.31) that the solution G
satisfies G = P,G"PT.

Now suppose that Ry is the Cholesky factor of 57}, i.e., 5] = lelﬂQlTl. If rank(R11) = ns
and n; < ny, then we use Householder or Givens transformations [43] to compute the full
column rank matrix R; from the QR decomposition

fRT
:R{l = Qg, [ 01]/

where Qg, € R and ®; € R""". Otherwise, R; = R1;. Then the full column rank
factor R is given by

cr jz1
R _u[o]. (8.32)

We summarize the whole precess in Algorithm 8.1. The numerical solution of the
generalized PLDALEs (5.37), (5.43), and (5.44) can be treated similarly and following
the work in [104].

Remark 8.1 (about Algorithm 8.1):
(i) In Step 1, one may not directly get such a structure using only the GUPTRI
algorithm [34, 35]. It requires to multiply the block matrix pencil by two permutation
matrices from its right and left sides to get the the structure as in Step 1 (see (8.21)).
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Algorithm 8.1 Generalized Schur-Hammarling method for the PLDALE (8.9) and
PPDALEs (8.8).

Input: A real d-stable pencil A€ — A and a real matrix B (complex case is similar).
Output: Full column rank Cholesky factors R;" of the solution G;" = Ri’(Ri’)T
(k=0,1,...,K-1).

1: Use the GUPTRI algorithm [34, 35] to compute (8.12), i.e.,

/\Ef_.Af Agu _Au

AE-—A=V 0 A€o — Ao

uT
where U, V are orthogonal matrices, &¢, Af € R, €, Ao € R a5 in (8.17)
and (8.18), respectively.

2: Compute the generalized Sylvester equation

EW—ZEw = &,
AW = ZAg = Ay

B11]
Biy|
4: Use the generalized Hammarling method [50, 104] to compute the Cholesky factor

R11 of the solution G} = R11(R11)" of the PLDALE (8.11)

3: Compute the matrix

VIp =

‘Afgirlfl; - Efgirl 8}; = —(311 + Z'Blz) (311 + ZBlz)T.

5. If rank(Rq1)= ns; < ny, then use the Householder or Givens transformations [43] to
compute the full column rank matrix R; from the QR decomposition

RT
:Rfl = Qx, [ 01]/

where Qg, € R and R € R"*. Otherwise, R; = Rq;.
6: Compute the full column rank factor R given by

R1
cr __
-]

7: Identify the full column rank periodic factors R}" from R, where

R = diag(R{,...,R{_, Ry ),

and Gi’ = R,C:(RIC:)T fork=0,1,...,K-1.
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(ii) Step 6 needs to be computed more technical way such that the periodic factors

Ry € R™ receive full column rank and Gy = R;r(R;r)T € R"*" (k=0,1,...,K-1).
One can also follow the explicit formulations (not in lifted form) of these periodic
factors of Step 6 from [30] (see Steps 5 and 6, Algorithm 5.1 therein).

The full column rank Cholesky factors computed using Algorithm 8.1 preserve the block
diagonal structure of their original lifted Gramians. For the computed Cholesky factor
using Algorithm 8.1, we have

9 iRcr(:Rcr)T dlag(Rcy(Rw) ) 'R%r—l (R%—I)T' R(c)r(R(c)r)T )/

where G = R,C(’(RIC(’)T and R} are the full column rank Cholesky factors of the periodic
Gramians Gi’ for k = 0,1,...,K — 1. The same holds true for the solutions of the
generalized PLDALESs (5.37), (5.43), and (5.44).

Remark 8.2:
We generalize the Schur-Hammarling method from [50, 104] to our periodic discrete-
time case in lifted form. A solution technique which deals directly with the periodic
matrix equations (not in lifted form) has been proposed in [30]. Solving the periodic
Sylvester equations and the periodic projected Lyapunov equations in that proposed
algorithm are the most computational expensive tasks, especially when the system
has periodic matrix pairs with time varying-dimensions, and the input and output
are also time-varying (see, Algorithm 5.1 of [30]). On the other hand, our proposed
method, which works with the lifted forms of the periodic matrix equations, can
handle those time-varying periodic matrix pairs even if all Ey (or at least one Ej) are
singular and also the time-varying input and output very easily during the solution
process. 0

8.4. Hankel Singular Values

Analogous to the standard periodic discrete-time systems [121] and continuous-time
descriptor systems [106, 75], the reachability and observability Gramians of the periodic
discrete-time descriptor system (8.1) can be used to define the periodic Hankel singular
values of system (8.1). These Hankel singular values are then used find a reduced-order
model of (8.1) using the balanced truncation method. Analogous to continuous-time
descriptor systems [106, 75], the following result holds for system (8.1).

Theorem 8.4.1:
[30] Let the periodic matrix pairs {(Eg, Ak)} ~1 be pd-stable. Then the causal and noncausal
matrices MC = GYETl  G%E;_4 and M”C = G””ATG”“’ Ay, k=0,1,...,K=1, have real and

k “k-1"k k k1
nonnegatwe eigenvalues. 0
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Proof. We sketch the proof from [30] to show that the fundamental matrices defined
for the forward and backward subsystems in (4.68) are directly linked to the Hankel
singular values of the periodic discrete-time descriptor system (8.1). Let us consider the
periodic Gramians defined in Chapter 4, Section 4.3.2. Using the definitions of G;” and
Gf{", we can write

k-1 o
— TyT T T T
Mi= Y w BB EL Y Wl cTlcw,, Ei (8.33)
j:—oo ]:k

Now using the forward fundamental matrices defined in (4.68), we can represent (8.33)
more simply as

Gcr Gco 0
Mi:zk[ Yo o]zk_lf (8.34)
where
Gy, = T @pki+ B/ (B osk,i+1)T,
G = L@ R (CHTC/ o k).

The matrices G, and G°, are symmetric positive semidefinite (see the proof of Theo-
rem 4.3.6in Cha,pter 4 for details), hence the matrices Mi fork=0,1,...,K—1, have real
nonnegative eigenvalues. Similarly, we can show that all M/ have real and nonnegative
eigenvalues. |

The real nonnegative eigenvalues of M; and M, are used to define the causal and
noncausal Hankel singular values of system (8.1).

Definition 8.4.1:
Let the set of periodic matrix pairs {(Ey, Ak)}IIf:_O1 be pd-stable. Fork =0,1,...,K-1, the

square roots of the largest ni eigenvalues of the matrix M; , denoted by oy ;, are called
the causal Hankel singular values and the square roots of the largest n;” eigenvalues
of MZC, denoted by 6y j, are called the noncausal Hankel singular values of the periodic

descriptor system (8.1). o

Similar to continuous-time descriptor systems, the causal and noncausal Hankel singu-
lar values of the periodic descriptor system (8.1) are invariant under system equivalence
transformation. For a completely reachable and completely observable periodic system
(8.1), the ranks of the matrices G;” and G;’ equal n£ , whichis also the rank of M. Also the
ranks of Gl’zc’ and GZCO equal ny, which is then also the rank of MZC' fork=0,1,...,K-1.

Since the causal and noncausal reachability and observability Gramians are symmetric
and positive semidefinite, there exist the Cholesky factorizations

Gy =R, GU=1lL, GF=RE, GU=Ll.  ©)




8.5. Balanced Truncation Model Reduction 133

Simple calculations [30] show that

0k = +JA(GYE]_ GPEr_1) = C{(LkEx—1Ry),
9] k Fr-1%% j (836)
Ok = \/ A(GPrATGE Ap) = Ci(Lia1 ArRy),

where A(.) and C;(.) denote the eigenvalues and singular values of the corresponding
product matrix, and oy ; and 0y ; are the causal and noncausal Hankel singular values of the
periodic descriptor system (8.1), respectively.

8.5. Balanced Truncation Model Reduction

Model order reduction (MOR) is an approach, where the original system is approxi-
mated by a reduced-order system that is in some measure close to the original model.
For system (8.1), a reduced-order model of dimension r would be a system of the form

Ekfktl = zilki?k + Byug, (8.37)
Ye = Ckxk, keZ,

where E, € ]R7”<+1X’k+1 Ay € Rk, B € RVePx, Cp € R%x are K-periodic matrices,
y K pl 0 Vi = y K k=0 Ly =rand r < n. Apart from having a much smaller state-space dimen-
sion, it is also important that the reduced-order model preserves physical properties of
the original system such as regularity and stability, and that the approximation error
is small. In this section, we present a generalization of a balanced truncation model
reduction method to periodic descriptor systems.

8.5.1. Balancing of Periodic Descriptor Systems

For a balanced system, the reachability and observability Gramians are both equal to
a diagonal matrix [76, 108]. Balanced truncation for periodic standard discrete-time
systems has been considered in [37, 121]. An extension of such important concepts
as balanced realization and Hankel singular values to periodic descriptor systems has
been presented in [30]. We will follow here the derivation in [30].

Definition 8.5.1:
A realization (Ey, Ak, By, Ck) of a periodic descriptor system (8.1) is called balanced if

T 0 0 0
G;;:G;;Z[O 0], GZC’—GZj"l—[O @k],

where Y = diag(oy 1, - 0 nf) and ©y = diag(Ok1,. .., rin;o), k=0,1,...,K—1. O
"k
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Consider the Cholesky factorizations (8.35) of the reachability and observability Grami-
ans [30] and let
LiEx-1Ri = UkZi V], L AxRe = U@ V] (8.38)

be the singular value decompositions of the matrices LiEx_1Ry and L1 AkRy for k =
0,1,...,K-1. Here Uy, Vy, U, Vy are orthogonal, and X and ® are diagonal. Moreover,
we can can easily show from Theorem 4.3.5 and Equation (4.64) that

Gy = Pu(k)GIPu(k), G =Py(k — 1)"GP°Py(k - 1),
P, ()G} =0, G“Pi(k-1)=0,
Ex-1Py(k) = Pi(k — 1)Ex—1,  AxPr(k) = Pi(k)Ay.

Then using these relations, we have for k =0, 1,...,K -1, that

GiEr1GY = GPE1G =0, G AG = G2 AG =0,
which also imply

LiExaRe =0, LiEx-1R =0, Ly AR =0, L AkRe =0,

fork=0,1,...,K—1.

If a realization X(Ey, Ak, B, Cx) with pd-stable matrix pairs {(Ex, Ax) sz_ol is minimal, i.e.,
Y and Oy are nonsingular, then there exist nonsingular periodic matrices Sy € IRFk+1%Hk+1
and Ty € R"™*" defined as

Sk =L Uz %, LT

2 L e P, T =RV, Revi® 7, (8.39)

such that the transformed realization
(S{ ExTis1, S{ AT, S{ By, CiTy) (8.40)

is balanced [30]. Note that as in the case of standard state space systems, the balanc-
ing transformation matrices for periodic discrete-time descriptor system (8.1) are not
unique.

8.5.2. Model Reduction

Model reduction via balanced truncation is discussed very widely for standard discrete-
time periodic systems [57, 121] and also for continuous-time descriptor systems [75, 108].
For a balanced system, truncation of states related to the small causal Hankel singular
values does not change system properties essentially. Unfortunately, we can not do
the same for the noncausal Hankel singular values. If we truncate the states that
correspond to the small non-zero noncausal Hankel singular values, then the pencil for
the reduced-order system may get finite eigenvalues outside the unit circle that will
lead to additional errors in the system approximation. Therefore, we truncate only the
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zero noncausal Hankel singular values and all the non-zero noncausal Hankel singular
values are kept unaltered (without any truncation).

Assume that the periodic matrix pairs {(Ey, Ak)}llfz‘o1 are pd-stable. Consider the Cholesky
factorizations in (8.35). Let

> v 9 o .
LyEx—1Re = [Ugg, Uk,z][ K Zkz] [Vi1, Vial',  LeniAkRy = UV, (8.41)

be singular value decompositions of LyEx_1 Ry and Ly, ARy, where

Lia =diag(0k,1,~.-,0k,r£), Lo = diaglo, s /.-, {),

k+1

with o3 > -+ > O f > Ukrf 2 ...z 0 / > 0, and O, = diag(O1, .. Gkroo) is

nonsingular for k = 0, f K- "1 Note that for MOR, 1] = = 0 is possible and allowed,

although for such a case balancing transformation does not exist.

Similar to continuous-time descriptor systems [108], the number of non-zero noncausal
Hankel singular values of (8.1) fork =0,1,...,K - 11is equal to

rp> = rank(Liy AxRe) < min(vipe, viqe, 1), (8.42)

where vy are the indices of the regular set of periodic matrix pairs {(E, Ak)} . This
estimate shows that if for k = 0,1,...,K — 1, the nilpotency index v, of a regular pe-
riodic matrix pair {(E, Ak)}sz_ol times the number py of inputs or the number g; of the
outputs is much smaller than the dimension n;” of its k-th periodic deflating subspace
corresponding to the infinite eigenvalues, then the order of system (8.1) can be reduced
significantly.

The reduced-order system can be computed as [30]

Ey = Slerkan,r, A = S,S,Aka,r, By = S,frer, Cr = Gk Txs, (8.43)
where
Skr = L UkaaZe s, LL, U602 ] € Riwnmion,
Ty, = [Rkalzkl , Rka@kl/zl € R"™ ™,
with 7, = Sy
k=1 + re-

Let ((z) be the transfer function of the reduced-order lifted system formed from the
reduced-order subsystems in (8.43). Since our model reduction approach does not
truncate any nonzero state from the noncausal Hankel singular values, the error bound
for the reduced system will be defined over the causal part of the original and reduced-
order transfer functions. Also the reduced-order system computed by this method is
stable and balanced. Hence the error bound can be obtained similarly to the standard
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periodic state space case [61, 121, 60]. Then we have the following He-norm error
bound

|H - Hlp, = sup [|FH(e?) — F(“)lla < 2trace (diag(Top, ..., Zk-12)),  (8:44)
wel0,27]

where |||l denotes the spectral matrix norm and X, k = 0,1,...,K — 1, contains the
truncated causal Hankel singular values.

8.6. Numerical Results

In this section we consider numerical examples to illustrate the reliability of the pro-
posed model reduction method for periodic time-varying discrete-time descriptor sys-
tems. For such systems we solve the periodic projected Lyapunov equations ( i.e., the
PPDALEs in Theorem 4.3.5) using their corresponding lifted forms (i.e., the PLDALEs
in Theorem 5.2.4 and 5.2.5) that we have discussed in Section 9.3. The solutions of
these projected lifted Lyapunov equations have specific block diagonal structure and
the diagonal blocks of these lifted solutions correspond to the solutions of the periodic
projected Lyapunov equations (see, Theorems 5.2.4 and 5.2.5, and the proofs therein).
We pick up the periodic Gramians, i.e., Gir, GZ”, Gi”, and G;(’CO, k=0,1,...,K-1, from
the block diagonal solutions of these projected lifted Lyapunov equations, i.e., from
gv,G", 6%, and G, respectively. These periodic Gramians are used to find a bal-
anced realization of the periodic time-varying discrete-time descriptor systems using
the procedure described in [30]. Finally, a balancing based model reduction method
is discussed and a reduced-order model is obtained by the algorithms that we have
described in Section 9.5. Note that for MOR, it is not necessary to find a balanced
realization of the periodic time-varying discrete-time descriptor systems explicitly. One
can omit the explicit formulation of the balancing steps for MOR.

We consider here two artificial problems because real life problems were very difficult to
collect from prescribed application fields. The first test example is a small dimensional
problem taken from [30], and the second test problem is a self-generated artificial
problem.

8.6.1. Model Problem 1

We consider a periodic discrete-time descriptor system with p = 1, =10, pr =2, g = 3,
and period K = 3 as presented in [30, Example 1]. The periodic matrix pairs {(E, Ak)}fz‘ol
are pd-stable with n£ =8and n” = 2fork =0,1,2. The original lifted system has order

n = 30. The sparsity patterns of € and A of the corresponding lifted system are plotted
in Figure 8.1.
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Figure 8.1. (a) Sparsity pattern of A, (b) sparsity pattern of & (Model problem 1).

The norms of the computed solutions of the periodic Lyapunov equations and the
corresponding residuals, e.g.,

IAGIAT — ExGE ET + Pi(k)BBIPi(k) 2,

] (545)

cr —
Pe =

are shown in Table 8.1 and Table 8.2.

Table 8.1. Norms and absolute residuals for the reachability Gramians

(Model problem 1)
k Il G I Py I GZ" 1l P
0 58182 x 102 6.1727 x 10712 1.3946 x 101 1.5444 x 10714
1 82981 x 10* 8.2172x 10712 1.3660 x 10! 1.7508 x 1014
2 71107 x 103 3.0961 x 10712 1.4308 x 10!  3.3847 x 10714

Table 8.2. Norms and absolute residuals for the observability Gramians

(Model problem 1)
k Il G ll2 o I GE° Il [l
0 9.7353 x 101 2.7678 x 10713 1.6866 x 100 1.3372x 10715
1 1.1373 x 10°  7.7003 x 10714 1.7406 x 10  2.1113x 107
2 9.6984 x 10°  1.7859 x 10714 1.6866 x 100  1.1626 x 10~1°

Figure 8.2 shows the causal Hankel singular values of the different subsystems for
k =0,1,2. We see that they decay gradually, and, hence the system (8.1) can be well
approximated by a reduced-order model. We have 24 causal Hankel singular values
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Causal Hankel singular values
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Figure 8.2. Causal Hankel singular values for different subsystems (Model problem 1).

for the original lifted system and the remaining 6 are noncausal Hankel singular values
which are positive. We approximate system (8.1) to the tolerance 10~2 by truncating the
states corresponding to the smallest 7 causal Hankel singular values.

The computed reduced-order model has subsystems of orders, r = (7,8,8). Figure
8.3 shows the finite eigenvalues of the original and reduced-order lifted systems. We
observe that stability is preserved for the reduced-order system.

In Figure 8.4, we present the norms of the frequency responses 3(¢/”) and F((¢'“') of the
original and reduced-order lifted systems for a frequency range [0, 27t]. We observe nice
match of the system norms.

In Figure 8.5, we display the absolute error lFC(e™) — F((e'®)||l, and the error bound
(8.44). One can see that the absolute error is smaller than the error bound. Note that
the absolute error curve is flat in Figure 8.5. This is due to the reason that the absolute
error [|H(e'”) — F{(e!)|l, computed at different frequency points in the frequency range
[0,27] lies between 6.91 x 1073 and 6.92 x 1073. These small absolutes errors produce
almost a flat line in the frequency range [0, 27t].

8.6.2. Model Problem 2

Model problem 2 is an artificial periodic discrete-time descriptor system with p = 1y =
404, pr = 10, g = 15, and period K = 10. The periodic matrices Ex and Aj are dense
matrices foreachk =0, 1,...,9. The matrix pairs {(Ey, Ak)}f:'o1 are pd-stable with n{ =400
and ny =4 forevery k =0,1,...,9. The original lifted system has order n = 4040. The
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Figure 8.3. Finite eigenvalues of the original and the reduced-order lifted systems
(Model problem 1).

System norms
250 T T T T T

—Exact
-»-Reduced

200 .

Magnitude
= o
S e

50 1

00 1 2 3 4 5 6 7

Frequency (rad/sec)

Figure 8.4. The frequency responses of the original and the reduced-order lifted systems
(Model problem 1).
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Figure 8.5. Absolute error and error bound (Model problem 1).
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Figure 8.6. (a) Sparsity pattern of A, (b) sparsity pattern of & (Model problem 2).

sparsity patterns of £ and A of the corresponding lifted system are plotted in Figure 8.6.

The norms of the computed solutions of the periodic Lyapunov equations and the corre-
sponding residuals are shown in Table 8.3. Similar results also hold for the observability

Gramians.

We compute the causal Hankel singular values of the original system in lifted form.
These Hankel singular values are the combination of all the Hankel singular values
given by different subsystems, fork = 0,1, ...,9. The Hankel singular values decay fast,
and, hence the original system can be well approximated by a reduced-order model. We
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Table 8.3. Norms and absolute residuals for the approximate Gramians

(Model problem 2)

k Il G Il fond I GE" Iz P

0 2.009 x 10° 9.123x 10711 1.094 x 10° 9.103 x 10712
1 2.122 x 10! 4247 x 10710 2,655 x 10° 1.563 x 10712
2 8.803 x 10° 1.303x 10710 2701 x10~'  1.300x 10713
3 2.337 x 10° 1518 x 1071 4587 %1071 3.289x 10713
4 2.698 x 10° 1.193 x 1071 1.390 x 10° 2.726 x 10712
5 4.765 x 10° 1.910 x 10710 4.856 x 10° 2.084 x 10711
6 8.876 x 10! 6.688 x 10710 1.137 x 10! 2.887 x 10712
7 3.786 x 10! 1.345x 10710 6.047 x 107"  1.441x 10713
8 1.146 x 10! 1267 x 1071 3415%x 1071  2.074x 10713
9 3.776 x 10° 8.574x 10712 3464x107!1 1.680x 10712

have 4000 causal Hankel singular values for the original lifted system and the remaining
40 are noncausal Hankel singular values which are positive. We plot them in Figure 8.8.

Causal Hankel singular values
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Figure 8.7. Causal Hankel singular values for original and reduced-order lifted systems
(Model problem 2).
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Figure 8.8. Noncausal Hankel singular values for original and reduced-order lifted
systems (Model problem 2).

We approximate the original system to the tolerance 1072 by truncating the states corre-
sponding to the smallest 2007 causal Hankel singular values. For different su