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1.1 Motivation

As children grow up, they are asked a lot of times what they want to become after
finishing school. I remember answering with jobs like pilot, train driver or engineer.
In secondary school I took part in an advanced course in physics, where among other
subjects we dealt with lasers. I was fascinated by the physical background and the
huge variety of applications, so at that time I decided to focus on lasers as my future
profession. I cannot recall the exact reasons, but I lost track of that and started studying
Technomathematik, which can be briefly described as mathematical studies with strong
focus on application engineering and industry. During a five month-long stay in Finland
I discovered my special interest in a mathematical field called Inverse Problems, and
being close to the end of my study time, decided to write my thesis in this subject.
Therefore I joined Prof. Hofmann’s group, who among others provided the topic
described here. Because of the connection between both my preferred mathematical
and physical field and the possibility to solve a real problem occurring in current
research, the decision to accept it as the final work of my studies was rather easy.
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Chapter 1: Introduction

The problem is provided by the Max-Born-Institute for nonlinear optics and short
pulse spectroscopy, Berlin. Introducing a new method to measure ultra-short laser
pulses, it has been discovered that only an autoconvolved signal of the desired pulse is
measurable. The task of this work is the derivation of the convolution equation from
the physical processes, its analysis and finally the reconstruction (deconvolution) of the
unknown laser pulse.

1.2 Background

Inverse Problems is a relatively young branch of mathematics which started to de-
velop in the second half of the 20th century after the publications of A. Tikhonov (cf [34],
[35]) and is closely connected to applied problems and the rapidly accelerating process-
ing power of computers. This allows to simulate more and more complex problems.
The classical problem in numerical mathematics is to determine the effect of a given
causality by numerical simulation of the process. Given a mathematical model that
approximates the real world problem sufficiently, the effect can be calculated whenever
all necessary parameters affecting it are known precisely enough. However, sometimes
there is not enough information on at least one parameter. In this context, a parameter
could be a real or complex valued number, but in most cases, including this work, a
function describing a physical quantity is meant. In this case the connection between
cause and effect can be utilized backwards. By measuring the effect quantity, it is of-
ten possible to identify the missing parameters. Therefore those situations are called
identification problems and form the first class of Inverse Problems which can be roughly
outlined by determining the cause from the effect. Unfortunately, in most situations
this is much more difficult than the direct or forward problem. Inevitably all measured
data carry small errors which may lead to huge errors in the estimated cause. But this is
only one aspect of an ill-posed problem (see section 2.4). To overcome these additional
difficulties special techniques for the inversion of a direct problem are necessary.
For more information and examples see for example the books of Hofmann
[15, chapter 2], Engl et al. [7], Groetsch [12] or Scherzer [31].

‘Laser’ is an acronym for Light Amplification by Stimulated Emission of Radiation. In
other words, a laser is a device that emits electromagnetic radiation using the principle
of stimulated emission of photons (see for example [28, chapter 6]). The first laser
was built in 1960 by Theodore Maiman [25]. The light amplification was realized in a
ruby crystal (aluminium oxide with chromium, Al2O3 : Cr) resulting in red light pulses
of 694 nanometres wavelength. In opposition to continuous wave lasers, which were
developed shortly after, pulse lasers emit light in short discrete time intervals, see Fig.
1.1.

Since 1960, lasers have taken a rapid development. Many other materials have been
discovered to induce the stimulated emission, resulting in a huge variety of possible

2



1.2. Background

Figure 1.1: Example of a pulse laser signal and a continuous wave laser signal
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wavelengths. While the energy generated by lasers has increased, the length of laser
pulses has decreased as shown in Fig. 1.2.

A laser pulse is described by the time-dependent electric field E(t) it generates. Its
complex valued Fourier-transformed signal ε(ω) can be separated into absolute values
|ε(ω)| and phase ϕ(ω) with ε(ω) = |ε(ω)|eiϕ(ω), see Fig. 1.3. The phase consists of a
constant part ϕ0 and the integral over the so called group delay GD(ω),

ϕ(ω) = ϕ0 +

ω∫
−∞

GD(ω̂)dω̂. (1.1)

In other words, the group delay is the derivative of the phase,

GD(ω) =
dϕ(ω)

dω
. (1.2)

The particular interest in a laser pulse lies in its group delay, because it is the important
part for the pulse duration and its shape. The constant offset can often be neglected. We
will later see that this solves some issues occurring from the properties of the problem.

Meanwhile lasers have found many applications in medicine, industry and everyday
life. Because of the huge variety of lasers, only few examples can be given here. They
are a core part of every CD, DVD or Blue-Ray drive; they are used in eye surgeries or to
remove tattoos and to measure distances or times. They can have enough energy to cut
steel, and perhaps even enough to start a nuclear fusion.

3



Chapter 1: Introduction

Figure 1.2: Development of pulse durations

Figure 1.3: Laser pulse representation in time (left) and Fourier domain (right)
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1.3. Introduction to nonlinear optics

1.3 Introduction to nonlinear optics

To understand the physical processes involved in this work, a closer look on nonlinear
optics is necessary. Therefore a short summary of chapter 1.1 of the book of Boyd [2] is
presented in this section.
The polarization P(t) describes the relative tendency of a charge distribution (e.g. elec-
trons and protons in an atom) to be distorted from its normal shape by an external
electric field E(t). A light field interacting with a molecule or atom causes a displace-
ment of the charge carriers in the system. In the simplest case of a single electron bound
to a core, the displacement of the electron by the light field creates a dipole moment
which is measurable as polarization. Assuming that the applied light field is much
weaker than the field between the electron and the core, the polarization is proportional
to the light field. This is the case in linear optics. If the light field is of the same
magnitude as the electron-core-field (which could only be achieved since the invention
of lasers) the polarization is no longer proportional, but still a light field results from
the polarization. According to Boyd, ‘the reason why the polarization plays a key role
in the description of nonlinear optical phenomena is that a time-varying polarization
can act as the source of new components of the electromagnetic field. For example, the
wave equation in nonlinear optical media often has the form

∇
2Ẽ −

n2

c2
∂2Ẽ
∂t2 =

4π
c2
∂2P̃NL

∂t2 . (1.3)

This equation expresses the fact that, whenever ∂2P̃NL

∂t2 is nonzero, charges are being
accelerated, and according to Larmor’s theorem from electromagnetism accelerated
charges generate electromagnetic radiation.’1 This resulting field then also contains
powers of the frequencies of irradiating field.
Within this section, t denotes a time dependency. For a laser beam with the (angular)
frequency ω (ω = 2π f where f is the real frequency) and a wave vector ~k the electric
field will be represented as

Ẽ(t) = Ee−iωt+i~k~r + c.c.

where the tilde indicates a quantity rapidly varying in time, E is a complex vector
describing the amplitude, phase and polarization of the beam. The abbreviation c.c.
stands for the complex conjugated term (as a simple example, a = b+c.c.means a = b+b).
Finally, ~r = (ξ, η, ζ)T is a vector describing spatial properties. By applying Taylor’s
formula around E(t) = 0 the polarization P̃(t) can be expressed as a power series in the
field strength E(t),

P̃(t) = ε0[χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + . . . ]. (1.4)

Here χ(1) is the linear susceptibility and χ(2), χ(3) are the second- and third-order non-
linear susceptibilities, respectively. If the polarization in (1.4) only depends on the
χ(1)-term, the material is called linear. Otherwise it is called nonlinear.

1[2, p.3f]
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Chapter 1: Introduction

Definition 1.1:
A medium is called χ(n)-medium, if the n-th term in (1.4) dominates and the other
terms can be neglected.

A second effect necessary for understanding the main topic is the optical Kerr effect (cf,
for example [30]). The refracting index of a medium is not constant, but varies slowly
depending on the intensity of the applied electric field. For centrosymmetric materials
(in terms of crystallogy, centrosymmetry ‘refers to a space group which contains an
inversion center as one of its symmetry elements. In such a space group, for every point
(x,y,z) in the unit cell there is an indistinguishable point (-x,-y,-z)’2), the refractive index
writes as

n(E) = n0 + n2I(ω) = n0 + n2|E(ω)|2. (1.5)

Thus each frequency of a laser pulse is refracted differently.

For some reasons, one is interested in the detailed shape of ultrashort laser pulses.
Knowing a pulse helps to adjust the laser to create even shorter pulses with applica-
tions in medicine, material processing and to study events acting on short timescales.
The shorter the pulse is, the shorter the observable period of time becomes. Usually
a gaussian pulse shape is desired to avoid local maxima which perturb spectroscopic
measurements. One is also interested in the particular shape of a laser pulse to enhance
established laser systems. Changing one component of the system and then determin-
ing the pulse again shows precisely the effect of that component.

The fundamental limit for measuring pulses is electronics, as they can only be used to
record events in the order of picoseconds (10−12 seconds). Since this limit cannot be
overcome, techniques are necessary which work on the pulses themselves. They key in
all approaches is the application of a nonlinear material.

Several possible solutions like autocorrelation [6] and FROG [37] have been found which
sample the pulse by itself, convert time to space and make use of the frequency dou-
bling. Neither of them were totally satisfying. A third way, called SPIDER, will be the
basic idea for the measurement of the pulses. For a review of all these methods and
additional references see [32].

The abbreviation SPIDER stands for Spectral Phase Interferometry for Direct Electric-
field Reconstruction and was proposed by I. A. Walmsley and C. Iaconis [19], [42].
A possible realization of SPIDER is shown in Fig. 1.4.

The unknown (‘fundamental’) pulse is split into two beams in a). In the first beam b) it
is duplicated with a time delay, while in the second beam c) it is strongly chirped which
means, in simple words, that it is stretched so its pulse duration is increased significantly.
This effect is caused by the frequency-dependent optical density of a medium. Therefore

2http://en.wikipedia.org/wiki/Centrosymmetry
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1.3. Introduction to nonlinear optics

Figure 1.4: possible SPIDER setup

the particular frequency components have a different speed within the medium. It
is called continuous-wave (cw) beam, because it is so much longer compared to the
fundamental pulse that relatively to its short pulse duration the fundamental pulse
‘sees’ more or less only one frequency of the chirped beam. Both beams b) and c) are
then combined in d) in aχ(2) medium. In e) a spectrograph finally measures the intensity
of the resulting signal at certain frequencies.
But SPIDER has flaws as it can only measure a relative group delay. Because of the
processes in a χ(2)-medium [2], a frequency doubling of the SPIDER-signal with respect
to the fundamental pulse occurs. Therefore, like all χ(2)-based ideas, it is limited to
visible and the near-infrared spectral range. This follows, because transparent media
(media which let relevant frequencies pass) start to absorb at shorter wavelengths (200-
300nm). A frequency doubling (or bisection of the wavelength) of 400 nm is therefore
critically.
This limit is relaxed for χ(3)-based characterization methods, where a four wave mixing
process takes place. This has been applied in SD-FROG [37] already and will now be
explained for SD-SPIDER.
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Chapter 1: Introduction

1.4 SD-SPIDER

SD-SPIDER (SD standing for self diffraction) has been introduced by the research group
‘Solid State Light Sources’ led by Dr. Günter Steinmeyer as subdivision of division C
‘Nonlinear Processes in Condensed Matter’ at Max-Born-Institute for Nonlinear Optics
and Short Pulse Spectroscopy, Berlin. The approach was presented at the conference
CLEO 2010 [29].

The basic setup of SD-SPIDER is similar to conventional SPIDER (see Fig. 1.4), but
instead of a χ(2)-medium a χ(3)-medium, namely Bariumfluoride BaF2 throughout this
work, is used. This leads to a fundamental change in the behaviour of the nonlinear
gating process. An electric field consisting of the three electric fields with one frequency
component each (in particular the laser beams incident in the χ(3) medium) can be
written as

Ẽ(3)(t) = E1e−iω1t + E2e−iω2t + E3e−iω3t + c.c. (1.6)

The resulting polarization (see (1.4))

P̃(t) = χ(3)Ẽ3
(3) (1.7)

then consists of 16 different combinations of the original frequencies. For the full list
and associated complex amplitudes see [2, p.12].

Because the two laser beams from Fig. 1.4 are not interchangeable, two possible imple-
mentations of SD-SPIDER exist. In the first one, two photons from the chirped beam (c)
are mixed with one replica photon. This version is called upshift SD-SPIDER, referring
to the sign of the frequency shift induced by the chirped beam in the four-wave mixing
process as can bee seen in the bottom part of Fig. 1.6. This figure shows the k-vector dia-
gram of both implementations and illustrates the phase matching. Upshift SD-SPIDER
allows analytic retrieval of the pulse shape and was successfully demonstrated in [29].
However, the obtained signal strength is quite limited.
The second implementation of SD-SPIDER, referred to as downshift SD-SPIDER, allows
higher signal strength. There, two photons from the replica beam (b) are mixed with
one photon from the chirped beam (see top part of Fig. 1.6). We then have

ω4 = ω2 + ω3 − ω1, (1.8)

where ω2 = ω3 =: ω is the frequency of the replica pulses and ω1 =: ωcw is the frequency
of the chirped, quasi continuous-wave beam. Therefore, as shown in Fig. 1.7 the
frequencies ω are shifted back by ωcw. This can also be interpreted as the law of
energy conservation. One photon of frequency ω2 and one photon of frequency ω3 are
destroyed and two photons of frequency ω1 and ω4 are created as illustrated in Fig. 1.5.

Including the complex amplitudes we derive the polarization

P̃SD(t) = 6χ(3)E1E2E3e−i(ω2+ω3−ω1)t (1.9)

8



1.5. Equation

Figure 1.5: Law of energy conservation in the four-wave mixing process

from plugging (1.6) into (1.7).

For the description of the self-diffraction effect, the particular frequency components
of the pulses are considered as plane waves. If two plane waves from each pulse
respectively interfere, a periodical pattern of intensity minima and maxima is formed.
Because of the optical Kerr-effect (1.5) this pattern generates a periodical refractive
index (refractive index grating) within the material. Another wave of one of the pulses
is refracted at this index, resulting in the SD-signal. Because photons of every frequency
contained in the laser pulse create a grating with one photon from the cw-pulse and at
each of this resulting gratings photons of every frequency contained in the laser pulse
are refracted, the SD-signal is the convolution of the fundamental pulse. In other words
the SD-signal is the sum of all combinations E1(ω2)E2(ω2 − ω3 + ωcw)eiωcwt. Writing
this as an integral, one can identify the autoconvolution effect. Since the fundamental
pulse is shorter and thus much stronger than the cw-pulse, it is the one that is refracted
primarily.
The measurements themselves are made by a spectrometer measuring the Fourier-
transformed intensity of the electric field for certain frequencies using a CCD-camera.
The phase of the complex signal is then retrieved via the Takeda algorithm [33].

Because deconvolution is nontrivial, downshift SD-SPIDER has only been proposed in
theory yet, but needs to be demonstrated. It will be introduced throughout this work
and associated papers.

1.5 Equation

The derivation of the convolution equation starts from the nonlinear wave equation

∇ × (∇ × E) +
n2

c2 ∂
2
t E = −µ0∂

2
t PNL(E), (1.10)

9



Chapter 1: Introduction

Figure 1.6: k-vector diagram showing phase matching of the four-wave mixing process

Figure 1.7: Frequency shift of SD-SPIDER signal with respect to the fundamental pulse

10



1.5. Equation

where PNL is the nonlinear polarization and E =
3∑

j=1
E j the sum of all three electric fields

inducing the SD-wave in the four-wave mixing process. Applying standard approxi-
mations (isotropic non-absorbing media, undepleted pump fields, loose focusing, plane
wavefronts, slowly varying envelope approximation), we arrive at an equation for the
generated electric field

E4(ω) =
µ0cω

2n

L∫
0

P̂NL(z, ω)e−i~k4~rdζ, (1.11)

where c is the speed of light, µ0 the vacuum permeability (for for numerical values see
section 3.2), n = n(ω) the refractive index and L is the length of the BaF2-crystal. In our
case, the polarization P̂NL reads

P̂(3)(r, ω)

=

∫ ∫ ∫
χ(3)(ω,ω1, ω2, ω3)6E(r, ω1)E(r, ω2)E(r, ω3)δ(ω − ω1 − ω2 − ω3)dω1dω2dω3.

(1.12)

The electric fields to be considered are
first cw-beam as beam 1

E(r, ω1) ' Ecw(ω1)δ(ω − ωcw)ei~kcw~r + Ecw(ω1)δ(ω + ωcw)e−i~kcw~r, (1.13)

second fundamental pulses as beam 2 and 3

Ep(r, ω j) =

Ep(ω j)ei~kp~r ω > 0

Ep(ω j)e−i~kp~r ω < 0
, j = 2, 3. (1.14)

Now only those waves propagating in the direction of the conventional (downshift) SD
are of interest, such that only the special polarization given by

P̂(3)(r, ω) ∝



∞∫
0

∞∫
0
χ(3)EcwEp(ω2)Ep(ω3)δ(ω + ωcw − ω2 − ω3)

ei(−~kcw+~kp+~kp)~rdω2dω3 ω > 0
∞∫
0

∞∫
0
χ(3)EcwEp(ω2)Ep(ω3)δ(−|ω| − ωcw + ω2 + ω3)

ei(~kcw−~kp−~kp)~rdω2dω3 ω < 0

(1.15)

is to be considered. Both integrals start at zero since in either process the two photons
out of the pulse spectrum have to enter with the same sign. By simplification we get

P̂(3)(r, ω) ∝


∞∫
0
χ(3)EcwEp(ω2)Ep(∆ω)ei(−~kcw+~kp+~kp)~rΘ(∆ω)dω2 ω > 0

∞∫
0
χ(3)EcwEp(ω2)Ep(∆ω)ei(~kcw−~kp−~kp)~rΘ(∆ω)dω2 ω < 0

, (1.16)
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Chapter 1: Introduction

with ∆ω = ∆ω(ω,ωcw, ω2) = ω + ωcw − ω2 and

Θ(ω) =

1 ω ≥ 0
0 ω < 0

(1.17)

the Heaviside step-function guaranteeing that no argument with negative sign/photon
with negative frequency enters. We thus have

P̂(3)(r, ω) ∝


ω+ωcw∫

0
χ(3)EcwEp(ω2)Ep(∆ω)ei(−~kcw+~kp+~kp)~rdω2 ω > 0

P̂(3)(r, |ω|) ω < 0.
(1.18)

This makes sense since it has the same structure as required for the spectrum in order
to generate the real-valued field in the time domain. Plugging 1.18 into (1.11) we get

ESD(L, ω) =
µ0cω

2n

L∫
0

ω+ωcw∫
0

χ(3)EcwEp(ω2)Ep(∆ω)ei(−~kcw+~kp+~kp)~rdω2e−i~kSD~rdζ (1.19)

Applying Fubini’s law3 we have

ESD(L, ω) =
µ0cω

2n

ω+ωcw∫
0

χ(3)EcwEp(ω2)Ep(∆ω)

L∫
0

ei(−~kcw+~kp+~kp−~kSD)~rdζdω2. (1.20)

With ~∆k = −~kcw +~kp +~kp −~kSD and ~r = (ξ, η, ζ)T we get

ESD(L, ω) =
µ0cω

2n

ω+ωcw∫
0

χ(3)EcwEp(ω2)Ep(∆ω)ei ~∆kξξ+ ~∆kηη

L∫
0

ei ~∆kζζdζdω2. (1.21)

It is

L∫
0

ei ~∆kζζdζ =

 1
~∆kζ

ei ~∆kζζ

L

0

=
1
~∆kζ

(sin( ~∆kζL) − sin(0) + i(− cos( ~∆kζL) + cos(0)))

=
1
~∆kζ

(2 sin( ~∆kζ
L
2

) cos( ~∆kζ
L
2

) + 2i sin2( ~∆kζ
L
2

))

=
2
~∆kζ

ei ~∆kζ L
2 sin( ~∆kζ

L
2

) = Lei ~∆kζ L
2

sin( ~∆kζ L
2 )

~∆kζ L
2

. (1.22)

3we will later see that the integrand is continuous
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1.5. Equation

Defining sinc(z) := sin(z)
z and plugging (1.22) into (1.21) we arrive at an equation

ESD(ω) =


ω+ωcw∫

0
K(ω, ω̂)Ep(ω̂)Ep(ω + ωcw − ω̂)dω̂ ω > 0

Ê4(L, |ω|) ω < 0
, (1.23)

with the kernel

K(ω, ω̂) =
µ0cL

2
ω

n(ω)
χ(3)(ω,−ωcw, ω̂, ω + ωcw − ω̂)E

cw
ei(∆~kξξ+∆~kηη+∆~kζ L

2 )sinc(∆~kζ
L
2

). (1.24)

To improve readability we set y(ω) := ESD(ω) and x(ω̂) := Ep(ω̂). Both y and x are
complex functions which are composed of absolute values | · | and phase ϕ· so that
we have y(ω) = |y(ω)|eiϕy(ω) and x(ω̂) = |x(ω̂)|eiϕx(ω̂). Furthermore it is assumed that
x is nonzero only between a lower boundary frequency ω̂l and an upper boundary
frequency ω̂u, in mathematical terms supp(x) = [ω̂l, ω̂u]. From (1.8) follows immediately
supp(y) = [2ω̂l − ωcw, 2ω̂u − ωcw].
Until now, the frequency dependency of the k-vectors has not been mentioned. In fact,
we have

~∆k(ω, ω̂, ωcw) = −~kcw(ωcw) +~kp(ω̂) +~kp(ω + ωcw − ω̂) −~kSD(ω,ωcw, ω̂). (1.25)

If the pulses and the cw-wave are incident with a crossing angle 2α, the direction of
their k-vectors is

~kcw

||kcw||2
= (sinα, 0, cosα), (1.26)

~kp

||kp||2
= (− sinα, 0, cosα) (1.27)

and their euclidean norm is
||~k···(ω̃)||2 =

n(ω̃)ω̃
c

. (1.28)

The k-vector of the self-diffracted wave is

~kSD =
n(ω)ω

c
−kcw(ωcw) + kp(ω̂) + kp(ω + ωcw − ω̂)
|| − kcw(ωcw) + kp(ω̂) + kp(ω + ωcw − ω̂)||2

. (1.29)

The refractive index is calculated from

n2(ω̃) = 1 + χ(1)ω̃. (1.30)

The Sellmeier equation (cf [30]) then gives

n2(ω̃) = 1 +
B1λ2(ω̃)
λ2(ω̃) − C1

+
B2λ2(ω̃)
λ2(ω̃) − C2

+
B3λ2(ω̃)
λ2(ω̃) − C3

, (1.31)
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Chapter 1: Introduction

Table 1.1: Sellmeier coefficients for BaF2

B1 B2 B3 C1 C2 C3

0.6434 0.5058 3.8261 0.0578 0.1097 46.3864

with the wavelength λ = c
f corresponding to µm = 10−6m. Therefore, for given ω

λ(ω) =
c
ω
2π

1
µm

=
2πc10−6m

ω
. (1.32)

The Sellmeier coefficients B j and C j are experimentally determined parameters. For the
BaF2 crystal used in the experiment see table 1.1 (measured by Malitson [26]).
The parameter E

cw
is a complex value which is constant throughout an experiment,

but unknown and can not be measured. As it only scales the absolute values of the
SD-SPIDER signal and adds a constant value to its phase, we set E

cw
:= 1 in this work.

According to Boyd [2], χ(3) can be approximated as

χ(3)(ω4, ω3, ω2, ω1) = Aχ(1)(ω4)χ(1)(ω3)χ(1)(ω2)χ(1)(ω1) (1.33)

for ionic crystals where A is some proportionality constant. Throughout this work, it
is assumed that A = 1. At least for the BaF2 crystal this can be regarded as a good
approximation since fluorine has a high electro-negativity such that it will attract an
electron from the Barium. Calculating the refractive index via (1.31), we get χ(3) from
(1.33) using (1.30) to evaluate

χ(1)(ω̃) = n2(ω̃) − 1. (1.34)

For the mathematical analysis of the problem we will assume that the kernel is contin-
uous. The following remark shows that this applies to the physical kernel.

Remark 1.2:
Using a BaF2 crystal, the kernel K(ω, ω̂) in (1.24) is continuous for
min

{
ω̂l
2π ,

2ω̂l−ωcw
2π

}
> f c

3 with f c
3 ≈ 4.0608 · 1013Hz.

It can be seen immediately that a discontinuity may only appear in the calculation
of the refractive index in (1.31). Because Bk > 0 for k = 1, 2, 3, only the denominators
have to be investigated as they must not be zero. Singularities occur if λ2(ω)−C2

k = 0.
With λ from (1.32), the critical frequencies f c

k are

f c
k =

2πc106m
Ck

.
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1.5. Equation

Evaluating this for all three terms, we get

f c
1 ≈ 3.2589 · 1016Hz

f c
2 ≈ 1.7171 · 1016Hz

f c
3 ≈ 4.0608 · 1013Hz.

We will restrict the problem to the case min{ ω̂l
2π ,

2ω̂l−ωcw
2π } > f c

3 . The laser cannot
produce a signal with frequencies of the order of f c

1 or f c
2 . Thus, the kernel is

continuous.

For the mathematical analysis, the notation is changed to s := ω, t := ω̂, k(·, ·) := K(·, ·).
Because of the symmetry, only the case s = ω > 0 will be considered furthermore. Thus,
equation (1.23) can be written as

s̃+scw∫
0

k̃(s̃, t̂)x̂(t̂)x̂(s̃ + scw − t̂)dt̂ = ỹ(s̃). (1.35)

It is s ∈ [2tl − scw, 2tu − scw] and t̂ ∈ [tl, tu]. Substituting ŝ := s̃ + scw and defining
x̂(·) := x̃(· − scw); k̂(·, ·) := k̃(· − scw, ·) we arrive at an operator equation

[F(x̂)](ŝ) =

ŝ∫
0

k̂(ŝ, t̂)x̂(t̂)x̂(ŝ − t̂)dt̂ = ŷ(ŝ), (1.36)

where ŝ ∈ [2tl, 2tu] and t̂ ∈ [tl, tu]. To improve readability, the intervals can be trans-
formed onto [0, 2] and [0, 1] respectively by substituting ŝ = s(tu− tl)+2tl, t̂ = t(tu− tl)+ tl,
dt̂ = (tu − tl)dt,

s(tu−tl)+2tl∫
0

(tu − tl)k̂(s(tu − tl) + 2tl, t(tu − tl) + tl)x̂(t(tu − tl) + tl)x̂(s(tu − tl) + 2tl − t(tu − tl) − tl)dt

= ŷ(s(tu − tl) + 2tl). (1.37)

Finally, by defining y(s) := ŷ(s(tu − tl) + 2tl), x(t) = x̂(t(tu − tl) + tl) and
k(s, t) := (tu − tl)k̂(s(tu − tl) + 2tl, t(tu − tl) + tl) the convolution equation takes the form

s∫
0

k(s, t)v(s − t)v(t)dt = y(s). (1.38)

where

x : [0, 1] ⊂ R 7→ C,
y : [0, 2] ⊂ R 7→ C,
k : R+

×R+
7→ C.
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Chapter 1: Introduction

1.6 Measurement setup

In the beginning of this work, only measurements of the phase of the SD-pulse of ϕy(s)
and the absolute values of the fundamental pulse |x(t)|were available.
Intuitively, one might think that measuring |y(s)| would also be necessary so that the
complete SD-signal y can be used for the reconstruction of the fundamental pulse (for
the algorithm used in section 3.3 it is absolutely necessary to know the complete SD-
pulse). Another aspect that emphasizes the necessity of measuring |y(s)| is that in any
inverse problem one is interested in having as much information as possible about the
unknown objects. In fact, without the knowledge of |y(s)|, the unknown pulse is not
even identifiable, in other words a reconstruction is not possible because the phaseϕx(t)
essentially influences |y(s)|. Unfortunately, this cannot be shown analytically for all

phases ϕx because an integral of the form
x1∫

x0

e f (x)dx generally does not have a primitive.

Instead we will use a simple example. Let k(s, t) ≡ 1, y(s) = |y(s)|eiϕy(s), x(t) = |x(t)|eiϕx(t)

with |x(t)| ≡ 1 and a linear phase trend ϕx(t) = at + b (a, b ∈ R). Then

y(s) =

s∫
0

k(s, t)x(t)x(s − t) dt (1.39)

=

s∫
0

ei(ϕx(y)+ϕx(s−t)) dt. (1.40)

Switching to polar form this can be written as

y(s) =

s∫
0

cos((as + b) + (a(s − t) + b)) + i sin(at + b + a(s − t) + b) dt (1.41)

= cos(as + 2b)

s∫
0

1 dt + i sin(as + 2b)

s∫
0

1 dt. (1.42)

Now

|y(s)|2 = cos2(as + 2b)


s∫

0

1 dt


2

+ sin2(as + 2b)


s∫

0

1 dt


2

= s2. (1.43)

Note that the sum of the squares of the integrand in (1.41) equals one for all s.
Even in its simplest form the phase of x has an influence on the absolute values of y
and vice versa |y(s)| carries information about the sought-after phase. In general, in case
of a nonlinear phase which is to be expected from the measurements and a non-trivial
kernel this influence will obviously become unpredictable, therefore it is inevitable to
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1.6. Measurement setup

Figure 1.8: Comparison between fundamental pulse and SD-pulse. Left column: funda-
mental pulse. Right column: autoconvolved pulse. Although the absolute
values of the fundamental pulses are the same, the convolved pulses have
different absolute values
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measure |y(s)|.
To further prove this, Figure 1.8 shows two pulses x and their numerically computed
autoconvolution signal, where |x| ≡ 1 and the kernel is set to equal one. In the upper
part of a figure the absolute values are shown, in the bottom part the phase is plotted.
This confirms the theoretically predicted influence.
Writing (1.38) as

y(s) =

s∫
0

|k(s, t)|eiϕk(s,t)
|x(t)|eiϕx(t)

|x(s − t)|eiϕx(s−t)dt, (1.44)

it can be seen that the phase of y depends on the phase of the fundamental pulse x and
the kernel phase. Since the absolute values of y are influenced by the phase of x, also the
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Chapter 1: Introduction

Figure 1.9: Dependencies between input and output

ϕx → ϕy ← ϕk
↘ ↙

|x| → |y| ← |k|

kernel phase must influence |y(s)|. Fig. 1.9 shows how the functions in (1.44) depend
on each other.
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This section deals with the theoretical analysis of the nonlinear ill-posed autoconvolu-
tion equation presented in the previous chapter. We can formulate (1.38) as an operator
equation

Fx = y, (2.1)

where F : D(F) ⊂ X 7→ Y is a nonlinear operator mapping from a domain D(F) of
a Banach space X into a Banach space Y. In this work we will consider the cases
{X = C[0, 1],Y = C[0, 2]}, {X = L2[0, 1],Y = C[0, 2]} and {X = L2[0, 1],Y = L2[0, 2]}, where
C[a, b] is the Banach space of continuous complex valued functions over a real interval
[a, b] with the norm

||x||C[a,b] = max
t∈[a,b]

|x(t)|

and L2[a, b] the Hilbert space of quadratically integrable complex valued functions over a
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real interval [a, b] with the norm

||x||L2[a,b] =

b∫
a

x(t)x(t)dt =

b∫
a

|x(t)|2dt.

Several mathematical properties of the equation will be analyzed to draw conclusions
on various effects of ill-posedness, for example a discontinuous dependence of solutions
x from the measured data y. In other words, it will be shown that small errors in the
data may lead to huge errors in the solutions and regularization methods are necessary
for the stable reconstruction of the pulses. In detail, we deal with the equation

s∫
0

k(s, t)x(s − t)x(t)dt = y(s) (0 ≤ t ≤ 1, 0 ≤ s ≤ 2) (2.2)

from (1.38).

For the functions occurring in (2.2) we have the following assumption.

Assumption 2.1:
The complex functions x have a support in [0, 1] but will be defined on the whole real
axis such that x : R 7→ C with x(t) = 0 if t < [0, 1]. Consequently the functions y are
also complex with a support supp(y) ⊂ [0, 2], but analogously we define y : R 7→ C
with y(s) = 0 if s < [0, 2].

The complex valued kernel function k = k(s, t) is continuous for all s, t ∈ [0, 2].
Therefore the absolute values are bounded by a real constant K,

||k||C([0,2]2) ≤ K < ∞ (2.3)

or in L2 formulation
||k||L2([0,2]2) ≤ K̃ < ∞. (2.4)

We can extend the kernel to the whole real plane k : R2
7→ C by setting k(s, t) = 0 for

s < [0, 2] or t < [0, 2].

Remark 1.2 shows that this assumption applies to the physical problem.

2.1 Some remarks on preceeding publications

The problem under consideration seems to be rather new since we could not find
convincing assertions on the autoconvolution problem (2.2) in the literature under the
condition that k(s, t) , 1 and x, y are complex valued functions.
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2.1. Some remarks on preceeding publications

Existing publications consider the real valued autoconvolution equation, indicated by
the index R,

FRx = y, (2.5)
s∫

0

x(s − t)x(t)dt = y(s) (0 ≤ t ≤ 1, 0 ≤ s ≤ 1 or 0 ≤ s ≤ 2), (2.6)

where analogously to (2.1) the operator FR : D(F) ⊂ X 7→ Y maps between Banach
spaces X of real functions defined on [0, 1] and Banach spaces Y defined on [0, 1] or
[0, 2], respectively. In the papers [11], [10] and [17] equation (2.6) was under consid-
eration under the conditions stated above. Different domains D(F) and regularization
approaches for the stable approximate solution were discussed there. In [18] the ill-
posedness character of the autoconvolution equation was analyzed and inversion rates
have been derived using Fourier transform techniques. Lamm and Dai presented in [5]
a local regularization theory for the inverse autoconvolution problem and confirmed it
numerically. Another regularization approach based on Lavrent’ev regularization was
successfully applied to the autoconvolution equation (2.6) in [21] by Janno. Integral
equations of the first or third kind involving autoconvolution integrals were discussed
in [39], [40], [41] by von Wolfersdorf. Autoconvolution models accur in various fields,
see for example spectroscopy [1], stochastics [38] and image reconstruction [4].
A special technique to analyze properties of the ill-posed autoconvolution equation is
to transform (2.6) into a well-posed integral equation of the second kind through two
times differentiation as done in [20]. Then this attains the form

y′′(s) = 2x(0)x′(s) +

t∫
0

x′(s − t)x′(t)dt (0 ≤ s ≤ 2).

This equation has a unique solution x′(t), and it can be shown that equation (2.6) has
two solutions x1 and x2 = −x1 if y ∈W4

2[0, 1] and y(0) = y′(0) = y′′(0) = 0.
Unfortunately this method fails if a nontrivial kernel is involved. Differentiating

y(s) =

s∫
0

k(s, t)x(s − t)x(t)dt

with respect to s, we have

y′(s) = k(s, s)x(0)x(s) +

s∫
0

(k′(s, t)x(s − t) + k(s, t)x′(s − t))x(t)dt,

which is equivalent to

y′(s) = k(s, s)x(0)x(s) +

s∫
0

(k′(s, s − t)x(t) + k(s, s − t)x′(t))x(s − t)dt,
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resulting in a second derivative

y′′(s) = k′(s, s)x(s)x(0) + k(s, s)x′(s)x(0) + k′(s, 0)x(s)x(0)+

+

s∫
0

k′′(s, s − t)x(s − t)x(t) + k′(s, s − t)x′(s − t)x(t)+

+ k′(s, s − t)x(s − t)x′(t) + k(s, s − t)x′(s − t)x′(t)dt.

This is not an equation of the second kind. Hence this transformation technique can not
be applied to our case. However, for complex functions without a kernel it would be a
valid strategy.

2.2 Properties of the forward operator

2.2.1 Continuity

Continuity is a basic property of the forward operator F. It can be expected for practically
relevant mathematical models.

Definition 2.2:
An operator F : D(F) ⊂ X 7→ Y is called continuous in a point x ∈ D(F) if for
x + h ∈ D(F) ||h||X → 0 implies ||F(x + h) − F(x)||Y → 0. F is called continuous in D(F)
if it is continuous in all points x ∈ D(F).

Proposition 2.3:
Under assumption 2.1 the operator F : D(F) ⊂ X 7→ Y from (2.1) is continuous for
F : D(F) = L2[0, 1] 7→ L2[0, 2], F : D(F) = L2[0, 1] 7→ C[0, 2] and
F : D(F) = C[0, 1] 7→ C[0, 2]. The image y = F(x) is a continuous complex function in
any of these cases.

Proof. At first, the case F : L2[0, 1] 7→ C[0, 2] will be considered. Because of the kernel,
there is no inequality

||F(x1) − F(x2)||C[0,2] ≤ (||x1||L2 + ||x2||L2[0,1])||x1 − x2||L2[0,1]

as used in [11]. Instead, we have for fixed x ∈ L2[0, 1] and an increment h ∈ L2[0, 1] with
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2.2. Properties of the forward operator

h(t) = 0 for t < [0, 1]

||F(x + h) − F(x)||C[0,2] = max
s∈[0,2]

|[F(x + h)](s) − [F(x)](s)|

= max
s∈[0,2]

∣∣∣∣∣∣∣∣
s∫

0

k(s, t)((x(s − t) + h(s − t))(x(t) + h(t)) − x(s − t)x(t))dt

∣∣∣∣∣∣∣∣
= max

s∈[0,2]

∣∣∣∣∣∣∣∣
s∫

0

k(s, t)h(s − t)h(t)dt +

s∫
0

k(s, t)h(s − t)x(t)dt +

s∫
0

k(s, t)x(s − t)h(t)dt

∣∣∣∣∣∣∣∣
≤ max

s∈[0,2]

∣∣∣∣∣∣∣∣
s∫

0

k(s, t)h(s − t)h(t)dt

∣∣∣∣∣∣∣∣︸                      ︷︷                      ︸
(1)

+ max
s∈[0,2]

∣∣∣∣∣∣∣∣
s∫

0

k(s, t)h(s − t)x(t)dt

∣∣∣∣∣∣∣∣︸                      ︷︷                      ︸
(2)

+ max
s∈[0,2]

∣∣∣∣∣∣∣∣
s∫

0

k(s, t)x(s − t)h(t)dt

∣∣∣∣∣∣∣∣︸                      ︷︷                      ︸
(3)

(2.7)

To show continuity in point x, (1), (2) and (3) must vanish for ||h||L2[0,1] → 0. With the
Cauchy-Schwarz-inequality, and s ∈ [0, 2] it is

(1) ≤ ||k||L2([0,2]2)||h||L2[0,2]||h||L2[0,2] ≤ K||h||2L2[0,1],

(2) ≤ ||k||L2([0,2]2)||h||L2[0,2]||x||L2[0,2] ≤ K||x||L2[0,1]||h||L2[0,1],

(3) ≤ ||k||L2([0,2]2)||x||L2[0,2]||h||L2[0,2] ≤ K||x||L2[0,1]||h||L2[0,1].

Because x(t) = 0 for t < [0, 1], we have ||x||L2[0,2] = ||x||L2[0,1] and analogously the norms
of h remain the same on L2[0, 1]. From assumption 2.1 we get ||k||L2([0,2]2) < K. Thus, all
three terms in (2.7) go to zero for ||h||L2[0,1] → 0 and the continuity is shown in every
point x ∈ L2[0, 1]. If a weaker norm in Y is chosen, the property of continuity remains as
well as if a stronger norm in X is taken. Thus, starting from F : D(F) = L2[0, 1] 7→ C[0, 2],
F is also continuous for F : D(F) = L2[0, 1] 7→ L2[0, 2] and F : D(F) = C[0, 1] 7→ C[0, 2].
It remains to prove that F(x) is continuous for any x ∈ L2[0, 1].
For all x ∈ Lp[0, 1] (1 ≤ p < ∞) we define the modulus of continuity

µLp

x (∆) := sup
|h|≤∆


1∫

0

|x(t + h) − x(t)|pdt


1/p

= sup
|h|≤∆

||x(· + h) − x(·)||Lp[0,1] ≤ ∞.

The property of continuity in the mean (cf [3, p. 4]) ensures

lim
∆→0

µLp

x (∆) = 0 ∀x ∈ Lp[0, 1] (1 ≤ p < ∞). (2.8)
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Because we have for 0 < s < s + h ≤ 2

|[F(x)](s + h) − [F(x)](s)| =

∣∣∣∣∣∣∣∣∣
s+h∫
0

k(s + h, t)x(s + h − t)x(t)dt −

s∫
0

k(s, t)x(s − t)x(t)dt

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
s∫

0

(k(s + h, t)x(s + h − t) − k(s, t)x(s − t))x(t)dt +

s+h∫
s

k(s + h, t)x(s + h − t)x(t)dt

∣∣∣∣∣∣∣∣∣
≤ K||x||L2[0,1]||x(· + h) − x(·)||L2[0,1] + K||x||2L2[0,1]h, (2.9)

(2.8) ensures |[F(x)](s + h) − [F(x)](s)| → 0 for h→ 0 and F(x) is continuous. �

Remark 2.4:
If the preimage space X and image space Y are not defined on the same real interval,
the requirement x(t) = 0 for t < [0, 1] in the domain of F is essential. Otherwise
continuity can not be expected. Let for example

hn(t) =

 1
n , t ∈ [0, 1]
∞, t ∈ (1, 2].

Then we have ||hn||L2[0,1] → 0 for n→∞, but ||F(x + hn)||L2[0,2] = ∞ ∀n ∈N, in other
words F is not continuous.

2.2.2 Injectivity

Another important property is injectivity. If an operator F is injective, for given y the
equation y = Fx has only one solution x. For the real case (2.6) it has been shown in [11]
that FR is injective if y ∈ R+

0 := {y ∈ C[0, 1] : y ≥ 0,max{s : y(ξ) = 0 ∀ξ ∈ [0, s]} = 0} for
positive functions x(t) > 0 ∀t ∈ [0, 1]. A similar result can be derived in the general case
(2.2), but injectivity is lost as with x also −x is a solution and for complex functions the
domain restriction x(t) > 0 can not be maintained.

A lemma sometimes called Titchmarsh’s theorem will be the basis for analysis on the
injectivity.

Lemma 2.5:
For f ∈ L2[0, 1] and g ∈ L2[0, 1] let γ (0 < γ ≤ 1) exist, such that

s∫
0

f (s − t)g(t)dt = 0 (0 ≤ s ≤ γ).

Then there exist numbers α, β ∈ [0, 1] with α + β ≥ γ, f (t) = 0 a.e. in t ∈ [0, α] and
g(t) = 0 a.e. in t ∈ [0, β].
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2.2. Properties of the forward operator

Proof. See for example [36]. �

At first we want to discuss injectivity in the case that the kernel only depends on the
first variable, k(s, t) = k(s).

Proposition 2.6:
Let k(s, t) = k(s) with k(s) ∈ C[0, 2], |k(s)| , 0∀s ∈ [0, 2] and supp(y) = [δ1, 2−δ2] ⊂ [0, 2],
0 ≤ δ1, δ2 ≤ 1. Then the autoconvolution equation (2.2) has two solutions x1 and
x2 = −x1 with supp(x1) = supp(x2) = [δ1/2, 2 − δ2/2].

Proof. At first let δ1 = δ2 = 0. If the kernel does not depend on the variable t we have
for x1, x2 ∈ X

[F(x1)](s) − [F(x2)](s) =

s∫
0

k(s)x1(s − t)x1(t) − k(s)x2(s − t)x2(t)dt

=

s∫
0

k(s)(x1(s − t) − x2(s − t))(x1(t) + x2(t))dt.

If |k(s)| , 0 ∀s ∈ [0, 2], then

[F(x1)](s) − [F(x2)](s) = 0 ⇐⇒

s∫
0

(x1(s − t) − x2(s − t))(x1(t) + x2(t))dt = 0 (0 ≤ s ≤ 2).

(2.10)
By lemma 2.5 the integral in (2.10) is zero if either x1(t) = x2(t) for all t ∈ [0, 1] or
x1(t) = −x2(t) for all t ∈ [0, 1].
Now let δ1, δ2 > 0. Then by lemma 2.5 we have for a non-vanishing kernel k(s)

0 =

s∫
0

k(s)x(s − t)x(t)dt ∀s ∈ [0, δ1/2] ⇐⇒ x(t) = 0 a.e in [0, a] and x(t) = 0 a.e in [0, b]

with a + b ≥ δ1. Since a function can have only one support it is obviously a = b ≥ δ1/2.
On the other hand a = b > δ1/2 would yield supp(y) , [δ1, 2 − δ2] and we have
a = b = δ1/2. Finally

0 =

2∫
2−s

k(s)x(s − t)x(t)dt (0 ≤ s ≤ δ2/2)

is equivalent to

0 =

s∫
0

k(s)x(s − (−t + 2))x(−t + 2)dt (0 ≤ s ≤ δ2/2)
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and hence by analogous arguments to the lower boundary case we get x(t) = 0 for
t ∈ [2 − δ2/2, 2]. �

Remark 2.7:
From Proposition 2.6 it becomes clear that for the real valued case with
F : D(F) ⊂ L2

R
[0, 1] → L2

R
[0, 2] injectivity can be achieved by adding a constraint

x(t) > 0 ∀t ∈ [0, 1]. In the complex valued case no such restriction is possible. If the
whole autoconvolution signal y ∈ L2[0, 2] can be measured there are no ambiguities
if y(s) = 0 for s ∈ [0, δ] as in the case where also y is only known for 0 ≤ s ≤ 1,
cf [11, p.360].

Now let the kernel be also dependent on the variable t and R(F) denote the range of F,
R(F) := {y ∈ Y : ∃ x ∈ X such that y = F(x)}. Then we have the following proposition.

Proposition 2.8:
For given data y ∈ R(F) the operator F in (2.1) has at least two solutions x1 and
x2 = −x1 ∈ X.

Proof. Let x1, x2 ∈ X.Then

0 = [F(x1)](s) − [F(x2)](s) =

s∫
0

k(s, t)(x1(s − t)x1(t) − x2(s − t)x2(t))dt

=

s∫
0

k(s, t)(x1(s − t) − x2(s − t))(x1(t) + x2(t))dt+

+

s∫
0

k(s, t)x1(s − t)x2(t)dt −

s∫
0

k(s, t)x2(s − t)x1(t)dt.

(2.11)
�

The first integral is zero if x1(t) = x2(t) or x1(t) = −x2(t) for all t ∈ [0, 1]. In these cases
the other two integrals cancel each other out and F[x1] = F[x2].

Although the author assumes that there exist only two solution, it is an open problem
if additional solutions for equation (2.11) exist.

For the recovery of the SPIDER-signal this non-injectivity does not matter. Since for
complex x(t) = |x(t)|eiϕx(t), −x(t) = |x(t)|eiϕ−x(t) with ϕx(t) = ϕ−x(t) − π and we are only
interested in the group delay (see (1.2)), both solutions are identical with respect to our
interest. In particular there is no need to regularize the solutions concerning injectivity
as both solutions are acceptable.
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2.2. Properties of the forward operator

2.2.3 Weak closedness

Definition 2.9:
An operator F : D(F) ⊂ X 7→ Y is called weakly (sequentially) closed if for any sequence
{xn}

∞

N=1 ⊂ D(F), weak convergence xn ⇀ x0 in X and F(xn) ⇀ y0 in Y imply x0 ∈ D(F)
and y0 = F(x0).

Proposition 2.10:
The operator F from (2.1) under assumption 2.1 is weakly (sequentially) closed for
F : L2[0, 1] 7→ L2[0, 2].

Proof. The proof follows the ideas from Theorem 2 in [11, p. 361f], but the different
situation requires to carry out the proof completely here.
For zn ⇀ z0 in L2[0, 2] it is necessary and sufficient that {zn}

∞

n=0 is bounded in L2[0, 2]

and that for all 0 ≤ τ ≤ 1 it holds that
τ∫

0
zn(t)dt→

τ∫
0

z0(t)dt as n→∞ (cf [24, p 151]. The

L2-norms of the sequence {xn}
∞

n=1 are then uniformly bounded by a constant C < ∞.
We have

||F(x)||L2[0,2] =

2∫
0

s∫
0

k(s, t)x(s − t)x(t)dtds.

With Schwarz’ inequality and ||x||L2[0,2 = ||x||L2[0,1] because of supp(x) = [0, 1] it is

||F(x)|| ≤ K

2∫
0

||x||L2[0,1]||x||L2[0,1]ds

≤ 2K||x||2L2[0,1],

showing that F and thus {F(xn)} is bounded.

27



Chapter 2: Mathematical Analysis

To complete the proof, it is sufficient to show that for all τ ∈ [0, 2]

Θn = Θn(t) : =

∣∣∣∣∣∣∣∣
τ∫

0

[F(xn)](s) − [F(x0)](s)ds

∣∣∣∣∣∣∣∣
=|

τ∫
0

[

s∫
0

k(s, t)(xn(s − t) + x0(s − t))(xn(t) − x0(t))dt

︸                                                    ︷︷                                                    ︸
(1)

+

+

s∫
0

k(s, t)xn(s − t)x0(t)dt

︸                       ︷︷                       ︸
(2)

−

s∫
0

k(s, t)x0(s, t)xn(t)dt

︸                     ︷︷                     ︸
(3)

]ds|

(2.12)

tends to zero as n→ ∞. Integrals (2) and (3) are linear functionals in xn for fixed s and
x0. Because xn ⇀ x0

(2)

s∫
0

k(s, t)xn(s − t)x0(t)dt→

s∫
0

k(s, t)x0(s − t)x0(t)dt,

(3)

s∫
0

k(s, t)x0(s − t)xn(t)dt→

s∫
0

k(s, t)x0(s − t)x0(t)dt,

so both terms cancel each other out for n → ∞. If xn ⇀ x0 then then there exists a
sequence {∆n}

∞

n=1 so that xn = x0 + ∆n and ∆n ⇀ 0 as n → ∞. For the first integral we
have then

s∫
0

k(s, t)(xn(s − t) + x0(s − t))(xn(t) − x0(t))dt

=

s∫
0

k(s, t)(2x0(s − t) + ∆n(s − t))∆n(t)dt

=

s∫
0

k(s, t)2x0(s − t)∆n(t)dt +

s∫
0

k(s, t)∆n(s − t)∆n(t)dt. (2.13)
�

From ∆n ⇀ 0 follows the convergence of integral (1) in (2.12) to zero. Therefore F is
weakly continuous and since L2[0, 1] is weakly closed the operator F is weakly (sequen-
tially) closed.

28



2.2. Properties of the forward operator

2.2.4 Compactness

Compactness of an operator is of special interest as it provides information about the ill-
posedness of the operator. In the appendix of [9], Engl, Kunisch and Neubauer proved
the following proposition.

Proposition 2.11:
Let F be a (nonlinear) compact, continuous and weakly closed operator. Moreover,
assume that y0 = F(x0) and that there exists an ε > 0 such that y = F(x) has a unique
solution for all y = F(D(F)) ∩Uε(y0). If there exists a sequence {xn} ⊂ D(F) satisfying
xn ⇀ x0 but xn 9 x0, then F−1 (defined on F(D(F)) ∩Uε(y0)) is not continuous in y0.

In other words, if the operator is compact and there is such a sequence xn (which,
as mentioned in Remark 4 of the cited paper, exists if F is defined on a non-compact
domain) , a small error in the data yδ can lead to huge errors in the solution xδ.

Definition 2.12:
A subset S ⊂ X is called relatively compact, if any sequence {xn} ⊂ X has a subsequence
which converges in X.

Definition 2.13:
An operator F : X 7→ Y is called compact, if it maps any bounded subset of X into a
relatively compact subset of Y.

A comprehensive discussion of compactness for the real-valued, kernel-free autocon-
volution equation (2.6) can be found in [11, p.357ff]. There it has been shown the-
oretically and exemplarily that the operator F is not compact in the general cases
FR : L2[0, 1] 7→ L2[0, 1] and FR : C[0, 1] 7→ C[0, 1], but by considering specific do-
mains D(F) ⊂ X compactness can be achieved. Namely, the operator is compact if
FR : D(F) ⊂ L2[0, 1] 7→ L2[0, 1] and D(F) contains only non-negative, non-decreasing
functions or if FR : D(F) ⊂ C[0, 1] 7→ C[0, 1] contains only monotone functions. Neither
of these conditions can be used for complex functions. It is hard to show compactness
without using examples. Because a kernel could essentially influence the behaviour of
the operator, all examples would have to be verified for all possible kernels. We will
at first consider the trivial kernel and then try to draw conclusions about the nontrivial
case.

Proposition 2.14:
Let k(s, t) ≡ 1. Then the operator F in (2.1) is not compact for F : C[0, 1] 7→ C[0, 2] or
F : L2[0, 1] 7→ L2[0, 2].

Proof. Example 4 in [11, p. 359] shows non-compactness for the real valued problem
(2.5,2.6) for FR : L2[0, 1] 7→ L2[0, 1] and FR : C[0, 1] 7→ C[0, 1]. The same example applies
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to the situation when the whole data is measured. This a special case of our problem
(2.1,2.2) with k(s, t) ≡ 1 and x(t), y(s) ∈ R ∀t ∈ [0, 1], s ∈ [0, 2].
Let xn(t) := sin(nt). We obtain

yn(s) := [F(xn)](s) = −
s cos(ns)

2
+

sin(ns)
2n

(0 ≤ s ≤ 2; n = 1, 2, ...)

and compare these functions with x0(t) = 0 (0 ≤ t ≤ 1) and y0(s) := [F(x0)](s) = s
(0 ≤ s ≤ 2). Because we still consider xn on the interval [0, 1] the properties are
the same as in [11, Example 4, p. 359] and we have ||xn||C[0,1] = 1, ||xn||L2[0,1] ≤ 1,

limn→∞ ||xn||L2[0,1] = 1
2

√
2 , 0 and limn→∞

τ∫
0

xn(t)dt = 0 =
τ∫

0
x0(t)dt for all 0 ≤ τ ≤ 1. Thus

we have weak convergence xn ⇀ x0 as n → ∞ (cf [24, 151]), but norm convergence
||xn||L2[0,1] →

1
2

√
2 , ||x0||L2[0,1] = 0. Consequently there is no subsequence xnk strongly

convergent in L2[0, 1]. For the functions yn we now have to consider the new interval
[0, 2] instead of [0, 1]. We then have ||yn||L2[0,2] ≤ ||yn||C[0,2] ≤ 2, but still

τ∫
0

(
−

s cos(ns)
2

+
sin(ns)

2n

)
ds→ 0 ∀0 ≤ τ ≤ 2

and weak convergence yn ⇀ y0 in L2[0, 2] as n→∞. From
limn→∞ ||yn||L2[0,2] = 1

√
3
, 0 = ||y0||L2[0,2] it becomes clear that the autoconvolution

operator F from (2.1) does not map every bounded subset of L2[0, 1] or C[0, 1] onto a
relatively compact subset in L2[0, 2] or C[0, 2], respectively. Hence F is not compact
whenever these function spaces are considered. �

Since the autoconvolution equation is not compact for the trivial kernel k(s, t) ≡ 1, we do
not expect it to be compact for a nontrivial kernel like the one occurring in the physical
problem. The following remark will give another justification for this.

Remark 2.15:
Let assumption 2.1 hold true. From lemma 2.3 we have y ∈ C[0, 2] even if x ∈ L2[0, 1].
It is therefore sufficient to investigate the case y ∈ C[0, 2]. By the the Arzelá-Ascoli
theorem (e.g [24, p 163]), a subset D ⊂ C[a, b] is relatively compact if and only if it is
uniformly bounded and equicontinuous.
Let therefore F : D(F) ⊂ X 7→ C[0, 2] with X ∈ {L2[0, 1],C[0, 1]} and a domain
D(F) := {x ∈ X : ||x||X ≤M} of functions bounded by a real constant M < ∞. It is easy
to see that for a continuous kernel with K := maxs,t∈[0,2]2 k(s, t) from assumption 2.1

30



2.2. Properties of the forward operator

the range of F is bounded,

sup
s∈[0,2]

|y(s)| = sup
s∈[0,2]

∣∣∣∣∣∣∣∣
s∫

0

k(s, t)x(s − t)x(t)dt

∣∣∣∣∣∣∣∣ (2.14)

≤ sup
s∈[0,2]

∣∣∣∣∣∣∣∣K||x||C[0,1]||x||C[0,1]

s∫
0

dy

∣∣∣∣∣∣∣∣
≤ 2KM2.

If x ∈ L2[0, 1] only, then using Cauchy-Schwarz-inequality we derive from (2.14)

sup
s∈[0,2]

|y(s)| ≤ KM2.

Hence F(x) is bounded in both cases. However, equicontinuity cannot be shown
without further restrictions on the domain of F. It is

|y(s + h) − y(s)| =

∣∣∣∣∣∣∣∣∣
s+h∫
0

k(s, t)x(s + h − t)x(t)dt −

s∫
0

k(s, t)x(s − t)x(t)dt

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
s∫

0

k(s, t)(x(s + h − t) − x(s − t))x(t)dt +

s+h∫
s

k(s, t)x(s + h − t)x(t)dt

∣∣∣∣∣∣∣∣∣
≤ K||x||C[0,1]

s∫
0

|x(s + h − t) − x(s − t)|dt + K||x||2C[0,1]h

≤ KM

s∫
0

|x(s + h − t) − x(s − t)|dt + KM2h (2.15)

for x ∈ C[0, 1] or

|y(s + h) − y(s)| ≤ KM||x(· + h) − x(·)||L2[0,1] + o(h) (2.16)

respectively for x ∈ L2[0, 1]. Neither the remaining integral in (2.15) nor the norm
||x(· + h) − x(·)||L2[0,1] in (2.16) converge to zero equally for all functions x ∈ C[0, 1] or
x ∈ L2[0, 1].
Hence F is not expected to be compact. It follows immediately that compactness can
be achieved if the domain D(F) is chosen in a way that (2.15) or (2.16) ensure the
equicontinuity of the functions y.

Compactness of F can of course always be forced by choosing a compact domain D(F).
Since F is continuous, the Tikhonov theorem (cf [15, p.24]) provides the compactness of
F and the solutions x depend continuously on the right-hand side y (cf [8, section 4]).
An example of a compact domain is shown below.
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Definition 2.16:
We define a domain of bounded total variation

DTV := x ∈ L2[0, 1] : |x(t)| ≤M (0 ≤ t ≤ 1)
1∨

t=0

x(t) ≤M

where M is a real constant.

Lemma 2.17:
The set DTV from defintion 2.16 is a compact subset of Lp[0, 1] (1 ≤ p < ∞).

Proof. See [11, p.356]. There the theorem has been proven for real functions, but the
lemma and the lemmata required for the proof follow with the same arguments for
complex functions. �

Proposition 2.18:
The operator F in 2.1 is compact in both cases F : DTV

⊂ L2[0, 1] 7→ C[0, 2] or
F : DTV

⊂ L2[0, 1] 7→ L2[0, 2].

2.3 Derivatives of the forward operator

For the computation of the regularized solution a derivative-based algorithm will be
used. Therefore the derivative of the operator F in (2.2) has to be examined. We will
only consider F : L2[0, 1] 7→ L2[0, 2] furthermore.

Definition 2.19:
A linear operator A : H1 7→ H2 is called Hilbert-Schmidt operator if, for an arbitrarily
chosen complete orthonormal system {u(i)

}
∞

i=1 ⊂ H1,
∑
∞

i=1 ||Au(i)
||

2
2 < ∞.

Lemma 2.20:
Any Hilbert-Schmidt operator is compact. The integral operator A defined by

[Ax](s) =
1∫

0
k(s, t)x(t)dt with a quadratically integrable kernel

1∫
0

1∫
0
|k(s, t)|2dsdt < ∞

is a Hilbert-Schmidt operator.

Proof. See [15, p.28]. There it has been mentioned that this lemma also applies to Volterra
operators

s∫
0

k(s, t)x(t)dt = y(s). (2.17)
�
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Definition 2.21:
A bounded linear operator F′(x0) is called Gâteaux-derivative of an operator F in a
point x0 ∈ X, if

lim
τ→0

||F(x0 + τh) − F(x0) − F′(x0)||Y
τ

= 0 (2.18)

for x0 + τh ∈ X, τ ∈ R.

Definition 2.22:
A bounded linear operator F′(x0) ∈ L(X,Y) is called Fréchet-derivative of an operator
F in a point x0 ∈ X, if

lim
h→0

||F(x0 + h) − F(x0) − F′(x0)h||Y
||h||X

= 0 ∀h ∈ X (2.19)

for all x0 + h ∈ D(F).

Lemma 2.23:
The operator F in (2.1) has a Gâteaux-derivative in a point x0 ∈ D(F) of the form

[F′(x0)h]](s) =

s∫
0

(k(s, t) + k(s, s − t))x0(s − t)h(t)dt ∀x0 ∈ X. (2.20)

The Fréchet-derivative coincides with (2.20) and is a compact operator for every
x0 ∈ X.

Proof. We have

[F(x0+τh)](s) − [F(x0)](s) =
s∫

0

k(s, t)(x0(s − t) + τh(s − t))(x0(t) + τh(t))dt −

s∫
0

k(s, t)x0(s − t)x0(t)dt

=

s∫
0

k(s, t)x0(s − t)x0(t)dt + τ

s∫
0

k(s, t)h(s − t)x0(t)dt

+ τ

s∫
0

k(s, t)x0(s − t)h(t)dt + τ2

s∫
0

k(s, t)h(s − t)h(t)dt −

s∫
0

k(s, t)x0(s − t)x0(t)dt.

(2.21)

The first term equals [F(x)](s). This one and the last term cancel each other out. The
second and third term can be combined by substituting t̂ := s − t in the second term.
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Switching the integral limits and resubstituting t = t̂ it is

s∫
0

k(s, t)x0(t)h(s − t)dt = −

0∫
s

k(s, s − t̂)x0(s − t̂)h(t̂)dt̂

=

s∫
0

k(s, s − t)x0(s − t)h(t)dt.

Combining this with (2.21), we have for the middle integrals

s∫
0

k(s, t)h(t)x0(s − t)dt +

s∫
0

k(s, t)h(s − t)x0(t)dt

=

s∫
0

(k(s, t) + k(s, s − t))x0(s − t)h(t)dt.

Thus, the limit from definition 2.18

lim
τ→0

||F(x0 + τh) − F(x0) − F′(x0)||Y
τ

= lim
τ→0

||τ
s∫

0
(k(s, t) + k(s, s − t))x0(s − t)h(t)dt + τ2

s∫
0

k(s, t)h(s − t)h(t)dt − F′(x0)h||Y

τ

is zero if [F′(x0)h](s) :=
s∫

0
(k(s, t) + k(s, s − t))x0(s − t)h(t)dt, which is obviously linear in h.

One can easily see that F′(x0) also satisfies (2.20). For the Fréchet-derivative it remains
to prove that F′(x0) is bounded. It is

||F(x0)h||2L2[0,2] =

2∫
0

s∫
0

(k(s, t) + k(s, s − t))x0(s − t)h(t)dt

s∫
(k(s, t) + k(s, s − t))x0(s − t)h(t)dtds

≤

2∫
0

∣∣∣∣∣∣∣∣
s∫

0

(k(s, t) + k(s, s − t))x0(s − t)h(t)dt

∣∣∣∣∣∣∣∣
2

ds.

(2.22)
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2.3. Derivatives of the forward operator

With the constant K from assumption 2.1 and by using Hölder’s inequality we have

||F′(x0)h||2L2[0,2] ≤

2∫
0


√√√√√ s∫

0

|(k(s, t) + k(s, s − t))x0(s − t)|2dy

√√√√√ s∫
0

|h(t)|2dt


2

ds

≤

2∫
0


√√√√√ s∫

0

|2Kx0(s − t)|2dt

√√√√√ s∫
0

|h(t)|2dt


2

ds

≤

2∫
0

4K2

s∫
0

|x0(s − t)|2dt

s∫
0

|h(t)|2dtds

≤ 4K2

2∫
0

s∫
0

|x0(s − t)|2dt

s∫
0

|h(t)|2dtds

≤ 4K2

2∫
0

2∫
0

|x0(s − t)|2dtds

2∫
0

|h(t)|2dt

≤ 8K2
||x0||

2
L2[0,1]||h||

2
L2[0,1]. (2.23)

For any fixed x0 we have ||x0||L2[0,1] < ∞ and F′(x0) is bounded.
Because x0 ∈ L2[0, 1] and the kernel k̃(s, t) := (k(s, t) + k(s, s − t))x0(s − t) is quadratically
integrable, F′(x0) is a Hilbert-Schmidt operator of Volterra type (2.17) and thus compact
for all x0 ∈ D(F). �

Since we will also need the adjoint of the Fréchet derivative for the iterative regulariza-
tion algorithm, it will be presented in its analytic form here, too.

Definition 2.24:
Let A : X 7→ Y be linear operator mapping between Hilbert spaces H1 and H2. The
adjoint operator A∗ : H1 7→ H2 is defined by

〈Ax, f 〉 = 〈x,A∗ f 〉 ∀x ∈ X,∀ f ∈ H2.

Here 〈·, ·〉 denotes the scalar product in L2[0, 2].

Lemma 2.25:
The adjoint F′(x0)∗ of the Fréchet derivative from lemma 2.23,
F′(x0) : L2[0, 1] 7→ L2[0, 2] takes the form

[F′(x0)∗h](s) =

2∫
s

(k(s, t) + k(s, s − t)) x(s − t)h(s)ds. (2.24)
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Chapter 2: Mathematical Analysis

Proof. We have to show that

〈F′(x0)h,u〉 = 〈h,F′(x0)∗u〉 ∀h,u ∈ L2[0, 1].

It is

〈F′(x0)h,u〉 =

2∫
0

s∫
0

(k(s, t) + k(s, s − t))x0(s − t)h(t)dtu(s)ds.

Applying Fubini’s theorem we get

〈F′(x0)h,u〉 =

2∫
0

2∫
t

(k(s, t) + k(s, s − t))x0(s − t)h(t)u(s)dsdt

=

2∫
0

h(t)

2∫
t

(k(s, t) + k(s, s − t))x0(s − t)u(s)dsdt

= 〈h,F′(x0)∗u〉. �

2.4 Ill-posedness

Based on the results of the previous sections we can now draw conclusions on the
ill-posedness of the operator F from (2.1) and the associated linear problem

F′(x0)x = ỹ, (2.25)

where F′(x0) is the Fréchet derivative of F in x0 (see lemma 2.23).
There exist various definitions of ill-posedness of which some will be discussed here.
The most well-known definition was first formulated by Hadamard [13].

Definition 2.26:
An operator F of an operator equation F(x) = y, F : X 7→ Y is called well-posed if

• (Existence) for every y ∈ Y there exists x ∈ X with F(x) = y

• (Uniqueness) for every y ∈ Y there exists exactly one x ∈ X with F(x) = y

• (Stability) the inverse operator F−1 is continuous

If at least one of these properties is violated, F is called ill-posed.

In lemma 2.8 we have shown that the uniqueness condition always fails. But also the
existence condition does not hold. Let for example x ∈ L2[0, 1] with |x| , 0 in [0, ε] and
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2.4. Ill-posedness

k(s, t) ≡ 1 for simplicity. Then

F[x](s) =

s∫
0

x(s − t)x(t)dt (0 ≤ s ≤ ε2)

is monotonically increasing for some 0 < ε2 < ε1. Thus, any strictly monotonically
decreasing function y is not part of the range of F. Examples showing discontinuity
of the inverse operator in the cases F : L2

R
[0, 1] 7→ L2

R
[0, 1] and F : CR[0, 1] 7→ CR[0, 1]

can be found in [15, p. 39] or [11, p. 357]. We will present an example for the case
F : L2[0, 1] 7→ L2[0, 2] later. If F is defined on a compact domain D(F), the Tichonov-
theorem (cf [15, p.24]) ensures that F−1 is continuous if F is injective over D(F). Although
Hadamard’s definition applies to all operator equations, it is more suitable for linear
equations. Since for nonlinear operators the properties strongly depend on the local
behaviour of the operator around the points x0, none of Hadamards conditions can
be expected to hold in general, but for certain points some might be true. Therefore
for nonlinear equations local analysis of the properties is more appropriate. Because
both uniqueness and existence are usually hard to maintain, we will use the following
definition of ill-posedness that focuses on the stability which is the most important
property for the regularization.

Definition 2.27:
We define a nonlinear operator equation (2.1) to be locally ill-posed in x0 if, for
arbitrarily small ρ > 0 there exists a sequence {xn} ⊂ Bρ(x0) satisfying the condition

F(xn)→ F(x0) in Y as n→∞, but xn 9 x0 in X. (2.26)

Otherwise the equation is called locally well-posed.

This condition is similar to Hadamard’s instability condition, but to emphasize this
again Hadamard is of global character whereas Def. 2.27 only considers a ball Bρ(x0)
around the solution x0 with radius ρ > 0.

Proposition 2.28:
The autoconvolution equation (2.2) is everywhere locally ill-posed.

Proof. We will use the basic idea from the proof of Prop. 2.3. in [18, p.422].
Let x̂ ∈ D(F) ⊂ L2[0, 1] and xn := x̂ + qn (n=1,2,...). The perturbations qn are selected from
the family of functions

Ψβ(t) =
r
√

1 − 2β

tβ
, 0 ≤ β ≤

1
2
,

where qn := Ψ 1
2−

1
n
(t) for t ∈ [0, 1] and qn(t) := 0 if t < [0, 1]. For the functions Ψβ we have

||Ψβ||L2[0,1] = r for all parameters 0 ≤ β ≤ 1
2 and
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Chapter 2: Mathematical Analysis

||Ψβ ∗Ψβ||L2[0,2] ≤
√

2||Ψβ ∗Ψβ||C[0,2] ≤
√

2r2(1 − 2β)π21−2β
→ 0 as β→ 1

2 . We have

F[xn](s) =

s∫
0

k(s, t)(x̂(s − t) + qn(s − t))(x̂(t) + qn(t))dt

=

s∫
0

k(s, t)x̂(s − t)x̂(t)dt +

s∫
0

(k(s, t) + k(s, s − t))x̂(s − t)qn(t)dt +

s∫
0

k(s, t)qn(s − t)qn(t)dt.

Because k(s, t), k(s, s − t) ∈ L2[0, 2] and qn ⇀ 0 the second and third integral vanish in
L2[0, 1] as n→∞. Hence F(xn)→ F(x̂) in L2[0, 2]. Thus, although the sequence {xn} does
not converge, its images {F(xn)} do converge. Hence this sequence satisfies condition
(2.26). Because x̂ was chosen arbitrarily, F is everywhere locally ill-posed. �

This proposition shows the necessity of regularizing the autoconvolution equation. We
will use an algorithm based on the linearized operator equation. For this we have the
following lemma.

Lemma 2.29:
The inverse operator F′(x0)−1 of the linearized autoconvolution operator F′(x0)x = ỹ
is discontinuous for every x0 ∈ L2[0, 1].

Proof. The Fréchet derivative F′(x0) is compact for all x0 ∈ L2[0, 1] (cf lemma 2.23).
Because of Proposition A.3 and Remark 4 in [9, p. 538f] F′(x0)−1 is not continuous. �

This is a very remarkable result. We could not find other examples of an operator which
is non-compact but has an everywhere compact Fréchet-derivative.
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Solutions to inverse problems of the type F(x) = y as in (2.1) are, especially in the case
of nonlinear problems, usually retrieved through an optimization approach, where the
residual

||F(x) − y||2Y (3.1)

is minimized. The index δ denotes measured and therefore noisy data. It is often
presumed that there is an estimate ||y − yδ|| ≤ δ for some preferably small δ > 0, but
we do not have such a δ for our problem. Due to the ill-posedness of the considered
problems, solutions gained with method (3.1) are very bad or even useless as the
algorithms do not necessarily converge to anything near to the actual solution. Even if
they do, the result is often very inaccurate and consists of a lot of spikes. To overcome
these effects, the functional (3.1) is extended to

||F(x) − y||2Y + αΩ(x), (3.2)

where α is the regularization parameter and Ω(x) a regularization functional. In most
cases Ω(x) takes into account a-priori information of the solution, for example smooth-
ness conditions Ω(x) = ||x′||2X for the first derivative x′(t) := dx(t)

dt , Ω = ||x′′||2X for the
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Chapter 3: Regularization

second derivative x′′(t) := d2x(t)
dt2 or a total variation constraint Ω(x) = ||x||BV. Another

common functional is Ω(x) = ||x − x0||
2
X, where a reference function x0 or a good ap-

proximation of it is known a-priori. Another possible choice is Ω(x) = ||x||2X, known as
Tikhonov regularization (cf [15]).
The role of α is to tune the balance between x being a low residual solution and being
smooth. If α is too small, it fails to inhibit the ill-posedness effects. Is it chosen too large,
the solution does not approximate the data anymore. Many mathematically justified
rules to choose α properly have been introduced. Two of them and a new approach will
be explained in detail in section 3.4.

3.1 Discretization

As computers cannot deal with infinite dimensional information and measurements
are only available for certain frequencies, a discretization of the problem is necessary.
This can also be seen as a first regularization step. The larger the number of supporting
points, the more ill-posedness effects are amplified. Therefore, even if measurements
are provided on a fine grid, they should be taken at a much more coarse grid. This of
course also reduces the computational effort significantly. Vectors and matrices result-
ing from a discretization will be underlined.

The function values of x are to be reconstructed at N supporting points tn which will be
chosen equidistantly in an interval [tl, tu]. The discrete signal is denoted by

x = (xn)N
n=1 = (x(tn))N

n=1 = (|x(tn)|eiϕx(tn))N
n=1 (3.3)

for n = 1 . . .N and tn = tl + (n − 1)∆t with ∆t =
tu−tl
N−1 .

The notation for the output signal is analogous,

y = (ym)2N−1
m=1 = (y(sm))2N−1

m=1 = (|y(sm)|eiϕy(sm))2N−1
m=1 (3.4)

for m = 1 . . . 2N − 1 and sm = 2tl − tcw + (m − 1)∆t.
The kernel takes the form

K = km,n = k(sm, tcw, tn), m = 1, 2, . . . , 2N − 1; n = 1, 2, . . . ,N. (3.5)

From (1.24) we get

k(sm, tcw, tn) =
µ0cL

2
sm

n(sm)
χ(3)(sm,−tcw, tn, sm + tcw − tn)ei(∆~kξξ+∆~kηη+∆~kζ L

2 )sinc(∆~kζ
L
2

) (3.6)

where the refractive index n is calculated from the Sellmeier equation (1.31) using the
values in table 1.1, the k-vectors are calculated from (1.25)-(1.29) (with ω := sm, ω̂ := tn,
ωcw := tcw) and

χ(3)(sm,−tcw, tn, sm + tcw − tn) = χ(1)(sm)χ(1)(−tcw)χ(1)(tn)χ(1)(sm + tcw − tn) (3.7)
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3.1. Discretization

with χ(1)(·) from (1.34). The remaining parameters are either natural constants (µ0, c) or
constants depending on the measurement setup (L, ξ, η).

The autoconvolution operator F is discretized using the rectangular rule. That way,

ym =

N∑
j=1

k(sm, tcw, t j)x(t j)x(sm + tcw − t j)∆t. (3.8)

Because of the finite support of x, x(sm+tcw−t j) = 0 for sm+tcw−t j < tl and sm+tcw−t j > tu.
The complete operator can be written as a multiplication of a matrix F(x) ∈ C2N−1×N

with the vector x,

Fx = ∆t



k1,1x1 0 . . . 0 0
k2,1x2 k2,2x1 . . . 0 0

. . .
. . .

...
kN−1,1xN−1 kN−1,2xN−2 . . . kN−1,N−1x1 0

kN,1xN kN,2xN−1 . . . kN,N−1x2 kN,Nx1
0 kN+1,1xN . . . kN+1,N−1x3 kN+1,N−1x2
...

. . .
. . .

0 0 . . . k2N−2,N−1xN k2N−2,NxN−1
0 0 . . . 0 k2N−1,NxN




x1
x2
...

xN−1
xN


= y. (3.9)

To increase computational efficiency, F can be split into two matrices F̂ ∈ C2N−1×N and
K ∈ C2N−1×N such that

F = F̂ ◦ K (3.10)

where ◦ denotes element by element multiplication. Thus F̂ takes the x-dependent
entries and K consists of the kernel values km,n and the factor ∆t. This way, K has to
be computed only once for a given discretization grid which saves a lot of time. The
convolution

F x = y (3.11)

itself is then rather fast as it is only takes N2 multiplications to calculate F and a matrix
times vector multiplication to get the convolved signal y.
If the measurements are not spaced equidistantly, a constant factor ∆t is not applicable.
The information about the spacings can then be included in the matrix K element by
element.

The Fréchet derivative F′(x) (2.23) is discretized in a similar way. The m-th entry (F(x)h)m
of the derivative applied to a function h(t) is

(F′(x)h)m =

N∑
j=0

(k(sm, tcw, t j) + k(sm, tcw, sm + tcw − t j))x(sm + tcw − t j)h(t j)∆t. (3.12)
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Being a linear operator, F′(x) ∈ C2N−1×N can of course be written in matrix form. Using
the matrices from (3.10) we have

F′(x)h = F̂ ◦ (K + K̂)h (3.13)

with K̂ = ∆t · k(sm, tcw, sm + tcw − tn), m = 1, 2, . . . , 2N − 1, n = 1, 2, . . . ,N. Implementing
this, only 2N2 kernel evaluations are needed for each grid and problem.
Its adjoint F′(x)∗ ∈ CN×2N−1 reads as

(F′(x)∗h)n =

2N−1∑
j=0

(k(s j, tcw, tn) + k(s j, tcw, s j + tcw − tn))x(s j + tcw − tn)h(tn)∆t. (3.14)

It has not to be generated separately, because F∗x = FH
x with ·H standing for transposed

and complex conjugated matrix.

3.2 Simulation

In order to test the algorithm and describe its properties, artificial data had to be created.
As standard example, the fundamental pulse was chosen as in Fig. 3.1 with a lower
boundary of the frequency tl = 250THz and an upper boundary tu = 600THz. This
ensures that the kernel is continuous (cf remark 1.2). The frequency of the cw-pulse
was set to be tcw := 1

2 (250THz + 600THz) = 425THz. The absolute values are calculated
explicitly for each frequency t from

|x(t)| = (e−
(t−0.85tcw)2

σ2 + 0.748e−
(t−1.15tcw)2

σ2 ) · 10−28 (3.15)

with σ := 50THz. The phase was derived from interpolation of the spline defined by
the twelve points [(t1, 1.1) (t2, 1) (t3, 1.8) (t4, 0.5) (t5, 0) (t6, 2.5)
(t7,−2) (t8, 2.36) (t9, 2) (t10, 1.7) (t11, 1.5) (t12, 1.3)] with t j = tl + ( j − 1) tu−tl

11 .
Fig. 3.1 shows this pulse which we will later refer to as pulse I. The main problem with
it is the rather large phase at lowest and highest frequencies, where at the same time
the absolute values are very small. As it can be seen in (3.9), at the edges of the domain
the convoluted signal depends on only a few values, in other words it carries few
information about the input pulse. Therefore, it is more sensitive to the phenomenon
of incorrectness there than in the middle of the frequency interval. The complex valued
exponential function is 2π-periodical. This causes additional ambiguities. Letϕx(t0) = 0.
Then any ϕ̃x(t0) = k2π, k ∈ Z, cannot be distinguished from ϕx(t0). Therefore errors
are likely occur when the phase jumps between different periods. This is illustrated
in the left image of Fig. 3.3, where the phase of the pulse was plotted using only one
period. In the other figures, the phase is built from this representation by adding or
substracting 2π to ϕx(t j+1) whenever the difference between two neighbouring values
ϕx(t j) and ϕx(t j+1) ( j = 1 . . .N − 1) is lower than −π or greater than π, respectively.
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3.2. Simulation

Figure 3.1: Standard fundamental pulse for the simulations and its autoconvolved pulse.
In the upper panels the absolute values are plotted while the lower panel
shows the phase
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To create artificial data for the measurements, the pulse sampled at Ñ points is convolved
using formula (3.11), resulting in the autoconvolution signal y at 2Ñ − 1 supporting
points which is split into absolute values |y| and phase ϕ

y
. The absolute values |x| of the

fundamental pulse were again sampled at N << Ñ points to complete the measurement
situation. The supporting points t1, t2, . . . , tN corresponding to N are the points where
the unknown phase is to be reconstructed. The reason why N must be much smaller
than Ñ (also N must not be a divisor of Ñ) is an effect called inverse crime. In case of
an inverse crime, the reconstruction from artificially created data will always be good,
regardless of the ill-posed character of the problem. This effect does not occur for real
measurements.
Because measurements of real life processes are never exact, a normaly distributed error
of magnitude δ is added to the data so that |y|δ ∼ N(|y|, (δ|y|)2), ϕδ

y
∼ N(ϕ

y
, (δϕ

y
)2) and

|x|δ ∼ N(|x|, (δ|x|)2). This is equivalent to a relative error of δ%. Finally, |y|δ and ϕδ
y

are

interpolated at the 2N−1 supporting points corresponding to the convolved frequencies
of t1, t2, . . . , tN. Thus a complete set of measurements is available that avoids the inverse
crime. To compute the kernel (3.6), the following numerical values have been used:
µ0 = 4π · 10−7 kg m

A2s2 , c = 299792458 m
s , α = 0.02rad, ξ = 10−5m, η = 10−5m, L = 10−4m. Once

|y|δ, ϕδ
y
, |x|δ and the kernel matrices K and K̃ from (3.10) and (3.13) respectively have

been computed, the regularization algorithm can be started. The parameters Ñ, N, δ
and the regularization parameter α that will be introduced in the next section will be
given for every figure showing reconstructed phases. Instead of the angular frequencies
ω = 2π f , the real frequency f will be marked at the x-axis to improve readability.
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Figure 3.2: comparison of the two standard phases for simulations
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To show the difficulties resulting from the periodic behaviour of the pulses, we introduce
a second pulse II where in comparison to the first phase only the sixth supporting point
was changed. Instead of (t6, 2.5), (t6, 4.4) was used so that this value is now larger than
π. The resulting phase in comparison with the original one is shown in Fig. 3.2. The
absolute values remain the same.

To point out the different periodical behaviour, Fig. 3.3 shows both phases plotted in
the period [−π, π]. The increased value of the right phase in comparison to the phase
on the left leads to jumps in the middle part of the phase in this representation. This
will cause serious problems as we will see later.

3.3 Regularization algorithm

To realize the minimization, only iterative methods were taken into account. At-
tempts with MATLAB®-solvers failed as well as Landweber-Methods (see [22, chap-
ter 2,3]). Better results could be observed with Newton-type methods, especially with
the Levenberg-Marquardt algorithm (LMA) [23], [27] on which the presented algorithm
is based. We will minimize

||F x − y||22 (3.16)
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3.3. Regularization algorithm

Figure 3.3: standard phases plotted in the [−π, π]-period showing jumps which will
prove to cause significant problems for the reconstruction
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as the discretized analogon to (3.1). The euclidean norm is denoted as || · ||2.
One explanation of the LMA is that it interpolates between the Gauss-Newton algorithm
(GNA) and the Landweber iteration (LWI) (also called method of steepest descent) to
globalize convergence of the GNA.
Given an iterate xk, the next one is obtained by

xk+1 = xk + γ(F′(xk)∗F′(xk) + αkI)−1F′(xk)∗(yδ − F(xk)), (3.17)

I being the identity matrix. For the iteration procedure see for example [22, chapter 4].
The parameter αk balances GNA and LWI. For αk →∞, (3.17) turns into the Landweber
iteration and reads as

xk+1 = xk + γF′(xk)∗(yδ − F(xk)). (3.18)

On the other hand, for αk → 0, (3.17) becomes

xk+1 = xk + γ(F′(xk)∗F′(xk))−1F′(xk)∗(yδ − F(xk)), (3.19)

the Gauss-Newton algorithm. Since the GNA converges much faster than the LWI when
the iterates are close to a minimum usually αk → 0 is chosen. Several methods how to
chose αk have been introduced (cf [22, chapter 4]), but here a rather simple approach

αk = α0 · qk
α (3.20)

is taken, where α0 is the initial value and 0 < qα < 1 is a damping factor.

The purpose of the step length γ in (3.17) is simply to ensure a decrease in the residual,
so that

||yδ − F(xk+1)||2 ≤ ||yδ − F(xk)||2. (3.21)
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Similar to αk, γ = γ0 · ql
γ with γ0 = 1, 0 < qγ < 1 and

l = min{l ∈N : ||yδ − F(xk+1)||2 < ||yδ − F(xk)||2}. It turned out that in most cases l = 0.
The choice of the initial value x0 will be discussed later.
Finally, the iteration is stopped either if no significant decrease in the residual is gained,

||yδ − F(xk+1)||2 ≥ q||yδ − F(xk)||2, (3.22)

q < 1 but q close to one or if a maximal number of iterations kmax has been performed.
The main flaw of this algorithm is that it only minimizes ||yδ − F(x)||2, and therefore has
no smoothing properties. Fig. 3.4 shows the best regularization (for the choice of α0,
see section 3.4). Although the solutions fit the original pulse quite well, there are a lot of
spikes that should not appear for a real pulse as they have to be smooth. The effect gets
worse when the reconstruction is performed on a larger amount of supporting points
as illustrated in Fig. 3.5. In both cases all data carried a relative error of 1%.

Algorithmus 3.1 Calculating a regularized solution with LMA minimizing (3.16) by
minimizing (3.23) in each iteration

input: measured data yδ and |x|δ, initial value ϕ
0
, α0, kmax.

set k := 0, l := 0, x0 = |x|δeiϕ
0 , α = α0

while ||yδ − Fxk||2 < q||yδ − Fxk||2 AND k < kmax do
solve (F′(xk)∗F′(xk) + αI)p = F′(xk)∗(yδ − F(xk))
while ||F(xk + γp)||2 > ||F(xk))||2 do

l = l + 1
γ = ql

γ
end while
set xk+1 = xk + γp, l = 0, α = α · qα, k = k + 1

end while
return xend

Because the phase is periodic, it can jump between different periods. Being assembled
from the [−π, π]-period, this occurs if caused by errors in the solution, the critical
difference indicating a change of the period in the assembling algorithm is reached
where there should not be such a difference. An example of this effect is given in
Fig. 3.6. The reconstruction of the phase is rather good except for the boundaries, but
at about ω = 2600THz the phase jumps from one period to the one below where that
should not happen.
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3.3. Regularization algorithm

Figure 3.4: Best regularized solution retrieved with Alg. 3.1 showing non-smooth re-
construction of both absolute value and phase
Ñ = 467, N = 130, δ = 1%, α0 = 3.1421

250 300 350 400 450 500 550 600
0

0.5

1

1.5

x 10
−28

S
p

e
c
tr

. 
P

o
w

. 
D

e
n

s
. 

(|
x
(t

)|
)

absolute value solution, α=3.1421
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Figure 3.5: Best regularized solution retrieved with Alg. 3.1 on a larger amount of
supporting points. The absolute values show much higher spikes than the
phase. Ñ = 867, N = 330, δ = 1%, α0 = 7.5775
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Chapter 3: Regularization

Figure 3.6: jump in the period of the regularized phase, Ñ = 867, N = 330, δ = 1%,
α0 = 3.9434
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To get smoother regularized solutions, we will analyze a second explanation for the
LMA. As described in [22, chapter 4], the LMA minimizes (3.16) within a trust region.
This is equivalent to minimizing the linearized functional

||yδ − F(xk) − F′(xk)z||22 + αk||z||22 (3.23)

around the current iterate xk where αk is the corresponding Lagrange parameter. This
can be interpreted as adding a penalty term αk||z||22 to the linearized functional, or as
Tikhonov-regularization on it. From the latter one, the idea was derived to add a
smoothing penalty to (3.23) by changing the functional to

||yδ − F(xk) − F′(xk)xkz||22 + αk||Lz||22 (3.24)

where Lz represents the second derivative of z.
The second derivative at a point z(t j) can be approximated as

z
′′

(t j) =
z(t j−1) − 2z(t j) + z(t j+1)

∆t2 . (3.25)

Because ∆t is of a magnitude of 1014Hz and all t j are distributed equidistantly, ∆t2 has
been excluded from the matrix L. Thus L becomes a tridiagonal N ×N-matrix with 2 on
the main diagonal and −1 on its side diagonals. The factor ∆t2 is then included in the
parameter αk, such that αk =

α̃k
∆t2 where α̃k is the real regularization parameter. However
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3.3. Regularization algorithm

αk will be the parameter used in the simulation as its numerical values are much more
handy than those of α̃k.

Using this matrix L, the linearized functional is now minimized in every step around
the current iterate, but the penalty oppresses non-smooth solutions depending on the
magnitude of αk. The iteration procedure (3.17) thus becomes

xk+1 = xk + γ(F′(xk)∗F′(xk) + αkL∗L)−1F′(xk)∗(yδ − F(xk)). (3.26)

In simulations, a deacreasing sequence of αk leads to a loss of smoothing properties
as the regularization term in (3.24) vanishes for k → ∞. Therefore, α = αk is chosen
constant for all iterations. The algorithm to find a regularized solution for a given
parameter α is shown in Alg. 3.2

Algorithmus 3.2 Calculating a regularized solution using a smoothing penalty mini-
mizing (3.24) in each iteration

input: measured data yδ and |x|δ, initial value ϕ
0
, α, kmax.

set k := 0, l := 0, x0 = |x|δeiϕ
0

while ||yδ − Fxk||2 < q||yδ − Fxk||2 AND k < kmax do
solve (F′(xk)∗F′(xk) + αL∗L)p = F′(xk)∗(yδ − F(xk))
while ||F(xk + γp)||2 > ||F(xk))||2 do

l = l + 1
γ = ql

γ
end while
set xk+1 = xk + γp, l = 0, k = k + 1

end while
return xend

As any iterative algorithm, the LMA requires an initial value x0 to start the iteration.
Although the LMA is robust, it only finds a local minimum, not necessarily the global
minimum. Therefore, the choice of the starting point is crucial. Because the absolute
value of the fundamental pulse is available as measurement, it is obvious to use them
as the initial guess, setting |x0| := |x|δ. Thus, it remains to find a good approximation
for the unknown phase. Comparing convolved phases ϕy from simulations with their
fundamental phases ϕx (see Fig. 3.1), a certain alikeness can be seen. A simple analytic
example will show that at least at the boundaries the phase of x can be guessed from
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Figure 3.7: Phase of the kernel for s = 2∗π∗475THz and 2∗π∗250THz ≤ t ≤ 2∗π∗600THz
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the phase of y. Taking equation (1.44) and assuming that for small s ϕx(s − t) ≈ ϕv(t),

y(s) =

s∫
0

|k(s, t)|eiϕk(s,t)
|x(t)|eiϕx(t)

|v(s − t)|eiϕx(s−t)dt

=

s∫
0

|k(s, t)||x(t)||x(s − t)|︸                  ︷︷                  ︸
=:|k̃(s,t)|

ei(ϕk(s,t)+ϕx(t)+ϕx(s−t))dt

≈

s∫
0

|k̃(s, t)|ei(ϕk(s,t)+2ϕx(t))dt. (3.27)

To get an idea of the phase of the kernel, Fig. 3.7 shows ϕk(s, t) for s = 2π · 475THz and
2π · 250THz ≤ t ≤ 2π · 600THz. From this and (3.27), the idea was taken to choose

ϕ0
x(t) :=

1
2

P(ϕy(s)) − l(s, t) (3.28)

with the projector P : [2tl − tcw, 2tu − tcw] 7→ [tl, tu] mapping the phase of y onto the
interval of x and a correction term l(s, t). In discrete version, P just takes every second
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entry of ϕ
y
,

P(ϕ
y
) = P(ϕy1, ϕy2, ϕy3, . . . , ϕy2N−3, ϕy2N−2, ϕy2N−1) = (ϕy1, ϕy3, . . . , ϕy2N−3, ϕy2N−1).

(3.29)
The purpose of the function l(s, t) is to lessen the influence of the kernel. To compare
different starting phases, α and δ are set to zero, resulting in a standard Gauss-Newton
algorithm. Although the LMA is less sensitive to the initial value than the GNA, it is
obvious that the better the result for GNA, the better the result will be for the LMA.
Four possible choices for the initial phase and the resulting reconstructed pulse are
shown in Fig. 3.8. In part (a) the initial phase was set to zero, resulting in a very bad
reconstruction. The first initial guess using a projection of the phaseϕy without a kernel
correction and the resulting reconstructed phase is shown in (b). Although the solution
roughly follows the fundamental pulse, it is still too inaccurate. The final two figures
show reconstructions where phase of the kernel was included in the choice of the initial
guess. In (c), instead of only projecting ϕy on the domain of x, its linear approximation
l(s) has been subtracted. We have

ϕ0
x(t) :=

1
2

(P(ϕy(s)) − l(s)) (3.30)

with the least squares approximation l,

l(s) =
1
2

(as + b), ||ϕ
y
(s) − (as + b)||2 = min

ã,b̃∈R
{||ϕ

y
(s) − (ãs + b̃)||2}. (3.31)

The resulting reconstruction is very accurate. A similar result was obtained in (d) where
l was taken directly from the kernel phase shown in Fig. 3.7 with formula (3.28). The
phase correction was computed for a fixed s = 2π · 475THz and all t j ( j = 1 . . .N)

l(t) =
1
2
ϕ

k
(2π · 475THz, t). (3.32)

The difference of the reconstructed phase and the original one in (d) is approximately 3π
for all values. This corresponds to the non-injectivity of the autoconvolution equation
(cf section 2.2.2) leading to an offset ofπ. The remaining 2π result from the 2π-periodicity
of the phase, meaning both phases are identical. But as mentioned in section 1.2, a con-
stant difference between reconstructed and optimal solution does not matter. Evaluating
Fig. 3.8, it becomes clear that a good solution always has both good reconstruction of the
absolute values and the phase, which is quite surprising because in all figures, the initial
guess for the absolute values was the exact solution. This will be used as a strategy to
find optimal regularized solutions. Some other starting phases like a constant non-zero
function or linear guesses have been tested but no satisfying results could be obtained.
Figure 3.9 shows the same series for the second fundamental pulse. For the zero-guess
the algorithm stopped after a few iterations, resulting in the rather straight reconstruc-
tion that is far away from the actual solution. Again, the projection of ϕy alone (b) did
not lead to a good result. Surprisingly, the two initial phases with kernel correction also
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failed. An explanation can be given analyzing Fig. 3.10. The period jump in the sec-
ond pulse leads to a lot of spikes in the solution. Although the reconstruction roughly
follows the true solution, every spike leads to a 2π-jump when the phase is assembled.
Understanding that there is no optimal choice for the starting phase, the zero-function
will be taken as the initial guess for the phase. There exist regularization parameters
α > 0 for which the algorithm converges to a good solution. The zero function is also a
good choice because there will be no period jumps in the beginning.

3.4 Regularization parameter

There are several approaches how to choose α in an optimal way. These can be classified
into three groups

• a-priori α = α(δ)

• a-posteriori α = α(yδ, δ)

• heuristic methods α = α(yδ).

A-priori information are required for theoretical purposes like convergence analysis.
For practical problems either no information on δ or only a coarse estimate is available.
Therefore only heuristic methods will be taken into consideration here. Unfortunately,
because of the Bakushinsky-veto (cf for example [16, p. 131]), there exists no convergent
regularization method where the choice of α only depends on yδ if the inverse operator
F−1 is unbounded. However, for practical problems they are usually sufficient.
Three rules will be examined here, namely the principle of quasioptimality, the popular
L-curve method, and a new strategy inspired by observations from simulations.
All three methods are based on the same principle. Regularized solutions xα are cal-
culated for a series of parameters α. The best solution is derived by minimizing a
functional ψ over all xα. The difference lies in the choice of ψ.

The principle of quasioptimality (QO) was introduced by Tikhonov/Glasko in 1968
(cf [15, p. 96] and references therein). The idea is to find the regularization parameter
α∗, where the regularized solutions xα change least,

f (α) = ||α
dxα
dα
|| → min . (3.33)

In praxis, xα = xαl is computed for a sequence of αl, usually αl = α0 ∗ 2−l for l = 1..lmax
and α0 >> 0. The functional (3.33) can then be replaced by

ψQO(α) = ||xαl+1 − xαl || → min (3.34)

which is easy to compute.
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Figure 3.8: Comparison of different starting phases for the reconstruction of the first
fundamental pulse, δ = 0
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(a) constant zero initial guess, resulting in bad overall reconstruction
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(b) projected SD-phase as initial guess, in the middle the reconstruction
roughly follows the original pulse with a 2π-offset
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(c) projected SD-phase minus its linear approximation as initial guess,
resulting in a near perfect reconstruction
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(d) projected SD-phase minus the kernel phase as initial guess, resulting in a near perfect
reconstruction with an offset of 3π corresponding to the non-injectivity of the problem

Figure 3.8
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Figure 3.9: Comparison of different starting phases for the reconstruction of the second
fundamental pulse, δ = 0
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(a) constant zero initial guess, resulting in bad overall reconstruction
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(b) projected SD-phase as initial guess, the reconstruction is now absolutely unfit
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(c) projected SD-phase minus its linear approximation as initial guess,
surprisingly the result is far off the fundamental pulse
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(d) projected SD-phase minus the kernel phase as initial guess, best reconstruction achieved
for this phase without regularization. It is much worse than the solution for the first phase.

Figure 3.9
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Figure 3.10: Comparison of the reconstructions Fig. 3.8(d) and Fig. 3.9(d) in the [−π, π]
period
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(a) first fundamental pulse, the middle part is reconstructed perfectly. The starting
phase (blue dotted line) has a single jump in this part.
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(b) second fundamental pulse, the double jump in the middle in both fundamental and
starting phase leads to a very spiky, inaccurate reconstruction.
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The L-curve method (LC) was introduced by P. Hansen [14]. It is motivated by
the observation that for small α the residual ||yδ − F(xα)|| hardly changes while the
penalty ||Lxα|| increases. On the other hand, for large α ||Lxα|| remains almost constant
while ||yδ − F(xα)|| increases. Both values are plotted in a log-log-coordinate system
often resulting in a curve shaped like the letter L. The optimal solution for a L-curve
L(α) = (log||yδ − F(xαl)||, log||Lxalphal ||) generated from a sequence α0 > α1 > ... > αl−1 > 0
and corresponding solutions xαl is to be found in the corner of the L, where a point C is
called corner, if

• L(α) is concave in a neighbourhood of C

• the tangent on L(α) has a slope of −1 in C.

This is equivalent to
ψLC(α) = ||Lxαl || · ||y

δ
− Fxαl || → min (3.35)

which holds the requirement for the L-curve solution.

As a third alternative, a new approach is presented here, making use of the specific
situation that a part of the solution, namely the absolute values, are available as mea-
surements. It can be observed from calculations with artificial data that, whenever the
phase is reconstructed badly, the absolute values of x are also badly shaped, see for
example Fig. 3.8. On the other hand, if the phase is approximated well, so are the ab-
solute values. In section 1.6 it has been shown that the phase of x influences both phase
and absolute values of y. If ϕx does not converge to the actual solution ϕ∗x, neither |y|
nor ϕy can converge to fit the data yδ. Because the complete pulse x is adjusted in each
iteration, |x| tries to compensate the effects of a diverging phase and thus also diverges.
The rule to choose the regularization parameter here is simply to take the solution xα that
approximates the given data |xδ| best. For a sequence αl and corresponding solutions
xαl

ψAV(α) = |||xαl | − |x
δ
||| → min (3.36)

This rule will be called absolute value method (AVM). It proved to be the most reliable
of the presented methods.

The optimal solution was calculated using Alg. 3.3. After artificial data has been
created as explained in section 3.2, algorithm 3.2 is executed for a series of regularization
parameters αl. These parameters are obtained from

αl = α0 · ql l = 1, 2, . . . lmax (3.37)

where α0, q and lmax have to be chosen appropriately. From the resulting series of
reconstructed pulses the the final solution is gained via the criteria explained in this
section. The algorithm can be performed again in a close neighbourhood of the best
regularization parameter α∗ to improve the result.
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3.5. Reconstruction results from artificial data

Algorithmus 3.3 Finding an optimal regularization parameter

create artificial data
input: α0, qα, lMAX
set l := 1
while l < lMAX do

compute xα for α = α0ql using Alg. 3.2
set l = l + 1

end while
compute QO solution xQO

α by finding the minimum of ψQO
compute L-curve solution xLC

α by finding the minimum of ψLC
compute absolute value xAV

α solution by finding the minimum of ψAV
optional: repeat algorithm in a neighbourhood of the solutions
return xQO

α ,xLC
α ,xAV

α

3.5 Reconstruction results from artificial data

Using Alg. 3.3, reconstructed pulses could be calculated. All computations have
been performed using MATLAB®R2007a. The regularization has been performed for
fundamental pulse II and three magnitudes of the error δ. For each δ, the results
obtained from the three parameter choice rules from section 3.4 are presented in Fig.
3.11, Fig. 3.12 and Fig. 3.13 for δ = 0.1%, δ = 1% and δ = 5%, respectively. Part
(a) shows the L-curves for each error. None of them is in any way shaped like an L.
The corresponding solution, shown in part (b) of the figures is therefore absolutely not
acceptable. The L-curve method is not a good choice for our problem. One reason
might be that the L-curve method is usually applied when a functional

||F x − y||22 + α||L x||22 (3.38)

is minimized. However, we minimize only ||F x− y||22 and apply the smoothing penalty
within the minimization. The solutions computed with the quasi-optimality criteria are
shown in part (c) of the figures. In all three cases the results are very bad. Thus, also
quasi optimality is not a good choice. Instead, the absolute value method proved to
produce the best results as shown in part (d) and should be used for this problem. As
expected, the solutions become worse the higher the error δ is. For δ = 10%, even the
absolute value method could not produce an acceptable result anymore. Errors in the
solution occur at the boundaries depending on the magnitude of the error. For δ = 0%,
only one part is not reconstructed well. Increasing δ to 1%, the reconstruction becomes
worse especially at the left side of the phase. For the high error, the reconstruction
is very inaccurate. However, the middle part is still reconstructed fairly well. There
are two main reasons for the problems at the boundaries. The first one is that the
autoconvolution equation carries only few information at the beginning and the end
of the interval, as can be seen in the discretization (3.9). For example the first value y1
only depends on x1, while yN depends on all x j, j = 1 . . .N. Also, the absolute values
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are very small at the boundaries compared to the maximum. The second reason for the
bad reconstruction is that the hose fundamental phase has high values for low and high
frequencies, leading to jumps in the [−π, π] interval (see Fig. 3.3). As we have seen,
those jumps always lead to additional problems.

3.6 Regularization with measured data

This section was supposed to present reconstructed phases retrieved from real data.
Unfortunately this could not be achieved yet. Although measurements for ϕδ

y
, |y|δ and

|x|δ have been provided, all calculated solutions forϕ
x

were unacceptable as the absolute
values did not converge at all.
A very likely reason for this is that no magnitude for absolute values |y|δ and |x|δ is
known. Only the shape of the curves and thus the relative magnitudes can be mea-
sured. Consequently the magnitude of the step p in Alg. 3.2 is unknown and the step
length cannot be controlled. Several attempts to scale the absolute values with constant
factors failed. Moreover, it is known that the signal of y is much weaker than the signal
of x. This behaviour could not be observed when y was convolved from x with a roughly
estimated magnitude. This might be a sign of an error in the modelling of the problem.
Anyway, we do not know the value of the constant E

cw
in (1.24) which alone might

explain the observation.
An additional problem results from the length of the measurements. Sampling |x|δ at N
supporting points tn, the convolved signals have to be sampled at resulting 2N − 1 sup-
porting points (see section 3.1). Real data for y is available in an interval from 292THz to

608THz while |x|δ is known in the interval from 258THz to 576THz. Since the coninuous-
wave frequency is estimated as 390THz, y would have to be available for frequencies

from 126THz to 761THz. Truncating |x|δ to fit the frequencies of y, the unknown phase
can only be reconstructed between 341THz and 499THz. Since significant magnitudes
of |x|δ have to be truncated, the algorithm tries to compensate this by increasing the
absolute values at the boundaries. As can be seen in the discretization of the operator
(3.9), the boundaries influence every single convolved value. Consequently, the whole
regularization failed.
Least of all problems is that the cw-frequency cannot be given precisely, for example we
have fcw = 390THz ± 20THz.
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3.6. Regularization with measured data

Figure 3.11: Regularization results for δ = 0.1%, Ñ = 467, N = 130
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(b) L-curve solution, α∗ = 0.027402. As expected from
the L-curve itself, the corresponding solution failed.
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(c) quasi optimality solution, α∗ = 0.43417, showing a very bad reconstruction
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(d) absolute values solution, α∗ = 0.60092. Except for the right boundary,
the reconstruction is very accurate. The absolute values are also reconstructed better

at the left boundary than on the right side.

Figure 3.11
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3.6. Regularization with measured data

Figure 3.12: Regularization results for δ = 1%, Ñ = 467, N = 130
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(b) L-curve solution, α∗ = 0.027402. As expected from
the L-curve itself, the corresponding solution failed.
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(c) quasi optimality solution, α∗ = 0.43417, showing a very bad reconstruction
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(d) absolute values solution, α∗ = 1.3543. The reconstruction now has problems
at both boundaries, but the middle part is still very accurate

Figure 3.12
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3.6. Regularization with measured data

Figure 3.13: Regularization results for δ = 5%, Ñ = 467, N = 130

−65.6 −65.4 −65.2 −65 −64.8 −64.6 −64.4 −64.2 −64 −63.8
−65

−64.5

−64

−63.5

−63

−62.5

−62

log(||F[x]−y||)

lo
g

(|
|L

x
||
)

L−curve

(a) L-curve, again not shaped like an L

250 300 350 400 450 500 550 600
0

0.5

1

1.5

2

2.5
x 10

−28

S
p

e
c
tr

. 
P

o
w

. 
D

e
n

s
. 

(|
x
(t

)|
)

L−curve solution, α=0.11831

250 300 350 400 450 500 550 600
−10

−5

0

5

10

p
h

a
s
e

 (
a

rg
(x

(t
))

)

Frequency (THz)

 

 

original pulse

starting phase

reconstructed pulse

(b) L-curve solution, α∗ = 0.11831. As expected from
the L-curve itself, the corresponding solution failed.
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(c) quasi optimality solution, α∗ = 0.36904, showing a very bad reconstruction
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(d) absolute values solution, α∗ = 0.60092. Both absolute values and phase are
incorrect at the boundaries. Both reconstructions show lots of spikes, which are more

severe for the absolute values. The middle part of the phase is reconstructed well
considering the high error in the data.

Figure 3.13
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CHAPTER

FOUR

AN APPROPRIATE REGULARIZATION STRATEGY

In chapter 3 a regularization approach has been introduced and explained in great detail.
This section will summarize the the main results. We deal with the equation

Fx = y, (4.1)
s∫

0

k(s, t)v(s − t)v(t)dt = y(s) (0 ≤ t ≤ 1, 0 ≤ s ≤ 2). (4.2)

We have y(s) = |y(s)|eiϕy(s) and x(t) = |x(t)|eiϕx(t). Discretizing y, x and equation (4.2), we
arrive at the problem

F x = y, (4.3)

Fx = ∆t



k1,1x1 0 . . . 0 0
k2,1x2 k2,2x1 . . . 0 0

. . .
. . .

...
kN−1,1xN−1 kN−1,2xN−2 . . . kN−1,N−1x1 0

kN,1xN kN,2xN−1 . . . kN,N−1x2 kN,Nx1
0 kN+1,1xN . . . kN+1,N−1x3 kN+1,N−1x2
...

. . .
. . .

0 0 . . . k2N−2,N−1xN k2N−2,NxN−1
0 0 . . . 0 k2N−1,NxN




x1
x2
...

xN−1
xN


= y. (4.4)

Analogously we derive the discretized Fréchet-derivative F′(x). See section 3.1 for
further information. From real measurements or by creating them artificially (see section
3.2) we obtain the data necessary to solve the complex valued autoconvolution problem

(4.2). We then have yδ = |y|δe
iϕδ

y and xδ = |x|δeiϕ
x , where |y|δ, ϕδ

y
and |x|δ are known and
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ϕ
x

will be the solution.
To compute ϕ

x
, we use a Levenberg-Marquardt-type algorithm to minimize

||F xδ − yδ||22 (4.5)

by minimizing in each iteration the linearized functional

||yδ − F(xk) − F′(xk)xkz||22 + α||Lz||22. (4.6)

The term Lz in the smoothing penalty α||Lz||22 approximates the second derivative of z.
Including the spacing term ∆t2 in the parameter α, L attains the tridiagonal form

L =


−2 1 0 . . .
1 −2 1 . . .

0
. . .

. . .
. . .

 . (4.7)

We then have the iteration procedure

xk+1 = xk + γ(F′(xk)∗F′(xk) + αL∗L)−1F′(xk)∗(yδ − F(xk)). (4.8)

The step control γ ensures a decrease in the residual so that ||yδ−F(xk+1)||2 ≤ ||yδ−F(xk)||2.

Then γ = γ0 ·ql
γ with γ0 = 1, 0 < qγ < 1 and l = min{l ∈N : ||yδ−F(xk+1)||2 < ||yδ−F(xk)||2}.

As the starting point x0 we propose x0 = |x|δei0, the measured absolute values and a
zero phase. The algorithm is stopped either if no significant decrease in the residual is
gained,

||yδ − F(xk+1)||2 ≥ q||yδ − F(xk)||2, (4.9)

q < 1 but q close to one or if a maximal number of iterations kmax has been performed.
The parameter α is constant for all iterations to ensure smooth solutions. The optimal
solution, denoted as x∗, is retrieved by calculating regularized solutions x∗α j

for a series

of regularization parameters αk = α0 · q
j
α, j = 1, 2, . . . jmax with α0 ∈ R and 0 < qα < 1.

Here x∗α j
denotes the solution retrieved from minimizing (4.5) using (4.6) for fixed α j. In

most cases it is sufficient to choose α0 = 500, 0.5 ≤ qα ≤ 0.95 and 50 < jmax < 120. The
final result x∗ is then retrieved by minimizing

|| |x∗α j
| − |x|δ ||2 (4.10)

over all j, j = 1, . . . , jmax. In other words we choose the regularized solution which
approximates the measured data for the absolute values best, making use of the spe-
cial situation that with the absolute values a part of the solution is provided as data.
Algorithm 4.1 illustrates the whole procedure.
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Algorithmus 4.1 Complete algorithm for the deautoconvolution

input: measured data yδ and |x|δ, initial value ϕ
0
, α0, kmax, jmax, qα, q.

set x∗ := 0
for j := 0 to jmax − 1 do

set k := 0, l := 0, x0 = |x|δeiϕ
0 , α = α0 · q

j
α

while ||yδ − Fxk||2 < q||yδ − Fxk||2 AND k < kmax do
solve (F′(xk)∗F′(xk) + αL∗L)p = F′(xk)∗(yδ − F(xk))
while ||F(xk + γp)||2 > ||F(xk))||2 do

l = l + 1
γ = ql

γ
end while
set xk+1 = xk + γp, l = 0, k = k + 1

end while
if || |x∗α j

| − |x|δ ||2 ≤ || |x∗| − |x|δ ||2 then
set x∗ := x∗α j

end if
end for
return ϕ

x∗

Regularized solutions obtained with Alg. 4.1 have already been presented in part (d)
of Fig. 3.11, Fig. 3.12 and Fig. 3.13 at the end of the previous chapter. Here some more
results will be given, but the figures will no more show the absolute values of the solu-
tion x∗, only its phase ϕ

x∗
. Figures 4.1 and 4.2 show the reconstruction of fundamental

pulse I from section 3.2 for a relative error of 0.1% and 1%, respectively. As mentioned
in chapter 3, constant offsets of k · π, k ∈ N can be neglected. They result from the
2π-periodicity of the phase and the non-injectivity of the problem (see 2.2.2). To show
results for a different phase than the ones introduced in chapter 3, artificial data has been
created using the absolute values from (3.15) and a quadratic fundamental phase. A
special property of this phase is its high level of smoothness since its second derivative
is constant for all frequencies. As we penalize the second derivative in (4.6), a very
large regularization parameter can be chosen without overregularizing the solutions.
This ensures no spikes occur in the regularized solutions. Figure 4.3 shows a satisfying
reconstruction from noiseless artificial data. As with all pulses, problems occur at the
boundaries. In Fig. 4.4, these problems increase as the data now carry a relative error of
1%. However, the middle part is still following the fundamental pulse relatively well.
This remains even if the relative error of the data is increased to 5% as done in Fig. 4.5.
While the right boundary is still reconstructed in an acceptable way, the reconstruction
failed for low frequencies up to 350THz.
With these examples we have demonstrated algorithm 4.1 to be suitable for the numer-
ical deautoconvolution of (4.3), thus solving (4.2) in its discretized version.
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Chapter 4: An appropriate regularization strategy

Figure 4.1: Reconstructed phase for pulse I, δ = 0.1%, α = 0.11259.
The phase is reconstructed well with an offset of 2π. Only at the right
boundary the curves do not match while the left boundary is reconstructed
in an acceptable way.
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Figure 4.2: Reconstructed phase for pulse I, δ = 1%, α = 0.10562.
The phase is still reconstructed well with an offset of 4π. But now the
reconstruction failed at both boundaries and the middle part is less smooth
in comparison the the relative error of 0.1%.
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Figure 4.3: Reconstructed phase for a quadratic fundamental phase, δ = 0%,
α = 197.9121. Besides a few values for small frequencies the reconstructed
phase matches the original one almost perfectly.
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Figure 4.4: Reconstructed phase for a quadratic fundamental phase, δ = 1%,
α = 197.9121. Again, the boundaries provide the largest problems. Because
the fundamental phase is very smooth, spikes in the solution can be sup-
pressed very effectively. Thus the reconstruction of the middle part is fairly
accurate considering the relative error of 1% in the data.
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Chapter 4: An appropriate regularization strategy

Figure 4.5: Reconstructed phase for a quadratic fundamental phase, δ = 5%,
α = 24150. Due to the large relative error of 5% in the data a large regular-
ization parameter is necessary to ensure an acceptable reconstruction. The
reconstructed values for the central frequencies are still close to the original
ones while especially at the left boundary the phases do not match anymore.
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CONCLUSIONS

In chapter 1, section 1.3 some fundamentals of nonlinear optics have been summarized.
Using these, the principle of downshift SD-SPIDER could be explained in detail and
especially the autoconvolution effect was pointed out. From the physical processes the
autoconvolution equation was derived in section 1.5. Consisting of complex valued
functions and a nontrivial kernel, it turned out to be an equation which has not been
studied before. Therefore, after some remarks on the identifiability of the problem,
existing publications on the real valued, kernel free autoconvolution problem were
mentioned. Chapter 2 dealt with the mathematical analysis of the problem. Formulating
it as an operator equation, it could be verified that the operator is continuous and
weakly closed, but neither injective nor compact, see subsections 2.2.1, 2.2.3, 2.2.2 and
2.2.4, respectively. In section 2.4 several aspects of ill-posedness have been analysed.
Although non-compactness is a hint for less ill-posed behaviour, it could be proven that
the operator is everywhere locally ill-posed and regularization techniques are necessary
for the reconstruction of the unknown function. However, the Fréchet derivative of the
forward operator is always compact and thus everywhere ill-posed as pointed out in
sections 2.3 and 2.4. This is a very special case as no other example of such a behaviour
was mentioned in the literature. Finally, in chapter 3 a regularization approach for
the problem was presented. At first, the equation and all occurring functions were
discretized. Artificial data were created to test the reconstruction properties in section
3.2. Using a Levenberg-Marquardt type algorithm, solutions could be obtained which
carried too many spikes to be acceptable, although they followed the solution quite well.
This problem had been solved by adding a smoothing penalty within the algorithm,
resulting in algorithm 3.2 as the proposed method for the reconstruction. It turned
out that no optimal starting phase can be chosen, but a constant zero phase is always a
suitable guess. This is a result of the fact that the algorithm is very sensitive with respect
to the periodical behaviour of the sought-after phase. Finally, three possible rules for
the choice of the regularization parameter have been introduced and numerically tested
in section 3.4. The so called absolute value method established in this work proved to
be the most reliable alternative. As shown in the next section, it produced acceptable
solutions for relative errors up to five percent. After that it has been explained why at
the moment no reconstruction from real measured data is possible in section 3.6. Finally,
chapter 4 summarized the previous chapter and provided the regularization approach
proposed to solve the autoconvolution problem discussed in this work.
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