
Toni Reichelt

A Model Driven Approach for Service Based
System Design Using Interaction Templates

Wissenschaftliche Schriftenreihe

EINGEBETTETE, SELBSTORGANISIERENDE SYSTEME

Band 10

Prof. Dr. Wolfram Hardt (Hrsg.)

Toni Reichelt

A Model Driven Approach for Service Based
System Design Using Interaction Templates

Chemnitz University Press
2012

Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Angaben sind im Internet
über http://dnb.d-nb.de abrufbar.

Zugl.: Chemnitz, Techn. Univ., Diss., 2012

Technische Universität Chemnitz/Universitätsbibliothek
Universitätsverlag Chemnitz
09107 Chemnitz
http://www.bibliothek.tu-chemnitz.de/UniVerlag/

Herstellung und Auslieferung
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster
http://www.mv-verlag.de

ISBN 978-3-941003-60-6

URL: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-85986

Preface to the scientific series “Eingebettete, selbstorganisierende
Systeme”

The tenth volume of the scientific series Eingebettete, selbstorganisierende Systeme (Em-
bedded, self-organised systems) devotes itself to the model driven design of service-oriented
systems.
Fields of application for such systems, amongst others, range from large scale, distributed

enterprise solutions down to modularised embedded systems. The presented work was moti-
vated by the complex design process of avionics for unmanned systems, where the increased
demand for enhanced system autonomy implies high levels of system collaboration and infor-
mation exchange. For such system designs a clear separation between the application logic
implemented by system components, the means of interaction between them and finally the
realisation of such communication on target platforms is essential. In particular, this sep-
aration leads to simplification of the complex design processes and increases the individual
components’ re-use potential.
With the presented work, Dr. Reichelt provides a holistic model driven design process for

such systems. The design of service oriented systems and their target platform independent
modelling with respect to component interaction stay in the focus of his work. The concrete
semantics of individual interactions are condensed into interaction templates collected in an
extensible model library. In turn, this library then provides the building blocks for service
and system modelling by means of template instantiation. Dr. Reichelt reflects his formal
concepts in a comprehensive UML profile and presents an encapsulating design process.
This new design process is validated with a representative case study based on a prototyped
tooling environment comprising model transformation and code generation techniques.
I am glad that Dr. Reichelt publishes his research in this scientific series and wish you an

interesting insight to the field of model driven design of service-oriented systems.

Prof. Dr. Wolfram Hardt
Chair of Computer Engineering
Dean of the Faculty of Computer Science
Scientific Director of Computing Center
Chemnitz University of Technology, Germany
April 2012

A Model Driven Approach for Service Based
System Design Using Interaction Templates

Dissertation

Submitted in partial fulfilment of
the requirements for the degree of

Doktoringenieur
(Dr.-Ing.)

presented to the

Faculty of Computer Science
Chemnitz University of Technology

Submitted by
Toni Reichelt

Assessor: Prof. Dr. Wolfram Hardt
Prof. Dr.-Ing. Martin Gaedke

Acknowledgements

This thesis would not exist without the extensive support and encouragement by many
people. First of all I am grateful to my mentor Prof. Dr. Wolfram Hardt who supported
me in pursuing a PhD degree. Within fruitful discussions he helped shaping and organising
many of the ideas of this thesis. And as this thesis was prepared in an industrial environment
I am especially thankful because he always welcomed me in academia and allowed me to stay
in touch with the scientific world.
I would also like to thank Prof. Dr.-Ing. Martin Gaedke for his interest in this thesis and

very constructive feedback in structuring and improving the presented work.

It is an honour for me to thank some personal friends with whom I had the pleasure
to work with at Cassidian. In particular I am indebted to Dr. André Windisch and Dr.
Norbert Oswald. André, thank you for introducing me to Cassidian and the world of avionics.
Norbert, I am thankful for given me the opportunity to join the EPAS (Engineering Platform
for Autonomous Systems) team which provided an ideal framework for developing my ideas
and test driving solution concepts.
Also, I thank my friends Dr.-Ing. Stefan Förster and Herwig Moser for their almost end-

less willingness to discuss many ideas compiled into this work as well as proof-reading and
commenting on its final version.

Finally, I would also like to thank my family, especially my wife Conny. Without their
continous support this work would not have been possible.

Thank you.

Toni Reichelt
Munich, August, 2011

i

ii

Abstract

Based on the increasing complexity of modern avionics, the associated system design pro-
cesses moved towards Model Driven Architecture (MDA) based processes. Additionally, the
demand for higher system autonomy features requires means to further modularise mission
systems and to define and establish interactions among the systems’ individual components.
Therefore, the ideas of service-oriented computing are currently adapted to established,
model driven design processes. With respect to modelling interactions for service com-
ponents, current approaches are limited to only a fixed set of communication primitives,
restricting a service designer’s expressiveness to specify service interaction. In consequence,
interaction patterns not included in this basic set have to be reflected in application code,
mangling application and communication logic. Furthermore, when service functionality
relies on communication semantics which are not provided by the underlying set of prim-
itives, additional emulation behaviour has to be added to the service which makes this
mangling even worse. Platform independence is reduced as services can not easily be ported
to platforms not natively supporting the selected primitives which contradicts the ideas of
model-driven development.
Addressing these limitations, this thesis proposes a new model-driven service development

process based on Interaction Templates (ITs), promoting interactions among service partic-
ipants to first class modelling entities. The process focuses on modelling the interactions
among service participants. Interaction semantics are explicitly specified in models, be-
yond pure stereotyping, and gain increased platform independence for services with respect
to communication. The process exploits automated Model-to-Model (M2M) and Model-to-
Text (M2T) transformations to assist service implementation and to automatically derive
interaction realisations on concrete target platforms. This allows for easy replacement and
inter-mixing of communication middleware to realise a service’s interactions. This way, ser-
vices become independent of the underlying communication primitives by only relying on ITs
and not platform primitives which are hidden behind ITs. In turn, realising ITs on concrete
platforms is not affected by their utilisation for service interaction.
Beside the novel modelling process itself, the presented work defines a Unified Modeling

Language (UML) profile, referred to as UML Profile for Interaction-centric Services (UP4IS),
which directly supports the adaptation of standard UML language constructs and tools for
the proposed modelling approach. The whole development process is demonstrated via the

iii

specification of a simple video recording systems consisting of two services. The services
themselves are based on a representative IT library which forms an essential part of the
presented case study. Using these service and IT models, the thesis emphasises the necessary
model transformation and code generation steps to derive service implementations based on
the abstract models.

iv

Contents

Abstract iii

Contents v

List of Tables xi

List of Figures xiii

List of Listings xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation and Application Context . 1
1.2 Problem Description . 2
1.3 Solution Requirements and Contributions . 4
1.4 Outline . 5

I Foundations 7

2 Related Work 9
2.1 Modelling Service Oriented Systems . 9

2.1.1 Formal Frameworks . 9
2.1.2 Architectural Frameworks . 12
2.1.3 Modelling Services with UML . 13
2.1.4 Discussion . 15

2.2 Service Interactions . 15
2.2.1 Interaction Patterns . 15
2.2.2 Catalogues for Service Interaction . 17
2.2.3 Modelling Service Interactions . 17
2.2.4 Service Adaptors . 19

v

Contents

2.2.5 Discussion . 21
2.3 Discussion . 21

3 Model Driven Architecture 23
3.1 Methodology . 23
3.2 The Model in the Model Driven Architecture 24

3.2.1 The Modelling Hierarchy . 24
3.2.2 Platform Independence of Models . 25

3.3 Model Transformations . 26
3.3.1 Source and Target Models . 27
3.3.2 Transformation Strategies . 28
3.3.3 Transformation Languages . 29

4 The Unified Modeling Language 33
4.1 Component Diagram . 33

4.1.1 Description . 33
4.1.2 Visualisation . 33

4.2 Composite Structure Diagram . 35
4.2.1 Description . 35
4.2.2 Visualisation . 36

4.3 Collaboration Diagram . 36
4.3.1 Description . 36
4.3.2 Visualisation . 38

4.4 Sequence Diagrams . 38
4.4.1 Description . 38
4.4.2 Visualisation . 41
4.4.3 Relation to Message Sequence Charts 41

4.5 Templates . 42
4.6 Extending the UML . 43

II Modelling Interaction-Centric Services 47

5 The Modelling Framework 49
5.1 The Interaction-Centric Service Development Process 49

5.1.1 Service Specification . 51
5.1.2 System Specification . 51
5.1.3 Interaction Template Specification . 52
5.1.4 Target Mapping Specification . 52
5.1.5 Target Adaptor Generation . 53

5.2 The First Class Modelling Entities of the Development Process 54
5.2.1 Interaction Templates . 54
5.2.2 Interactions . 58
5.2.3 Services . 60
5.2.4 Components . 61

5.3 Summary . 66

vi

Contents

6 A UML Profile for Service Modelling 67
6.1 The UP4IS Meta-Model . 67

6.1.1 Actions . 67
6.1.2 Interaction Templates and Interactions 69
6.1.3 Services, Ports and Components . 69

6.2 The UP4IS Stereotypes . 70
6.2.1 Action . 70
6.2.2 ActualAction . 71
6.2.3 FormalAction . 71
6.2.4 Interaction . 72
6.2.5 InteractionTemplate . 73
6.2.6 InteractionUse . 74
6.2.7 OnewayAction . 75
6.2.8 Service . 75
6.2.9 ServiceComponent . 76
6.2.10 ServicePort . 76
6.2.11 ServiceUse . 77

6.3 Summary . 78

III Case Study 79

7 Defining an Interaction Template Library 83
7.1 Motivating the IT Library . 83

7.1.1 Documenting ITs . 84
7.1.2 Specifying Target Mappings . 84

7.2 The IT Library . 85
7.2.1 Synchronous Request/Response . 85
7.2.2 Notification . 87
7.2.3 Notification with Push-Monitor . 88
7.2.4 Notification with Pull-Monitor . 90
7.2.5 Asynchronous Request/Response . 92
7.2.6 Asynchronous Request/Response with Push-Monitor 94
7.2.7 Asynchronous Request/Response with Pull-Monitor 97
7.2.8 Abortable Asynchronous Request/Response 99

7.3 Summary . 102

8 Defining Services and Systems 103
8.1 Example Services . 103

8.1.1 The Video Capturing Service . 103
8.1.2 The Image Compression Service . 104

8.2 The Video Recording System . 106
8.3 Summary . 108

9 Applying Model Transformations 111
9.1 Component Interfaces . 112
9.2 Supporting Service Implementation . 114

vii

Contents

9.3 Generating Target Adaptors . 118
9.4 Summary . 121

10 Conclusions 123
10.1 Results . 123
10.2 Prototype Implementation . 126
10.3 Future Work . 126

Bibliography 129

IV Appendices 143

A UML Foundations 145
A.1 Introduction . 145
A.2 The UML Version 2 . 146
A.3 The Notion of Model in UML . 147
A.4 The UML Meta-Model . 147
A.5 Diagram Types . 148

B Mathematical Foundations 151
B.1 Tuples . 151
B.2 Binary Relations . 151

C OCL Formalisation of the UP4IS Stereotype Constraints 153
C.1 Action . 153
C.2 ActualAction . 153
C.3 FormalAction . 153
C.4 Interaction . 154
C.5 InteractionTemplate . 155
C.6 InteractionUse . 157
C.7 OnewayAction . 158
C.8 Service . 158
C.9 ServiceComponent . 159
C.10 ServicePort . 159
C.11 ServiceUse . 159

D Target Mappings 161
D.1 Handling Synchronous and Asynchronous Actions 161
D.2 Message Type Mappings . 163

D.2.1 Primitive Message Type Mappings . 163
D.2.2 Complex Message Type Mappings . 163

E Run-time Framework 167
E.1 The Open Services Gateway Initiative . 167
E.2 Service Components and Target Adaptors . 168

viii

Contents

F Service/Interaction Role Interface Mappings 171
F.1 Video Capturing Service . 171

F.1.1 Java Mappings . 171
F.1.2 CORBA Mappings . 172

F.2 Image Compression Service . 173
F.2.1 Java Mappings . 173
F.2.2 CORBA Mappings . 175

G Theses 177

ix

Contents

x

List of Tables

2.1 Requirements Coverage Matrix . 21

4.1 Interaction Operands for Combined Fragments 40

7.1 Generic Target Mapping for Synchronous/Asynchronous Actions 85
7.2 Target Mapping for the Synchronous R/R IT 87
7.3 Target Mapping for the Notification IT . 88
7.4 Target Mapping for the Notification with Push-Monitor IT 90
7.5 Target Mapping for the Notification with Pull-Monitor IT 92
7.6 Target Mapping for the Asynchronous R/R IT 94
7.7 Target Mapping for the Asynchronous R/R with Push-Monitor IT 96
7.8 Target Mapping for the Asynchronous R/R with Push-Monitor IT 99
7.9 Target Mapping for the Asynchronous R/R with Push-Monitor IT 102

9.1 Provided and Required Interfaces for the Sample Components (Formal) . . . 113

D.1 Mapping Primitive Message Types . 163

xi

List of Tables

xii

List of Figures

1.1 Systems, Services, and Components . 2
1.2 A Simple Video Recorder. 2
1.3 Platform Dependent Services. 3

(a) Middleware Specific Service Interactions. 3
(b) Inability To Replace Middleware . 3

3.1 Modelling Hierarchy . 24
3.2 Model Types and Platform Independence . 26
3.3 Model Transformation Chain . 27
3.4 Model Transformation Strategies . 28

(a) Marking . 28
(b) Meta Model Based . 28
(c) Pure Model Based . 28
(d) Pattern Application . 28
(e) Merging . 28

3.5 Models of the ATL Example . 30
(a) Input Model . 30
(b) Output Model . 30

4.1 UML Components Meta Model . 34
4.2 UML Component Example . 34
4.3 UML Composite Structure Meta Model . 35
4.4 Example of Composite Structures . 36
4.5 UML Collaboration Meta Model . 36
4.6 UML Collaboration Example . 37

(a) Collaboration . 37
(b) Collaboration Use . 37

4.7 UML Interactions Meta Model . 38
4.8 UML Sequence Diagram Example . 41
4.9 UML Stack Template . 42
4.10 UML Template Binding . 43

xiii

List of Figures

(a) Explicit Binding . 43
(b) Anonymous Binding . 43

4.11 UML Profiles . 44
4.12 UML Profile Example . 45

5.1 The Key Activities of the Modelling process 50
5.2 Inputs and Outputs of the Modelling Processes 50
5.3 Relation between ITs, Service, and Run-time Components 52
5.4 First Class Modelling Entities . 54
5.5 Sample Interaction Template . 58

(a) Formal Specification . 58
(b) UML Representation . 58

5.6 Sample Interaction Specification . 59
(a) Formal Specification . 59
(b) Explicit IT Binding . 59
(c) Anonymous IT Binding . 59

5.7 Sample Service Specification . 62
(a) Formal Specification . 62
(b) UML Representation . 62

5.8 Example of Components . 65
(a) Formal Specification . 65
(b) UML Representation . 65
(c) Required/Provided Interfaces . 65

6.1 The UP4IS Meta-Model . 68
(a) Interaction Templates . 68
(b) Interaction . 68
(c) Services and Components . 68

7.1 Formal Specification of the Synchronous R/R IT 86
7.2 UML Model of the Synchronous R/R IT . 86
7.3 Formal Specification of the Notification IT . 88
7.4 UML Model of the Notification IT . 88
7.5 Formal Specification of the Notification with Push-Monitor IT 89
7.6 UML Model of the Notification with Push-Monitor IT 90
7.7 Formal Specification of the Notification with Pull-Monitor IT 91
7.8 UML Model of the Notification with Pull-Monitor IT 92
7.9 Formal Specification of the Asynchronous R/R IT 93
7.10 UML Model of the Asynchronous R/R IT . 94
7.11 Formal Specification of the Asynchronous R/R with Push-Monitor IT 96
7.12 UML Model of the Asynchronous R/R with Push-Monitor IT 96
7.13 Formal Specification of the Asynchronous R/R with Pull-Monitor IT 98
7.14 UML Model of the Asynchronous R/R with Pull-Monitor IT 99
7.15 Formal Specification of the Abortable Asynchronous R/R IT 101
7.16 UML Model of the Abortable Asynchronous R/R IT 101

8.1 The Video Capturing Service . 105

xiv

List of Figures

(a) Formal Specification . 105
(b) UML Model . 105

8.2 The Image Compression Service . 107
(a) Formal Specification . 107
(b) UML Model . 107

8.3 Formal Specification of the Video Recording System Components 108
(a) The Video Camera Component . 108
(b) The Recorder Component . 108
(c) The JP2K Compressor Component . 108

8.4 UML Model of the Video Recording System 109

9.1 Transformational Steps in the Service Development Process 111
9.2 Determining Provided and Required Interfaces from UML Models 115
9.3 Provided and Required Interfaces for the Video Recording System (UML In-

terface Model) . 116
9.4 Service PSM of the Video Capturing Service. 117
9.5 Target PIM for the Video Capturing Service. 119
9.6 Target PSM for the Video Capturing Service. 120

10.1 Relationships of Proposed Modelling Concepts 125
10.2 Prototyped Modelling Tool. 127

A.1 UML History . 146
A.2 UML Diagrams . 148

E.1 The OSGi Architecture . 168
E.2 Deployment Configuration for the Video Recording System 169

(a) The Camera System . 169
(b) The Combined Recorder/Compressor System 169

E.3 The Run-Time Monitoring Tool. 170

xv

List of Figures

xvi

List of Listings

3.1 ATL Example . 30
3.2 MOF-M2T Example . 31

6.1 Determining Formal Actions Substitutions . 72
6.2 Determining a Service Port’s Service Role . 76

D.1 Exemplified Mapping of Action to CORBA 161
D.2 Exemplified Mapping of Actions to Java . 161
D.3 Exemplified Delegate of an Asynchronous Action in Java 162

F.1 Interaction Role Java Interfaces for Activate 171
F.2 Interaction Role Java Interfaces for Deactivate 171
F.3 Interaction Role Java Interfaces for Stream 172
F.4 Service Role Java Interfaces for Video Capturing 172
F.5 Interaction Role CORBA Interfaces for Activate 172
F.6 Interaction Role CORBA Interfaces for Deactivate 172
F.7 Interaction Role CORBA Interfaces for Stream 173
F.8 Interaction Role Java Interfaces for Configure 173
F.9 Interaction Role Java Interfaces for Retrieve 173
F.10 Interaction Role Java Interfaces for Compress 174
F.11 Service Role Java Interfaces for Image Compression 174
F.12 Interaction Role CORBA Interfaces for Configure 175
F.13 Interaction Role CORBA Interfaces for Retrieve 175
F.14 Interaction Role CORBA Interfaces for Compress 175

xvii

List of Listings

xviii

List of Acronyms

ADL Architecture Description Language.
API Application Programming Interface.
ATL Atlas Transformation Language.

BPEL Business Process Execution Language.
BPEL4WS BPEL for Web Services.
BPMN Business Process Modelling Notation.

CIM Computation Independent Model.
CORBA Common Object Request Broker Architecture.

DSL Domain Specific Language.

ESB Enterprise Service Bus.

FSM Finite State Machine.

IDL Interface Description Language.
ISO International Standards Organisation.
IT Interaction Template.
ITU International Telecommunication Union.

JAR Java Archive.
JAUS Joint Architecture for Unmanned Systems.
JP2K JPEG 2000.
JPEG Joint Photographic Experts Group.

M2M Model-to-Model.
M2T Model-to-Text.
MDA Model Driven Architecture.
MOF Meta Object Facility.

xix

List of Acronyms

MOF-M2T MOF Models to Text Transformation Language.
MSC Message Sequence Chart.

OASIS Organization for the Advancement of Structured In-
formation Standards.

OCL Object Constraint Language.
OMG Object Management Group.
OMT Object Modelling Technique.
OOD Object-Oriented Design.
OOSE Object-Oriented Software Engineering.
OSGi Open Services Gateway Initiative.
OSI Open Systems Interconnection.

PIM Platform Independent Model.
PSM Platform Specific Model.

QoS Quality-of-Service.
QVT Query/View/Transformations.

R/R Request/Response.
RMI Remote Method Invocation.
RPC Remote Procedure Call.

SOA Service Oriented Architecture.
SSD System Sequence Diagram.

UML Unified Modeling Language.
UML4SOA UML Profile for SOA.
UP4IS UML Profile for Interaction-centric Services.
URML UML based Rule Modelling Language.

WSDL Web Service Description Language.
WSTL Web Service Transition Language.

XMI XML Metadata Interchange Format.

xx

CHAPTER 1

Introduction

1.1 Motivation and Application Context

Driven by the findings and achievements in the domains of artificial intelligence and robotics
in the last decade, the development and application of unmanned systems become a popular
alternative for mission scenarios which are considered as too risky for execution by humans,
referred to as “dull, dirty and dangerous missions” [FHS04], e.g., damage assessment after
natural or nuclear disasters. Especially the aeronautics industry is challenged by the in-
creasing demands on system autonomy which implies a high level of system collaboration
and information exchange within as well as in-between the participating systems. A key
element for such systems is not only to realise some functionality but also the ability to
provide resources and capabilities to other system [Alb03]. This requirement leads to more
and more complex avionics system designs. In turn, system designers are now faced with
the trade-off between the traditional avionics design process, driven by safety and security
regulations [Spi00], and the requirements to design modular and extensible systems [WFF02].
To face these challenges, the development processes are adjusted to incorporate established

standards from domains outside avionics, most prominent software and distributed systems
design. Mainly, the processes were aligned on model driven approaches [Spi06] as represented
by the MDA [OMG01], e.g., in form of frameworks like Joint Architecture for Unmanned
Systems (JAUS) [JAU06] and modelling tools1. The adaption of MDA yielded a design
process applicable to the complete system life cycle, from the abstract specification, through
the implementation, up to maintenance and re-design [MM03].
However, current process adaptations focus more on architectural facets of the devel-

opment process [Spi06]. What is blended out is the description of a system’s resources
and capabilities and how these are accessed during mission execution. It was shown, that
service oriented design can be applied to avionics, especially for autonomous system de-
sign [OWF+07, OFM+07]. Not only provides it a way to address the before mentioned
modelling problem, but also offers the possibility to incorporate even more, complementing

1For instance IBM Rational Rhapsody, see http://www-01.ibm.com/software/awdtools/rhapsody/.

1

http://www-01.ibm.com/software/awdtools/rhapsody/

1 Introduction

Services

System

Components

Figure 1.1: The relationship between systems, services, and components.

Recorder
«servicecomponent»

Compressor
«servicecomponent»

VideoCamera
«servicecomponent» Capturing

Compression

Figure 1.2: A simple video recorder.

technologies for avionics, e.g., information dissemination [MROF08, MORF09] or automated
planning and plan execution [MROF09a, MROF09b].

1.2 Problem Description
A service represents a distinct unit of system logic resulting from the decomposition of a
system’s behaviour to separate functional groups. Services are implemented by components
which can be individually distributed. A service oriented system then evolves from loosely
coupled compositions of such components [MLM+06] (cf. Figure 1.1). “Collectively, these
[components] comprise a larger piece of business automation logic. Individually, these [com-
ponents] can be distributed.” [Erl05, p. 32] Hence, an essential part of service orientation is
to establish communication between the distributed components. To draw emphasis on this
aspect of service orientation, the notion of services is understood as interaction-centric ser-
vice within the presented thesis, i.e., it represents the collaboration of entities – it describes
collaborative functionality [DMRK05, BF05, KM04].
Figure 1.2 depicts a simple video recorder system which may be realised for an unmanned

system to acquire image data for later analysis. The video recorder is composed out of two
services, capturing and compression. The system shall capture image data through a video
camera. The data shall be stored by a recorder component in a compressed manner. This
compression functionality is provided by a third component, the compressor.

2

1.2 Problem Description

C
am

er
a

R
ec
or
de
r

(a) Middleware specific service interactions.

C
am

er
a

R
ec
or
de
r

(b) Inability to replace middleware.

Figure 1.3: Platform dependent modelling of services.

Once, the service components are modelled, implemented and deployed to a system, system
behaviour is only realised if the necessary communication between the various components
can be established at run-time. Hereby, one often focuses on specific interaction features of
the addressed deployment platform a system is initially designed for [Spi06]. Often, possible
invocation mechanisms to be exploited for service development are restricted to a “widely
accepted standard” [Pap03] and thus to a limited set of interaction primitives. Typically, this
set of primitives is referred to as abstract platform [Alm06]. Although concrete technologies
which can be used to realise these interactions are generalised, the abstract platform still
remains quite specific as it constraints communication to small sets of applicable primitives.
This contradicts the already established principles of MDA for avionics as the system designer
has to handle details of the target platform, e.g., message passing mechanisms and data
representation, within the high level system specifications which is intentionally to be avoided
within MDA [V0̈7, p. 424].
Figure 1.3 illustrates the consequences of such platform dependent modelling. In Fig-

ure 1.3a. the initially designed components of the camera and recorder are shown. Both
are interconnected by some middleware which realises communication between them, e.g., to
stream the video data. The component’s interfaces are based on the characteristics of that
middleware, exemplified by the jagged shape of the middleware adaptors, shown in light
grey. If the middleware shall be replaced, e.g., to adapt the components to a new system,
and the new middleware does not provide the same interaction semantics as illustrated by a
different adaptor shape in Figure 1.3b, the components could not be re-used without modi-
fication of their own interfaces. The reason for this is, that platform dependent information
flew implicitly into the component models which was not reflected as first class modelling
entity [KBW03, p. 2]. This is an evident problem when regarding system interoperability
and portability ([KBW03, p. 5] and [ROW+07]).
What would be beneficial is a modelling process to be integrated into existing MDA pro-

cesses which would not only allow for explicit modelling of a system’s services but also to
support direct modelling of service interactions with respect to the underlying interaction’s
semantics of in a platform independent manner. This will increase re-usability of service
components due to increased platform independence. Furthermore, this approach supports
grounding of service interactions to different platforms (middleware) solutions based on the
semantics of the individual service interactions rather that being limited by a single plat-
form’s support for very specific semantics. The MDA process would immediately enable the
integration of different target platforms not only as mutually exclusive mapping alternatives
but more prominent as specialised options to be used in parallel in a heterogeneous system
execution environment. This way, the individual strengths of different middleware can be
combined to form a communication environment specifically tailored to the modelled sys-

3

1 Introduction

tem2. Such tailoring on interaction level rather than on service level is especially beneficial in
embedded environments, such as avionics, which challenge system designers with various lim-
itations like restricted communication stacks and middleware solutions (cf. [VCH10, VE10]).
Additionally, a modelling approach clearly separating between a service’s functional de-
sign and the service’s interaction semantics will ease further extensions of the development
process, e.g., adding support for resource oriented methodologies beside service orienta-
tion [HGM09] or, of special interest for safety and security critical systems, authorisation
and access control enforcement beyond system boundaries [HGM08, Mei09] to be plugged
into interaction models.

1.3 Solution Requirements and Contributions

Within the context of MDA based service development, the presented thesis describes a
model driven development process based on service interaction patterns represented as first
class modelling entities, referred to as Interaction Templates (ITs). By using ITs as build-
ing blocks for service specification, the restriction to a closed set of interaction primitives
is eliminated and real platform independence with respect to communication realisation in
accordance with MDA is gained. Therefore, the proposed approach diminishes the influences
of platform restrictions on service design. Based on ITs, a service’s interactions are explicitly
designed for a service’s needs rather than being governed by a platform’s characteristics. The
concept of IT oriented service development is embedded in a comprehensive design method-
ology enclosing a complete MDA process chain which supports code generation for service
component implementation and automated groundings of service interactions to target plat-
forms. Hence, the described process simplifies a service’s specification by maintaining a strict
separation of service functionality, service interaction and the service deployment platform.
In particular, this separation yields the following set of advantages:

• Primitive as well as complex interactions are separated from a service’s application/busi-
ness logic and the concrete features of target platforms.

• Service modelling is unconstrained by the underlying platform’s communication prim-
itives which remain hidden by ITs.

• Interactions are automatically realised on target platforms based on their usage within
a service specification.

• Interactions can be mapped to multiple target platforms, allowing for simplified re-
placement without affecting existing service implementations.

• Individual interactions of one service can be realised through different target platforms,
exploiting specialised communication primitives where possible.

In order to achieve these benefits, the modelling methodology described within this the-
sis contributes answers to the following requirements on an MDA-based interaction-centric
service development process:

2Cf. [Lin06, Ö06] for a more detailed discussion on combining standard middleware for the specific needs
of a system.

4

1.4 Outline

• A pattern language for service interaction to support the creation of an IT library to
base service development on.
Supporting an open approach to define and extend the IT library as core element of
the process, does not restrict the process to specific fields of application.

• A formal model
– for the structural and behavioural specification of service interaction patterns be-

tween a pair of communicating entities,
– allowing for service definition with two or more participants based on interaction

patterns,
– supporting component and system specification based on services.

Supporting a formal representation of the modelled entities allows support for sys-
tem validation and verification which is crucial for extending avionics development
processes.

• An UML profile reflecting this formal model and thus supporting interaction (pattern),
service, and system design with standard UML tools.
Integration of the formal concepts into UML enables application of the process to
already established UML/MDA based development processes and tools and thus will
ease the adaptation of new processes.

• A generic concept for automatic realisation of service interactions on target platforms
gaining platform independence with respect to communication between service partic-
ipants and to support automated grounding of service interactions.
By not being bound to specific target platforms the process supports increased re-use
of the modelled services and interactions. By also enabling the automated deriva-
tion of implementations of service interactions, the process will simplify the overall
development process.

• An enclosing MDA process for service-oriented system development integrating the
above approaches with automated model transformation and code generation.

The applicability of our approach is demonstrated by a representative case study which
comprises the creation of a comprehensive pattern library for service interaction and its
usage for the specification of the already mentioned video recording system based on distinct
services. Additionally, the relevant model transformations and parts of the generated source
code are presented.

1.4 Outline
The thesis is structured as follows:

Part I – Foundations. Chapter 2 presents the discussion of related work with respect to
the contributions of this thesis. Relevant literature in the field of service specification,
formal models for service orientation in general and for service interaction in particular,
as well as work exploiting UML in the context of service modelling is highlighted. The

5

1 Introduction

remaining chapters of Part I present selected concepts of MDA and UML which are
relevant for presented development process.

Part II – Modelling Interaction-Centric Services. Part II describes the methodology of interaction-
centric service development based on ITs. In Chapter 5 the formal modelling frame-
work driving the design process is presented along with the visualisation approach for
the introduced formal concepts based on UML, given by the UML profile specified in
Chapter 6.

Part III – Case Study. The process’ modelling approach is demonstrated by developing a
basic video recording system based on our design methodology. Therefore, a represen-
tative set of interaction patterns in form of an IT library in Chapter 7 is developed.
This library is then exploited in Chapter 8 to define the exemplified services and the
video recording system itself. Concluding the case study, the necessary model trans-
formations to support the implementation of the services on the one hand as well as to
enable the automatic realisation of service interaction on target platforms on the other
hand are explained. (Chapter 9).

Conclusions. Eventually, Chapter 10 concludes by summarising the main contributions of
the thesis and outlining open challenges for future research.

6

Part I

Foundations

CHAPTER 2

Related Work

This chapter categorises and discusses related work in the field of service oriented sys-
tem design and the description of service interactions. Thereby, the discussion focuses on
the requirements identified in Section 1.3, especially highlighting work associated to the
MDA/UML context.

2.1 Modelling Service Oriented Systems
Modelling services represents a vast field of system design. Therefore, the presented ap-
proaches are representatives for whole categories, each emphasising a different aspect of
service modelling. In particular, the following sections introduce formal frameworks for ser-
vice (component) specification, reference models addressing complete service architectures,
and finally work in relation to model driven service development based on UML.

2.1.1 Formal Frameworks
In literature exist several competing formal approaches for service-oriented system develop-
ment. The formalisation is largely driven by the need for a well defined semantics in order to
enable machine processibility. Hence, one can exploit automated validation checks for system
definitions, e.g., proofing their soundness, timing constraints, or coverage of component re-
quirements. Formal frameworks for service-oriented system development can be categorised
mainly in two different manners: First, if they are founded on common, well known for-
malisms like process algebras or automata theory, or if they contribute their own formal
languages and semantics. Second, they can be distinguished by addressing complete archi-
tectures, i.e., combining static and dynamic aspects, or by focusing primarily on behavioural
specifications.

Derived Formalisms

In the field of service specification mainly the following formalisms are used for behaviour
description: Finite State Machines (FSMs) [Gil62], Petri-Nets [Pet81, Jen90], and Mes-

9

2 Related Work

sage Sequence Charts (MSCs) [oI01]. A typical representative of the former is the Web
Service Transition Language (WSTL) proposed by Berardi et al. in [BdRdSM04]. WSTL
uses finite state automata to describe “what is observable from the point of view of the
service users” [BdRdSM04]. It describes service components based on communication sce-
narios, referred to as conversations, and the resulting transitions in the surrounding system.
WSTL is a derivation of the Web Service Description Language (WSDL) [CCMW01] and
extends WSDL’s static interface definitions with elements which describe message exchange
sequences, including complex constructs like loops or exceptions.
Further highlighting communication within services, Benatallah et al. use FSMs to describe

interaction behaviour of service roles in terms of protocol automata [BCT04a, BCT04b].
Within their work, a strong relation between the communication semantics of a service role’s
interface and primitives of the applied networking middleware is drawn, promoting this de-
pendency as one key element driving the modelling process. Based on the formal specification
of interface protocols, they apply model checking techniques to proof compatibility between
service role implementations, and replace-ability of components within system specification.
Based on protocol simulation, they present a taxonomy to qualify service (role) similarity.
As Li et al. pointed out in [LJJ05], a pure behavioural protocol specification only based on
state transitions may not be sufficient to proof suitability of services in complex scenarios.
In consequence, they presented their work as extensions to the application of FSMs in the
context of service modelling. They provide means to semantically extend the formalism by
non-functional interaction constraints annotated to individual transitions.
In contrast to the previous work, the following approaches use Petri-Nets [Pet81] for be-

haviour modelling. The Radl framework [LPS03] orients itself on Architecture Description
Languages (ADLs) to describe service oriented system by a process and a structural view.
Like ADLs, Radl distinguishes three major concepts: components, referred to as kens which
come in a basic and a composite flavour, gates, representing ports, and connectors. Using
Petri-Nets, Radl specifications model the dynamics of the underlying business workflows
which are captured in services.
WS-Net [ZCCK04] can be seen as an extension to Radl. By using coloured Petri-Nets [Jen90],

WS-Net supports the description of service components on three different layers, allowing
a better separation of concerns during system design. The interface net is used to model
the functionality a component provides. Its counterpart, the interconnection net identifies
the resources a component acquires from others to accomplish its own task. Finally, the
interoperation net focuses on the internal behaviour of a component with respect to its in-
teractions with the environment. By embedding appropriate tool support into the execution
environment, WS-Net service configurations can be verified and monitored during run-time.
Drawing even more attention to the execution state of service oriented systems, Dĳkman

et al. [DD04] uses Petri-Nets for service composition and orchestration, i.e., controlling the
wiring in-between service components at run-time. Therefore, component oriented aspect,
i.e., interface and processing behaviour, are extended with service choreography, i.e., the
“storyboard” of service interaction. “By formally capturing the interrelationships between
these viewpoints, the proposal enables the static verification of the consistency of composite
services designed in a cooperative and incremental manner” [DD04].
In [Krü04, KM04], Krüger et al. presents a methodology for service modelling and compo-

sition based on a self defined ADL dialect combined with MSCs [oI01]. Thereby, services are

10

2.1 Modelling Service Oriented Systems

understood as interaction patterns1 among a set of entities. A service identifies each such
entity as dedicated role, which plays a well defined part within the captured interaction. The
communication semantics between roles of a service are specified with MSCs, describing the
externally observable behaviour of a role. In relation to ADLs, roles are implemented by
components which, in turn, are then composed to system configurations.

Standalone Formalisms

The category of standalone formalisms for service oriented system design addresses work
which is not derived from a separate formal framework. Instead, the authors of the following
methodologies invented their own mathematical models. However, most work is at least
weakly based on the work of Briand [BMB96] who present an quite generic framework for
modular software system design. In its most abstract manner, for Briand, a system S will be
represented by a pair (E,R) where E represents the set of elements of S and R is a binary
relation between such elements, i.e., R ⊆ E×E. R is understood as expressing links between
the system’s elements. Briand’s model is intentionally kept abstract to serve as a base for
formal system models in various applications. Towards the description of service oriented
systems, the work of Rossi et al. [RF03] plays a key role as they adopted Briand’s concepts
for distributed systems. Therefore, they refined the relation R to represent communication
between distributed components.
Based on this preliminary work, Perepletchikov et al. [PRFS07] proposed a formal model

for service oriented design. Their mathematical model covers essential design artifacts for
services for both, structural and behavioural properties. The model is tailored to the BPEL
for Web Services (BPEL4WS) [ACD+03] and is based on directed graphs and set the-
ory. Thereby, software components are represented by vertices and their dependencies by
edges. Following their notion of services, a service is a connected sub-graph of the system
graph. Communication behaviour is expressed by a proprietary process algebra which can
be mapped to BPEL4WS, leading to executable system specifications.
Inspired by the telecommunications domain and the International Standards Organisation

(ISO)/Open Systems Interconnection (OSI) reference model [Zim80], Herberg et al. devel-
oped a layered model for service design. In [HB05] they show how to model software architec-
tures and service interfaces offered and consumed by components that could be arranged in
form of layers. In such an architecture, a component representing layer n offers functionality
to its upper layer n + 1 and can access resources of its lower layer n − 1. Consequently, a
service describes the interaction in-between two adjacent layers. A typical example of system
which can intuitively modelled in this manner is a client/server application.
An exhaustive formal framework for modelling service oriented architectures is presented

by Broy et al. in [BKM07]. Service components are described by their structure as well as
their behaviour. The collaborative behaviour of services is then a result of a formal merging
process. The approach is based on the Focus framework [BS01]. Within Focus, systems
are compositions of interaction components. A component is understood as a total behaviour,
i.e., a realisation of a specific functionality. In contrast, a service is only a partial behaviour,
stating what is required, in terms of component interaction, to establish a requested func-
tionality. Service interaction is modelled via timed data streams which represent the message
sequences to be exchanged by components. The mathematical foundations of the approach

1Note, the term interaction pattern as used by Krüger does not represent a templateable modelling element
as used in the presented thesis.

11

2 Related Work

allow for validating various properties of the modelled systems, e.g., the absence of deadlocks
for service interactions or reachability of individual system states.

2.1.2 Architectural Frameworks

For unification of competing modelling approaches a reference model for service oriented
architectures was presented by the Organization for the Advancement of Structured Infor-
mation Standards (OASIS) in [MLM+06]. As a reference model, it identifies artifacts and
their relations within a service oriented environment. It does not represent a concrete archi-
tecture but solely provides generic key concepts. Thus, it is situated at the most abstract
level of system modelling. The core element of the reference model is the service. The notion
of service combines the following three ideas (cf. [MLM+06, p. 8]):

• The capability of an entity to perform work for another entity.

• The specification of the work offered by an entity.

• The offer of an entity to perform work for another entity.

These points imply a distinction between a capability, the ability to bring that capability
to bear which includes the willingness to share that capability, and the need for a capability
which can not be provided by oneself. In this context, a service provides a mechanism by
which need and capabilities are brought together. A service is described at least by the
following properties(cf. [MLM+06, p. 12]):

Description. A service must be described in a standardised manner which can be used to
register it with a registry from where it can be discovered.

Interaction. What interactions are necessary to establish a service?

Contract & Policy. Under which circumstances can the service be established?

Effect. What is the observable outcome, the result of the service?

Context. Which assumptions are made for a service to operate as specified?

Visibility. Which parts of a system can “see” the service, i.e., can discover and request the
functionality a service offers?

The reference model provides “best-practises” to each of these points and gives advices on
how they can be implemented.
Extending the elements of the OASIS reference model, further contributions address organ-

isation and run-time management for service oriented architectures, e.g., the one proposed by
Papazoglou [Pap03]. Initially, his model identifies common roles in service oriented systems
like provider, consumer, and registry. Furthermore, it outlines concepts of service composi-
tion, orchestration, and deployment. Additionally it addresses the underlying communication
infrastructure with its implications to the system’s architecture.

12

2.1 Modelling Service Oriented Systems

2.1.3 Modelling Services with UML
In the past ten years, model driven service design using UML has gained large popularity.
Thereby, contributions mainly focus on the following aspects:

• Defining stereotypes mainly supporting visual enrichment of UML models without
providing further semantics to the models.

• Presenting light weight extensions for UML in UML profiles to represent concrete
service architectures, e.g., providing specialised stereotypes for specific architectural
aspects or a service platform’s interaction semantics.

• Proposing heavy weight UML extensions in form of meta-model adjustments reinter-
preting UML standard elements in the context of service orientation.

• Describing Model-to-Text (M2T) transformations and aligned modelling concepts in-
tended to generate service descriptions or implementation artifacts.

Most work in literature does not exclusively address one of these categories in isolation.
Instead, often a combination thereof is described. In the remainder of this section, we shortly
present related work in the context of UML based service modelling covering representative
approaches for every of the mentioned categories.
One of the most popular UML profiles enabling service oriented system design is the one

provided by IBM [Joh05]. It defines a number of characteristic, architectural stereotypes
following a simple meta-model which relates service providers to consumers, representing
the core elements of the meta-model. These elements are connected by services which are
described through the messages to be exchanged upon service establishment. As such, it
is closely related to OASIS’ reference model although not being directly influenced by it.
However, the profile’s stereotypes have rather decorative semantics as no further modelling
constraints or model transformations are defined exploiting the profile. Furthermore, the
profile is missing a mechanism to model message exchange patterns, e.g., notification and
method invocation. Instead, it just refers to a quite generic message primitive to transmit
data between two components.
The same drawbacks apply for the work presented by Heckel et al. In [HLT03] they

describe a similar generic UML profile but extended by a special run-time component – the
service registry. Although being explicitly designed towards model driven design, they do
not demonstrate any model transformations for their approach.
A more detailed and thus expressive UML profile was proposed by Amir et at. in [AZ04].

They defined five sub-profiles each of them devoted to a separate aspect of service oriented
designs: resources, service description, exchanged messages, service policies and service im-
plementation. Due to its strict alignment to web services, the model is not suitable to develop
system definitions outside the scope of WSDL. Again, the profile is missing an explicit de-
scription of interaction semantics.
In [VCM05], Vara et al. describe a design tool for modelling services. The tool is specifically

tailored to WSDL and thus supports only the elements defined in WSDL, including the
limited set of interaction primitives. The benefit of their approach is that they inherently
provide a direct mapping to WSDL documents realised through automated code generation.
At the same time, this also represents a disadvantage as the complete tool chain depends on
WSDL and thus does not represent a “real” platform independent solution.

13

2 Related Work

In [LGW+07], Likuv et al. present the UML based Rule Modelling Language (URML).
The language focuses on modelling business logic in services. Service functionality is de-
fined via reaction rules which consist of four elements: trigger events specify under which
circumstances a rule becomes active, rule conditions define the prerequisites for rule activa-
tion once it is triggered, rule actions express the concrete effects of a rule, and finally the
post-conditions express the system state after the execution of a rule. The authors provide a
mapping between rules and web services artifacts, i.e., interfaces, operations, and messages.
Hence, their system models can be transformed to WSDL descriptions. Like for the previous
approach of Vara et al., URML is tailored towards a concrete technical platform (WSDL)
which again limits portability.
The active components model described by Lopez-Sanz et al. [LSACM08a, LSACM08b] is

also a complete meta-model for service oriented systems. Active components realise services
by acting as provider, or require services by representing consumers. The relationship be-
tween both is defined through business contracts. These contracts are modelled by explicit
association classes which characterise the connections between components. The meta-model
puts special emphasise on user interaction with such systems by defining front end compo-
nents based on active components. Unfortunately, the authors present only the modelling
approach itself and discuss no further applications of the resulting models like transforma-
tions and code generation.
The UML Profile for SOA (UML4SOA), described by Koch et al. [KMH+07], is a com-

prehensive UML profile for service oriented architectures. It is part of a larger project
suite called Sensoria [BFGK06]. Sensoria is a prototype language for service modelling.
Hence, UML4SOA is its adaptation for UML. UML4SOA provides dedicated model elements
for structural and behavioural aspects of services and realising components. Additionally,
the annotation of business goals, policies and other non-functional properties for services is
supported. The approach exploits UML protocol state machines and workflow diagrams to
model service interaction and business goals. Service compositions are described as orches-
trations via UML activity diagrams. Due to its consequent alignment to UML principles,
UML4SOA constitutes the basis for model transformation and code generation techniques.
However, the focus is put on modelling business logic applications in form of service com-
positions which are automatically derived from UML models and executed via appropriate
interpreters. There is no explicit support to model service interaction primitives as first class
entities and their respective groundings to middleware technologies.
A similar approach is proposed by Emig et al. in [EWA06]. The structure of service based

systems is modelled via UML component diagrams, assigning services, i.e., functionality, to
components. The functionality itself and thus the dynamic aspect of a system is specified
with the Business Process Modelling Notation (BPMN) [OMG11], a graphical language for
business processes. By providing a transformation of BPMN to a combination of Business
Process Execution Language (BPEL) [OAS07] and WSDL, the approach allows automated
generation of service components and business flows. Despite the fact of restricting their
approach to these two target technologies, the major drawback of this work is that there is
no automatic mechanism to ensure coherence between the BPMN and the UML component
model of the system. Hence, both models have to be kept in synchronisation manually.
Krämer promotes the interaction between service components as central elements of service

orientation instead of the functionality wrapped in components. In [KH06] he describes
how one can model services based on UML collaborations for structural and UML activity

14

2.2 Service Interactions

diagrams for behavioural aspects. The motivation behind his methodology is the description
of service compositions. His ideas are furthermore extended by Sanders to support the
annotation of service goals [San07], enabling automated service composition. Both authors
do not provide any model transformations or code generators to support realisations of the
specified systems on real target platforms.
Also following the interaction view, Ermagan et al. describe the Rich Services Profile [EK07].

Hereby, services are described by component collaborations. The approach addresses on the
one hand, the logical architecture of a system as it is decomposed by services. On the
other hand, the authors describe the deployment architecture, i.e., the distribution of service
components to physical nodes of a system. Their particular focus lies on the controlled ag-
gregation of individual services into composite system architectures. The approach is tightly
coupled to WSDL and BPEL.
On the way to an agreed reference profile which unifies the various approaches in industry

and research, theObject Management Group (OMG) initiated a “Request for Proposal” to de-
fine a standard UML profile in accordance to the ideas of model driven development [AO06].
The intention of this request is to define a common vocabulary and meta-model for service
specification. Although the request’s answer deadline has passed in 2007, there is still no
draft of a standard document available from the OMG.

2.1.4 Discussion

When modelling services one currently has to choose between formal frameworks or UML
based approaches tailored to specific reference technologies or architectures. Formal frame-
works typically provide a mathematical basis to describe the structure of service oriented
systems as well as their dynamics. Thus the occurring communication within such sys-
tem can be explicitly annotated supporting automated validation. However, due to their
mathematical origins, such frameworks do often not integrate themselves seamlessly into
model driven software development as they omit the relevant modelling entities projecting
the mathematical constructs onto software elements. Work resolving this drawback often
aligns the formal approaches with very specific approaches of service-oriented computing,
e.g., WSDL. Hence, only service oriented systems following a very specific methodology can
be modelled.

2.2 Service Interactions
The work discussed in the previous sections mainly covers the overall context of modelling
services and systems thereof. Complementary, the following sections delve into the more
specific questions about how service interactions are explicitly described and realised.

2.2.1 Interaction Patterns

Component interaction represents an integral part of any software system, may it be mono-
lithic or distributed. “Actually, interactions between communication entities are essential
in the description of behaviour.” [Byu03, p. 12] They describe the way how components re-
late and communicate with each other. Although such communication is a highly dynamic
process that is “difficult to partition and categorise” [Fai98], interactions often have basic
characteristics which can be resolved by abstraction and documented in a manner that they

15

2 Related Work

can be applied to various application domains. The outcome of this extraction process is an
interaction pattern.
The technical notion of patterns originates from the work of the architect Christopher

Alexander. When describing his thoughts about fundamental principles of urban architec-
ture design in 1979, he coined the usage of “pattern” to describe “something which repeats
itself over and over again, in any given place, always appearing each time in a slightly dif-
ferent manifestation” [Ale79, p. 181]. Clarifying the “something”, Alexander explains that
a pattern is a three-part rule which correlates a problem in a certain context to a specific
solution [Ale79, p. 247]. By providing an intuitive vehicle to describe expert knowledge in a
general-purpose fashion [vdBC01], the concept of patterns was rapidly adopted to the field
of software engineering. Thereby, a number of catalogues were created mainly addressing
software design problems as presented in, e.g., [GHJV95] or [BMRS96].
Interaction patterns describe proved solutions of modelling interaction within the context

of communicating entities. They capture the assumptions, expectation, understandings, and
goals that drive components to communicate. Thereby, the following aspects are of special
interest (cf. [Fai98]):

Roles. What are the entities/processes to communicate with each other? Which is providing
what information or resource?

Control. Who is in charge of the interaction? Which process initiates the interaction and
which one terminates it?

Timing. What dependencies exists with respect to time and execution progress? Does one
process wait for the other?

Flow. How is information transmitted between the participants? Is it represented by an
atomic message or split to multiple ones? How do messages relate to each other?

Acting as the glue between components upon system integration (cf. [Esk99]), structure
and behaviour are often layered on top of interaction patterns. In literature exist many
approaches to not only present catalogues but also taxonomies of interaction patterns. The
range lasts from the fundamental classification of forms of communication, to focusing on the
peculiarities of the interaction roles. The former category addresses aspects of synchronous
and asynchronous communication as presented by Tanenbaum and Steen in [TvS01]. The
latter, describes patterns like provider-consumer, stating dependencies in terms of data cre-
ation and consumption, or push-pull, expressing if the producer of data or its consumer
triggers the data flow (cf. [Fai98]). For a more detailed discussion on such catalogues please
refer to Section 2.2.2 on page 17.
Summarising, interaction patterns as used in the presented work, are defined as following:

Definition 1 (Interaction Pattern). Interaction patterns generalise a common sequence of
actions, i.e., message exchanges, occurring in interactions between a pair of communicating
entities.

Thus, the patterns describe similarities of interactions in terms of interfaces and semantics.
They provide a vehicle to identify and capture interactions and making them available for
re-use. Not only the structural equivalence of interactions, but also their intention, or se-
mantics, should be captured in a pattern. Interaction patterns identify dependent sequences

16

2.2 Service Interactions

of message exchanges and thus represent building blocks to be re-used through composition
to specify complexer, higher-level communication models, i.e., services.

2.2.2 Catalogues for Service Interaction

There exist many different schemes of interaction to be used within services. Hence, several
authors tried to give classifications and present taxonomies to categorise them. We present
selected work of this field of research and describe their underlying principles, omitting the
reproducing of the complete catalogues.
Faison described an interaction catalogue in [Fai98], addressing bilateral interactions, i.e.,

interaction between only two entities. He identified fundamental properties which charac-
terise an interaction, e.g., synchronous vs. asynchronous communication, and monitorability
or abortability of the actions caused by a communication.
In contrast to this work, Eskelin [Esk99] classified interactions based on the form of

organisation/inter-connection. Thus, he mainly addressed questions about the communi-
cation infrastructure rather than about their semantics. In his words “assembling a system
consisting of custom and pre-built components can be difficult because of hidden dependen-
cies, complex interactions, and obscure design” [Esk99]. In consequence, he proposes five
architectural patterns to simplify component assembly in terms of communication, collabora-
tion, and coordination. The patterns are abstract interactions as black box of communication
itself, component bus as centralised communication infrastructure, component glue to con-
nect components to the bus, third-party bindings to mediate between different technologies,
and consumer-producer to model data flow.
Barros et al. [BDtH05] focus on the number of participants for an interaction. They

present a collection of patterns which cover combinations of single vs. multiple sender, single
vs. multiple receivers, and different variants of message routing between both. The described
communication semantics originate from the BPEL/WSDL context and are investigated
under special consideration of their implications to service choreography and orchestration.
Finally, Mahfouz et al. [MBLN06] address the handling of interaction constraints beyond

pure communication/invocation semantics. “The patterns aim at explicating and elaborating
the business requirements driving the interaction and separating them from implementation
concerns” [MBLN06]. Beside others, the discussed patterns comprise barriers, deadlines,
solicitation, queries, and expiration.
Apart from the work of Barros et al. the catalogues are represented by abstract pattern

languages describing best practices for interaction modelling depending on the concrete con-
text of communicating entities. Hence, they serve as starting points for modelling activities,
i.e., the patterns have to be adapted into formal models prior to their exploitation within
a service modelling process. When focusing on Barros et al., they address a very specific
subset of service modelling activities with respect to BPEL and WSDL. Thus, there work
also need some adaptation to support the more generic notion of services as proposed by the
this thesis.

2.2.3 Modelling Service Interactions

Service interaction can be described by modelling the communication protocols which con-
nect the service participants. Within this section, we distinguish between pure formal and
UML based approaches.

17

2 Related Work

Formal Approaches

A representative approach based on FSMs is described by Byun [Byu03, BS05]. He describes
a pattern language for the design of communication protocols. Within his methodology,
orthogonal characteristics of a communication, e.g., message flow or time constraints, are
specified by a number of independent communication artifacts in form of FSMs. A concrete
interaction is then defined by a composition of such artifacts by merging the associated FSMs.
Byun then uses automated validation checks on the resulting automata using Promela.
Kazhamiakin et al. developed an analysis framework for service communication and com-

position [KPS06]. Their work focuses on describing interaction in business processes. There-
fore, they provide a formalisation of BPEL via FSMs and use it to model basic synchronous
and asynchronous communication. Based on this formalism, they investigate the behaviour
of composite services by combining the FSMs of the underlying primitives.
Decker et al. [DPW06] present a comparison framework for two other popular formalism for

protocol design, i.e., the π-calculus [MPW92] and Petri-Nets [Pet81]. They first demonstrate
how typical interaction patterns, they use the ones defined by WSDL, are formalised in both
formalisms. They investigated different approaches using various types of Petri-Nets as well
as a multiple extensions to the π-calculus.
The work of Zaha et al. [ZDtH+06] is a representative for approaches using self-defined,

dedicated mathematical models. The authors present their own formal grounding on set
theory and provide a textual as well as a graphical method to describe service interactions
and choreographies. Hereby, choreographies are seen as the global view on service oriented
systems, individual interactions as the local view. Within their approach, one directly starts
by specifying detailed choreographies for services. A service itself is intentionally underspec-
ified with respect to its communication interfaces and protocols. This missing information is
automatically derived from the choreography specification and results in varying behaviours
for each of the actors which participate in an interaction depending on the system context.
Benatallah et al. developed a meta-model and framework to define service conversa-

tions [BCT04b]. A conversation describes the set of acceptable message exchanges, i.e.,
message types and their order, in an FSM like language. The authors analysed e-commerce
portals based on WSDL and extracted a number of typical conversation patterns. The
patterns are classified into two categories: completion and activation. Completion patterns
describe a transition’s implications and effects from the requester’s perspective. For instance,
a pattern captures the possibility to cancel an operation by the caller. A completion pattern
is described by the following properties: its persistent effects on system state, its compensata-
bility, i.e., if its effects can be undone, retriability, i.e., its idempotence, its credential-disclose
stating what state information is evaluated to establish the conversation, and its locking se-
mantics on system resources. In contrast to completion, an activation patterns describes the
features which trigger an interaction, e.g., by explicit invocation or on fixed schedules. Hence,
an activation is described through the trigger conditions as well as temporal constraints.

UML Based Approaches

Castejón et al. describe a method to model service interactions with UML collaboration and
activity diagrams [CB06]. Grounding on these models, they present an analysis framework to
determine implied interaction scenarios which result as side effects when composing services
to a complex system. With the evaluation of the implied interactions, they validate well-

18

2.2 Service Interactions

formedness of the overall system behaviour. The authors do not address the derivation of
interaction realisations on concrete middleware technologies, may it either be manually or
automatic.
Kramler et al. [KKRK06] model service interaction on two different levels of abstrac-

tions. First, the interaction level considers transactions and transactional processes between
communicating entities. Each transaction is performed by a set of participants of a collab-
oration, referred to as service. This level focuses on a single atomic sequence of message
exchanges occurring as building blocks of component interaction. Next, on the collaboration
level, they model state progress and control flow between the service participants. They
present a graphical representation based on UML collaborations, state machines and se-
quence diagrams. As their approach is closely aligned with BPEL, they do not consider
generic mappings of modelled interactions to varying target platforms.
Another approach based on UML collaborations is described by Krüger et al. [KM04]. In

their view, “a service is defined by the interaction among the entities involved in establishing
the service” [Krü04]. Therefore, they exploit UML collaboration diagrams to model struc-
tural relations of service participants combined with MSCs describing message exchange. The
authors provide the concepts of sequences, alternatives, repetition, interleaving, and joining
to compose service protocols based on the individual communication behaviour of each ser-
vice participant. The presented approach does not support automatic protocol composition
as some concepts, especially interleaving and join, require expert knowledge from the service
designer. Furthermore, Krüger does not discuss how the resulting protocol specifications can
be realised on concrete platforms.
Birkeland [Bir06] also presents a generic modelling approach for service interactions using

UML collaboration and sequence diagrams as well as and protocol automata, i.e., FSMs.
He describes individual aspects on protocols as UML collaboration templates which can be
applied to varying service scenarios via instantiation. Thereby, a template directly captures
communication behaviour on the service protocol layer. Hence, his approach does not identify
the underlying interactions of such protocols as stand-alone primitives for service modelling
and key elements to middleware groundings. Instead, Birkeland focuses on questions about
the composition of FSMs as a result of template instantiation for service definition. Such
composite FSMs are then validated with respect to, e.g., state reachability and termination.

2.2.4 Service Adaptors

Service adaptors are used to realise service interaction on concrete middleware platforms.
They fill the gap between the interaction platform independent service specification and the
service’s execution in a real system environment. Furthermore, adaptors can be applied for
achieving compatibility between mismatching role implementations within a common service.
Pham et al. [PCS07] present a formal model for protocol adaptation based on specification

pattern systems. Using a pattern library, they create FSMs which mediate between previ-
ously incompatible service role interfaces. By providing a complete run-time environment
for their approach, they can modify these mediators during system execution to react on
changes in the system infrastructure, e.g., the replacement of service role implementations.
Similar approaches are described by Gierds et al. [GMW08] and Li et al. [LFW+08]. Both

ground their work on set theory and Petri-Nets. Service adaptors are defined with so called
specifications of elementary activities or protocol mediators, respectively, which describe sets
of message transformations rules which must be applied to mediate between two service role

19

2 Related Work

interfaces. The rules include creation patterns which are used to inject additional control
flow messages if necessary, copy for message repetition, delete to suppress messages, and
transform to reformat messages.
Beside establishing compatibility on the service protocol level, there exist works in litera-

ture which also addresses the technical grounding of services on the operation level. Bena-
tallah et al. [BCG+05] presents one such approach. On the service protocol level they also
exploit pattern based solutions for message reordering, dropping and creation. Furthermore,
they consider the influence of the communication middleware to the service adaptors, e.g.,
available message exchange primitives, and weave them into the adaptor specifications. As
described by Nezhad et al. [NRB+07], the approach can be extended to support at least semi
automated resolution of protocol mismatches and the generation of service adaptors in the
context of WSDL.
Ihmor et al. [IH05] describe an approach to adapt varying inter-module communication

protocols based on data in-/outboxing and protocol translation. Although, the addressed
application context lies within dynamic hardware reconfiguration, the protocol translation
concept seems also applicable to software protocol stacks as used in service oriented or
middleware-based computing.
Nakazawa et al. [NTER06] developed an adaptive middleware, referred to as uMiddle,

which allows flexible groundings for services. Their framework supports protocol bridging
and data type conversion via a plug-in architecture. The M2 [YZCM04] framework uses
an analogous technique. M2 augments service components via transparent shaping, i.e., it
uses configurable service adaptors as communication back-ends which can be adjusted at
run-time.
The major drawbacks of the presented approaches are on the one hand that they often

include manual design steps as in practice not all protocol mismatches can be resolved au-
tomatically. On the other hand, these approaches make explicit assumptions about the
fundamental principles to be used for communication and thus can not be easily adopted
for different target platforms. Using a homogeneous communication back-end at least solves
these problems with respect to middleware adaptation. For service oriented architectures,
the concept of an Enterprise Service Bus (ESB) [SHLP05] represents the de facto stan-
dard solution. An ESB uses service containers to connect arbitrary service components to
a unified messages systems [Cha04, p. 58]. More clearly, “an Enterprise Service Bus is an
open standards, message-based, distributed integration infrastructure that provides rout-
ing, invocation and mediation services to facilitate the interaction of disparate distributed
applications and services in a secure and reliable manner” [Men07]. Due to its simple archi-
tecture the concept is currently widely used for commercial products, e.g., IBM WebSphere
Enterprise Service Bus2, Progress Sonic ESB3, and Oracle Enterprise Service Bus4.
In contrast to the ESB, our approach realises service interaction based on generic interac-

tions for services which are natively mapped to each platform’s primitives on a per interaction
basis. Hence, we can avoid further indirections of component communication if a selected
middleware directly matches the interaction semantics. Furthermore, we allow subsets of
interactions within the same service to be mapped to different technologies, e.g., based on
native support for some interaction characteristics like Remote Procedure Call (RPC) or

2Please refer to http://www.ibm.com/software/integration/wsesb/.
3Please refer to http://web.progress.com/en/sonic/sonic-esb.html.
4Please refer to http://www.oracle.com/technology/products/integration/esb/index.html.

20

http://www.ibm.com/software/integration/wsesb/
http://web.progress.com/en/sonic/sonic-esb.html
http://www.oracle.com/technology/products/integration/esb/index.html

2.3 Discussion

Requirement Service Modelling Interaction Modelling

Form. Arch. UML Patterns Catal. Form. UML Adapt.

Pattern Lang. − − − + + oa oa oa

Form. Inter. + oa oa ob o + oc o
Form. Serv. + + oc − − + oc −
Form. Sys. + + oc − − o oc −
UML Profile oda od + − o − + od

Adaptor Gen. − − o − − − o +
MDA Process od oad + − − − + +

Table 2.1: Requirements coverage matrix (“+” – fulfilled, “o” – partially fulfilled, “−” – not
fulfilled).

aImplicitly defined by fixed set of interactions.
bSemi-formal/textual description
cImplicitly defined by UML semantics.
dPartially supported as part of intetegration into development process.

message passing. Such combinations of target platforms are difficult to realise with ESB or
similar architectures as they assume one standard platform as communication back-end.

2.2.5 Discussion

Current work in the field of explicit modelling of service interactions, one has to distinguish
between two main streams. The first stream contains approaches to describe interactions in
a quite generic manner, i.e., pattern languages. These works provide sophisticated solutions
to capture interaction semantics but often do not draw the connection to their application
in service development processes, especially with respect to MDA based methods.
In contrast, the second stream especially considers the integration of service interactions

into such development processes. The major advantage of these approaches is their inher-
ent support for model driven development processes including code generation and system
deployment via automated groundings of service interactions to specific platforms. The
drawback of these works is their typical strong alignment to very specific service platforms
or communication middleware. They do often not support the modelling of arbitrary ser-
vice interaction as first class modelling entities as they rely on fixed sets of communication
primitives supported by their underlying technology.

2.3 Discussion

Table 2.1 shows the overall requirement coverage matrix of the discussed work with respect
to the list of requirements as identified in Section 1.3. A requirement is fulfilled if work of
the respective category provides an explicit solution to that requirement, or it is not fulfilled
if it is not addressed. A partially fulfilled requirement results from only limited support by
the work of the corresponding category.
Work of the field of service modelling provides generic solutions for formal modelling

of services and their interactions. But focusing on their support for MDA/UML based

21

2 Related Work

processes, they show strong limitations as they typically concentrate on very specific subsets
of service interaction semantics. In turn, if provided at all, they do support the automatic
generation of service groundings (through adaptors) only for that subset.
Research in the field of interaction modelling for services draws attention primary on two

points: categorising interactions by use of pattern languages and catalogues or providing
means to generate service groundings. Due to the generality of the first, they provide support
of describing a variety of interaction mechanisms but omit the transformation thereof to
concrete technologies. This transformation if the strength of the second group of related
work which offers support for automatic groundings but it turn uses closed sets of interaction
patterns as a basis as for related work in the field of UML based service modelling.
What is missing is a holistic development process which covers all the requirements. A

process which enables the development of an extensible interaction pattern library which
can be directly used for service and system modelling with automated generation of service
groundings. A process that supports both, an MDA/UML based modelling complemented
by appropriate formal semantics of the modelled elements.

22

CHAPTER 3

Model Driven Architecture

This chapter gives a short overview of MDA as it forms the basis of the proposed development
process. It presents a summary of the underlying methodology as well as of its both core
concepts, models and transformations.

3.1 Methodology

MDA is a system design and development methodology to assist system development with an
technology independent approach. MDA was first described by the OMG in 2001 [OMG01].
One of the main goals of the OMG is to establish open, vendor-neutral and thus interoperable
specifications for system design and integration. In that sense, MDA embodies the vision of
presenting a holistic framework to support interoperability with specifications throughout a
system’s complete life cycle. The design philosophy behind MDA shall address the descrip-
tion of a system’s business logic, modularisation, component construction and integration,
as well as deployment, management and evolution [OMG01].
A key concept of MDA is the separation of the specification of functionality from the spec-

ification of implementation, integration and deployment [OMG01, MM03]. This is achieved
by applying abstraction to the design process. Hereby, abstraction is understood as the
suppression of irrelevant detail as motivated by the reference model for open distributed
processing [FLdM96]. Abstraction’s counterpart in MDA is specialisation, also referred to
as refinement. Once a system’s functionality is defined on an abstract level, this definition
is enhanced by more and more implementation detail until the system is specified on its
implementation level.
Through this architectural separation of concerns within a system’s life cycle, MDA ad-

dresses three primary goals: portability, interoperability and re-usability. Therefore, the
OMG provides concepts and tools through MDA to specify a system independently of the
addressed deployment platforms, to model these platforms themselves, to choose a particular
platform for the designed system out of multiple candidates, and to transform the system
specification into one compatible with the selected platform [MM03].
Note, MDA itself does not imply a concrete development methodology. It only prescribes

23

3 Model Driven Architecture

public class A {

}

public void op(){...}

A

+op()

M0

M1

M2

M3
Meta-Meta

Model

Meta
Model UML

MOF

Model

System

instance of

instance of

instance of

Figure 3.1: The Modelling hierarchy (derived from [OMG05a]).

a framework and abstract tools to support a model oriented system design, evolution, and
maintenance process. MDA does not enlightens design activities, roles, or phases in terms of
a guidance to the design process [GBPA04]. As a result, albeit MDA compliant, individual
projects define their own or adapt existing methodologies.

3.2 The Model in the Model Driven Architecture

The fundamental element in MDA is the model as the term Model Driven Architecture
already emphasises. Within MDA, a model refers to “a representation of a part of the func-
tion, structure and/or behaviour of a system” [OMG01]. This representation may describe
arbitrary specifications of a system’s structure, behaviour, or environment and may be pre-
sented as text or drawings. As such, a model is a formal description of a complex system or
application artifact [PB03].
A typical system specification consists of many models. Thereby each model reflects a

different view or subsystem. To guide the creation of models, MDA provides two approaches
to a developer. The first concept, model refinement, provides means to add more detailed
information about the system to an existing model. This information may expand formally
abstracted aspects of the system or may add implementation specifics [OMG01]. Model
refinement can be seen as an in-place operation where the model itself is modified. In
contrast to that, the second concept, model transformation, will create new models based
on existing ones. By applying model transformations, model elements of an existing model
will be converted or mapped to elements of a newly created model. Model transformation
will be discussed in more detail in Section 3.3.
Using the concepts of models, refinement, and transformation, MDA accompanies a sys-

tem’s full life cycle by providing means for using models to specify the evolution of systems
– implying a well defined syntax and semantics of these models [MM03].

3.2.1 The Modelling Hierarchy

Regardless of the form of annotation, e.g., textual or by drawings, a model is described by
meanings of a concrete syntax and semantics. This syntax specification can be seen as a
model itself – a model of a model – referred to as Meta-Model. For MDA, the OMG has

24

3.2 The Model in the Model Driven Architecture

identified four layers of modelling [OMG05a], referred to as M3, M2, M1, and M0. These
layers are depicted in Figure 3.1. The topmost, and thus most abstract layer, is M3 – the
Meta-Meta-Model layer. Such a meta-meta-model defines the most fundamental primitives
and concepts which are necessary to describe a model. In the context of MDA, this layer is
described by the Meta Object Facility (MOF) [OMG06]. The MOF is a meta-data modelling
and management framework to be used to specify modelling languages themselves. Such
modelling languages are represented in the next lower layer M2 – the Meta-Model layer. A
meta-model represents an incarnation of a domain specific language. A prominent example of
such a meta-model definition is the UML [OMG09a, OMG09b, OMG07b] which is discussed
in more detail in Chapter 4. Based on meta-models, a system designer specifies a system
models in layer M1 – the Model layer. Finally, on layer M0 – the System layer, the concrete
system is described as an implementation complying to the model in layer M1.

3.2.2 Platform Independence of Models

MDA classifies models into four categories depending on a model’s relation to a platform,
providing different levels of abstractions of the modelled system. In terms of MDA, a platform
is defined as “a set of subsystems and technologies that provide . . . functionality . . . which
any application/system supported by that platform can use without concern for the details
of how the functionality provided by the platform is implemented” [MM03].
The following descriptions of the four categories are based on [MM03]:

Computation Independent Model. The Computation Independent Model (CIM) is a view
of the modelled system focusing on the role it plays within the system environment.
The CIM hides any structural and behavioural information of internals of the system.
The CIM is also referred to as domain model or business model.

Platform Independent Model. A Platform Independent Model (PIM) is a view of the mod-
elled system presenting information about the system’s structure and/or behaviour but
omitting any detailed knowledge about how its low level functionality is being realised
by the supporting platform.

A PIM of a system may be seen as a system realisation based on a virtual machine.
Although the virtual machine itself represents a platform, and though the model would
not be platform independent, the virtual machine hides details about how its own
functional primitives are realised on a real computing platform.

Platform Model. A Platform Model contains modelling entities describing the individual
functional parts of a particular platform, such as Application Programming Interfaces
(APIs), functional building blocks, or technical concepts.

Platform Specific Model. In contrast to the PIM, a Platform Specific Model (PSM) is a
view of the modelled system including detailed information about the platform the
system is realised on. The PSM combines the PIM and the Platform Model. Thus,
the PSM describes knowledge how the system uses a particular platform and how it is
mapped to the platform’s building blocks. For instance, if a PIM specifies the usage
of an abstract ordinal type for number representation, its related PSM may use a 32
bit integer type.

25

3 Model Driven Architecture

specifies

runs on

leads to

leads to

corresponds to
Model

Platform Platform

PSM System

CIM

PIM

Figure 3.2: The four model categories and their relation to system and platform.

Figure 3.2 depicts the relationship between these four model categories and their associ-
ation to platform and system. The CIM provides the most abstract view to the system as
seen from the outside. This view is extended by a functional separation of the system as
given by the PIM. As a parallel modelling activity Platform Models are specified reflecting
the platforms’ specific characteristics. Combining the PIM with a Platform Model results in
a corresponding PSM which now contains a detailed, deployable system description realising
the CIM specification on a particular target platform.
Note, platform independence is a quality of a model and is always defined relatively as

already indicated above. Assume a high-level model of a distributed system given by a PIM.
This system shall be implemented based on the Common Object Request Broker Architecture
(CORBA) [OMG08a, OMG08b]. In the notion of MDA, CORBA can be seen as a concrete
platform given by an adequate platform model, e.g., [OMG02b]. For instance, by applying
a model transformation, one can turn this PIM into a PSM, thereby platform dependence is
relative to CORBA. However, in the next design step, an implementation for the CORBA
middleware has to be chosen. In this second step, the previously generated PSM can be seen
as a PIM again, because now, the next PSM would represent a the modelled system bound
to a concrete implementation of a CORBA middleware, e.g., the ACE ORB1.

3.3 Model Transformations
A model captures a concrete system design at a given point in the system’s life cycle, provid-
ing a specific level of abstraction of system structure or behaviour. A system design evolves
by model refinement activities, thereby more knowledge and details about the system under
development are added to the system’s models. Complementing these modelling tasks, Model
Transformation is the second design activity in MDA. As Kleppe et. al [KBW03] define, ”a
[model] transformation is the automatic generation of a target model from a source model,
according to a transformation definition.” Thus, a model transformation is used to automate
design activities, most often to derive a PSM from a PIM. By applying model transfor-
mations, a system’s model advances iteratively from an abstract, technology independent
model to a concrete, platform dependent one. Eventually the system’s (source) code and
deployment information are generated as final result of the MDA design process.

1Cf. http://www.theaceorb.com.

26

http://www.theaceorb.com

3.3 Model Transformations

Engine
Transformation

Model
Target

Model
Source

Definition
Transformation

Figure 3.3: The basic model transformation chain (derived from [KvdB03]).

Figure 3.3 illustrates the previously presented definition of model transformations. It
relates four entities: a source model, a target model, a transformation definition, and a trans-
formation engine. The source model on the one hand is the initial point of a transformation.
It represents the source design which is going to be modified by the transformation. The
target model on the other hand is the end point of the process, reflecting the result of the
transformation. The most important entity is the transformation definition. This definition,
interpreted by the transformation engine, describes the rules that select elements from the
source model and how these map to elements on the target model. Therefore, a transforma-
tion is also referred to as mapping [MM03]. The source model may be annotated by meta
information prior to being applied for a transformation. Such a marking [MM03] indicates
special handling of source model elements which may not be expressed by the transformation
rules themselves.

3.3.1 Source and Target Models

According to [MM03], a model transformation effects PIMs or PSMs. Thus, four different
combinations of source and target models are possible:

PIM to PIM Transformation. PIM to PIM transformations are related to model refinement.
This transformation is applied when a model is filtered, adjusted, or expanded without
adding further platform relevant information.

PSM to PSM Transformation. PSM to PSM transformations are used for modularisation
and deployment of run-time components. For example, processes are distributed and
assigned to independent computation nodes of the target platform. PSM to PSM
transformations can also be seen as a variant of model refinement with respect to plat-
form characteristics. In contrast to PIM to PIM transformations, neither the system’s
structure nor behaviour definitions are affected by this kind of transformation.

PIM to PSM Transformation. A PIM to PSM transformation is the most relevant form of
transformations in MDA. Hereby, a model, being free of platform dependent knowledge,
is projected to its execution infrastructure. This projection is based on the platform
characteristics given by a platform model.

PSM to PIM Transformation. PSM to PIM transformations represent some kind of re-
engineering tasks. A concrete system is analysed and its platform dependencies are
removed by abstraction. This is the inverse transformation of a PIM to PSM transfor-
mation.

27

3 Model Driven Architecture

Platform
Model

Marked
PIM

Marks

PIM

PSM

(a) Marking.

PIM
Meta Model

PSM
Meta Model

PIM

PSM

Transformation

instance of

instance of

source language

target language

(b) Meta model based.

Primitives
PIM

Primitives
PSM

PIM

PSM

Transformation

source primitives

target primitives

uses

uses

(c) Pure model based.

PIM
Primitives Patterns

PIM

PSM
Primitives

PSM
Patterns

PIM

PSM

Transformation

source patterns

target patterns

uses uses

usesuses

(d) Pattern application.

PIM PIM

PSM

(e) Merging.

Figure 3.4: Transformation strategies (cf. [MM03]).

3.3.2 Transformation Strategies

Independent of the kinds of source and target models for a transformation, the OMG has
identified several approaches to be applied for model transformations [MM03] (cf. Fig-
ure 3.4):

Marking. For marking, elements of the source model are annotated with special meta tags.
Upon execution of the model transformation, these elements of the source model are
selected by their marks to control their mapping to elements of the target model (cf.
Figure 3.4a).

Meta Model Transformation. For meta model transformations, the transformation rules
are defined based on the meta models of the source and target model respectively. By
defining the transformation rules based on meta models, the transformation becomes
generic in that sense, as it can be applied to arbitrary source models (instances of the
source meta model) to generate target models (instances of the target meta model)
without the need for special preparations of the source models (cf. Figure 3.4b).

Pure Model Transformation. Pure model transformation is used when elements of the source
model are projected to elements of the target model based on a dedicated mapping of
elements between source and target model. In contrast to meta model transformations,
types from the source model are mapped directly to types of the target model instead
of mapping meta model concepts (cf. Figure 3.4c). For instance, primitive data types in
the source model are directly substituted by corresponding types for the target model.

Pattern Application. Pattern application is applied if the source model reflects a specific
system design pattern and the target model natively supports the realisation of such
a pattern. Then all elements of the source model forming that pattern are mapped as
a group to the pattern’s realising entities of the target model (cf. Figure 3.4d).

28

3.3 Model Transformations

Model Merging. Model merging can be used if two or more models of a system have the
same level of abstraction but address orthogonal aspects of the system. Then pattern
merging provides a way of combining these aspects in just one model (cf. Figure 3.4e).

3.3.3 Transformation Languages

In order to execute model transformations in an automated manner, a formal language is
needed to specify the necessary mapping rules. There exists many possible approaches for
this task. For example one may use a general purpose programming language to implement
an application which executes a concrete set of transformation rules. But such a solution is
disadvantageous since it is not generic enough to support varying model transformations. To
address this problem, there exist domain specific languages, e.g., the Atlas Transformation
Language (ATL) [BDJ+03], which allow the description of arbitrary transformations and pro-
vide appropriate tool support. Because of the manifold existing transformation languages, see
Gardner et al. [GGKH03] and Czarnecki et al. [CH06, CH03] for an in depth discussion, the
OMG as the leading organisation for MDA currently standardises a transformation language,
known as the Query/View/Transformations (QVT) language [OMG05b]. In 2001, the OMG
issued a QVT Request for Proposal [OMG02a] to encourage contributions from scientific and
industrial institutions. The final proposed QVT standard will be the result of this unification
process (cf. to the standard proposals [Alc03, DST04, KBC04, Wil03, Pat04, QVT03]).
As this unification process is still ongoing, the presented thesis relies on ATL to demon-

strate Model-to-Model (M2M) transformation. ATL is primarily a declarative language but
also supports imperative programming to ease development of transformation constructs
which can hardly be expressed otherwise, e.g., loops. Preferably using the declarative ap-
proach, transformations are described in two parts: a query part, or source pattern, which
selects elements from the source model, and a target pattern part which defines the elements
to be created in the target model based on the matched elements of the query part. List-
ing 3.1 shows an exemplified transformation in ATL. The transformation can be applied to
UML class diagrams. It converts abstract classes to interfaces, preserving possible generali-
sation/specialisation relationships between them. The transformation takes one input model
and creates one output model, both based on the UML meta-model (line 2). One rule is
sufficient to gain the requested effect. It queries for class definitions in the input model, fil-
tering only these classes which are tagged abstract (lines 5–7). For each match, an interface
is created in the output model, having the same name and generalisations as the original
class (lines 8–11). The effect of the sample transformation is depicted in Figure 3.5. Only
the Abstract and Derived classes are affected by the transformation, as B is not an abstract
class in contrast to the other two.
A special category of model transformation is M2T transformation, e.g., as provided

through theMOF Models to Text Transformation Language (MOF-M2T) [OMG07a]. Thereby,
the target meta-model is represented by a grammar or other specifications of textual lan-
guages. Typically, M2T transformations are applied to generate source code from a PSM,
assisting system implementations. Often, the target languages are not explicitly supported
by a dedicated meta-model for each language. Instead, transformations are described by
templates already expressing valid documents in the target language. These documents are
annotated by special tags. The tags contain queries to the source model and are textually
replaced by the corresponding matches. Listing 3.2 shows a MOF-M2T template which
transforms UML interface models to Java code. The template is laid out individually for

29

3 Model Driven Architecture

1 module Example ;
c rea te OUT : UML from IN : UML;

3

r u l e AbstractToInterface {
5 from class : UML!Class (

class. isAbstract
7)

to interface : UML! Interface (
9 name <- class.name ,

general <- class. general
11)

}

Listing 3.1: An exemplified M2M transformation using ATL.

B

Abstract

Derived

(a) Input model.

Abstract
«interface»

Derived
«interface»

(b) Output model.

Figure 3.5: The models of the ATL example transformation.

30

3.3 Model Transformations

[template pub l i c interfaceToJava (i : Interface)]
public interface [i.name /]
{

//generate code for operations
}
[/ template]

Listing 3.2: An exemplified M2T transformation using MOF-M2T.

every interface from the source model which will be bound to the template’s parameter i.
Through this parameter, an interface’s properties, like its name, can be accessed from within
the template.

31

3 Model Driven Architecture

32

CHAPTER 4

The Unified Modeling Language

The following chapter provides a short overview of these parts of UML which are extensively
used by the presented interaction-centric service modelling process, i.e., a specific subset of
diagram types, templates, and UML profiles. For a more detailed introduction to UML refer
to Appendix A.

4.1 Component Diagram

4.1.1 Description

Component diagrams are used to model distinct parts of a system as components, i.e., a mod-
ular unit with well-defined interfaces [OMG09b, p. 143]. The UML notion of a component
is aligned to component-based software development, whereas a component is considered an
autonomous unit within a system. By restricting external interaction of a component to
a fixed set of interfaces, a component becomes easily replaceable and re-useable. Systems
are assembled by combining appropriate components and connecting their interfaces. A
component provides functionality to the system through its provided interfaces. In turn, the
component may depend on functionality being realised not by the component itself but other
components by defining required interfaces. Interfaces may be grouped by ports, representing
named sets of interfaces, covering both, provided and required ones.
Where ports and interfaces represent the external, black-box view of a component, it

also has an internal, white-box view. A component references realisations, which implement
the component’s behaviour. Such realisations may be provided by a classifier playing the
component’s role as a whole, or the component is a composite structure (see Section 4.2),
realised by subsystems, being components themselves.

4.1.2 Visualisation

Component are shown by a rectangular boxes tagged by a component icon in the upper right
corner, the «component» stereotype, and the component’s name (cf. Figure 4.2). A port,

33

4 The Unified Modeling Language

ComponentRealization

UML::Classes::
Dependencies::
NamedElement

UML::CompositeStructures::
StructuredClass::Class

UML::Classes::
Dependencies::
Realization

UML::Classes::
Kernel::
Classifier

UML::Classes::
Interfacess::
Interface

UML::Classes::
Kernel::

PackagableElement

Component
+abstraction +realization

/provided/required

*0..1

1

*

1*

**
0..1

* +packagedElement +realizingClassifier

Figure 4.1: The UML component meta-model (cf. [OMG09b, pp. 145–146]).

MyComponent
«component»

OtherComponent
«component»

A required interface.

A provided interface.

A port definition.

Assembly connecteor between
interface pairs.

Figure 4.2: A UML component diagram.

34

4.2 Composite Structure Diagram

UML::Classes::
Kernel::
Feature

UML::Classes::
Kernel::

TypedElement

UML::Classes::
Kernel::
Classifier

UML::Classes::
Interfacess::
Interface

UML::Classes::
Kernel::

StructuralFeature

+/role

+/required

+/provided

*

+/ownedPort

+ownedConnector

0..1

*

*

*

**

+ownedAttribute

+/part

*

*

0..10..1

0..1

**

Connector

ConnectableElement

PortEncapsulatedClassifier

StructuredClassifier

Property

Figure 4.3: Simplified meta-model of UML composite structure (cf. [OMG09b, pp. 163–165]).

attached to a component, is drawn with a box overlapping the border of the component’s
surrounding box. Ports may be named explicitly by presenting a label close to its box.
Provided interfaces are drawn as “lollipops” sticking out of the component. Required

interface use the “socket” notation respectively. Interface names are presented by labels
next to the ends of “lollipops” and “sockets”.
A system composition is given by the components itself, often seen as black-boxes, and

the connections of required to compatible provided interfaces/ports. Therefore, “lollipop”
ends are drawn enclosed by “sockets”. For alternative representation options of components,
please refer to [OMG09b, pp. 149–153].

4.2 Composite Structure Diagram

4.2.1 Description

Composite structure diagrams show the internal wiring or statical interplay of parts of a
system. The diagrams provide mechanisms for structural decomposition of elements. One
prominent modelling concept of this diagram type is the notion of ports. Ports present a
way to isolate classifiers from their environment by providing dedicated points of interac-
tion between its internals and the external environment. Ports provide means for complete
encapsulation of classifiers so they become easily reusable or replaceable.

35

4 The Unified Modeling Language

rear : Wheel[2] e : Engineaxle
p gas

Car

Figure 4.4: Example of composite structures (cf. [OMG09b, p. 183]).

UML::
CommonBehaviors::
BasicBehaviours::
BehavioredClassifier

+collaborationRole

* *

StructuredClassifier

Collaboration ConnectableElement

Parameter

Figure 4.5: Meta-model of UML collaborations (cf. [OMG09b, p. 165]).

4.2.2 Visualisation

Figure 4.4 shows a composite structure diagram. It describes a simplified version of a car and
the decomposition of its power train. Hereby, two rear wheels are connected to the engine
through an axle. The axle is plugged to the engine at a dedicated port. Furthermore, gas
control is forwarded to an external port of the car. Note, that the provided and required
interfaces of ports in a composite structure diagram are given implicitly by the roles of the
contained components.

4.3 Collaboration Diagram

4.3.1 Description

A variation of a composite structure diagram is the collaboration diagram (cf. Figure 4.5).
Collaboration describe the structure of collaborating elements, referred to as roles, which
collectively achieve some joint task. Role represent elements with specialised functional-
ity, explicitly expressed by typing a role with a classifier. A role is a reduced view on an
instance when acting within the collaboration. Thus, the role specifies the minimal set of
features a participating instance must have [OMG09b, p. 169]. The connectors between roles
describe independent communication links that exist within an instance of a collaboration.
As the collaboration itself primarily focuses on the structural composition of elements, it
may also contain a behavioural specification in form of, e.g., a sequence diagram. Hence, a
collaboration combines both forms of system specification, in structure and behaviour.

36

4.3 Collaboration Diagram

sellerbuyer

Sale

A connector.
A role.

(a) Collaboration.

broker

Sale
wholesale:

producer

consumer
Sale
retail:

buyer
buyer

seller

seller

BrokeredSale

A collaboration use
binding roles.

(b) Collaboration use.

Figure 4.6: Example of a UML collaboration (cf. [OMG09b, pp. 172–173]).

37

4 The Unified Modeling Language

CommonBehaviours::
BasicBahaviours::

Behaviour

UML:: UML::Classes::
Kernel::

NamedElement
CompositeStructures::
InternalStructures::
ConnectableElement

UML::

UML::Classes::
Kernel::

NamedElement

CommonBehaviours::
Communications::

Event

UML::

*

0..1+enclosingInteraction

+interaction

1

+fragment*+lifeline

+coveredBy
+covered
*

*

*

1+covered

+represents0..1

1

+interaction

+message*

0..1 0..1 0..1

0..20..10..1
+message+recv+sent

+execution 1

1

+before +after

+toAfter+toBefore

1 1

* *

InteractionFragment

ExecutionSpecification

OccurrenceSpecification
Execution

Message

MessageEnd

OccurrenceSpecification
Message

Interaction

Lifeline

OccurrenceSpecification

GeneralOrdering CombinedFragment

Figure 4.7: Simplified meta-model of UML Interactions (cf. [OMG09b, pp. 462–466]).

4.3.2 Visualisation

Figure 4.6a depicts a simple sale collaboration. It involves two roles, buyer and seller, which
act together through one communication link. The other diagram, Figure 4.6b, shows a
second collaboration re-using the previous one to model a more complex example, a brokered
sale. The sale collaboration is bound two times, as wholesale and as retail, respectively. When
binding a collaboration, referred to as collaboration use, the roles of the bound collaboration
are applied to instances of the binding classifier, e.g., the broker role of the outer collaboration
is associated to the buyer role of the bound one (cf. Figure 4.6b).

4.4 Sequence Diagrams

4.4.1 Description

A sequence diagram represents one possibility to model information flow between arbitrary
communication partners, may it within one system or in-between systems. This diagram is
a variant of a UML interaction diagram. It is used to express fixed execution lines, timely
or causally controlled work flows, alternatives or repetitions occurring during communica-
tion. Thereby, the focus lies on the exchanged messages. Sequence diagrams are based
upon the concept of interactions. An “interaction is unit of behaviour that focuses on the

38

4.4 Sequence Diagrams

observable exchange of information between” at least two parties which communicate with
each other [OMG09b, p. 483]. As such, it describes traces of valid or invalid occurrences of
communication events, i.e., sending or receiving messages.
Sequence diagrams are used whenever the following aspects of communication shall be

emphasised [RQZ07, p. 406]:

• The ordering of messages is important.

• Interactions between the parties are complex.

• State transitions within the communication parties which are caused by messages have
only minor relevance.

• The structural binding and how it is established at run-time is irrelevant.

• Details about interaction flow shall be expressed.

Sequence diagrams allow for hiding internal behaviour of the communication parties, re-
garding them as black boxes. In these cases, only externally observable behaviour is reflected
in the diagram. In literature, such sequence diagrams are also referred to as System Sequence
Diagrams (SSDs) (cf. [Lar02, p. 118]).
As depicted in Figure 4.7, an interaction consists of three major parts:

Lifelines. Lifelines are used to identify the roles, i.e., the communicating parties, of the
modelled interactions. A lifeline refers to a part of a model which can be connected to other
elements by means of establishing a communication with them. For instance, a sequence
diagram may represent the message flow for a collaboration. Hence, a lifeline represents a
role of that collaboration.

Messages. Messages represent the information flow of an interaction. They model a di-
rected flow of data as the essential part of interactions. Messages are created by a sender
and addressed to a receiver, both represented by lifelines.
Messages either model invocation of operations and possible returns, or transmission of

signals. While signals always have asynchronous communication semantics, operation invo-
cations are distinguished in being either synchronous and asynchronous. For asynchronous
message communication, the sender of the message (or signal, respectively) does not wait
for a response to this message from the receiver. Thus, the sender is not blocked by the
transmission of the message but immediately continues its own execution. In contrast, for
synchronous communication, the sender waits for the receiver to finish message processing
and to return a response. While waiting, the sender’s execution is paused. Hence, sender
and receiver explicitly synchronise their executions by that message exchange.
Typically, messages are only exchanged between owned lifelines of an interaction. However,

messages may also be found, i.e., the message was initiated by an unknown sender outside
the modelled interaction and received by one of the interaction’s lifelines. The counterpart
to found messages are lost messages which are created by a lifeline but their reception is not
explicitly modelled by the containing interaction.

39

4 The Unified Modeling Language

Operand Semantics

Alternative At least two mutually excluding message traces are
modelled.

Option An optional trace is expressed which is either executed
once or never.

Break A break represents an exceptional trace of an interac-
tion which, when chosen, terminates the containing in-
teraction.

Parallel Such an interaction fragments defines a number of mes-
sage sequences which are executed in parallel.

Weak/Strict Sequencing Such traces either allow slightly reordering of events be-
tween multiple lifelines without contradicting the par-
tial order of event occurrences between each pair of
lifelines, or they enforce a strict, i.e., total ordering of
events as annotated in the model even if the more gen-
eral interaction semantics would allow other orderings.

Negative Negative traces explicitly enumerate invalid behaviour.
Critical Region To model atomic blocks of traces, use a critical region.

Such regions can not be interleaved by other event oc-
currences.

Ignore/Consider These regions are used to emphasise special traces of an
interaction.

Assertion The modelled traces of an assertion represent the only
valid continuations of an interaction. All other contin-
uations result in invalid behaviour.

Loop The described set of traces is repeated a number of
times.

Table 4.1: Interaction operands for combined fragments.

Interaction Fragments. Finally, the third part of interactions are interaction fragments. An
interaction fragment is the most general unit of an interaction. It is used as the glue between
lifelines and messages. Therefore, UML introduces the notion of occurrence specifications.
Such a specification models the occurrence of some event within an interaction. This is either
a message event caused by sending or receiving a message, or it is an execution event which
is triggered when starting of finishing an operation of a lifeline. The executions themselves
are also modelled via interaction fragments.

A third group of interaction fragments are combined fragments. Conceptually, combined
fragments represent an interaction by themselves (cf. [OMG09b, pp. 469 and 487]). Com-
bined fragments express a region of an interaction which applies to special rules, determined
by an interaction operand. This operand influences the sequence or frequency of messages ad-
ditionally to the general semantics of interactions. The UML defines a fixed set of operands,
listed in Table 4.1.

40

4.4 Sequence Diagrams

Operator AlarmSystem Sensor

loop

activate

activate

activate

activate

deactivate

deactivate
deactivate

deactivate

notify

Alarm

notify

Move

sd Alarm

Figure 4.8: Example of a UML Sequence Diagram (cf. [RQZ07, p. 435]).

4.4.2 Visualisation
Figure 4.8 depicts a sample sequence diagram of an alarm system. The hereby modelled
interaction identifies three roles as lifelines: the Operator, the AlarmSystem, and the system’s
Sensor. The operator can activate the system, which in turn activates the sensor. This inter-
action is done synchronously by invoking the activate cascade. Once being active, the system
reacts on external events, i.e., the sensor detects movements in the system’s environment.
This is modelled via the found message Move. Upon detection, the sensor asynchronously
notifies the alarm system which triggers an external alarm, expressed as lost message Alarm.
For instance, this alarm would be forwarded to a police station but remains opaque for the
alarm system itself. Next, the system propagates the sensor’s notification back to the op-
erator. Eventually, as for activation, the operator can synchronously deactivate the whole
system.
Note, that the alarm chain is enclosed in a loop fragment. Thus, the alarm may occur

several times while the system is active. As the loop fragment is unguarded, it is also a valid
trace of the system if no move at all is detected and hence, no alarm is triggered until the
system is deactivated.

4.4.3 Relation to Message Sequence Charts
Message Sequence Charts (MSCs) provide a language for the specification and description
of communication behaviour of system components and their environment in form of mes-
sage traces [oI01]. They represent an international standard established by the International
Telecommunication Union (ITU) to describe real-time communication within telecommuni-
cation switching systems. MSC is a formal language which supports both, a textual and
a graphical representation. Additionally, the ITU described the languages formal seman-
tics [oI01] to enable automated analysis by appropriate tools.
One major point of criticism for sequence diagrams in UML 1.0 was the lack of clear

semantics and unclear handling of the diagram’s elements. Hence, when developing UML 2.0,

41

4 The Unified Modeling Language

-elements: T[0..k]

push(T)
pop(): T

Stack
T, k : IntegerExpression = 10

Figure 4.9: A stack as UML template.

the OMG orients itself on MSCs, adopting various concepts and notations. In consequence,
UML 2.0 sequence diagrams and MSCs are closely related to each other. Although the
UML still does not define formal semantics for sequence diagrams, they are technically quite
similar to MSCs as outlined by Øystein Haugen who is one of the major contributors behind
both standards (cf. [Hau05] for an in detail discussion). The bottom line is, that UML
sequence diagrams can basically be converted to a corresponding MSC and thus inherit a
formal grounding.

4.5 Templates

The template mechanism provides means for parametrisation of UML models. In UML 2.0,
there exist three types of elements which can be represented as templates, i.e., classifiers,
packages, and operations. Therefore, a template defines a set of template parameters. These
parameters fulfil two tasks: First, they add genericity to models in terms of substitutable
elements with can be used to configure models when applied to specific contexts. Second,
they represent place-holder elements which are used within a template model itself. Thus,
a template can reference generic, i.e., intentionally underspecified, aspects of the model.
Template parameters can represent classifiers, value specifications, properties, or operations.
A template is visualised like the UML model it parametrises. Its signature is shown as a

rectangle superimposing the upper right corner of the diagram and containing the template’s
parameter declarations. Figure 4.9 depicts a model of a stack. The stack has two template
parameters. The type of elements to be stored in the stack remains generic, given by the
classifier template parameter T. Additionally, the value specification parameter k is used to
configure the maximum number of elements to be hold by the stack at the same time. Note,
that template parameters support the specification of default values. Hence, if the number
of elements is not explicitly bound upon template instantiation, a default of 10 elements can
be stored in the stack.
A concrete model is derived from a template by a template binding. Figure 4.10 shows

both versions offered by UML in the context of the stack example. Either, a concrete stack,
like the JobDepot is explicitly bound, or the stack is instantiated by an anonymous class (cf.
Figure 4.10a and 4.10b, respectively). In either case, the resulting UML model describes a
stack which may contain up to 20 elements of type Job. The advantage of the anonymous
binding is, that it allows the direct typing of a property using the template itself and thus
avoiding the need to define a separate model just to instantiate the template [OMG09b,
pp. 634–635].

42

4.6 Extending the UML

JobDepot

«bind» <T->Job, k->20>

Stack
T, k : IntegerExpression = 10

(a) Explicit binding.

Stack <T->Job, k->20>

(b) Anonymous binding.

Figure 4.10: Binding a UML template.

4.6 Extending the UML
UML 2 allows the tailoring of the language to support special needs of system modelling.
For example, given a Domain Specific Language (DSL), UML can be adopted to support
modelling in alignment to such a DSL. By directly supporting its own extensibility, UML
provides a flexible way of re-using its constructs within a new context without the need to
directly modify the standard itself.
The extension mechanism supports lightweight or heavyweight extensions to UML. The

heavyweight approach allows for modification of the UML meta-model itself. Thus, meta-
classes and their relations may be extended, modified or removed. In turn, one will define
its own dialect of UML. The advantage of this approach is the ability to specify an own
meta-model without further restrictions. However, when modifying the meta-model, one has
to ensure, that the resulting meta-model does not contradict preserved parts of UML.
The more common way of adopting the UML to new domains is using the lightweight

approach, referred to as profiling [OMG09a, p. 177], [OMG09b, p. 653]. By defining a profile,
UML meta-classes are referenced by stereotypes, which extend their meta-class by additional
attributes or constraints. Stereotypes may also derive from other stereotypes. The profiling
concept was specified for a number of motivations where a straightforward mechanism for
adapting UML seemed to be advantageous [OMG09b, p. 654]:

• Add DSL specific terminology to UML.

• Define customised element syntax for elements previously lacking a concrete notation.

• Adjust or replace notations for existing elements.

• Clarify semantics of semantic variation points within special context.

• Add completely new semantic concepts to UML.

• Add further conditions and stronger restrictions to model elements than already defined
by the meta-model.

• Add MDA relevant annotations to model elements, e.g., controlling model transforma-
tion processes.

As depicted in Figure 4.11, a profile is a UML package owning stereotype definitions. A
stereotype specifies how a UML meta-class is extended by domain specific concepts, e.g., pre-
senting specific terminology or additional properties. Meta-class extension is done through
the Extension association, explicitly linking meta-classes and stereotypes. Furthermore, al-
ternative graphical notations may be introduced for stereotypes by decorating them with

43

4 The Unified Modeling Language

Class

Stereotype

Image

Extension

InfrastructureLibrary::
Core::Constructs::

Class

InfrastructureLibrary::
Core::Constructs::

Association

InfrastructureLibrary::
Core::Constructs::

Property

ExtensionEnd

InfrastructureLibrary::
Profiles::
Element

InfrastructureLibrary::
Core::Constructs::

Package

Profile

+class
0..1

+/extension

+/metaclass

*

1

1

+type+/ownedStereotype

*

+ownedAttribute
*

+ownedEnd 1

1

*

0..1

* +icon

Figure 4.11: Simplified meta-model of UML profiles (cf. [OMG09b, p. 656] and [OMG09a,
p. 180]).

Images. As a profile is derived from package, a profile may define domain specific data types
and further constraints which must be fulfilled by model elements which are effected by this
profile.
Figure 4.12 gives an example of a profile definition and its application. To apply stereotypes

of a profile to model elements, the profile is referenced via an «apply» association. Then,
stereotypes can be applied to model elements being instances of a compatible meta-class
with respect to the stereotype’s meta-class. The depicted profile defines a new stereotype
«servicecomponent», extending the UML meta-class Component by an additional property
id. The Components package employs this stereotype. MyService is an instance of a UML
component, tagged with the new stereotype. To set the value for id, one uses a comment
annotation.
Stereotypes do not define new meta-classes. Instead, an element tagged by a stereotype is

an instance of the stereotype’s referenced meta-class enriched with the stereotype’s properties
and constraints. A stereotype basically extends an existing UML meta-class by a special
notion of inheritance. A stereotype may extended its meta-class by additional attributes
or it may restrict values of attributes defined by the meta-class. It is important to note,
that restrictions applied by a stereotype to a meta-class must not contradict the UML meta-
model. For instance, a stereotype can not completely remove an attribute of its meta-class.
This simple technique allows for easy tool support of UML language extensions. As the
UML meta-model remains untouched by profiling, existing UML tools can be used without
modifications to support customized UML extensions which are based on profiles. Even if a
tool does not support the handling of profiles itself, a UML model being enriched by profile
stereotypes can still be processed by the tool as it is a standard UML compliant model.

44

4.6 Extending the UML

«metaclass»
Component

ServiceComponent
«stereotype»

id: String

MyService
«servicecomponent» «servicecomponent»

id="MyServiceID"

«profile» Service

Components

«apply»

Figure 4.12: UML example.

However, the stereotype’s added properties and constraints will not be understood by such
tools.
Stereotypes of profiles can be classified by their role with, or purpose for, a UML model as

well as by their expressiveness. In literature, there is a differentiation between three major
roles of stereotypes (cf. [SK05, SK06]):

Model Transformation/Code Generation. Stereotypes of this category aim to control var-
ious aspect of model transformation and code generation. Based on the stereotype, or
its properties, a modelling tool may chose from alternative transformation rule sets or
different variants of reflecting a model in a concrete programming language.

Virtual Meta-model Extension. Extensional stereotypes are applied whenever the UML is
to be adopted for a new modelling domain. Thus, stereotypes can be used to add a
new vocabulary to the UML.

Model Simplification. Stereotypes can be used to simplify models. In that sense, a stereo-
type encapsulates special requirements on modelling elements by hiding modelling con-
straints behind its own definition. Thus, the model itself is not polluted with repeti-
tive annotations of the same restrictions. A simplification stereotype may also denote
varying roles of stereotyped elements in the design. Such a stereotype makes design
principles explicit to the model.

Orthogonal to their role within a model, stereotypes are also classified with respect to
their influence to a model’s semantics, i.e., their expressiveness. Early in the development
of UML, Bremer et al. identified four functional categories of stereotypes (cf. [BGJ99]):

Decorative. A decorative stereotype does not add (restrict) any semantics to (of) the UML
meta-model. It just changes the syntax of modelling elements.

Descriptive. A descriptive stereotype add symbolic information to the model about the
intention or pragmatics of a newly introduced concept. It does not modify the models
semantics.

45

4 The Unified Modeling Language

Restrictive. A restrictive stereotype applies additional constraints to the UML meta-model,
refining the semantics of UML elements.

Redefining. A redefining stereotype changes the semantics originally applied to a modelling
element. As such, a redefining stereotype does not represent a lightweight extension
to UML.

46

Part II

Modelling Interaction-Centric Services

CHAPTER 5

The Modelling Framework

This chapter presents the new service development process. The first part gives an overview
of the key activities of the process itself and their necessary design steps. Next, the es-
sential modelling elements behind the process along with their formal definitions and their
corresponding representations in UML are described.

5.1 The Interaction-Centric Service Development Process

Based on the concept of ITs, the underlying principle of the proposed service development
process is the strict separation between the specification of services and systems – as compo-
sitions of services – and the definition and realisation of the interactions occurring within a
services. On the one hand, this allows for service specification based on generic interactions
rather than being oriented on concrete features of the addressed target platform. On the
other hand, generic interaction descriptions are mapped to primitives of such target plat-
forms based on their characteristic interaction semantics and independent of their concrete
application within a service.
Consequently, ITs play two different roles. First, they represent an abstract platform [Alm06]

for service specification. That is, ITs form an open library of building blocks which can be
re-used to describe a service’s interactions in a platform independent manner. And second,
each IT defines an abstract model which itself needs to be realised on a target platform. Note,
that in its first role, an IT is a platform specific primitive as part of a virtual interaction
platform for services. In contrast to this, an IT, as seen in its second role, itself represents
a platform independent model which is to be realised on a lower-level target platform.
Figure 5.1 highlights this separation of concerns, also reflected by distinguishing different

stakeholders within the process: the service designer and the system designer, both basing
their work on the IT library to specify services and systems, respectively. Both actors are
complemented by the IT designer, being tasked with the setup and maintenance of this
library through the specification of ITs and appropriate target mappings used to ground
service interactions to target platforms.
The stakeholder’s concrete tasks are depicted in Figure 5.2 which details the individual

49

5 The Modelling Framework

Interaction
Template
Library

use

use

provide

provide

Template
Interaction

Target
Mapping

Interaction
Template

Specification

Target
Mapping

Specification

Designer
IT

Service
Specification

System
Specification

Designer/
Service

Designer
System

Figure 5.1: The key activities of the modelling process.

Input
Process

Service
PIM

Interaction
Templates

Target
PIM

Target
PSM

Service
Implementation

Specification
Target MappingService

Specification
Interaction Template
Specification

Runtime
Service

System
Specification

Fully
Automated

Semi
Automated

Manual

Degree of
automation:

Service
PSM

Target Adaptor
Generation

Functionality
Capability/ Target

Models

Target
Adaptor

Target
Mapping

Designer
IT

Designer
System

Designer
Service

Figure 5.2: Inputs and outputs of the modelling processes.

50

5.1 The Interaction-Centric Service Development Process

activities of the development process by giving an overview of their individual inputs and
outputs, also visualizing the relationships between the (intermediate) models handled by the
proposed process. Each activity is outlined in a separate sub-section, clarifying the entities of
Figure 5.2. Additionally to the already introduced activities, the figure shows a fifth one – the
target adaptor generation which establish the grounding of a service’s concrete interactions
to target platforms. This activity is fully automated within the described process and thus
is not explicitly assigned to one of the actors.

5.1.1 Service Specification

Services represent collaborative functionality realized through interactions between the ser-
vice’s participants, referred to as service roles. The service designer decides how such a par-
ticular collaboration shall be realised by identifying this set of interactions. Consequently,
the service model represents a composition of interactions between service roles. These in-
teractions are derived from ITs via template instantiation. Hereby, an interaction pattern
captured by an IT is applied to the specific context of the modelled service, i.e., by pro-
viding concrete messages to be exchanged as part of the interaction and by assigning the
interaction’s roles to service roles. The resulting set of IT instantiations, forms the service
PIM. Throughout the rest of this thesis, we simply use the term interaction to refer to an
IT instantiation for use in a service.
After the service designer has chosen a programming language to implement the service’s

roles, the service PSM is automatically derived from the respective service PIM by model
transformation. The service PSM represents the service’s roles and interactions in terms of
the chosen programming language. Based on the service PSM, stub/skeleton code is gener-
ated which is used for the actual service implementation, resulting in deployable components.
Note, that a complete service implementation consists of a number of such components, one
for each service role, as the service itself represents a collaboration of multiple entities.

5.1.2 System Specification

The task of the system designer is to assemble a system specification out of service im-
plementations. Therefore, he selects service components. As these components are based
only on the platform independent representations of the services’ interactions, they need to
be combined with appropriate target adaptors, the interactions’ platform bindings, which
ground the interactions to primitives of the addressed deployment platforms. In order to
establish the services at run-time, a target adaptor per service interaction is necessary.
The relations between the inputs and outcomes of the individual activities concerning

service and system design are exemplified in Figure 5.3, explicitly highlighting the combi-
nation of service components and target adaptors. Note, that each interaction of a service
is individually mapped to a separate target adaptor and thus, possibly, to different target
platforms which is illustrated by the ragged lines in the depicted adaptors. Depending on
the run-time environment the specified system will be executed on, even multiple adaptors
may be chosen for just one interaction. This allows for an interaction to be established via
varying technologies at run-time. However, both ends of an interaction must still share at
least one common realisation through the same target mapping to enable communication at
all.

51

5 The Modelling Framework

Role A Role B
Interaction
Template
Library

Service

Interaction 1
Interaction 2M

O
D
EL

RU
NT

IM
E

«apply»

Adaptor (1,B)

Adaptor (2,B)

Adaptor (1,A)

Adaptor (2,A)

Co
m
po

ne
nt

A

Co
m
po

ne
nt

B

«generate» «generate»

«implement»«implement»

Figure 5.3: The relation between ITs, services and run-time components.

5.1.3 Interaction Template Specification
The IT designer models interaction patterns through ITs. Interaction patterns capture a
common interaction scenario between a pair of communicating entities in a generic man-
ner [Bir06], i.e., they do not refer to concrete messages or service contexts. Different ITs
describe different interaction patterns. The definition of ITs results in the specification of
an abstract platform [ADvSP04] providing high-level primitives for service interaction. In
particular, this abstract platform describes an “ideal” platform for service definition by pro-
viding platform primitives which directly reflect a service’s needs for interaction and thus
avoids any necessary wrapper functionality in application logic.
ITs are specified by an IT designer who identifies the underlying semantics of an interac-

tion pattern and creates a model which directly reflects these semantics for use by a service.
The captured semantics include the participating entities of an interaction, referred to as
interaction roles, as well as the generic set of messages being exchange during the establish-
ment of such an interaction but intentionally without identifying concrete messages needed
by specific services. Hence, an IT describes both, structural and behavioural features of
interaction patterns.
The motivation to specify a new IT may originate from two sources. First, a service

designer may be faced with the need for a new interaction pattern while developing a service.
As he does not find an appropriate IT already present in the IT library, a new IT has to be
defined. Second, a new target platform is adopted for the development process (as a target
model) and its own characteristic interaction primitives shall be reflected as ITs, enabling
direct usage in service specifications.

5.1.4 Target Mapping Specification
In conjunction with the specification of an IT, the IT designer must also define how the IT is
to be realised on a concrete target platform, e.g., via web services or a lower level communi-
cation middleware like CORBA. Such a mapping is represented by a target mapping. There
may exist more than one such a mapping for a single IT, either to realise the IT on different

52

5.1 The Interaction-Centric Service Development Process

target platforms or to express mapping alternatives for the same target platform. IT map-
pings are based on ITs and target models. Target models describe the available interaction
semantics of a target platform’s primitives, e.g., pure socket communication, message passing
or RPC, in terms of modelling concepts, e.g., the UML profile for CORBA [OMG02b]. Based
on these primitives, a target mapping is defined by model transformation rules, describing
how an instantiation of an IT within a service specification is transformed to represent it
on the target platform. For instance, an IT describing the semantics of an RPC may be
intuitively mapped to a Remote Method Invocation (RMI) of a CORBA object. A target
mapping may also include directives to generate semantic wrapper code if a target platform
does not natively support an IT’s semantics, e.g., when realising an RPC directly on top of
socket communication.

5.1.5 Target Adaptor Generation

The target adaptor generation sub-process implements a target mapping specification in the
context of a concrete interaction within a service. All necessary steps are fully automated.
In a first step, the target PIM is created. The target PIM is a derived model which describes
a service’s interactions in primitives of the target platform. More precisely, the target PIM is
the result of a model transformation process which uses the service PIM as a source model.
The transformation is controlled by the corresponding ITs’ target mappings. The resulting
target PIM may be, for instance, a CORBA IDL model which describes an interaction’s roles
as CORBA objects.
Although the target PIM describes interactions in a target platform specific manner, it

remains still quite generic as it is not influenced by implementation details. Similar to
the transformation of the service PIM to the service PSM to enrich the model with such
knowledge, the target PIM is transformed to the target PSM. Thereby, the gap between
the general mapping of IT semantics to the target platform primitives and a service role’s
concrete implementation is closed. Thus, the target PSM refines the target PIM by adding
information about how an interaction’s realisation is to be connected to a service role’s
implementation. This information is retrieved from the service PSM as a second source
model next to the target PIM. Following the example of a CORBA IDL mapping from
above, the target PSM can be seen as the corresponding Java mapping generated by the IDL
compiler.
Eventually, as derivative of the target PSM, the target adaptor is generated. The target

adaptor represents the final result of the adaptor generation sub-process. It is an executable
component implementing an interaction’s role for a target platform. It is linked to the service
role’s implementation to realise an interaction at run-time – executed on the selected target
platform.
Beside the pure mapping of a service’s interactions to target platform primitives, both

models, the target PIM and the target PSM, may include additional information. The tar-
get PIM can contain semantic wrappers as specified by the corresponding IT mapping to
close semantic gaps between an IT’s semantics and the platform’s primitives. Additionally,
the target PSM will most likely specify details about implementation “glue code”, which
converts elements of the service PSM to elements of target PSM, such as type conversions or
interface delegates. To illustrate the necessity for such glue code, assume a service interaction
is to be realised by CORBA and the service’s roles are implemented in Java. This implies
two consequences: First, the interaction’s messages must be translated between target plat-

53

5 The Modelling Framework

implementconsist ofinstantiate
InteractionsInteraction

Templates Services Components

Designer
IT

Designer
System

Designer
Service

Figure 5.4: The relationships between the first class modelling entities.

form independent Java representations and their CORBA representatives. And second, the
interaction roles’ CORBA interface definitions must be adapted to the service roles’ Java
signatures.
Note, that depending on the selected target platform, the target PSM may only subtly

differ from the target PIM if the target platform already closely matches the service role’s
implementation language, e.g., when implementing the service roles with Java and realising
the interactions with Java RMI.

5.2 The First Class Modelling Entities of the Development
Process

The following sections describe the primary modelling entities of the presented service devel-
opment process, depicted in Figure 5.4. They represent the first class entities to be created by
the IT designer, i.e., the ITs as such, the entities under responsibility of the service designer,
i.e., interactions and services, and eventually the entities specified by the system designer,
i.e., components.
Note, that the target mappings are, within the context of this thesis, assumed to be

directly represented by model transformation rules executed by a transformation engine and
are not reproduced as formal models. Additionally, a formal model for complete system
specifications is intentionally omitted as questions such as component selection, distribution,
deployment, execution, and endpoint reference handling are out of scope of this thesis.

5.2.1 Interaction Templates

Formal Definition

ITs model interaction patterns. As such, they “describe the core structure of [an interaction]
solution at a level high enough to generalize to many specific situations [and which] can
be tailored to fit” [vdBC01, p. 265] in the very specific context of a concrete interaction
scenario. More precisely, ITs document similarities of interactions between two entities in
terms of communication interfaces and semantics.
An IT is built-up on the basis of actions which cluster an interaction pattern’s underlying

principles of message exchange. “An action is a named element that is the fundamental unit
of executable functionality. The execution of an action represents some transformation or
processing” [OMG09b, p. 236]. Hence, actions describe logically indivisible, causally related
exchanges of messages, which either provide input to or represent output from the action’s
processing. An action has a direction. It is initiated by one entity participating in the

54

5.2 The First Class Modelling Entities of the Development Process

interaction, referred to as source, and addressed to another entity of the interaction, referred
to as destination. Input messages of an action are sent from the source to the destination and
thus trigger the execution of the action. Output messages are returned from the destination
to the source as outcome of the action.
Let T be the non-empty set of message type definitions. Then, an action is defined as:

Definition 2 (Action). An action is defined as a triple (id, Tin, Tout), where

id is the unique identifier for this action.

Tin is an n-tuple (i1, . . . , in) ∈ Tn typing the input messages sent by this action.

Tout is an m-tuple (o1, . . . , om) ∈ Tm typing the output message returned by this action.

An action (id, (i1, . . . , in), (o1, . . . , om)) is written as:

id(i1, . . . , in) : o1, . . . , om

For an action a, one writes id(a), Tin(a), and Tout(a) to denote the identifier, the n-tuple
of input message types, and the m-tuple of output message types of a respectively.
The presented definition of actions focuses on the exchanged message types and leaves the

action’s processing behaviour intentionally undefined. The action’s functionality is gener-
alised to a pure causal relation of messages, i.e., the output messages are caused by the input
messages. Additionally, a message is also generalised to its type rather than being expressed
by its concrete content.
Actions are divided into formal and actual ones. Formal actions are used within ITs as

template parameters. In this context, a formal action describes the occurrence of an action
within an interaction pattern. In contrast, an actual action represents a concrete action as
part of an interaction which is derived from an IT. Note, that the message types defined
for a formal action act as place-holders to represent the pure existing of an input or output
message. Concrete message types are defined by actual actions upon replacement of formal
actions.
Based on formal actions, an IT allows the specification of an interaction pattern describing

communication between two entities, referred to as interaction roles. Let Rit be the non-
empty set of interaction roles, and let Af and Aa be non-empty and pair-wise disjoint sets
of actions. Then, an IT is defined as:

Definition 3 (Interaction Template). An Interaction Template (IT) is defined as a 5-tuple
(Rit,Af , D, c, Bit), where

Rit is a set {r1, r2} ⊆ Rit of two interaction roles representing the communicating entities
of the captured interaction pattern.

Af ⊆ Af is a set of formal actions of the IT.

D ⊆ Rit×Af is the binary “is-destination-of” relation. D identifies interaction roles of an
IT as action destinations within this IT. Every formal action is assigned to exactly one
interaction role, i.e., D is right-total and left-unique (cf. Appendix B).

55

5 The Modelling Framework

We define D as complement of D identifying interaction roles as action sources. D is
given by:

{(r, f)|f ∈ Af ∧ r ∈ Rit ∧ (r, f) /∈ D}

D is also right-total and left-unique.
Clearly, an interaction role is either an action’s destination or source, but not both at
the same time, i.e., D ∩D = ∅

c is a predicate c : Af × Aa → {true, false} being true if a given actual action is a valid
replacement for a formal action of this IT upon IT instantiation.

Bit is a behaviour specification defining temporal and causal relations of message exchanges
captured by the IT’s actions in form of an MSC.

For an IT i, one writes Rit(i), Af (i), D(i), D(i), c(i), and Bit(i) to denote the set of
interaction roles, the set of formal actions, the destination and source mappings, the action
replacement constraints, and the behaviour of i respectively.
Primarily, an IT identifies a set of formal actions, a set of roles, and the relations between

both. The mappings D and D guarantee that every action has a well defined and unique
destination and source, guaranteed by right-totalness and left-uniqueness. A role may be in
relation to more than one formal action either as a destination or as a source. An IT’s roles are
symbolic identifiers for entities collaborating through the interaction pattern captured by the
IT. The IT’s formal actions Af provide means for applying the captured pattern to a concrete
interaction. They represent place holders to be substituted by actual actions dependent on
the interaction’s context. Such actual actions describe concrete types of messages being
transmitted when establishing an interaction at run-time, e.g., an actual action specifies
concrete input and output messages for an RPC. As one can see by this example, a single
action of an IT may cause a number of actual message transmissions, e.g., first sending the
input message and next receiving the return message.
The expansion of actions to individual message transmissions is defined by the IT’s be-

haviour specification Bit. Bit defines how an action’s message exchanges in-between inter-
action roles are interleaved by causal and temporal dependencies as well as synchronisation
semantics, like blocking and non-blocking method invocations. Internal details about the
behaviour of individual interaction roles are not covered by Bit. Roles are regarded as black
boxes. The focus lies on externally observable communication behaviour. For instance, in
the case of a Request/Response (R/R) pattern, the reception of a request message will cause
a new execution for the callee which lasts until the callee sent back the response message.
Hereby, the observable behaviour of callee is represented by a sole execution specification,
framed the by request/response message pair. However, an implementation of the callee may
have complex internal behaviour, e.g., by spanning separate worker threads to detach each
incoming request. Note, that in the context of the presented thesis, the focus for Bit speci-
fication lies on capturing the general behaviour of an interaction role sufficiently detailed to
characterize the modelled interaction pattern. A more sophisticated, formal specification of
behaviour is not in the scope of this thesis.
An IT may restrict the replacement of formal actions by actual ones by enforcing addi-

tional constraints on actions. For instance, the mandatory absence of output messages for
an action if the IT’s semantics do not support a response channel to propagate a result back

56

5.2 The First Class Modelling Entities of the Development Process

to the initiator of the interaction. Such constraints are enforced by the c predicate, which
provides a validation test for formal to actual action replacements.

UML Representation

ITs are visualised by UML collaboration template diagrams. Hereby, interaction roles Rit
of an IT directly map to collaboration roles. An IT’s formal actions Af become UML oper-
ations, supporting input and output messages via operation parameters. These operations
are defined as template parameters of the afore mentioned collaboration template as a direct
consequence of the formal actions’ place-holder semantics.
The IT’s “is-destination-of” relation D is reflected by typing the collaboration roles with

UML interfaces. These interfaces group all operations which represent actions addressed to
this role. As these operations are template parameters of the collaboration diagram itself,
they can not be used directly to define the operations for a collaboration’s role interface.
Instead, these role interfaces are templates themselves, also mirroring the corresponding ac-
tions for a role as operation template parameters. Next, when using these interfaces as a
collaboration role’s type, the appropriate operation template parameters from the surround-
ing collaboration are delegated to bind the interface templates. This approach allows for
modelling an action addressed to an interaction role as provided operation of the associated
collaboration role. If an interaction role is not the destination of one of the IT’s actions,
the respective interface of its collaboration role remains empty and can be omitted in the
collaboration diagram.
Note, that the described approach of using collaboration templates stays in contrast to

the informal notion of “collaboration templates” used in the UML standard. Hereby, the
template parameters of the collaboration are interface template parameters which directly
represent the types of the collaboration roles [OMG09b, p. 634]. The drawback of this
solution w.r.t. to our work is that arbitrary interfaces can be used to type roles. Thus, it
can not be guaranteed that a role’s type is compatible with respect to an interaction role’s
provided operations.
If the substitution of one of the formal actions by an actual action is constrained within

the IT, as specified by the predicate c, the constraint is reflected by an Object Constraint
Language (OCL) expression. This expression is annotated as invariant to the correspond-
ing operation template parameter of the collaboration template. Thus, the substitution
constraints become automatically evaluable by a modelling tool.
Finally, an IT’s behaviour is modelled by a UML sequence diagram as used for SSDs (cf.

Section 4.4.1 on page 39). The diagram is directly referenced by the collaboration diagram
as its owned behaviour specification. The lifelines of the sequence diagram correspond to
the collaboration roles, and thus to the interaction roles. An action’s message exchanges are
expressed by message occurrences within the sequence diagram. To draw a stronger relation
between the dynamic and structural specification of an IT, every single action in the IT
results in a connector between the collaboration roles. This connector is then referenced by
the action’s messages in the sequence diagram. This way, we express distinct communication
channels for each action.
Figure 5.5 depicts an example of an IT specification in both variants, the formal 5-tuple

(a) and as UML model (b). Note, that the notation ↑SyncRR provides a short-cut for the
behaviour specification Bit of an IT. Is is used to refer to the corresponding MSC as formal

57

5 The Modelling Framework

ITSyncRR = (Rit = {caller, callee},
Af = {request()},
D = {(callee, request())},
c(f, a) = true,
Bit = ↑SyncRR)

(a) Formal specification.

caller

caller callee
ICallable
«interface»

op()

SyncRR

callee: ICallable
<op()->request()>

sd SyncRR

request()

request()

«interactiontemplate» request(): Operation

op(): Operation

(b) UML representation.

Figure 5.5: Example of an Interaction Template specification.

specification of an IT’s semantics. As introduced in Section 4.4, a well defined subset of UML
can be used to describe such MSCs by UML sequence diagrams. For clarity, only this UML
diagram is shown when documenting an IT. Thus, the diagram is substituted by ↑SyncRR
or similar expressions for an IT’s formal specification.
The SyncRR IT captures a synchronous R/R interaction pattern (cf. to Chapter 7 for

a detailed discussion about this IT). The pattern describes a blocking method invocation,
initiated by a caller and addressed to a callee interaction role. The invocation action of the IT
is modelled as single formal operation template parameter request() which is not affected by
any constraints during IT instantiation. Hence, the c predicate is simply defined as constant
true and is not reflected as OCL invariant to the operation template parameter. As the
caller interaction role is never addressed by an action, it is simply typed by an empty inter-
face which is intentionally not displayed in the diagram. In contrast, the callee interaction
role is typed by the intermediary ICallable interface which provides the sole operation op(),
configurable through a template parameter. This operation is bound to the request() opera-
tion of the enclosing collaboration template. Finally, the behaviour specification is given by
the sequence diagram SyncRR, stating that request() is a synchronous message, preventing
execution continuation by the caller after being sent until the reply message is received.

5.2.2 Interactions

Formal Definition

As previously indicated, a concrete interaction describes an IT instantiation, i.e., providing
an actual action for all formal actions of the IT such that the validation test succeeds. Let

58

5.2 The First Class Modelling Entities of the Development Process

IAddition = (IT = ITSyncRR,
A = {(request(), add(Integer, Integer) : Integer)})

(a) Formal specification.

SyncRR

«bind» <request()->add(a:Integer,b:Integer):Integer>
Addition

«interactiontemplate»

«interaction»

request(): Operation

(b) Explicit IT binding.

SyncRR

<request()->add(a:Integer,b:Integer):Integer>

«interaction»

(c) Anonymous IT binding.

Figure 5.6: Example of an interaction specification (IT instantiation).

I be the non-empty set of ITs. The formal definition of an interaction is then given as:

Definition 4 (Interaction). An interaction, or IT instantiation, is defined as a pair (IT ,A),
where

IT ∈ I is an IT from which the interaction is derived.

A ⊆ Af (IT) × Aa is the binary “is-replaced-by” relation. A identifies exactly one actual
action as replacement for each of the formal actions of the referenced IT as part of its
instantiation. A is left-total, left-unique, and right-unique (cf. Appendix B).
Given A, we can extract the set of actual actions of an interaction Aa:

Aa = {a|a ∈ Aa ∧ f ∈ Af (IT) ∧ (f, a) ∈ A}

Let cit be the action replacement test predicate of IT , i.e., cit = c(IT). An interaction is
valid, if all its action replacements satisfy the IT’s replacement constraints, i.e.,

∀(f, a) ∈ A cit(f, a) = true

By being left-total, the “is-replaced-by” relation A ensures, that every formal action is
bound to an actual action. Furthermore by also being left- and right-unique, A replaces a
formal action by an actual one in a one-to-one relation – every formal action is replaced by
exactly one actual action and every actual action is used to replace only one formal action.
This results in a complete instantiation of an IT by unique actual actions.
For an interaction i, one writes IT (i), A(i), and Aa(i) to denote the IT of the instantiation,

the action replacement definitions as well as the set of actual actions defined by i, respectively.

UML Representation

Based on an IT’s collaboration template we can derive a concrete interaction via a UML
template binding. Consequently, interactions are represented by plain UML collaborations.

59

5 The Modelling Framework

For instance, we can define an Addition interaction based on the SyncRR IT by providing the
actual action add which sums up two integer values, provided as input messages, and returns
the result as output message, see Figure 5.6a. In UML this interaction can be defined either
explicit by a newly named collaboration (Figure 5.6b) or anonymous (Figure 5.6c).

Interaction Platform Bindings

The realisation of interactions on a target platform is given by an appropriate target adaptor.
The adaptor will provide the interaction’s platform binding, i.e., the concrete protocol and
data representation to be used when the interaction is established at run-time. Although
the interaction itself is still platform independent, the platform binding is not. The bindings
are defined by the target mapping specifications which complement IT models and hence are
inherited by interaction models.
Which concrete target mappings will be used depends on the final system configuration,

i.e., available middleware, and will be expressed by model annotations to the individual
interactions1 to steer the development process’ model transformations.

5.2.3 Services

Formal Definition

Services represent an abstract view on collaborative behaviour. As such, a service identifies
two features: First, the entities which participate in the collaboration, referred to as service
roles. And second, the interactions in-between these roles to establish a particular function-
ality. A service defines at least two roles but is not limited to this number of collaborating
entities. Thus, the traditional bi-partition of roles in provider and consumer is weakened in
the presented thesis, e.g., a provider is not limited to just provide functionality for a service
but also may use functionality of other roles from within the same service. The service’s roles
communicate with each other to establish the modelled collaboration. This communication
occurs via interactions, thereby an interaction always connects two of the service’s roles.
Hence, a service role is constructed as the aggregation of interaction roles of interactions it
participates in within a service.
Let Rsvc be the non-empty set of service roles pair-wise disjoint from interaction roles,

i.e., Rit ∩ Rsvc = ∅. Let Iinst be the non-empty set of interactions (IT instantiations), and
M ⊆ Rit × Rsvc a binary relation between interaction and service roles. Then, the formal
notion of services is given by the following definition:

Definition 5 (Service). A service is defined as a triple (Rsvc, Iinst,M), where

Rsvc ⊆ Rsvc is the set of roles defining symbolic roles of entities participating in the service.
A service identifies at least two such roles, i.e., |Rsvc| ≥ 2.

Iinst is an n-tuple (i1, . . . , in) ∈ Ininst of pair-wise disjoint interactions (IT instantiations)
possibly occurring within the service.

M is an n-tuple (m1, . . . ,mn) ∈Mn with n = |Iinst|. An element mi ⊆ Rit(IT (ii))×Rsvc is
the binary “is-mapped-to” relation mapping the interaction roles of the i-th interaction

1Represented by the realisation attribute of the InteractionUse stereotype (see Section 6.2.6)

60

5.2 The First Class Modelling Entities of the Development Process

in Iinst to different roles of this service. Every such mi is left-total, left-unique, and
right-unique (cf. Appendix B).
Furthermore, for every service role exists at least one mapped interaction role from one
of the interactions, i.e.,

∀
rsvc∈Rsvc

∃
rit∈Rit

∃
1≤i≤|M |

: (rit, rsvc) ∈ mi

To ensure, that every interaction within a service is used to interconnect two different
service roles, the “is-mapped-to” relations mi have some specific characteristics. Every such
relation guarantees, that both interaction roles are mapped to service roles, i.e., mi is left-
total. Furthermore, an interaction role is only mapped once, to exactly one service, i.e.,
mi is right-unique. Thus, not two different service roles can play the same interaction role
within one interaction. Next, by being also left-unique, mi ensures that not both interaction
roles of an interaction map to the same service role. Otherwise, if an interaction’s roles
are mapped to only one service role, this interaction would be hidden within a service role’s
implementation as it would not be observable as part of the service’s collaborative behaviour.
Finally, every service role must play at least one role in an interaction within the service.
This prevents the definition of functional isolated service roles not communicating with other
service roles within the collaboration. Clearly, a service role may have more than just one
interaction role mapped to it. Then, it will be involved in multiple interactions within the
service, subsuming interaction roles of different interactions.
For a service s, one writes Rsvc(s), Iinst(s), andM(s) to denote the set of service roles, the

referenced interactions, and the interaction role to service role mappings of s respectively.

UML Representation

Like ITs and interactions, services are visualised as UML collaboration diagrams. A ser-
vice’s roles are modelled as collaboration roles. These roles are connected through UML
collaboration uses which reference the service’s interactions and assign interaction roles to
service roles. Figure 5.7 depicts an example of a service definition. The Calculation service
identifies two service roles, the operator and the calculator. The two roles are connected by a
pair of interactions based on the SyncRR IT as introduced in Section 5.2.1. The operator can
request two types of calculations from the calculator, the addition of two integer numbers or
their multiplication respectively. Therefore, the IT’s formal request() action is substituted
by add(a:Integer,b:Integer):Integer in the first case and multiply(a:Integer,b:Integer):Integer in
the second case upon IT instantiation. Furthermore, both interactions’ roles are bound in a
similar manner: the interactions’ caller role to the operator service role and callee to calculator.
Note, that a UML collaboration use has explicit names identifying the application of a

UML collaboration, i.e., multiplication and addition in the given example. These names are
provided for UML compliance of the diagrams and are not a mandatory part of the service
specification itself.

5.2.4 Components
Formal Definition

Components form the conceptual element to realise a service role. Thus, components repre-
sent partial implementations of services. Components are part of a service-oriented system

61

5 The Modelling Framework

SvcCalculation = (Rsvc = {operator, calculator},

Iinst = ((IT = ITSyncRR,
A = {(request(),

multiply(Integer, Integer) : Integer)}),
(IT = ITSyncRR,
A = {(request(),

add(Integer, Integer) : Integer)})),

M = ({(caller, operator), (callee, calculator)},
{(caller, operator), (callee, calculator)}))

(a) Formal specification.

operator calculator

addition:
SyncRR

multiplication:
SyncRR

Calculation

caller

caller callee

callee

<request()->multiply(a:Integer,b:Integer):Integer>

<request()->add(a:Integer,b:Integer):Integer>

«service»

«interactionuse»

«interactionuse»

(b) UML representation.

Figure 5.7: Example of a service specification.

62

5.2 The First Class Modelling Entities of the Development Process

specification. Hereby, a system designer splits the modelled system into distinct parts, i.e.,
components, which are then interconnected by services. A component is linked to a service
role through a port, representing a dedicated point of interaction between the component
and its environment.
Let S be the non-empty set of services. Then a port is defined as:

Definition 6 (Ports). A port is defined as pair (S,R), where

S ∈ S is a service linked to the port.

R ∈ Rsvc is a service role defined by S to be fulfilled by a component through this port.

For a port p, one writes S(p) and R(p) to denote the service and service role linked to p,
respectively.
Let P be the non-empty set of ports and P(P) be the power set of P . Then a component

is defined as:

Definition 7 (Component). A component is defined as a pair (id, Ports), where

id is the unique identifier of the component.

Ports ∈ P(P) is the set of ports of the component.

For a component c, one writes id(c) and Ports(c) to denote the identifier and set of ports
of c, respectively.
A component participates in a number of service interactions based on the service role

bindings from its ports. For each of these ports, we derive a type definition by evaluating
the port’s role binding. The type of a port is composed by provided and required interfaces.
Through a provided interface of a port a component offers functionality to other components
participating in the service referenced by the port. Hence, a provided interface is given by
the set of actions of which the port’s service role is a destination of. Hereby, a service role is
an action’s destination if the action is addressed to an interaction role which is bound to this
service role. The contrary applies for a port’s required interface which identifies the actions
initiated by interaction roles bound to the port’s service role.
To define provided and required interfaces formally, we define a couple of helper functions.

destOf and sourceOf are functions I × Rit → P(Af) retrieving the sets of formal actions
of an IT for which a given interaction role is a destination or source of, respectively. Let
i ∈ I be an IT and r ∈ Rit(i) be an interaction role thereof. Then, destOf and sourceOf
are defined as:

destOf(i, r) = {f |f ∈ Af (i) ∧ (f, r) ∈ D(i)}
sourceOf(i, r) = {f |f ∈ Af (i) ∧ (f, r) ∈ D(i)}

Both functions are also defined for interactions, i.e.,IT instantiations, to return actual
actions instead of formal ones for a given interaction role, i.e., Iinst × Rit → P(Aa). Let
i ∈ Iinst be an interaction and r ∈ Rit(IT (i)) be one of its interaction roles inherited
from the underlying IT. Then, using the previous definitions of destOf and sourceOf the

63

5 The Modelling Framework

extended functions are given by:

destOf(i, r) ={a|a ∈ Aa(i) ∧ f ∈ Af (IT (i))∧
(f, a) ∈ A(i) ∧ f ∈ destOf(IT (i), r)}

sourceOf(i, r) ={a|a ∈ Aa(i) ∧ f ∈ Af (IT (i))∧
(f, a) ∈ A(i) ∧ f ∈ sourceOf(IT (i), r)}

Another function roleit : S ×Rsvc ×N→ P(Rit) is defined to retrieve the interaction role
a service role is mapped to for a specific interaction within a service. Let s ∈ S be a service
specification, r ∈ Rsvc(s) a service role of s, ij the j-th interaction specification in Iinst(s)
(1 ≤ j ≤ |Iinst(s)|), and mj the corresponding service role mapping relation inM(s). Then,
roleit is defined as:

roleit(s, r, j) = {rit|rit ∈ Rit(IT (ij)) ∧ (rit, r) ∈ mj}

The function roleit will either return the empty set or a set of just one element. If the empty
set is returned, the service role r is not in any relation to an interaction role of the j-th
interaction in service s, i.e., it does not participate in this specific interaction of the service.
Otherwise, it is guaranteed that at most a single element of Rit is returned, because every
“is-mapped-to” relation mj as element of M(s) relates both interaction roles of an IT to
different service roles (cf. Definition 5). Hence, for a given role mapping relation mj there
exists at most one such pair (rit, r) for a service role r.
Based on these helper functions, we now define provided and required interfaces for ports.

Let p ∈ P be a port specification and Iinst(S(p)) = (i1, . . . , in) the tuple of interactions
defined by the service the port is linked to.

Definition 8 (Provided Interfaces of a Port). The port’s provided interfaces are defined by
the n-tuple:

provided(p) = (p1, . . . , pn) ∈ (P(Aa))n n = |Iinst(S(p))|

An element pj (1 ≤ j ≤ n) of this tuple is the set of actual actions of the j-th interaction in
Iinst(S(p)), denoted as ij, where the port’s service role is a destination of, i.e.,

pj =
⋃

∀r∈roleit(S(p),R(p),j)
destOf(ij , r)

Definition 9 (Required Interfaces of a Port). The port’s required interfaces are defined by
the n-tuple:

required(p) = (r1, . . . , rn) ∈ (P(Aa))n n = |Iinst(S(p))|

An element rj (1 ≤ j ≤ n) of this tuple is the set of actual actions of the j-th interaction in
Iinst(S(p)), denoted as ij, where the port’s service role is a source of, i.e.,

rj =
⋃

∀r∈roleit(S(p),R(p),j)
sourceOf(ij , r)

64

5.2 The First Class Modelling Entities of the Development Process

Comp1 = (id = OpComp,
Ports = {(S =↑SvcCalculation,

R = operator)})

Comp2 = (id = CalcComp,
Ports = {(S =↑SvcCalculation,

R = calculator)})
(a) Formal specification.

Calculation
calc :

calculatoroperator
OpComp CalcComp

«servicecomponent» «servicecomponent»
«serviceuse»

(b) UML representation.

provided(PortOpComp) = ({}, {})
required(PortOpComp) = ({multiply(Integer, Integer) : Integer},

{add(Integer, Integer) : Integer})

provided(PortCalcComp) = ({multiply(Integer, Integer) : Integer},
{add(Integer, Integer) : Integer})

required(PortCalcComp) = ({}, {})
(c) Provided/Required interfaces.

Figure 5.8: Example of components implementing the Calculation service.

A port has a number of required and provided interfaces according to the number of in-
teraction roles bound to the port’s service role. Note, that these interfaces may be empty,
i.e., when a service role does not provide or require any actions for or from a specific inter-
action. According to Definition 8 and Definition 9, empty required and provided interfaces
are possible for a specific combination of a port’s service role and an interaction role of the
enclosing service’s interactions. Empty interfaces occur, when either a port’s service role
does not participate in an interaction, i.e., roleit returns the empty set, or the port’s service
role does either not provide or require any actions within the specific interaction.

UML Representation

Components and their ports are model by UML component diagrams. Both elements have
a direct one-to-one mapping to the appropriate UML elements, i.e., UML components and
UML ports, respectively. Services connect components via UML collaboration uses. Hereby,
a service is linked to a UML component by a UML port. The UML collaboration use’s role
assignment expresses the binding of service roles to ports.
Figure 5.8 continues the examples of the previous sections. It shows how two components

are defined to establish the Calculation service. On the left, the OpComp component which is
linked to the operator service role through an anonymous port. On the right, the calculator
service role is fulfilled by the CalcComp component, also through an anonymous port.
A port’s provided interfaces can be determined from the UML diagrams. First, we follow

a port’s service role binding in the Calculation service, e.g., calculator. Next, based on the

65

5 The Modelling Framework

service specification, two interaction roles are bound to this service role, i.e., caller in the
addition as well as in the multiplication interaction, both based on the SyncRR IT. Knowing
the interaction roles and the associated IT, we extract their type definitions from the IT’s
collaboration template diagram. These types represent a port’s provided interfaces. To
determine a ports required interfaces, we select the opposite interaction role’s type definition
within an interaction a port’s service role participates in. Note, that the type definitions as
specified by the IT are UML interface templates which must be properly instantiated with
an interaction’s actual actions. The whole process of determining a port’s interfaces from
the formal as well as from the UML models is described in more detail in Section 9.1 as part
of our case study.

5.3 Summary
This chapter described the proposed, interaction-centric service development process and
modelling entities. The first part presented the process’ stakeholders and their key activi-
ties: the service designer to specify services, the system designer to compose systems, and
the IT designer to build up a library out of interaction template specifications and their cor-
responding target mappings. Following in the second part, the first class modelling entities
of the development process were formally defined along with their representations in UML.

66

CHAPTER 6

A UML Profile for Service Modelling

This chapter presents the UML Profile for Interaction-centric Services (UP4IS), a UML 2
profile providing the necessary UML primitives to describe services based on ITs as intro-
duced in Chapter 5. The first part of this chapter describes the “virtual” meta-model for the
UP4IS profile. This meta-model exists only as a conceptual basis to illustrate the relations of
the profile’s individual stereotypes. Thus, this meta-model is not directly reflected in UML
nor is it a modification of UML’s own meta-model. Instead, it visualises the elements of the
formal model introduced in Chapter 5 and their relations to each other as UML compatible
structures.
In the second part of the chapter, the individual elements of this meta-model are mapped

to concrete UML meta-classes which support the required properties of each element best.
This mapping process results in the precise definition of stereotypes for the UP4IS profile.
As result, the UP4IS profile provides means to model services based on ITs with standard

UML diagrams which are, at the same time, well-formed service models with respect to
the presented formal model for interaction-centric services. Due to additional model con-
straints on the UML meta-model which are defined by the UP4IS stereotypes, the diagrams
compliance to the formal model is guaranteed.

6.1 The UP4IS Meta-Model

This section presents the meta-model which is provided by the UP4IS profile. The elements
and relations within this meta-model reflect the formal model for services based on ITs as
introduced in Chapter 5. Figure 6.1 depicts the individual elements of the UP4IS meta-
model. Its elements are discussed individually with respect to their relation to concepts of
the formal model.

6.1.1 Actions

Actions represent atomic blocks of communication between two entities. Formally, as given
by Definition 2, an action identifies a set of messages, which either represent an action’s

67

6 A UML Profile for Service Modelling

*

21..*

21..*
0..1

Formal
Action

Interaction
Role

Behaviour

Action

Substitution
Contraint

Interaction
Template

(a) Interaction Templates.

1..*

1..*

1..*

1..*

Actual
Action

Formal
Action

Action
Binding

Interaction
Template

InteractionMessage

Oneway
Action

Action

(b) Interactions.

1..*

2

1..* 1..*
2..*

2

Interaction

ServiceInteraction
Role Binding

Service
Role Binding

Service
Use

Interaction
Use

Service
Port

Service
Component

Interaction
Template

Service
Role

Interaction
Role

(c) Services and Components.

Figure 6.1: The UP4IS Meta-Model.

68

6.1 The UP4IS Meta-Model

input or output. This association is directly reflected in the UP4IS meta-model through an
abstract action (cf. Figure 6.1b).
Within the formal model, two types of actions are distinguished: First, formal actions

are used for IT specifications. Therefore, formal actions represent placeholder actions and
provide means to model causal relations between individual action occurrences in interaction
patterns. Second, actual actions are used when deriving concrete interactions from ITs.
Hence, actual actions are substitutes for formal actions upon template instantiation. In the
UP4IS meta-model, this differentiation between both types of actions is preserved, using
abstract action as a common super-type.

6.1.2 Interaction Templates and Interactions

ITs capture interaction patterns between a pair of communication entities. Thus, they rep-
resent aggregations of individual actions. As stated in Definition 3, ITs are formally defined
by 5-tuples (Rit,Af , D, c, Bit). The translation of this concept is illustrated in Figure 6.1a.
An IT’s interaction roles, given by Rit, are identified by the IT’s aggregation relation to
such roles. The second aggregation relation, to formal actions, models the IT’s set of for-
mal actions as defined by Af . Each such formal action is referenced by an interaction role.
This association reflects the “is-destination-of” relation D of the IT. Additionally, action
constraints which may effect formal to actual action substitutions, as expressed by predicate
c, are modelled as substitution constraints. Finally, an IT’s behaviour specification is also
present in the meta-model. Such a behaviour references the IT’s interaction roles and formal
actions to describe the order between individual action occurrences.
Instantiating an IT leads to the definition of an interaction. According to Definition 4,

an interaction is the pair (IT ,A). Thereby the former element identifies the instantiated
IT, the latter, A, is the relation which provides actual actions as substitutes for each of the
formal actions of the IT. This relation is modelled by separate action bindings, one for each
substitution of a formal by an actual action. Thereby, the set of actual actions is explicitly
defined within an interaction (cf. Figure 6.1b).

6.1.3 Services, Ports and Components

Services describe interactions between at least two communicating entities. Formally, as
introduced in Definition 5, a service is defined as triple (Rsvc, Iinst,M). The service roles,
i.e., Rsvc, are modelled by an aggregation relation for a service. Formally, these roles are
connected by interactions thereby the interaction’s roles are assigned to service roles, given
by Iinst and M, respectively. These sets are modelled by interaction uses, which identify
the applied interactions, and respective interaction role bindings, which establish the role
mappings (cf. Figure 6.1c).
Services are then used to model communication between service components. As expressed

by Definition 7, components are aggregations of service ports. According to Definition 6,
a port, given by the pair (S,R), identifies a service S and a role R of the service which
is realised by this port. This link between a port and a service is reflected in the UP4IS
meta-model by a service use and a service role binding, comparable to interaction uses and
interaction role bindings.

69

6 A UML Profile for Service Modelling

6.2 The UP4IS Stereotypes

This section presents the stereotypes defined for the UP4IS profile. These stereotypes reflect
individual elements of the UP4IS meta-model as standard UML meta-classes. Following the
classification in [SK05], the presented stereotypes are restrictive, code generation stereotypes
(cf. Section 4.6). This means, the stereotypes are used to slightly modify the semantics of
the original meta-classes with respect to possible relations to other meta-classes or values
of their attributes. Additionally, they are transformational, being used to control later
model transformation processes, e.g., to derive transport adaptor realisations. Note, that
not all elements of the UP4IS meta-model are explicitly mapped to stereotypes as their
semantics are subsumed by standard UML concepts and thus, stereotypes would only have
a decorative character. The affected concepts are message, which is not represented as a
first class modelling entity but solely as part of actions; interaction and service role binding
aggregations which are subsumed by the stereotypes for interaction and service use; the
action binding aggregation which also becomes part of the interaction definition; and finally
a formal action’s substitution constraint which is directly modelled as OCL invariants to the
formal action.
The UP4IS stereotypes are presented in alphabetical order. Each of the stereotypes is

described based on the following pattern:

Description. The description of the stereotype itself and from which UML meta-class it is
derived.

Attributes. The stereotype’s attributes, including their formal definition and description.
These attributes effectively represent the meta-class extension by the stereotype. In
alignment with the UML superstructure document [OMG09b], the prefix “/” is used
for derived/read-only attributes of meta-classes.

Constraints. The constraints on the UML meta-model introduced by the stereotype. These
constraints reflect the stereotype’s semantic modifications to the UML meta-model.
Beside their description, the constraints are formalised as OCL expressions [OMG07b]
in conformance with the UML superstructure [OMG09b]. Please refer to Appendix C
(p. 153) for the respective OCL listings.

Notation. The notation of an element within UML diagrams being marked by the specific
stereotype.

6.2.1 Action

Description

An action is a UML operation (from the UML Templates package) and defines a common
base type for actual and formal actions used for interaction specification. This stereotype is
not intended for direct use in UML models.

Attributes

None.

70

6.2 The UP4IS Stereotypes

Constraints

1. An action has public visibility as an action provides means for external communication
of a component.

2. An action’s parameters have the direction in, out, or return.

Notation

The notation for an action is a UML operation with stereotype «action».

6.2.2 ActualAction

Description

An actual action is a UML operation (from the UML Templates package) and defines an
actual action used to derive a concrete interaction, i.e., an IT instantiation. It is a speciali-
sation of an abstract action and represents an action used to substitute formal actions upon
template instantiation.

Attributes

None.

Constraints

No additional constraints with respect to action.

Notation

The notation for an actual action is a UML operation with stereotype «actualaction». When
displayed upon anonymous template instantiation the stereotype may be omitted.

6.2.3 FormalAction

Description

A formal action is a UML operation (from the UML Templates package) and defines a formal
action as parameter of an IT. It is a specialisation of an abstract action and represents a place-
holder element to be substituted upon template instantiation. A formal action is used, to
associate actions with interaction roles, i.e., specifying source and destination relationships,
and to define the order of action occurrences within an IT.
A formal action may define additional invariants in form of an OCL expression to further

constrain the characteristics of actual actions which will substitute this formal action, e.g.,
the absence of return messages for one way actions. To determine the substitutes for a
given formal action in the context of interaction/service specifications, we define the OCL
query getActualActions() (cf. Listing 6.1). The query returns all actual actions, i.e., UML
operations, replacing an operation stereotyped as formal action via template instantiation.

71

6 A UML Profile for Service Modelling

context UP4IS :: FormalAction
def : getActualActions () : Set(Operation) =

TemplateParameterSubstitution . a l l I n s t a n c e s ()
-> s e l e c t (formal = self. base_Operation)
-> c o l l e c t (actual)-> f l a t t e n ()-> asSet ()

Listing 6.1: OCL expression to determine a formal action’s actual substitutions.

Attributes

None.

Constraints

1. A formal action defines no parameters or exceptions.

2. A formal action does not redefine another operation.

3. A formal action does not define pre-, post-, and body- conditions.

Notation

The notation for a formal action is a UML operation with stereotype «formalaction». When
displayed as an IT’s template parameter the stereotype may be omitted.

6.2.4 Interaction
Description

An interaction is a UML collaboration (from the UML Collaborations package and w.r.t.
classifier from the UML Templates package) and defines a concrete interaction within a
service. An interaction is derived from an IT by template instantiation. Therefore, the
interaction provides actual actions for all formal actions of the referenced IT.

Attributes

None.

Constraints

1. An interaction is defined by binding an IT.

2. For each formal action of the referenced IT exists an actual substitute. This constraint
guarantees left-totalness for an interactions “is-replaced-by” relation A (cf. Defini-
tion 4).

3. An actual action binds exactly one formal action. This constraints guarantees left-
uniqueness for an interactions “is-replaced-by” relation A (cf. Definition 4).

4. A formal action is bound by exactly one actual action. This constraints guarantees
right-uniqueness for an interactions “is-replaced-by” relation A (cf. Definition 4).

72

6.2 The UP4IS Stereotypes

5. An interaction is used exactly once for an interaction use as it is uniquely defined for
a concrete service.

6. Actual actions of an interaction are compatible to formal actions of the underlying IT
(inherited standard constraint of a UML template parameter substitution [OMG09b,
p. 630]). This constraint enforces an IT’s substitution predicate c (cf. Definition 3).

Notation

The notation for an interaction is a UML collaboration with stereotype «interaction», rep-
resenting a template binding. Note that an interaction may not be shown directly in a
UML diagram but be presented only implicitly as an anonymous template binding within
an interaction use.

6.2.5 InteractionTemplate
Description

An interaction template is a UML collaboration (from the UML Collaborations package)
template (as defined by classifier from the UML Templates package) and defines an IT as
introduced in Section 5.2.1. Thus, the interaction template describes an interaction pat-
tern between two interaction roles based on formal actions. The underlying communication
pattern is given by an attached behaviour specification.

Attributes

None.

Constraints

1. An interaction template has at least one template parameter.

2. All template parameters represent formal actions.

3. An interaction template contains exactly two interaction roles having different types.

4. At least one of the interaction roles is explicitly typed. If an interaction role is typed,
its type is an interface. Note, that the first part of this constraint is enforced by the
previous constraint as not both role types can be undefined at the same time.

5. An interaction role’s interface references only formal actions of the nesting interaction
template as its operations.

6. A formal action is associated to exactly one interaction role via a role’s interface.
This constraint ensures the binding of each formal action to an interaction role as its
destination, as defined by an IT’s “is-destination-of” relation D (cf. Definition 3).

7. All connectors within an interaction template connect all interaction roles and no other
elements. There exists at least one such connector.

8. A formal action is reflected by a dedicated connector having the same name. There
exist no other connectors.

73

6 A UML Profile for Service Modelling

9. An interaction template has a behaviour specification in terms of an associated UML
sequence diagram whose lifelines correspond to the template’s collaboration roles and
the template’s formal actions are reflected by synchronous and asynchronous messages,
transmitted via the collaboration’s connectors.

Notation

The notation for an interaction template is a UML collaboration template with stereotype
«interactiontemplate».

6.2.6 InteractionUse

Description

An interaction use is a UML collaboration use (from the UML Collaborations packages) and
expresses the usage of an interaction within a service. The referenced interaction is mapped
to one or more target technologies realising the interaction semantics of the underlying IT.
These mappings lead to the generation of target adaptors to be used by the service’s role
implementations to realise communication within the service at run-time.

Attributes

• realisation : String[1..*]
Identifies the target technologies the interaction use’s referenced interaction is realised
on.

• configuration : String[1..*]
Used as a generic container to configure mapping alternatives for a specific interaction
within a service. Possible values depend on the referenced IT and shall be documented
along with the ITs themselves.

Constraints

1. An interaction use references an interaction.

2. An interaction use specifies at least one target technology.

3. Every interaction role of the referenced interaction is bound to exactly one service role
(inherited standard constraint of a UML collaboration use [OMG09b, p. 171]).

4. Within an interaction use, an interaction role of the referenced interaction is bound
to a service role by a dedicated role binding. Additionally, both interaction roles are
bound to different service roles.

Notation

The notation for an interaction use is a UML collaboration use with stereotype «interac-
tionuse».

74

6.2 The UP4IS Stereotypes

6.2.7 OnewayAction

Description

A oneway action is a UML operation (from the UML Templates package) representing a
template parameter for ITs. It is a specialisation of a formal action representing a placeholder
which can only be substitute by actual actions not defining any output messages. Such
actions are widely used for asynchronous communication. Thus, this stereotype provides
means for simplification of IT models, as such a substitution constraint does not need to be
defined explicitly when using this stereotype.

Attributes

None.

Constraints

1. A oneway action can only be substituted by actual actions defining only input messages
or no messages at all. For an actual action a the constraint is similar to testing for
Tout(a) = ∅.

Notation

The notation for a oneway action is a UML operation with stereotype «oneway». In contrast
to formal actions, an action defined as a oneway action must be explicitly stereotyped in
UML diagrams. Otherwise, the action is assumed to represent an ordinary formal action.

6.2.8 Service

Description

A service is a UML collaboration (from the UML Collaborations package) and defines a
service as introduced in Section 5.2.3. A service identifies at least two service roles which
are exclusively interconnected by interaction uses.

Attributes

None.

Constraints

1. At least two service roles are defined for a service.

2. Only interaction uses are used as role connectors within a service.

3. Interaction uses within a service connect only service roles of the same service and bind
all interaction roles (inherited standard constraint of a UML collaboration use [OMG09b,
p. 171]).

4. Every service role is connected to at least one interaction use within its enclosing
service.

75

6 A UML Profile for Service Modelling

context UP4IS :: ServicePort
def : getServiceRole () : ConnectableElement =

CollaborationUse . a l l I n s t a n c e s ()
-> s e l e c t (not extension_ServiceUse .

oclIsUndefined ())
-> c o l l e c t (roleBinding)
-> s e l e c t (client = self. base_Port)
-> f i r s t (). supplier

Listing 6.2: OCL expression to determine the service role a service port is linked to.

Notation

The notation for a service is a UML collaboration with stereotype «service».

6.2.9 ServiceComponent

Description

A service component is a UML component (from the UML Components package) and rep-
resents the implementation of service roles. A service component represents a service role
through a service port.

Attributes

None.

Constraints

1. A service component defines at least one service port.

Notation

The notation for a service component is a UML component with stereotype «servicecompo-
nent».

6.2.10 ServicePort

Description

A service port is a UML port (from the UML Ports package) and relates a service component
to a service role which is implemented by the component. A service port is bound to a service
role. The OCL helper operation getServiceRole() returns the service role a port is connected
to (cf. Listing 6.2).

Attributes

• /provided : Interface[0..*]
Derived value. Subsets provided from the UML port and references the interfaces being

76

6.2 The UP4IS Stereotypes

provided by the nesting component by means of a service role binding to this port (cf.
Definition 8 on page 64).

context UP4IS :: ServicePort
de r i v e : l e t serviceRole : ConnectableElement =

self. getServiceRole ()
i n serviceRole . clientDependency

-> c o l l e c t (supplier .type)

• /required : Interface[0..*]
Derived value. Subsets required from the UML port and references the interfaces being
required by the nesting component by means of a service role binding to this port (cf.
Definition 9 on page 64).

context UP4IS :: ServicePort
de r i v e : l e t serviceRole : ConnectableElement =

self. getServiceRole (),
interactions : Co l l e c t i o n (Collaboration) =

Collaboration . a l l I n s t a n c e s ()-> s e l e c t (
not extension_Interaction . oclIsUndefined ())

i n serviceRole . clientDependency -> c o l l e c t (supplier)
-> c o l l e c t (r | interactions

-> s e l e c t (i | i. collaborationRole -> i n c l u d e s (r))
-> c o l l e c t (i | i. collaborationRole -> r e j e c t (r))
-> f l a t t e n ()
-> c o l l e c t (role | role.type))

->asSet ()

Constraints

1. A service port is bound to exactly one service role via a service use.

Notation

The notation of a service port is a UML port with stereotype «serviceport». When displayed
as a service component’s port and graphically bound via a service use, the stereotype may
be omitted in the UML diagram.

6.2.11 ServiceUse
Description

A service use is a UML collaboration use (from the UML Collaborations package) and ex-
presses the usage of a service within a system specification. A service use connects service
components’ ports to roles of a service. A service may only be partially bound within a
system specification. That means, not all service roles must be realised within a system.
However, a service is only established, if missing service roles are contributed by other sys-
tems.

Attributes

None.

77

6 A UML Profile for Service Modelling

Constraints

1. A service use references a service.

Notation

The notation for a service use is a UML collaboration use with stereotype «serviceuse».

6.3 Summary
This chapter presented a mapping of the modelling entities as introduced by this thesis’
novel service modelling and development process to UML. The mapping is realised as a
light-weight UML extension in form of a UML profile, referred to as the UML Profile for
Interaction-centric Services (UP4IS). The profile allows for direct use of UML compliant
modelling and transformation tools when implementing the proposed development process
as applied and demonstrated for the case study in Part III of the presented thesis.

78

Part III

Case Study

Introduction to the Case-Study

The following chapters will demonstrate the novel development process for interaction-centric
services. It will be shown, how the proposed process facilitates service development by sup-
porting a strong separation between platform independent service interaction specification
and the realisations thereof on target platforms. Therefore, the following key features are
exemplified:

1. Support for the creation of an IT library through capturing of a representative set of
interaction patterns. It is to be highlighted, that the specification of ITs and this the
creation of this library is an integral part of the development process. The process
itself does not demand for a “reference” library serving as standard interaction library.
Instead, the library may vary depending on the application context of the process.

2. Support the platform independent specification of services based on ITs, i.e., interaction
patterns for service interaction are selected based on a service’s need rather than being
predetermined by a potentially limited set of interaction primitives of some target
platform.

3. Support the implementation of service roles through components by automated model
transformation and analysis combined with code generation.

4. Support service deployment by automated generation of service interaction groundings
to selected target platforms in form of target adaptors.

Chapters 7 and 8 address the creation of the IT library and service specification, re-
spectively. Service specification is demonstrated based on a simple video recording system.
Chapter 9 especially focuses on the process’ applied model transformations in the context of
the modelled sample services.

81

6 A UML Profile for Service Modelling

82

CHAPTER 7

Defining an Interaction Template Library

As introduced in Section 5.1, the core element of the proposed design process is a library of
ITs. All activities described as part of service design orient themselves to this library. In
consequence, it is essential for our case study, to define such a library which can then be used
for service specification and which stimulates the proposed model transformation processes.

7.1 Motivating the IT Library
In the following sections, an prototypical IT library is presented. The described ITs are based
on the interaction pattern catalogue first published in [Fai98]. This catalogue gives a rough
classification of various interaction patterns between a pair of communicating entities. The
patterns selected for the following library form a representative selection of the referenced
work. The presented library is not complete in terms of covering every imaginable interaction
pattern. Instead, as stated in Section 5.1, the library is intended to be open and extensible
whenever one identifies the need to describe a new pattern. The presented selection of
interaction patterns was chosen to demonstrate applicability of our approach for the following
use cases:

• Model primitive interaction patterns. Primitive interaction patterns, like pure message
passing (notification) is widely found in literature as the sole explicit modelling prim-
itive for service interaction. By integrating it into the sample library, compatibility to
such approaches is effectively shown.

• Model complex interaction patterns. One of the major goals of the proposed modelling
process is to hide complex interaction by only one modelling primitive. Thus, service
designers are freed of the need to handle complicated communication behaviour ex-
plicitly in application logic. Examples for such complex patterns include monitorable
Request/Response (R/R) patterns.

• Model structurally equal but semantic different patterns as ITs. For instance, this
is shown by presenting the R/R pattern in various incarnations which can only be
distinguished through their behaviour specification.

83

7 Defining an Interaction Template Library

7.1.1 Documenting ITs

ITs are documented with a consistent format, leading to a uniform structure of the library.
Each IT’s documentation is divided into the following parts (cf. [GHJV95]):

Name. The IT’s name should reflect the essence of the captured pattern to become part of
the vocabulary shared between involved participants within the service development
process.

Context. The context states the motivation for the described IT. It answers the questions
what kind of interaction problems can be solved by this pattern and what is the ratio-
nale behind it.

Forces. Forces express further requirements to interaction participants or exchanged mes-
sages within the context of the pattern.

Roles. Each IT identifies two roles whose interaction is generalised by the pattern.

Formal Actions. An IT defines a set of formal actions which represent the communication
flow between the interaction roles. Each such action is bound to one of the roles, i.e.,
the role is the action’s destination.

Formal Specification. The formal specification of the IT, including symbolic representations
of the roles and the formal actions, the “is-destination-of” relation between both, the
action substitution constraints, and finally a referenced behaviour specification. See
Definition 3 in Section 5.2.1 for more details about these elements.

UML Model. The visualisation as UML model of the IT.

Target Mappings. The set of target mapping specification for the IT, used to realise a
derived service interaction on a concrete target platform. These mappings control the
model transformation process to generate the associated target adaptors.

Due to the close relation of UML sequence diagrams to the formal grounding of message
sequence charts (cf. Section 4.4), the explicit formal behaviour specification for the presented
ITs are omitted. Instead, refer to the UML sequence diagram presented as part of the IT’s
UML model, indicated by the link notation “↑” in the formal specification of an IT, e.g.,
↑SyncRR.

7.1.2 Specifying Target Mappings

To exemplify target mappings for ITs, three different target platforms were chosen. In partic-
ular, the library provides mappings for Java, Java RMI, and CORBA. The mapping for Java
will illustrate how service interaction can be realised within a closed run-time environment
avoiding external communication at all. Thus, service components are directly attached to
each other, i.e., a component’s required interfaces are directly resolved from the “opposite”
component. By also handling Java RMI, interaction in distributed environments becomes
possible. Although, each service component is still implemented with the same programming
language, communication can be realised beyond process or host boundaries. Finally, the

84

7.2 The IT Library

Formal Action Java/Java RMI Mapping CORBA Mapping

synchronous native Java method IDL operation
asynchronous detached Java method IDL oneway operation

Table 7.1: Generic Target Mapping for synchronous/asynchronous actions.

mapping to CORBA allows for heterogeneous implementations of service components, inter-
mixing programming languages. CORBA represents a fully featured networking middleware
with its own communication stack, addressing schemes and message marshalling.
The target models for the Java and Java RMI mappings are based on OMG’s meta-model

and UML profile for Java published as OMG standard specification in [OMG04]. Similarly,
for CORBA the corresponding UML profile specification of the OMG is chosen, defined by
[OMG02b].1 The general idea of the target mappings, independent from the concrete target
platform, is that an interaction role becomes a dedicated interface declaration expressed in
the target technology, i.e., either a Java or a CORBA interface, respectively. Similar to their
representation as UML operations, actions become Java methods or CORBA operations
of the associated interfaces. An action’s concrete mapping relies on its formal semantics.
Thereby, two types of actions are distinguished: synchronous and asynchronous ones. Syn-
chronous actions block execution for the initiating party and asynchronous actions allow
continuation of execution right after initiation. In case of CORBA, synchronous actions are
intuitively mapped to ordinary CORBA operations. In contrast, asynchronous actions result
in oneway operations, providing best-effort semantics for an asynchronous communication
as required by that kind of actions [OMG08a]. Both Java mappings also natively support
synchronous actions. But in contrast to CORBA, Java does not provides language means
for asynchronous method invocation. To compensate this gap, the Java mappings include
wrapper functionality to explicitly detach the invocation of such methods2. Table 7.1 sum-
marises the possible mappings depending on action semantics. Individual target mappings
of ITs within the following library refer to this table as shortcut.

7.2 The IT Library

7.2.1 Synchronous Request/Response

Context

A process P1 sends a message, the request, to a process P2. P1 must wait until P2 finished
processing. After P2 finished message processing, it returns a reply message, the response,
back to P1 and P1 resumes execution.

Forces

Both processes implicitly synchronise their executions to each other as P1 is blocked while
the request is processed by P2. P1 fully trusts P2 to finish processing and return control

1Note, that originally, both UML profile specification are defined for UML 1.3. Hence, they were slightly
modified to match the UML 2.0 profile specification.

2For technical details of these mappings confer to Appendix D.1.

85

7 Defining an Interaction Template Library

within acceptable time. If P2 never returns, P1 may be blocked forever.

Roles

• Caller. Caller triggers the interaction by initially sending the request message.

• Callee. Callee processes the request and returns the response message.

Formal Actions

• request(). The action’s input messages represent the request, its output messages the
response, respectively. The action is directed to the callee role.

The action allows substitution by arbitrary actual actions, i.e.:

c(request(), a) = true

Formal Specification

ITSyncRR = (Rit = {caller, callee},
Af = {request()},
D = {(callee, request())},
c(f, a) = true,
Bit = ↑SyncRR)

Figure 7.1: Formal specification of the Synchronous R/R IT.

UML Model

caller

caller callee
ICallable
«interface»

op()

SyncRR

callee: ICallable
<op()->request()>

sd SyncRR

request()

request()

«interactiontemplate» request(): Operation

op(): Operation

Figure 7.2: UML model of the Synchronous R/R IT.

86

7.2 The IT Library

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

request() native Java method IDL operation

Table 7.2: Target mapping for the Synchronous R/R IT.

7.2.2 Notification

Context

A process P1 sends a message, the notification, to be processed by another process P2 and
immediately continues execution. P1 will gain no direct feedback about the outcome of P2’s
processing of the message.

Forces

P1 is not interested in the result of P2’s message processing. Thus, P1 continues execution
right after sending the message to P2. In particular, both processes advance completely
independent from each other. P2 may already be busy with some execution when P1’s mes-
sage arrives. This implies, that P2 must implement at least some pseudo-parallel behaviour,
enabling parallel handling of multiple notification messages.

Roles

• Notifier. Notifier sends the notification.

• Notifyee. Notifyee processes the notification message.

Formal Actions

• notify(). The action’s input messages represent the notification to be communicated
between notifier and notifyee. It is directed to the notifyee role.

The formal action identifies only messages being sent from notifier to notifyee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(notify(), a) =
{
true if Tout(a) = ∅
false otherwise

87

7 Defining an Interaction Template Library

Formal Specification

ITNotification = (Rit = {notifier, notifyee},
Af = {notify()},
D = {(notifyee, notify())},

c(f, a) =
{
true if Tout(a) = ∅
false otherwise

,

Bit = ↑Notification)

Figure 7.3: Formal specification of the Notification IT.

UML Model

notifier notifyee
ICallable
«interface»

op()

Notification

notifier notifyee: ICallable
<op()->notify()>

sd Notification

notify()

notify()

«interactiontemplate»

op(): Operation

«oneway»notify(): Operation

Figure 7.4: UML model of the Notification IT.

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

notify() detached Java method IDL oneway operation

Table 7.3: Target mapping for the Notification IT.

7.2.3 Notification with Push-Monitor
Context

A process P1 sends a message, the notification, to be processed by a process P2 and immedi-
ately continues execution. Although not being interested in the final result of P2’s processing,
P1 requires feedback of P2’s execution progress which is directly reported by P2 back to P1.

Forces

P1 is not interested in the result of P2’s message processing. Thus, P1 continues execution
right after sending the message to P2. In particular, both processes advance completely

88

7.2 The IT Library

independent from each other. P2 may already be busy with some execution when P1’s mes-
sage arrives. This implies, that P2 must implement at least some pseudo-parallel behaviour,
enabling parallel handling of multiple notification messages.
While P1 continues execution in parallel to P2, P1 wants to gain knowledge about the

progress of P2. As P1 does not know when new status information becomes available, it is
inefficient for P1 to consecutively poll P2. Instead, P2 will provide status updates by itself.

Roles

• Notifier. Notifier sends the notification and requires status updates.

• Notifyee. Notifyee processes the notification message and provides status updates.

Formal Actions

• notify(). The action’s input messages represent the notification to be communicated
between notifier and notifyee. It is directed to the notifyee role.

The formal action identifies only messages being sent from notifier to notifyee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(notify(), a) =
{
true if Tout(a) = ∅
false otherwise

• monitor(). The action’s input messages represent execution status updates provided
by notifyee. It is directed to the notifier role.

The formal action identifies only messages being sent from notifyee to notifier, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(monitor(), a) =
{
true if Tout(a) = ∅
false otherwise

Formal Specification

ITNotificationPushMonitor = (Rit = {notifier, notifyee},
Af = {notify(),monitor()},
D = {(notifyee, notify()),

(notifier,monitor())},

c(f, a) =
{
true if Tout(a) = ∅
false otherwise

,

Bit = ↑NotificationPushMonitor)

Figure 7.5: Formal specification of the Notification with Push-Monitor IT.

89

7 Defining an Interaction Template Library

UML Model

ICallable
«interface»

op()

notifier notifyee

NotificationPushMonitor

notifyee: ICallable
<op()->notify()>

notifier: ICallable
<op()->monitor()>

notify()

sd NotificationPushMonitor

monitor()

notify()

monitor()

«interactiontemplate»

op(): Operation

loop

«oneway»monitor(): Operation
«oneway»notify(),

Figure 7.6: UML model of the Notification with Push-Monitor IT.

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

notify() detached Java method IDL oneway operation
monitor() detached Java method IDL oneway operation

Table 7.4: Target mapping for the Notification with Push-Monitor IT.

7.2.4 Notification with Pull-Monitor
Context

A process P1 sends a message, the notification, to be processed by a process P2 and immedi-
ately continues execution. Although not being interested in the final result of P2’s processing,
P1 requires feedback of P2’s execution progress which can be pulled by P1 from P2. Note,
that in the described flavour of this pattern, it remains unspecified for how long P2’s progress
information can be pulled by P1, especially after P2 finished its processing.

Forces

P1 is not interested in the result of P2’s message processing. Thus, P1 continues execution
right after sending the message to P2. In particular, both processes advance completely
independent from each other. P2 may already be busy with some execution when P1’s mes-
sage arrives. This implies, that P2 must implement at least some pseudo-parallel behaviour,
enabling parallel handling of multiple notification messages.
While P1 continues execution in parallel to P2, P1 wants to gain knowledge about the

progress of P2. P1 is not able to handle such status updates at arbitrary moments of execution
time. Hence, it is more effective for P1 to pull these updates from P2.

90

7.2 The IT Library

Roles

• Notifier. Notifier sends the notification and requests status updates from notifyee.

• Notifyee. Notifyee processes the notification message and answers status requests.

Formal Actions

• notify(). The action’s input messages represent the notification to be communicated
between notifier and notifyee. It is directed to the notifyee role.

The formal action identifies only messages being sent from notifier to notifyee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(notify(), a) =
{
true if Tout(a) = ∅
false otherwise

• monitor(). The action’s input messages represent execution status request by notifier,
its output message the progress information available from notifyee. It is directed to
the notifyee role.

The action allows substitution by actual actions defining at least one output message
to communicate the requested status of the notifyee, i.e.:

c(monitor(), a) = true

{
true if Tout(a) 6= ∅
false otherwise

Formal Specification

ITNotificationPullMonitor = (Rit = {notifier, notifyee},
Af = {notify(),monitor()},
D = {(notifyee, notify()),

(notifyee,monitor())},

c(f, a) =


true if f = notify() ∧ Tout(a) = ∅

or f = monitor() ∧ Tout(a) 6= ∅
false otherwise

,

Bit = ↑NotificationPullMonitor)

Figure 7.7: Formal specification of the Notification with Pull-Monitor IT.

91

7 Defining an Interaction Template Library

UML Model

ICallable
«interface» notifier notifyee

NotificationPullMonitor

notifyee: ICallable
<op()->notify(),notifier

op()

mon()

mon()->monitor()>

->exists(p | p.direction = #out or
p.direction = #return)

self.getActualActions()
«invariant»

notify()

monitor()

notify()

sd NotificationPullMonitor

monitor()

«interactiontemplate»

op(), mon(): Operation

loop

«oneway»notify(),
monitor(): Operation

Figure 7.8: UML model of the Notification with Pull-Monitor IT.

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

notify() detached Java method IDL oneway operation
monitor() native Java method IDL operation

Table 7.5: Target mapping for the Notification with Pull-Monitor IT.

7.2.5 Asynchronous Request/Response

Context

A process P1 sends a message, the request, to a process P2. P1 may continue with other tasks
while P2 processes the message. After P2 finished, it returns a reply message, the response,
back to P1.

Forces

If processing a message may take a significant time for P2, it is more efficient for P1 to con-
tinue execution rather than waiting explicitly for P2 to finish. Hence, P1 can pass the request
asynchronously to P2 and waits for the response while being busy with other tasks. Both pro-
cesses advance completely independent from each other. Note, P2 may already be busy with
some execution when P1’s request message arrives. This implies, that P2 must implement at

92

7.2 The IT Library

least some pseudo-parallel behaviour, enabling parallel handling of multiple incoming mes-
sages. Additionally, P1 must be able to handle the response message asynchronously to its
continued execution.

Roles

• Caller. Caller triggers the interaction by initially sending the request message.

• Callee. Callee processes the request and returns the response message.

Formal Actions

• request(). The action’s input messages represent the request. The action is directed
to the callee role.

The formal action identifies only messages being sent from caller to callee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(request(), a) =
{
true if Tout(a) = ∅
false otherwise

• response(). The action’s input messages represent the response, i.e., the outcome of
the callee’s message processing. The action is directed to the caller role.

The formal action identifies only messages being sent from callee to caller, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(response(), a) =
{
true if Tout(a) = ∅
false otherwise

Formal Specification

ITAsyncRR = (Rit = {caller, callee},
Af = {request(), response()},
D = {(callee, request()),

(caller, response())},

c(f, a) =
{
true if Tout(a) = ∅
false otherwise

,

Bit = ↑AsyncRR)

Figure 7.9: Formal specification of the Asynchronous R/R IT.

93

7 Defining an Interaction Template Library

UML Model

callee: ICallable
<op()->request()>

ICallable
«interface»

op()

caller: ICallable
<op()->response()>

caller callee

AsyncRR

sd AsyncRR

request()
response()

request()
response()

«interactiontemplate»

op(): Operation

«oneway»response(): Operation
«oneway»request(),

Figure 7.10: UML model of the Asynchronous R/R IT.

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

request() detached Java method IDL oneway operation
response() detached Java method IDL oneway operation

Table 7.6: Target mapping for the Asynchronous R/R IT.

7.2.6 Asynchronous Request/Response with Push-Monitor

Context

A process P1 sends a message, the request, to a process P2. P1 may continue with other tasks
while P2 processes the message. After P2 finished, it returns a reply message, the response,
back to P1. During the time P2 processes the request, P1 requires feedback of P2’s execution
progress which is directly reported by P2 back to P1.

Forces

If processing a message may take a significant time for P2, it is more efficient for P1 to
continue execution rather than waiting explicitly for P2 to finish. Hence, P1 can pass the
request asynchronously to P2 and waits for the response while being busy with other tasks.
Both processes advance completely independent from each other. Note, P2 may already be
busy with some execution when P1’s request message arrives. This implies, that P2 must
implement at least some pseudo-parallel behaviour, enabling parallel handling of multiple
incoming messages.
While P1 continues execution in parallel to P2, P1 wants to gain knowledge about the

progress of P2. As P1 does not know when new status information becomes available, it
is inefficient for P1 to consecutively poll P2. Instead, P2 will provide status updates by

94

7.2 The IT Library

itself. In turn, P1 must be capable to handle these updates as well as the reply message as
interruptions to its existing execution behaviour.

Roles

• Caller. Caller triggers the interaction by initially sending the request message and
receives status updates from callee.

• Callee. Callee processes the request and returns the response message. Additionally,
it provides asynchronous status updates to caller while processing the request.

Formal Actions

• request(). The action’s input messages represent the request. The action is directed
to the callee role.

The formal action identifies only messages being sent from caller to callee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(request(), a) =
{
true if Tout(a) = ∅
false otherwise

• response(). The action’s input messages represent the response, i.e., the outcome of
the callee’s message processing. The action is directed to the caller role.

The formal action identifies only messages being sent from callee to caller, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(response(), a) =
{
true if Tout(a) = ∅
false otherwise

• monitor(). The action’s input messages represent execution status updates provided
by callee. It is directed to the caller role.

The formal action identifies only messages being sent from callee to caller, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(monitor(), a) =
{
true if Tout(a) = ∅
false otherwise

95

7 Defining an Interaction Template Library

Formal Specification

ITAsyncRRPushMonitor = (Rit = {caller, callee},
Af = {request(), response(),monitor()},
D = {(callee, request()),

(caller, response()),
(caller,monitor())},

c(f, a) =
{
true if Tout(a) = ∅
false otherwise

,

Bit = ↑AsyncRRPushMonitor)

Figure 7.11: Formal specification of the Asynchronous R/R with Push-Monitor IT.

UML Model

ICaller
«interface»

ICallee
«interface»

op()

caller callee

AsyncRRPushMonitor

op()

mon()

callee: ICallee
<op()->request()>

caller: ICaller
<op()->response(),
mon()->monitor()>

sd AsyncRRPushMonitor

monitor()

request()

response()

request()
response()
monitor()

«interactiontemplate»

op(): operation

op(), mon(): Operation

loop

«oneway»monitor(): Operation
«oneway»response(),
«oneway»request(),

Figure 7.12: UML model of the Asynchronous R/R with Push-Monitor IT.

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

request() detached Java method IDL oneway operation
response() detached Java method IDL oneway operation
monitor() detached Java method IDL oneway operation

Table 7.7: Target mapping for the Asynchronous R/R with Push-Monitor IT.

96

7.2 The IT Library

7.2.7 Asynchronous Request/Response with Pull-Monitor

Context

A process P1 sends a message, the request, to a process P2. P1 may continue with other tasks
while P2 processes the message. After P2 finished, it returns a reply message, the response,
back to P1. During the time P2 processes the request, P1 requires feedback of P2’s execution
progress which can be pulled by P1 from P2. Note, that P1 is only allowed to pull progress
information from P2 as long as P2 has not sent the response message.

Forces

If processing a message may take a significant time for P2, it is more efficient for P1 to
continue execution rather than waiting explicitly for P2 to finish. Hence, P1 can pass the
request asynchronously to P2 and waits for the response while being busy with other tasks.
Both processes advance completely independent from each other. Note, P2 may already be
busy with some execution when P1’s request message arrives. This implies, that P2 must
implement at least some pseudo-parallel behaviour, enabling parallel handling of multiple
incoming messages.
While P1 continues execution in parallel to P2, P1 wants to gain knowledge about the

progress of P2. P1 is not able to handle such status updates at arbitrary moments of execution
time. Hence, it is more effective for P1 to pull these updates from P2. In consequence, P2
must be able to handle status request asynchronously to its own processing. Note, that
P1 can only validly pull P2’s progress as long as P2 effectively processes the request. Once
finished processing, P2 may not provide meaningful status information.

Roles

• Caller. Caller triggers the interaction by initially sending the request message and
requests status updates from callee.

• Callee. Callee processes the request and returns the response message. At the same
time of execution it answers status update request from caller.

Formal Actions

• request(). The action’s input messages represent the request. The action is directed
to the callee role.

The formal action identifies only messages being sent from caller to callee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(request(), a) =
{
true if Tout(a) = ∅
false otherwise

• response(). The action’s input messages represent the response, i.e., the outcome of
the callee’s message processing. The action is directed to the caller role.

97

7 Defining an Interaction Template Library

The formal action identifies only messages being sent from callee to caller, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(response(), a) =
{
true if Tout(a) = ∅
false otherwise

• monitor(). The action’s input messages represent execution status request by caller,
its output message the progress information available from callee. It is directed to the
callee role.

The action allows substitution by actual actions defining at least one output message
to communicate the requested status of the callee, i.e.:

c(monitor(), a) = true

{
true if Tout(a) 6= ∅
false otherwise

Formal Specification

ITAsyncRRPullMonitor = (Rit = {caller, callee},
Af = {request(), response(),monitor()},
D = {(callee, request()),

(callee,monitor()),
(caller, response())},

c(f, a) =


true if f = request() ∧ Tout(a) = ∅

or f = response() ∧ Tout(a) = ∅
or f = monitor() ∧ Tout(a) 6= ∅

false otherwise

,

Bit = ↑AsyncRRPullMonitor)

Figure 7.13: Formal specification of the Asynchronous R/R with Pull-Monitor IT.

98

7.2 The IT Library

UML Model

ICaller
«interface»

op()

ICallee
«interface»

caller callee

AsyncRRPullMonitor

callee: ICallee
<op()->request(),<op()->response()>

op()

mon()

caller: ICaller

mon()->monitor()>

sd AsynRRPullMonitor

monitor()

request()

response()

->exists(p | p.direction = #out or
p.direction = #return)

self.getActualActions()
«invariant»

request()
response()
monitor()

«interactiontemplate»

op(): operation

op(), mon(): Operation
loop

«oneway»request(),
«oneway»response(),
monitor(): Operation

Figure 7.14: UML model of the Asynchronous R/R with Pull-Monitor IT.

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

request() detached Java method IDL oneway operation
response() detached Java method IDL oneway operation
monitor() native Java method IDL operation

Table 7.8: Target mapping for the Asynchronous R/R with Push-Monitor IT.

7.2.8 Abortable Asynchronous Request/Response

Context

A process P1 sends a message, the request, to a process P2. P1 may continue with other tasks
while P2 processes the message. After P2 finished, it returns a reply message, the response,
back to P1. While P2 processes the message, P1 may choose to abort P2’s task instead of
waiting for a response message. In the case of cancellation, P2 provides feedback about the
effects of aborting its processing.

99

7 Defining an Interaction Template Library

Forces

If processing a message may take a significant time for P2, it is more efficient for P1 to
continue execution rather than waiting explicitly for P2 to finish. Hence, P1 can pass the
request asynchronously to P2 and waits for the response while being busy with other tasks.
Both processes advance completely independent from each other. Note, P2 may already be
busy with some execution when P1’s request message arrives. This implies, that P2 must
implement at least some pseudo-parallel behaviour, enabling parallel handling of multiple
incoming messages.
While P1 continues execution in parallel to P2, it may decide to cancel the request for

P2. Aborting a command may involve complex intermediary tasks for P2, e.g., cleaning up
partial results. Although, these steps are not considered as part of the IT, P1 blocks until
P2 provides feedback about the handling of the abort request. Note, P1 can only invoke the
abort command prior to receive the response message. Furthermore, once aborted, P2 must
not provide a delayed response for the cancelled request.
Receiving a response message or aborting a command are mutually exclusive interactions.

A target adaptor for this IT may include wrapper code to opaquely handle race conditions
between both interactions for the involved processes.

Roles

• Caller. Caller triggers the interaction by initially sending the request message and
may abort message processing of callee.

• Callee. Callee processes the request and returns the response message. While process-
ing the request message, callee may receive an abort command, cancelling execution.

Formal Actions

• request(). The action’s input messages represent the request. The action is directed
to the callee role.

The formal action identifies only messages being sent from caller to callee, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(request(), a) =
{
true if Tout(a) = ∅
false otherwise

• response(). The action’s input messages represent the response, i.e., the outcome of
the callee’s message processing. The action is directed to the caller role.

The formal action identifies only messages being sent from callee to caller, omitting
a communication channel in the opposite direction. Thus, only actions not specifying
any output messages represent valid substitutes, i.e.:

c(response(), a) =
{
true if Tout(a) = ∅
false otherwise

100

7.2 The IT Library

• abort(). The action’s input messages represent the abort request of caller, its output
messages the cancellation feedback from callee, respectively. The action is directed to
the callee role.

The action allows substitution by arbitrary actual actions, i.e.:

c(abort(), a) = true

Formal Specification

ITAsyncRRPullMonitor = (Rit = {caller, callee},
Af = {request(), response(), abort()},
D = {(callee, request()),

(callee, abort()),
(caller, response())},

c(f, a) =
{
true if f = abort() ∨ Tout(a) = ∅
false otherwise

,

Bit = ↑AsyncRRPullMonitor)

Figure 7.15: Formal specification of the abortable Asynchronous R/R IT.

UML Model

ICaller
«interface»

op()

ICallee
«interface»

caller callee

callee: ICallee
<op()->request(),<op()->response()>

op()

ab()

caller: ICaller

ab()->abort()>

AbortableAsyncRR

sd AbortableAsyncRR

abort()

request()

response()

request()
response()

«interactiontemplate»

abort()

op(): operation

alt
op(), ab(): Operation

abort(): Operation
«oneway»response(),
«oneway»request(),

Figure 7.16: UML model of the abortable Asynchronous R/R IT.

101

7 Defining an Interaction Template Library

Target Mappings

Formal Action Java/Java RMI Mapping CORBA Mapping

request() detached Java method IDL oneway operation
response() detached Java method IDL oneway operation
abort() native Java method IDL operation

Table 7.9: Target mapping for the Asynchronous R/R with Push-Monitor IT.

7.3 Summary
This chapter showed the application of the service development process to create an IT
library to serve as basis for service and system specification. The library demonstrated the
modelling activities necessary to describe individual ITs, exemplified by capturing primitive
as well as complex interaction patterns.

102

CHAPTER 8

Defining Services and Systems

In this chapter, we present two examples of service definitions based on the IT library from
Section 7.2. The system design goal is to develop a simple video processing system which
captures video data from a camera and compresses selected images for storage. On the one
hand, the video capturing service models the necessary interactions to acquire images from
a camera. On the other hand, the image compression service models the necessary steps
to compress these images. The following sections describe both services and the resulting
system in detail, illustrating the tasks of the service and system designer. Note, that a
service identifies the number and kinds of interactions which occur between its roles. It
neither defines internal behaviour of the roles nor does it specify how the interactions are
inter-weaved. The same applies for the service components as elements of the composed
system. Therefore, a system specification identifies services as “glue” in-between components,
considering the concrete functionality of a component as opaque. In this sense, a component
definition is given by the aggregation of the service roles it is connected to.

8.1 Example Services

8.1.1 The Video Capturing Service

The video capturing service provides means to retrieve video data from a camera. Therefore,
the service identifies two roles:

Camera. The camera role represents the source for video data. The reader may imagine a
real, physical camera or a playback system implementing this role.

Client. The client role represents the sink video data is delivered to. For instance, this role
is fulfilled by a video recording system or a monitor.

Both roles, camera and client, communicate by three interactions. Two interactions are
used as control commands to the camera’s state and one is exploited to transfer video data:

103

8 Defining Services and Systems

Activate. The activate interaction is used by the client to turn on the camera system. As the
client expects immediate feedback if the camera was activated correctly, this interaction
is based on the Synchronous R/R IT (Section 7.2.1). The IT’s formal request() action
is substituted by the actual action start() : Boolean. The action’s Boolean output
message is used to signal either success or failure of the activation command. Formally,
this interaction is given by:

activate = (IT = ITSyncRR,
A = {(request(), start() : Boolean)})

Deactivate. The deactivate interaction is the counter part to the previous interaction. It
is initiated by the client to gracefully shut down the camera. Similar to activate, this
interaction is also based on the Synchronous R/R IT (Section 7.2.1) with an analog
action replacement:

deactivate = (IT = ITSyncRR,
A = {(request(), stop() : Boolean)})

Stream. The last interaction of the video capturing service is the stream interaction. It is
used by the camera to transmit video images to the client. As the camera does not
need any feedback from the client upon the reception of an image, this interaction is
based on the Notification IT (Section 7.2.2). Hereby, each image is sent with an integer
time-stamp, enabling the client to correlate the individual images after reception. The
stream interaction is formally defined as:

stream = (IT = ITNotification,
A = {(notify(), nextImage(Integer, Image))})

Figure 8.1 depicts both, the formal specification (a) and the UML model (b) of the video
capturing service. As defined by the role mapping relation tuple M, the two control in-
teractions the ITs’ caller roles are bound to the service’s client role, as the client triggers
these interactions. In turn, the ITs’s callee roles are linked to the camera role. For the third
interaction, having contrary responsibilities for the chain of control, the camera plays the
role of the IT’s notifier role and the client becomes the notifyee.

8.1.2 The Image Compression Service
The image compression service provides functionality to compress images. The service iden-
tifies two roles:

Codec. The codec role will implement the compression algorithm for video images.

Client. The client role provides the raw image data to be compressed by the codec and
receives back a condensed version.

Both roles, codec and client, are connected by three interactions. Two interactions support
querying or manipulating the codec’s configuration and one interaction is used to exchange
raw and compressed image data. As image compression may be a “long” running task exe-
cuted in separate phases, e.g., analysis, quantisation, or vectorisation, the latter interaction
provides means for monitoring the progress of the compression. In detail, the service’s in-
teractions are:

104

8.1 Example Services

SvcV ideoCapturing = (Rsvc = {camera, client}

Iinst = ((IT = ITSyncRR,
A = {(request(), start() : Boolean))},

(IT = ITSyncRR,
A = {(request(), stop() : Boolean))},

(IT = ITNotification,
A = {(notify(), nextImage(Integer, Image))})),

M = ({(caller, client), (callee, camera)},
{(caller, client), (callee, camera)},
{(notifier, camera), (notifyee, client)}))

(a) Formal specification.

deactivate:
SyncRR

activate:
SyncRR

clientcamera

stream:
Notification

<request()->start():Boolean>

<request()->stop():Boolean>

<notify()->nextFrame(time:Integer,img:Image)>

callee caller

notifyee

callercallee

VideoCapturing

notifier

«interactionuse»

«interactionuse»

«interactionuse»

«service»

(b) UML model.

Figure 8.1: The video capturing service.

105

8 Defining Services and Systems

Configure. This interaction is used by the client to set up the codec with the right properties.
In turn, the codec provides feedback about the validity of the requested compression
mode. Hence, the configure interaction is based on the Synchronous R/R IT (Sec-
tion 7.2.1). The formal request() action is substituted by setMode(CMode) : Boolean
thereby CMode represents the message type to describe the requested compression
mode. The boolean return message indicates successful configuration. Formally, this
interaction is given by:

configure = (IT = ITSyncRR,
A = {(request(), setMode(CMode) : Boolean)})

Retrieve. The retrieve interaction is the complement to configure. It is invoked by the client
to fetch the current compression configuration from the codec. Thus, as the client pulls
this information from the codec, the interaction is based on the Synchronous R/R IT
(Section 7.2.1) which natively supports a backward channel. There is no input message
defined for this action, leading to the following formal definition:

retrieve = (IT = ITSyncRR,
A = {(request(), getMode() : CMode)})

Compress. Finally, the compress interaction is used by the client to actually request the
compression of an image. As already mentioned above, this process may be “long”
running. Because of this, the interaction is asynchronous, enabling the client to con-
tinue its own execution without having to wait for the codec to finish. However, the
client will still automatically receive progress updates (in percent) about the codec
internal progress via an interaction monitor. Consequently, this IT is based on the
Asynchronous R/R IT with Push Monitor (Section 7.2.6) and is formally specified as:

compress = (IT = ITAyncRRPushMonitor,
A = {(request(), compress(Image)),

(response(), compressed(CImage)),
(monitor(), progress(Integer))})

The service is presented in Figure 8.2 including its formal specification (a) and its illus-
tration as UML model (b). As the configure and retrieve interactions are used by the client
to control the codec and as such are initiated by the client, the underlying Synchronous
R/R ITs’ caller role is bound to the client, the callee role to the codec, as stated by the
role binding relation tuple M. The same role binding is also established for the compress
interaction’s IT.

8.2 The Video Recording System
We use the video capturing and the image compression services to construct a simple video
recording system. The system does not describe a real world video recorder. Its purpose is to
demonstrate how services are used to specify systems, i.e., to connect service components and
how such specifications drive our model transformation processes. Thus, we omit detailed
information about the concrete functionalities of each component. The video recording
system consists of three components:

106

8.2 The Video Recording System

SvcImageCompression = (Rsvc = {client, codec}

Iinst = ((IT = ITSyncRR,
A = {(request(), setMode(CMode) : Boolean))},

(IT = ITSyncRR,
A = {(request(), getMode() : CMode))},

(IT = ITAsyncRRPushMonitor,
A = {(request(), compress(Image)),

(response(), compressed(CImage)),
(monitor(), progress(Integer))})),

M = ({(caller, client), (callee, codec)},
{(caller, client), (callee, codec)},
{(caller, client), (callee, codec)}))

(a) Formal specification.

retrieve:
SyncRR

configure:
SyncRR

codecclient

compress:
AsyncRRPushMonitor

<request()->setMode(mode:CMode):Boolean>

<request()->getMode():CMode>

<request()->compress(img:Image),

monitor()->progress(p:Integer)>

caller callee

caller callee

ImageCompression

response()->compressed(img:CImage),

calleecaller

«interactionuse»

«interactionuse»

«service»

«interactionuse»

(b) UML model.

Figure 8.2: The image compression service.

107

8 Defining Services and Systems

CompV ideoCamera = (id = V ideoCamera,
Ports = {(S =↑SvcV ideoCapturing,

R = camera)})
(a) The video camera component.

CompRecorder = (id = Recorder,
Ports = {(S =↑SvcV ideoCapturing,

R = client),
(S =↑SvcImageCompression),
R = client)})

(b) The recorder component.

CompJP2KCompressor = (id = JP2KCompressor,
Ports = {(S =↑SvcImageCompression,

R = codec)})
(c) The JP2K compressor component.

Figure 8.3: Formal specification of the video recording system components.

Video Camera. The video camera component functions as sensor and thus provides input
to the system.

Recorder. The recorder component receives video data from the camera and stores com-
pressed images of this video.

JP2K Compressor. The compressor component implements an image compression algo-
rithm. For illustration, the component will provide an Joint Photographic Experts
Group (JPEG) encoder for JPEG 2000 (JP2K) [ISO04].

The video camera and the recorder component establish the video capturing service.
Thereby, the recorder plays the client role, the video camera the camera service role re-
spectively. Next, the image compression service is used to connect the recorder to the JP2K
compressor where again the recorder is linked to the client role and the compressor fulfils the
codec role. This configuration leads to the formal definitions of the components as provided
in Figure 8.3. For simplification within the figure, the notation “↑Service” is used to refer
to the definition of the named service as introduced in the previous sections. Note, that the
recorder component defines two ports as it participates in two services. The resulting system
model in UML is shown by Figure 8.4.

8.3 Summary

Chapter 8 demonstrated the application of the service development process for service and
system specification to design a simple video recording system. The system consists of
three individual components, a video camera, an image compressor, and a recorder. The
components are interconnected by two separate services, the video capturing and the image
compression service. The services were composed out of interactions derived from the IT

108

8.3 Summary

Recorder
«servicecomponent»

JP2KCompressor
«servicecomponent»

ImageCompression
compress:

VideoCapturing
record:VideoCamera

«servicecomponent» client

client

codec

camera

«serviceuse»

«serviceuse»

Figure 8.4: UML model of the video recording system.

library. Thereby, the service models and thus, the system specification, stayed independent
from possible target platforms.

109

8 Defining Services and Systems

110

CHAPTER 9

Applying Model Transformations

This chapter describes the necessary model transformations applied to service PIMs leading
to service component implementations and to target adaptors for the services’ interactions.
The individual transformations are exemplified for the video recording system and its both
services, the video capturing service as well as the image compression service, introduced in
Chapter 8.

Input
Process

Target
PIM

Target
PSM

Service
Implementation

Service
PSM

Target
Mapping

Target
Adaptor

Target
Mapping

Service
PIM

Specification
Target MappingService

Specification

Functionality
Capability/

Fully
Automated

Semi
Automated

Manual

Degree of
automation:

Figure 9.1: Transformational steps in the service development process (cf. Figure 5.2, p. 50).

Figure 9.1 depicts the relevant parts for model model transformations within the proposed
service development process as introduced in Section 5.1. The following sections describe the
individual steps in more detail. The transformation in Section 9.1 forms a common grounding
for all further model transformation activities by making the components’ interfaces explicit,
deriving them from the service PIM. Next, in Section 9.2, we show how the service PSM
results from the service PIM and how this model supports service implementation by code

111

9 Applying Model Transformations

generation. Orthogonal to these activities, the target PIMs, PSMs and eventually the target
adaptors are derived from the service PIMs/PSMs, described in Section 9.3.

9.1 Component Interfaces

A component is connected to services via ports. For each such port, we can derive provided
and required interfaces. These interfaces represent the contributions of the component to
the interactions of the service role its port is bound to (cf. Section 5.2.4). The interfaces are
expressed by sets of actual actions associated to the corresponding interaction role by either
the role is a destination of (provided) or a source of (required) this action. These interfaces
form the functional closure of a component and its interactions. Thus, they are the essential
elements to be taken into account when implementing components and realising interactions
in target adaptors. Therefore, we show how a component’s interfaces are derived from the
component model as a common step to all following model transformation activities. The
outcome of these activities is the interface model. The interface model is still considered as
part of the service PIM although it is not modelled by the service designer himself. However,
it represents no additional knowledge with respect to the service PIM but makes inherent
information about components and port types more explicit.
As stated in Definition 8 and 9 (p. 64), each port of a component has a number of provided

and required interfaces according to the number of interactions the port’s service role is
connected to. These interfaces are derived from the port’s formal specification. Continuing
the example of the video recording system introduced in the previous chapter, Table 9.1 shows
the interfaces for the video camera, the recorder, and the JP2K compressor component,
respectively. The table also illustrates the underlying “backtracking” processes: The sole
service and service role binding of the port (columns 1 and 2) is split for each interaction
and thus interaction role the service role is connected to (columns 3 and 4). According to
the afore mentioned definitions, for each interaction role we can determine the set of actual
actions the role is a destination of (column 5) or a source of (column 6). Hereby, the former
case represents the provided interface and the latter the required one for the interaction
role. Note, that as we use binary services, i.e., services with only two participants, the
recorder component has exactly the complementary interface specification than the other
two components, the video camera and the JP2K compressor component respectively, as it
combines both services through its ports.
Similar to their formal pendants, we can formulate Definition 8 and 9 as model transfor-

mation rules operating on the UML representations of components, services, interactions,
and ITs to reflect the interfaces as UML models. In UML, we use an analog backtracking
mechanism leading from a service role back to the interface templates used as type definitions
for interaction roles within ITs. In particular, the following steps are necessary:

1. Determine the service role of a port. The service is given by the «serviceuse» collab-
oration use’s role binding connected to the port. This step corresponds to columns 1
and 2 in Table 9.1.

2. Determine the interaction roles connected to the service role. This information is
provided via the owning «service» collaboration of the service role. Within this collab-
oration, we can query for the «interactionuse» collaboration uses binding the service

112

9.1 Component Interfaces

Po
rt

(p
)

In
te
ra
ct
io
n

In
te
rf
ac
e

Se
rv
ic
e

R
ol
e

In
te
ra
ct
io
n

R
ol
e

Pr
ov
id
ed

R
eq
ui
re
d

S(
p
)

R
(p

)
(i
)

ro
le
it

(s
,p
,i

)
p
ro
v
id
ed

(p
)

re
qu
ir
ed

(p
)

V
id
eo

C
am

er
a
C
om

po
ne

nt
V
id
eo

C
ap

tu
rin

g
ca
m
er
a

ac
tiv

at
e

ca
ll
ee

{s
ta
rt

()
:B

oo
le
a
n
}

de
ac
tiv

at
e

ca
ll
ee

{s
to
p
()

:B
oo
le
a
n
}

st
re
am

ca
ll
er

{n
ex
tF
ra
m
e(
I
n
te
g
er
,I
m
a
g
e)
}

JP
2K

C
om

pr
es
so
r
C
om

po
ne

nt
Im

ag
e
C
om

pr
es
sio

n
co
d
ec

co
nfi

gu
re

ca
ll
ee

{s
et
M
od
e(
C
M
od
e)

:B
oo
le
a
n
}

re
tr
ie
ve

ca
ll
ee

{g
et
M
od
e(

):
C
M
od
e}

co
m
pr
es
s

ca
ll
ee

{c
om

p
re
ss

(I
m
a
g
e)
}

{c
om

p
re
ss
ed

(C
I
m
a
g
e)
,

p
ro
g
re
ss

(I
n
te
g
er

)}

Re
co
rd
er

C
om

po
ne

nt
V
id
eo

C
ap

tu
rin

g
cl
ie
n
t

ac
tiv

at
e

ca
ll
er

{s
ta
rt

()
}

de
ac
tiv

at
e

ca
ll
er

{s
to
p
()
}

st
re
am

ca
ll
ee

{n
ex
tF
ra
m
e(
I
n
te
g
er
,I
m
a
g
e)
}

Im
ag

e
C
om

pr
es
sio

n
cl
ie
n
t

co
nfi

gu
re

ca
ll
er

{s
et
M
od
e(
C
M
od
e)

:B
oo
le
a
n
}

re
tr
ie
ve

ca
ll
er

{g
et
M
od
e(

):
C
M
od
e}

co
m
pr
es
s

ca
ll
er

{c
om

p
re
ss
ed

(C
I
m
a
g
e)
,

{c
om

p
re
ss

(I
m
a
g
e)
}

p
ro
g
re
ss

(I
n
te
g
er

)}

Ta
bl
e
9.
1:

T
he

pr
ov
id
ed

an
d
re
qu

ire
d
in
te
rf
ac
es

fo
rt

he
sa
m
pl
ec

om
po

ne
nt
sp

er
se
rv
ic
ea

nd
in
te
ra
ct
io
n
ro
le
,r
es
pe

ct
iv
el
y
(c
f.
D
efi

ni
tio

n
8

an
d
9,

p.
64

).

113

9 Applying Model Transformations

role. This query returns the interaction roles themselves as well as the containing
«interaction» collaborations. This step corresponds to columns 3 and 4 in Table 9.1.

3. For each interaction role, determine the interface used to type this role. Note, that
the «interaction» collaboration represents a template instantiation of an «interaction-
template» collaboration and that the roles of this collaboration are explicitly typed
by interfaces which group a roles provided actions/operations and thus expressing the
“is-destination-of” relation D of an IT (cf. Section 5.2.1, p. 57). A collaboration role
of an interaction model inherits this typing information upon template instantiation.
Hence, we can directly use this type definition as provided interface for this role. This
step corresponds to column 5 in Table 9.1.

4. For each interaction role, determine the interface used to type the complementary
interaction role. Basically, this is the same query as in Step 3 but using the type
definition of the “other” collaboration role of the interaction model as this models
the “is-source-of” relation D of an IT. This “other” role is well defined because an
interaction specifies exactly two roles. This step corresponds to column 6 in Table 9.1.

Figure 9.2 illustrates these steps for the port of the video camera component from Sec-
tion 8.2. The port is connected to the camera role of the video capturing service. For clarity,
only the stream interaction of the service is depicted. Within this interaction, the camera
service role plays the notifier role. The notifier interaction role is not typed, i.e., is has no ac-
tion of which it is a destination of. This results in an empty provided interface (INotifier) for
the camera service role within the stream interaction. The complementary interaction role to
notifier is notifyee which is typed through an instantiation of the ICallable interface template,
offering the nextFrame(. . .) action/operation. In consequence this derived interface, denoted
as INotifyee, becomes a required interface for the camera service role.
Next, the described idea for interface determination is embedded in a complete model

transformation which extracts all provided and required interfaces for a system/component
specification, creating the interface model. The result of this transformation is a model
consisting of a dedicated UML package for each referenced service. In turn, these service
packages contain a number of sub-packages, one for each interaction of a service. The
interaction packages group the interfaces for both interaction roles, defining the provided
actions/operations for each interaction role. Furthermore, the surrounding service package
includes an interface for each service role which is derived from the associated interaction
role interfaces by a UML generalisation association. Finally, these service role interfaces are
linked to the respective component ports as either provided or required interface definition.
Figure 9.3 depicts the resulting interface model of the video recording system, reflecting the
information formally given in Table 9.1 in UML notation.

9.2 Supporting Service Implementation
The interface model is furthermore refined to derive the service PSM. The service PSM
reflects the interface model, and thus the service PIM, in the context of a programming
language. This PSM is basically the same as the interface model but adds necessary in-
formation for the implementation of service components or to execute such components in
specific run-time environments. First of all, the service PSM will apply stronger constraints

114

9.2 Supporting Service Implementation

nextFrame(time:Integer,img:Image)

INotifyee
«interface»

INotifier
«interface»

VideoCapturing
record:

Component/System

camera client
Recorder

«servicecomponent»
VideoCamera

«servicecomponent»

ICallable
«interface»

op()

Notification

notifier notifyee: ICallable
<op()->notify()>

Interaction (Template)

camera

Service

notifier

VideoCapturing

stream:
Notification

clientnotifyee

<notify()->nextFrame(time:Integer,img:Image)>

«serviceuse»

notify()

«interactiontemplate»

«service»

«interactionuse»

«oneway»notify(): Operation

op(): Operation

1

2

3

4a

4b

«bind»

«realize»

Figure 9.2: Determining a port’s interfaces from UML models for the video camera compo-
nent: (1) determine a port’s service role, (2) determine connected interaction
rolesa, (3) extract provided interfaces, and (4) extract required interfaces ((4a):
determine the complementary interaction role; (4b): determine the concrete in-
terface used to type this role).

aNote, the video capturing service is simplified for illustration purposes.

115

9 Applying Model Transformations

«interface»
ICamera

«interface»
IClient

«interface»
INotifyee

nextFrame(. . .)

«interface»
INotifier

compress(. . .)

«interface»
ICallee

compressed(. . .)

«interface»
ICaller

progress(. . .)

«interface»
ICaller

getMode(): . . .

«interface»
ICallee

«interface»
ICaller

setMode(. . .):. . .

«interface»
ICallee

«interface»
ICaller

start(): . . .

«interface»
ICallee

«interface»
ICaller

stop(): . . .

«interface»
ICallee

«interface»
ICodec

«interface»
IClient

VideoCamera
«servicecomponent»

Recorder
«servicecomponent»

JP2KCodec
«servicecomponent»

VideoCapturing

ImageCompression

compressretrieveconfigure

streamactivate deactivate

ImageCompression::ICodec

ImageCompression::IClient

VideoCapturing::IClient

VideoCapturing::ICamera

VideoCapturing::ICamera

VideoCapturing::IClient

ImageCompression::IClient

ImageCompression::ICodec

Figure 9.3: Provided and required interfaces for the video recording system’s components as
UML interface model (operation parameters omitted).

116

9.2 Supporting Service Implementation

«interface»
ICaller

activate
«interface»
ICaller

«interface»
IClient

stream

nextFrame(time:int, img:IImage)

INotifyee
«interface»

Service PSM

(Interface Model)
Service PIM

«interface»
ICaller

activate
«interface»
ICaller

stream

nextFrame(time:Integer, img:Image)

INotifyee
«interface»

«interface»
IClient

IImage
«interface»

VideoCapturing

deactivate

register(impl:IClient)
resolve(c:Criteria):ICamera

ClientHelper
«class»

VideoCapturing

deactivate

Runtime Elements

Type Mappings

Type Mappings

Figure 9.4: Partial service PSM of the video capturing service (reduced to client service role).

to the model elements originating from the programming languages, e.g., forbid multiple in-
heritance. Second, elements from the run-time environment may be added to the model, e.g.,
the use/generation of helper classes for service role registration and discovery. And third, the
message types have to be mapped to primitives or complex constructs of the programming
language. Note, that the concrete handling of message types remains out of scope of this
thesis as it does not affect our proposed design process. Therefore, a detailed discussion
accompanying the sample use case is omitted for this section. However, the interested reader
is referred to Section D.2 in Appendix D on page 163 for a short outline of how message
types are handled within the case study.
The resulting service PSM is then used as input for an M2T transformation. This transfor-

mation emits stub/skeleton code based on the UML model which enables the implementation
of service components (cf. Appendix F on page 171 for the Java interfaces resulting from the
presented example).
Figure 9.4 depicts an excerpt of the service PSM for our video recording system and

how it is related to the interface model. The model shows the client role of the video

117

9 Applying Model Transformations

capturing service and its associated interaction roles. The PSM is for the Java programming
language. As the mapping of UML class diagrams to Java is intuitively, no additional
constraints are applied to the model. The parameter types of the nextFrame(. . .) operation
are mapped to Java types1 and the ClientHelper class is added to the model. This helper
class represents a run-time specific element which provides means to register a client service
role implementation with the run-time environment2. Additionally, the helper is used by
the service developer to query for camera implementations as interaction partner for the
client, based on some (hereby opaque) selection criteria. Note, the depicted service PSM
just exemplifies the necessary model refinement compared to the service PIM. It does not
represent a normative reference for such models or run-time systems as the service PSM
heavily depends on the concrete programming language as well as the run-time environment.
The generated source code will directly reflect the package structure, interfaces, and classes

of the service PSM. The developer implements the appropriate service role interfaces and
uses the mentioned helper classes to interact with the service run-time. As he only uses the
service roles’ interfaces for component implementation, he will not deal with the interaction
roles’ interfaces themselves. Thus, he is not concerned with any details about the realisation
of the underlying interactions.

9.3 Generating Target Adaptors

Orthogonal to implementing the service roles in components, the service’s interactions have
to be realised on concrete target platforms. For illustration, we describe such a target
mapping based for CORBA using the stream interaction of the video capturing service.
First, a target PIM is created. This model describes, how the interactions of a service are

represented on a communication target platform, e.g., CORBA. The target PIM is derived
from the service PIM as depicted in Figure 9.5 based on the rules defined in the target map-
ping specification (illustrated by the arrows). The interaction role interfaces are converted
to technology specific representations. For instance, the INotifyee interface in the stream
package becomes a CORBA interface within a corresponding CORBA module. For every
action bound to an interaction role, we query the underlying communication semantics from
the IT the interaction is derived from. Then, these semantics are matched to primitives
of the target platform, e.g., the nextFrame(. . .) action is marked as asynchronous oneway
action. Hence, it becomes a oneway operation in CORBA. Finally, the action’s message
types are also converted to platform specific elements. Of course, this includes the mapping
of complex message types like Image3. Note, that the target PIM includes only interaction
related elements from the service PIM, i.e., service roles are not considered for the generation
of target adaptors.
The target PIM may represent a direct outcome of the development process if the selected

target platform requires further processing of interaction role interfaces and types by exter-
nal tools. For instance, when continuing our case study, the target PIM is used for an M2T
transformation to generate Interface Description Language (IDL) code which is then com-

1The mapping of the complex type Image to the Java interface IImage is considered opaque for this
example. See Appendix D.2.2 for a more detailed discussion.

2Please see Appendix E on page 167 for more details about the prototypical run-time environment used
for this case study.

3Like for the service PIM/interface model we consider the mapping of complex types opaque.

118

9.3 Generating Target Adaptors

Target PIM

«corbastruct»

Image

stream

nextFrame(time:Integer, img:Image)

INotifyee
«interface»

«interface»
IClient

VideoCapturing

IT Model

«corbamodule»
VideoCapturing

stream
«corbamodule»

CORBA
«corbamodule»

«oneway» nextFrame(time:long, img:Image)

INotifyee
«corbainterface»

Service PIM (Interface Model)

Notification

notifier

VideoCapturing

stream:
Notification

<notify()->nextFrame(time:Integer,img:Image)>

camera clientnotifyee

«interactiontemplate»

«service»

«interactionuse»

«oneway»notify(): Operation

Technology
Constraints/
Annotations

Action Semantics
Match

Interaction Role
Interface Mapping

Query
Action Semantics

Type Mappings

Figure 9.5: Partial target PIM for the video capturing service (reduced to the notifier role
of the stream interacting).

119

9 Applying Model Transformations

stream

nextFrame(time:int, img:IImage)

INotifyee
«interface»

IImage
«interface»

VideoCapturing

«corbastruct»

Image

toJava(corba:Image):IImage
toCORBA(java:IImage):Image

«class»
ImageFactory

«interface»
IClient

Service PSM

Target PSM

Target PIM

«corbamodule»
VideoCapturing

stream
«corbamodule»

CORBA
«corbamodule»

«oneway» nextFrame(time:long, img:Image)

INotifyee
«corbainterface»

VideoCapturing

stream

CORBA

«use»
NotifyeeAdaptor

Adaptor

«class»

«abstract»
Elements
Runtime

Complex Type
Factory

Implementation
Interaction Role

Figure 9.6: Partial target PSM for the video capturing service (simplified and reduced to the
notifier role of the stream interacting).

piled by an IDL compiler to create CORBA compliant stub/skeleton code for Java (again,
cf. Appendix F on page 171 for the Java/CORBA interfaces resulting from the presented
example).
The next step forward to generating deployable target adaptors is to refine the PIM to

derive the target PSM. Figure 9.6 shows the target PSM for the PIM in Figure 9.5. The tar-
get PSM merges the target technology details of the target PSM with knowledge about how
an interaction is mapped to a programming language for service implementation. Hence, it
closes the gap between communication technology independent service components and tar-
get platform specific realisations. As depicted in Figure 9.6, the NotifyeeAdaptor implements
both interaction role interfaces: the one referenced by the service role and the one used for
the CORBA mapping. The adaptor mediates between both worlds and is thus responsible
for message type conversions, illustrated by the ImageFactory class, and to ensure interaction
semantics. The latter refers to the fact, that, like in the given example, the nextFrame(. . .)

120

9.4 Summary

action represents a synchronous operation in Java but is an asynchronous one as defined
by the underlying IT. If the underlying middleware, like CORBA, detaches the operation
call itself, the adaptor just needs to forward the call. If the middleware can not detach
the call, e.g., Java RMI, the adaptor is responsible to realise such behaviour in an opaque
manner (cf. Appendix D.1, p. 161). Note, that if the target PIM’s interface definitions di-
rectly match the ones of the service PIM, i.e., they are totally compatible to each other in
terms of action semantics and message types, the target adaptor may be represented by the
target PIM itself, solely extended by the run-time elements. That means, that at run-time,
a possible derived middleware stub from the target PIM is directly connected to the service
role implementation avoiding any further indirection.
Like for a service PSM, the target PSM also contains run-time elements which support

the management of target adaptors, e.g., registration within the run-time environment or
instantiation for use by service components. Please see Appendix E on page 167 for more
details about the prototypical run-time used for this case study.
Finally, we again use an M2T transformation to generate a fully operational implementa-

tion of an adaptor as specified by the target PSM. Eventually, this leads to the automated
creation of a target adaptor which can be used as a deployment artifact upon system speci-
fication.

9.4 Summary
Chapter 9 highlighted the automated parts of the proposed service development process,
roughly partitioned into three categories: First, model analysis to determining the service
components’ required and provided interfaces defined through a service’s interactions.Thereby,
a component’s interface is given by backtracking the component’s applied service role, this
service role’s associated interaction role, and eventually merging the instantiated interfaces
of the interaction roles of the underlying ITs.
The second category of automatisation within the process is the generation of skeleton

code to ease component implementation. This is achieved by setting the components’ inter-
face models into the implementation context, mainly the programming language, by M2M
transformations and applying M2T transformations to create source code.
Finally, the third category concerns the creation of target adaptors, i.e., the grounding of

the service’s interactions to elements of the selected target platform the service components
are deployed to. Therefore, the component interface models are enrich with information of
how the associated interactions are mapped to primitives of the target platform based on
M2M transformations. Again, by also exploiting M2T, eventually individual target adaptors
for all the required and provided interfaces of a component are created to facilitate service
establishment at run-time.

121

9 Applying Model Transformations

122

CHAPTER 10

Conclusions

This chapter summarises the findings of the presented thesis and gives an insight into the pro-
totypical implementation of the proposed service development process. Eventually, potential
fields of future work founding on the achieved results are described.

10.1 Results

Based on the increasing complexity of modern avionics, the associated system design pro-
cesses moved towards MDA based processes [Spi06]. Additionally, the demand for higher
system autonomy features [FHS04, Alb03] requires means to further modularise mission
systems and to define and establish interactions among the systems’ individual compo-
nents [WFF02]. Therefore, the ideas of service-oriented computing are currently adapted
to established, model driven design processes [OWF+07, OFM+07]. Current approaches
for service modelling often rely on fixed sets of interaction primitives which in turn rely
on features of concrete target platforms, e.g., pure message passing or RPC [KPS06]. In
consequence, service modelling is driven by a platform’s interaction capabilities instead of
being determined by a service’s individual communication needs. Hence, on the one hand,
service designers are limited in their choice for modelling communication among service par-
ticipants. On the other hand, the service modelling process strongly focuses on a specific
platform, contradicting the principles of MDA.
This thesis presents a novel model-driven design process for interaction-centric services

which removes the service designer’s limitation on a predefined and closed set of communi-
cation primitives as well as the conceptual binding to a specific platform for service specifi-
cation. The approach strictly separates between aspects of service interaction, the interfaces
thereof reflected in application logic, and the realisation of interactions onto target platforms.
In detail, the thesis provides the following contributions:

An MDA Development Process. The described interaction-centric service modelling pro-
cess strongly orients itself on the principles of MDA enabling simplified adaption of
the process into established, model based development processes.

123

10 Conclusions

A Pattern Language. A pattern language for service interactions was developed supporting
the definition of individual ITs as well as libraries thereof to serve as a base for all
other modelling activities of the described process.
ITs provide means to represent service interaction semantics by first class modelling
entities. An IT captures an interaction pattern in a generic manner, such that it can be
applied to varying communication contexts. ITs are collected in an extensible library
which is exploited for service definition. Along with its structural and behavioural de-
scription, an IT is documented with generic mapping information about how a concrete
interaction in the context of a service is to be realised on a specific target platform.

Formal Models. The presented approach supports the formal description of the development
process’ core concepts, i.e., actions, ITs, interactions, services, and service components.
These formal models serve as a formal grounding to the proposed development process
allowing for unambiguous specification of the individual elements and automated vali-
dation/verification, to be exploited by an encapsulating system development process.

The UP4IS Profile. Based on the formal grounding of the presented process, a UML profile,
referred to as UP4IS, was developed to support graphical IT, interaction, service, and
system modelling with standard UML tools.
ITs are modelled via a combination of UML collaboration templates and sequence
diagrams to explicitly describe a pattern’s communication semantics. Following the
interaction-centric idiom, services emerge from the collaboration of their participants.
Hence, they are also reflected by UML collaborations, composing individual interac-
tions which are derived from ITs via template instantiation. Finally, components and
systems are modelled by component diagrams thereby the individual components are
linked to service roles to be realised by the a component’s ports.

The Generation of Service Adaptors. Driven by automated model transformations and code
generation, the process derives target adaptors to realise service interaction on selected
target platforms and assists the service developer in implementing service components.
Automated M2M and M2T transformations are applied to service models to generate
stub/skeleton code for interactions, facilitating service implementation. A service’s
implementation remains independent of the realisation of the underlying interaction
itself, directly enabling platform independence of services. Complementing service im-
plementation, a service’s interactions have to be realised on concrete target platforms.
This process is driven by mappings of the underlying ITs, based on their individual
interaction semantics. Using such mappings, groundings of a service’s interactions in
form of target adaptors are automatically generated. A service’s platform independent
implementation in combination with the automated realisation of interactions allows
for a simplified replacement of target platforms. Additionally, service interactions
can be mapped individually to different platforms which enables the combination of
complementing technologies for realising distinct interactions within the same service.
Thus, peculiarities of alternative platforms can be exploited by selecting a realisation
platform based on its support for specific interaction semantics.

Figure 10.1 recapitulates the modelling entities of the proposed development process and
their relationships. Following a top down approach, the individual entities represent:

124

10.1 Results

Inter-
action

Message Service System
Actual

Action

Message Type
complies to

complies to

Formal Action

complies to

Interaction Template

Components
is implemented by

Figure 10.1: The relationship between the proposed modelling concepts.

System. A system is the largest modelled entity of process. A system is a run-time con-
figuration which can be executed to solve a specific task. From a specification point
of view, a system is composed out of service components which represent re-usable
fragments of collaborative behaviour and the corresponding target adaptors to ground
service interactions.

Service. A service is the definition of collaborative functionality, established by the inter-
action of its participants, referred to as service roles, implemented by components. A
service connects its roles through interactions.

Interaction. Interactions describe the communication between a pair of service roles which is
necessary to realise the service’s collaborative behaviour. Service interactions comply
to ITs, applying an IT’s interaction pattern to a concrete application context.

Action. An action is the building block for an interaction. It symbolises an atomic block
of communication within the specified conversation of an interaction, e.g., passing a
message from one interaction participant to another. An IT identifies a number of
formal actions which provide means to model generic actions within communication
patterns. When instantiating an IT for an interaction definition, the service designer
substitutes these formal actions by actual ones and thus puts the pattern into the
context of the surrounding service.

Message. A message is used as conceptual container for data transport of actions. An action
specifies types of messages, describing which kind of data can be exchanged with an
action.

The interaction-centric service development process identifies three actors:

The IT Designer. The IT designer represents the expert who identifies and describes service
interaction patterns. He is in charge of maintaining an IT library and contributes
generic mapping rules for ITs to concrete target platforms.

The Service Designer. Next, the service designer specifies services by instantiating ITs from
the library and integrates them into service definitions to model communication be-
tween service participants.

125

10 Conclusions

The System Designer. Eventually, the system designer combines service components, i.e.,
implementations of service roles, with the automatically derived target adaptors for a
service’s interactions to create run-time configurations.

Although all three roles depend on each other, their individual tasks remain separated by
the usage of ITs. For instance, once an IT is modelled, it can already be used by the service
designer although the IT designer is still concerned with creating the IT’s target mapping
specifications.

10.2 Prototype Implementation
The applicability of the proposed development process was demonstrated through the cre-
ation of a basic video recording system. Therefore, an IT library was implemented providing
eight representative interaction patterns, including notifications, synchronous/asynchronous
R/R, and monitorable/abortable derivatives thereof, as well as their target mappings to
CORBA, native Java and Java RMI. Based on this library, two services were developed, i.e.,
the video capturing service and the image compression service. The final video recording
system evolves from the composition of both. Based on this case study, the process’ model
transformations and their relation to the formal models were discussed. The development
process was implemented based on the Eclipse1 framework. The UP4IS profile, the UML
service models, the IT library and the necessary M2M as well as M2T transformations were
realised based on Eclipse’s UML2, OCL2, ATL and M2T frameworks, respectively (cf. Fig-
ure 10.2). As prototype deployment platform for the generated services and their target
adaptors, the Equinox2 run-time was used. For more detailed information about individual
implementation aspects and generation results refer to Appendices C, D, E, and F.

10.3 Future Work
The achievements made in the presented thesis motivate a number of questions to be ad-
dressed by future research:

Automatic Target Platform Selection. Every IT possibly comes with a number of target
mapping specifications determining how a derived interaction is to be realised on a
target platform. In combination with a formal description of a system’s run-time
environment, the applicable target mappings for a service’s interactions can be au-
tomatically determined based on the underlying IT’s semantics and the middleware
support of the deployment platform (cf. [Kur05, GPa+07, TBA04]). Additionally, an
interaction can be annotated with Quality-of-Service (QoS) constraints which would
further govern the selection process (cf. [SOA04]).

Derivation of Service Protocols. The behaviour specifications of service interactions, which
are inherited from the underlying ITs, could be used to derive complete service proto-
cols. For instance, such a merging process yields the possibilities to validate communi-
cation concerning multiple interactions or to generate protocol automata for component

1Please refer to http://www.eclipse.org.
2Please refer to http://www.eclipse.org/equinox.

126

http://www.eclipse.org
http://www.eclipse.org/equinox

10.3 Future Work

Figure 10.2: The prototyped modelling tool.

interfaces. The process of merging behavioural specifications would not be fully auto-
mated as it requires a service designers knowledge about how individual interactions
are inter-weaved (cf. [KCe04, KFJ07, BKB+08]).

Specification of Composite Interaction Patterns. The approach of defining ITs should be
extended to allow the specification of composite ITs. Composite ITs would be derived
from a combination of ITs resulting in a more complex interaction behaviour, but still
represent a generic template (cf. [KH06] and [Bir06]). Like for the derivation of service
protocols, special attention have to be drawn when mixing the individual models of IT
to resolve model conflicts (cf. [CRP08]).

127

10 Conclusions

128

Bibliography

[AAR05] Uwe Aßmann, Mehmet Aksit, and Arend Rensink, editors. Model Driven
Architecture, European MDA Workshops: Foundations and Applications,
MDAFA 2003 and MDAFA 2004, Twente, The Netherlands, June 26-27, 2003
and Linköping, Sweden, June 10-11, 2004, Revised Selected Papers, volume
3599 of Lecture Notes in Computer Science, Berlin, Germany, August 2005.
Springer.

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Laymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,
Ivana Trockovic, and Sanjiva Weerawarana. Business Process Execution Lan-
guage for Web Services (BPEL4WS), May 2003.

[ADvSP04] João Paulo Almeida, Remco Dĳkman, Marten van Sinderen, and Luís Fer-
reira Pires. Platform-Independent Modelling in MDA: Supporting Abstract
Platforms. In Aßmann et al. [AAR05], pages 174–188.

[Alb03] David S. Alberts. Network centric warfare: Curent status and way ahead.
Defence Science, 8(3), September 2003.

[Alc03] Alcatel, Softeam, Thales, TNI-Valiosys, Codagn Technologies Corp. Response
to the MOF 2.0 Query/View/Transformations RFP, August 2003.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University
Press, 1979.

[Alm06] João Paulo Andrade Almeida. Model-Driven Design of Distributed Applica-
tions. PhD thesis, University of Twente, Enschede, The Netherlands, 2006.

[AO06] Jim Amsden and James Odell. UML Profile and Metamodel for Services
(UPMS) – Request For Proposal. Object Management Group (OMG), Need-
ham, MA, USA, September 2006.

[AW05] Daniel Amyot and Alan W. Williams, editors. Proceedings of the 4th Interna-
tional SDL and MSC Workshop (SAM 2004), volume 3319 of Lecture Notes

129

Bibliography

in Computer Science, Ottawa, Canada, January 2005. Springer Berlin/Heidel-
berg.

[AZ04] Rafik Amir and Amir Zeid. A UML profile for service oriented architectures.
In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, pages
192–193, New York, NY, USA, 2004. ACM.

[BCD+06] Manfred Broy, Michelle L. Crane, Jürgen Dingel, Alan Hartman, Berhard
Rumpe, and Bran Selic. 2nd UML 2 Semantics Symposium: Formal Semantics
for UML. In Thomas Kühne, editor, LNCS4364, volume 4364 of Lecture Notes
in Computer Science, pages 318–323, Genoa, Italy, October 2006. Springer
Berlin/Heidelberg.

[BCG+05] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Motahari
Nezhad, and Farouk Toumani. Developing Apadaters for Web Services In-
tegration. In Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen, editors,
LNCS3520, volume 3520 of Lecture Notes in Computer Science, pages 415–429,
Porto, Portugal, May 2005. Springer Berlin/Heidelberg.

[BCT04a] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and Man-
agement of Web Service Protocols. In Paolo Atzeni, Wesley Chu, Hongjun
Lu, Shuigeng Zhou, and Tok Wang Ling, editors, LNCS3288, volume 3288 of
Lecture Notes in Computer Science, pages 524–541, Shanghai, China, January
2004. Springer Berlin/Heidelberg.

[BCT04b] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Web Service Conver-
sation Modeling: A Cornerstone for E-Business Automation. IEEE Internet
Computing, 8(1):46–54, 2004.

[BDJ+03] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Ed-
dine Rougui. First Experiments with the ATL model transformation language:
Transforming XSLT into XQuery. In Proceedings of the 2003 OOPSLA Work-
shop on Generative Techniques un the Context of the MDA, New York, NY,
USA, 2003. ACM.

[BdRdSM04] Daniela Berardi, Fabio de Rosa, Luca de Santis, and Massimo Mecella. Finite
State Automata As Conceptual Model For E-Services. Journal of Integrated
Design & Process Science, 8(2):105–121, 2004.

[BDtH05] Alistair Barros, Marlon Dumas, and Arthur H.M. ter Hofstede. Service Interac-
tion Patterns. In Proceedings of the 3rd International Conference on Business
Process Management (BPM 2005), volume 3649 of Lecture Notes in Computer
Science, pages 302–318. Springer, Berlin, Germany, September 2005.

[BF05] Rolv Bræk and Jacqueline Floch. ICT Convergence: Modeling Issues. In
Amyot and Williams [AW05], pages 237–256.

130

Bibliography

[BFGK06] Laura Bocchi, Alessandro Fantechi, László Gönczy, and Nora Koch. Sensoria
– D1.1a: Prototype Language for Service Modelling – Ontology for SOAs pre-
sented through Structural Natural Language. Technical report, LMU Munich,
2006.

[BGJ99] S. Bremer, M. Glinz, and S. Joos. A Classification of Stereotypes for Object-
Oriented Modeling Languages. In Proceedings of the 2nd International Con-
ference on UML, pages 249–264, Fort Collins, CO, USA, 1999.

[Bir06] Sebjørn Sæther Birkeland. A Pattern-Based Approach for the Consistent De-
sign of Interaction Interfaces. Master’s thesis, Norwegian University of Science
and Technology, Department of Telematics, June 2006.

[BKB+08] Olivier Barais, Jacques Klein, Benoit Baudry, Andrew Jackson, and Siobhan
Clarke. Composing Multi-View Aspect Models. In Proceedings of the Sev-
enth IEEE International Conference on Composition-Based Software Systems
(ICCBSS 2008), pages 43–52, Madrid, Spain, February 2008. IEEE.

[BKM07] Manfred Broy, Ingolf H. Krüger, and Michael Meisinger. A formal model
of services. ACM Transactions on Software Engineering and Methodology,
16(1):5, 2007.

[BM98] Jean Bezivin and P.-A. Muller. UML: The Birth and Rise of a Standard
Modeling Notation. In First International Workshop on The Unified Modeling
Notation UML 98, pages 1–8. Springer, Berling, Heidelberg, 1998.

[BMB96] Lionel C. Briand, Sandro Morasca, and Victor R. Basili. Property-Based Soft-
ware Engineering Measurement. IEEE Transactions of Software Engineering,
22(1):68–86, 1996.

[BMRS96] Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad.
Pattern-Oriented Software Architecture: A System of Patterns. Wiley, 1996.

[Boo91] Grady Booch. Object-Oriented Design with Applications. Addison-Wesley
Book Express, Boston, MA, USA, 1991.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2001.

[BS05] Youngjoon Byun and Beverly A. Sanders. A pattern-based development
methodology for communication protocols. In Proceedings of the 2005 ACM
symposium on Applied Computing (SAC05), pages 1524–1528, New York, NY,
USA, 2005. ACM.

[BW05] Lionel Briand and Clay Williams, editors. Proceedings of the 8th Interna-
tional Conference on Model Driven Engineering Languages and Systems, vol-
ume 3713 of Lecture Notes in Computer Science, Berlin, Germany, November
2005. Springer.

131

Bibliography

[Byu03] Youngjoon Byun. Pattern-Based Design and Validation of Communication
Protocols. PhD thesis, University of Florida, Gainesville, FL, USA, 2003.

[CB06] H.N. Castejón and R. Bræk. A collaboration-based approach to service spec-
ification and detection of implied scenarios. In Proceedings of the 2006 inter-
national workshop on Scenarios and state machines: models, algorithms, and
tools, page 43. ACM, 2006.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Snajiva Weer-
awarana. Web Services Description Language (WSDL) 1.1. World Wide Web
Consortion (WeC), March 2001.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In OOPSLAâĂŹ03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, Anaheim, CA, USA, October 2003.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[Cha04] D. Chappell. Enterprise service bus. O’Reilly Media, Inc., 2004.

[COB+08] Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus
Völter, editors. 11th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2008), volume 5301 of Lecture Notes in
Computer Science, Toulouse, France, October 2008. Springer Berlin/Heidel-
berg.

[CRP08] Antonio Cicchetti, Davide Ruscio, and Alfonso Pierantonio. Managing Model
Conflicts in Distributed Development. In Czarnecki et al. [COB+08], pages
311–325.

[DD04] Remco Dĳkman and Marlon Dumas. Service-Oriented Design: A Multi-
Viewpoint Approach. International Journal of Cooperative Information Sys-
tems (ĲCIS), 13(4):337–368, December 2004.

[DMRK05] Martin Deubler, Michael Meisinger, Sabine Rittmann, and Ingolf H. Krüger.
Modeling Crosscutting Services with UML Sequence Diagrams. In Briand and
Williams [BW05], pages 522–536.

[DPW06] Gero Decker, Frank Puhlmann, and Mathias Weske. Formalizing Service In-
teractions. In Proceedings of the 4th International Conference on Business
Process Management (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 414–419. Springer, Berlin, Germany, October 2006.

[DST04] DSTC, IBM, CBOP. MOF Query/View/Transformations. Second Revised
Submission, January 2004.

[EK07] Vina Ermagan and Ingolf H. Krüger. A UML2 Profile for Service Modeling. In
LNCS4735, volume 4735 of Lecture Notes in Computer Science, pages 360–374,
Nashville, USA, October 2007. Springer Berlin/Heidelberg.

132

Bibliography

[Erl05] Thomas Erl. Service-Oriented Architecture – Concepts, Technology, and De-
sign. Professional Technical Reference. Prentice Hall, New Jersey, USA, 2005.

[Esk99] Philip Eskelin. Component Interaction Patterns. In Processings of the 6th
Conference on Pattern Languages of Programm (PLoP 1999), Monticello, IL,
USA, August 1999.

[EWA06] Christian Emig, Jochen Weisser, and Sebastian Abeck. Development of soa-
based software systems - an evolutionary programming approach. In Pro-
ceedings of the Advanced Int’l Conference on Telecommunications and Int’l
Conference on Internet and Web Applications and Services, AICT-ICIW ’06,
pages 182–, Washington, DC, USA, 2006. IEEE Computer Society.

[Fai98] Ted Faison. Interaction Patterns for Communicating Processes. In Proceedings
of the Pattern Languages of Program Conference, Monticello, IL, USA, August
1998.

[FHS04] Michael Freed, Robert Harris, and Michael G. Shafto. Humans vs. Autonomous
Control of UAV Surveillance. In 1st Intelligent Systems Tech. Conf., Chicago,
USA, September 2004.

[FLdM96] Kazi Farooqui, Luigi Logrippo, and Jan de Meet. The ISO Reference Model
for Open Distributed Processing - An Introduction. ISO, February 1996.

[GBPA04] Anastasius Gavras, Mariano Belaunde, Luís Ferreira Pires, and João Paulo A.
Almeida. Towards an MDA-Based Development Methodology. In Flávio
Oquendo, Brian Warboys, and Ronald Morrison, editors, Software Archi-
tecture, volume 3047 of Lecture Notes in Computer Science, pages 230–240,
Berlin, Germany, May 2004. Springer.

[GGKH03] Tracy Gardner, Catherine Griffin, Jana Koehler, and Rainer Hauser. A review
of OMG MOF 2.0 Query / Views / Transformations Submissions and Recom-
mendations towards the final Standard. Technical report, Object Management
Group (OMG), July 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

[Gil62] Arthur Gill. Introduction to the Theory of Finite-state Machines. McGraw-
Hill, New York, NY, USA, 1962.

[GMW08] Christian Gierds, Arjan J. Mooĳ, and Karsten Wolf. Specifying and generating
behavioral service adapter based on transformation rules. Technical report,
Universität Rostock, 2008.

[GPa+07] Marcela Genero, Mario Piattini, Silvia Mara Abrah ao, Emilio Insfrán, José A.
Carsí, and Isidro Ramos. A Controlled Experiment for Selecting Transforma-
tions based on Quality Attributes in the context of MDA. In First Interna-
tional Symposium on Empirical Software Engineering and Measurement, 2007.
ESEM 2007., page 498, September 2007.

133

Bibliography

[Hau05] Østein Haugen. Comparing UML 2.0 Interactions and MSC-2000. In Amyot
and Williams [AW05], pages 65–79.

[HB05] Dominikus Herzberg and Manfred Broy. Modeling layered distributed com-
munication systems. Formal Aspects of Computing, 17(1):1–18, 2005.

[HGM08] Andreas Heil, Martin Gaedke, and Johannes Meinecke. Identifying security
aspects in web-based federations. In IEEE International Conference on Web
Services (ICWS 2008), pages 807–808, Beĳing, China, September 2008.

[HGM09] Andreas Heil, Martin Gaedke, and Johannes Meinecke. Modeling resources in a
service-oriented world. In Hawaii International Conference on System Sciences
(HICSS-42), pages 1–10, Waikoloa, Big Island, Hawaii, USA, January 2009.

[HLT03] Reiko Heckel, Marc Lohmann, and Sebastion Thöne. Towards a UML
Profile for Service-Oriented Architectures. Technical Report TRâĂŞC-
TITâĂŞ03âĂŞ27, Faculty of Computer Science, Electrical Engineering and
Mathematics, University of Paderborn, Paderborn, Germany, 2003.

[IH05] Stefan Ihmor and Wolfram Hardt. Runtime reconfigurable interfaces - the rtr-
ifb approach. International Journal of Embedded Systems (ĲES), 1(5/6/2005),
2005.

[ISO04] ISO/IEC. ISO/IEC 15444 series – Information Technology – JPEG 2000 image
conding system, 2004.

[JAU06] JAUS. Joint architecture for unmanned systems. http://www.jauswg.org,
2006.

[JCC94] Ivar Jacobson, Magnus Christerson, and Larry L. Constantine. The OOSE
method: a use – case-driven approach. Object Development Methods, pages
247–270, 1994.

[Jen90] Kurt Jensen. Coloured Petri Nets: A High Level Language for System De-
sign and Analysis. In Advances in Petri Nets, volume 481 of Lecture Notes
in Computer Science, pages 342–416. Springer, Berlin/Heidelberg, Germany,
1990.

[Joh05] Simon Johnston. UML 2.0 Profile for Software Services. IBM, April 2005.

[KBC04] A. Kalnins, J. Barzdins, and E. Celms. Model transformation language MOLA.
In U. Asmann, editor, Proceedings of Model Driven Architecture: Foundations
and Applications 2004, Linkoping, Sweden, 2004.

[KBW03] Anneke Kleppe, Wim Bast, and Jos B. Warmer. MDA Explained. The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman, Ams-
terdam, The Netherlands, 2003.

[KCe04] Jacques Klein, Benoit Caillaud, and Loïc Hélou et. Merging Scenarios. In
J. Bicarregui, A. Butterfield, and A. Arenas, editors, FMICS 2004, volume
133 of Electronic Notes in Theoretical Computer Science, pages 193–215, Linz,
Austria, May 2004.

134

http://www.jauswg.org

Bibliography

[KFJ07] Jacques Klein, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Multiple
Aspects in Sequence Diagrams. In Awais Rashid and Mehment Aksit, editors,
LNCS4620, volume 4260 of Lecture Notes in Computer Science, pages 167–199,
Berlin/Heidelberg, Germany, November 2007. Springer Berlin/Heidelberg.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specification by Com-
position of Collaborations–An Example. In WI-IATW ’06: Proceedings of the
2006 IEEE/WIC/ACM international conference on Web Intelligence and In-
telligent Agent Technology, pages 129–133, Washington, DC, USA, 2006. IEEE
Computer Society.

[KKM00] Mati Klip, Ulrich Knauer, and Alexander V. Mikhalev. Monoids, Acts and
Categories with Applications to Wreath Products and Graphs: A Handbook for
Students and Researchers, volume 29 of De Gruyter Expositions in Mathemat-
ics. Walter de Gruyter, Berlin, Germany, 2000.

[KKRK06] Gerhard Kramler, Elisabeth Kapsammer, Werner Retschitzegger, and Gerti
Kappel. Towards Using UML 2 for Modellung Web Service Collaboration
Protocols. In Dimitri Konstantas, Jean-Paul Bourrières, Michel Lèonard, and
Nacer Boudjlida, editors, IESA, pages 227–238. Springer London, London,
UK, July 2006.

[KM04] Ingolf H. Krüger and Reena Mathew. Systematic Development and Explo-
ration of Service-Oriented Software Architectures. In WICSA 2004, pages
177–187, Washington, DC, USA, June 2004. IEEE Computer Society.

[KM08] Pierre Kelsen and Qin Ma. A Lightweight Approach for Defining the Formal
Semantics of a Modeling Language. In Czarnecki et al. [COB+08], pages 690–
704.

[KMH+07] Nora Koch, Philip Mayer, Reiko Heckel, László Gönczy, and Carlo Mon-
tangero. Sensoria – D1.4a: UML for Service-Oriented Systems. Technical
report, LMU Munich, Munich, Germany, October 2007.

[KPS06] Raman Kazhamiakin, Marco Pistore, and Luca Santuari. Analysis of commu-
nication models in web service compositions. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, pages 267–276, New York,
NY, USA, 2006. ACM.

[Krü04] Ingolf H. Krüger. Service Specification with MSCs and Roles. In Proceed-
ings of IASTED International Conference on Software Engineering, Insbruck,
Austria, 2004.

[Kur05] Ivan Kurtev. Adaptability of Model Transformations. PhD thesis, University
of Twente, Enschede, The Netherlands, 2005.

[KvdB03] Ivan Kurtev and Klaas van den Berg. A Synthesis-Based Approach to Trans-
formations in an MDA Software Development Process. In Arend Rensink,
editor, MDAFA2003, pages 121–126, Enschede, The Netherlands, June 2003.
University of Twente.

135

Bibliography

[Lar02] Craig Larman. Applying UML and Patterns. Prentice-Hall, Englewood Cliffs,
NJ, USA, 2 edition, 2002.

[LFW+08] Xitong Li, Yushun Fan, Jian Wang, Li Wang, and Feng Jiang. A Pattern-
Based Approach to Development of Service Mediators for Protocol Mediation.
InWICSA ’08: Proceedings of the Seventh Working IEEE/IFIP Conference on
Software Architecture (WICSA 2008), pages 137–146, Washington, DC, USA,
2008. IEEE Computer Society.

[LGW+07] Sergey Likuchev, Adrian Giurca, Gerd Wagner, Dragan Gasevic, and marko
Ribaric. Using UML-based Rules for Web Services Modeling. In 23rd Inter-
national Conference on Data Engineering, pages 290–297, Washington, DC,
USA, 2007. IEEE Computer Society.

[Lin06] Niklas Lindén. Middleware Technologies For Online Games - MoM or RPC.
Blekinge Institute of Technology Student Workshop on Architectures and Re-
search in Middleware (BITSWARM2006), January 2006.

[LJJ05] Zheng Li, Jun Jan, and Yan Jin. Pattern-Based Specification and Validation of
Web Services Interaction Properties. In Boualem Benatallah, Fabio Casati, and
Paolo Traverso, editors, LNCS3826, volume 3826 of Lecture Notes in Computer
Science, pages 73–86, Amsterdam, The Netherlands, November 2005. Springer
Berlin/Heidelberg.

[LPS03] Sea Ling, Iman Poernomo, and Heinz Schmidt. Describing Web Service Archi-
tectures through Design-by-Contract. In Proceedings of the 18th International
Symposium on Computer and Information Sciences (ISCIS 2003), volume 2869
of Lecture Notes in Computer Science, pages 1008–1018, Antalya, Turkey, Oc-
tober 2003. Springer Berlin, Heidelberg.

[LSACM08a] Marcos López-Sanz, César J. Acuna, Carlos E. Cuesta, and Esperanza Mar-
cos. Defining Service-Oriented Software Architecture Models for a MDA-based
Development Process at the PIM level. In WICSA ’08: Proceedings of the
Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA
2008), pages 309–312, Washington, DC, USA, 2008. IEEE Computer Society.

[LSACM08b] Marcos López-Sanz, César J. Acuòa, Carlos E. Cuesta, and Esperanza Marcos.
Modelling of Service-Oriented Architectures with UML. Electronic Notes in
Theoetical Computer Science (ENTCS), 194(4):23–37, 2008.

[MBLN06] Ayman Mahfouz, Leonor Barroca, Robin Laney, and Bashar Nuseibeh. Pat-
terns for service-oriented information exchange requirements. In PLoP ’06:
Proceedings of the 2006 conference on Pattern languages of programs, pages
1–10, New York, NY, USA, 2006. ACM.

[Mei09] Johannes Meinecke. Supporting the Evolution of Federated Systems in Web
Engineering. PhD thesis, Chemnitz University of Technology, Chemnitz, Ger-
many, May 2009.

[Men07] Falko Menge. Enterprise Service Bus. In Proceedings of the Free and Open
Source Software Conference 2007 (FrOSCon 2007), August 2007.

136

Bibliography

[MLM+06] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, and
Rebekah Metz. Reference Model for Service Oriented Architecture 1.0. OASIS,
August 2006.

[MM03] Jishnu Mukerji and Joaquin Miller. Modell Driven Architecture (MDA) Guide
Version 1.0.1. Object Management Group (OMG), Needham, MA, USA, June
2003.

[MORF09] Herwig Moser, Norbert Oswald, Toni Reichelt, and Stefan Förster. Effective
Information Management in Joint Operations based on Semantic Technolo-
gies. In Proceedings of the NATO ROT IST-087 Symposium on Information
Management/Exploitation, Stockholm, Sweden, 2009. NATO RTO.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Infor-
mation and Computation, 100(1):1–40, September 1992.

[MROF08] Herwig Moser, Toni Reichelt, Norbert Oswald, and Stefan Förster. Information
Management for Unmanned Systems: Combining DL-Reasoning with Pub-
lish/Subscribe. In Proceedings of SGAI 2008, Cambridge, UK, 2008. Springer.

[MROF09a] Herwig Moser, Toni Reichelt, Norbert Oswald, and Stefan Förster. Context-
sensitive Plan Execution Language for Adaptive Robot Behaviour. In Proceed-
ings of 29th SGAI International Conference on Artificial Intelligence, pages
233–246, Cambridge, UK, 2009. Springer.

[MROF09b] Herwig Moser, Toni Reichelt, Norbert Oswald, and Stefan Förster. PLEXIL-
DL: Language and Runtime for Context-Aware Robot Behaviour. In Proceed-
ings of FIRA 2009, pages 179–186, Incheon, Korea, 2009.

[NRB+07] M. Nezhad, H. Reza, B. Benatallah, A. Martens, F. Curbera, and F. Casati.
Semi-automated adaptation of service interactions. In Proceedings of the 16th
International Conference on the World Wide Web, page 1002. ACM, 2007.

[NTER06] Jin Nakazawa, Hideyuki Tokuda, W. Keith Edwards, and Umakishore Ra-
machandran. A Bridging Framework for Universal Interoperability in Per-
vasive Systems. In ICDCS ’06: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems, page 3, Washington, DC, USA,
2006. IEEE Computer Society.

[Ö06] Turhan Özgür. The Middleware Challenges for Software Engineering. Blekinge
Institute of Technology Student Workshop on Architectures and Research in
Middleware (BITSWARM2006), January 2006.

[OAS07] OASIS. Business Process Execution Language (BPEL). OASIS, April 2007.

[OFM+07] Norbert Oswald, Stefan Förster, Herwig Moser, Toni Reichelt, and André
Windisch. An Architectural Framework for Cooperative Civil and Military
Mission Scenarios. In Karsten Berns and Tobias Luksch, editors, Autonome
Mobile Systeme 2007, pages 110–113. Springer, 2007.

137

Bibliography

[oI01] ITU-T Telecommunication Standardization Sector of ITU. ITU-T Recommen-
dation Z.120 – Message Sequence Chart (MSC). International Telecommuni-
cation Union (ITU), 2001.

[OMG01] OMG. Model Driven Architecture (MDA). Object Management Group (OMG),
Needham, MA, USA, July 2001.

[OMG02a] OMG. MOF 2.0 Query/View/Transformations Request for Proposal. Techni-
cal report, Object Management Group (OMG), October 2002.

[OMG02b] OMG. UML Profile for CORBA Specification. Object Management Group
(OMG), Needham, MA, USA, April 2002.

[OMG04] OMG. Meatmodel and UML Profile for Java and EJB Specification. Object
Management Group (OMG), Needham, MA, USA, February 2004.

[OMG05a] OMG. A Proposal for an MDA Foundation Model. Object Management Group
(OMG), Needham, MA, USA, April 2005.

[OMG05b] OMG. MOF QVT Final Adopted Specification. Object Management Group
(OMG), Needham, MA, USA, November 2005.

[OMG06] OMG. Meta Object Facility (MOF) Core Specification v2.0. Object Manage-
ment Group (OMG), Needham, MA, USA, January 2006.

[OMG07a] OMG. MOF Models to Text Transformation Language. Object Management
Group (OMG), Needham, MA, USA, August 2007.

[OMG07b] OMG. OMG Unified Modeling Language (OMG UML) – Object Constraint
Language (OCL) v2.1.2. Object Management Group (OMG), Needham, MA,
USA, November 2007.

[OMG08a] OMG. Common Object Request Broker Architecture (CORBA) Specification,
Version 3.1 – CORBA Interfaces. Object Management Group (OMG), Need-
ham, MA, USA, January 2008.

[OMG08b] OMG. Common Object Request Broker Architecture (CORBA) Specification,
Version 3.1 – CORBA Interoperability. Object Management Group (OMG),
Needham, MA, USA, January 2008.

[OMG09a] OMG. OMG Unified Modeling Language (OMG UML) – Infrastructure v2.2.
Object Management Group (OMG), Needham, MA, USA, February 2009.

[OMG09b] OMG. OMG Unified Modeling Language (OMG UML) – Superstructure v2.2.
Object Management Group (OMG), Needham, MA, USA, February 2009.

[OMG11] OMG. Business Process Model and Notation (BPMN). Object Management
Group (OMG), Needham, MA, USA, January 2011.

[OSG11] OSGi Alliance. OSGi Service Platform Core Specification – Release 4, Version
4.3, April 2011.

138

Bibliography

[OWF+07] Norbert Oswald, André Windisch, Stefan Förster, Herwig Moser, and Toni
Reichelt. A Service-oriented Framework for Manned and Unmanned Systems
to support Network-centric Operations. In Proceedings of the Fourth Interna-
tional Conference on Informatics in Control, Automation and Robotics, pages
284–291, Angers, France, May 2007. Institute for Systems and Technologies of
Information, Control and Communication (INSTICC), INSTICC Press.

[Pap03] Mike P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics
and Directions. In WISE ’03: Proceedings of the Fourth International Confer-
ence on Web Information Systems Engineering, pages 3–12, Washington, DC,
USA, 2003. IEEE Computer Society.

[Pat04] O. Patrascoiu. YATL: Yet Another Transformation Language. In M. van
Sinderen and L. Pires, editors, Proceedings of the 1st European MDA Workshop
on Industrial Applications (MDA-IA), Enschede, The Netherlands, 2004.

[PB03] Rachel A. Pottinger and Philip A. Bernstein. Merging models based on given
correspondences. In VLDB ’2003: Proceedings of the 29th international con-
ference on Very large data bases, pages 862–873. VLDB Endowment, 2003.

[PCS07] Linh Duy Pham, Alan Colman, and Jean-Guy Schneider. Dynamic Protocol
Aggregation and Adaptation for Service-Oriented Computing. In ASWEC ’07:
Proceedings of the 2007 Australian Software Engineering Conference, pages
39–48, Washington, DC, USA, 2007. IEEE Computer Society.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[PRFS07] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and Heinz W.
Schmidt. A Formal Model of Service-Oriented Design Structure. In Pro-
ceedings of the 18th Australian Conference on Software Engineering (ASWEC
2007, pages 71–80, Melbourne, Victoria, Australia, April 2007.

[QVT03] QVT-Partners. Revised submission for MOF 2.0 Query/View/Transforma-
tions RFP, 2003.

[RB95] James R. Rumbaugh and Grady Booch. Unified Method. Rational Software
Corporation, Santa Clara, CA, USA, 1995.

[RBL+90] James R. Rumbaugh, Michael R. Blaha, William Lorensen, Frederick Eddy,
and William Premerlani. Object-Oriented Modeling and Design. Prentice-Hall,
Upper Saddle River, NJ, USA, 1990.

[RF03] Pablo Rossi and George Fernandez. Definition and Validation of Design Met-
rics for Distributed Applications. In Proceedings of the 9th International Sym-
posium on Software Metrics (METRICS ’03), pages 124–133, Washington,
DC, USA, 2003. IEEE Computer Society.

[ROW+07] Toni Reichelt, Norbert Oswald, André Windisch, Stefan Förster, and Herwig
Moser. IP Based Transport Abstraction for Middleware Technologies. In

139

Bibliography

Proceedings of the 3rd International Conference on Networking and Services,
pages 39–43, Athens, Greece, 2007. IEEE Computer Society.

[RQZ07] Chris Rupp, Stefan Queins, and Barbara Zengler. UML 2 glasklar. Carl Hanser
Verlag, Munich, Germany, 3 edition, 2007.

[San07] Richard Torbjørn Sanders. Collaboration, Semantic Interfaces and Service
Goals: a way forward to Service Engineering. PhD thesis, Norwegian Univer-
sity of Science and Technology, Trondheim, Norway, March 2007.

[SHLP05] M.T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. The enterprise
service bus: Making service-oriented architecture real. IBM Systems Journal,
44(4):781–797, 2005.

[SK05] Miroslaw Staron and Ludwik Kuzniarz. Properties of Stereotypes from the
Perpective of Their Role in Designs. In Briand and Williams [BW05], pages
201–216.

[SK06] Miroslaw Staron and Ludwik Kuzniarz. Transformational Stereotypes: A Sup-
port for Transforming UML models. In Nordic Workshop on UML, Grimstadt,
Norway, 2006. Blekinge Institute of Technology.

[SOA04] Arnor Solberg, Jon Oldevik, and Jan Øyvind Aagedal. A Framework for QoS-
Aware Model Transformation, Using a Pattern-Based Approach. In Robert
Meersman and Zahir Tari, editors, OTM Confederated International Confer-
ences 2004, volume 3291 of Lecture Notes in Computer Science, pages 1190–
1207. Springer, Berlin, Germany, October 2004.

[Spi00] Cary R. Spitzer. Digital Avionics Systems. The Blackburn Press, Caldwell,
NJ, USA, 2000.

[Spi06] Cary R. Spitzer. Avionics: Development and Implementation. CRC Press,
Boca Raton, FL, USA, 2006.

[TBA04] Bedir Tekinerdogan, Sevcan Bilir, and Cem Abatlevi. Integrating Platform
Selection Rules in the Model Driven Architecture Approach. In Aßmann et al.
[AAR05], pages 159–173.

[TvS01] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Princi-
ples and Paradigms. Prentice Hall International, 2001.

[V0̈7] Markus Völter. Service, Komponenten, Modelle. In Gernot Starke and
Stefan Tilkov, editors, SOA–Expertenwissen, chapter 25, pages 423–438.
dpunkt.verlag GmbH, 1st edition, 2007.

[VCH10] Matthias Vodel, Mirko Casper, and Wolfram Hardt. Embedded Ambient Net-
working - A New, Lightweight Communication Concept. In Proceedings of the
2010 International Conference on Communications (ICC2010), Cape Town,
South Africa, May 2010.

140

Bibliography

[VCM05] Juan M. Vara, Valeria De Castro, and Esperanza Marcos. WSDL Automatic
Generation from UML MOdels in a MDA Framework. International Journal
of Web Services Practices, 1(1-2):1–12, 2005.

[vdBC01] Just A. van den Broecke and James O. Coplien. Using design patterns to
build a framework for multimedia networking. In Linda Rising, editor, Design
patterns in communications software, pages 259–292, New York, NY, USA,
2001. Cambridge University Press.

[VE10] Matthias Vodel and Wolfram Hardt (Ed.). Funkstandardübergreifende Kom-
munikation in Mobilen Ad Hoc Netzwerken, volume 9 of Wissenschaftliche
Schriftenreihe Eingebettete Selbstorganisierende Systeme. Universitätsverlag
Chemnitz, Juli 2010.

[WFF02] André Windisch, Marco Fischer, and Stefan Förster. A re-use orientated design
methodology for future integrated modular avionics systems. In FAST’02,
pages 147–153, London, UK, October 2002.

[Wil03] E. Willink. UMLX: A graphical transformation language for MDA. In
A Rensink, editor, Proceedings of Model Driven Architecture: Foundations
and Applications 2003, 2003.

[YZCM04] Z. Yang, Z. Zhou, B.H.C. Cheng, and P.K. McKinley. Enabling collaborative
adaptation across legacy components. In ARM ’04: Proceedings of the 3rd
workshop on Adaptive and reflective middleware, pages 277–282, New York,
NY, USA, 2004. ACM.

[ZCCK04] Jia Zhang, Jen-Yao Chung, Carl K. Chang., and Seong W. Kim. WS-Net: A
Petri-net Based Specification Model for Web Services. In Proceedings of the
IEEE International Conference on Web Services (ICWS ’04), pages 420–427,
Washington, DC, USA, 2004. IEEE Computer Society.

[ZDtH+06] Johannes Maria Zaha, Marlon Dumas, Arthur ter Hofstede, Alistair Barros,
and Gero Decker. Service Interaction Modeling: Bridging Global and Lo-
cal Views. In EDOC ’06: Proceedings of the 10th IEEE International En-
terprise Distributed Object Computing Conference, pages 45–55, Washington,
DC, USA, 2006. IEEE Computer Society.

[Zim80] Hubert Zimmermann. OSI Reference Model – The OSI Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communication,
28(4):425–432, April 1980.

141

Bibliography

142

Part IV

Appendices

APPENDIX A

UML Foundations

A.1 Introduction
The Unified Modeling Language (UML) is an standardised, object-oriented modelling lan-
guage providing system architects and software engineers tools for analysing, designing and
implementing software based systems or business processes [OMG09b]. Like MDA, UML is
also hosted by the OMG. The UML is designed to be a human readable, graphical anno-
tation language based on a modelling approach compatible to MDA, representing a Meta-
Model (M2) language. It is important to note, that the UML is neither a formal language
with well defined semantics1 nor represents a complete system design methodology. The
power of this language lies within it’s concrete application to a given problem as well as the
use of appropriate design tools.
The development of the UML was motivated by the demand for a unified notation of object-

oriented systems to enable information exchange between cooperating companies as well as
the academic world. In the early 1990s, there existed various notations and dialects being
used for system modelling. The most prominent examples are theObject Modelling Technique
(OMT) by Rumbaugh [RBL+90], the Object-Oriented Design (OOD) by Booch [Boo91], and
the Object-Oriented Software Engineering (OOSE) approach of Jacobson [JCC94]. After
Rumbaugh and Booch had already merged their approaches to the Unified Method in 1995
[RB95], Jacobson joined both to present a first draft of UML (version 0.9) in 1996 and the
final version 1.0 one year later (cf. Figure A.1). They addressed four goals (cf. [BM98]):

• provide notation concepts supporting several, object-oriented views on the same sys-
tem,

• draw a strong relation between the concepts and the implementation of a system,

• address system maintenance and scalability, and

• allow both, human and machine readability.
1However, there is ongoing research to define formal semantics for current version of UML (2.0),

cf. [BCD+06] and [KM08].

145

A UML Foundations

Unified Modeling Language 0.9, 0.91
Booch, Rumbaugh, Jacobson; 1996

Unified Method 0.8
Booch, Rumbaugh; 1995

OMG Unified Modeling Language 1.0
UML 2 Partners; 1/1997

Unified Modeling Language 1.1
UML 2 Partners; 9/1997

OMG Unified Modeling Language 1.3
UML 2 Partners; 2001

OMG Unified Modeling Language 2.0
UML 2 Partners; 2005

OOD
Booch; 1992

OMT
Rumbaugh, et al.; 1991

OOSE
Jacobson; 1992

OMG Unified Modeling Language 2.1.1
UML 2 Partners; 2007

OMG Unified Modeling Language 2.2
UML 2 Partners; 2009

Copyright Transfer to OMG
XML Metadata Interchange

Object Contraint Language

Consequent Modularisation
Redesign

Figure A.1: The UML and it’s history (based on [RQZ07, p. 14]).

The next major milestones were the integration of the OCL (UML 1.1) , the transfer of copy-
rights to the OMG and definition of a textual representation in form of the XML Metadata
Interchange Format (XMI) (UML 1.3), and finally the release of major version 2.0 (current
minor version 2.2 [OMG09b, OMG09a]), containing an overall redesign and closer alignment
to related OMG standards, e.g., OCL and MOF [OMG09a, p. 14, pp. 209–210].

A.2 The UML Version 2
With the advancement of UML 1.x, the UML was extended by more and more features and
partially competing concepts. Hence, the primary goals for the specification of UML 2 were
an overall cleanup with the elimination of redundant modelling concepts and clear separation
of them, the clarification of diagram semantics, and a tighter integration and consequent
use of other OMG standards, e.g., the exclusive application of OCL to express diagram
constraints. Additional goals addressed specific trends in software design: the integration
of a notion of time for behaviour specifications, thus enabling better support for real-time
applications, and simplifying component oriented system design.
The current specification of UML (version 2.2 from 2009) is split into two parts. The

first part represents the UML infrastructure [OMG09a], describing fundamental language
constructs and their architectural relation among each other. Based on this document,
the second part, the UML superstructure [OMG09b] defines available diagram notations in
conjunction with their semantics. This bi-partitioning leads to a cleaner and more compact
language specification with increased re-use of language concepts. However, the price of the

146

A.3 The Notion of Model in UML

UML 2 redesign is the loss of compatibility to version 1.x, e.g., the elimination or realignment
of diagrams. Furthermore, UML 2 still lacks complete, enforcing semantics. Beside the
possibility of so called presentation options, which allow alternative notations of the same
concepts, the language still contains semantic gaps, referred to as semantic variation points.
For these variation points, UML semantics are either not defined at all, or several options
about the meaning and interpretation of effected concepts are presented.

A.3 The Notion of Model in UML

The notion of model in the UML is given as capturing “a view of a physical system. It is an
abstraction of the physical system, with a certain purpose.” [OMG09b, p. 615]. The purpose
determines what is to be covered by the model and what is left out, being irrelevant to the
model’s context. A model may contain elements of four major categories: types, classifiers,
events, and behaviours [OMG09b, pp. 13–14]. Types, also referred to as data types, describe
model elements which instances are identified only by their values. A classifier describes
individuals, referred to as objects, of a system having a state and being set into relation to
other individuals. An event describes occurrences, i.e., something that happens and which
occurrence will have consequences on the modelled system. Finally, a behaviour describes a
set of executions. Hereby, an execution is defined by a set of rules specifying an algorithm.
It is important to emphasise the difference between objects and models of objects. In UML,
models do not directly contain objects, but objects are subject of models. Hence, models
describe objects, occurrences, and executions with similar properties by abstraction.

A.4 The UML Meta-Model

The UML meta model was designed with the following main goals in mind [OMG09a, p. 11]:
modularity, layering, partitioning, extensibility, and reuse. Modularity of the language spec-
ification is based on the idea of grouping different constructs into packages, i.e., closed
namespaces, and organising features into meta classes. Layering is addressed in two ways.
First, the UML core constructs and thereof derived higher-level constructs are separated
from each other using the package mechanism, and second, the overall modelling process
strongly follows the four layer principle (see Section 3.2.1). Partitioning is supported by the
UML to allow conceptual organisation of constructs of of the same layer, supporting further
separation of concerns. In that sense, UML not only offers a fine grained meta-model library,
being consequently reused for the language specification itself, but also integrates other re-
lated meta-models like MOF. Lastly, extensibility is a major advantage of UML, making the
language adaptable to domain specific needs. Extensibility is discussed in more detail in
Section 4.6.
The UML 2 language specification is decomposed in two orthogonal ways. First, the

language is split vertically into so called language units [OMG09a, p. 2], concerning different
facets of the language. Language units group closely related concepts of the specification
together in just one part, e.g., the language part being used for state machine diagrams forms
one independent language unit. Some language units are even more partitioned into multiple
increments allowing for a finer grained application or usage of specific UML concepts. The
language unit principle results in two advantages for UML specification. First, the individual

147

A UML Foundations

units may be advanced independently of each other. Second, users, as well as tool designers,
can select and focus only on the UML features being relevant for their work.
The second decomposition of UML is provided horizontally, i.e., the layered design of UML

language concepts. Hereby, lower layers contain simpler constructs of language units. To
ensure modelling and tool compatibility, the OMG has defined the compliance levels 0, 1,
2, and 3 [OMG09b, p. 8–9]. A tool supporting compliance level 0 does only support the
core concepts of UML, e.g., Class or Package. In contrast, compliance level 3 comprises
the complete UML language specification including, but not limited to, extended association
classes, collaborations, and templates.

A.5 Diagram Types

Diagram

Structure
Diagram Diagram

Behaviour

Diagram
Class

Composite
Structure
Diagram

Component
Diagram

Deployment
Diagram

Object
Diagram

Package
Diagram

Diagram
Interaction

Communication
Diagram

Interaction
Overview
Diagram

Diagram
Sequence

Timing
Diagram

Diagram
Activity

Diagram
State Machine

Diagram
Use Case

Figure A.2: The UML diagram types.

UML 2 defines 13 diagram types [OMG09b], being split into structural diagrams on the
one hand and behavioural diagrams on the other hand (cf. Figure A.2). The first part of the
UML superstructure specification concerns the Structure. It contains diagrams to be used
to describe the static, structural entities of a system:
Class Diagram. A class diagram reflects the detailed, object-oriented structural design of a

system. It describes individual classes as type definition of object instances. Classes
contain attributes and operations. Furthermore, a class diagram may express relations
between classes through associations.

Component Diagram. A component diagram visualises parts of the fundamental run-time
structure or architecture of the system under design. The main focus lies on components

148

A.5 Diagram Types

as modular, replaceable parts of a system. Therefore, component diagrams support the
specification of the closure of a component, i.e., its interaction with the environment
through required and provided interfaces.

Composite Structure Diagram. A composite structure diagram shows the internal struc-
tures of a classifier, e.g., a class or component, and their relations amongst each other.
A special variant of this diagram is the collaboration diagram showing the different
roles and interplay of system components.

Deployment Diagram. A deployment diagram describes the run-time distribution of soft-
ware components to hardware units of the system.

Object Diagram. An object diagram exemplifies the run-time configuration of a system.
The diagrams represents a snapshot of a running system showing the concrete object
instances and their currently established relations. An object diagram can be seen as
a, possibly partial, instantiation of a class diagram.

Package Diagram. A package diagram groups aspects of a system model together in one
package, i.e., different views on a system. Packages are used for logical structuring of
a system design.

Dynamic aspects, or Behaviour, of systems are addressed by the second part of the UML
superstructure specification through behaviour diagrams.

Communication Diagram. A communication diagram shows interactions between commu-
nicating entities in an abstract manner. The focus lies on the interplay of different
interactions and how interactions are initiated.

Sequence Diagram. A sequence diagram explains the communication between parts or roles
of a system. Based on the concept of message sequences, sequence diagrams are closely
related to MSCs [oI01] (cf. Section 4.4.3).

Interaction Overview Diagram. An interaction overview diagram correlates individual in-
teractions by presenting a more abstract view on the interactions occurring in a sys-
tem. The diagram focuses on the causal ordering of individual interactions. Interaction
overview diagrams can be understood as compositions of sequence diagrams where each
diagram is used as a black box element.

Timing Diagram. A timing diagram shows the state changes of a system, or subsystem, over
time, based on a concrete time scale.

Activity Diagram. An activity diagrams describes work-flows of a system, e.g., by modelling
the behaviour of an operation. An activity diagrams shows how a behaviour is realised.

State Machine Diagram. A state machine diagram allows the modelling of hierarchical fi-
nite state machines.

Use Cases. A use case diagram reflects the analysis of system requirements. A use case
describes a closed application scenario of a system by putting users and system actions
in relation to represent the fulfilment of a specific task of the system.

149

A UML Foundations

150

APPENDIX B

Mathematical Foundations

B.1 Tuples
Given some non-empty set X, a tuple is defined as a finite sequence of elements from X. X
is referred to as domain of the tuple’s elements A tuple of n elements is generally referred to
as n-tuple. For small n, it is common to use special names for tuples, e.g., pair (n = 2), or
triple (n = 3). For a tuple consisting of the elements (x1, . . . , xn), we write xi with 1 ≤ i ≤ n
to refer to the i-th element of the tuple.
An homogeneous n-tuple T over elements from set X is an ordered sequence of n elements

from X. It is denoted as (x1, . . . , xn) ∈ Xn. The cardinality, or length, of an n-tuple is
|T | = n. A homogeneous tuple T = (x1, . . . , xn) with pair-wise disjoint elements is a tuple
which does not contain the same element twice at different positions, i.e.,

∀
1≤i,j≤n

xi = xj ⇒ i = j

In contrast to homogeneous tuples, an heterogeneous n-tuple T is a ordered sequence of
elements from different domains, i.e., T = (x1, . . . , xn) ∈ X1 × . . .×Xn.

B.2 Binary Relations
Given two sets A and B, a binary relation R is defined as a subset of the Cartesian product
of these sets, i.e., R ⊆ A×B. Thus, R is a set of pairs whose first component is an element
of A and second component is an element of B, respectively. Based on [KKM00, p. 3], we
define some properties of binary relations. We say R is left-unique, if every element of B is
in relation to at most one element of A, i.e.:

∀
b∈B

∀
a1,a2∈A

(a1, b) ∈ R ∧ (a2, b) ∈ R⇒ (a1 = a2)

R is right-unique, if every every element of A is in relation to at most one element of B, i.e.:

∀
a∈A

∀
b1,b2∈B

(a, b1) ∈ R ∧ (a, b2) ∈ R⇒ (b1 = b2)

151

B Mathematical Foundations

R is called left-total, if all elements of A are related to at least one element of B, i.e.:

∀
a∈A

∃
b∈B

: (a, b) ∈ R

R is called right-total, if all elements of B are related to at least one element of A, i.e.:

∀
b∈B

∃
a∈A

: (a, b) ∈ R

The complement R of relation R is the set of pairs relating elements of A to elements of B
which are not in relation to each other within R, i.e.:

R = {(a, b)|a ∈ A ∧ b ∈ B ∧ (a, b) /∈ R}

152

APPENDIX C

OCL Formalisation of the UP4IS Stereotype Constraints

This chapter lists the OCL formalisations of the stereotype constraints in the UP4IS UML
profile presented in Chapter 6.

C.1 Action
1. An action has public visibility as an action provides means for external communication

of a component.
context UP4IS :: Action
i n v : self. base_Operation . visibility = # public

2. An action’s parameters have the direction in, out, or return.
context UP4IS :: Action
i n v : self. base_Operation . ownedParameter

-> f o r A l l (p | p. direction = #in or
p. direction = #out or
p. direction = # return)

C.2 ActualAction
No additional constraints.

C.3 FormalAction
1. A formal action defines no parameters or exceptions.

context UP4IS :: FormalAction
i n v : self. base_Operation . ownedParameter -> isEmpty () and

self. base_Operation . raisedException -> isEmpty ()

153

C OCL Formalisation of the UP4IS Stereotype Constraints

2. A formal action does not redefine another operation.
context UP4IS :: FormalAction
i n v : self. base_Operation . redefinedOperation -> isEmpty ()

3. A formal action does not define post, pre, and body conditions.
context UP4IS :: FormalAction
i n v : self. base_Operation . postCondition -> isEmpty () and

self. base_Operation . preCondition -> isEmpty () and
self. base_Operation . bodyCondition -> isEmpty ()

C.4 Interaction
1. An interaction is defined by binding an IT.

context UP4IS :: Interaction
i n v : l e t c : Collaboration = self. base_Collaboration

i n c. templateBinding -> s i z e () = 1 and
l e t it : TemplateableElement = c. templateBinding

-> f i r s t (). signature . template
i n i f it. oc l I sTypeOf (Collaboration) then

not it.oclAsType(Collaboration).
extension_InteractionTemplate .
oclIsUndefined ()

e l s e
f a l s e

end i f

2. For each formal action of the referenced IT exists an actual substitute. This constraint
guarantees left-totalness for an interactions “is-replaced-by” relation A (cf. Defini-
tion 4).

context UP4IS :: Interaction
i n v : l e t c : Collaboration = self. base_Collaboration ,

binding : TemplateBinding = c. templateBinding
-> f i r s t (),

it : TemplateableElement = binding . signature .
template

i n it. ownedTemplateSignature . parameter
-> f o r A l l (p | binding . parameterSubstitution

-> e x i s t s (sub | p = sub. formal))

3. An actual action binds exactly one formal action. This constraints guarantees left-
uniqueness for an interactions “is-replaced-by” relation A (cf. Definition 4).

context UP4IS :: Interaction
i n v : l e t c : Collaboration = self. base_Collaboration ,

binding : TemplateBinding = c. templateBinding
-> f i r s t (),

it : TemplateableElement = binding . signature .
template

154

C.5 InteractionTemplate

i n binding -> c o l l e c t (parameterSubstitution)
-> f o r A l l (s1 , s2 | s1. actual = s2. actual imp l i e s

s1. formal = s2. formal)

4. A formal action is bound by exactly one actual action. This constraints guarantees
right-uniqueness for an interactions “is-replaced-by” relation A (cf. Definition 4).

context UP4IS :: Interaction
i n v : l e t c : Collaboration = self. base_Collaboration ,

binding : TemplateBinding = c. templateBinding
-> f i r s t (),

it : TemplateableElement = binding . signature .
template

i n binding -> c o l l e c t (parameterSubstitution)
-> f o r A l l (s1 , s2 | s1. formal = s2. formal imp l i e s

s1. actual = s2. actual)

5. An interaction is used exactly once for an interaction use as it is uniquely defined for
a concrete service.

context UP4IS :: Interaction
i n v : l e t iuses : Set(CollaborationUse) =

CollaborationUse . a l l I n s t a n c e s ()
-> s e l e c t (i |

not i. extension_InteractionUse .
oclIsUndefined ())

i n iuses -> f o r A l l (i1 , i2 | i1.type = i2.type imp l i e s
i1 = i2)

6. Actual actions of an interaction are compatible to formal actions of the underlying
IT. This constraint is an inherited standard constraint of a UML template parameter
substitution [OMG09b, p. 630] and hence not replicated here. The constraint enforces
an IT’s substitution predicate c (cf. Definition 3).

C.5 InteractionTemplate
1. An interaction template has at least one template parameter.

context UP4IS :: InteractionTemplate
i n v : l e t c : Collaboration = self. base_Collaboration

i n c. isTemplate () and
c. ownedTemplateSignature .parameter ->notEmpty()

2. All template parameters represent formal actions.
context UP4IS :: InteractionTemplate
i n v : l e t s : TemplateSignature = self. base_Collaboration .

ownedTemplateSignature
i n s.parameter -> f o r A l l (p |

i f p. oc l I sTypeOf (Operation) then
not p.oclAsType(Operation).

extension_FormalAction . oclIsUndefined ()

155

C OCL Formalisation of the UP4IS Stereotype Constraints

e l s e
f a l s e

end i f)

3. An interaction template contains exactly two interaction roles having different types.
context UP4IS :: InteractionTemplate
i n v : l e t roles : Set(TypedElement) =

self. base_Collaboration . collaborationRole
i n roles -> s i z e () = 2 and

roles -> f o r A l l (r1 , r2 | r1.type = r2.type imp l i e s
r1 = r2)

4. At least one of the interaction roles is explicitly typed. If an interaction role is typed,
its type is an interface. Note, that the first part of this constraint is enforced by the
previous constraint as not both role types can be undefined at the same time.

context UP4IS :: InteractionTemplate
i n v : l e t roles : Co l l e c t i o n (TypedElement) =

self. base_Collaboration . collaborationRole
i n roles -> f o r A l l (r | not r.type. oclIsUndefined ()

imp l i e s r.type. oc l I sTypeOf (Interface))

5. An interaction role’s interface references only formal actions of the nesting interaction
template as its operations.

context UP4IS :: InteractionTemplate
i n v : l e t it : Collaboration = self. base_Collaboration ,

formal : Set(Operation) = it.
ownedTemplateSignature .
parameter -> asSet (),

types : Set(Interface) = it. collaborationRole
-> c o l l e c t (type)-> asSet ()

i n types -> f o r A l l (t | t. ownedOperation
-> f o r A l l (o | formal -> i n c l u d e s (o)))

6. A formal action is associated to exactly one interaction role via a role’s interface.
This constraint ensures the binding of each formal action to an interaction role as its
destination, as defined by an IT’s “is-destination-of” relation D (cf. Definition 3).

context UP4IS :: InteractionTemplate
i n v : l e t it : Collaboration = self. base_Collaboration ,

formal : Set(Operation) = it.
ownedTemplateSignature .
parameter -> asSet (),

types : Set(Interface) = it. collaborationRole
-> c o l l e c t (type)-> asSet ()

i n formal -> f o r A l l (f | types -> s e l e c t (t |
t. ownedOperation -> i n c l u d e s (f))-> s i z e () = 1)

7. All connectors within an interaction template connect all interaction roles and no other
elements. There exists at least one such connector.

156

C.6 InteractionUse

context UP4IS :: InteractionTemplate
i n v : l e t it : Collaboration = self. base_Collaboration ,

i n it. ownedConnector ->notEmpty() and
it. ownedConnector -> f o r A l l (c |

l e t roles : Co l l e c t i o n (ConnectableElement) =
c.end -> c o l l e c t (role)

i n roles -> i n c l u d e sA l l (it. collaborationRole) and
it. collaborationRole -> i n c l u d e sA l l (roles))

8. A formal action is reflected by a dedicated connector having the same name. There
exist no other connectors.

context UP4IS :: InteractionTemplate
i n v : l e t it : Collaboration = self. base_Collaboration ,

formal : Set(St r i ng) = it. ownedTemplateSignature .
parameter .name,

i n it. ownedConnector -> c o l l e c t (name)
-> f o r A l l (c | formal -> i n c l u d e s (c))

9. An interaction template has a behaviour specification in terms of an associated UML
sequence diagram whose lifelines correspond to the template’s collaboration roles and
the template’s formal actions are reflected by synchronous and asynchronous messages,
transmitted via the collaboration’s connectors.

context UP4IS :: InteractionTemplate
i n v : l e t it : Collaboration = self. base_Collaboration ,

roles : Set(ConnectableElement) =
it. collaborationRole -> asSet (),

connectors : Set(Connector) =
it. ownedConnector -> asSet ()

i n it. ownedBehavior -> e x i s t s (b |
i f b. oc l I sTypeOf (Interaction) then

l e t i : Interaction = b.oclAsType(Interaction)
i n (

l e t lifelines : Set(St r i ng) =
i.lifeline -> c o l l e c t (represents)-> asSet ()

i n lifelines -> i n c l u d e sA l l (roles) and
roles -> i n c l u d e sA l l (lifelines)

) and (
i.message -> f o r A l l (m | connectors

-> i n c l u d e s (m. connector))
)

e l s e
f a l s e

end i f)

C.6 InteractionUse
1. An interaction use must reference a defined interaction.

context UP4IS :: InteractionUse
i n v : l e t i : Collaboration =

157

C OCL Formalisation of the UP4IS Stereotype Constraints

self. base_CollaborationUse .type
i n not i. extension_Interaction . oclIsUndefined ()

2. An interaction use specifies at least one target technology.
context UP4IS :: InteractionUse
i n v : self. realisation ->notEmpty()

3. Every interaction role of the referenced interaction is bound to exactly one service
role. This constraint is an inherited standard constraint of a UML collaboration
use [OMG09b, p. 171] and hence not replicated here.

4. Within an interaction use, an interaction role of the referenced interaction is bound
to a service role by a dedicated role binding. Additionally, both interaction roles are
bound to different service roles.

context UP4IS :: InteractionUse
i n v : l e t b : Co l l e c t i o n (Dependency) =

self. base_CollaborationUse . roleBinding
i n b-> f o r A l l (client -> s i z e ()=1 and supplier -> s i z e ()=1)

and b-> f o r A l l (b1 , b2 |
b1.client -> f i r s t () = b2.client -> f i r s t () imp l i e s
b1.supplier -> f i r s t () = b2.supplier -> f i r s t ())

C.7 OnewayAction
1. A oneway action can only be substituted by actual actions defining only input messages

or no messages at all. For an actual action a the constraint is similar to testing for
Tout(a) = ∅.

context UP4IS :: OnewayAction
i n v : self. getActualActions ()

-> f o r A l l (o | o. ownedParameter
-> f o r A l l (p | p. direction = # i n))

C.8 Service
1. At least two service roles are defined for a service.

context UP4IS :: Service
i n v : l e t s : Collaboration = self. base_Collaboration

i n s. collaborationRole -> s i z e () >= 2

2. Only interaction uses are used as role connectors within a service.
context UP4IS :: Service
i n v : l e t c : Collaboration = self. base_Collaboration

i n c. ownedConnector -> isEmpty () and
c. collaborationUse ->notEmpty() and
c. collaborationUse -> f o r A l l (

not extension_InteractionUse . oclIsUndefined ())

158

C.9 ServiceComponent

3. Interaction uses within a service connect only service roles of the same service and
bind all interaction roles. This constraint is an inherited standard constraint of a UML
collaboration use [OMG09b, p. 171] and not replicated here.

4. Every service role is connected to at least one interaction use within its enclosing
service.

context UP4IS :: Service
i n v : l e t svc : Collaboration = self. base_Collaboration ,

roleBindings : Set(Dependency) =
svc. collaborationRole -> c o l l e c t (roleBinding)
-> f l a t t e n ()-> asSet ()

i n svc. collaborationRole -> f o r A l l (r | roleBindings
-> i n t e r s e c t i o n (r. clientDepenedency)->notEmpty())

C.9 ServiceComponent
1. A service component defines at least one service port.

context UP4IS :: ServiceComponent
i n v : self. base_Component . ownedPort

-> e x i s t s (not extension_ServicePort . oclIsUndefined ())

C.10 ServicePort
1. A service port is bound to exactly one service role via a service use.

context UP4IS :: ServicePort
i n v : bindings : Co l l e c t i o n (Dependency) =

CollaborationUse . a l l I n s t a n c e s ()
-> s e l e c t (not extension_ServiceUse . oclIsUndefined ())
-> c o l l e c t (roleBinding)-> f l a t t e n ()

i n bindings -> s e l e c t (client = self. base_Port)
-> s i z e () = 1

C.11 ServiceUse
1. A service use references a service.

context UP4IS :: ServiceUse
i n v : l e t i : Collaboration = self. base_CollaborationUse .type

i n not i. extension_Service . oclIsUndefined ()

159

C OCL Formalisation of the UP4IS Stereotype Constraints

160

APPENDIX D

Target Mappings

D.1 Handling Synchronous and Asynchronous Actions
The exemplified target mappings in Section 7.1.2 of the presented IT library distinguish
between synchronous and asynchronous actions. While CORBA supports both kinds of
actions, i.e., mapping asynchronous actions to oneway operations (cf. Listing D.1), Java does
solely feature synchronous invocation semantics. Asynchronous actions will be supported
by mapping them to native method calls and providing a delegate object to detach them
explicitly using the executor service of the Java concurrent package (cf. Listing D.2 and D.2).
This delegate is part of the target adaptor and thus is transparent to the service component.

i n t e r f a c e Role {
vo id sync ();
oneway vo id asynch ();

};

Listing D.1: Mapping synchronous sync() and asynchronous async() actions to CORBA.

pub l i c i n t e r f a c e Role {
pub l i c vo id sync ();
pub l i c vo id async ();

}

Listing D.2: Mapping synchronous sync() and an asynchronous async() actions to Java.

161

D Target Mappings

import java.util. concurrent . ScheduledExecutorService ;
import java.util. concurrent . ScheduledThreadPoolExecutor ;

pub l i c c l a s s RoleImpl implements Role {

p r i v a t e Role fDelegate ;

p r i v a t e f i n a l s t a t i c ScheduledExecutorService
fExecutorService = new ScheduledThreadPoolExecutor (10);

...

pub l i c vo id sync () {
fDelegate .sync ();

}

pub l i c vo id async () {
fExecutorService .get (). execute (new Runnable () {

@Override
pub l i c vo id run () {

fDelegate .async ();
}

});
}

}

Listing D.3: The proxy object to detach an asynchronous async() actions in Java.

162

D.2 Message Type Mappings

D.2 Message Type Mappings

For the presented case study, we specified a number of type mappings between UML and
Java and CORBA. As throughout the thesis the described model transformations focus on
the interaction semantics and their resulting component interfaces, the transformation of
an action’s message types to concrete programming languages or target platforms remain
opaque. This gap is addressed in this section. However. the presented type mappings do not
represent a mandatory standard but serve for demonstration purposes only. We distinguish
between primitive types which can easily be converted between different technologies by pure
value copying, and complex types which need further processing upon conversion.

D.2.1 Primitive Message Type Mappings

The examples within this thesis reference a set of primitive data types defined by UML
(cf. [OMG09b, pp. 616-621]). These types are used within UML models for interactions
and services. Table D.1 lists the mappings for these types to data types defined Java and
CORBA IDL.

UML Primitive Type Java/Java RMI Type CORBA IDL Type

Integer int long
String java.lang.String string
Boolean boolean boolean

Table D.1: Mapping primitive message types.

D.2.2 Complex Message Type Mappings

Unfortunately, there is no “standard” way of modelling complex data types with UML,
e.g., structures, unions, arrays, or recursive ones like lists and trees. Hence, there is also no
default mapping for such data types to programming languages or middleware concepts. This
section presents proposals of how to model some of such data types in UML and how they
are converted to concepts of Java (including Java RMI) and CORBA as these technologies
are used within the presented thesis.

Homogeneous Composite Data Types

Homogeneous composite data types represent collections of a fixed number of indexed ele-
ments of a common data type. For example, arrays are a typical representative of this class
of data types.

UML. In UML, arrays can be expressed by defining a uniform lower and upper multiplicity
for attribute/parameter types within classifiers or operations, respectively [OMG09b, pp. 49,
103, 120, and 136].

Java/Java RMI. Java directly supports the concept of arrays. For Java RMI, a proper
serialisation strategy has to be provided for the underlying data type of the arrays elements.

163

D Target Mappings

For primitive types and data types which are derived from generic types of the Java standard
library, there exist default serialisation algorithms.

CORBA. Like Java, CORBA defines a standard data type for arrays including respective
marshalling strategies [OMG08a, p. 245].

Heterogeneous Composite Data Types

Heterogeneous composite data types are data types which are composed of a fixed set of
named elements with possibly pairwise varying data types. One distinguishes between data
types containing all defined sub-elements at the same time, referred to as structures, or data
types which contain only one element out of the defined elements at a time, referred to as
unions.

UML. In UML, structures can be modelled by classes [OMG09b, p. 49]. The structure’s
elements are then modelled as public class attributes. Such attributes must be the only owned
elements of a class. Thus, the class can not define any additional elements like operations.
For unions, a discriminant must be modelled explicitly to distinguish the current stored value
type.

Java/Java RMI. In Java, a structure is typically mapped as two distinct parts: an interface
which defines accessor methods (get/set) for each element of the structure, and a class which
implements this interfaces. Thus, by generally programming against the interface and only
referring to the class when one needs to get an instance for such an interface, the source
code becomes robust against changes in the underlying implementation/representation of
the mapped structure. Again, if non-standard types are used for elements, special care
needs to be taken into account to ensure serialisability of the data type. Like in UML, a
discriminant must be added for unions to explicitly distinguish the current stored value type.

CORBA. CORBA defines native struct and union data types and their respective mar-
shalling [OMG08a, pp. 241–242].

Recursive Data Types

Recursive data types are data types which contain elements of their own type. Common
examples are lists and trees. The main consequence when handling such data types is, that
one has no a priori knowledge about the size or length of “values”/instances of such data
types.

UML. In UML, recursive references are either modelled as class attributes having the
type of the contained class, or by explicitly using an association relation to the class it-
self [OMG09b, p. 38].

Java/Java RMI. In Java, one can either use generic data types from the Java standard
library, e.g., Lists, or define one’s own type in the same manner as defining structures in
Java, reusing the structures type for its elements.

164

D.2 Message Type Mappings

CORBA. For CORBA, one must distinguish between lists and other recursive structures.
For lists, one can use the predefined Sequence data type [OMG08a, p. 245]. For other
recursive data types one defines a structure containing elements of the surrounding structures
type.

Consequences of Complex Message Types

In UML, the modelling of complex data types is primarily given by a “well-defined” usage of
classes in class diagrams. Hence, one should define an appropriate UML profile which offers
special constraining stereotypes (cf. Section 4.6) to enforce such well formedness on the one
hand, and to make the class’ semantics as data type visually explicit.
Furthermore, in contrast to primitive data types, complex data types need special han-

dling when being converted from one representation/technology to another. This is because
of varying concepts of how complex types are expressed by primitive elements of the under-
lying technologies. Furthermore, in the context of communicating systems, the marshalling,
i.e., the serialisation of instances (values) of data types, plays an important role. Thereby,
different technologies apply different marshalling strategies that are commonly implemented
as part of the data type representation itself. Hence, when crossing technology boundaries
in distributed systems, data values have to be translated between different representations.
Within our presented service modelling approach, it is the task of the target adaptors (cf. Sec-
tion 5.1.5) to handle such type conversions if necessary.

165

D Target Mappings

166

APPENDIX E

Run-time Framework

E.1 The Open Services Gateway Initiative

The Open Services Gateway Initiative (OSGi)1 alliance is an vendor independent consortium
which defines and promotes a universal middleware for a “dynamic module system for Java”,
referred to as OSGi Service Platform. If not mentioned otherwise, we just use OSGi for short
when referencing the OSGi Service Platform. OSGi defines a flexible execution environment
for Java based software components which offer or consume functionality/resources to or from
other components. The OSGi framework itself is only described by a set of Java interfaces
which provide a public API to access its core services, currently in release 4 [OSG11]. The
OSGi alliance does not provide an own implementation of these interfaces. Instead, there
exist a number of OSGi compliant commercial and open source products, e.g., IBM’s Service
Management Framework2, KnopflerFish3, and the Eclipse Foundation’s Equinox4 which is
used for our case studies. It is guaranteed, that OSGi compliant software components run
on each of these platforms without modifications.
Figure E.1 depicts the overall system architecture defined through OSGi. As already in-

dicated, the framework is based on a Java virtual machine as back-end. On the front end,
it provides means to manage software components, referred to as bundles. OSGi defines a
number of standard bundles which offer functionality which is typically required by a ma-
jority of software systems. For instance, the logger bundle is such a component. A bundle is
physically represented in the form of a Java Archive (JAR) file which is loaded by OSGi. A
bundle can offer functionality to or may require functionality from other bundles. The result-
ing dependencies between bundles are automatically resolved by the underlying framework.
Furthermore, a bundle can be dynamically loaded, started, stopped, and unloaded during
run-time. Of course, if one bundle depends on a bundle which is stopped, the dependent
bundle will be stopped as well.

1http://www.osgi.org.
2http://www-306.ibm.com/software/wireless/smf
3http://www.knopflerfish.org
4http://www.eclipse.org/equinox

167

http://www.osgi.org
http://www-306.ibm.com/software/wireless/smf
http://www.knopflerfish.org
http://www.eclipse.org/equinox

E Run-time Framework

.

Log

Bundle
2

Bundle
1

Bundle
N

OSGi Framework

Java Virtual Machine

Operating System

Hardware

Figure E.1: The OSGi architecture.

E.2 Service Components and Target Adaptors
We base our prototyping system for the presented case studies on the dynamic run-time
features and packaging concepts of OSGi. Therefore, all deployable system artifacts which are
manual or automatic outcomes of the presented service development process are encapsulated
in OSGi bundles. We distinguish between three kinds of bundles:

• Service Components,

• Target Adaptors, and

• Service Management.

Service components are implementations of service roles as specified by component models
as part of service PIMs. A service component is registered at the service management bundle
with its provided service roles and, for each of these roles, its bound interaction roles.
Target adaptors represent realisations of service interaction on concrete target platforms,

e.g., Java RMI or CORBA. All necessary middleware elements and the adaptor classes
themselves are wrapped in a target adaptor bundle, one for each interaction role - target
platform pair. The bundle registers the implemented interaction role and the references
target technology at the service management.
The service management bundle provides the run-time elements necessary to register and

resolve service/interaction role implementations. It represents the infrastructure for our
Service Oriented Architecture (SOA) environment. Upon registration of service and target
adaptor bundles, it automatically connects service roles to their required interaction role
implementations and registers the resulting endpoints with the service registry. Upon service
role resolution, which is requested by a service component, it queries the registry for valid
endpoints of the complementary interaction roles and establishes communication links if both
interaction roles are realised on compatible platforms.
Figure E.2 depicts a sample system configuration for the video recording system. The

system is split into two independent sub-systems. The one in (a) hosts only the camera
service component and its three target adaptors. Thereby, the all interactions are realised
with Java RMI technology. Hence, they can be accessed from a remote platform. Note,
that in the given example, the video image stream interaction is also mapped to CORBA,

168

E.2 Service Components and Target Adaptors

Log

M
anagem

ent

VideoCam
era

activate
ICallee

/
Java

RM
I

deactivate
ICallee

/
Java

RM
I

stream
INotifier/

Java
RM

I

stream
INotifier/

CO
RBA

OSGi Framework

(a) The camera system.

Log

M
anagem

ent

Recorder

activate
ICallee

/
Java

RM
I

deactivate
ICallee

/
Java

RM
I

stream
INotifier/

CO
RBA

configure
ICaller/

Java

retrieve
ICaller/

Java

com
press

ICaller/
Java

JP2K
Com

pressor

configure
ICallee

/
Java

retrieve
ICallee

/
Java

com
press

ICallee
/
Java

OSGi Framework

(b) The combined recorder compressor system.

Figure E.2: An exemplified deployment configuration for the video recording system based
on OSGi (OSGi components light gray, service management/components white,
and target adaptors dark gray).

which makes it accessible via two different communication paths using varying platforms.
The second sub-system hosts the rest of the video recording system, i.e., the recorder and
the JP2K compressor service components. The recorder interacts with the camera on the
remote system via Java RMI for camera control and via CORBA for image reception. As the
JP2K compressor component is local with respect to the recorder component, both compo-
nents communicate directly via native Java adaptors avoiding indirection due to additional
middleware components.
Figure E.3 depicts the prototyped run-time monitoring tool which supports for investiga-

tion of registered services, components and target adaptors.

169

E Run-time Framework

Figure E.3: The prototyped run-time monitoring tool.

170

APPENDIX F

Service/Interaction Role Interface Mappings

F.1 Video Capturing Service

F.1.1 Java Mappings

package videocapturing . activate ;

pub l i c i n t e r f a c e ICaller {
// empty

}

pub l i c i n t e r f a c e ICallee {
pub l i c boolean start ();

}

Listing F.1: Interaction role Java interfaces for activate.

package videocapturing . deactivate ;

pub l i c i n t e r f a c e ICaller {
// empty

}

pub l i c i n t e r f a c e ICallee {
pub l i c boolean stop ();

}

Listing F.2: Interaction role Java interfaces for deactivate.

171

F Service/Interaction Role Interface Mappings

package videocapturing . stream ;

pub l i c i n t e r f a c e INotifier {
// empty

}

pub l i c i n t e r f a c e INotifyee {
pub l i c vo id nextFrame (f i n a l i n t time , f i n a l IImage img);

}

Listing F.3: Interaction Java role interfaces for stream.

package videocapturing ;

pub l i c i n t e r f a c e IClient extends
videocapturing . activate .ICaller ,
videocapturing . deactivate .ICaller ,
videocapturing . stream . INotifyee {

// empty
}

pub l i c i n t e r f a c e ICamera {
videocapturing . activate .ICallee ,
videocapturing . deactivate .ICallee ,
videocapturing . stream . INotifier {

// empty
}

Listing F.4: Service role Java interfaces for video capturing.

F.1.2 CORBA Mappings

module videocapturing {
module activate {

i n t e r f a c e ICaller {
// empty

}

i n t e r f a c e ICallee {
bool start ();

}

}; // activate
}; // videocapturing

Listing F.5: Interaction role CORBA interfaces for activate.

module videocapturing {
module deactivate {

172

F.2 Image Compression Service

i n t e r f a c e ICaller {
// empty

}

i n t e r f a c e ICallee {
bool stop ();

}

}; // deactivate
}; // videocapturing

Listing F.6: Interaction role CORBA interfaces for deactivate.

module videocapturing {
module stream {

i n t e r f a c e INotifier {
// empty

}

i n t e r f a c e INotifyee {
oneway vo id nextFrame (i n long time , i n IImage img);

}

}; // stream
}; // videocapturing

Listing F.7: Interaction CORBA role interfaces for stream.

F.2 Image Compression Service

F.2.1 Java Mappings

package imagecompression . configure ;

pub l i c i n t e r f a c e ICaller {
// empty

}

pub l i c i n t e r f a c e ICallee {
pub l i c boolean setMode (f i n a l CMode mode);

}

Listing F.8: Interaction role Java interfaces for configure.

package imagecompression . retrieve ;

pub l i c i n t e r f a c e ICaller {
// empty

}

173

F Service/Interaction Role Interface Mappings

pub l i c i n t e r f a c e ICallee {
pub l i c CMode getMode ();

}

Listing F.9: Interaction role Java interfaces for retrieve.

package imagecompression . compress ;

pub l i c i n t e r f a c e ICaller {
pub l i c vo id compressed (f i n a l CImage img);
pub l i c vo id progress (f i n a l i n t progress);

}

pub l i c i n t e r f a c e ICallee {
pub l i c vo id compress (f i n a l IImage img);

}

Listing F.10: Interaction Java role interfaces for compress.

package imagecompression ;

pub l i c i n t e r f a c e IClient extends
imagecompression . configure .ICaller ,
imagecompression . retrieve .ICaller ,
imagecompression . compress . ICaller {

// empty
}

pub l i c i n t e r f a c e ICamera {
imagecompression . configure .ICallee ,
imagecompression . retrieve .ICallee ,
imagecompression . compress . ICallee {

// empty
}

Listing F.11: Service role Java interfaces for image compresssion.

174

F.2 Image Compression Service

F.2.2 CORBA Mappings

module imagecompression {
module configure {

i n t e r f a c e ICaller {
// empty

}

i n t e r f a c e ICallee {
bool setMode (i n CMode mode);

}

}; // configure
}; // imagecompression

Listing F.12: Interaction role CORBA interfaces for configure.

module imagecompression {
module retrieve {

i n t e r f a c e ICaller {
// empty

}

i n t e r f a c e ICallee {
CMode getMode ();

}

}; // retrieve
}; // imagecompression

Listing F.13: Interaction role CORBA interfaces for retrieve.

module imagecompression {
module compress {

i n t e r f a c e ICaller {
oneway vo id compressed (i n CImage img);
oneway vo id progress (i n long progress);

}

i n t e r f a c e ICallee {
oneway vo id compress (i n CImage img);

}

}; // compress
}; // imagecompression

Listing F.14: Interaction CORBA role interfaces for compress.

175

F Service/Interaction Role Interface Mappings

176

APPENDIX G

Theses

1. Service-orientated design and model-driven development principles can help to reduce
design complexities within the development of mission critical embedded systems such
as avionics.

2. Services are primary characterised by the interactions occurring between service par-
ticipants upon service establishment.

3. Current approaches for combining service-orientation and model-driven development in
system design processes typically restrict service interaction to fixed sets of primitives
which are tightly coupled to specific target platforms.

4. Restricting the set of service interaction patterns within the development process re-
duces platform independence of service specifications.

5. Service interactions can be described independent from the target platforms they are
to be realised on.

6. Concrete interactions within services can be generalised to sets of formal Interaction
Templates which capture the specific characteristics of the underlying interaction se-
mantics of service interactions in a generic manner.

7. Within an model-driven service development process, Interaction Templates serve as
building blocks for service specifications via template instantiation and composition.

8. Required Interaction Templates may not be defined in advance to service modelling but
can be specified on demand by the same process used to specify services themselves.

9. Using Interaction Templates for service modelling increases platform independence of
service specifications.

10. Grounding concrete service interactions which are derived from Interaction Templates
on target platforms is a fully automatable process.

177

G Theses

11. For the automatic grounding of concrete service interactions on target platforms it is
sufficient to provide generic mapping rules operating on the interactions’ underlying In-
teraction Templates, unaffected by the concrete context of the templates’ instantiations
in services.

12. Modelling services based on Interaction Templates is an MDA conforming process
which can be implemented through standard UML concepts and tools.

178

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Acronyms
	Introduction
	Motivation and Application Context
	Problem Description
	Solution Requirements and Contributions
	Outline

	Foundations
	Related Work
	Modelling Service Oriented Systems
	Formal Frameworks
	Architectural Frameworks
	Modelling Services with UML
	Discussion

	Service Interactions
	Interaction Patterns
	Catalogues for Service Interaction
	Modelling Service Interactions
	Service Adaptors
	Discussion

	Discussion

	Model Driven Architecture
	Methodology
	The Model in the Model Driven Architecture
	The Modelling Hierarchy
	Platform Independence of Models

	Model Transformations
	Source and Target Models
	Transformation Strategies
	Transformation Languages

	The Unified Modeling Language
	Component Diagram
	Description
	Visualisation

	Composite Structure Diagram
	Description
	Visualisation

	Collaboration Diagram
	Description
	Visualisation

	Sequence Diagrams
	Description
	Visualisation
	Relation to Message Sequence Charts

	Templates
	Extending the UML

	Modelling Interaction-Centric Services
	The Modelling Framework
	The Interaction-Centric Service Development Process
	Service Specification
	System Specification
	Interaction Template Specification
	Target Mapping Specification
	Target Adaptor Generation

	The First Class Modelling Entities of the Development Process
	Interaction Templates
	Interactions
	Services
	Components

	Summary

	A UML Profile for Service Modelling
	The UP4IS Meta-Model
	Actions
	Interaction Templates and Interactions
	Services, Ports and Components

	The UP4IS Stereotypes
	Action
	ActualAction
	FormalAction
	Interaction
	InteractionTemplate
	InteractionUse
	OnewayAction
	Service
	ServiceComponent
	ServicePort
	ServiceUse

	Summary

	Case Study
	Defining an Interaction Template Library
	Motivating the IT Library
	Documenting ITs
	Specifying Target Mappings

	The IT Library
	Synchronous Request/Response
	Notification
	Notification with Push-Monitor
	Notification with Pull-Monitor
	Asynchronous Request/Response
	Asynchronous Request/Response with Push-Monitor
	Asynchronous Request/Response with Pull-Monitor
	Abortable Asynchronous Request/Response

	Summary

	Defining Services and Systems
	Example Services
	The Video Capturing Service
	The Image Compression Service

	The Video Recording System
	Summary

	Applying Model Transformations
	Component Interfaces
	Supporting Service Implementation
	Generating Target Adaptors
	Summary

	Conclusions
	Results
	Prototype Implementation
	Future Work

	Bibliography
	Appendices
	UML Foundations
	Introduction
	The UML Version 2
	The Notion of Model in UML
	The UML Meta-Model
	Diagram Types

	Mathematical Foundations
	Tuples
	Binary Relations

	OCL Formalisation of the UP4IS Stereotype Constraints
	Action
	ActualAction
	FormalAction
	Interaction
	InteractionTemplate
	InteractionUse
	OnewayAction
	Service
	ServiceComponent
	ServicePort
	ServiceUse

	Target Mappings
	Handling Synchronous and Asynchronous Actions
	Message Type Mappings
	Primitive Message Type Mappings
	Complex Message Type Mappings

	Run-time Framework
	The Open Services Gateway Initiative
	Service Components and Target Adaptors

	Service/Interaction Role Interface Mappings
	Video Capturing Service
	Java Mappings
	CORBA Mappings

	Image Compression Service
	Java Mappings
	CORBA Mappings

	Theses

