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A Generic Approach to Component-Level Evaluation in Information Retrieval

Research in information retrieval deals with the theories and models that constitute the foundations for 
any kind of service that provides access or pointers to particular elements of a collection of documents 
in response to a submitted information need. The specifi c fi eld of information retrieval evaluation is 
concerned with the critical assessment of the quality of search systems. Empirical evaluation based on 
the Cranfi eld paradigm using a specifi c collection of test queries in combination with relevance assess-
ments in a laboratory environment is the classic approach to compare the impact of retrieval systems 
and their underlying models on retrieval effectiveness.

In the past two decades international campaigns, like the Text Retrieval Conference, have led to huge 
advances in the design of experimental information retrieval evaluations. But in general the focus 
of this system-driven paradigm remained on the comparison of system results, i.e. retrieval systems 
are treated as black boxes. This approach to the evaluation of retrieval system has been criticised for 
treating systems as black boxes. Recent works on this subject have proposed the study of the system 
confi gurations and their individual components. This thesis proposes a generic approach to the evalu-
ation of retrieval systems at the component-level.

The focus of the thesis at hand is on the key components that are needed to address typical ad-hoc 
search tasks, like fi nding books on a particular topic in a large set of library records. A central approach 
in this work is the further development of the Xtrieval framework by the integration of widely-used IR 
toolkits in order to eliminate the limitations of individual tools. Strong empirical results at international 
campaigns that provided various types of evaluation tasks confi rm both the validity of this approach 
and the fl exibility of the Xtrieval framework.

Modern information retrieval systems contain various components that are important for solving parti-
cular subtasks of the retrieval process. This thesis illustrates the detailed analysis of important system 
components needed to address ad-hoc retrieval tasks. Here, the design and implementation of the 
Xtrieval framework offers a variety of approaches for fl exible system confi gurations. Xtrieval has been 
designed as an open system and allows the integration of further components and tools as well as 
addressing search tasks other than ad-hoc retrieval. This approach ensures that it is possible to con-
duct automated component-level evaluation of retrieval approaches.

Both the scale and impact of these possibilities for the evaluation of retrieval systems are demonstrated 
by the design of an empirical experiment that covers more than 13,000 individual system confi gura-
tions. This experimental set-up is tested on four test collections for ad-hoc search. The results of this 
experiment are manifold. For instance, particular implementations of ranking models fail systemati-
cally on all tested collections. The exploratory analysis of the ranking models empirically confi rms the 
relationships between different implementations of models that share theoretical foundations. The 
obtained results also suggest that the impact on retrieval effectiveness of most instances of IR system 
components depends on the test collections that are being used for evaluation. Due to the scale of the 
designed component-level evaluation experiment, not all possible interactions of the system compo-
nent under examination could be analysed in this work. For this reason the resulting data set will be 
made publicly available to the entire research community.
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dies natürlich für Prof. Maximilian Eibl, der mit seiner konstruktiven und hilfreichen
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Kurzfassung

Das Forschungsgebiet Information Retrieval befasst sich mit Theorien und Modellen,

die die Grundlage für jegliche Dienste bilden, die als Antwort auf ein formuliertes In-

formationsbedürfnis den Zugang zu oder einen Verweis auf entsprechende Elemente

einer Dokumentsammlung ermöglichen. Die Qualität von Suchalgorithmen wird im

Teilgebiet Information Retrieval Evaluation untersucht. Der klassische Ansatz für den

empirischen Vergleich von Retrievalsystemen basiert auf dem Cranfield-Paradigma

und nutzt einen spezifischen Korpus mit einer Menge von Beispielanfragen mit

zugehörigen Relevanzbewertungen.

Internationale Evaluationskampagnen, wie die Text Retrieval Conference, haben in

den vergangenen zwei Jahrzehnten zu großen Fortschritten in der Methodik der em-

pirischen Bewertung von Suchverfahren geführt. Der generelle Fokus dieses system-

basierten Ansatzes liegt jedoch nach wie vor auf dem Vergleich der Gesamtsysteme,

dass heißt die Systeme werden als Black Box betrachtet. In jüngster Zeit ist diese Eval-

uationsmethode vor allem aufgrund des Black-Box-Charakters des Untersuchungsge-

genstandes in die Kritik geraten. Aktuelle Arbeiten fordern einen differenzierteren

Blick in die einzelnen Systemeigenschaften, bzw. ihrer Komponenten. In der vor-

liegenden Arbeit wird ein generischer Ansatz zur komponentenbasierten Evaluation

von Retrievalsystemen vorgestellt und empirisch untersucht.

Der Fokus der vorliegenden Dissertation liegt deshalb auf zentralen Komponenten, die

für die Bearbeitung klassischer Ad-Hoc Suchprobleme, wie dem Finden von Büchern
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zu einem bestimmten Thema in einer Menge von Bibliothekseinträgen, wichtig sind.

Ein zentraler Ansatz der Arbeit ist die Weiterentwicklung des Xtrieval Frameworks

mittels der Integration weitverbreiteter Retrievalsysteme mit dem Ziel der gegenseit-

igen Eliminierung systemspezifischer Schwächen. Herausragende Ergebnisse im in-

ternationalen Vergleich, für verschiedenste Suchprobleme, verdeutlichen sowohl das

Potenzial des Ansatzes als auch die Flexibilität des Xtrieval Frameworks.

Moderne Retrievalsysteme beinhalten zahlreiche Komponenten, die für die Lösung

spezifischer Teilaufgaben im gesamten Retrievalprozess wichtig sind. Die hier vor-

gelegte Arbeit ermöglicht die genaue Betrachtung der einzelnen Komponenten des

Ad-hoc Retrievals. Hierfür wird mit Xtrieval ein Framework dargestellt, welches ein

breites Spektrum an Verfahren flexibel miteinander kombinieren lässt. Das System ist

offen konzipiert und ermöglicht die Integration weiterer Verfahren sowie die Bear-

beitung weiterer Retrievalaufgaben jenseits des Ad-hoc Retrieval. Damit wird die

bislang in der Forschung verschiedentlich geforderte aber bislang nicht erfolgreich

umgesetzte komponentenbasierte Evaluation von Retrievalverfahren ermöglicht.

Mächtigkeit und Bedeutung dieser Evaluationsmöglichkeiten werden anhand aus-

gewählter Instanzen der Komponenten in einer empirischen Analyse mit über

13.000 Systemkonfigurationen gezeigt. Die Ergebnisse auf den vier untersuchten

Ad-Hoc Testkollektionen sind vielfältig. So wurden beispielsweise systematische

Fehler bestimmter Ranking-Modelle identifiziert und die theoretischen Zusammen-

hänge zwischen spezifischen Klassen dieser Modelle anhand empirischer Ergebnisse

nachgewiesen. Der Maßstab des durchgeführten Experiments macht eine Analyse

aller möglichen Einflüsse und Zusammenhänge zwischen den untersuchten Kompo-

nenten unmöglich. Daher werden die erzeugten empirischen Daten für weitere Studien

öffentlich bereitgestellt.



Abstract

Research in information retrieval deals with the theories and models that constitute

the foundations for any kind of service that provides access or pointers to particular

elements of a collection of documents in response to a submitted information need.

The specific field of information retrieval evaluation is concerned with the critical as-

sessment of the quality of search systems. Empirical evaluation based on the Cranfield

paradigm using a specific collection of test queries in combination with relevance as-

sessments in a laboratory environment is the classic approach to compare the impact

of retrieval systems and their underlying models on retrieval effectiveness.

In the past two decades international campaigns, like the Text Retrieval Conference,

have led to huge advances in the design of experimental information retrieval eval-

uations. But in general the focus of this system-driven paradigm remained on the

comparison of system results, i.e. retrieval systems are treated as black boxes. This

approach to the evaluation of retrieval system has been criticised for treating systems

as black boxes. Recent works on this subject have proposed the study of the system

configurations and their individual components. This thesis proposes a generic ap-

proach to the evaluation of retrieval systems at the component-level.

The focus of the thesis at hand is on the key components that are needed to address

typical ad-hoc search tasks, like finding books on a particular topic in a large set of

library records. A central approach in this work is the further development of the

Xtrieval framework by the integration of widely-used IR toolkits in order to eliminate
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the limitations of individual tools. Strong empirical results at international campaigns

that provided various types of evaluation tasks confirm both the validity of this ap-

proach and the flexibility of the Xtrieval framework.

Modern information retrieval systems contain various components that are important

for solving particular subtasks of the retrieval process. This thesis illustrates the de-

tailed analysis of important system components needed to address ad-hoc retrieval

tasks. Here, the design and implementation of the Xtrieval framework offers a vari-

ety of approaches for flexible system configurations. Xtrieval has been designed as

an open system and allows the integration of further components and tools as well as

addressing search tasks other than ad-hoc retrieval. This approach ensures that it is

possible to conduct automated component-level evaluation of retrieval approaches.

Both the scale and impact of these possibilities for the evaluation of retrieval sys-

tems are demonstrated by the design of an empirical experiment that covers more than

13,000 individual system configurations. This experimental set-up is tested on four

test collections for ad-hoc search. The results of this experiment are manifold. For in-

stance, particular implementations of ranking models fail systematically on all tested

collections. The exploratory analysis of the ranking models empirically confirms the

relationships between different implementations of models that share theoretical foun-

dations. The obtained results also suggest that the impact on retrieval effectiveness of

most instances of IR system components depends on the test collections that are be-

ing used for evaluation. Due to the scale of the designed component-level evaluation

experiment, not all possible interactions of the system component under examination

could be analysed in this work. For this reason the resulting data set will be made

publicly available to the entire research community.
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1 Introduction

Searching for a desired piece of information is an everyday activity in modern life.

Due to the increasing amount of digital information which is instantly available by

accessing resources like the world wide web or other, possibly private, networks, find-

ing a source of information is also a complex task. The field of information retrieval

research deals with theories and models that constitute the foundations for any kind of

service that provides access or pointers to particular elements of a collection of doc-

uments in response to a submitted information need. The term information retrieval

(IR) was coined by Calvin Mooers in a short paper [134, p. 572] in 1950:

“The problem of directing a user to stored information, some of which

may be unknown to him, is the problem of ’information retrieval’.”

The development of ideas to model the process of information retrieval was motivated

by the possibility of constructing mechanised systems for literature search. These sys-

tems were the precursors of modern information retrieval systems of which the om-

nipresent web search engines are the most prominent example nowadays. The specific

field of information retrieval evaluation is concerned with the critical assessment of the

quality of search systems in general. This thesis focuses on the scientific evaluation of

modern information retrieval systems and the underlying system components.

In order to place this work within the field of information retrieval evaluation research,

the most essential achievements in the discipline need to be pointed out. Cyril Clever-
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don’s Cranfield experiments [39] were the first large-scale, scientific investigation of

the effectiveness of search and it is considered a major milestone for evaluation in

information retrieval. Together with his team he studied how four different library in-

dexing schemes affected the quality of search results over a period of several years in

the early 1960’s. Because of the enhancements of mainframe and personal comput-

ers, the amount of information processed and stored on these machines was growing

rapidly during the following three decades. At the same time the size of the collec-

tions used for the assessment of new retrieval models remained almost unchanged.

As a consequence there existed a large gap between the collections used in research

to develop new ideas, and those being used in commercial services at the start of the

1990’s.

The formation of the Text Retrieval Conference (TREC) in 1992 was the next mile-

stone for information retrieval research. It served two major goals. First, the assem-

bly of full-text document collections that have sizes comparable to collections used

in commercial search engines. Second, the organisers of TREC formulated the eval-

uation tasks, the test queries, and the relevance assessments, in order to ensure an

independent comparison of the different implementations of information retrieval the-

ories and models. The general set-up of a TREC evaluation experiment consists of a

search task based on a collection of documents. A set of test queries and correspond-

ing relevance assessments is used to rank participating retrieval systems according to

the retrieval effectiveness they achieved on that test set. Although the scientific dis-

cipline has shifted its focus of interest towards diversity in search tasks, the general

experimental set-up for evaluation remained almost unchanged for scenarios that do

not include real system users.

The purpose of system-driven evaluation in the laboratory setting is to investigate and

understand the effects of the systems on retrieval effectiveness. A specific problem of

this approach is that the systems under examination are usually assembled by different

groups that focus on a single, or only a few aspects, of their own system. The general

ranking of all contributed systems and their configurations does not account for this.
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Instead, it provides a general overview on all applied experimental settings by treating

all systems as black boxes. This thesis addresses this limitation by considering the

key components of IR systems that are needed to deal with a specific search task.

In order to understand how the IR system components contribute to the usefulness

of the complete system, each of the components has to be examined individually.

Since it is not clear whether an implementation of a component that outperforms other

algorithms still produces optimal results when it is plugged into the complete system,

the components have to be studied individually, but also in the context of the search

task the system is used for. This thesis proposes a generic approach to component-

level evaluation of retrieval systems and substantiates this concept based on a large-

scale empirical study on small to mid-sized text collections from TREC and other

evaluation campaigns.

From here on the acronym IR, or the term retrieval, will be used to refer to information

retrieval. Since IR effectiveness evaluation is the central topic of interest, the terms

search quality, retrieval performance, and retrieval effectiveness, are being used as

interchangeable references to the subject throughout this thesis.

1.1 Key Challenges

In the past decades IR evaluation research has met a number of challenges, most of

which have been related to the scale of the data sets used for empirical experiments.

With the turn of the millennium the diversity of search applications and tasks, which

can mainly be attributed to the development of the Internet and its social web applica-

tions, added another dimension to the problem. Scalability and complexity are the key

aspects that distinguish modern IR systems from their antecedents. In experimental IR

research it is difficult to account for both simultaneously. However, evaluation cam-

paigns like TREC will have to deal with these issues. Therefore, the current laboratory

evaluation paradigm needs a major adjustment. The problem had already been pointed

out in the following statement by Stephen Robertson from 2009 [145, p. 4]:
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“The experimental paradigm is that we have a number of alternative sys-

tems, and the research question under investigation is: ’Which system is

best’. If we take seriously the notion that we are engaged in developing

a science of search, then Cranfield would seem to [...] help in the devel-

opment of models or theories. [...] However, an analysis of the role of

empirical knowledge in general and laboratory experiment in particular,

in relation to models or theories, reveals some limitations of the Cran-

field approach. Despite the huge advances in this experimental paradigm

[...], I believe we are only scratching the surface of what experiments can

tell us. [...] I believe that what we need now is not so much better sys-

tems (though they are always welcome) as better understanding of the

phenomena.”

Component-level IR evaluation is one approach in providing a better understanding

of the relationships between IR models implemented in various IR systems. Its main

purpose is to study the dimensions of the system and task complexity. But the diversity

of search tasks is a major problem for this method. If it is not known which compo-

nents of the IR systems are needed for a particular search task, then it is impossible to

define the scope of the experiment. As a result component-level evaluation requires to

know which of the system components and configurations are potentially useful for a

particular search task. Most of the current approaches to comparisons at component-

level are based on fixed architectures. This drawback will be discussed in detail in this

thesis. Corresponding solutions to the problem will be discussed hypothetically.

It has already been pointed out that component-level experimentation has to focus

on the comparison of individual components in the context of a search task under

examination. This is a challenging problem for the typical approach to IR evaluation,

because the actual software implementations of the components are only known to the

individual participants of the task. As a consequence, recording and comparing the

effects of individual components is difficult and can only be realised based on a meta-

level discussion of the individual results. And yet not all combinations of IR system



1.2 Contributions 5

components may have been covered due to the lack of interchangeable components

or component outputs. The thesis on hand postulates the hypothesis that automated

IR evaluation at the component-level can be realised by employing the integrative

approach of the Xtrieval framework [108].

The use of publicly available baselines for the critical assessment of new methods is

an important issue in IR experimentation in general and component-level evaluation in

particular. This includes baseline implementations of IR systems and components as

well as reference baselines of results of effectiveness evaluations. A recent study [9]

on research publications reporting improved retrieval effectiveness demonstrated that

the existing baselines are used only rarely in retrospective evaluation experiments. As

a result, although improved retrieval performance is reported frequently, a consistent

upward trend could not be found on the most widely-used test collections. In line

with the present thesis, widely-used IR software toolkits are discussed in detail and

integrated into a common framework named Xtrieval. The purpose of this strategy is to

combine the strengths and to eliminate the limitations of individual implementations.

This hypothesis is investigated by means of a large-scale experiment that covers many

different state-of-the-art components of IR systems.

1.2 Contributions

This thesis is devoted to experimental IR evaluation on component-level. It develops

concepts which go beyond the traditional paradigm based on the Cranfield methodol-

ogy and the corresponding enhancements developed during 20 years of IR evaluation

at TREC. A review of current approaches to experimental evaluation of IR system

components forms the basis of the approach proposed in this work.

In order to integrate the most significant implementations of IR models and theories

a critical discussion of widely-used IR toolkits is provided. The Xtrieval framework

is used to conduct a large-scale experiment to study the effect of state-of-the-art IR



6 1 Introduction

system components on retrieval effectiveness using a selection of standard ad-hoc test

collections. Different implementations of key system components are selected for in-

clusion in the experiment based on a detailed discussion of the underlying theories

and models. The experiment demonstrates that automated component-level evaluation

can be realised when existing IR toolkits are combined so that the advantages of cor-

responding implementations can optimally complement each other. The results also

show that the best experiments from the corresponding evaluation campaigns can be

improved. This suggests that the performance of the baselines that should be used for

reference on these widely-used test collections is in fact higher than the best results

obtained from the original evaluations.

The large experiment set created for the validation of the developed approach to

component-level IR evaluation is a further contribution of this thesis. The key ob-

servations concerning the impact on retrieval effectiveness that are highlighted in this

work are only a first step to understanding the relationships between the different IR

system components. Further studies can focus on a detailed investigation of potential

connections between particular component implementations and specific types of test

queries. Others may concentrate on the statistical analysis of the interactions between

individual system configurations based on the observation that, for instance, some

ranking models favour specific implementations and configurations of the pseudo-

relevance feedback component. The developed approach is generally applicable and

can be adapted to other search tasks, given that the relevant implementations of system

components are publicly available.

The following list provides an overview of the key contributions of this thesis:

• The enhancement of the Xtrieval framework laid the foundations for the empir-

ical evaluation presented in this thesis. The initial version of Xtrieval was based

on Lucene as core retrieval library. In the course of the creation of this work,

the Xtrieval framework was extended to allow the access to the Terrier toolkit

and the Lemur project, which are two academic IR libraries that are commonly
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used in the IR community. The reasons for the selection of these toolkits and

the potential benefits of the integration are outlined and discussed in detail.

• The empirical verification of the expected benefits from the combination of

different IR toolkits and libraries is a central element of this thesis. The first

prototype of the Xtrieval framework was implemented in 2007. Since then, it

was used for many types of IR evaluation experiments. These include ad-hoc IR

experiments on domain-specific and general library records, image retrieval on

photographs, question answering on speech transcripts, video subject classifica-

tion, and prior art search in patent document collections. This variety of retrieval

tasks demonstrates the flexibility of Xtrieval. The strong retrieval performance

that was achieved on these different evaluation tasks proves the quality of the

strategy to combine state-of-the-art IR toolkits into a common framework.

• The Xtrieval framework provides solutions for the conceptual problems of au-

tomated evaluation at component-level. Its meta-level design for accessing and

combining different state-of-the-art retrieval toolkits allows fine-grained empir-

ical studies at the component-level. By incorporating the findings of previous

evaluation initiatives, Xtrieval is deployed to run a large series of grid experi-

ments that provide a better understanding of the orchestration of components in

modern IR systems. Xtrieval allows to focus both on overcoming practical limi-

tations and addressing methodological issues without gathering research groups

or implementing additional data exchange protocols. The valuable test collec-

tions produced by evaluation campaigns like TREC, and open IR toolkits like

Lemur, Lucene, and Terrier, representing the state-of-the-art in IR theory and

practice, are the additional resources that are required to understand IR phe-

nomena better.

• A large-scale empirical experiment is designed and discussed to investigate the

effect of three key IR system components and their corresponding state-of-the-

art implementations. The general experimental set-up is evaluated on a selection

of ad-hoc test collections. In contrast to typical empirical IR experiments which
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study the effect of one particular system component implementation with re-

spect to some baseline model, this thesis covers a total amount of 13,176 unique

IR system configurations. Each of these configurations is tested on four different

test collections which contain 100 test queries each. As a result, this empirical

study generated about 5 million observations.

• To ensure the usefulness of the designed component-level experiment, it is eval-

uated against different types of document collections. For each of these collec-

tions several standard test sets, consisting of topics and corresponding relevance

assessments, were aggregated into test collections of identical size. The analy-

ses of the results on these test sets will help to understand, whether, or not, it is

possible to predict the behaviour of system configurations on standard test col-

lections. The proposed test set-up also allows the determination of appropriate

baselines for particular instances of system components which can be used for

testing and verifying future components on the deployed test collections.

• The exploratory data analysis of the experimental results allows the comparison

of the effect of different component implementations on retrieval effectiveness.

Each of the three components is studied separately by examining the probability

distribution for selected instances on the experiment set. This method allows

the identification of systematic failures of particular system components. It will

be demonstrated that such failures exist and that it is likely that they can be

corrected with a few steps.

• The large amount of experimental results is a problem that is addressed by pro-

viding a tool to visually compare subsets of the complete experiment set. The

visualisation is based on parallel coordinates that allow the interactive com-

parison of individual component implementations and their impact on retrieval

effectiveness. Since the analyses supplied in this thesis only investigated partic-

ular aspects of the generated data, the experimental results will be provided for

in-depth analyses of further aspects that were out of the scope of this work.
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1.3 Organisation

The content of this document is structured in three major parts excluding the Chap-

ters 1 and 8. The first part is covered in Chapters 2 and 3 and deals with the foun-

dations of modern IR systems, their components, and the scientific approaches to the

evaluation of both. Chapters 4 and 5 constitute the second part of this work which is

concerned with software frameworks that provide implementations of the most suc-

cessful theories and models in IR. In the final part, covered by Chapters 6 and 7, the

challenges of component-level evaluation are addressed by employing the introduced

generic IR framework Xtrieval. The results of a large-scale retrieval evaluation ex-

periment demonstrate that the automated evaluation of different components of IR

systems enhances the understanding of their impact on retrieval effectiveness. The

detailed outline of the individual chapters of this thesis is as follows:

• Chapter 1 defines the term evaluation in the context of IR, its history, as well

as its current and future applications. The relation between existing research

in IR evaluation and the present work is established in order to introduce open

questions in the field of experimental IR research. Key challenges in the field

are presented in order to define the aims and the scope of this thesis.

• Chapter 2 reviews the history of traditional approaches to IR evaluation. Start-

ing with a detailed description of the key elements of empirical evaluation, test

collections and metrics for the assessment of the quality of search results, recent

issues of the empirical methodology are discussed. The concept of independent

IR evaluation is introduced as an important step beyond the Cranfield evalu-

ation paradigm. A comparison of recent evaluation experiments demonstrates

key challenges for the assessment of retrieval systems at the component-level.

• Chapter 3 introduces the key components of modern IR systems. Starting from

an abstract point of view, the three fundamental processes: text pre-processing,

core retrieval models, and feedback methods, are discussed in detail. The pre-
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sented selection of theories and models summarises the state-of-the-art for each

of the essential system components. These models form the basis for the empir-

ical comparison of respective software implementations on ad-hoc test collec-

tions.

• Chapter 4 discusses open-source software frameworks which contain different

implementations of the system components described in Chapter 3. The em-

phasis is placed on widely-used toolkits and libraries in order to ensure the

best possible coverage of component instances. A critical analysis of selected

retrieval frameworks demonstrates their advantages and limitations.

• Chapter 5 explains the motivation for the development of the extensible re-

trieval and evaluation framework Xtrieval which represents one of the central

contributions of this thesis. First, the general architecture of the framework is

described with the focus on compensating individual limitations of the frame-

works discussed in Chapter 4 with the corresponding advantages of other re-

trieval toolkits. This concept is illustrated in detail by the description of the

technical integration of two major retrieval frameworks. The strength of this

approach of integrating the state-of-the-art in retrieval systems into a common

framework is verified by the presentation of selected results on international IR

evaluation tasks. At the same time the diversity of these search tasks demon-

strates that Xtrieval is a multifunctional framework.

• Chapter 6 summarises the experimental set-up and results of two recent evalu-

ation tasks that focused on providing new insights into the impact of particular

components of IR systems on retrieval effectiveness. Based on the conclusions

from these evaluation efforts, five fundamental challenges that affect the use-

fulness of component-level evaluation are identified. It is discussed how these

challenges can be addressed with Xtrieval.

• Chapter 7 provides the empirical experiments for the validation of the presented

approach to automated component-level evaluation. The presented experimen-

tal set-up relies on Xtrieval and generates a large set of retrieval system config-
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urations. This set is studied on four test collections which were aggregated from

different ad-hoc tasks of the two evaluation campaigns: TREC and CLEF. An

exploratory data analysis based on beanplots allows the study of the interactions

between the selected system component configurations. The results are reported

in terms of optimal retrieval effectiveness. They demonstrate that the optimal

system configuration is dependent on both the test topics and the document col-

lections. It is also shown that some particular system components favour spe-

cific configurations of remaining components in order to achieve good retrieval

effectiveness, while others are more robust against changes to other elements of

a system configuration. The optimal results on the generated set of experiments

demonstrate that the selected components of IR systems can be configured to

improve retrieval effectiveness over the best experiments submitted to corre-

sponding evaluation tasks.

• Chapter 8 recaps the major findings and contributions of this thesis. It also

provides an outlook for future developments of the Xtrieval framework and

denotes the potential impact of the created component-level experiment set on

IR evaluation in general.
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Empirical evaluation of technical implementations of theoretical models is a generic

approach to study how theories affect particular use cases. In the field of IR research,

a central question is how to provide the best answers to an information need of a user.

The field of empirical evaluation of IR systems is primarily concerned with finding

evidence which systems or system configurations are optimal for specific search tasks.

Effectiveness and efficiency are two impartial aspects that contribute to the overall

utility or success of an IR system.

Efficiency can be measured in terms of time and space requirements for the system.

It can be easily quantified once a certain metric is defined, e.g. index size, indexing

time, query throughput, or query latency [45]. Query throughput describes the number

of queries processed per time unit (usually seconds) and query latency is the response

time (in milliseconds) a user has to wait before receiving an answer. Search engine

applications are typically designed to stay below a certain threshold of query latency,

say 150 milliseconds, for conventional queries issued. However, optimising a system

to reduce latency leads to worse throughput and vice versa: a conflictive duality be-

tween desirable properties that can be also found in effectiveness evaluation.

Effectiveness determines how well the ranked output of a system corresponds to an

optimal ranking of documents, given a specific request and a definition of relevance.

Generally speaking, it describes the quality of the search result presented to the user.

Assessing the quality of new methods has always been a particular interest for IR



14 2 Information Retrieval Evaluation

researchers. However, evaluation of natural language search is challenging, because

it is not deterministic like querying a database system. Typically, when users formu-

late their information need, it is underspecified or incomplete. Potential answers in a

targeted collection are mostly unstructured, heterogeneous, and fuzzy on the level of

their basic elements. Individual words can have multiple meanings, at the same time

different words can express a single concept. These challenges contribute to the com-

plexity of IR systems and the empirical assessment of their quality. This complexity

is one of the reasons for the cyclic character of IR research, consisting of theoretical

development, practical implementation, and experimental evaluation.

One of the central concepts in the evaluation of IR system effectiveness is relevance,

which was introduced to obtain a measure for the utility of search results. There is

a major difference between topical and user relevance. The latter type of relevance

describes a subjective perspective and is hard to assess and compare. In contrast to

that, if a document is assessed as being topically relevant to a query, it has to be con-

cerned with the topic of the query. This broad and objective definition of relevance can

be incorporated into the underlying model of an IR system. Topical relevance is the

standard concept for system-based IR evaluation. Consequently, a set of user requests

is usually called topic set. Another important aspect is to which level of granularity

relevance judgements are collected. The degree of relevance is typically defined by

the effectiveness measure that is used for evaluation. Binary relevance is the most

traditional form, meaning a document can be either relevant or not relevant to a cor-

responding query. Multivalued relevance is usually applied in user-based evaluation,

to account for diversity and the interactive nature of search. However, in traditional

system-oriented evaluation three levels of relevance are sometimes used, where a doc-

ument can be definitely relevant, possibly relevant, or definitely not relevant. Ternary

relevance can be converted to traditional relevance by assigning possibly relevant doc-

uments to one of the two other classes.

Almost every experimental retrieval evaluation follows a prior definition of a retrieval

task. Such a task is usually designed as an abstraction from a real-world search prob-
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lem a user might be confronted with. All components of the evaluation, as well as

their main properties, such as size, type, and structure depend on the objectives of the

task. Additionally, the evaluation methodology itself can be motivated from two distin-

guishable perspectives: system-driven or user-driven [183]. The user-centric approach

focuses on the interaction between a user and the system and is therefore the most

realistic form of evaluation. It can be applied for systems under development as well

as for operational systems. Typical metrics are: (1) the time a user spends on solving

a specific task, (2) the amount of relevant items found, or (3) the subjective level of

satisfaction with the system. A major criticism of the approach is that user satisfaction

does not correlate well with their ability to find relevant items, or even worse, with the

efficiency with which a search task was solved. User-based experiments are the most

expensive form of empirical IR evaluation.

In a typical system-driven evaluation experiment, a collection of documents and a

collection of user requests are carefully selected. Systems under evaluation run the

set of requests against the document collection and return a ranked list of documents

as response to each query. Human assessors examine ranked documents and provide

a decision on their relevance to the corresponding request. The performance of the

systems is then summarised by utilising an effectiveness metric that compares the

ranked results to the relevance assessments. The system-centric approach is designed

as a controlled laboratory environment with the key objective to provide data sets

that can be reused for subsequent evaluation. It is criticised for its lack of realism,

mainly because of its artificial formulation of information needs and the static nature

of relevance.

The cognitive IR evaluation approach [22] aims to address realism and experimental

control, the fundamental issues in IR effectiveness evaluation. The key element of this

method is to incorporate a simulated work task into the evaluation. As a result, the

experimental set-up is less static than in traditional laboratory experiments. It allows

experimental control through the definition of the task and its underlying context, but

leaves the user freedom to complete the task and therefore retains the realistic charac-
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ter of the formulation of an information need. The model is based on the concept of an

anomalous state of knowledge, which is a user’s recognition of an insufficient knowl-

edge given an external motivation that leads to an information need [17]. In contrast

to system-driven evaluation an information need and the perception of relevance are

dynamic and depend on (1) the work task, (2) the user, (3) the context, (4) and the sit-

uation. The interactive IR evaluation model manages to balance the trade-off between

experimental control and realistic search situations. Unfortunately, the model inherits

a major drawback from the user-centred evaluation: the cost.

The main focus of this work lies in the effectiveness evaluation of IR in the laboratory

setting. It is based on using test collections and methodologies that were specifically

designed for the system-driven approach to IR evaluation. This method allows rapid

testing of new ideas and models in a controlled environment which is needed in or-

der to assess the effect of a new technological development. Thus, the system-driven

IR evaluation will remain one of the most important tools for the advancement of

IR. Throughout this work we use the term evaluation to refer to the system-driven

approach for assessing the effectiveness of IR systems. In the following sections we

will review key concepts that constitute the foundations for the contributions of our

research.

2.1 Evaluation Campaigns

Empirical evaluation of IR systems is a task that is both complex and expensive. In

this section, we will briefly discuss the set-up and impact of the most popular IR eval-

uation campaigns. A comprehensive review on the efforts and relationships of these

initiatives is given in [124]. A key milestone for IR evaluation was the formation of

the Text Retrieval Conference (TREC) in the early 1990’s. It served two major goals.

First, the assembly of full-text document collections that have sizes comparable to

collections used in commercial search engines. Second, the organisers of TREC for-

mulated the evaluation tasks, the test queries, and the relevance assessments, in order
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to ensure an independent comparison of the different implementations of information

retrieval theories and models.

Now in 2012, TREC celebrates its 21th anniversary. Nevertheless, it is still the largest

and most popular IR evaluation campaign. TREC has a considerable influence on

implementing empirical evaluation as one of the most important aspects in IR research.

Considerable improvements in IR systems in the early 1990’s can be attributed to the

independent TREC evaluation methodology. In 2007, an overview on past activities

at TREC listed 27 tracks [185], which investigated different aspects of the retrieval

process, numerous types of document collections, and various search tasks. Due to

new fields of research and evolving commercial search applications in the web, the

total number of tracks rose to 34 over the past four years. TREC test collections are

particularly relevant for this work. Since ad-hoc search is the exemplary evaluation

scenario here, TREC disks 4 and 5 were obtained. The data collection was used for

the Ad-Hoc tracks at TREC-6 through TREC-8 and for the Robust track at TREC

2004. The Congressional Records sub collection was excluded in evaluations that used

TREC disks 4 and 5 from TREC-7 onward. Section 7.1.3 describes the components

of the test collections used for the present work in more detail.

Over time, TREC inspired several spin-offs with specific goals like cross-language

evaluation in European languages (CLEF) and evaluation of search in Asian languages

(NTCIR). At the time of writing, both NTCIR and CLEF have existed for more than

a decade. In 2000, the Cross-Language Evaluation Forum (CLEF) emerged from the

Cross-Language track at TREC. The variety of languages and their different rules for

obtaining morphemes for indexing was a central motivation to specialise and expand

that particular topic of IR. As a consequence, CLEF followed the TREC model and de-

veloped document collections for more than 13 European languages in total [124]. In

order to stimulate research on bi-lingual search applications, CLEF developed topics

in several languages for each track. Thus, even more languages could be investigated.

Relevance assessments were created by native speakers of the document languages.

Over time, CLEF has offered different cross-language related search tracks. Most of
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them were also studied at TREC, but the corresponding tracks at CLEF focused on

the cross-lingual aspect. Examples are the Question Answering track, the GeoCLEF

track, or the ImageCLEF track to name but a few. The latter attracted a large research

community and hence became an independent satellite workshop of CLEF from 2010.

Since 2006, the Chemnitz retrieval group participated in different tracks at CLEF.

Most of them were closely related to ad-hoc search scenarios. The lessons that have

been learned from these experiments with varying test collections, led to the formula-

tion of the central questions addressed in this work. Given the observation that search

effectiveness is highly variant, the question is to what extent system configurations

affect the quality of the results for different types of data collections.

NTCIR is an evaluation initiative that is very similar to CLEF. The first campaign was

held in 1997 and in contrast to TREC and CLEF, NTCIR runs in cycles of 18 months.

The focus of the NTCIR evaluation campaign is on cross-language retrieval tasks that

use the major East-Asian languages, Chinese, Korean, and Japanese. Similar to its

counterparts in the western hemisphere, the first tracks used news article document

collections. Later, the tracks diversified to other topics, like Named Entity Recogni-

tion, Question Answering, and Word Segmentation. The latter is a problem specific

to Asian sign languages. It is one of the reasons why cross-lingual retrieval on Asian

document collections is more complex than similar tasks with documents in European

languages.

Newswire document collections were widely used in the early years of the major eval-

uation campaigns. The reason was that they were easy to obtain and collections could

be assembled from different sources. Another aspect was that no experts were needed

for creating relevance assessments. But soon this concentration on a single type of

mostly homogeneous documents drew criticism. In response to those comments, new

document collections were created to design realistic and more specific evaluation

tasks. This led to considerable diversification of document types, including web docu-

ments, patents, or multimedia annotations. Hence, more complex document structures

could be exploited for IR evaluation. INEX (an acronym for initiative for the evalu-
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ation of XML retrieval) is a campaign that is dedicated to the retrieval of structured

documents. Since 2002, it runs in an annual cycle. One of the central goals of INEX

was bridging the database and the information retrieval communities by designing

tasks, which demanded extracting only the smallest elements of relevant documents.

Another aspect of the diversification of evaluation task is the ever-growing amount

of multimedia contents and descriptions. TREC and CLEF also organised tracks that

investigated problems regarding multimedia retrieval. In 2001, a video track at TREC

dealt with segmentation and low-level feature extraction. Since 2003, the video track

is organised as an independent evaluation campaign named TRECVid. Recent tasks

at TRECVid include semantic indexing, content-based copy detection, surveillance

event detection, multimedia event detection. The variety of tasks shows that TRECVid

aims to cover many real-world problems in different domains, which deal with (semi-)

automatic processing of video content.

Since 2003, the ImageCLEF track explored techniques to combine visual and tex-

tual features of images in cross-language search scenarios. In general, images can be

thought to be language independent, but in fact image annotations may appear in vari-

ous languages. ImageCLEF also offered tasks using different types of collections, like

tourist photographs, for ad-hoc search or medical images for automatic labelling. An-

other aspect of multimedia content that should not go without notice is audio. CLEF

organised a track named Cross-Language Spoken Retrieval (CL-SR) from 2003 un-

til 2007. The intention was to retrieve documents based on partially inaccurate tran-

scripts that were generated automatically. The Music Information Retrieval Evalua-

tion Exchange (MIREX) assessed approaches for content-based processing of music.

The organisers offered tasks like querying a music database by humming, melody ex-

traction, or a music similarity challenge. The variety of available retrieval evaluation

campaigns shows that many real-world search problems are already being addressed.

The recent growth of evaluation initiatives can be perceived as a reaction to the ever-

growing amounts of digital information. At the same time it demonstrates that efficient

and effective tools are needed to be able to access a desired piece of information.
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2.2 Test Collections

Three main components compose a test collection in system-based IR evaluation: (1) a

document collection in which every document has a unique identifier, (2) a set of top-

ics with a unique identifier for each query, and (3) a query relevance set, (abbreviated:

qrels), that consists of pairs of document and query identifiers, defining the relevance

of documents to topics [158]. The fundamental set-up traces back to the early 1960’s

when Cyril Cleverdon and his team compared different indexing schemes for library

records in the Cranfield I & II experiments [39, 40].

The starting point of the Cranfield experiments was Cleverdon’s idea that an indepen-

dent evaluation was needed to be able to fairly compare systems of different groups.

The Cranfield I document collection consisted of 18,000 articles that were manually

indexed using four different library classification schemes. 1,200 search questions

were formulated with the aim of retrieving a single document from the collection.

Based on these experiments Cleverdon and his colleagues decided to run a follow-up

study that became known as Cranfield II. However, there were some differences be-

tween the two subsequent experiments. The Cranfield II collection consisted of about

1,400 hand-crafted document records from 200 articles recently published on the sub-

ject of aerodynamics. To obtain a set of topics the authors of the papers were asked

to summarise the main idea that inspired the paper. In addition, the experimenters

requested a multivalued rating for each reference the authors used. Based on the re-

sponses all documents were checked against all the formulated topics. Subsequently,

the authors were contacted again to judge the documents that were found to be rele-

vant. This resulted in an exhaustive test collection consisting of approximately 1,400

documents, 225 topics, and a set of complete multivalued relevance judgements [158].

Although this empirical set-up was adopted as standard for controlled laboratory ex-

periments, it featured some properties that are worth pointing out from a current per-

spective. All of the following elements were created and controlled manually: the
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topic sets, the relevance judgements, and the documents that represented the collec-

tion. Relevance was perceived and modelled as topical relevance, although it was ob-

tained from expert users. And, most importantly, all documents in the collection were

judged with respect to each topic. The topics represented information needs as they

would be formulated by a library user and issued to a librarian, whose task was to

locate documents containing the desired information. As a result, topics were created

as natural language requests as long as an ordinary sentence to imitate the service of a

librarian.

2.2.1 Document Collections: From Cranfield to TREC and

Beyond

A major problem from the 1960’s to the early 1980’s was the assembling and the dis-

tribution of the document collections for a meaningful comparison of retrieval models.

Consequently, IR researchers were obliged either to re-use available collections or to

build a new collection on their own. Since the latter was extremely time-consuming, it

led to relatively small collections. However, various collections consisting of different

types of documents were created during this period. Frequently used collections from

this time are presented along with basic statistics in Table 2.1. It provides a basic view

on characteristic features in order to point out the key issues of these early test collec-

tions. Almost all of these collections were assembled by IR research groups to test and

assess their models, in contrast to the motivation of the Cranfield experiments which

was to conduct independent evaluation [39]. Another important aspect is collection

size.

As can be seen from Table 2.1 the number of documents and topics were in some kind

of a stalemate. In the 1960’s commercial IR services had several tens of thousands

of records in their database. Only a few years later, in the early 1970’s, retrieving

items from hundreds of thousands of documents was considered routine in commer-
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Name Year # Docs. # Topics Terms/Doc. Terms/Topic Rel./Topic
Cranfield II [74, 166] 1962 1,400 225 28.7 8.0 7.2
ADI [74] 1968 82 35 27.1 14.6 9.5
NPL [74, 166] 1970 11,429 93 20.0 7.2 22.4
MEDLARS [74] 1973 1,033 30 51.6 10.1 23.2
TIME [74] 1973 425 83 570 16.0 3.9
UKCIS [66, 172] 1973 27,361 182 6.7 7.4 58.9
INSPEC [166, 172] 1981 12,684 77 36.0 17.9 33.0
LISA [166, 172] 1982 6,004 35 39.7 16.5 10.8
CACM [74, 166] 1983 3,204 64 24.5 10.8 15.3
CISI [74, 172] 1983 1,460 112 46.5 28.3 49.8

Table 2.1: Statistics for commonly used collections from 1962-1983.

cial search applications [18]. Table 2.1 illustrates that the test collections used for

research were considerably smaller. Test collections were designed for different pur-

poses of evaluation and they consisted of document surrogates, i.e. titles, abstracts, or

other bibliographic information [73]. The TIME collection, built and used by Salton’s

research group, was the only exception to this. It was assembled by creating manual

transcripts of articles from Time magazine. The largest collection in terms of number

of documents was UKCIS, but the documents were assembled by the extraction of

titles from a database containing articles on the subject of chemistry.

Assessing the relevance for each topic in the creation of larger test collections was

another major obstacle during this period. The larger amounts of documents rendered

the exhaustive approach used for the Cranfield experiments unfeasible (see Section

2.2.3). Retrospectively, the most influential work was the formulation of the need

for an ideal test collection [171]. The report addressed the major problems of test

collections which existed at the time, but it had almost no impact on the evaluation

methodology of that time [158]. An important contribution was the introduction of

the concept of pooling documents to be judged for relevance in larger test collections.

Spärck-Jones and van Rijsbergen [171] also proposed the creation of larger test collec-

tions that would be maintained and distributed by a common organisation. However,

it took almost 20 years until the idea was put into reality.
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Name Year # Docs. Terms/Doc. Short Description
CJACS [117] 1992 96,900 2786 Chemical Journals of the American

Chemical Society as full text
CA [117] 1992 9,528,000 129 Titles, abstracts, keywords and

phrases from citations on chemistry
TIPSTER [73] 1992 741,856 444.4 Mostly news articles, used in

TREC-1 to 3, collected 1987-1992
TREC [187] 1994 556,077 541.9 Mostly news articles, used in

TREC-6 to 8, collected 1989-1994
OHSUMED [82] 1994 348,566 250 Subset of references from MEDLINE,

collected 1987-1991
AQUAINT [182] 2000 1,033,00 363 News articles, used from TREC-11,

collected 1996-2000
AQUAINT-2 [47] 2006 907,000 - News articles, used from TREC-16,

collected 2004-2006

Table 2.2: Summary of commonly used collections from 1992-2004.

It has been pointed out that the National Institute of Standards and Technology (NIST)

was funded to build a large test collection in the early 1990’s. The objective was to

use the collection for a research project named TIPSTER. Shortly thereafter, NIST

decided to launch a program called Text Retrieval Conference (TREC). Making the

TIPSTER collections available enabled the research community to work with doc-

ument collections of a more reasonable size (see Table 2.2). A comparison of the

commonly used INSPEC collection and two collections on chemistry, namely CJACS

and CA, which were available in a commercial IR system, demonstrated the large dif-

ference between the size of the collections used in practice and in science [117]. As a

result, building larger test collections became an urgent problem for the IR evaluation

research community.

Already before the first TREC conference was held in 1992, it was obvious that the

efforts to build large collections could not be managed by single research groups.

Reviewing IR literature of the early 1990’s shows that outside TREC, there was almost

no intention to build new types of text collections. One exception was the publication

on the OHSUMED collection by Hersh et. al. [82]. In Table 2.2 a selection of text

collections from the TREC era (which is still continuing at the time of preparing this

work) from research and commercial search applications is presented. This illustrates
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Name Year # Docs. Size Short Description
VLC [78] 1997 7.5 M 20 GB used at TREC-6; included TREC CDs 1-5,

newspaper and government data as well as
USENET news; a 10% sample was offered

VLC2 [77, 80] 1998 18.5 M 100 GB used from TREC-7 to 9, web data indexed
by the Internet Archive; two sub samples
were also offered: BASE1 and BASE10

WT10g [13] 2000 1.7 M 10 GB used at TREC-9,10; composed as a subset of
VLC2 by server selection and by removing
duplicates as well as binary content

.GOV [44] 2002 1.25 M 18 GB used from TREC-11 to 13 for the web tracks
a partial crawl of the .gov web domain

.GOV2 [38] 2004 25.2 M 426 GB used from TREC-13 to 17 for the terabyte
and million query tracks; a larger crawl
of the .gov web domain

Blogs06 [136], 2006 0.1 M 25 GB used from TREC-15 to 17 for the blog
[121] tracks; crawl of blog data covering

top, spam, and general interest blogs
Blogs08 [122] 2008 1.3 M 453 GB used at TREC-18,19 for the blog track;

a markedly larger crawl of blogs collected
over a longer period of time

ClueWeb091 2009 1.0 B 5 TB used at TREC-19 for several web tracks;
web pages crawled in 2009 covering ten
languages; 50 M pages sub sample available

Table 2.3: Overview on web collections created from 1997-2009.

that the assembly of a document collection of appropriate size became unmanageable.

TIPSTER, TREC and OHSUMED are considerably smaller than CA. Apart from the

commercial collections, CA and OHSUMED, all documents were full text articles.

One major benefit of a central authority like TREC is its ability to direct the focus

of the research community. Its success of motivated the formation of several other

evaluation campaigns that were described in Section 2.1. All of these forums have

become main authorities for IR research, producing new tasks and test collections in an

(bi-)annual cycle, (for a more detailed description see Section 2.1). This diversification

of tasks for IR evaluation reflects both the growth of available information and the

need to access information anywhere and at any time. Hence, IR theory and research

has become ubiquitous in practice. One turning point for this development was the

creation of the worldwide web.

1 http://lemurproject.org/clueweb09, retrieved on March 1, 2012

http://lemurproject.org/clueweb09


2.2 Test Collections 25

The web started in late 1993 and grew rapidly, especially around the turn of the mil-

lennium. It soon became a rich source of information that asked for fast and reliable

search. Although the indexed size of the web2 was already between 26 and 140 million

pages [79] in 1998, it was not used as a source for IR research until then. A key reason

was the unclear legal aspect of the web, i.e. it was not clear whether collecting and

distributing web pages was a copyright violation or not [158]. Before the creation of

the first web collection, IR research had advanced from using mainly bibliographical

surrogates in the 1960’s to the early 1990’s when using full text collections of various

sources became the de-facto standard for evaluation.

Table 2.3 lists the most commonly used collections that abstract the problem of search-

ing the Web. Again, sizes are considerably smaller than collections used in commercial

applications, except for the earliest collections VLC and VLC2 as well as the latest

collection ClueWeb09. In the period covered in Table 2.3 the size of the web grew

from hundreds of millions to tens of billions of web pages. It can be seen that collec-

tion sizes actually decreased from 1998 until 2004. In fact, WT10g was a sub sample

of the earlier VLC2 collection that was cleaned-up to be able to focus on textual infor-

mation from web pages. The second crawl from the .gov web domain, which is known

as the .GOV2 collection was an attempt to create a test collection of one terabyte in

storage size.

2.2.2 Topic Sets

Apart from assembling large document collections, creating a set of queries is another

crucial step in IR evaluation. Again, the basic methodology was developed by the

TREC organisers using the influential research outcomes from the previous decades.

For the first eight TREC exercises 50 topics were created each year. The topics were

designed to reflect the information needs of real users. Hence, they were created by

2 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html,
retrieved on March 1, 2012

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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assessors who also created the relevance judgements, and each of the topics repre-

sented a genuine information need. The diversity of the topic set was also considered.

Each topic was tested by running an initial search on a sample of the document set.

Only topics that matched approximately 25 to 100 documents from the sample set

were used for the final topic set [74]. This procedure generated a range of narrower

and broader topics.

Another important contribution of the early TREC exercises was the definition of a

topic structure to allow easy automatic processing. It became the norm for almost

every text retrieval task and consists of four elements: (1) a topic identifier, (2) a

short title, which reflects the type of requests users submit to web search engines

today, (3) a one-sentence description of the information need, and (4) a narrative part

that aims to provide a complete description of document relevance for assessors [74].

Figure 2.1 contains an example to illustrate the structure. The intention of the detailed

formulation was to ensure the topic was understood completely. However, it enabled

the research community to evaluate specialised tasks by restricting the parts of topics

to be used for automatic query construction.

The number of queries used to compare a set of systems is one of the central prob-

lems in IR evaluation. A typical topic set used in TREC-like IR system evaluation

contains 50 topics. The underlying assumption is that the sample of topics should re-

flect real user information needs. In order to achieve a high coverage of all kinds of

queries, a reasonable amount of different types of topics is needed. The exact amount

of topics required for meaningful comparison of IR systems also depends on the un-

derlying search task and the data collection. For homogeneous collections like library

catalogues or news wire, 50 topics are considered to be an adequate amount.

In heterogeneous web search scenarios the number of topics needed to achieve high

coverage of possible formulated information needs might be considerably higher. This

particular problem was addressed by the Million Query track at TREC from 2007
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<top>

<num> Number: 192

<title> Topic: Oil Spill Cleanup

<desc> Description: Document will identify a method, procedure, or
chemical used in cleaning up oil spills such as the Exxon Valdez.
Only oil spills on water (ocean, bay, lake, etc.) will be used.

<narr> Narrative:
To be relevant a document will identify a method, procedure, or
chemical process used in cleaning up the water and beaches after a
major oil spill, such as the Exxon Valdez incident. The mere mention
of cleanup efforts without identifying the method or chemical used
is not relevant. A document that refers to a procedure such as
scrubbing, spraying, etc. is relevant. References to the cost of
cleanup and number of people and equipment involved without
mentioning the method are not relevant.

</top>

Figure 2.1: Example topic from TREC-3 ad hoc task.

to 2009 [2]. 10,000 queries (in 2007 and 2008) and respectively 40,000 (in 2009)

were made available to participating institutions. Different amounts of topics from the

total pool were evaluated each year: 1,755 (2007), 874 (2008) and 684 (2009). Using

complex but efficient methodologies for evaluation, the organisers were able to show

that human assessor effort could be spread on up to 20 times more queries than in

traditional ad-hoc evaluation tasks [37].

2.2.3 Relevance Judgements

Creating new test collections for evaluation experiments involves a considerable

amount of manual work to obtain relevance judgements. For small collections compa-

rable to Cranfield I and II, assessing most, or even all, of the documents for relevance

seems feasible. For large-scale collections with several millions of documents, ex-

haustive evaluation for relevance, even using just a few topics, is impossible.
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To reduce the manual effort, a method called pooling was introduced [171]. Rather

than judging each document with respect to every topic, all top k documents returned

by each competing system are merged into a common pool and all duplicates are

removed. The depth k of the pool corresponds to the common cut-off level of the

contributing result lists. Only documents in the pool are assessed for relevance to a

corresponding query by presenting them in some random order to the human relevance

assessors. All documents that are not part of the pool are considered irrelevant based

on the coherent assumption that documents not listed within the top k ranks of any of

the contributing systems are unlikely to be relevant. But the application of this pooling

strategy results in incomplete relevance judgements.

2.2.3.1 Incompleteness

Incompleteness is a potential problem regarding the re-usability of test collections.

Therefore, an ideal test collection should include enough relevance judgements to al-

low comparison with systems that did not contribute to the original pool. If a new

system retrieves relevant documents within the top k documents that are not part of

the initial pool, incompleteness results in a bias that penalises new systems. The main

reason for this effect is the assumption that documents excluded from the pool are

not relevant. Some experimental studies showed that pooling does omit relevant doc-

uments [72, 74]. Although different amounts of new relevant documents can be found

per topic in a second round of assessing relevance, comparative evaluation of systems

remains reliable [199].

Another approach when handling documents without relevance information, is to ex-

clude them from the ranked system output and use the resulting condensed lists for

evaluation [154]. However, excluding a document that was rejected because it had

been considered to be irrelevant by many systems previously, and promoting a docu-

ment that is more likely to be relevant (because it was in fact returned by other sys-

tems) instead, tends to result in evaluation bias in favour of new systems [155].



2.2 Test Collections 29

Other effectiveness metrics are specifically designed to handle incomplete relevance

information, namely BPref [30] and RBP [133] (see Section 2.3). A recent study [189]

on TREC ad-hoc experiment data proposed to account for the pooling bias against

unpooled systems by bias estimation based on existing systems. It also reported that

assessing pooled and unpooled systems on a small common set of topics, and using

the observed bias to adjust the bias on existing topics, reduced error rates in ranking

systems. Another form of bias is introduced when top k pooling is applied to larger

collections (see Table 2.3), and the pools tend to be too small in relation to the total

document set size. A recent study [27] showed that relevance assessments obtained

by traditional pooling can be biased in that they favour relevant documents containing

topic title words. Instead of being dependent on the number of relevant documents for

a topic [72] this effect was found to be wholly dependent on the size of the collection

[27].

2.2.3.2 Reducing the Judgement Effort

In TREC-7 and TREC-8 the large number of submitted experiments for the traditional

ad-hoc search task, (103 and 129), demonstrated that even pooling top k = 100 may

result in an immense human effort to obtain a total of 80,345 (TREC-7) and 86,830

(TREC-8) assessments. A single assessor would need to work 24 hours a day for

approximately four weeks, assuming he could decide about relevance at a rate of two

documents per minute. As a result, some researchers proposed methods and studies

on empirical data to reduce the assessment effort.

The most obvious approach is to reduce the depth of the assessment pool, i.e. min-

imising the number of judgements per topic. An empirical study that restricted the

depth of the pool to a rank cut-off level of 20, 10, and 5 by algorithmically select-

ing documents, showed that even small pools are good approximations to evaluations

using larger pools (50 or 100) [35]. However, such an approach might harm the re-

usability of a test collection. Another option is to formulate topics that either have a
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small number of relevant documents by definition, such as known item search [16]

or constrain the document set in a specific way. This restriction dramatically reduces

variance across topics and restricts the information about the difference of systems

accordingly. A strategy named “Move-to-Front pooling” [43] introduced a policy to

change the priority ordering of the pool by assuming that documents at higher ranks,

and documents from systems whose recently discovered documents were relevant, are

more likely to be relevant. A similar approach started with judging a shallow pool first,

and extends the pool using extrapolation from systems and topics [199].

More recent works have focused on sampling the documents for the assessment of

relevance. Both uniform random sampling [197] and stratified sampling, a combina-

tion of pooling and random sampling [11], have been studied. Both approaches treat

incomplete relevance judgements as a sample drawn from a complete set of judge-

ments, and use statistical methods to estimate the actual values of effectiveness met-

rics. Another idea is to select a subset of documents for relevance judgement and

assign weights to these documents. The higher weights indicate higher value in deter-

mining a difference between systems with respect to a given evaluation metric [34, 36].

However, this “Minimal Test Collection” method produces values of metrics that are

difficult to interpret and might be problematic when comparing pooled and unpooled

systems.

Another line of research focused the selection of a subset of topics that could be suf-

ficient to estimate the ranking of systems under evaluation. By means of a network

analysis on TREC-8 experiments, the initial hypothesis that some topics are better

suited to distinguish between systems than others, was tested and verified [132]. How-

ever, serious concerns regarding generalisation were expressed in a recent follow-up

study [146]. It was shown that a subset of topics that works well for distinguishing

one set of systems may not be significantly better than a random subset of topics for

another set of systems.
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Using automatic relevance judgements for evaluation represents another group of

ideas to drastically reduce human effort in system evaluation. A first approach was

to form a top 100 pool from systems and randomly sample documents from the pool,

assume those to be pseudo-relevant, and evaluate the systems using pseudo-relevance

judgements [169]. Manually defining a number of query aspects that represent dif-

ferent articulations of a user information need was proposed as an alternative method

[58]. In the latter study, a single IR system was used for evaluation, assuming the union

of top k documents of the generated query aspects to be relevant, where each aspect

represented a system. Although evaluation without human judgements seems to be a

promising idea, the methodology and corresponding approaches have been criticised

for producing a ranking according to the popularity of systems, rather than the actual

performance in terms of some effectiveness metric [12]. A recent study across sev-

eral TREC test collections improved automatic system ranking by applying the idea

of topic subset selection [76].

In the context of the Web 2.0 with peer collaboration and user-generated content, new

applications have recently emerged. A promising phenomenon called crowdsourcing

has attracted researchers from the IR evaluation community, based on its potential to

reduce the costs for relevance assessments. Crowdsourcing describes a process where

a large task is sliced into relatively small items of work that are then outsourced and

completed by human workers [3]. Usually, the workers are offered a small financial

compensation for their work. Popular platforms at the time of writing are Amazon

Mechanical Turk3 or CrowdFlower4. Inspired by the potential applications of crowd-

sourcing for IR evaluation, a framework named TERC (technique for evaluating rel-

evance by crowdsourcing) was developed [5]. In this article the authors highlight ad-

vantages like fast and cost-effective evaluation and also describe potential pitfalls,

like the artificiality of the assessment task. One of the first contributions on the topic

of crowdsourcing aimed at answering the question of whether TREC assessors can be

replaced or not [4]. By running an experiment on a single topic and asking the workers

3 http://www.mturk.com, retrieved on March 1, 2012
4 http://crowdflower.com, retrieved on March 1, 2012

http://www.mturk.com
http://crowdflower.com


32 2 Information Retrieval Evaluation

to decide on the relevance of 29 selected documents (15 were known to be relevant and

14 were known to be not relevant) they found that agreement across the workers was

high for relevant documents and considerably lower for those not relevant. Regarding

their initial question, they concluded crowdsourcing could be a useful alternative in

obtaining relevance judgements.

When crowdsourcing is deployed to collect relevance information, assuring quality

becomes an important issue. Some researchers have already addressed the problem

and thoroughly investigated possible variables and mechanisms to control and assure

quality. A standard approach is to incorporate a training phase (or a qualification test in

a restrictive manner), and to apply subsequent sporadic tests using training data [116].

Such qualification tests were shown to increase the quality of the outcomes [95].

In the same study the researchers were also interested in how the amount of financial

compensation and the effort of the task affected the quality of the results. They ob-

served that higher payment increases quality. Task effort introduced more spam, but

when it was removed, quality was higher than for lower task efforts. Another work

suggested to apply quality control to parts of the experimental design, i.e. clear for-

mulation of instructions and good presentation of documents (e.g. highlighting query

words) [3].

All of the presented strategies aimed at reducing the effort needed to develop new test

collection. Although most of them demonstrated improvements repeatedly over tradi-

tional TREC-like designs, they share the downside of introducing additional errors to

the evaluation process.

2.2.3.3 Inconsistency

One of the major criticisms of system-based IR evaluation is the use of inherently

subjective relevance judgements. Consistency of judgements is closely related to this
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problem and represents another important issue of relevance assessments. A study on

early TREC experiments showed that system rankings correlate well, even for differ-

ent sets of relevance judgements, (obtained by asking three different human assessors

to decide on the relevance of documents) [181]. It is also commonly accepted that

relevance judgements from a single human assessor may change over time [22, 164].

Another potential issue that might affect the system ranking is how much knowledge

the assessors have about the topic to be judged. Similar to previous results, a study

that grouped judges according to their knowledge about topics found that obtained

relevance sets are different, but similarly the resulting rankings of systems correlated

well [14].

2.3 Effectiveness Measures

It has been pointed out that evaluation is a crucial part of the development process in

IR. Consequently, numerous metrics have been proposed to assess the quality of search

results. The Cranfield experiments compiled the foundations of modern IR evaluation

and hence the first measures to summarise system quality were introduced at that time

[39, 40]. Ever since, precision and recall are the most commonly used metrics to deter-

mine system effectiveness. Loosely speaking, recall measures how well a system did

at finding all relevant documents and precision determines how well it did at rejecting

irrelevant documents [45]. Although both measures were introduced in line with the

Cranfield experiments, they have been used in some experiments with Boolean search

systems before [158].

Many early IR systems produced such Boolean outputs: returning a set of documents

matching a user query without any order or preference between documents. Based

on these result sets, a contingency table (see Table 2.4) capturing several fractions

of the total document collection was created [40]. It divides documents into different

subsets based on the fact that they were retrieved in response to a query or not. It also
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Relevant Non-Relevant
Retrieved a b a + b
Not Retrieved c d c + d

a + c b + d a + b + c + d

Table 2.4: Contingency table representing fractions of collections.

separates the actual ground truth information on relevance for each document being

either relevant or not.

Three initial measures for retrieval effectiveness were derived from the contingency ta-

ble by combining cells that represented subsets of search outputs. These are precision,

recall and fallout. Precision is defined as the proportion of retrieved documents that

are relevant, recall measures the proportion of relevant documents that are retrieved

and fallout determines the fraction of non-relevant documents that are retrieved. The

corresponding equations are reproduced below.

Precision =
a

a+ b
(2.1) Recall =

a

a+ c
(2.2) Fallout =

b

b+ d
(2.3)

A possible interpretation of Table 2.4 is to treat retrieval as a classification problem.

A binary classifier would predict a document to be relevant or not and would return

a corresponding un-ordered set of documents. Given this observation two kinds of

errors can occur. First, a document might be retrieved (or predicted relevant) when it

is actually not relevant, which is referred to as a false positive. Second, a false negative

is a document that is relevant, but not retrieved (or predicted to be relevant). Besides

the measures in Equations 2.1, 2.2, and 2.3 some other measures that are used for

classification problems are also based on contingency tables. Two of these metrics are

specificity and accuracy which take into account the number of true negatives, i.e. the

number of non-relevant documents that are not retrieved in retrieval parlance.
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Since current search tasks are based on collections containing millions of documents

and only a small fraction of those is relevant to an arbitrary query, treating retrieval as

classification may return counter-intuitive results. A retrieval engine that is trained to

minimise classification errors could simply focus on true negatives and would conse-

quently tend to return no documents for any query issued. However, the distribution

of relevant documents is not always skewed like this, for instance for smaller collec-

tions which are more likely to feature uniform distributions for relevant and irrelevant

documents. Therefore, some researchers questioned the dominant application of pre-

cision and recall for retrieval evaluation [141]. In spite of this criticism most current

effectiveness metrics are still based on precision and recall.

Similar to the phenomenon between query throughput and query latency of search

systems there is a trade-off between precision and recall. Let us consider two different

retrieval systems theoretically: system A aiming at optimal precision and system B try-

ing to maximise recall. System A could simply return just the first relevant document

for each query, because returning more documents would increase the probability of

degrading precision. In contrast to that system B would simply return all documents to

any query since it guarantees all relevant documents are contained in the results. Con-

sequently, a system that tries to optimally answer a user query has to achieve both a

high precision and a high recall, i.e. returning as many relevant documents and reject-

ing as many non-relevant documents as possible. Already in the 1950’s researchers

became aware of the interconnection between recall and precision when they were

studying the effectiveness of library indexing systems [98]. The inverse relationship

between the two measures was first identified with the Cranfield experiments [39].

An important research question was how precision and recall could be merged into

a single measure. A number of possible summary measures were surveyed by van

Rijsbergen [179]. Based on this research, a measure called e was later proposed [180].

It is the precursor of the widely-used F-measure, which is defined as presented in

Equation 2.4.
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F =
1

α · 1
precision

+ (1− α) · 1
recall

(2.4)

The constant α is used to emphasise how much effect recall or precision have on

the resulting F-score. In a common configuration α is set to a value of 0.5, which is

defined as the harmonic mean of recall and precision. The resulting definition for the

F-measure is:

F =
1

1
2
· ( 1
precision

+ 1
recall

)
=

2 · precision · recall
(precision+ recall)

(2.5)

The advantage of the harmonic mean over the arithmetic mean, is that it is sensitive

to small values and that it is not affected by outliers that are unusually larger. Given

the two theoretic systems A and B that were “optimised” for precision and recall,

summarising by using the arithmetic mean would return F-scores greater than 0.5,

although either recall (system A) or precision (system B) are close to 0, (assuming

that the issued query has multiple relevant documents and the collection contains a

large number of documents that are not relevant). In contrast to that, the harmonic

mean will be close to 0, accounting for small values of recall or precision.

2.3.1 Evaluating Document Rankings

Early IR systems implemented and used in the 1950’s and 1960’s were based on

Boolean matching and so they returned unordered lists of documents in response to

every query. In contrast to that, modern retrieval systems rely on other retrieval models

and return ranked lists of documents. The IR community focused on adapting recall

and precision as evaluation metrics to assess the quality of these ranked lists. How-

ever, further definitions were needed to be able to use the two measures with document

rankings. Because of the limited utility of the original definitions of recall and preci-
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sion, other formal definitions were proposed [173] and verified based on empirical

data [125, 174].

A straightforward approach to adapt the definition of recall and precision would be

to calculate corresponding values for every position in the ranking. But queries may

feature a large set of relevant documents or the document ranking might be weak, i.e.

relevant documents are widely distributed in the ranked list. Therefore, it was proposed

to cut off the ranking at specific positions in the ranking and to calculate precision at

those positions. This measure is called precision at rank cut-off r (or P@r in short).

Its definition is given below (see Equation 2.6), where rel(i) is a function that returns

either 0 or 1 as a notion of binary relevance for a given document position d in the

ranking.

P@r =
1

r

r∑
i=1

rel(i) (2.6)

It can be seen that, if P@r is higher for one ranking than for a second ranking, the lat-

ter must consequently contain less relevant documents. The measure is typically used

to evaluate web search, where the results are typically presented on a single page that

contains a restricted number of documents (10 or 20). The example in Table 2.5 illus-

trates rankings obtained for two topics A and B, where topic A has five and topic B has

three relevant documents in a corresponding collection. Recall and precision are pre-

sented for the top ten positions of both rankings. However, using smaller cut-off levels

changes the goal a retrieval system should aim for. If only documents ranked above

position ten are part of the evaluation, the goal of the search task changes from finding

as many relevant documents as possible to finding at least ten relevant documents and

rank them at the top of the list for every query.
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Rank 1 2 3 4 5 6 7 8 9 10
Topic A Rel. 1 1 0 0 1 0 1 0 0 1

Prec. 1.0 1.0 0.67 0.5 0.6 0.5 0.57 0.5 0.45 0.5
Recall 0.2 0.4 0.4 0.4 0.6 0.6 0.8 0.8 0.8 1.0

Topic B Rel. 0 1 0 0 0 1 1 0 0 0
Prec. 0.0 0.5 0.33 0.25 0.2 0.33 0.43 0.38 0.33 0.3
Recall 0.0 0.33 0.33 0.33 0.33 0.67 1.0 1.0 1.0 1.0

Table 2.5: Recall and precision for two arbitrary topics.

2.3.2 Visual Representation

To avoid this problem, one option is to summarise document rankings by calculating

precision at defined levels of recall. Typically, these points of recall are 0.1 incre-

ments from 0 to 1 resulting in eleven standard recall points. Using the full range of

recall gives the desired result of capturing the complete document ranking, even if not

all relevant documents were retrieved. The values are usually presented in tables or

by using visual representations named recall-precision graphs. However, computing

precision at standard levels of recall can be difficult if there are only a few relevant

documents (e.g. the values in Table 2.5). Additionally, individual queries may produce

different shapes in visual presentation, which makes them difficult to compare. Figure

2.2 shows the recall-precision graphs for the example topics A and B from Table 2.5.

To obtain precision values at all standard recall levels, interpolation is used to esti-

mate non-existent values. A standard definition of interpolated precision Pr is given

in Equation 2.7, where a missing recall level r equals the highest actual precision value

for any level of recall r′ ≥ r:

Pr = max
r′≥r

Pr′ (2.7)

The assumption lying behind this is that an ordinary user would be willing to look

into some more documents given the chance that it would increase the proportion of

relevant documents in the viewed set. Additionally, it provides a definition of inter-
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Recall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Topic A 1.0 1.0 1.0 1.0 1.0 0.6 0.6 0.57 0.57 0.5 0.5
Topic B 0.5 0.5 0.5 0.5 0.43 0.43 0.43 0.43 0.43 0.43 0.43
Average 0.75 0.75 0.75 0.75 0.71 0.51 0.51 0.5 0.5 0.46 0.46

Table 2.6: Precision at standard recall levels computed using interpolation.
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Figure 2.2: Recall-precision graphs based on standard recall levels.

polated precision at the recall level 0. A standard way to obtain a single graph for a

set of topics is to convert recall-precision values for each query to precision values

at standard recall levels by means of interpolation. Precision values for all queries at

each standard recall level are averaged arithmetically. Table 2.6 presents interpolated

precision values for the example topics A and B from Table 2.5 as well as their average

at standard recall levels. Figure 2.2 illustrates corresponding recall-precision graphs.

Although being inconsistent with the interpolation method, averaged recall-precision

curves are commonly presented by simply connecting the precision values at standard

recall levels. Averaged recall-precision graphs are used throughout current evaluation

campaigns to visually compare top performing systems.
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2.3.3 Summarising Document Rankings

Even though recall-precision curves characterise the system performance achieved on

a single query, comparisons of different queries can be difficult. For this reason an-

other method to summarise document rankings in a single number was proposed at

the second TREC conference [71]. The measure was called non-interpolated average

precision, referring to other figures such as interpolated precision, which was com-

monly used until then. By now it is the most frequently used metric for the evaluation

of ad-hoc search, and referred to as average precision AP . Its formal definition given

in Equation 2.8 is based on the definitions from Equation 2.6, where N is the total

number of documents in a ranking and R denotes the total number of relevant docu-

ments. Note that P@r is used within the sum, which is the reason for passing index

values of i to P@r denoting r = i.

AP =
1

R

N∑
i=1

rel(i) · P@ri =
1

R

N∑
i=1

rel(i) · # relevant up to i

i
(2.8)

It can be seen from that the average precision computes the mean of precision values

for rank positions with relevant documents. Precision values from non-relevant docu-

ments are discarded. Consequently, average precision is just the sum of precisions at

retrieved and relevant documents, divided by the total number of relevant documents

for a query. A similar single figure measure is R-precision. It is defined as P@r, where

r is the total number of documents relevant to a query. Although R-precision is usu-

ally reported in evaluation exercises, it is used rarely for rankings of systems. Average

precision and R-precision share the feature of approximating the area under the recall-

precision curve [141], which is why both are reported to be highly correlated.
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2.3.4 Averaging over Query Sets

Retrieval systems are usually compared based on a number (typically 50) of differ-

ent queries asking for a further aggregation measure. Similarly to average precision,

a desirable property of such a metric would be to summarise document rankings for a

set of queries into a single number. A straightforward way to achieve this is to arith-

metically average the non-interpolated average precision values for all queries. This

measure is called mean average precision or MAP in IR literature. It is by far the most

widely used figure in research articles on IR evaluation. Given a query qi εQ, MAP

can be easily defined using the average precision as follows:

MAP =
1

‖Q‖

‖Q‖∑
i=1

APi (2.9)

The resulting MAP value has a linear scale, i.e. a certain interval for two queries at

the lower end of the scale has the same influence on the result as the same interval for

two other queries on the upper end of the scale. Recently, a lot of research has focused

on how difficult queries are accounted for by such a linear scale. In the course of that

development, system robustness was identified as an important problem to focus on.

The idea of robustness is that an IR system should return at least passable results for

every query submitted by a user. Consequently, to assess the robustness of systems

more attention needs to be drawn to the lower part of the scale of an evaluation metric.

However, there is no obvious solution to adjust MAP to emphasise on difficult topics.

Instead, a different way of averaging was introduced. Geometric mean average preci-

sion or GMAP solves this issue, because it multiplies AP values. A formal definition

is presented in Equation 2.10.
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GMAP = exp
1

‖Q‖

‖Q‖∑
i=1

logAPi (2.10)

Using the logarithm (or the product) over AP introduces a mathematical problem when

a system is unable to identify any relevant document for a specific query. In that case

AP equals zero and causes GMAP to be undefined or zero respectively. In IR evalu-

ations some queries are always hard to solve. Given that two systems would fail on

different queries they can not be ranked using GMAP. A pragmatic solution to this

problem is to introduce an arbitrary small quantity ε that is added to all AP values

before taking the logarithm, and subtracted afterwards (see Equation 2.11) [143]. The

choice of an appropriate value for ε has caused some discussion in the IR community,

mainly because identical values have to be used to assure comparability across evalu-

ations. Another option is not to adjust the values of AP unless they are zero, assuming

that system failure occurs only in rare cases, and choosing ε to be smaller than the

lowest possible AP values. In a typical evaluation each ranked list contains 1,000 doc-

uments resulting in a minimum AP of 10−3. Thus, the maximum for ε should be 10−4.

Several evaluation tracks that addressed robustness of IR systems used ε = 10−5

[49, 184].

GMAPε = exp(
1

‖Q‖

‖Q‖∑
i=1

log (APi + ε))− ε (2.11)

2.3.5 Multivalued Relevance

All measures introduced so far are based on relevance judgements indicating a docu-

ment to be either relevant or irrelevant. These metrics fail to consider multiple degrees

of relevance. However, in real search scenarios some documents may appear to be

more relevant to an information need than others. The family of cumulative gain mea-

sures have been proposed based on a model of user search behaviour [90, 91]. Fun-

damental for this user model are the following two assumptions: (1) highly relevant
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documents are more beneficial than marginally relevant documents, and (2) the lower

a relevant document appears in a ranking the less valuable it is for a user, since it is

less likely to be examined. Within the framework of cumulated gain-based measures,

graded relevance is assumed to be a numerical measure of usefulness or gain obtained

by examining a document at a specific rank. To account for the second assumption,

relevant documents that appear at lower positions of the ranking are discounted by

using a function of the rank.

The discounted cumulative gain (or DCG) at any particular rank r can then be defined

as presented in Equation 2.12, where reli is the graded relevance level of a document

at rank position i. The discount or reduction factor is represented in the denomina-

tor of the sum. A different version of a discount function [31] that was proposed for

evaluation of web search results is reproduced in Equation 2.13. Given a set of graded

relevance assessments, the latter alternative significantly increases the impact of re-

trieving highly relevant documents first.

DCGr = rel1 +

r∑
i=2

reli
log2i

(2.12) DCGr = rel1 +

r∑
i=2

2reli − 1

log(1 + i)
(2.13)

Note that there is a close relation between the present DCG measures and P@r. Both

measures accumulate precision values up to a specific position in a document ranking.

While for P@r using P@10, P@20 or P@50 are commonly used figures, DCG is

mostly used at higher cut-off levels such as five or ten. Similarly to the effectiveness

measures presented before, DCG can be normalised resulting in a measure named

normalised discounted cumulative gain (or nDCG). The standardisation is achieved

by relating DCG for a ranking against the IDCG obtained for the perfect ordering of

relevant documents for a query, i.e. sorting relevant documents in decreasing order of

relevance grades (see Equation 2.14). The resulting interval for nDCG is the same as

for other commonly used measures like AP or MAP and lies between zero and one

(both being part of the scale).
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NDCGr =
DCGr
IDCGr

(2.14)

Besides the popular NDCG metric, a number of other measures based on graded rel-

evance have been proposed. Some researchers argued that using a discount function

based on variants of logarithms may not be an appropriate model for user search be-

haviour on a ranked list of documents. Instead of using a general reduction for lower

ranks, they proposed to model the patience of a user in a measure called rank-biased

precision [133]. This is achieved by incorporating the probability of a user’s persis-

tence when moving to documents at lower positions in a ranking.

2.3.6 Other measures

Many of the evaluation campaigns that aim at specific aspects of information access

developed test collections with graded relevance judgements. Measures like average

weighted precision (or AWP) or the Q-measure were introduced in the course of the

Asian language exercise NTCIR [152]. Another example is extended cumulated gain

(or XCG) that was developed at the INEX campaign to assess retrieval of document

passages, when only fragments of large documents are relevant for a query [96]. Some

applications of information access require focusing on specific aspects of effective-

ness, but do not necessarily rely on graded relevance. In the domain of legal search,

for example, the main objective of a search task is to find every relevant document,

since a single missed document may invalidate a patent application, or could help a

lawyer in a current case. As a result, the evaluation metric for this scenario has to

focus on recall, of course without undervaluing precision. Such a metric was recently

proposed and tested in a prior art candidate search scenario [123].

Other applications, like Question Answering, or known item search, require measures

that capture the position of a few or just a single relevant document. Mean reciprocal
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rank (MRR) was the first metric proposed for evaluation of such scenarios [94]. Like

the name suggests, the measure simply calculates the reciprocal of the rank at which

the first relevant document is retrieved and the resulting values are then averaged over

a set of queries. Another group of metrics is used for evaluating search without the

presence of explicit relevance statements. Those figures are typically based on prefer-

ences of documents, where a preference ranking is usually obtained from query logs.

Evaluation based on preference is a comparison of two ordered sets of documents

with one being the ideal ranking. This interpretation reveals that evaluating prefer-

ences and multivalued relevance are closely related (see Equation 2.14). The earliest

measure for comparison of rankings or ordered sets is Kendall’s tau coefficient [97].

Despite its age, this metric is very popular in the IR evaluation community. The binary

preference (or BPref) measure was especially designed for handling preferences based

on incomplete binary relevance information [30].

The present section discussed a small selection of popular effectiveness measures used

for IR evaluation. It showed, that the growth of search applications and corresponding

evaluation scenarios led to new methods to assess search quality. This development

can be expected to continue in the future. All these efforts serve the ultimate goal of

alleviating user access to information. This thesis aims at bringing more transparency

to system-evaluation in laboratory environments. Nevertheless, using various mea-

sures is important, especially in laboratory experiments both as a sanity check for any

conclusion that may be drawn, and to detect specific features of rankings that may

only become visible because of this comparison of metrics. In the present experimen-

tal investigation popular measures for ad-hoc search, such as AP, MAP, GMAP, but

also nDCG, will be used to evaluate the effectiveness of system configurations.

2.4 Statistical Significance

The purpose of experimental IR evaluation is to assess which of the systems or con-

figurations under investigation perform better with respect to a given evaluation mea-



46 2 Information Retrieval Evaluation

sure. To be able to answer such a question, differences between metrics have to be in-

terpreted. A straightforward approach might be to calculate relative or absolute differ-

ences from the effectiveness measures obtained for varied systems. However, the mere

presence of an observed difference does not allow to draw the conclusion whether this

difference is meaningful or not. The reasoning behind this is straightforward. Eval-

uation measures are designed to summarise the data obtained from retrieval experi-

mentation, whose output is usually a list of ranked documents for a set of queries.

Thus, calculating an effectiveness metric could be considered as lossy compression of

the actual data (ranked document lists). Consequently, such an abstraction may hide

important details about the differences between search algorithms or retrieval systems.

Significance tests are statistical tools designed to draw conclusions about large sets of

experimental data. In their application for IR evaluation, significance tests are typically

used to compare the ranking of two search systems or varied configurations of a single

system. Such tests are based on a null hypothesis (H0) and estimate the probability p

of whether the observed differences are likely to be caused by random chance or not.

In IR parlance, the null hypothesis states that there are no differences between two

retrieval systems under examination, and that observed differences only occurred by

random chance.

An experimenter may conclude that H0 can be rejected if the probability p, also

termed p-value, obtained by applying a test statistic, is below a predefined thresh-

old α. Typical values for the significance level α are 0.05, or 0.01 in a more rigid

setting. If the null hypothesis is rejected, it is a common approach to assume that the

alternative hypothesis (H1) is valid, i.e. that there is a significant difference between

two systems.

In fact, instead of observing just meaningful differences, an IR researcher may rather

be interested in the question of which of the two systems is better. These tests are

called one-sided or one-tailed significance tests, because only one side of an underly-

ing probability distribution is of interest. In the scenario of determining the difference
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of two retrieval engines, both systems are usually tested on a common set of topics

and the scores for each topic are compared on a per-topic basis. Thus, statistical tests

in IR evaluation are usually matched pair experiments.

Since testing significance requires a Boolean decision about the validity of a hypothe-

sis two kinds of errors may occur. A Type I error appears whenH0 is rejected, although

in fact it is true, which is called a false positive event. In contrast to that a false nega-

tive results from accepting H0 although it is in fact false. These errors are called Type

II errors.

Similarly to the number of available IR evaluation measures, various types of signif-

icance tests emerged in research on statistical methods. They are based on specific

assumptions and therefore lead to different error rates and consequently to a different

balance between the two error types. A common measure for the quality of a signifi-

cance test is power, which determines the probability that a test rejects H0 correctly.

The power of a statistical test can be defined based on its test statistic. More powerful

tests make more assumptions about the data to reduce the chances of Type II errors. A

possibility to improve the power of a test is to increase the sample size, i.e. the number

of queries used to compare two systems.

Common significance tests used in IR evaluation are presented in the following. An

example using real data is used to illustrate the differences between these tests, all of

which having their own test statistic and null hypothesis. Figure 2.3 shows differences

between two system configurations from our experimental evaluation for individual

topics. Two distinct configurations are compared on a standard news collection using

a set of 84 topics that have been used in the Grid@CLEF track in 2009 [62] and at

several other CLEF tasks before. The example system configurations achieved a MAP

of 0.5657 (system A) and 0.4859 (system B). Based on this effectiveness metric, a

relative difference of 0.1641 and an absolute difference of 0.0798 are found. Given

these observations, the question of whether those measured differences are statistically
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Figure 2.3: Differences of AP for two system configurations on per-topic basis.

significant or not still remains open. However, the criterion, by which the difference

between system A and B is judged, is well defined. Since MAP is used as effectiveness

metric, the differences in MAP forms the basis of the test statistic. The next step is to

formulate a null hypothesis H0 and to chose a significance test in order to determine

whether the corresponding H0 can be rejected or not.

Statistical tests can be roughly divided into non-parametric and parametric tests. Non-

parametric tests make fewer assumptions about the underlying data and tend to gen-

erate more false negatives (accepting H0 and concluding that there is no difference

between two systems, although there is in fact a difference between them) [158]. In

contrast, parametric tests are more powerful, especially in reducing the chance of such

Type II errors, but they make more assumptions about the data. If an underlying as-

sumption of a statistical test is violated, the rate of Type I errors is very likely to

increase. A selection from these two groups of tests which covers those commonly

used in IR evaluation research, are considered in the following subsections [167].
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2.4.1 Student’s t-test

The most commonly used significance test in IR evaluation is the t-test, also referred

to as Student’s t-test. The null hypothesis for the t-test is that the values from two

systems are random samples from the same normal distribution, and that the mean of

the distribution of differences is zero [45, 64]. The test statistic is given in Equation

2.15, where N is the total number of paired values (i.e. the number of topics), µD

denotes the mean of the differences of all matched pairs, and σD gives the standard

deviation of the differences. The constant µ0 is usually set to zero in IR evaluation.

It can be used to test whether the mean of differences is significantly different from

µ0. Given the data from the example systems A and B in Figure 2.3 the following

values result for the test statistic: µD = 0.0797, σD = 0.2122, and t = 3.4434.

Using the sample size of the example experiment (N = 84) the resulting p-values are

α = 0.0005 (one-tailed) and α = 0.0009 (two-tailed). Based on the assumption that

the pre-defined significance level is set to 0.05, the null hypothesisH0 can be rejected.

Thus, using Student’s t-test, and the given experimental data, an IR researcher would

conclude that the example systems A and B are significantly different.

t =
µD − µ0

σD
·
√
N (2.15)

µD =

∑N
i=1Bi −Ai

N
(2.16) σD =

√∑N
i=1 (Bi −Ai − µD)2

N
(2.17)

Some IR researchers argued that the underlying assumption of normally distributed

samples is typically not met for experimental evaluation, based on IR effectiveness

measures. This is true especially if the size of the sample (the total number of queries)

is small. This assumption was also verified by empirical studies [159]. Another source

of criticism is concerned with the assumption of the t-test that the sample data is

measured on an interval scale. Measuring data on an interval scale means that equal
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differences on different parts of the scale have the same meaning. The motivation for

the GMAP metric (see Section 2.3) shows that this assumption is questionable. Nev-

ertheless, recent experimental studies compared several tests that are commonly used

in IR evaluation and found that the t-test produces similar p-values when compared to

other tests, which are distribution-free and do not rely on random sampling [159, 167].

2.4.2 Randomisation

When using a randomisation test, the null hypothesis is that the two systems under

examination are identical [64]. Hence, on a given test collection, consisting of a doc-

ument collection, a fixed number of topics, and a set of relevance judgements, there is

no effect of system A, compared to system B, on the target effectiveness metric MAP.

Given this assumption, one could imagine a single system C, that produced the rank-

ings for both systems A and B. Consequently, the present results could be just labels

for different outputs of system C, obtained by issuing every topic twice to system C

and distinguishing the outputs using the labels A and B. Following this idea, the result-

ing labels can be thought to be arbitrary. The two systems are compared on a sample

of 84 topics and therefore, 284 (∼ 1.93 ·1025) permutations of labelling the scores for

systems A and B exist under the given hypothesis H0. In addition, all of these outputs

for system C are equally likely to occur. One of these labellings is precisely the one

that generated the differences reported in Figure 2.3.

When all permutations are generated the difference between the system A and B can

be calculated for each of them. Given the differences for the 284 permutations, the

number of times such a difference is greater or equal to the observed difference of the

example (0.5657 − 0.4859 = 0.0798) can be accumulated and divided by the total

number of permutations (284). The resulting number would be the precise one-tailed

significance level for H0. The two-tailed p-value could be obtained by counting the

number of times, when the absolute value of differences is equal or greater than the

observed difference.



2.4 Statistical Significance 51

Even today computing 284 permutations for a dataset with only 168 discrete values

takes an unacceptable amount of time, especially when contrasted with the amount

of information that is gained as a result. Thus, it seems reasonable to take a random

sample from the total number of permutations in reasonable size. Evidently, the larger

the size of the sample the more accurate the resulting estimate for the significance

level will be. In the time when the randomisation process was formulated, such a test

was in fact infeasible due to the missing availability of cheap automated computing.

Therefore, further assumptions and constraints were inevitable in order to reduce com-

putational effort. One of the approaches to achieve such simplification was to replace

the actual differences with ranks of the scores.

2.4.3 Wilcoxon Signed Rank Test

Since the Wilcoxon signed rank test is a simplification of the randomisation test, it

is based on exactly the same null hypothesis. It was especially designed to obtain an

approximation of the significance of differences in a fast way [191]. In order to limit

the computational cost, some additional assumptions were needed. The test assumes

that paired differences of effectiveness values can be ranked and that their magnitudes

can be discarded. To obtain the test statistic, the absolute values of paired differences

are ranked in ascending order first. In a second step, depending on whether the paired

difference was greater or smaller than zero, each rank is given the sign of the original

difference. Zero differences are discarded. A list of increasing integers mixing positive

and negative values is obtained as a result. It is used to accumulate the test statistic w

as given in Equation 2.18, where Ri denotes a signed rank integer and N equals the

total number of non-zero differences in paired scores.

w =

N∑
i=1

Ri (2.18)
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For the example given in the beginning of this section six zero value pairs were found

resulting in 78 signed ranks and a value of w = 1093 as test statistic. The corre-

sponding p-value of 0.0033 for a one-tailed test and 0.0065 for a two-tailed test allows

the conclusion that H0 can be rejected. As a result, the improvement of system A

over system B can be regarded as significant. Due to the availability of fast personal

computers the original purpose of Wilcoxon’s test - to give a fast approximation of

statistical significance - is not a valid condition any more. Several studies compared

the test to others and suggested that it be omitted, because of high Type II error rates

[87, 167, 190].

2.4.4 Sign Test

Similar to the significance tests introduced so far the null hypothesis of the sign test is

that two systems have the same distribution of test samples. The precise formulation

of H0 is, that given a sufficiently large sample, the number of trials where system B is

better than system A, is expected to be equal to the number of trials where system A is

better than system B. This assumption allows further simplification. In contrast to the

Wilcoxon signed rank test, where magnitudes of differences are roughly approximated

using ranks, all information about the magnitudes of differences is discarded for the

test statistic of the sign test. The test statistic is based on the binomial distribution

and relies on the total number of sample pairs that are not tied. Since most IR effec-

tiveness metrics use an interval scale from zero to one they could be calculated up to

infinite precision. Hence, some definition for the minimum absolute difference d of a

matched pair is needed. A value of d = 0.01 was proposed for empirical significance

testing using the sign test [167, 180]. This variant of the test is termed sign minimum

difference test.

For the example given in Figure 2.3, system A has the better performance in terms of

AP on 48 topics. Therefore, the sign test returns a two-tailed p-value of 0.0535 based

on 48 successes out of 78 trials, (note that the six ties are discarded). The result would
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allow the conclusion thatH0 can not be rejected, a conflictive observation with respect

to the Wilcoxon signed rank test. The sign minimum difference test using d = 0.01,

has 40 successes out of 66 trials and returns a p-value of 0.109 that is even larger.

But it would also lead to the conclusion that system A and B are identical. The sign

minimum difference test is naturally dependent on the value of d. When d is set to

0.05 the p-value for the given example decreases to 0.0153 allowing the rejection of

the null hypothesis. Obviously, this sensitivity to the value of d is problematic as it

can result in such contradictory results.

Both the Wilcoxon signed rank test and the sign test are variants of the randomisation

test. All of these tests count the number of successes, using different statistics from

the total number of permutations for the paired scores. Although the sign test seems

to be inconclusive on the provided example data, it could be used to obtain an approx-

imation for the significance of differences based on the number of successes a new

IR method achieved over a baseline approach on a common set of queries. From a

current point of view, the Wilcoxon signed rank test and the sign test are inappropriate

as detailed statistical significance tests for IR evaluation, due to the simplicity of their

underlying statistics. But they are still good enough to provide a rough idea about the

significance of difference.

2.4.5 Bootstrapping

Another significance test that was proposed to be used for IR evaluation is the boot-

strap test [57, 160]. The bootstrap test is not based on assumptions about normal or

continuous distribution of the underlying data. Its null hypothesis is that the sample

scores for two systems A and B are random samples from the same distribution. The

goal of the bootstrap method is to estimate the population distribution of the data set.

This is achieved by sampling with replacement from the observed samples. In the

case of IR evaluation, data pairs of scores for system A and B are drawn until the

total number of samples equals the number of queries used in the experiment. In the
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next step the test statistic is computed over the obtained set of matched pairs. Any test

statistic can be used for the bootstrap method. Some researchers prefer the difference

in the mean average precision [167] others use the test statistic from the t-test [153].

The procedure is repeated B (for bootstrap) times to create the bootstrap distribution

of the test statistic. Values for the number of iterations B differ for empirical studies,

(B = 1, 000 in [153], B = 100, 000 in [167]). In general, the more iterations are

used, the more precise the estimation of the distribution of the sample population will

be. The sampling process might produce biased samples and therefore the bootstrap

distribution may be biased. The H0 distribution is generally unknown except for the

fact that the means of the scores are zero. Thus, a convenient way to adjust bias in the

bootstrap distribution is to shift it so that its mean is zero [167].

Given the fact that modern computers are capable of generating large samples of small

sets of matched pairs in a short time, it is possible to obtain a good approximation of

the significance of differences between IR systems. Many recent studies use the boot-

strap method, because it does not rely on normal or continuous distributions of effec-

tiveness scores, i.e. it can be used with effectiveness metrics like GMAP or nDCG.

2.4.6 Concluding Remarks and Implications

As with the use of effectiveness metrics, no statistical significance test is suitable for

every IR evaluation task. However, it is important to keep in mind what conclusions

are to be drawn from the sample data and to ensure that the underlying assumptions of

the test’s null hypothesis, and the assumptions about the data under examination are

met. An IR researcher who is interested in determining whether a new method works

better on most queries from a given set of topics than a reference baseline, or not,

could use the simple sign test. Given a specific effectiveness metric, if the question

is whether the scores are significantly better for system A over system B, other tests

such as student’s t-test, randomisation or bootstrapping should be considered.
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For the two example systems A and B with MAP of 0.5657 and 0.4859, the following

test statistics were used to calculate statistical significance levels. The sign test re-

turned a p-value of 0.0535 and the sign minimum difference test (with d = 0.01) gave

a p-value of 0.109. The student t-test resulted in a p-value of 0.0009 and the Wilcoxon

signed rank test’s p-value was 0.0065. Given the assumption that a researcher declares

p-values less than 0.05 to indicate significant difference for the examples above, all

except the two sign tests are able to detect this significance. If a researcher uses one

of the sign tests and fails to detect significance he might be spending more time devel-

oping methods that improve retrieval performance than actually necessary. In contrast

to the suggestions in Section 2.4.4 the Wilcoxon test detected the present significant

difference between systems A and B which indicates that it still gives a good approx-

imation.

Another idea in early IR research was to use rules of thumb for determining significant

improvements in effectiveness evaluation. A widely-used rule is based on absolute dif-

ferences in MAP and states that any performance differences of less than 5% percent

must be discarded [170]. Another vague formulation for the degree of significance

without having a statistical test at hand was also proposed in [170]. Differences in the

order of five to ten percent could be termed noticable, while differences larger than

ten percent could be regarded as material improvement. Due to the lack of statistical

foundation these rules of thumb are only rarely used in research publications. An em-

pirical study on the reliability of test collections and effectiveness measures showed

that, given a standard topic set with 50 queries, relative difference in effectiveness

scores between two systems of ten percent or larger can be regarded as reliable [159].

Based on the data for the example used throughout this section, with an absolute dif-

ference of about eight percent, the given rules seem to agree with most of the actual

statistical significance tests.

Some of the presented statistical significance tests were found to return poor estimates

of the significance of differences [167]. However, it is worth noting that a curious

researcher could use a selection of the present tests and take resulting significance
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levels as a sanity check for the obtained results and their implications. In contrast to

that, a faulty scientific approach would be failing to detect significant difference on

a sample of effectiveness scores using a test T1 and, because of being in the hope of

finding significance, to test the same data set on a second test T2. Furthermore, every

IR researcher needs to be aware of the fact that statistical significance tests are generic

tools to summarise observations and return a Boolean decision given a prior hypoth-

esis. Therefore, they return estimates that are dependent on representative samples.

In many cases of IR evaluation this is the main source of error resulting in unreli-

able conclusions from experimental evaluation. In addition to these objections, even

when a researcher is able to detect statistical significance another question remains

open. Are these results in fact practically significant? This question cannot be ad-

dressed by laboratory research and needs to involve models of users and user search

behaviour. Another undesirable effect of the summaries resulting from statistical tests

is that researches are tempted to omit detailed analysis of their experimental data, once

they have found statistical significant difference. A recent alternative to overcome this

problem, is the calculation of confidence intervals. In other areas of scientific research,

they have replaced significance tests as the standard method for analysing experimen-

tal data [158].

2.5 Limitations of Traditional IR Evaluation

The presented key elements of IR effectiveness evaluation demonstrate that laboratory

research only covers a small part of underlying real world problems. A test collection

and its components constitute just a small sample from actual data collections. As a

result, the design of the experimental test with the selection of documents and queries,

as well as the process of obtaining relevance judgements and the choice of appropri-

ate effectiveness metrics, affect the quality of the evaluation. More importantly, all

these factors influence the reliability and the possibility of generalisation from any

observation made in an experiment. Based on the success of TREC many researchers

investigated aspects of the reliability and re-usability of test collections components
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to enhance the quality of subsequent test collections. A re-usable test collection needs

to be designed in a way that ensures fair comparability with systems that did not con-

tribute documents to the pool of relevance assessments. Thus, some level of variance

from the systems under examination is needed to avoid a bias in the judgement pool.

2.5.1 Comparability of Empirical Experiments

The effects of topics, as well as inconsistency and incompleteness of relevance as-

sessments on the ranking of participating systems, are subject to many studies in IR

research literature [93]. A few recent studies focused on the development of effec-

tiveness metrics that account for possible sources of variance in evaluation. Other

approaches propose to adjust effectiveness measures according to possible bias from

documents that were not judged for relevance. Some researchers suggested score stan-

dardisation approaches to allow meaningful comparison of IR systems across test col-

lections. The main stream of research on the topic of reliability and re-usability con-

centrated on reducing efforts for the creation of new test collections. A careful selec-

tion of methods targeting at enhancing comparability and reliability of IR evaluation

based on effectiveness is presented in the following.

A central question in IR evaluation is: how many topics are needed to obtain a reliable

preference ranking of systems? Typically, researchers use large sets of empirical data

to gain insights into the more complex underlying problem. One of the most influen-

tial works introduced the concept of swap rates for pairwise comparisons of systems

[29, 183, 186]. In the first of these studies [29], given a pair of systems, the binary de-

cision concerning which of them had the better performance was investigated by using

different sizes of topic sets and various widely-used effectiveness measures. It was a

first attempt to find statistical evidence on how the number of queries, the effectiveness

measure used, and a definition of difference, affects the confidence of conclusions that

can be drawn from IR experiments. Based on the results of that empirical study it was

suggested that researches should be sceptical before drawing conclusions, even when
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50 topics were used. The authors also recommended the use of multiple test collec-

tions to check the stability of observations. In [183], the pairwise swap rate approach

was supplemented with empirical calculation of error rates based on the number of

topics used in experiments. Error rates for large topic sets (up to 50) have been extrap-

olated by fitting an exponential curve to the given empirical error rates for topic sets

up to size 25. A foundation based on statistical principles for the rather untidy extrap-

olation method was later given in [118]. The swap rate method was refined in [159]

to consider only statistically significant differences between pairs of systems. Several

significance tests were applied in this study and similar conclusions have been drawn.

In a recent follow-up study [186] that did not rely on extrapolation, an approach for

score standardisation across test collections was adopted [188]. The results showed

that even for topic sets with 50 queries, statistically significant differences may result

in high error rates for some effectiveness measures like P@10 or R-precision. As a

consequence it is recommended that researchers should remain sceptical when they

used only a single test collection.

All of the aforementioned research focused on just determining a fixed number of

topics that are needed to be able to draw reliable conclusions. It is commonly accepted

that more topics allow more confidence about the observations. Thus, the cost and

reliability of a test collection are proportional to the number of topics included [186].

This reasoning motivated another stream of research that deals with reducing the cost

for the creation of test collections. A number of approaches that focused on selective

strategies to keep the judgement effort as low as possible was presented in Section

2.2.3.2.

2.5.2 Sources of Variance

Several studies investigated the effects of test collection components on system perfor-

mance. The question had already been addressed after the first few TREC experiments.

In [15] six different methods for data analysis were applied to TREC-3 results in or-
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der to gain insights into interaction effects between common sources of variance in

IR evaluation. The researchers tried to answer the question of whether the observed

differences in system performance are real and how these differences relate to the vari-

ance of topics and document collections. They fitted an analysis of variance model to

the data and applied a special test for interaction. Three sources of variance were anal-

ysed: (1) systems, (2) topics, and (3) interaction. All three sources of variance were

significant and the effect of the topics was two and a half times larger than the sys-

tem effect. The observed interaction effect was about a fifth of the system effect. This

result suggests that differences in effectiveness scores for systems given a topic are

mainly caused by the nature of the topic and less due to the difference in retrieval sys-

tems. Similar observations have been found in a recent study that applied classic test

theory and generalisation theory to IR evaluation [19]. The researchers tried to find

an answer to the question of how good a test collection is. An alternative formulation

of the problem is: how reliable is a present performance comparison? They argued

that empirical analysis of test collections are data-driven assessments that focus on

test results rather than test design. In generalisation theory all sources of variance are

considered simultaneously. The authors studied topic, system and assessor effects on

retrieval performance and found that using more queries instead of obtaining more

assessments for topics should be preferred for future test collections. A limitation of

the generalisation theory method is that it investigates the reliability of a defined test

design given the number of items in each of the facets, i.e. if one is interested in which

occurrence is more reliable, each of the facets needs to be analysed separately.

The question as to what extent reliable and reusable test collections contribute to the

advancement of IR systems and theory was recently addressed in [9]. The authors

studied 106 publications from 1998 to 2008 and found that a total of 83 variants of

original TREC test collections were used. The result of the review and data analy-

sis was that an improvement in terms of system effectiveness was not measurable

over time, although the majority of published research claimed significant improve-

ments. This finding is quite discouraging and is considered to be due to the rare use

of competitive baselines. As a consequence statistical significance was often found.
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However, the authors reported that many of the reported results were actually worse

than the median at the original TREC tracks. This longitudinal meta-study impres-

sively demonstrated the side effects of averaging measures, be it effectiveness metrics

or statistical significance. Summary measures hide important details about empirical

data obtained from experiments and should only be used after the detailed analysis of

empirical results.

2.5.3 Longitudinal Analysis

At the time of writing, TREC is close to its 21st anniversary and other major ini-

tiatives like CLEF and NTCIR have celebrated ten years of successful IR evaluation

recently. Over the period of time various test collections have been created. Document

and test collections have been re-used in various retrieval tasks both at different eval-

uation campaigns and in private or academic evaluations. Due to the annual character

of evaluation campaigns, many document collections had been used for only a few

years. Respective test collections consisting of a fixed set of topics, system outputs,

and corresponding relevance assessments are completely unique, i.e. the test collec-

tions were not re-used twice without changes to at least one of their elements. The

trec eval evaluation tool and the experimental results of experiments contributed to

any task at TREC were made available in order to allow other research groups to com-

pare their systems to the original experiments. Unfortunately, due to the practice of

archiving the results of the experiments, and the description of the experimental set-

up and its parameters separately, careful comparisons require a lot of work on the part

of researchers who are interested in benchmarking a new model and its software im-

plementation. Thus, it is a difficult task to track the process of the overall improvement

of IR approaches.

The organisers of the CLEF workshops also developed a platform named DIRECT5

which provides access to the system outputs and evaluation results for most of the

5 http://direct.dei.unipd.it/, retrieved on March 1, 2012

http://direct.dei.unipd.it/
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retrieval tasks from 2000 to 2009. In contrast to the TREC website, DIRECT pro-

vides short descriptions for each of the experiments. These brief descriptions were,

however, collected as free-text information, which means each participant included

the information that he considered to be valuable. In addition to that brief informa-

tion on the experiment itself, a general categorisation of the query generation process,

which could either be manual or automatic, and the description of which part of the

topics had been used, were also collected. Together with the appendices of major re-

trieval tasks which contain experiment meta-data and values for selected evaluation

figures for each submitted experiment, the CLEF resources provide a fair amount of

descriptive meta-data.

The availability of frequently used test collections, previous evaluation results, and

publicly available IR systems allows a thorough investigation of the progress the IR

community has made over time. However, only a few systems are available to the

public, e.g. EvaluatIR [9]. The motivation for the development of this on-line repos-

itory is based on a critical review of IR publications from 1998-2008. The authors

of that study claim that their system could be used by IR researchers and publication

referees. Without belittling the efforts to create, operate and maintain a platform for

longitudinal evaluation there are some smaller limitations that could be addressed in

the future. The link between any research publication and corresponding empirical

results is not tracked within the system. Since IR systems and their configurations are

complex, this missing connection could still impede comparisons between systems.

Especially because it may not be clear what the actual differences are between a sys-

tem implementing a new method and a system that created the baseline reference. The

possibility of comparing systems on component-level is another desirable feature for

a resource like EvaluatIR. However, given current IR evaluation practice this seems to

be an ambitious goal. A meta-data standard for IR experiment description could help

to address the problem.



62 2 Information Retrieval Evaluation

2.5.4 General Concerns

The preceding sections covered major aspects of IR evaluation using test collections.

It may become obvious that many great ideas have emerged in the course of the de-

velopment, from experiments based on the Cranfield paradigm, to the organisation of

retrieval experiments like TREC. The achievements of the TREC organisers in insti-

tutionalising IR evaluation especially deserve a great deal of acknowledgement. How-

ever, there are also a few reservations that developed along with the success of TREC

and its successors. Three of these concerns were presented in [144] and serve as a

point of origin for the motivation of component-level evaluation.

A first objection to TREC-like experiments is their competitive nature. On the one

hand it advocates the development of better methods, but on the other hand it is merely

focused on results that are usually obtained from summary measures like MAP and

others. Statistical significance tests create a further level of abstraction when com-

paring experiments. This is an undesirable trend of considering the evaluation of IR

only as an investigation of the effectiveness of complete systems. As a result, detailed

analysis of experiments and their resulting outcomes is omitted, although it is likely

to provide insights into underlying issues.

Another problem with the manner in which TREC carries out IR evaluation is that it

is laboratory based experimentation. As a consequence many of the resulting collec-

tions, formats, and methods serve as tools for laboratory experiments. However, any

kind of laboratory experiment involves abstraction to allow the researcher to focus on

certain aspects of a specific problem, and as a side effect other aspects of the problem

under examination are ignored. But some aspects of the real world and their features

are easier to abstract than others. Thus, inevitable biases are introduced into experi-

mental studies. In the current IR evaluation paradigm one of the variables that resists

abstraction is user variance. Formulation of requests and obtaining relevance judge-

ments are a powerful abstraction to deal with user variance, but they limit the space
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of research questions that can be addressed. It simply avoids questions coming from

actual user information needs that may express actual anomalous states of knowledge

[17].

A final limitation given in [144] arises from the objection regarding abstraction. Eval-

uation of IR based on test collections is an artificial task that constrains the impact of

experimental systems. Finding pieces of information is in fact just a sub-task of any

other task, be it locating an email to follow-up on some pending communication pro-

cess, or gaining knowledge from pieces of information that are needed to solve a piece

of work at hand. Taking this point of view would involve looking at the goals of under-

lying tasks and how achieving a sub-goal, like finding a desired piece of information,

could contribute efficiently to solving a wider problem.

2.6 Component-Level Evaluation

Systems (or experiments) are ranked according to a carefully selected effectiveness

metric, like MAP or nDCG. Despite the laboratory nature of this experiment design,

ranking complex systems which consist of many configurable components, could be

considered superficial. Component-level IR evaluation is a concept that aims to over-

come this drawback.

A component of a modern IR system is an element that is specifically designed to solve

a particular task in the overall retrieval process. Prime examples for a traditional ad-

hoc text retrieval experiment are stop-word filters or stemmers in the indexing stage,

as well as ranking and relevance feedback models in the retrieval phase. Depending

on the retrieval task at hand, other components might be necessary. The importance

of each component and their orchestration, i.e. how all of the system components

interact, may contribute to the overall system effectiveness for a search task under

investigation. Details on how major components work and why different models or

parameters are needed are given in Chapter 3.
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In IR evaluation it is not possible to evaluate the effectiveness of a single component

without plugging it into a complete IR system, because search effectiveness is tradi-

tionally measured on ranked document lists. Conversely, that means if one is interested

in evaluating a single component (or its configuration), it is necessary keep all other

components fixed. However, this will not reveal anything about the effect that changes

to this particular component will have on the resulting search effectiveness when other

components of the systems are altered.

Another important aspect of the evaluation methodology is concerning the question of

which of the instances of any system component will be treated as suitable baseline

for comparison. It might be clear in the case of stop-word removal or stemming, where

omitting the components could be a straightforward baseline reference. But in the case

of selecting or altering parameters of a ranking model this strategy will not work due

to missing results. In order to properly analyse the effect of IR system components

on search effectiveness, the instances of each of the components under investigation

should represent the state-of-the-art.

In IR research, like in almost any field of research, most of the scientists specialised

on a single, or only a few aspects of the retrieval process, which results in a distributed

knowledge pool. A major challenge for component-level evaluation approaches is to

overcome this distribution, i.e. to design an evaluation architecture that allows the

combination of specialised components into a generic system. Some of the existing

approaches and theoretical frameworks are discussed in the following subsections.

2.6.1 Models and Approaches

Attempts to overcome the limitations of traditional IR evaluation cycles have been

already made in several evaluation campaigns. An overview on selected approaches

is presented in [70]. The authors of this study compared existing methods with re-

spect to the design of a generic framework for automated component-level evaluation.
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Although automated evaluation of IR system components is appealing to promote IR

evaluation research, the goal itself seems to be ambitious. Especially, with respect to

the organisation overheads which are already obstructing traditional evaluation cam-

paigns. It was pointed out before that the general problem with evaluation of IR system

components is the global distribution of expertise in the field. Creating a platform to

discuss and promote the expertise was one of the major goals of the TREC initiative.

The growing complexity of IR systems, which is driven by the variety of applications

for search technology, may have limited the utility of TREC-like campaigns in pro-

moting the exchange of expertise in the past decade. In order to thoroughly investigate

current obstacles for evaluation at component-level, the stakeholders and their fields

of work need to be identified first.

IR researchers and evaluation campaign organisers are the most important stakehold-

ers in the process. The former group contributes expertise in at least one of the IR

systems components, typically by means of evaluating proprietary or open program-

ming code. Organisers of IR evaluation tasks provide data sets and a specific problem

description for the search task under investigation, and take care of an independent

evaluation process. In traditional IR campaigns the data is simply distributed to the

researchers, who run proprietary experiments and create standardised results. These

results are then collected and assessed by the task organisers in order to create a rank-

ing of experiments (or research groups!).

If the goal of the evaluation is to create a ranking of components, which of course

has to be done for each type of component separately, an open question is how to re-

alise the comparison. From a very abstract standpoint the issue could be broken down

to decide either to distribute the input and output of each of the components, or to

exchange or collect the programming code of each component. The latter approach

could be realised by defining web interfaces or by organising actual exchange of pro-

grams or program code. In the following subsections, we present existing evaluation

initiatives and models in areas related to IR, which tackle the problem of comparing

technological approaches at component-level.
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Figure 2.4: Component-level data flow in the MediaMill evaluation framework, redrawn from [168, p. 425].

2.6.1.1 Exchanging Programming Code

Publicly available open-source frameworks that cover complete systems or self-

contained components are powerful methods in order to conduct empirical experi-

ments at system and component-level. Such an experimental framework for semantic

concept detection in video was made available to task participants for the MediaMill

Challenge [168]. A component-based architecture enabled research groups to replace

parts of the provided reference implementation with their own components that best

fitted their own research interest and expertise. Figure 2.4 represents the basic data

flow between components of the concept detection system implemented in [168]. In

that framework, a system for video concept detection was broken down into three ma-

jor parts, namely feature extraction, supervised machine learning and data fusion. At

least one reference implementation was supplied for each of the components. Each re-

search group which used the framework, could potentially exchange every component

with an implementation of its own concepts.
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An appealing feature of the approach is the distribution of a basic workflow, which

is implemented as a software framework. For this reason no additional protocols are

needed to exchange intermediary system or component outputs. But it also has the

limitation that the general workflow, which was designed to solve the problem of

detecting concepts in audiovisual content, is fixed [70]. As a consequence, radical

ideas to approach the underlying problem might not fit into the defined workflow.

A further drawback regarding the utility for component-level comparisons is the fact

that the provided components themselves are fixed, i.e. they are not further deployed.

Assuming that one research group developed a quantum leap in the feature extrac-

tion component and another group made substantial progress in the machine learning

component, the combination of both can only be tested if both groups contribute their

results to the framework. For that reason it seems plausible that such a framework

should either be used within an independent evaluation campaign or it should at least

be publicly maintained, in order to ensure that the underlying technology reflects the

state-of-the-art.

In the case of the MediaMill Challenge no information could be found as to whether

the provided framework was accepted by the respective research community and thus

it is hardly possible to draw a reliable conclusion regarding the success of the approach

with respect to component-level comparison. There is, however, a recent publication

that reports substantial improvement in two major components of video concept de-

tection systems when comparing two state-of-the-art systems from 2006 and 2009 [7].

2.6.1.2 Uploading Component Code to a Central Server

Another approach to component-level IR evaluation is a centralised algorithm-to-data

model [56]. In this scenario the test data and the general framework, including con-

tributions from task participants, are managed on a central server. This approach was

adopted for several instances of the Music Information Retrieval Evaluation eXchange
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(MIREX). The decision to implement the algorithm-to-data model was made due to

copyright restrictions on the test data, which did not allow to distribute the content for

research.

In the framework of MIREX the data collections have been stored on a central sever

and participating institutions were asked to upload the programming code of their al-

gorithms for evaluation. MIREX already organised the tasks according to different

sub-problems of the music retrieval domain. This evaluation design allowed the col-

lection and comparison of models and respective programming code at a low-level,

similar to the components of modern IR systems. However, the central server archi-

tecture introduced a number of additional challenges, which were discussed in detail

in [56]:

• Limited infrastructure capacity

In 2008, the data sets maintained by the MIREX organisers contained about

30,000 audio tracks, which required more than two terabytes of storage. Typi-

cal state-of-the-art music IR algorithms create intermediate feature sets that are

much larger in size than the actual data sets. Due to space limitations, these

intermediate feature sets had to be discarded in order to be able to store the raw

experiment outputs. Regarding experiment re-usability this is a serious limita-

tion.

• Managing submitted algorithms

MIREX did not introduce any formal restrictions on the programming code and

language of algorithms submitted for evaluation. But this introduced a heavy

burden in the management of the central server. The organisers used guidelines

to restrict file input and output formats and introduced coding conventions as

well as error handling schemes to lower this burden. As stated by the MIREX

organisers, managing and monitoring submitted algorithms consumed an aver-

age of 1,000 person hours per year [56, p. 251].
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• Re-running experiments

Due to the algorithm-to-data model, which resulted in limited storage, compu-

tation, and monitoring resources, there was no chance to correct bugs in submit-

ted programming code during the evaluation cycle. Moreover, even re-running

bug-fixed experiments on-demand was rendered impossible by the constraints

of the centralised architecture.

• Data integrity testing

Initiatives like TREC act as an independent authority in IR evaluation manag-

ing the creation of test collections and organising various search tasks. In the

focused music retrieval community, test collections have been created by re-

search groups that work in the field. Thus, another challenge for MIREX was to

obtain such collections in order to incorporate them. Due to missing standards

for the creation of music IR test collection, all of these test collections had to

be checked for data integrity and correctness.

These issues show that implementing a central architecture for component-level eval-

uation also has a number of pitfalls. Most of them are related to constrained resources,

which suggests that cost distribution is an important aspect for the design and imple-

mentation of a revised or new evaluation architecture. An ideal solution would be a

framework, which requires almost no additional work for research groups, but also

keeps low the expenses of maintaining the distributed or central evaluation. It is ob-

vious that the two aspects conflict and every evaluation architecture should assess the

stakes of this trade-off.

MIREX relieved the researchers from these burdens, but at the cost of the organisa-

tion authority. However, this solution was sacrificed for some other limitations. First,

there might be objections from potential participants who do not want or are not al-

lowed to submit programming code due to intellectual property restrictions. In fact,

this could also limit the usefulness of the comparison, because submitted components

might not necessarily reflect the actual state-of-the-art in the field. Secondly, due to



70 2 Information Retrieval Evaluation

the additional costs for the organisation and the resulting constraints (due to limited

computational and human resources), the evaluation cycle takes at least one year. In

comparison to traditional evaluation campaigns, which are conducted by central and

mostly independent authorities, this appears to be normal. From the perspective of

a researcher, however, waiting almost a year to be able to analyse the results of an

empirical experiment will be discouraging.

The MIREX experiments showed, that evaluation using a central server architecture

is an approach that deserves to be considered for the evaluation of IR systems at

component-level. What needs to be taken into account is the additional burden, which

is introduced at the expense of the task organiser in order to guarantee reliability of

the experimental evaluation.

2.6.1.3 Exchanging Intermediate Output

A further method to deal with the shortcomings of traditional IR evaluation is to ex-

change intermediary results between participants. This approach was adopted for the

Grid@CLEF pilot track in 2009 [62]. A framework for the generation of intermediate

component output, named CIRCO (Coordinated Information Retrieval Components

Orchestration) was created by the organisers. Each of the participating institutions

was asked to integrate CIRCO into their system. In order to co-ordinate the compo-

nents, a basic linear framework was proposed for the pilot task. It covered the indexing

process of IR systems consisting of tokenizer, stop-word filter, stemmer, and lastly,

ranking components. Figure 2.5 illustrates the planned data flow for Grid@CLEF and

shows obligatory and optional components.

On the one hand, this experimental design allowed participants to evaluate system

components on-site without integrating the program code of other groups. But on the

other hand, it turned out that the accumulated size of the intermediate output was
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Figure 2.5: Data flow of the Grid@CLEF pilot task for component-level evaluation, redrawn from [62, p. 6].

up to 30 times the size of the original collection. Given the fact that common doc-

ument collections require several hundreds of gigabytes of storage this may become

a challenging aspect for participating institutions that have limited resources at their

disposal. Moreover, the task used a linear framework that focused on the indexing

process and it contained only up to three intermediate component outputs, i.e. if more

components had been considered for evaluation, the data explosion issue (similar to

MIREX) would have been much worse.

In fact, out of nine groups which subscribed for participation in the task, only two

were able to submit their results [62]. Although the outcome of the task was rather

disappointing from the perspective of the organisers, some aspects of the task deserve

both attention and acknowledgement. The great potential of exchanging intermedi-

ary results from components is that it creates a high degree of transparency. Having

different component outputs at hand, it is possible to run a retrospective evaluation

of components in new combinations. More importantly, the component outputs could

be stored and made available for comparison in future evaluation tasks. However, to

be able to do so, the amount of data produced as intermediate output needs to be re-

duced. A straightforward approach could be to apply compression technologies that

are used for incremental backup of digital data or for revision control of documents.

Since many components of modern IR systems, which are part of the indexing pro-

cess, transform a stream of text or other pieces of information, it might be promising

to integrate methods for compression of incremental changes into the framework for

the generation of intermediary results. This could resolve one of the issues with the

Grid@CLEF pilot task. The idea of the grid experiments for component-level evalua-
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Figure 2.6: Modular architecture for the ALCIA evaluation at NTCIR-7 and NTCIR-8, redrawn from [131, p.
11].

tion for ad-hoc text retrieval will be addressed in Chapter 6. It will be combined with

the analysis of the experimental results from the Grid@CLEF pilot task. The corre-

sponding findings will be adapted in order to design a large-scale grid-like experiment

using the Xtrieval framework in Chapter 7.

The organisers of the Advanced Cross-lingual Information Access (ACLIA) task at

NTCIR-7 and NTCIR-8 also adapted the method of specifying an XML exchange for-

mat to connect common IR modules and Question Answering components. Figure 2.6

illustrates the formal architecture for experiments submitted to the ALCIA tasks. In

contrast to Grid@CLEF generating and exchanging system output was less complex

due to the architecture of the QA task, which operated at a higher level of abstraction.

The ALCIA evaluation experiments demonstrated a high potential of component-level

evaluation. It showed that exchanging intermediate results is both feasible and bene-

ficial. In particular, experiments and intermediate results that were submitted to the

collaboration track outperformed the configurations that were submitted from a single

group. This result suggests that the challenges of component-level evaluation can be

mastered, once a focused task architecture and corresponding data structures to ex-
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change intermediate system output have been designed. For the present example of

Question Answering systems the task formulation and the definition of system com-

ponents is straightforward. Moreover, the intermediate output is rather small, because

it consists of processed queries and result lists only. The situation might be more com-

plex for other search tasks.

2.6.1.4 Implementing Components as Web Services

Many of the models and frameworks used for IR evaluation that have been discussed

so far, mainly focused on a few particular tasks of the underlying problem related to

information retrieval, such as text transformation in the Grid@CLEF task, or Question

Answering in the ALCIA experiments. New tasks may appear over time and some of

them might be related to a task that ran a number of years ago. Thus, it is desirable

to store exact descriptions of tasks, systems and their components and configuration,

and evaluation results. The protocols to exchange queries and system outputs for eval-

uation are defined well. But there is no standard to deliver less formal descriptions

of system configurations. An attempt to solve this issue was made by developing the

Service-Oriented Information Retrieval Evaluation (SOIRE) system [55]. Basically,

this is a post-evaluation framework for analysis and report delivery, but it can also

be used to manage the archival storage of experiment data. Interfaces to web-based

tools were implemented so that every type of document is available as a resource.

The framework was successfully used for the evaluation of the CLEF-IP track in 2009

[151]. In the view of the present author, using service-oriented architectures for the

organisation and management of evaluation tasks is a key aspect to move beyond tra-

ditional TREC-like evaluations.

2.6.1.5 Designing a Framework for Automated Evaluation

Automated component-level evaluation has been proposed to solve key issues of tra-

ditional IR evaluation [70]. The basic framework follows the architecture of modern
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IR systems and resembles the illustration given in Figure 2.5. But instead of sub-

mitting ranked result lists or any type of intermediate output obtained from propri-

etary systems, participants will be asked to make available any system component via

web service protocols. All components should be registered at a central authority (e.g.

TREC). Based on this straightforward architecture a large number of experiments can

be conducted by alternating the components and configurations used.

Advantages over traditional IR evaluation are: (1) reduced amount of work for par-

ticipants, (2) less emphasis on the final ranking of systems, (3) identification of best

system configurations based on components contributed from different groups. The

author of the present work favours the design of the automated component-level eval-

uation model. This design and the implementation of the protocols for data exchange

over the web are crucial for the success of the methodology. But, a number of require-

ments have to be considered for the design of the protocols. Three essential properties,

namely stability, simplicity, and wide applicability, were also presented in [70]. These

properties are contradictory and a major limitation in practice. Since motivating par-

ticipation is one of the key problems of new evaluation models, it was suggested to

initiate the evaluation architecture by means of a publicity campaign that emphasises

potential benefits. Whether this idea will stimulate enough interest within the IR eval-

uation community remains an open question.

2.6.2 Challenges for Component-Level Evaluation Architectures

Although the approaches to component-level evaluation presented in the preceding

sections have been used for different evaluation scenarios, interesting similarities can

be found among them. The most obvious problem of any architecture that relies on

distributing data sets is the burden of additional communication cost in exchanging

inputs and outputs of intermediate system components. But what are the lessons to

be learned from the different approaches to the problem, when we are interested in

composing a component-based evaluation task for ad-hoc text retrieval? In fact, all
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of the presented architectures provide useful ideas for this scenario. But few of them

can be considered as successful evaluation exercises in the sense that the component-

level comparison yielded additional insights. In the opinion of the present author, the

ALCIA tasks at NTCIR are a good example, since they showed that a subsequent

re-combination of experiments using components from different institution improved

the effectiveness of the results. Such a result is very important in order to motivate

participation in similar tasks. What we can learn from MIREX is that a central server

architecture needs a lot of computational resources. The less restrictions are imposed

on the contributions of programming code, the more human resources are needed to

maintain and manage the evaluation cycle. The grid experiments at CLEF taught us,

that exchanging intermediate component output may suffer from the data explosion

problem. Last but not least, MediaMill demonstrated that an open component-based

framework could be used to investigate the overall progress of state-of-the-art system

components.

Based on these observations, the most important aspects of an ad-hoc text retrieval

evaluation architectures are discussed next. In order to balance the cost trade-off for

the communication overhead depicted in Figure 2.5, a web-based architecture may be

suited best. The efforts of the community to develop open frameworks like Lemur,

Indri, Terrier, and others, allow the assumption that these toolkits reflect the state-of-

the-art in ad-hoc IR. In case of a component-based experiment like Gird@CLEF, con-

sidering such toolkits would allow the use of their architecture and data structures to

cover the respective parts of the IR process. For instance, the IR library Apache Lucene

provides a good framework and numerous instances for the text transformation during

indexing. Thus, Lucene’s index format could serve as protocol for exchanging raw

or transformed inverted indices. The resulting amount of data for the indexing process

would be limited to the order of magnitude of the number of component configurations

and the size of the data collection, i.e. the storage overhead would be predictable and

also adhere to the set-up of the component-level evaluation task. It seems obvious that

the initial component-level evaluation tasks should be limited to certain parts of an IR
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system in order to keep the resulting experiments manageable. A similar approach can

be formulated for other parts of an IR system, like ranking, feedback, or data fusion.

An ideal architecture for component-level evaluation of IR systems incorporates the

most important frameworks according to their strengths in the respective part of re-

search (index compression, text transformation, ranking, data fusion, etc.). In order to

automate the evaluation or to dissolve the boundaries of time-consuming annual eval-

uation cycles, light-weight protocols could be implemented as wrappers for carefully

selected existing toolkits. Note that the described steps are only small enhancements

of existing technologies, i.e. component-level evaluation is possible as soon as the

protocols are generally accepted. One approach to achieve this acceptance is to per-

suade the community with an initial campaign that demonstrates the added values of

the approach.

Another question is how to incorporate the description of system components, which

are likely to be contributed from different sources, into the data sets that are archived,

to track the progress in the field. Traditional evaluation campaigns already capture

most information about submitted experiments. Using the ad-hoc task from CLEF

2009 as an example, such information is the task an experiment was submitted to,

and the institution, which designed and conducted the run. Digital object identifiers

are assigned to experiments for archival documentation. Further meta-data like object

identifiers for the topic set, the language of the topics, and the fields of the topics,

i.e. title, description, and narrative, which are used to simulate short, average or long

formulations of information needs, are also stored. Finally, Boolean fields are used to

indicate whether the queries were created from the topics manually or automatically

and whether the experiment was used for the creation of the relevance assessment pool.

TREC established a format for storing the final output of evaluation experiments, i.e.

a list of 1,000 ranked document candidates for each topic, which is used to collect the

results and provide for further statistical analysis of the results or certain aspects of a

retrieval task.



2.7 Summary and Implications 77

Keeping records of each system or experiment configuration would allow to draw

more meaningful conclusions from the results of any IR system evaluation. It would

also allow researchers to study and analyse relations between experiment configura-

tions and their resulting outcome instead of observing statistical effects on an unknown

set of experimental results. The lack of a standard that defines which components were

considered for an empirical evaluation, does not allow to draw conclusions from the

experimental set-up on the results of the evaluation. It is the authors strong belief that

capturing only basic information on the experimental set-up with a standard meta-data

format would be of great value for the IR community in the future. History has demon-

strated that simplistic meta-data standards like Dublin-Core or TV-Anytime are widely

accepted. Thus, it might be useful to use an abstract model of an IR system as a start-

ing point to develop a simple but well-defined standard to document IR experiment

configurations.

2.7 Summary and Implications

The present chapter discussed the state-of-the-art in information retrieval evaluation.

Since one of the main contributions of this work is the Xtrieval framework, which is

designed to analyse the state-of-the-art in IR research, the focus was on the most im-

portant elements of traditional evaluation. In order to reflect the enhancements of the

methodology, the development of IR test collections was presented in chronological

order, starting with the pioneer experiments at the Cranfield College of Aeronautics in

the late 1950’s.

With the design of empirical search experiments in a laboratory setting came the need

for metrics to compare the quality of methods for indexing and retrieval. For that rea-

son, the most popular effectiveness measures were also described. As test collections

grew in size and more applications included search technology, estimating the signif-

icance of empirical evaluation became a challenging issue for IR research. Thus, this

chapter included a review of statistical methods that are used in IR research. After the



78 2 Information Retrieval Evaluation

introduction of the most important tools and methods of IR evaluation, a critical view

on the results that were obtained in half a century of IR research and evaluation was

provided. Most of these critical comments serve as motivation for the present work.

TREC and other evaluation campaigns are organised as annual workshops to inspire

collaboration, but participants usually submit results produced by their own propri-

etary systems. The limitations of these system evaluations were discussed in Section

2.5, especially with respect to the analysis of resulting data and possible conclusions.

Modern IR systems are very complex and likely to reflect the specific expertise of an

institution or research group. But each IR system consists of various components, like

a tokenizer, a stemming algorithm, or a ranking model. All of them contribute to the

overall search effectiveness of the system. Given the traditional TREC-like test col-

lection consisting of a set of topics and the ranked output of a system, it is not possible

to investigate how any particular component contributed to the overall performance

of the system. Nevertheless, it is worth investigating, which instance from a set of

alternative components (or component configurations) is optimal for a given IR task.

An obvious approach to answer this question is to evaluate the alternatives separately

while all other components remain fixed as it was suggested in [144]. However, inter-

actions between alternatives of the component under examination and other parts of

the system may also affect retrieval performance. A study on the quality of test col-

lections has shown that interaction effects exist between topics and systems as well as

between topics and assessors [19]. Another problem with system evaluation is that it

impedes retrospective analysis and long-term reviews of IR tasks. Although evaluation

results are made available at the system level, it is hard to conduct retrospective anal-

ysis and draw conclusions from experiments, because it requires the re-assembling

of the experimental results and corresponding descriptions in the form of technical

reports.

Most of the limitations of traditional IR evaluation are obstacles that impede the clarity

of the results. Component-level evaluation architectures aim to overcome these limi-

tations. This particular field of IR research is still in its infancy. But it has the potential
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to create more value for the wide field of applications for search technology. In the

following Chapter, the most relevant IR system components are introduced in order to

provide insights into the complex architecture of modern IR system implementations.





3 Key Components of IR Systems

The composition and structure of an IR system can be defined in several ways depend-

ing on the level of abstraction. In Figure 3.1 [180, p. 4], a high level of abstraction is

used to illustrate the core architecture of an IR system as being composed of input,

processor, and output. The input to a search engine black box (processor) can either

be documents, or queries, and the output contains a number of document references.

Although such a definition appears to be trivial, it indicates the most important ele-

ments and corresponding interfaces.

Modern IR systems contain numerous components that process documents and answer

queries that are formulated in natural language. In order to ensure two major goals of

a search application, namely effectiveness (quality) and efficiency (speed), the system

Feedback

Output
Processor

Documents

Queries

In
pu
t

Figure 3.1: Abstract representation of the IR process, redrawn from [180, p. 4].
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architecture needs to be designed carefully [45, p. 13]. Indexing and retrieval are two

central processes that any IR system provides. In the definition above, they represent

the interfaces between the input and the processor, and between the processor and

the output. While the indexing process creates data structures that allow searching,

the retrieval process generates a ranked list of documents based on a user request by

utilising the index data structures. Both processes are described in more detail in the

following subsections.

The main purpose of the present chapter is to describe central processes in current

IR systems by means of different state-of-the-art models and corresponding software

implementations. The concept of a system component is used to describe the process

in an IR system that can be based on different theoretical models. Since the emphasis

of this work lies in retrieval effectiveness, the presentation and discussion of IR sys-

tem components is limited to three major elements: text pre-processing, core retrieval

models, and relevance feedback.

Text pre-processing is an essential element in every IR system, because it prepares the

vocabulary of tokens on which all of the other components operate. Both the docu-

ments and the queries have to be processed using the same chain of text processing

algorithms in order to ensure that the implemented core retrieval model will work ap-

propriately. The core retrieval model defines how the documents are matched and or-

dered in response to a query. This is typically achieved by the application of a ranking

function, which is based on term frequency statistics obtained from the documents, the

query, and the collection. Relevance feedback is an optional component in IR systems,

which is applied to improve the quality of the search result. In the following sections,

these key components will be discussed in detail. The focus is on widely used state-of-

the-art models and algorithms and the selection is restricted to components that will

be used for the empirical analysis in Chapter 7.
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3.1 Text Pre-Processing

According to the definition given in [45, p. 14] the indexing process of search engines

can be divided into the major components text acquisition, text transformation, and

index creation. The purpose of a text acquisition component is to provide access to

the documents that will be searched. Documents are provided as static collections in

traditional IR evaluation scenarios superseding the acquisition step. In practice almost

any resource of information is dynamically changing over time and therefore requires

a component that collects and stores document data accordingly. These sources of

information are typically organised in specific ways to facilitate user access, e.g. doc-

uments from the worldwide web or corporate networks are specified using uniform

resource identifiers. In the scenario of web search a crawler component identifies and

collects documents to be made accessible by the search engine. Since not only web

documents are heterogeneous in content, structure, and format, a major task of text

acquisition is to preserve as much of this additional information as possible. Because

of large amounts of documents such meta-data needs to be both carefully selected and

stored efficiently.

A major challenge when collecting documents and passing their contents to text trans-

formation components is the variety of digital text formats like HTML, XML, PDF,

and several other proprietary formats used in common office software packages. The

latter typically includes control sequences and content compression. Thus, compo-

nents that allow the conversion of these formats into plain text are required.

Another problem in this particular stage of the indexing process originates from the

diversity of character encoding schemes. The Latin alphabet, which most European

languages are based on, can be encoded using eight bits. Common encoding schemes

are ASCII, ISO-8859-1, or the UTF-8 format. All documents have to be encoded using

a single common encoding scheme to ensure consistent preparation of text streams for

following transformation procedures.
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A text processing component in IR transforms streams of text coming from docu-

ments. In order to keep the size of a resulting index as small as possible the documents

are reduced to a number of index terms. Index terms are selected to reflect the content

of the corresponding document and therefore ensure the quality of search results. Ob-

viously, a more restrictive selection strategy leads to poorer quality of the document

representation in an index and is likely to degrade retrieval performance. How the

streams of text coming from acquisition components are processed in order to prepare

the data for index creation will be discussed next. Tokenising, stopping, and stemming

are the most common concepts for this purpose, although they are by no means all.

The presentation of these steps is based on the typical sequence of the three steps in

an IR system.

3.1.1 Tokenising

For text transformation, documents are prepared as streams of alphanumerical char-

acters. Tokenising describes the process of splitting the character stream into tokens,

i.e. meaningful groups of characters like words. A simple form of a Tokenizer for

languages using the Latin alphabet could split a stream at occurring white space char-

acters. Given this example, tokenising may appear to be a very straightforward proce-

dure. This is in fact not true due to the variety of word forms or special characters. Vari-

ations like capital letters, hyphens, or apostrophes, potentially affect the performance

of a search engine. In English, for example, the words apple and Apple have different

meanings and using a Tokenizer that transforms any capital letter into a lower-case let-

ter would prevent the system being able to differentiate between the two. In a similar

scenario, a Tokenizer that removes apostrophes without any distinction between cases

like O’Hare International Airport and in a user’s point of view, will likely degrade the

system performance. Since large proportions of languages are static, typical Tokeniz-

ers are rule-based algorithms that handle most of these special cases. In order to match

query and index terms for retrieval purposes, submitted user requests and documents
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have to be transformed into tokens in identical manner. In contrast to tokenising all

subsequent text transformations operate on word level.

3.1.2 Stop-word Removal

Most words describe or contribute to the description of particular concepts in docu-

ments. There are, however, other types of words that do not contribute to the descrip-

tion of concepts. Thus, it is important to identify the latter type in order to exclude

them from the index vocabulary. Stopping, or stop-word removal, is the task of elimi-

nating those words from an incoming stream of tokens or text. Typical stop-words are

function words that contribute to form the syntactical structure of sentences. Particle

words like “the”, “of”, “or”, or “to” belong to this category. Stop-word removal has

usually no negative impact on the effectiveness of the IR system, in fact, there is a

lot of empirical evidence from TREC experiments showing that stop-word filtering

improves retrieval effectiveness.

Since stop-words are most likely function words, they depend on the morphology of

the language. Invariant stop-words like particles in English can be easily identified,

but for example in German there are cases of inflective stop-words like “ein”, “eine”,

“einer”, “einen”, and “einem”. Two straightforward ways exist that deal with these in-

flections. First, all inflections can simply be included in the stop-word list. Or second,

they can be grouped by a stemming algorithm in a first step and subsequently filtered

by removing the group’s representative.

In spite of the potential advantages of stopping, a major limitation of the technique is

processing phrases, especially those that wholly consist of stop-words. Shakespeare’s

quote “to be or not to be” is a prominent example. Although a list of such phrases

will be small in comparison to all possible requests, a search engine should be de-

signed to avoid such potential disadvantages. An approach to the problem could be to

use a smaller stop-word list during indexing (e.g. excluding “not” and “be”) and an
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adaptive stopping strategy (in terms of reducing the number of words in the request)

when processing queries. Another idea is to introduce a rule that does not allow two

or more subsequent words to be filtered by stopping. A remaining question is how

many words should be included in a stop-word list. Although typical stop-word lists

contain hundreds of words, there is no general limit for the number of stop-words to

be removed.

3.1.3 Stemming

The motivation behind using a stemming component in IR systems is to increase the

likelihood that words from queries and documents will match. Consequently, a stem-

mer processes streams of text on the level of words. As mentioned before, documents

are considered to be about concepts, which are described by words. But a single word

can cover a number of different concepts and a single concept can be expressed using

different words. A homonym like “bench” may refer to a bench to sit on, or a raised

portion of ground in a river, or a desktop. And the concept “money” may be expressed

using synonyms like cash, currency, or capital.

A stem is a common derivation, which is shared by a group of words. Sometimes the

common stem of a word is also termed root, although a stem may contain prefixes and

the root form of a word does not. However, such definitions are usually not needed for

the purpose of stemming in IR, because common algorithms only identify and remove

suffixes. Three basic groups of suffixes can be distinguished for stemming, namely

attached suffixes, inflective suffixes, and derivational suffixes.

An attached suffix is a particle word that is appended to another word. They are com-

mon in some Romance languages like Italian, Spanish, or Portuguese, where personal

pronouns are attached to specific verbs. Inflectional suffixes represent forms of the

grammar of languages. Thus, they can be applied to all words of a particular gram-

matical type. Some irregularities may nonetheless exist. Common examples are an



3.1 Text Pre-Processing 87

attached “-s” for the plural of nouns or the regular past tense extension “-ed” for verbs

in English.

Modifications of the stem, like an extra “p” in “mapped” or a dropped “e” in “solved”,

can be problematic for suffix stripping algorithms. A single inflective suffix can ac-

tually represent different types of transformations. In English, for example, the suffix

“s” could be a noun ending that indicates plural, a noun ending that designates posses-

sion, or even the ending of a verb that is used in third person singular. The last class

of derivational suffixes creates new words that often fall into a different grammatical

category. They may even change the meaning of the word. Derivational suffixes can-

not be attached by general rules of grammar. In English the suffix “-ness” transforms

an adjective to a noun with corresponding meaning, e.g. happy can be converted to

happiness or lazy can be reformed to laziness. Another suffix “-ly” can either alter

an adjective to build a corresponding adverb (e.g. glad - gladly) or transform a noun

into an adjective (e.g. master - masterly). The usual order of the presented classes

of suffixes in a word is derivational, inflective, and attached. Thus, they could be re-

moved algorithmically from the right to the left (assuming words are written from left

to right). A typical rule-based stemmer will try to remove all attached suffixes first, all

inflective suffixes subsequently, and lastly those derivational suffixes that are readily

identifiable. The process of reducing at least two words to a common stem is termed

conflation.

3.1.3.1 Stemming Errors

Since a stemming component conflates synonyms or variations of a common root form

it may introduce homonyms that are in fact unrelated. Depending on how aggressive

the stemming algorithm is, it may either create too many new (or wrong) homonyms

or it may not identify all synonym forms. The former is termed over-stemming and the

latter is called under-stemming.
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Under-stemming leaves a number of synonyms, wasting the potential to reduce the

index size. In contrast to that, over-stemming may degrade the performance of retrieval

systems, because different concepts are likely to be mapped as being one. A further

subtle distinction can be made between over-stemming and mis-stemming. The latter

happens in cases where some part of a word is removed because it looks like an ending

although in fact it is not. The former results from conflating two words with different

meanings by removing true suffixes.

To overcome mis-stemming and over-stemming errors, a dictionary can be employed

to identify different meanings of words that would be conflated otherwise. However,

even an exhaustive dictionary is not an optimal solution to stemming errors, because

it needs to be maintained over time in order to reflect the changes in the contemporary

use of the language.

3.1.3.2 Common Stemmers for English

One of the first published stemming algorithms for English was the Lovins stemmer

[119]. It was developed for use in a library information system. The algorithm com-

bines basic reduction rules with a context-sensitive recoding procedure to account for

modifications of the stem, e.g. doubled consonants in past tense transformation of

regular verbs.

The most widely-used stemmer for the English language is the Porter stemmer [140].

It treats complex suffixes as being compounds of simple suffixes and subsequently

removes those simple suffixes depending on the form of the remaining stem. Martin

Porter was the first to note that only a number of carefully designed rules are needed to

develop a suffix stripping algorithm for use in an IR system. And, more importantly,

he stated that from a certain point during the development of a stemming program,

adding more rules to improve performance in one part of the vocabulary will inevitably

degrade performance elsewhere.
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Although it is important to include rules to overcome irregularities, these rules could

be regarded as practically irrelevant based on their frequency in language. The particu-

lar focus on practical relevance of the applied rules was, and still is, the key to the suc-

cess of the algorithm. Porter evaluated his algorithm on a dictionary of 10,000 words

and achieved a reduction of roughly one third in terms of index storage size. Com-

pared to a more elaborate stemmer [48], implemented by Dawson, using a standard

IR test collection, the Porter stemmer performed slightly better in terms of retrieval

effectiveness.

The purpose of another stemming program [101], named Krovetz stemmer, was to

improve the performance of the Porter stemmer by adding a dictionary lookup to avoid

stemming errors. Checking the output of every step of the Porter stemmer against a

dictionary turned out to be a dead end, because words that were previously correctly

conflated, produced different stems. These errors degraded retrieval performance and

a completely new algorithm was designed to make use of a dictionary. In addition to

that, the implementation aimed to detect word senses in order to disambiguate words

that should not be conflated. It was shown empirically in [101] that this approach to

stemming improves retrieval performance, especially for short documents.

Another implementation of a stemming program [137], called Paice stemmer, was mo-

tivated by the observation that stemmers were usually evaluated in terms of IR system

performance, but not in terms of the rules they apply. To optimise the rules underlying

the stemmers by Lovins, Porter, and Dawson, it was suggested that a single, but or-

dered table of rules, and an iterative process that removes single letters, be used. The

rules were organised in sections that affect words with identical ending letters to allow

fast lookup and processing. In each step of the algorithm the rules that match the final

letter of a word were applied and a corresponding action (retaining or removing) was

taken. The algorithm iteratively continues, unless there is no rule found for a current

letter. Based on an empirical evaluation [137] the stemmer was found to produce a

higher number of over-stemming errors than the Porter stemmer.
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Another group of stemmers uses statistical modelling to overcome the need for lin-

guistic knowledge and derived rules. Thus, statistical stemmers are applicable for all

alphabetic languages. The most common implementation is character n-gram stem-

ming. In fact forming n-grams from words is rather a tokenising process than a stem-

ming procedure. Since its purpose is to overcome some of the limitations of stem-

mers, it is usually compared to stemming algorithms and also perceived as being one

of them. The basic idea behind the approach is to shift a character window of size n

over the words resulting in a number of pseudo-stems with fixed length n. There are,

however, different approaches to process the stream. The window technique could be

applied by either including or omitting preceding and adjacent blank spaces. Another

alternative is to completely ignore the word-level. An advantage of this technique is

that it captures some information about adjacent words. Since it is a very simple form

of word co-occurrence it might help to improve retrieval performance, especially for

phrasal queries.

The major drawback of the family of character n-gram approaches is its negative im-

pact on the efficiency of the IR system. N-gram stemming significantly increases the

size of the index, because of the redundancy introduced by the windowing technique.

Since there is a positive correlation between index size and query response time it also

degrades system performance at query time.

An even larger impact on the response time is that queries have to be transformed in the

same way as the documents, which results in long queries. A comprehensive empirical

study on different n-gram stemming techniques across 18 languages showed that 4-

gram and 5-gram stemming and ignoring the word level can significantly improve

retrieval performance on average [128]. But the authors also provided a statistic based

on the English test collection they used that demonstrated the impact on index size and

average query response time. Compared to indexing without any stemming algorithm

the index size was three to five times larger. They reported average query processing

times that were seven times larger than the baseline.
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Motivated by the observation that too many, or too strict, rules can result in over-

stemming and consequently degrade IR performance, a number of (less aggressive)

light stemmers were proposed. Light stemmers focus on removing inflective suffixes

only, because it makes them much less error-prone. A very simple variant for English

is the straightforward implementation of an s-stemmer. Its only purpose is to conflate

plural to singular nouns, third person singular of verbs to their basic form, and to

remove possessive apostrophes.

Another simple implementation could remove the common ending of regular verbs

in the past tense, although there are a number of exceptions, like doubled or deleted

consonants, that need to be handled by a few extra rules. However, for languages other

than English, especially those that have a more complicated morphology, considerably

more effort is needed even for light stemming methods.

A collection of light stemmers for various European languages other than English is

described in [162]. The intention of the design of these light stemmers was to focus

on fewer but more frequent morphological rules. Thus, they only handled gender and

plural for adjectives, and for nouns, they added some rules to conflate grammatical

cases. This study supplied empirical evidence that light stemming can produce sta-

tistically significant improvements over conventional stemming algorithms. A similar

conservative stemmer was also developed for English [88]. In the empirical evaluation

discussed in Chapter 7, it is used as the prototype of a light stemmer.

3.1.4 Information Extraction and Analysis

Despite the previous text transformation operations, extracting syntactical informa-

tion about words can be more complex. The purpose of information extraction is to

collect additional input about a single word or a passage of text that might be rele-

vant for search. In text mark-up languages like HTML such additional information

can be easily extracted from highlighted text in various forms, like italics or headings.
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More complex information extraction components typically require a prior tagging of

part-of-speech (POS tagging). The models which are used to recognise the syntactical

structure of sentences or paragraphs are computationally expensive. But they can be

used to extract different forms of phrases, like noun or verbal phrases, that may help

to improve retrieval effectiveness.

POS tagging can serve as a basis for the extraction of semantic text features. These

components are called named-entity recognisers. Current state-of-the-art approaches

can reliably detect entities like proper names of persons, places, and companies as

well as variants of dates. Being able to collect such contextual information could help

to disambiguate search results on very large collections such as the web.

In the scenario of web search, various types of contextual information are readily

available. Document parsers can extract links and corresponding anchor text to be

processed during indexing or search. Both features are extensively used in web search

engines, because there is substantial empirical evidence that they can significantly

improve retrieval effectiveness for specific types of search queries. Specific analysis

algorithms are needed to be able to exploit the linked structure of resources like the

web. The PageRank algorithm [25] is the most famous representative for link analysis

and it provides a relative rating for the importance of a web page. Link anchor text is

a source of context information, which is used to enrich the content of a web page it

points to. In a dynamic environment like the web such algorithms are exposed to po-

tential abuse. Hence, search engine companies try to keep the core of these algorithms

a secret.

Employing content classification components is another common approach to gather

additional information. The purpose of classification algorithms is to assign class la-

bels to documents. There are various applications for the classification for indexing,

retrieval and result presentation. An obvious example is to use topical labels like

“sports”, “politics”, or “economy” to categorise documents. But more importantly,

classification can be used as a selective strategy to decide which documents, or which
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parts of documents, should be indexed. Classification algorithms are important tools

to filter spam and non-content portions in documents for many search applications.

3.1.5 Creating Index Structures

One central concept to create index data structures in any search engine is inversion.

The purpose of inversion is to convert a document-term stream coming from text trans-

formation components into term-document information in order to create inverted in-

dex files. The actual structure of an index partially depends on the ranking models in

the IR system. Fast processing of queries is the main purpose of index inversion. Both

documents and terms are usually represented by identifiers to make the index con-

struction more efficient. For each term in the collection all document identifiers are

stored in a list. The term-document pairs are sorted by term identifiers and for each

term all document identifiers are organised into a postings list.

A common method of efficiently indexing large document collections is the blocked

sort-based indexing algorithm [126, p. 71]. It is designed to overcome the problem that

posting lists for large collections can be multiple times larger than the physical main

memory available for indexing. The basic idea is to split the collection into equal parts,

create and sort the postings list for each part in the main memory, store each sorted

posting list to a hard disk, and merge all intermediate results into the final inverted

index. The time complexity of the algorithm is Ω(n log n) for sorting n postings lists.

In addition to that, a data structure is needed to store the mapping of terms to term

identifiers. Due to memory limitation this could be a potential efficacy problem for

very large collections.

A more scalable alternative implementation is termed single-pass in-memory indexing

[126, p 73f.]. This algorithm relies on terms and stores a dictionary of terms for each

block. As a consequence, the only limitation for this indexing approach is the available

storage capacity. The single-pass in-memory implementation processes the incoming
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text stream per token. When a new term occurs, it is added to the block dictionary and

a new posting list is created. Instead of collecting and sorting a complete list of pairs of

term-document identifiers the algorithm directly inserts every posting (document) in

its corresponding postings list. This results in two major advantages over the blocked

sort-based approach. Firstly, no sorting of posting lists is required. And secondly, since

the terms are represented as the key of each postings list, the data structure to map

terms and their identifiers can be omitted to save memory consumption. When no

more memory is available to process further tokens the index file for the current block

is written to disk. This index file simply consists of an alphabetically sorted term

dictionary and corresponding postings lists. Sorting the blocks before writing them to

disk ensures that the final merging of the blocks can be realised with linear scans. Since

expensive sorting of term-document identifiers is neglected and all other operations

will run in linear time at most, the complexity of the single-pass in-memory indexing

algorithm is Ω(n), where n is the size of the collection.

3.1.5.1 Term Weighting

Term weights are usually derived from empirical observation and hence investigations

on statistics of text have a long history in research. The two algorithms presented

above order postings lists with respect to document identifiers. Although this method

has advantages in terms of space requirements when compression is applied, it is not

optimal for building retrieval systems that produce ranked output. In typical rank-

based retrieval systems, postings are sorted by their impact or weight, which is usually

a score computed from statistical information. This allows the early termination of

the scanning of long postings. When the weight of a posting in a list is considered

to be too small to be predicted as being similar to a request, any adjacent postings

can be skipped. Using an index that is sorted according to posting scores, requires

considerably more effort for updating the index when new documents are added. This

limitation is due to the fact that the postings for that new document have to be inserted

at particular positions in affected posting lists. Weights are usually collected for terms
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to reflect their relative importance. The exact form for the calculation of term weights

depends on the retrieval model and its ranking function. A desirable feature of an

efficient search engine is that most weights that are required for ranking are computed

during indexing. However, this efficiency is traded for flexibility, because once the

index is created with particular weights, a restriction to the corresponding ranking

model is made.

Already in the late 1950s it was proposed that the significance of a word could be

considered as a function of its frequency in a document [120]. Statistical observations

on text distribution reveal that the distribution of term frequencies in document col-

lections are not uniform, but skewed. That means that a few words occur very often

and many other words appear only a very few times. In English the two most frequent

words are “the” and “of” in regular document collections. Together they account for

roughly ten percent of all word occurrences. Given a sufficiently large collection an-

other general observation is that about half of the unique terms appear only once. This

distribution is known as Zipf´s law and it states that the frequency of a term is inversely

proportional to its rank in the ordered set of term frequencies.

An alternate formulation is motivated by the probability Pt for the occurrence of a

term. Pt can be obtained by dividing its frequency by the total number of terms in a

collection. Given the rank rt for a term, Zipf´s law can be reformulated in the sense

that Pt multiplied by rt is a constant number c. For English text collection c is ap-

proximately 0.1. In general it can be observed that Zipf´s law is inaccurate for terms

on both tails of the frequency ranking.

Another interesting statistical property of text collections is the size of the vocabulary.

In environments where the document collection grows over time and new documents

have to be indexed, it is useful to be able to predict the growth of the vocabulary.

By means of an empirical analysis a simple model was established to describe the

relationship between the size of a document collection and the size of the vocabulary

[81, p. 206f.]. The model is sometimes called Heaps’ law and predicts that new terms
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will be introduced very frequently when the size of a corpus is small. For a larger, or

dynamically growing collections, the number of new words will increase indefinitely,

but at a considerably slower rate. For this reason it is a common approach to use term

statistics to estimate the size of potential result sets and of (unknown) collections.

3.1.5.2 Collection Statistics

In order to ensure the effectiveness of the IR system several statistics are computed and

stored during the indexing process. Statistical information about terms, documents,

and other features is used by the ranking functions to compute the document scores

during the retrieval process (see Section 3.2). A few figures are generally required

for ranking. Most common numbers include the counts of index term occurrences in

individual documents, which is usually called document frequency, the positions of

tokens or terms within a document, the counts of documents over particular groups of

documents, which might be the entire document collection or just a topical category,

and summary numbers like the total amount of terms, the size of the vocabulary, or the

length of a document in terms of the number of tokens. In fact, the actual figures that

are used depend on the algorithm used for ranking and its underlying retrieval model.

3.2 Core Retrieval Models

This section describes theoretical models for the ranking of documents used in IR sys-

tems. The following presentation is based on standard books [45, 84, 126] and articles

[147, 148, 157] on the subject and organised chronologically in order to illustrate the

theoretical relationships between the proposed models. Note that these standard works

are being referenced throughout this section (see the citation marks at the end of each

paragraph).
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The point of origin for this description are classic ranking models, because they serve

as baselines for the empirical comparison (see Section 7) with more complex mod-

els, which were developed recently. In order to provide meaningful insights into the

effectiveness of different ranking theories, the language modelling technique, the di-

vergence from randomness framework, and a few recent models that enhance these

models further will be considered here.

Since the late 1960s one of the primary goals in information retrieval research has been

to promote the formalisation of the processes that are involved when a person makes

a decision that a certain piece of text is relevant to his information need. During that

time a number of theoretical postulates were proposed in the form of mathematical

models in order to simulate the complex concept of relevance. A selection of the most

influential retrieval models is presented in the following. Some of the older models are

described first. They were exceeded in terms of retrieval effectiveness by more recent

models that will be discussed subsequently.

3.2.1 Exact Matching

One of the earliest models for information retrieval was the Boolean retrieval model.

It belongs to the group of exact matching models, where documents are only retrieved

if they precisely match a given query specification. There are two basic assumptions

for the Boolean model. Relevance is binary and all documents in a retrieved set are

equal with respect to relevance. The latter represents the main limitation of the model,

because a request may return a large number of documents and the resulting presen-

tation is likely to be arbitrary. Without any notion of ranking, such results could be

frustrating for users.

The model inherited its name from the mathematical logic by Boole, which is used

for query formulation. In an iterative usage scenario Boolean operators enable the

user to directly manipulate the size of the retrieved set. The size of a result set can
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be reduced by introducing new query terms and concatenating them using the AND

operator. In contrast to that, using the OR operator to add further query terms will

produce a larger result set, which represents the aggregate of the result sets for each of

the query terms. Such a system behaviour has the great advantage that it is absolutely

clear why a document was retrieved. As a result, an expert user will obtain reasonable

control over the system and its output. Another advantage is that the queries are not

restricted to words. In fact it is possible to formulate query specifications that mix

terms with other types of information, like dates or document types. Since Boolean

logic is used for query formulation, an efficient software implementation of the model

can be considerably faster than other models. Despite these positive aspects, the main

limitation of the model is that it shifts the problem of creating a good result set to the

user. In response to that limitation, actual Boolean search systems were typically op-

erated by expert users, which were called search intermediaries. They translated user

information needs into complex Boolean query specifications and returned their final

result set to the user. Based on the statistics given in Section 2.2 it becomes obvious

that the Boolean model would require much more effort to formulate an appropriate

query on present document collections. They are several orders of magnitude larger

than collections in the era of the Boolean retrieval model.

Nevertheless, a few extensions to the Boolean model were developed during the 1990s

with the group of region models being one of them. Region models treat a document

collection as a string of tokens. A region can be any sequence of consecutive words

that is identified by markers of a start and an end position. The main advantage of

the approach is that it is not restricted to the retrieval of complete documents. Instead

paragraphs or other parts of structured documents can be retrieved. Region models

operate on sets of regions and define at most two more operators in their query lan-

guage: CONTAINED BY and CONTAINING. The model proposed in [32] explicitly

separates mark-up from content to allow a straightforward formulation of more com-

plex queries. Other models of this category do not distinguish between content and

non-content. As a result, the query formulation process can be more verbose. Region
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models share the main limitation of Boolean retrieval models, which is unranked out-

put.

3.2.2 Vector Space Model

In the 1960s the vector space approach to information retrieval became one of the

most dominant retrieval models for more than two decades. It is motivated by empir-

ical observation and the analysis of statistical properties of text documents. The most

appealing advantage of the model is that it provides an intuitive framework for the im-

plementation of term weighting, ranking, and relevance feedback. A major drawback

is that there is only little theoretical explanation on how term weighting and ranking

relate to the concept of relevance. In [120], a first approach based on term statistics

was proposed as follows. In order to find documents that are relevant to a certain infor-

mation need, a query should be formulated as a document that is similar to the desired

documents. The degree of similarity between the “query document” representation and

the documents in the collection could then be used to rank the results. But how to com-

pare the representation with the actual documents? A straightforward idea is to count

the amount of shared terms, i.e. the number of terms that appear in both the query

representation and the document in the collection. For this purpose the documents can

be represented as being a vector d = (t1, t2, ...tn) of an index term vocabulary. A

query vector q = (t1, t2, ...tn) could be constructed using the same vocabulary of

terms. Using both representations a straightforward ranking function r(~d, ~q) could be

formulated as given in Equation 3.1. When each vector consists of binary values, this

vector product measures the number of terms that ~d and ~q have in common. Possible

advancements of the function use natural or real numbers to account for the distribu-

tion of the index terms. A few of the most widely adapted enhancements are presented

in the following.
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r(~d, ~q) =

n∑
i=1

di · qi (3.1)

A stronger theoretical foundation for the vector space model was proposed in [156].

This enhancement represents the documents and the queries in a high-dimensional

Euclidean space, in which each of the index terms is assigned a separate dimension.

Given this spatial definition, the similarity of document and queries can be expressed

as angles between the vectors ~d and ~q. The most common measure is the cosine func-

tion, which is zero if two vectors are orthogonal and one if they are equal. Using the

cosine angular similarity as ranking function rcosine(~d, ~q) in the vector space model

results in the definition given in Equation 3.2.

rcosine(~d, ~q) =

∑n
i=1 di · qi√∑n

i=1 (di)2 ·
√∑n

i=1 (qi)2
(3.2)

An appealing aspect of the model is its simple representation of document similarity

as angles of vectors in Euclidean space. Using a simplified three-dimensional figure,

the basic features of the approach can be illustrated in a simple way. A geometric in-

terpretation can be used to explain the angular similarity measures. Besides the cosine

correlation other similarity measures can be computed in Euclidean space. Common

measures are the Dice coefficient and the Jaccard coefficient. In empirical evaluation

the cosine correlation was shown to be superior to other measures and has hence be-

come the de facto standard to measure similarity in the vector space model.

A minor limitation of the vector space model lies in its implementation. For the calcu-

lation of the ranking all components of the corresponding vectors ~q and ~d are needed.

These values are not necessarily available in an inverted index. Thus, the normalised

weights have to be stored in the inverted index. Alternatively, they could be collected

in a separate data structure. However, storing these values at indexing time is prob-
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lematic when incremental updates of the index are needed. When a new document is

added to the index, all document frequencies of terms that are contained in the new

document change and have to be updated. Some implementations have addressed this

issue and showed that it is possible to efficiently handle it.

3.2.3 Vector Space and TF-IDF

In the present discussion the problem of term weighting was covered several times.

Term weighting schemes define how the values for the vectors are calculated. Like

already mentioned above, the general framework of the vector space model does not

provide such a definition. Nevertheless, several term weighting schemes have been

proposed over time. The most widely-used variant is the family of tf.idf schemes,

which represent a combination of a term‘s occurrence frequency tf and its inverse

document frequency idf. The latter is inversely related to the document frequency,

i.e. the number of documents in a collection that contain the term. As a result, it

reflects the importance of a term across an entire collection. In contrast to that, the

term frequency indicates the importance of a term within a particular document. The

original definition of weighting terms using tf.idf was proposed in [157]. Equation 3.3

is a reproduction of this formula, where tf(t, d) represents the number of occurrences

of term t in document d, df(t) reflects the number of documents containing term t, n

is the total number of documents in a collection, and wt is the weight for term t.

wt = tf(t, d) · log
n

d(t)
(3.3)

Variants of this tf.idf weighting scheme are also used in modern IR systems. A change

of the original weighting was motivated by the fact that it did not perform very well in

experimental evaluations. Although normalisation was part of the cosine correlation

measure it was found that the term weights appeared to be skewed for long docu-
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ments. In these documents many terms may appear only once, but a few terms occur

more often. As a result, they dominated the resulting document vector. To account

for that, it was suggested to substitute raw counts of the term frequency tf(t, d) with

a normalisation using the logarithm. The empirical experiments presented in [157]

demonstrated that this particular change can improve the effectiveness of the vector

space approach.

3.2.4 Probabilistic Models

The task of retrieving information is a complex activity and several approaches attempt

to formalise this process. One of these attempts applies probability theory. In infor-

mation retrieval the most dominant concept is relevance and a formal definition of the

probability of relevance P (R) is central for all probabilistic models. Many different

approaches have been proposed over the years and as a consequence the probabilistic

retrieval model has become the most dominant paradigm in information retrieval to-

day. All probabilistic ranking models are founded on the probability ranking principle

(PRP). It was formulated as follows [147, p. 281]:

“If a reference retrieval system‘s response to each request is a ranking

of the documents in the collections in order of decreasing probability of

usefulness to the user who submitted the request, where the probabilities

are estimated as accurately as possible on the basis of whatever data has

been made available to the system for this purpose, then the overall ef-

fectiveness of the system to its users will be the best that is obtainable on

the basis of that data.”

Based on a few assumptions about documents and the concept of relevance, it can

be shown that the PRP is valid. A possible assumption is to treat the relevance of a

document to a query as being independent of any other document. Clearly, ranking

the documents by decreasing probability of relevance will result in optimal precision
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at any rank position. But the PRP does not provide any definition of how these prob-

abilities can be estimated. All of the numerous probabilistic ranking models that are

available today are based on (somewhat different) assumptions about relevance and the

relation between documents and terms. As a consequence they define different ways

to calculate the probability of relevance P (R). The remainder of this section provides

an overview on the most widely used probabilistic ranking models and their math-

ematical foundations. The first of the presented models is the binary independence

model [148]. It is rather simple, but serves as a basis for the most successful model of

this particular group. The model is still in use in many applications that require binary

classification.

3.2.4.1 Binary Independence Model

As the name suggests the binary relevance model is based on the assumptions that rel-

evance is binary, i.e. a document is either relevant or not relevant, and that the decision

about relevance for one document is independent of other documents. Another impor-

tant requirement is that information about the relevant set is available. Then, the pur-

pose of the retrieval function becomes the calculation of a probability of a document

being relevant, which can be formulated as conditional probability P (R|D) given a

representation of document D, and to estimate the analogue conditional probability

of non-relevance P (NR|D). Given both probabilities a document can be classified as

being relevant if Inequality 3.4 is fulfilled.

P (R|D) > P (NR|D) (3.4)

A system that relies on these binary decisions about document relevance is called a

Bayes‘ classifier. The question is how the two probabilities can be estimated. Given

the assumption that information about the relevant set is present, one could start by

calculating the conditional probability P (D|R). In the next step it is possible to apply
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Bayes‘ rule of conditional probabilities to obtain a value for P (R|D) using P (D|R)

as defined in Equation 3.5.

P (R|D) =
P (D|R) · P (R)

P (D)
(3.5)

However, estimates for P (R) and P (D) are needed in this definition. P (R) is simply

an (equal) a priori probability of relevance that can be obtained from the (known)

distribution of relevance. P (D) is a constant, since it describes the probability of a

document being drawn from the collection. Thus, Inequality 3.4 can be reformulated

as defined in Inequality 3.6. Simple mathematical conversion results in Inequality 3.7.

P (D|R) · P (R) > P (D|NR) · P (NR) (3.6)

P (D|R)

P (D|NR)
>
P (NR)

P (R)
(3.7)

A few more transformations are needed to obtain the document scores. Therefore it

is assumed that documents are a combination of terms and that the set of relevant,

and the set of non-relevant documents, are represented by term probabilities. Thus,

a document D = (d1, d2, ...dn) can be represented as a vector of binary features of

terms being either present or not. Under the assumption that all terms occur indepen-

dently, the probabilities of the terms from document D occurring in the relevant set

can be multiplied to obtain P (D|R). However, terms do not appear independently

in regular text collections. For example, if the word “Eiffel” occurs in a document,

there is a high probability that the document will also contain the word “tower”. Nev-

ertheless, the assumption is used to simplify the mathematical representation. Using

the assumption of term independence and the vector representation of documents, the

probabilities P (D|R) and P (D|NR) can be calculated as the product of individual

term probabilities as presented in Equation 3.8. [45, p. 250]
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P (D|R)

P (D|NR)
=

n∏
i=1

P (di|R)

P (di|NR)
(3.8)

In order to calculate these probabilities for documents, the probabilities for the terms

are needed. Since terms are represented as binary features, the right term of Equation

3.8 can be separated into two parts for every document. The resulting definition is

given in Equation 3.9, where i : di = 1 denotes terms that exist in the document and

i : di = 0 represents all other terms.

∏
i:di=1

P (di = 1|R)

P (di = 1|NR)
·

∏
i:di=0

P (di = 0|R)

P (di = 0|NR)
(3.9)

Since a known relation exists both for the probabilities in the numerators and for

the denominators of Equation 3.9, the expression can be reformulated further. Let

ui represent the probability of a term i that occurs in a document from the relevant

set, i.e. the probability P (di = 1|R) in Equation 3.9. Given this assumption, the

corresponding probability for a term i that does not occur in a document from the

relevant set will be 1− ui. Using this principle for terms from documents that are not

part of the relevant set, the probabilities in the denominators of Equation 3.9 can be

rewritten as vi and 1− vi. The resulting formulation is as follows:

∏
i:di=1

ui
vi
·

∏
i:di=0

1− ui
1− vi

(3.10)

The product in the right term of the definition contains only terms that are not present

in a document, but in this present form it depends on a document. If it is possible to

transform the term mathematically, such that all terms are part of the product, without

changing the factors themselves, the term could be omitted, because it is equal for all
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documents. Consequently, omitting it will not change the total probability of relevance

for a document:

∏
i:di=1

ui
vi
· (

∏
i:di=1

1− vi
1− ui

·
∏
i:di=1

1− ui
1− vi

) ·
∏
i:di=0

1− ui
1− vi

∏
i:di=1

ui(1− vi)
vi(1− ui)

·
∏
i

1− ui
1− vi

(3.11)

A further mathematical transformation is applied to Equation 3.11 (without the right

hand product) in order to ensure efficient implementation in practice. Due to large

amounts of documents in collections and many unique index terms, the probabilities

ui and vi for terms occurring in a document will be considerably small. Computation

of products with many small factors can cause severe problems in accuracy. Since the

logarithm is a monotonic function, and the order of the probability of relevance for the

document is preserved for this reason, the product of the probabilities can be replaced

by using the logarithm as given in Definition 3.12.

∑
i:di=1

log(
ui(1− vi)
vi(1− ui)

) (3.12)

The resulting figure that can be estimated using Definition 3.12 is called retrieval

status value. In the present definition no notion of the query exists. It is, however,

based on the terms of the document of a collection. Since the query is the only source

of information in almost every case, it can be assumed that terms, which are not part of

the query, will be equally likely to occur both in relevant, and non-relevant documents.

Thus, the sum given in Definition 3.12 can be reduced to those terms of a document

that match the query terms. [45, p. 251] This fact reveals a limitation of the binary

independence model: it only distinguishes between query terms that are present or

absent in a specific document. As a consequence long queries are needed, because the
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number of distinct scores for documents would be limited otherwise. Consider short

queries that contain only one, two, or three terms. For example, given a single-word

query there will be only two (four, and eight, respectively for two and three terms)

different retrieval status values, because that particular term will either be present in

the documents or not. For this reason, the binary independence model should not be

applied in web search, where queries are usually short. [84, p. 10]

Due to the high cost of acquiring large amounts of relevance judgements, it can be

assumed that relevance information is rare. Given this fact, one can try to further

simplify the estimation of the probabilities in Definition 3.12. The probability ui, that

a specific term occurs in a document from the relevant set, can be assumed to be a

constant. Thus, using the binary model of independence ui can be set to 0.5. Given

the knowledge inferred from empirical analysis of the term frequency distribution,

and the assumption that the relevant set of documents is usually much smaller than

the set of non-relevant documents, the probability vi (a term appears in a document

of the non-relevant set) could be estimated based on the term occurrence in the entire

collection. A typical value for vi is the number of documents ni that contain term

i divided by the total number of documents N in a collection. Inserting these rough

estimates into Definition 3.12 results in the straightforward scoring function given

in Equation 3.13. The formulation is closely related to tf.idf term weighting. Since

documents are assumed to consist of binary features, there is no information about

term frequency within the documents. As a result, the tf component is missing here.

[45, p. 252]

log
1
2
(1− ni

N
)

ni
N

(1− 1
2
)

= log
N − ni
ni

(3.13)

However, relevance information could be easily collected or might already be present

in other retrieval scenarios. Given that term occurrences are known for the relevant
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Relevant Non-Relevant Total
ri ni − ri ni

R− ri N − ni −R+ ri N − ri
Total R N −R N

Table 3.1: Contingency table summarising relevance information at term level.

and non-relevant set of documents, a contingency table (see Table 3.1) could be used

to illustrate different subsets of documents.

The first row in Table 3.1 represents terms that are present in a document under investi-

gation and the second row corresponds to terms that are absent. Thus, ri is the number

of relevant documents containing term i, ni is the number of documents containing

term i, N is the total number of documents in the collection, and R is the number

of relevant documents for a query. Let the probabilities ui and vi in Definition 3.12

be substituted with corresponding estimates from Table 3.1. The probability ui could

be estimated using ri divided by R and the probability vi could result from ni − ri
divided by N − R. Due to using the logarithm in Definition 3.12 the resulting term

weights may become undefined in some cases. For example, if the number of relevant

documents ri (that contain term i) equals to zero. This can be avoided by adding the

fixed amount of 0.5 or 1 (only for totals) to the figures from Table 3.1. The resulting

ranking function is given in Definition 3.14, where i : di = qi = 1 illustrates that the

scores are computed from query terms that match a document. [45, p. 252f.]

∑
i:di=qi=1

log
(ri + 1

2
)/(R− ri + 1

2
)

(ni − ri + 1
2
)/(N − ni −R+ ri + 1

2
)

(3.14)

Empirical evaluation showed that document rankings obtained with this function do

not correlate very well with human relevance judgements. But one of the most widely-

used ranking algorithms, which is known as BM25 (or Okapi BM25), extends this

ranking scheme by including term frequency within documents and document length.
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3.2.4.2 The 2-Poisson Model

Initially, modelling probability distributions was studied to identify rules for automatic

indexing in the context of information retrieval. In [21] a mixture of two Poisson distri-

butions was proposed to model the number of occurrences of terms tf in documents.

The original definition (see 3.15) assumes that documents are random streams of term

occurrences and X serves as a random variable for the number of term occurrences.

P (X = tf) = λ
e−µ1 · µtf1

tf !
+ (1− λ)

e−µ2 · µtf2
tf !

(3.15)

Another basic assumption of the model is that a collection can be divided into two sub-

sets, where the documents in one subset contain more term references for a specific

topic than the documents in the other subset. This fact is represented by the factor λ,

which reflects the proportion of documents that belong to the first subset, and by the

means µ1 and µ2 of the two Poisson distributions, where µ1 ≥ µ2. These means can

be estimated from the number of term occurrences in the two subsets of a collection.

In order to estimate these parameters iterative optimisation approaches like the expec-

tation maximisation algorithm can be applied. A document that was randomly drawn

from subset one is assumed to have at least the probability of relevance of a docu-

ment from subset two, because its probability of relevance is assumed to be correlated

with the term occurrences for a subject. Since useful terms tend to separate relevant

and non-relevant documents well, the means µ1 and µ2 of the Poisson distributions

will be very different. The main advantage of the 2-Poisson model for information

retrieval is that no additional term weighting algorithm is needed. But a major prob-

lem lies in obtaining estimates for the parameters λ, µ1, and µ2. Nevertheless, the

model inspired researchers to include term frequency information from within docu-

ments into the probabilistic model, which resulted in the well-known BM25 ranking

algorithm. [84, p. 10f.]
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3.2.4.3 BM25 Ranking Model

The BM25 ranking model is an extension of the binary independence model, where

BM stands for best match and the numbers represent identifiers for different combi-

nations of term weights that were used during experimental validation of the model

[89, 149]. It incorporates the term frequencies from within documents, as well as the

document lengths into the scoring to account for the nature of full-text collections

which were made available in the TREC experiments. The most common form of the

scoring function is given in Definition 3.16. The summation is accumulated for all

terms of the query and the variables in the left hand part represent the values from

Table 3.1. Here, ri and R are set to zero if no relevance information is available. A

few more variables are introduced to account for term frequencies: fi is the frequency

of term i in the document, and qfi is the frequency of term i in the query.

∑
i∈Q

log
(ri + 1

2
)/(R− ri + 1

2
)

(ni − ri + 1
2
)/(N − ni −R+ ri + 1

2
)
· (k1 + 1)fi
K + fi

· (k2 + 1)qfi
k2 + qfi

(3.16)

K, k1, and k2 are parameters to adjust the influence of the term frequency and docu-

ment length on the final score for a document. The constant k1 is used to smooth the

impact of the term weighting component (middle part in Definition 3.16) for higher

values of fi. Term frequency information is omitted if k1 is set to zero. Large values

for k1 correspond to a linear impact of fi on the document score. Empirical evalua-

tions showed that a value of k1 = 1.2 results in good retrieval performance. In this

case the impact of the term weighting component is non-linear, i.e. after a few oc-

currences of a term, further occurrences will have almost no impact for ranking the

document. Similarly, the constant k2 calibrates the influence of the term frequency qfi

in the query. In practice, retrieval performance seems to be less sensitive to k2 and a

large range of values (0 to 1,000) was found to be useful. The parameter K is used to
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normalise the term weighting component by the length of the document as shown in

Equation 3.17. [45, p. 254f]

K = k1((1− b) + b · Ld
Lavg

) (3.17)

It uses the parameter b, which determines the impact of the document length normali-

sation. If b is set to zero no length normalisation is used, like in the query term weight-

ing component. A value of b = 1.0 indicates full document length normalisation. The

variablesLd andLavg represent the length of the document under examination and the

average document length in the collection. b = 0.75 is a typical value found by means

of empirical evaluation on full-text collections. An advantage of the BM25 ranking

model is that it can be tuned to optimise an effectiveness measure used for evaluation.

Thus, it can be used to adjust the ranking function based on user studies to improve

the performance of an actual search application. A detailed motivation and discussion

of numerous empirical results for the extension of the binary independence model to

incorporate term weighting and document length normalisation is given in [89].

3.2.4.4 Language Models

The concept of generating language models originates from natural language pro-

cessing research. It was developed to generate probabilistic models of language for

automatic recognition of speech. Current systems for automatic speech recognition

usually combine probabilities of two models: the acoustic model, and the language

model. While the acoustic model generates candidate text from phonetic transcrip-

tions, the language model estimates which of the candidate text snippets are most

likely to appear in the corresponding language. In the late 1990’s the first attempts

were made to adapt language modelling for ranking in IR. [84, p. 12]
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The most straightforward language model is known as the uni-gram language model.

In terms of IR ranking, this model simply estimates a probability of occurrence for

every word in the vocabulary of a collection. Thus, in the representation of language

models the topical content of a document is defined as a probability distribution over

words. The most common way of modelling these probabilities is to assume a multino-

mial distribution of words. As a consequence, documents are treated as being a sample

of text drawn from a model distribution and the sample is then used to estimate the

actual document language model. Each document language model can then be used

to calculate the probability of observing a particular sequence of words, e.g. a query.

[45, p. 257]

Language models are usually created on document level, but it is also possible to

generate models from queries. This leads to three major models for retrieval based

on language models. The first is based on estimating the probability of a document

language model generating the query (as described below) and referred to as query

likelihood model. A second approach is the document likelihood model, where the

probability of a query language model generating the (finite sequence of words given

by a) document is estimated. There is, however, the problem that queries tend to be

short and therefore the estimation of query models will be worse than for document

models. The advantage of query language models is that relevance feedback can be

easily incorporated into these models. A third possibility for retrieval based on lan-

guage models is to directly compare the models for a query and a document. [126, p.

239]

Ranking documents based on the query likelihood model is usually done by estimat-

ing the conditional probability P (D|Q) for a document D given a particular query

Q. Applying Bayes‘ rule for conditional probabilities (see Section 3.2.4.1) results in

Equation 3.18, where the probability P (Q) is a constant for all documents D and

P (D) is a prior probability for a document and thus often regarded as uniform for

a given collection of documents. Since P (Q) and P (D) can be ignored based on

this knowledge, the basic language model approach simply ranks documents by the
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probability that a query would be observed as a random sample from the respective

document language model.

P (D|Q) =
P (Q|D) · P (D)

P (Q)
(3.18)

Given a document language model Md, the document ranking could be created using

a multinomial language model, where documents are considered as different classes

of the language (see Equation 3.19). The multinomial coefficient KQ is defined in

Equation 3.20, where Ld is the number of words in document d, tfi,d is the number

of occurrences of a particular word in document d, and n is the number of words in

the query Q. Again, the coefficient KQ is usually ignored for faster computation of

the probabilities based on the assumption that a query (represented by a sequence of

words) is treated as a bag of words. This will result in equal likelihood ratios for any

ordering of that particular bag of words. The motivation behind this basic model is the

assumption that users submit queries that contain the words that are likely to appear

in a relevant prototype document they have in mind. [126, p. 242f]

P (Q|Md) = KQ

n∏
i=1

P (qi|Md)
tfi,d (3.19)

KQ =
Ld!

tf1,d! · tf2,d! · ... · tfM,d
(3.20)

The major problem with estimating the probability P (Q|Md) as given in Equation

3.20 is that if a document does not contain a particular query term, the resulting prob-

ability for that document will be zero due to the calculation based on the product of

single word probabilities. This might not be problematic in applications, where typ-

ical queries are short and the number of distinct documents is large as for example

in web search. But in many other cases this model is clearly inappropriate as it may
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cause the system to return no documents at all, or alternatively, the system might not

be able to distinguish between documents that lack different numbers of query words.

A technique called smoothing is applied to overcome this limitation. It also helps to

deal with the problem of data sparsity, i.e. the amounts of text for the estimation of

the (query or document) language models are typically small. In general smoothing

discounts the probability estimates for observed events and assigns a non-zero proba-

bility to unseen events, i.e. words that in effect have zero probabilities in a respective

language model. The standard approach to estimate the values for these unseen events

is to apply a background model. Such a background model could be created from

the entire collection of documents, which could be regarded as a collection language

model. A smoothed language model usually estimates probabilities using a simple lin-

ear interpolation of the document language model and the background model. This

interpolation approach is also referred to as Jelinek-Mercer smoothing. It is illustrated

in Equation 3.21, where P (qi|Md) is the probability for a query word in the docu-

ment model, P (qi|Mc) represents the probability for a query word in the background

model, e.g. the collection language model, and λ is an unknown variable that has to

be estimated empirically, but it has to adhere to the interval 0 ≤ λ ≤ 1.

P (Q|D) =

n∏
i=1

λ · P (qi|Md) + (1− λ) · P (qi|Mc) (3.21)

In practice, actual ranking functions based on this linear combination of language

models use mathematical transformations similar to those for the binary independence

model (see Section 3.2.4.1) to avoid the accuracy problem caused by multiplying nu-

merous small fractions of probabilities. One possible ranking function can be derived

as illustrated in Equation 3.22, where fqi,D is the number of times the query word

qi appear in document D, |D| is the number of words in document D, and the frac-

tion fqi,D/|D| estimates P (qi|Md) (see Equation 3.21). Values for the probabilities

of the collection language model are estimated similarly using cqi/|C|, where cqi is
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the number of times a query word qi occurs in the collection C, and |C| is the total

number of word occurrences in the collection.

log(P (Q|D)) =

n∑
i=1

log(λ · fqi,D|D| + (1− λ) · cqi|C| ) (3.22)

In the given ranking function the variable λ is used to control the influence of the

smoothing component. Larger values for λ result in less smoothing and lead to queries

being treated similarly to conjunctive combination like a Boolean AND. Empirical

evaluation of the ranking function using different values for λ has shown that more

smoothing works well for short queries, whereas less smoothing is better for longer

queries. Thus, it was suggested to make λ a function of the query size. [84, p. 13], [45,

p. 260f]

Many other forms of language model estimation exist, most of which were originally

developed for automatic speech recognition applications. One of them, which is more

effective for ranking in general, is called Dirichlet smoothing [198]. A Dirichlet dis-

tribution is a standard way of incorporating prior knowledge, i.e. a background model,

for the estimation of the probabilities of a multinomial distribution. If there is no

text available to estimate an actual document language model, the probability estima-

tion for that particular document will be solely based on the pseudo-values from the

Dirichlet distribution. However, if there is more text available, i.e. the document under

examination is long, the less influence the background model (or Dirichlet distribu-

tion) will have on the probability estimation. The effect of this influence is controlled

by the parameter µ as can be seen in Equation 3.23. Typical values for µ are real num-

bers greater than zero and empirical evaluations showed that values between 1000 and

2000 are the most effective. [45, p. 262f]
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log(P (Q|D)) =

n∑
i=1

log(
fqi,D + µ · cqi|C|
|D|+ µ

) (3.23)

Another approach to language modelling is to estimate probabilities for documents

and queries. In a subsequent step the language models for documents and queries are

compared to generate a document ranking. The reasoning behind this technique is

that similar models are likely to be about the same topic. A common measure for the

difference of model estimates, i.e. probability distributions, from information theory

is the Kullback-Leiber divergence (or KL-divergence). In general the KL-divergence

is defined based on a true probability distribution P and an approximation of P given

by the probability distribution Q, defined as follows:

KL(P ||Q) =
∑
x

P (x) · log(
P (x)

Q(x)
) (3.24)

Important features of the KL-divergence are its asymmetric characteristic and that

resulting values are always positive. For ranking purposes the query language model

(or relevance model) R is assumed to be the true distribution P , as it models the

relevant words for the query. Since larger values of the KL-divergence indicate that

the probability distributions in question are further apart, the negative KL-divergence

is used for ranking. This is illustrated in Definition 3.25, where w represents a word

from vocabulary V .

∑
w∈V

P (w|R) · log(P (w|D))−
∑
w∈V

P (w|R) · log(P (w|R)) (3.25)

The right hand term in Equation 3.25 is independent of the document and can be ig-

nored for ranking. The probability P (w|R) of a word, given the relevance model R
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can be estimated using the frequency fw,Q of the word in the query and the total num-

ber of words in the query |Q|. The resulting ranking function is given in Definition

3.26. It is rank equivalent to the query likelihood ranking (see the document language

model estimate in Equation 3.22), because the frequency of query words is a factor

in the summation, i.e. words that do not occur in the query do not contribute to the

probability estimate of the document. As a result, the query likelihood ranking model

can be regarded as a special case of a retrieval model that ranks documents by com-

paring the probability estimates of the (assumed to be true) relevance model based on

a query, and the probability estimates of a document language model. [45, p. 265ff]∑
w∈V

fw,Q
|Q| · log(P (w|D)) (3.26)

3.2.4.5 Divergence from Randomness Framework

Based on the approaches to language modelling the divergence of randomness frame-

work (DRF) was proposed [6]. A main contribution of the framework is that it provides

a number of statistically motivated models for ranking which are free of parameters.

In contrast to the smoothing approach of language models no training data is needed

to estimate the parameters.

In the divergence from randomness framework, two probabilities P1 and P2 are used

to model the weight w of a term (see Equation 3.27). It shows that the framework

originates from the 2-Poisson model (see Section 3.2.4.2). The divergence of random-

ness framework is based on the following hypothesis: the higher the difference of the

frequency of a term within a document and the frequency of the term in the collection,

the more information is carried by the term in the respective document. Ranking mod-

els in the DRF can be obtained in three steps: (a) selecting a model of randomness and

normalising the informative content of a term (b) based on the information gain, and

(c) based on document lengths. The hypothesis of using the probabilities P1 and P2
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to model random term distributions and information gain is closely related to ranking

based on document language models and smoothing with a background model. This

observation was investigated more formally in [41].

w = (1− P2) · (−log2P1) = −log2P 1−P2
1 (3.27)

The probability P1 models the distribution of terms that bear little information and

thus are assumed to be randomly distributed across the collection of documents. Sev-

eral probability distributions were proposed to model this randomness. In the course

of the development of the framework, namely binomial distribution, Poisson distri-

bution (see Definition 3.28), Bose-Einstein statistics (see Definition 3.29), the inverse

document frequency model (see Definition 3.30), and a mixed model using Poisson

and the inverse document frequency (see Definition 3.31) have been studied. The ba-

sic weighting formula in the DFR framework depends on four random variables: the

term occurrence frequency tf within a document, the size of the document collection

N , the size of the elite set of documents of the term n, i.e. a small number of docu-

ments containing the term, and F , the total number of occurrences of the term in the

collection.

tf · log2
tf

λ1
+ (λ1 +

1

12 · tf ) · log2e+
1

2
log2(2π · tf) (3.28)

− log2(
1

1 + λ2
)− tf · log2(

λ2

1 + λ2
) (3.29)

tf · log2
N + 1

n+ 0.5
(3.30)

tf · log2
N + 1

ne + 0.5
with ne = N · (1− (

N − 1

N
)F ) (3.31)
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The probability P2 is used to normalise the information gain of a term based on the

after-effect phenomenon in sampling theory. The underlying assumption is that once

a very rare term is observed in a document, the probability of the document being

relevant increases rapidly when this term is observed repeatedly. The DFR framework

accounts for this effect by modelling a conditional probability that approaches 1 for

increasing term frequencies. Two methods were suggested to estimate this probability:

(1) using Laplace’s law of succession (see Equation 3.32), or (2) based on Bernoulli

trials (see Equation 3.33). The term frequency normalisation factor tfn1 in Equation

3.29 depends on the number F of occurrences of the term in its elite set of documents,

and the number of documents n in the collections.

tfn1 =
1

n · (tf + 1)
(3.32) tfn1 =

F + 1

n · (tf + 1)
(3.33)

The final step to obtain a ranking model in the DFR framework is to incorporate doc-

ument length normalisation. Based on the density function for tf , two basic formulas

were suggested to accomplish this. Both formulas (see Equations 3.34 and 3.35) are

dependent on the document length l and the average length of the documents in the

collection lavg .

tfn2 = tf · lavg
l

(3.34)
tfn2 = tf · log2(1 +

lavg
l

) (3.35)

The researchers who developed the DFR framework also showed the relation between

the BM25 ranking model and a particular model in their framework. In fact, when

the inverse document frequency model for P1 as given in Equation 3.30, is combined

with the Laplace normalisation of the information gain (see Equation 3.32), they were

able to formally show this relation. They tested various models that were created with

the DFR framework, and compared their performance to the commonly used BM25

ranking formula. In their analysis of the results, they state that the model, based on the

mixture of inverse document frequency and Poisson distribution (see Equation 3.31)

combined with normalisations tfn1 and tfn2 is superior to BM25 at many recall lev-
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els. Furthermore, the authors of the DFR framework ran a detailed investigation of

their normalisation techniques. Their experiments showed that some normalisations,

namely the combinations resulting from Definitions 3.32, 3.33 and 3.34 — L2 and B2

in the original terminology, seem to be universal factors, meaning that they work inde-

pendently of the models. They also found that L2 (the combination of Definitions 3.32

and 3.34) is less sensitive to variation in document length than B2 (the combination of

Definitions 3.33 and 3.34).

3.2.4.6 The Inference Network Model

The information retrieval models discussed so far have in common that they use rank-

ing functions that are derived by combining various term occurrence frequencies. In

order to allow multiple document representations, as well as combining the evidence

from different queries and types of queries, and to facilitate flexible matching strate-

gies to overcome the problem of vocabulary mismatch, a theoretical framework termed

inference network model [178, p. 2f] was proposed. The formal foundation of the

model is a Bayesian inference network, i.e. a directed and acyclic dependency graph.

In general, the nodes of the graph represent pieces of evidence and the arcs describe

how the evidence should be combined. All pieces of evidence in the network are bi-

nary random variables. The basic inference network for IR consists of four layers of

events (or evidence): (a) documents d, (b) document representations r, (c) queries q,

and information needs I (see Figure 3.2 [84, p. 12]).

The first two layers remain static when documents do not change over time. Thus,

they are sometimes combined and referred to as document network. Using this repre-

sentation of a directed acyclic graph in the context of information retrieval allows the

modelling of causal effects between the layers of the network: from a document node

on the top layer; over a number of different representation nodes of the document con-

tents; to possible queries that combine the evidence from representation nodes; down
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d1 dn

r1

d2 dn-1...

r2 rm-1 rm...

q1 q2

I

...

Figure 3.2: Schematic representation of a simple inference network, redrawn from [84, p. 14].

to a specific information need. An apparent question is, why represent an information

need by a number of queries instead of just one? One reason is to think of an initial

query and a number of expansions or reformulations. It is also possible that one query

is represented in various formal reformulations (e.g. Boolean) using this model.

In practice it may become very difficult to compute all possible outcomes for an in-

formation need I , if there are a large number of query nodes q. Given a fixed number

of k query nodes and assuming the nodes represent binary variables, there are 2k+1

possibilities of P (I|q1, ..., qk) for the information need I . As with many other models

actual values are estimated using heuristics. A straightforward heuristic for the doc-

ument nodes would be to use P (D) = 1/n as prior probability, where n is the size

of the collection. In a practical implementation of the model, a single network is con-

structed for every document, assuming that only one document is observed at a time

[129]. This premise allows the ignoring of the document layer. The representation

layer in each of the (document) networks is approximated by a number of language

models, which represent significant parts (evidence) of the document structure. Other

features, e.g. formal meta-data, like a publication date, that cannot be represented in a

language model are also possible. Given the approximations from the representation

layer for each document, query nodes and the information need can be estimated using

standard probability distributions. They are defined by means of various belief oper-
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ators [45, p. 276f.]. The most common belief operators can be calculated as given in

Definitions 3.36 through 3.40, assuming that node q has m parents with a probability

pi of being true. A weight wi can be associated with its parent node i to minimise or

emphasise the importance of its underlying evidence.

belor(q) = 1−
n∏
i

(1− pi) (3.36)

beland(q) =

n∏
i

pi (3.37) belwand(q) =

n∏
i

pwi
i (3.38)

belsum(q) =

∑n
i pi

n
(3.39) belwsum(q) =

∑n
i wi · pi∑n
i wi

(3.40)

It can be shown that the given operators can be calculated in linear time. The practical

relevance of the inference network model is demonstrated by its integration in com-

mon open-source search engines from research institutions, namely Inquery and Indri.

However, using the full potential of the model requires the implementation of a query

language, which allows complex combinations of evidence.

3.3 Feedback Mechanisms

A feedback mechanism in IR describes the process of providing additional informa-

tion to an information need by means of relevance judgements on a specific number of

documents. Depending on the preferred way to obtain these judgements, one can dif-

ferentiate between three types of feedback methods: implicit feedback, explicit feed-

back, and pseudo-relevance feedback. Implicit feedback describes the process of col-

lecting relevance information from user data (typically user behaviour in response to a

presented result list). Implicit relevance feedback is useful in search applications with

many users, such as web search engines. Many users of web search engines submit
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similar requests and the service operators can collect implicit relevance information

by counting the clicks on the web pages presented in the result lists. As a result, this

behaviour of the users can be used to rank future result lists for these queries based

on the gathered information. Using this kind of feedback results in ranking the re-

sults based on popularity rather than relevance, which might be problematic in other

use cases. In contrast to that, explicit feedback is typically collected with the knowl-

edge of the user that his feedback is used as relevance judgement. Since the user is

involved in this process, explicit feedback is the most expensive method to obtain rel-

evance feedback. One of the most widely used explicit relevance feedback models is

presented in the following subsection.

Due to its simplicity and the lowest cost, pseudo-relevance feedback is most widely

adopted in ad-hoc search scenarios. Its alternative name, blind relevance feedback,

indicates that the automatic method may not work well for every search application.

The details of the pseudo-relevance feedback model are presented in Section 3.3.2.

3.3.1 Explicit Relevance Feedback

The Rocchio relevance feedback model introduced in [150] was one of the first adap-

tations of the vector space approach. It is based on the concept of an optimal query,

which uses information about documents that were identified as being either relevant

or not. Based on an initial query the Rocchio algorithm aims to optimise the term

weights of a query in order to improve retrieval effectiveness. Equation 3.41 repro-

duces the formula to derive an optimal query, where ~qnew and ~qold represent the two

query vectors, |r| and |nr| represent the number of documents that were identified

to be relevant or non-relevant, and ~dr and ~dnr are corresponding document vectors.

The additional parameters α, β, and γ are used to adjust the weights of each of the

components of the formula.
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~qnew = α · ~qold +
β

|r| ·
r∑
i

~dri −
γ

|nr| ·
nr∑
i

~dnri (3.41)

From the three parts in the formula, the two summations deserve some further expla-

nation. The first sum calculates the average of the weights of documents that were

identified to be relevant. An analogous sum is computed for the non-relevant docu-

ments. By adding the average weight of relevant documents and subtracting the av-

erage weight of non-relevant documents the resulting query vector is shifted towards

the relevant documents and away from irrelevant documents. As a result, it can be

expected that retrieval performance is improved. Experimental studies showed that all

unseen documents for an initial query give a good approximation of the set of non-

relevant documents. Reasonable parameters for weighting the formula are α = 8,

β = 16, and gamma = 4. Since queries also consist of terms it is useful to restrict

the number of additional query terms for efficacy reasons. [45, p. 247]

3.3.2 Pseudo-Relevance Feedback

In many search applications, it is infeasible to collect relevance feedback neither ex-

plicitly nor implicitly. Automatic pseudo-relevance feedback (PRF) is widely adopted

in these scenarios. The technique works just as using explicit feedback, except for the

source of the feedback information. PRF is based on the assumption, that the docu-

ments ranked in top positions in response to an initial query are likely to be relevant.

Thus, the top d documents are used to extract a specific number of terms t for the

reformulation of the original query.

Typical software implementations of this technique rely on term weighting schemes

like tf.idf (see Section 3.2.3). The assumption behind the automatic PRF approach and

the three parameters of the standard implementation indicate that the technique will

not work for every query. Empirical evaluation [28, 114, 175] on the TREC ad-hoc
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test collections demonstrated, that automatic pseudo-relevance feedback improves re-

trieval effectiveness on average. Nevertheless, given a specific information need, it is

not possible to predict which are the optimal parameters for PRF. Moreover, it is also

possible that PRF fails on particular queries regardless of the PRF configuration. In

this work the effect of various PRF configurations is investigated in order to study the

impact on retrieval effectiveness. In addition to that, there is the interest in analysing

possible interactions between selected software implementations of other system com-

ponents and the standard PRF approach.

3.4 Summary

This chapter gave an overview about state-of-the-art models of the three essential com-

ponents of every information retrieval system. The selection of methods provides in-

sights into the variety of techniques that are currently available and commonly used.

Due to the multitudinous applications of search technology, the present selection can-

not be complete. For all of the three components, none of the methods dominates all

others in terms of efficiency or effectiveness. As a result, choosing the models that

perfectly suit any particular task and data set is not possible without empirical evalu-

ation.

In addition to the problem of selecting the right model for a search problem, the soft-

ware implementation of corresponding components and their orchestration in a re-

trieval system may also affect efficacy and effectiveness. Thus, one of the central goals

in the remainder of this work is to gather evidence which of the different state-of-the-

art text pre-processing algorithms, retrieval models, and automatic feedback methods

are more suitable for finding information in specific types of text documents.

A further aim is the investigation of how interactions between these key components

of retrieval systems affect the retrieval effectiveness of the complete system. Current

standard toolkits and the Xtrieval framework for IR evaluation are discussed in detail
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in the following Chapters 4 and 5. This course of action provides practical foundations

for the large-scale empirical approach to automated evaluation at component-level

presented in Chapter 7.



4 IR Frameworks & Software

Implementations

Empirical evaluation and analysis are mainsprings for the development of new models

and theories in IR. The present chapter links theoretical IR models from the previ-

ous Chapter 3 to existing open-source software implementations. The purpose of this

course of action is to illustrate the selection of software toolkits to be included in the

IR evaluation framework Xtrieval. The architecture of this framework and a selection

of scientific evaluation tasks is presented and discussed in the next Chapter 5.

The present chapter is organised as follows. First, an overview of a number of publicly

available framework is provided. A number of key features of software implementa-

tions are formulated in order to establish a selection of only a few toolkits. Based on

this selection, the most important IR toolkits are discussed in detail. This discussion

focuses on central advantages of each of the software implementations. Important

limitations are also pointed out, if present. As a final step, an overview on further

frameworks emphasises our focus on the frameworks, which are most widely used in

the IR community. Before the chapter is summarised in the final section, a digression

to natural language processing frameworks demonstrates the impact of complex text

understanding algorithms on search applications in general.
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4.1 Open-Source Toolkits

Table 4.1 gives an overview on publicly available open-source frameworks which can

be used to develop a search engine application. All of them are frequently (though

differently) used and under further development, i.e. releasing updates with new fea-

tures and bug fixes on a regular basis. The listed software implementations can be

distinguished based on their popularity both in scientific research and the number of

adaptations in commercial search applications, although reliable studies on the usage

of these frameworks do not exist.

From the provided list of software packages, Lucene can be regarded as a state-of-

the-art system for real-world search applications, which makes use of the Solr enter-

prise search server. Solr extends the Lucene API to fulfil virtually any requirement

for a search application. Xapian and Terrier are used in a remarkable number of ap-

plications, although the actual number of adaptations is considerably smaller than for

Lucene. The Terrier platform and the Lemur project, which also includes Galago, are

toolkits which are mainly used to support research in IR. Advancing research in the

domain of web search is the purpose of Wumpus and Zettair. Indri (the Lemur search

application), Wumpus, and Zettair were compared in terms of efficiency in [26]. The

authors of this study report that conducting a fair comparison is incredibly difficult, be-

cause operating systems, system architectures, and hardware configurations are vari-

ables that are hard to control in a decentralised comparison. The results showed that

Wumpus was about four times faster than Zettair and the latter was again about four

times faster than Indri. Minion and Sphinx are open-source projects that are under

development in private enterprises.
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Name Dev. Cycle License Lang. Ranking Citations
Galago1 2009-* BSD Java Language Model, Inference Network 6
Lemur2 2000-* BSD C++ Language Model, Inference Network 252
Lucene3 2000-* Apache Java Boolean Matching, TF-IDF variant 339
MG4J4 2005-2010 LGPL Java BM25, TF-IDF, others 15
Minion5 2008-* GPL Java BM25, TF-IDF 0
Sphinx6 2001-* GPL C++ BM25, Boolean 0
Terrier7 2004-* MPL Java BM25, DFR, TF-IDF, 172

Language Model, others
Wumpus8 2006-2009 GPL C++ BM25, Vector Space 9
Xapian9 2001-* GPL C++ BM25, Prob. variant, Boolean 10
Zettair10 2004-2009 BSD C BM25, Prob. variant, Dirichlet LM 29

Table 4.1: Open-source search engines and toolkits.

A basic comparison of various open-source search engines is given in [130]. The au-

thors use quantifiable parameters to create a general overview on system-level that

is intended to allow the reader to find the best system for his particular use case. In

addition, they evaluated system efficiency and effectiveness of a subset of their initial

selection of systems. Due to the number of systems, it is not clear which version they

used for each of the systems and how the systems were configured for the experiments

in order to ensure fair comparison. This seems to imply that an impartial comparison

of retrieval systems is impossible, because almost every system can be tuned for better

performance both in terms of efficiency and effectiveness.

In order to substantiate our selection of systems, a brief review of the key features of

the systems listed in Table 4.1 is provided. A major aim of the present chapter is to

illustrate the reasons for including Lucene, Terrier, and Lemur in our IR evaluation

framework Xtrieval. In general, Xtrieval is a framework which is designed to allow

1 http://www.galagosearch.org/, retrieved on March 1, 2012
2 http://lemurproject.org/lemur.php, retrieved on March 1, 2012
3 http://lucene.apache.org/, retrieved on March 1, 2012
4 http://mg4j.dsi.unimi.it/, retrieved on March 1, 2012
5 http://minion.java.net/, retrieved on March 1, 2012
6 http://sphinxsearch.com/, retrieved on March 1, 2012
7 http://terrier.org/, retrieved on March 1, 2012
8 http://www.wumpus-search.org/, retrieved on March 1, 2012
9 http://xapian.org/, retrieved on March 1, 2012
10 http://www.seg.rmit.edu.au/zettair/, retrieved on March 1, 2012

http://www.galagosearch.org/
http://lemurproject.org/lemur.php
http://lucene.apache.org/
http://mg4j.dsi.unimi.it/
http://minion.java.net/
http://sphinxsearch.com/
http://terrier.org/
http://www.wumpus-search.org/
http://xapian.org/
http://www.seg.rmit.edu.au/zettair/
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easy integration of any other IR toolkit. Table 4.1 points out that the number of re-

trieval frameworks is large. This diversity is problematic for the decision on which

tools should be integrated, because each of the IR toolkits or libraries would have to

be examined in detail. For that reason, two abstract criteria were defined to narrow

down the list.

The first criteria is a citation analysis. It was conducted to illustrate the impact of the

systems on the research community. This is in line with the purpose of the Xtrieval

framework: scientific evaluation of IR systems and configurations. The citation anal-

ysis is based on publications about, or referring to, the IR toolkits and the results are

presented in the rightmost column of Table 4.1. It is based on the following design:

• General set-up

The ACM digital library11 served as source for the citation analysis, because

it aggregates titles, abstracts, and citations, of all major conferences and work-

shops on IR research. The actual research was conducted on February 11th,

2012.

• Types of publication

In order to restrict the frameworks to their scientific applications, the cita-

tion analysis focused on a few major IR conferences, workshops, and tutori-

als, namely SIGIR, ECIR, CIKM, CLEF, and WWW. The selected list can be

considered as being representative for publications in the field of IR research,

although further events with considerable impact do exist.

• Time period

The total number of publications referring to each of the IR toolkits was aggre-

gated for the past ten years. This period was selected to be able to distinguish

between frameworks that exist for a long time. Since this approach penalises

11 http://dl.acm.org/, retrieved on March 1, 2012

http://dl.acm.org/
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newer software implementations, the absolute numbers should be assessed with

respect to the corresponding period of existence.

It is clear that the number of citations for an IR toolkit is just a measure of popularity.

As a result, it only gives a vague idea which of the frameworks might be suited best

for the inclusion in Xtrieval. However, it is presumed that the research community as

a peer network of knowledge in IR, can act as a suitable indicator. It can be seen in

Table 4.1 that the absolute numbers vary significantly. Lemur, Lucene, and Terrier are

the only toolkits that returned triple-digit numbers. For Zettair and MG4J, more than a

dozen citations were found. The remaining tools received only little perception of the

IR research community.

The second criteria for the assessment of the IR system software implementations fo-

cusses on the usefulness in terms of the evaluation of IR theories. Thus, the number

different system components as presented and discussed in Chapter 3 serves as central

figure here. But the criteria also covers the question of how new instances of IR com-

ponents like text pre-processing algorithms, ranking models, or relevance feedback,

can be integrated. Table 4.1 demonstrates that most of the toolkits cover at least two

different ranking models. As a result, we have to elaborate the details for each of the

frameworks in order to discuss the key IR system components they cover.

4.1.1 Apache Lucene

Probably the most widely used open-source search engine toolkit is Apache Lucene.

The documented number of search applications that are based on Lucene contains

almost 200 entries.11 This list includes almost any kind of web service that requires

search technology for its business, large software projects like Eclipse and JIRA, and

even commonly known companies like AOL, IBM, LinkedIn, and Twitter. The key to

this tremendous success is its large developer community. Although it was originally

11 http://wiki.apache.org/lucene-java/PoweredBy, retrieved on March 1, 2012

http://wiki.apache.org/lucene-java/PoweredBy
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intended for creating search applications in commercial environments, it also received

a number of contributions from the IR research community. Similar to other open-

source software toolkits Lucene is more an advanced API than a search application.

It is implemented in Java, but several ports to other commonly used programming

languages are also available, including C/C++, C#, Perl, PHP, Python, and Ruby. In

addition to that, various complementary software frameworks are available to build

powerful search applications that are based on Lucene. The most important projects

are Solr12, Nutch13, Hadoop14, and Tika15, all of which are open-source projects that

are hosted and funded by the Apache Software Foundation (ASF). They will be con-

sidered in the following paragraphs.

Solr is a standalone enterprise search server that features a REST-like XML interface,

i.e. it is a server wrapper around the Lucene API. It supports indexing and searching

via XML over HTTP, or JSON and allows the easy integration into any client applica-

tion. The Solr developer community implemented a diverse collection of Solr clients

that covers virtually any programming language. For that reason, it is relatively easy

to access the Lucene API in cases where software developers are bound to languages

other than Java. Some of the key features of Solr include support for faceted browsing,

geo-spatial search, incremental index updates and replication, and highly configurable

caching for performance optimisation in terms of efficacy.

In 2004, Nutch was the first open-source search engine toolkit for the web. The motiva-

tion for creating Nutch was the decreasing number of commercial web search engines

and the serious concern for a potential monopoly in that business [127, p. 9]. The

software is designed to handle crawling, indexing, and searching of billions of web

pages that are frequently updated. Of course, Nutch uses Lucene at its core to handle

indexing and retrieval. Scalability is a major issue when dealing with billions of text

documents or with large amounts of simultaneous search traffic. These problems are

12 http://lucene.apache.org/solr/, retrieved on March 1, 2012
13 http://nutch.apache.org/, retrieved on March 1, 2012
14 http://hadoop.apache.org/, retrieved on March 1, 2012
15 http://tika.apache.org/, retrieved on March 1, 2012

http://lucene.apache.org/solr/
http://nutch.apache.org/
http://hadoop.apache.org/
http://tika.apache.org/
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not tackled by Lucene, but both Nutch and Solr support index sharding and replica-

tion through Hadoop. Hadoop is another open-source project in the Apache Software

Foundation and it provides tools like HDFS, a distributed file system, and it also con-

tains a software framework that implements MapReduce for distributed computation.

The major difference between the two sub-projects is that Nutch contains a web

crawler, tools for document parsing, and a web search front end. In contrast to that,

Solr was designed as a server wrapper around Lucene that can be easily configured

using XML. Over time the relation between Solr and Nutch has shifted. Currently,

Nutch integrates Solr (and also Lucene) and adds further web-specific functionality.

Document parsing in Nutch is handled by the Tika project, which is another top-level

project of the Lucene family in the Apache Software Foundation. Tika supports many

formats of documents like web pages (HTML), office documents (Microsoft Office,

OpenOffice, etc.), portable document formats (PDF, EDF, RTF), and even archive file

formats (TAR, ZIP, BZIP2). The Tika framework provides a standard API for docu-

ment parser plugins to extract document content and metadata. Tika allows the pro-

cessing of all supported types of documents with a single common API and therefore

purges the programming code necessary to support several types of text documents in

a search application.

This list of extensions for Lucene demonstrates that it is only a programming library

for core IR functionality and not a complete search engine application, although it

is easy to build a simple search application by using the API. The tools provided by

Lucene are discussed by referring to the general architecture of a modern search appli-

cation (see Chapter 3), starting with a closer look at the components that are provided

for indexing a document collection. For simplicity, it is assumed that a collection of

structured text documents is available and residing in a particular directory on the file

system. That allows to skip the additional steps of acquiring the text content using a

crawler from a framework like Nutch, and parsing possibly different types of docu-

ments with an API like Tika.
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4.1.1.1 Text Processing & Indexing

The central concepts for constructing an index using Lucene are documents and fields.

A document typically consists of a number of different fields with content values, like

title, abstract, and content. Given the structured document collection this transforma-

tion is a straightforward process, because it allows the usage of the structure of the

documents to separate the fields. But sometimes the structure of the documents that

need to be searched is neither well-defined nor known beforehand. Then a more care-

ful design of the index application is needed to ensure good search experience. Given

that the documents in a collection are present as a text stream. The next step is to break

the stream into a number of individual atomic elements. In Lucene these elements are

called Tokens and the process of transforming a text stream into token is realised with

Analysers. A unique feature of Lucene is its powerful and flexible document analysis

concept. Other open-source search engines neither provide such an intelligent concept

that allows flexible configuration of the text transformation process, nor do they in-

clude a comparably rich collection of text analysers. The text transformation concept

of Lucene deserves a detailed explanation, which follows next.

A token as an atomic unit of text in Lucene includes a number of attributes that are

important to ensure flexibility when searching in an index. Of course the token has

a text value, which contains the word it represents. In addition to that, it also retains

the start and end character offsets of the word in the original text. And finally, token

type and position increment are further mandatory attributes. A stream of tokens is

the generic output of the analysis process. A TokenStream in Lucene is an abstract

class that allows two different ways of emitting tokens. A Tokenizer reads characters

from a given Reader and generates tokens. While a TokenFilter takes tokens in and

returns new tokens by either adding or removing tokens or altering token attributes.

This hierarchy of generating tokens allows the construction of analyser chains. Figure

4.1 shows an example with three TokenFilters.
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Reader Tokenizer TokenFilter TokenFilter TokenFilter Tokens

Figure 4.1: An analyzer chain with three TokenFilter instances in Lucene, redrawn from [127, p. 117].

Tokenizer

CharTokenizer KeywordTokenizer StandardTokenizer

LetterTokenizer WhitespaceTokenizer

LowerCaseTokenizer

Figure 4.2: The Tokenizer hierarchy in Lucene (version 3.3), redrawn from [127, p. 119].

Lucene also provides a number of Tokenizers that can be used depending on the de-

sired application. The hierarchy of these classes is illustrated in Figure 4.2. The Stan-

dardTokenizer will be suitable for most scenarios that deal with regular European

languages. It is a sophisticated Tokenizer that implements a grammar to produce to-

kens for high-level types like email addresses and others. The remaining Tokenizers

are self-explanatory by means of their names. In addition to this basic set, Lucene also

provides more complex Tokenizers, e.g. language-specific Tokenizers for Chinese, or

two variants that implement n-gram tokenising that can be used for character n-gram

stemming (see Section 3.1.3).

An even larger collection of implementations extends the TokenFilter class. Lucene

version 3.3, which is the latest release at the time of writing, contains over 70 To-
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kenFilter implementations. Figure 4.3 represents an extracted hierarchy that covers

general TokenFilters. Among these the TeeSinkTokenFilter deserves special attention.

It reads tokens and then produces its own output token and a clone for any number

of defined token consumers called sinks. Each of these sinks can then process the

tokens in different ways. This architecture adds more flexibility to field-specific trans-

formation by creating virtual analyser chains, which share some of the chain links. For

example in some scenarios, a number of fields share the first analysis step, but differ

in subsequent processing. [127, p. 120]

Order-dependency of TokenFilters is another important aspect that needs special at-

tention. Each step in an analyser chain relies on the output of the preceding step, if

present. Thus, the order of TokenFilters may affect the final result of the processing.

A good example is stop-word filtering. Stop-word lists typically require incoming to-

kens to be lower-cased in order to avoid redundancy. If an analyser chain consists

of these two steps, ignoring this implicit dependence may cause unexpected results,

i.e. unfiltered tokens that are still present after processing, because they appeared in

upper-case. [127, p. 125f]

The variety of ways to generate and process a stream of tokens serves as further ev-

idence that Lucene is a rich toolbox rather than just a search engine implementation.

This variety of implementations covers almost any form of text preprocessing and

shows the flexibility that is gained by implementing analyser chains. But given this

variety it may become difficult and time consuming to design an appropriate chain for

the desired search application. Of course, Lucene provides a solution to this problem.

It provides a number of carefully designed built-in Analyzer classes that implement

specific combinations of Tokenizers and TokenFilters.

The StandardAnalyzer is an implementation that works for most European languages

out-of-the-box. It includes the StandardFilter to recognise high-level token types, the

LowerCaseFilter, and the StopFilter to remove stop-words. But again, the main focus
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TokenFilter

ASCIIFoldingFilter

CachingTokenFilter

KeywordMarkerFilter

LimitTokenCountFilter

LowerCaseFilter FilteringTokenFilter

StopFilter LengthFilter

TeeSinkTokenFilter

StandardFilter

SnowballFilter

PorterStemFilter

Figure 4.3: TokenFilter hierarchy in Lucene, version 3.3.

is on modularity. There are implementations like a StopAnalyzer that splits the text

into tokens at non-character letters, lower-cases, and removes stop-words. The Key-

wordAnalyzer is useful for text elements that need to be preserved and thus it creates

tokens that are equal to the incoming text. SimpleAnalyzer and WhitespaceAnalyzer

both split tokens in a straightforward fashion either at white spaces or at non-character

letters. But Lucene also provides custom tools to tune text transformation for better

search effectiveness. [127, p. 127]

A powerful utility in the Analyzer hierarchy is the PerFieldAnalyzerWrapper. Like

the name suggests, it allows the definition of field-specific analyser chains that are

handled by mapping field names to analyser implementations. The main advantage

of the wrapper is that it provides the potential to retain a customised text transfor-

mation set-up for the retrieval process. We will examine the details of the problem,

when the query transformation concept of Lucene was introduced (see the next but

one paragraph). Another important problem that affects the effectiveness of search
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are synonyms. The SynonymAnalyzer of Lucene tackles this problem by injecting to-

kens into the token stream. In general, there are two possibilities when approaching

this problem. Either the synonyms are injected in the index or into the query. Both

methods have advantages and disadvantages that have to be weighted for the desired

application.

A SynonymAnalyzer uses the position attribute of tokens to inject synonyms at the

same position as the original token. This approach ensures that the original token

stream remains in its original order, which is needed to guarantee that phrase queries

work as expected. Some phrasal queries may, however, become affected when stop-

words are removed during indexing. Consider the query “the Wizard of Oz” and a

document that contains that exact phrase. When stop-words are removed during in-

dexing, half of the information in the phrase is lost. But that does not affect search

quality much, because Lucene retains empty positions of deleted tokens. However,

phrase queries are quite costly in terms of efficiency. In case parts of the phrase are

not present in the document index, ranking documents in response to our example

query is likely to be inefficient. This is mainly because the number of documents that

match the four word phrase with wild card tokens at positions one and three is likely

to be larger than the number of documents that contain the actual phrase. Lucene

provides enough flexibility to solve this issue with a ShingleFilter. This TokenFilter

groups two consecutive words into a single token. The resulting bi-gram tokens (note

that bi-grams are at word-level here) have the same position in the token stream as

the first word of the bi-gram. Obviously, this results in a larger index, but at the same

time exact-phrase queries gain much faster response times. The given examples of ad-

vanced analyser capabilities show that many problems of modern search applications

can be directly addressed using Lucene.
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4.1.1.2 Ranking

In order to search an index created with Lucene, user-generated queries have to be

processed and transformed to Lucene’s internal Query objects. The QueryParser pro-

vides a method named parse that performs this operation. In order to parse a query, it

needs an Analyzer object to specify how to transform the terms for matching indexed

documents. Obviously, the Analyzer that is passed over to the QueryParser should

match the one that was used for creating the index. In complex scenarios, the docu-

ment fields might have been analysed by different Analyzers. Lucene does not store

this information in the index. But it does provide the PerFieldAnalyzerWrapper that

can be fed into a QueryParser instance using the same configuration that was used for

indexing. [127, p. 79f]

Alternatively, Query objects can also be constructed programmatic, but it is neces-

sary to ensure that the query terms are parsed appropriately to match the indexed

terms. A straightforward Query object in Lucene is a TermQuery. It takes a Term ob-

ject, consisting of a field to text mapping, and constructs a Lucene Query. Lots of

other query types exists in Lucene: PhraseQuery, WildcardQuery, FuzzyQuery, Span-

Query, BooleanQuery, etc. All of them process query text in different ways to translate

a natural language query into Lucene’s query language. Although the details of these

query types are interesting, they are not discussed here in detail – with one exception.

A BooleanQuery allows the combination of almost all types of Lucene queries and it

provides insights into the ranking model deployed in Lucene. In essence, Lucene relies

on the Boolean model for document matching and uses an extended version of the TF-

IDF vector space model to rank the matching documents. As a result, BooleanQuery

objects in Lucene are containers of Boolean clauses, which can be optional (OR), re-

quired (AND), or prohibited (NOT). This translates into complex nested search struc-

tures, which are used to efficiently select documents for ranking. [127, p. 94ff]
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rsv(d, q) =
∑
t∈Q

tf(td) · idf(t2) · boost(f(td)) · coord(q, d) · lNorm(f(td)) · qNorm(q)

(4.1)

The exact definition of Lucene’s scoring function [127, p. 86] is given in Equation

4.1, where the first and the second parts of the sum represent the TF-IDF weight, the

third part is a static field-specific boost, the fourth component is a coordination factor,

and the two last parts are normalisation factors by field length and query terms. The

function f(td) returns the field of the document d that contained the query term t. It

is obvious that ranking in Lucene is based on the concept that documents consist of

fields. As a result, both normalisation and boosting are field-specific and developers

can influence the ranking by altering field boosts during indexing. Despite these static

boosts, Lucene also allows the boosting of query clauses. This feature only affects the

document ranking if queries contain more than a single clause. The coordination factor

coord(d) is used to boost documents that contain more than a single query term. It can

be compared to the normalisation factor λ in linear language modelling (see Section

3.2.4.4), because it leads to an AND-like boost for respective documents.

4.1.1.3 Summary & Outlook

In order to summarise strengths and limitations of Lucene, we briefly review its key

features and relate them to other open-source search engines. The most powerful com-

ponent of Lucene is the flexible framework for term normalisation during indexing.

Even though the advantage of applying certain normalisation techniques might be

debatable, none of the other search engine toolkits that were part of the present high-

level analysis are comparably flexible and yet powerful in out-of-the-box scenarios.

However, Lucene’s indexing structure, which is three-dimensional in the sense that it

covers documents, fields, and terms, does not exhibit such a level of flexibility.
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This is a major limitation from a scientific perspective, because the lack of flexibility

in the index structure complicates the implementation of new ranking models. In ad-

dition to that, over the past decade Lucene’s index format was primarily optimised for

efficiency in terms of speed. But over time, new approaches to index compression have

been developed. These methods have not yet been taken into account for the index for-

mat of Lucene. The reason for that might be the complex structure of the code base

for indexing, which grew dramatically over time due to efficiency optimisation. This

limitation of Lucene is currently under investigation by the development community.

For the upcoming Lucene version 4.0 a complete re-design of the code base for index-

ing is under development. The main purpose of this development is to provide a new

flexible index structure that allows the incorporation of different ranking models by

accumulating according statistics at collection, document, and term level. At the same

time, the developers focus on including the latest index compression techniques that

make use of advanced capabilities of modern computing hardware. A major limitation

of Lucene up to version 3.x would then be obsoleted.

Presuming the developer community manages to create a concept of similar flexibil-

ity and generality for building index structures like the term transformation toolkit,

we could consider Lucene the Swiss Army Knife of information retrieval technology.

Given that it would have a selection of different state-of-the-art retrieval models in-

corporated, until now a striking feature of Terrier only, it is likely to attract the IR

research community even more than today. Receiving contributions from the research

community to incorporate fresh ideas quickly, in combination with the powerful text

transformation framework that Lucene already provides, will certainly be beneficial

for both the scientific and the commercial search community. But at present, it is not

yet clear if the intended goals for Lucene version 4 can be achieved. Another critical

aspect worth noting is that if the developer community succeeds, the solution may still

raise new issues, for example degraded efficiency due to the number of possible index

formats. A further problem could be trying to keep the core of Lucene as slender as

possible. However, the Lucene developer community has mastered all big issues in the

past, which indicates the potential of Lucene-based search technology in the future.



142 4 IR Frameworks & Software Implementations

4.1.2 Terrier Platform

Another open-source software framework for textual IR is being developed at the

Glasgow University since 2000 [135]. The motivation was to provide a framework

for rapid development of large-scale IR applications. Consequently, it was named Ter-

abyte Retriever platform (of which Terrier is an acronym). An important aspect for

the development of the framework was the lack of a standard software framework

as a test bed for IR research and experimentation. In 2004, the first release of the

software was published under the MPL license. Until then the most influential insti-

tutions in IR research usually developed their own models separately. Comparison of

IR methods and architectures was restricted to evaluation campaigns like TREC and

still raised concerns regarding good comparability due to the complexity of modern

IR systems. Thus, the most important aspect of the motivation for the development of

Terrier was the need for a general software test bed that allows the comparison and

also the combination of many different IR models to increase effectiveness and effi-

ciency of large-scale textual search applications. Next, the Terrier framework which is

implemented in Java, is explained in more detail. Therefore the previous layout of the

discussion is followed by considering the main architecture and important concepts of

the software implementation.

4.1.2.1 Text Processing & Indexing

The process of parsing documents and creating a document index covers four mod-

ular stages in Terrier. Its architecture allows the usage of different plugins for each

part of the process and thus ensures flexibility. The four stages of indexing are collec-

tion handling, document processing and parsing, term processing and transformation,

and lastly the creation of index data structures. Since Terrier is intended as a shared,

common research platform, it also contains plugins for processing standard TREC col-

lections out-of-the-box. This contribution is two-fold, because researchers can focus

on the development of new ideas and methods and at the same time the common chain
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of plugins for processing standard collections ensures reproducible experiments. For

experiments that introduce a new collection, the first step in Terrier is to develop a new

collection plugin. In the next step, documents have to be processed in order to extract

textual information. Terrier supports several common document types like HTML,

document formats of the Microsoft Office product family, and documents stored in

PDF. Terms are modelled using three major attributes: the actual textual String, the po-

sition of the term in the document, and the fields, in which the term occurs, given that

the documents are structured. Obviously, there is a significant overlap in how open-

source search engines model general documents and terms. However, academic search

engines like Terrier or Lemur model structured documents different than Lucene.

Transforming text into index terms is realised with Term Pipeline implementations in

Terrier. Two standard Term Pipelines are provided by default: two variants of Porter’s

stemming algorithm, and a stop-word filtering Pipeline is used to remove common

words. The last step of the indexing process is controlled by Indexer implementations

that store the resulting data structures on disk. Here, Terrier provides a BlockIndexer

and a BasicIndexer. In order to use term positions for retrieval, the BlockIndexer stores

positions in blocks, where the size of the block defines the position accuracy. Every

created index is stored in four data structures. The Lexicon stores terms and corre-

sponding global information like document and term frequencies. The Inverted Index

contains the posting lists for the terms covering document identifiers and term frequen-

cies. Document numbers, document identifiers, and document length are stored in the

Document Index. Finally, the Direct Index is used to store terms and term frequencies

to facilitate easy and flexible query expansion during retrieval. In order to store the

index data structures efficiently, the redundant information in the Direct Index and the

Inverted Index are compressed using state-of-the-art encoding algorithms.



144 4 IR Frameworks & Software Implementations

4.1.2.2 Ranking & Feedback

Terrier also supports flexibility in the retrieval stage. The plugin concept is adopted for

all components that contribute to the final ranking of documents. Terrier features dif-

ferent state-of-the-art weighting models and it allows custom term and document scor-

ing. For cross-comparisons of retrieval models, Terrier incorporates TF-IDF, BM25,

Language Models and the Divergence from Randomness Framework for parameter-

free probabilistic ranking. The latter model was developed at Glasgow University (see

Section 3.2.4.5) and thus most of the weighting models in Terrier are implemented in

this probabilistic framework.

Altering scores on document or term level is achieved by means of TermScoreMod-

ifiers or DocumentScoreModifiers. Tuning the score of particular terms is useful for

structured retrieval to ensure that query terms appear in predefined fields. A TermIn-

FieldModifier penalises documents that contain query terms in all but the desired doc-

ument fields. Similar to Lucene, Terrier also supports static field boosting by means of

the FieldScoreModifier. Another option to incorporate query-independent prior infor-

mation is the DocumentScoreModifier. For example, in the scenario of searching web

pages it could be used to include evidence from hyperlink structure analysis. In addi-

tion to that, DocumentScoreModifiers can also be used to alter the weighting model

based on prior evidence. A final stage in Terrier’s ranking model is post-filtering. Re-

ducing the number of documents returned from a single web page in order to increase

result diversity is a practical example. Another type of post-processing is query ex-

pansion in the sense of altering terms of the original query.

In order to support pseudo-relevance feedback mechanisms, Terrier uses its Direct

Index data structure to extract the most informative terms from documents ranked at

top positions. These related terms are then added to the original query. Terrier re-

lies on its flexible term weighting model to re-weight the query, providing a richer

set of retrieved documents. The success of automatic feedback models depends on
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various factors like query difficulty and the number of documents or terms that are

used to expand the query. Again, the main design purpose of Terrier is achieved by

supplementing feedback models that are based on the Divergence from Randomness

framework with traditional models like Rocchio’s feedback (see Section 3.3.1). This

enables IR researches to design experiments that compare different automatic feed-

back algorithms. Furthermore, Terrier supports low-cost selective methods for query

expansion. These facts show that the flexible term weighting model in Terrier enables

IR researchers to relate new methods to a wide selection of effective state-of-the-art

weighting and ranking models.

4.1.2.3 Evaluation

Comparative assessment of retrieval systems also requires test collections and met-

rics that measure relevance of documents. Evaluation campaigns like TREC provide

test collections and metrics in annual cycles. In order to allow these experiments to

be re-used, Terrier also provides a small framework that takes result lists and rele-

vance assessments as input to calculate commonly used performance measures. Most

of these metrics are based on precision (see Sections 2.3.1 to 2.3.4). Using Terrier’s

evaluation package, IR researchers are able to assess new methods without having to

look at too many details. In combination with the rich set of incorporated state-of-the-

art IR models, Terrier has become an important platform for IR research and practice.

The developers claim that Terrier was downloaded several tens of thousands times and

that it is used both for research and practical applications.

Terrier’s major advantage is its flexible design. In spite of Lucene, which is another

highly flexible open-source search library, Terrier focuses on flexible ranking and

weighting. A minor limitation in comparison to Lucene lies in its term transformation

concept. Although the TermPipelines allow flexible term transformation implementa-

tions, only a few algorithms are supported by default. A reasonable explanation is the

focus and expertise of the research group at Glasgow University, which lies in IR re-
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search rather than in computational linguistics. However, being aware of the strengths

of Lucene, Terrier, and Lemur, we can conclude that a clever combination of these

platforms in a meta-framework may allow the covering of particular weaknesses and

the potential multiplication of the advantages in a symbiotic environment.

4.1.3 Lemur Project

The Lemur Project is an open and collaborative work between the two US institutions

University of Massachusetts, Amherst and Carnegie Mellon University. The project

was initiated in 2000 and covers several contributions from students and staff mem-

bers of both universities. All of the subsequent information was gathered from the

project website (see reference in Table 4.1). At the time of writing the joint project

contains five major components: Indri, Lemur, Galago, the Query Log Toolbar, and

ClueWeb09. Instead of focusing on the details of the IR system implementation in

Lemur, these five contributions are described briefly. The reason for setting a close

examination of Lemur aside is that its development has been suspended recently and

therefore it has lost its relevance for this dissertation.

Indri is a text search engine that combines inference networks with language mod-

elling. It is primarily intended for academic research purposes and it supports index-

ing of large-scale text collections. Language models can be created for documents,

queries, or sub-collections using the Indri API. Similar to other academic search en-

gine projects, like Terrier or Xapian, Indri is complemented with API’s for common

programming languages, e.g. Java or PHP. By means of these interfaces it can be easily

adopted for most search applications. Querying an index is achieved by using the Indri

Query Language. It is a structured language that allows arbitrary complex queries. It

originates from the widely-used InQuery query language. Based on the constant de-

velopment in the past, it can be assumed that the query language is able to fulfil most

of the requirements of modern search systems. Indri’s query language supports differ-

ent operators on term level. In addition to that, it is possible to use the belief operators
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presented in Section 3.2.4.6. Incorporating prior information on documents into the

weighting algorithm is another feature of Indri. In contrast to other retrieval toolkits

these document priors can be used in the query language, i.e. incorporating priors can

be triggered dynamically depending on the contents of a query.

The Lemur toolkit is a collection of technologies that are useful for creating search

engine applications. The software package includes tools for cross-lingual retrieval

as well as document summarisation, filtering, and categorisation. It supplies several

indexing formats that are optimised for the efficient processing of various collection

sizes. The Lemur toolkit offers a number of retrieval models, e.g. Indri’s inference

network implementation, Okapi (BM25), TF-IDF, and others. It also supports many

common document formats, like HTML or PDF. Due to scalability issues in the gen-

eral architecture the final version of the Lemur toolkit was released in 2010.

A component that was added to the Lemur project recently is the Galago toolkit, de-

veloped at the University of Massachusetts, Amherst. In contrast to Indri and Lemur,

Galago is intended for research purposes, because it focuses on the experimental fea-

tures of a search engine. The main design goals for Galago are flexibility and scalabil-

ity. Flexibility is achieved by means of customisable indexing and retrieval processes.

In order to develop a scalable framework, a technique called TupleFlow was developed

and implemented in Galago. TupleFlow is a method for distributed computation that

extends MapReduce. In the MapReduce model a master node distributes subtasks that

are partitions of the original problem to worker nodes, by transforming input items

into key-value pairs. The worker nodes process these subtasks and pass the results

back to the master, which aggregates the results by key and combines them to solve

the original problem. TupleFlow allows the use of arbitrary data types (or tuples) to be

exchanged between several distribution and aggregation stages. In addition, each of

the stages can have arbitrary numbers of inputs and outputs. This flexible distribution

set-up can be represented as an acyclic graph, where nodes are stages of the computa-

tion and edges represent the data flow. The data flow in such an acyclic graph accounts

for the dependencies during the distributed computation.
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Scalability and flexibility are conflicting requirements when designing a search en-

gine toolkit. Flexibility means that a selection of retrieval models is available to be

able to compare their effectiveness in different search scenarios. But different ranking

functions require different information about terms and other features, which have to

be included in the corresponding index representation. In order to create a retrieval

toolkit that scales well both during indexing and retrieval, the index formats are typi-

cally optimised for efficiency. However, optimising several index formats for scalabil-

ity is a complex problem. Galago tackles this problem by offering two customisation

strategies. First, it allows the implementation of any custom ranking model and uses

TupleFlow to obtain a corresponding index format that is very efficient for retrieval.

Once such an index is built, the strategy for querying the index cannot be changed

due to optimisation (represented in the TupleFlow graph). The second approach sacri-

fices efficiency for flexibility and makes use of a rich structured query language that is

termed Galago Query Language. Galago’s structured query language is a descendant

of the query languages used in Indri and InQuery. A major limitation of Galago is that

the current open-source implementation only supports single machines with multiple

processors. For clusters of multiple machines there is no software available that makes

use of the TupleFlow model, which makes it hard to compare it to other extensions of

MapReduce.

Since 2005 the Query Log Toolbar is another important part of the Lemur Project. The

Query Log Toolbar captures user behaviour and is intended to promote research in

information seeking behaviour and related disciplines. It consists of two major com-

ponents: a client that captures input data from a user, and a server that collects this

input and provides access to the collected data via programming interfaces. Currently,

clients are available as add-ons for commonly used web browsers, namely Firefox and

Internet Explorer. Since privacy is a primary concern when dealing with user data, the

client provides a simple blacklist filtering approach to make personal data anonymous

before it is uploaded to the query log server. In order to allow rich analysis of the query

log data, the toolbar can be configured to capture user queries as well as results from a

set of predefined search engines. The Query Log Server uses a MySQL database and
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Java Servlets to store the data it receives from registered clients. There are two op-

tions available to install the Query Log Server on a dedicated machine. Depending on

existent services on the machine, one would either use the stand-alone server applica-

tion that includes a container for the Java Servlets or one would install the application

in an existing Servlet container. The flexible configuration of the toolbar enables re-

searchers to design arbitrary experiments to study user behaviour in search scenarios.

For that reason the Query Log Toolbar can be considered as the most unique feature

of the Lemur Project.

A final component in the Lemur collection of information retrieval tools is the

ClueWeb09 dataset. It contains about one billion web pages covering ten languages

that were crawled in early 2009 by the Language Technologies Institute of Carnegie

Mellon University. The dataset contains the contents of the web pages and the web

graph, which includes URL’s and outgoing links from the web pages. Web pages are

stored in the WARC format that defines a standard way to store payload and control

information from internet protocols like HTTP, DNS, and FTP. Due to the large size of

the collection, the dataset is distributed in two categories. Category A refers to the full

data set and category B includes about 50 million English-only web pages. The com-

pressed storage size of the dataset is about five TB for the web pages and about 130

GB for the web graph (both values are for the entire dataset, i.e. category A). In the

two years of its existence, the ClueWeb09 collection has already been used in several

tracks at TREC, e.g. the Crowdsourcing Track at TREC 2011, or the Million Query

Track at TREC 2009. This shows both the broad acceptance and the need for a re-

search test collection of this type and scale. Another aspect that supports this claim is

the variety of additional information that is available for the dataset. Carnegie Mellon

University supplied a list of duplicate entries, a list of URL redirects for the cate-

gory B subset, and their calculated PageRank scores for the entire collection. Other

supplementary contributions from various institutions worldwide include spam scores,

anchor text, and an anchor log. The latter can be used for query reformulation based on

the assumption that anchor text for a link to a document may contain rich information

on the target web page.
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4.1.4 Overview on Further IR Frameworks

MG4J (an acronym from managing gigabytes for Java) is a toolkit for indexing large

text collections at web scale that is being developed and maintained at the University

of Milano [20]. It allows distributed indexing and supports querying multiple indexes

by interleaving the results. Since its initial publication in 2005, it has been used in

several research experiments ranging from ad-hoc retrieval to finding geographic lo-

cations and biomedical search. Flexible distributed indexing is a key feature of MG4J

and thus it is predominantly adopted for experimental research on large data collec-

tions.

The Minion framework is dicussed next. It was developed at Sun Labs (now Oracle

Labs) as a part of the Portal Server software system from early 2008 until the be-

ginning of 2010. Minion supports standard document retrieval as well as Boolean,

relational, and fuzzy querying. The architecture of the software was designed to be

highly flexible. Unfortunately, no statistics were found on the usage of the software

package. Deriving usage statistics from the Portal Server could be inaccurate, because

Minion is just one of many components in that software framework. In general, Min-

ion is very similar to Lucene (see Section 4.1.1), but there are two aspects that dis-

tinguish Minion from most other software implementations. First, Minion generates

morphological variations at query time using its integrated morphological framework

named LiteMorph. It is a lightweight collection of rules similar to those in rule-based

stemmers. The purpose of incorporating generative morphological variance at query

time is to simulate the tendency of users to over-generate their queries without losing

any information during indexing. A second unique feature of Minion is that it pro-

vides ready-to-use methods for document clustering and classification. The latter can

be done automatically or by programmatic definition of document sets, e.g. a spe-

cific result set. Besides the traditional ranking models TF-IDF and BM25 Minion also

features a patented Relaxation Ranking algorithm.
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The Sphinx search engine (an acronym from Sql Phrase INdeX) is an open-source im-

plementation that serves as retrieval back-end for many web applications. Craigslist,

Tumblr.com, GuteFrage.net, and CouchSurfing.org are just a few popular examples

that serve large user communities. A key feature of the engine is performance in

terms of efficiency, which includes good scalability as well as distributed indexing

and searching. Based on the information from the Sphinx website, it can be concluded

that the main purpose of the development is to commercially exploit the underlying

technology in the context of large-scale web applications. Sphinx allows plain file in-

dexing as well as SQL database indexing and it supports a wide range of RDMBS.

It provides API’s for standard programming languages like C and Java, but also for

many other languages that are commonly used in web applications. Besides straight-

forward Boolean matching, Sphinx uses a phrase weighting algorithm that is based on

the longest common subsequence (LCS). It also supports probabilistic ranking using

the BM25 weighting scheme. The system provides five different ranking algorithms

in total, which are combinations of Boolean, phrase and statistical ranking. To han-

dle morphological variants of words, Sphinx includes the Snowball framework for

stemming, which provides rules for many common languages. In addition to full text

search, the application also supports selecting and ranking of non-textual data.

Another fully fledged search engine implementation is Wumpus from the University

of Waterloo in Canada. Its primary objective is to study problems that arise during

indexing of dynamic text collections, especially in the context of multi-user environ-

ments. A specific scenario is file system search, where the number of document up-

dates can be expected to be larger than the number of user queries. Consequently, the

implementation was carefully designed to allow maximum scalability. The program

code is written in C and it uses a file system change notification package for Linux

named fschange, which was developed by the author of Wumpus to overcome some

shortcomings of other notification mechanisms. As previously noted, Wumpus proved

its great scalability in a scientific comparison with Zettair and Lemur. Since the em-

phasis on efficiency in the defined scenario is the major advantage of the engine, it is

not as flexible as other toolkits that allow the adjustment of many components of the
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entire system. Although this is not a limitation per se, it somehow restricts the adop-

tion in search applications. The original implementation featured a ranking algorithm

that is based on the vector space model. Later on, the widely-used BM25 algorithm

was added for convenience. Wumpus was mainly used for research on large-scale text

collections, e.g. in TREC’s Terabyte task. There is no indication that it was used for

other scenarios like commercial search applications.

Given the fact that it has been under development since 2001, and considering its

long history before that period, Xapian is the most advanced framework in the present

discussion. It was derived from Open Muscat, a commercial retrieval system devel-

oped by Martin Porter and his colleagues in the 1980s. The main objective for the

development of Xapian (and its predecessor Muscat) was to create an efficient soft-

ware implementation of the probabilistic IR model. Thus, it implements the widely

adopted BM25 weighting scheme and allows arbitrary complex Boolean queries. A

basic Boolean ranking method is also included in the system. Another feature of

Xapian is its ability to rank terms, which can be used to automatically expand a query.

Of course most of the recent search engine toolkits also support that kind of func-

tionality. The developers of Xapian also offer a ready-to-use search engine application

called Omega. Similar strategies are implemented for Lucene, Terrier, and Sphinx,

which suggests that this is a convenient method to commercialise open-source in-

formation retrieval technology. Although Xapian is written in C++, which naturally

requires more work to support platform independence than Java, it can be installed

on machines operating on Unix, Windows, and OS/2. An important feature for com-

mercial use is the support for data imports from various RDBMS implementations.

Similar to most other open-source toolkits of its family, it also supports phrase search

and faceted (or categorised) search. Xapian is used in a number of search and news

websites, in web-based applications, and software frameworks. It also serves as the

search engine in a few desktop applications, the OLPC (one laptop per child) project

is the most prominent example.
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A final implementation considered here, is Zettair, from the search engine group at

RMIT University in Melbourne, Australia. Zettair is a fast text search engine that was

formerly known as Lucy. It is designed to efficiently index and search HTML collec-

tions. Its main purpose is to provide a simple but fast command-line search applica-

tion. The application is mainly used in research experiments dealing with large web

collections. Zettair supports basic Boolean queries as well as phrase queries. Just like

almost all of the other listed projects, it also ranks documents based on the probabilis-

tic retrieval model and implements the BM25 weighting model. In addition to that the

Dirichlet language model is also included. Although the software project has existed

for a number of years, it has seen only little use outside the IR research community in

Australia.

4.2 Excursus: Natural Language Processing Toolkits

Natural language processing is a field of research that is closely related to information

retrieval. In particular, the overlap between the two subjects lies in morphological op-

erations on low-level techniques like stemming, synonym extraction, and spelling cor-

rection. More complex operations combine methodologies from both fields at a higher

level for Question Answering (QA), where an automatic system is required to answer

a natural language question. Further details these systems will not be discussed, be-

cause current research in QA covers many topics that are not relevant for this work.

However, some low-level techniques are potentially useful for information retrieval

applications, as pointed out in Section 4.1.1. Here, a review of software frameworks

that are frequently used in combination with search applications is provided.

A collection of tools for NLP is provided by the Stanford Natural Language Processing

group16. They offer several Java-based software tools for parsing, POS tagging, named

entity recognition, and text categorisation under the full GPL license. Along with the

API’s of the Stanford Parser, the Stanford POS Tagger, and the Stanford Named Entity

16 http://nlp.stanford.edu/software/index.shtml, retrieved on March 1, 2012

http://nlp.stanford.edu/software/index.shtml
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Recognizer a number of trained models for several European languages, for Arabic,

and for Chinese are also provided. This allows easy integration into applications as

well as extending the provided models, or training completely new models.

The Stanford Parser is based on probabilistic modelling, i.e. it is based on prior knowl-

edge from a collection of manually annotated sentences. The software implementation

of the Stanford Parser supplies several state-of-the-art approaches: a basic lexicalised

dependency parser, a lexicalised probabilistic context-free grammar (PCFG) parser,

and a highly optimised PCFG parser. The output of the parser adheres to the Stanford

Dependencies format, or alternatively, generates phrase structure trees. The Stanford

POS tagger is based on a log-linear implementation and is distributed with several

trained models. The Stanford Named Entity Tagger is only available for English and

uses a conditional random field (CRF) implementation. Supplied models cover differ-

ent classes of entities, with the three most popular types being location, person, and

organisation, and in addition: miscellaneous, time, money, percent, and date.

The Stanford Classifier implementation is based on maximum entropy modelling.

Here, no trained models are provided. In addition to the separate API’s mentioned

above, a suite of NLP tools is provided as the Stanford CoreNLP software package.

It integrates all of Stanford’s NLP group’s tools for English and hence provides the

basics needed for higher level language understanding applications. The CoreNLP

package also includes a new deterministic coreference annotator. Coreference resolu-

tion is the process of identifying multiple expressions in natural language that refer

to a single object or individual. It is a common problem in automatic analysis of dia-

logues or discourses. UIMA wrappers (see next but one paragraph) were contributed

from outside of Stanford’s NLP group for most of these briefly presented tools. This

indicates that both the tools of Stanford and the UIMA concept are widely used in

research and enterprise applications.

Another software toolkit that has to be considered is OpenNLP17. It is a collection
17 http://incubator.apache.org/, retrieved on March 1, 2012

http://incubator.apache.org/
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of open-source projects for natural language processing rather than a software frame-

work in the traditional sense. At the time of writing, OpenNLP has also entered the

Apache Software Foundation as an Incubator project. The software project is written

in Java and was first released 2003. Over time OpenNLP has matured into a powerful

toolkit that supports most of the common tasks in NLP, like sentence segmentation,

POS tagging, named entity extraction, and coreference resolution. In addition, it also

supports basic machine learning technology based on maximum entropy and percep-

trons. The main goals of the project are twofold. First, it is intended to provide basic

state-of-the-art approaches of NLP to solve more complex problems for text process-

ing applications. And secondly, OpenNLP is used to develop and distribute models

that are ready to use for most common languages. Similar to evaluation in IR, where

re-using standard test collections and reproduction of experiments is a central issue,

standard models are needed as baselines for assessing the quality of new approaches

in NLP research. More recently, the developers added support to the Apache UIMA

framework by wrapping OpenNLP components in UIMA Analysis Engines.

Apache UIMA18 stands for Unstructured Information Management Architecture and

was initially developed by IBM before it was made publicly available through ASF

in 2006. As its name suggests UIMA, is a framework for the analysis of unstructured

textual information. Its general architecture was accepted as industry standard. IBM’s

computer named Watson is probably the most widely known application that is based

on UIMA. It competed in the quiz show Jeopardy! against two former champions in

early 2011 and defeated both of them. In essence, UIMA allows to define analysis

pipelines to process unstructured information that are called Analysis Engines. An

analysis pipeline consists of Annotator Components, which consist of either a single,

or an aggregation of components. Some text analysis components are directly pro-

vided with UIMA. Others are wrappers for projects such as OpenNLP. Two different

models are supported to design a complete pipeline for an application. The Collection

Processing Manager is an old model that is only kept for backwards compatibility.

In that model a concept named Collection Processing Engine represents a single-
18 http://uima.apache.org/, retrieved on March 1, 2012

http://uima.apache.org/
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threaded processing pipeline that starts with a Collection Reader and ends with a

CAS Consumer. This linear structure impedes good scalability. UIMA Asynchronous

Scaleout (or UIMA AS) fixes the problem and allows flexible analysis pipelines by

means of a flow controller and a CAS multiplier. Additionally, UIMA AS supports a

client-server architecture in order to allow clients to asynchronously access Analysis

Engines. Again, a collection reader serves as the starting point of the processing. But

instead of a fixed and single-threaded layout the Analysis Engine is accessed through

a service wrapper that can be replicated. This allows for both more flexibility and

scalability. UIMA has its own archiving format named Processing Engine Archive (or

PEAR) that allows straightforward re-use of existing Analysis Engines in other UIMA

applications.

In line with UIMA is GATE19 (an acronym for General Architecture for Text En-

gineering), which is a software architecture and collection of toolkits developed by

researchers at the University of Sheffield. The first version of GATE was published in

1995 and at the time of writing the latest release is version 6 published at the end of

2010. Similar to UIMA, it is written Java and is an empty framework, i.e. an architec-

ture for processing text. GATE features a component-based architecture that contains

three types of resources. Language resources are lexicons, text corpora, ontologies, or

the like. Algorithmic processes like parsers, generators, and models are represented as

Processing resources. Editing components that require visualisation are called Visual

resources.

In GATE, all integrated resources are combined in CREOLE (Collection of Reusable

Objects for Language Engineering). Several CREOLE resources are already built into

GATE. Language Resources that are supported cover many document formats like

mark-up languages (HTML, SGML, XML, etc.), office document formats covering

Microsoft products and OpenOffice as well as PDF, and also UIMA CAS documents.

One supported Processing resource is ANNIE (A Nearly-New Information Extrac-

tion System), which provides basic NLP tasks like sentence segmentation, tokenisa-
19 http://gate.ac.uk/, retrieved on March 1, 2012

http://gate.ac.uk/
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tion, POS tagging, and others. ANNIE is based on finite state machines and relies on

the Java Annotation Patterns Engine (JAPE). GATE also contains various gazetteers,

which are lists of named entities like geographic locations, currencies, etc. Further

built-in processing resources include ontologies, machine learning resources, align-

ment tools, and several parsers and taggers. In general, GATE uses a pipeline struc-

ture that is similar to UIMA. Relying on its powerful component architecture, GATE

also includes widely used NLP resources like OpenNLP, WordNet, and the Stanford

collection of NLP tools.

UIMA and GATE are widely used in the NLP community. Nonetheless, other frame-

works do exist that should not go unnoticed. The Natural Language Toolkit20 (NLTK)

was initially developed at the University of Pennsylvania and is distributed under the

Apache Licence. It is implemented in Python and intended for teaching and research

purposes. The toolkit is organised in several modules that cover different approaches

for particular NLP tasks. The toolkit provides tokenizers, stemmers, taggers, chunkers,

parsers, corpus readers and many more. In addition to that, NLTK also supplies docu-

ment readers for a number of test corpora, several trained models, and grammars that

can be used for testing. A limitation of the software toolkit lies in the Python language,

which is an interpreted programming language. Thus, it is not the most efficient way

to solve NLP tasks that process large amounts of textual data.

A project similar to NLTK is ClearTK21, which is being developed at the University

of Colorado, Boulder. ClearTK is a framework built on top of UIMA and thus, it is

also implemented in Java. Its main purpose is to provide a framework to tackle NLP

problems with common machine learning techniques. The main feature of ClearTK

is its common interface to popular open-source machine learning (ML) toolkits like

SVMlight22, LIBSVM23, OpenNLP Maximum Entropy, and Mallet24. In addition it

20 http://www.nltk.org/, retrieved on March 1, 2012
21 http://code.google.com/p/cleartk/, retrieved on March 1, 2012
22 http://svmlight.joachims.org/, retrieved on March 1, 2012
23 http://www.csie.ntu.edu.tw/˜{}cjlin/libsvm/, retrieved on March 1, 2012
24 http://mallet.cs.umass.edu/, retrieved on March 1, 2012

http://www.nltk.org/
http://code.google.com/p/cleartk/
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
http://mallet.cs.umass.edu/
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provides wrappers for NLP tools like the Stanford CoreNLP tools or the OpenNLP

library. The combination of NLP and ML techniques is supplemented with collection

readers for many common collections like Penn Treebank, CoNLL 2003, or Time-

Bank.

4.3 Summary and Directions

In this section a review of a selection of open-source software toolkits for information

retrieval and natural language processing was provided. Although these frameworks

were carefully selected, the list is not exhaustive. More popular toolkits were studied

in more detail to be able to identify key differences between them. In addition, the

focus of this investigation was on the needs of a researcher, being aware that a soft-

ware developer, who is developing a particular search application would not consider

all these aspects to be relevant for his work. In general, it has been found that most

open-source IR projects consisted of at least two components. A search engine API

or toolkit, which abstracts the complex process of the general model presented in the

beginning of Chapter 3, is supplemented with an application framework that covers

different search scenarios.

Although Lemur and Terrier are being developed in academic institutions, they do ad-

here to the two-fold API and application set-up. The Lemur Project is a successor of

the InQuery system, which was one of the first experimental IR systems in the world.

Given its long history and the fact that new state-of-the-art approaches were continu-

ously integrated, Lemur has a strong reputation in the research community. Our inves-

tigation showed that Lemur incorporates a few IR models of the probabilistic family,

ranging from Okapi (BM25) to Language Modelling and to the Inference Network

Model. Another positive aspect is the Querylog Toolbar, which allows the collection

of implicit user relevance feedback in web or browser-based search scenarios. The

IR community also gives acclaim to the Lemur team for designing and collecting the

ClueWeb09 test set of web pages for IR research. An impressive list of additional
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contributions regarding the ClueWeb09 collection shows the success of the commu-

nity efforts. Due to the limitations in the architecture that impede good scalability of

high-level search applications that deal with large data sets, the development of the

Lemur Toolkit has been discontinued recently. This is a major drawback, because it is

not clear whether there will be a replacement based on the Galago framework or not.

Altogether the Lemur Project is an important collection of resources for IR research.

But in comparison with other frameworks like Terrier or Lucene it has a limitation in

terms of flexibility.

The Terrier platform is another academic framework. A central goal for the devel-

opment of Terrier was to provide a standard framework to foster IR research. This

aim was motivated by the fact that most of the leading institutions in IR research de-

veloped and used their own software framework for experimental evaluation. These

frameworks rarely implemented more than a single IR model. Instead, they were usu-

ally based on a particular IR approach that was developed and promoted (in terms of

scientific development and publication) at the respective institutions. In order to ensure

maximum flexibility, Terrier implements a plugin concept for indexing and retrieval.

Terrier supports various document formats and supplies parsers for many standard test

collections used at TREC. Following the main design goal, it facilitates a flexible rank-

ing approach that allows the selection of specific ranking models for an application.

This unique feature is particularly appealing from a scientific perspective, because it

also allows the comparison of fundamentally different IR scoring and ranking models

in a common software test bed.

Its basic framework for the implementation of pseudo-relevance feedback algorithms

is another aspect that should not go unnoticed. Similar to other search engine toolkits,

there is a single model that dominates the software implementation. In case of the

Terrier platform, this is the Divergence from Randomness model (see Section 3.2.4.5).

Roughly half of all the ranking functions that are supplied in Terrier are implemented

in the DFR framework. But in the case of DFR, this is not necessarily a negative
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aspect, because other ranking models like BM25 can be formulated in DFR. In fact,

Terrier provides an implementation of BM25 in the DFR framework.

An evaluation package that contains a number of algorithms to compute state-of-the-

art effectiveness measures completes the platform. Bearing in mind that the flexibility

of a software implementation is usually sacrificed for efficiency in the implementa-

tion, this would result in questioning the scalability of the framework. Since scalabil-

ity of the platform was another key aspect of the development, this is not problem-

atic. In fact, Terrier supports parallel processing via Apache Hadoop, which imple-

ments MapReduce. There is, however, a limitation in the text transformation proce-

dure, which does not support many different approaches. Summing up, Terrier is a

very flexible framework for an easy entry into IR research without having to deal with

details of IR approaches.

Apache Lucene is an open-source IR library maintained at ASF. From the toolkits that

have been reviewed here, it has the largest developer and user communities, a fact that

puts it clearly ahead of other frameworks, at least in terms of manpower. Over time a

number of Lucene-related projects were initiated at ASF. A brief overview on these

projects was given here. The variety of frameworks and applications that can either be

coupled with, or are built on top of, Lucene proves the popularity of the project. The

present investigation also demonstrated that Lucene features the most powerful and

flexible text transformation framework. Due to the number of industry applications,

it contains virtually every feature that a modern search application should support. In

addition to that, Lucene uses a highly optimised index format. A great advantage of

Lucene is its flexibility and its effective default configuration. It was also pointed out

that its major limitation lies in the single scoring mechanism.

A close look inside current developments for the upcoming version 4.0 revealed that

a major redesign of the indexing and scoring architectures is in progress. Flexible

indexing with state-of-the-art index compression and flexible scoring with support for
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most of the state-of-the-art IR models would eliminate the limitations of Lucene. Only

an evaluation package would be missing from the perspective of an IR researcher.

In summary, it can be concluded that the retrieval toolkits Terrier, Lucene, and Lemur

all have specific strengths and weaknesses. When designing a scientific gedankenex-

periment that takes into account all key parts of modern retrieval systems, one would

expect a flexible framework which combines the text transformation capabilities of

Lucene with the choice of scoring algorithms in Terrier, and the evaluation resources

provided in the Lemur Project. Currently, the work of Lucene’s developer community

shows a clear intention to fulfil this need in the near future.

The architecture and flexibility of a modern search engine is only one side of the prob-

lem. More advanced techniques combine natural language understanding approaches

to improve the subjective effectiveness of search engines. But more than that is what

the IR community can adapt from NLP research: the brief review of NLP frameworks

showed that frameworks like UIMA and GATE effectively manage baselines for the

evaluation of new approaches. More sustainable evaluation will surely help to advance

IR research. Bearing in mind that reproducible experimentation is still a key issue in

IR evaluation, one could formulate a long term goal for IR research. The commu-

nity would benefit from a framework that allows comparison across test collections,

IR models, and search engine implementations. Formulating the vision of a common

software framework that receives contributions from all researchers in the field could

be the first step in the right direction. Lucene has the potential to realise such an ambi-

tious goal. In order to facilitate this process, it might be useful to couple it with evalua-

tion frameworks like TREC, CLEF, etc. However, whether such a vision is meaningful

to IR research or not remains debatable. And even if it is, other possibilities may open

up to tackle the central questions in sustainable IR evaluation.





5 Xtrieval Framework

Since 2007 the Xtrieval framework has been under development by the Chemnitz

retrieval group which was formed in late 2005. The mainspring for the creation of

Xtrieval was to design, conduct, and analyse IR evaluation experiments. This chapter

covers two major areas. First, the design and implementation of Xtrieval are presented

at an abstract level. A more detailed view demonstrates the combination of the most

important state-of-the-art components of an IR system. The section on the architecture

of the framework is complemented with a discussion of the prospect of further possible

refinements that will only be outlined in this work.

The second part of the present chapter is intended to show the wide applicability and

flexibility of Xtrieval. Note that the framework is being developed over several years.

For that reason a number of publications that deal with different aspects of IR eval-

uation using Xtrieval, are referenced and summarised throughout the chapter. These

efforts were either authored or mentored and supervised by the author of this dis-

sertation. This chapter concludes with a summary of the observations from several

empirical evaluations and a discussion on the limitations of the current evaluation

methodology and possible ways to overcome these. The latter topic is then explored

further in the next chapter.
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5.1 Motivation

In order to describe the main purpose of the framework, it is necessary to summarise

the initial situation. Starting with a first participation in an international IR evaluation

campaign in 2006, namely CLEF, a task-oriented solution was developed based on

Apache Lucene. It was the most flexible IR library that was publicly available at that

time. A graphical user interface (GUI) was developed in order to allow easy config-

uration of the system. The user interface also featured a component for evaluation to

load relevance assessments and visualise precision-recall graphs for the comparison

of different system configurations.

The limitations in this first implementation soon became apparent. A major problem

was the lack of a logical separation between the presentation in the graphical user

interface and the actual programs for processing experiments. From the scientific per-

spective, another drawback was the sole reliance on Lucene as the core retrieval en-

gine. Refer to [192, p. 28f] for a more detailed analysis of these limitations in this first

prototype. The analysis led to the formulation of specific design goals for Xtrieval

(see also [108] and [192, p. 29ff] for a detailed explanation). Other use cases and new

search tasks in IR evaluation resulted in further enhancement of the individual goals.

The following list summarises these goals:

• Abstract Document Representation for Indexing

During indexing the documents are transformed into data structures that are

stored in the file system. This process involves parsing the document collection

that is used for the experimental evaluation. In order to keep the work of writ-

ing collection parsers as low as possible, an abstract DataCollection serves as

template here. Due to many different types of document collections this abstract

definition serves as flexible interface for the handling of various document types

and structures. A class named SimpleDataCollection implements this abstract

class in Xtrieval. It can be used for many structured document formats like
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XML. Researchers that use the SimpleDataCollection only define a scheme by

how they want the document structure to be represented in the index.

• Interchangeable Retrieval API’s

It was pointed out before that the first prototype was solely based on Lucene.

Other toolkits like those discussed in Chapter 4 are based on the latest IR

models. However, weighting and ranking is only one of the many elements of

modern IR systems. Search effectiveness also depends on efficient text trans-

formation models. In order to allow comparisons on text transformation level,

stemming algorithms less popular than the Snowball implementation by Porter

were also integrated. As Xtrieval was used for various cross-language evalua-

tion tasks, more language-specific stemmers have been implemented into the

system.

• Simple but Flexible System Configuration

In order to support simple configuration, the system has been designed to allow

changes of parameter values during runtime. The effect of this feature is two-

fold. On the one hand, experienced researchers can experiment with adaptive

algorithms that tune parameters of system components according to observed

features. And on the other hand, students without a strong background in IR

core technology can acquire this knowledge in practical experiments by tuning

these parameters manually from the graphical user interface. The core of the

Xtrieval framework is organised according to the basic architecture of a mod-

ern IR system. Components like text transformation, document scoring, or auto-

matic feedback are based on abstract classes. This makes it possible to quickly

configure the framework according to a specific IR problem (see Section 5.4 for

a list of examples).

• Support for Retrieval Evaluation

One of the central objectives for the design of the Xtrieval framework is to

support experimental IR evaluation in a straightforward way. A number of en-
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hancements for Xtrieval that could be beneficial for IR researchers have been

identified by conducting empirical experiments. Since precision-recall graphs

contain more information about the effectiveness than typical summary mea-

sures like AP or MAP, a precision-recall graph visualisation was incorporated

into the graphical user interface of Xtrieval. This allows the comparison of dif-

ferent system components and their configurations on individual queries or on

a complete test collection. An interface to import relevance assessments from

evaluation campaigns in order to realise the visual presentation of system effec-

tiveness was also designed and implemented. In addition to that, the Xtrieval

framework can also be used for collecting relevance assessments. Here, the

graphical user interface is used to present a defined number of hits for a query,

each of which can then be marked according to a given relevance model. The

resulting relevance assessments are stored in the widely-used trec eval format.

• Reproducible Experiments

Over the past two decades, many test collections were created at evaluation

campaigns. The test collections and the results were stored in archives. But the

system descriptions were published in various forms. This raises the question

of how those collected experiments relate to each other, and more importantly,

how the systems and their component configurations relate to each other. The

Xtrieval framework allows the storage of the complete system configuration

covering all components and parameters. The data format that is used for this

purpose is XML serialisation. System and experiment configurations are repre-

sented as Java classes. Xtrieval de-serialises them to XML retaining all relevant

information, in order to be able to revert the process at a later stage. This al-

lows re-running existing experiments, for example in cases where a systematic

failure was identified in the course of the evaluation process.
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Figure 5.1: General architecture of the Xtrieval framework, redrawn from [108, p. 108].

5.2 Architecture

The Xtrieval framework is implemented in Java and consists of four major compo-

nents. Indexing, retrieval, and evaluation [108] form the abstract and object-oriented

system core of Xtrieval. The graphical user interface is the complementary fourth ele-

ment. Implementations for the calculation of common effectiveness measures as well

as import and export of relevance assessments are ready to be used. The graphical

user interface serves as interface for the system and experiment configuration. It is ab-

stracted as application layer and not necessary for experimentation, because the APIs

of Xtrieval are typically accessed via programming code. Nevertheless, the graphical

user interface can be useful to identify and understand particular problems, for in-

stance topic-specific failures. The basic architecture of Xtrieval is illustrated in Figure

5.1 [192, p. 33], [108, p. 108].
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In order to demonstrate how the formulated design goals were realised in Xtrieval,

the most important enhancements are discussed in the following subsections. But first

the emphasis is put on general modules and enhancements of the first prototype of

Xtrieval. An aspect that illustrates the flexibility of Xtrieval, is the ability to process

documents, queries, and ranked results, in controllable collections. This allows the

implementation of flexible filters, which can be applied both during indexing and re-

trieval. A prime example is multilingual search where a TranslationFilter can be used

to translate document or query collections. Xtrieval also supports a straightforward

structural filter that allows the combination of multiple document fields into a single

field according to a defined structure. The only decision that needs to be made when

using such a filter is what field(s) should be combined into which new field(s). It has

already been pointed out (see Section 5.1) that Xtrieval provides a substantial col-

lection of stemmers that are based on different approaches than the frequently used

Snowball stemming. This collection includes several stemmers for German, English,

French, and Russian.

Data fusion algorithms [102, p. 69ff], [192, p. 40] and general purpose similarity func-

tions [102, p. 23ff] represent further extensions of Xtrieval. The merging module (that

is used for data fusion) is usually applied to test the result list fusion hypothesis, i.e.

it combines search lists either on-the-fly or in a post-retrieval stage. The flexibility in

configuring the system and its components in combination with different approaches

to fuse the results, opens an entire field of empirical research. Currently, Xtrieval sup-

ports the following score-based fusion operators: a) SumScore, b) ProductScore, and

c) Z-Score. The similarity module provides basic coefficients to measure the resem-

blance of vectors. Xtrieval incorporates implementations for the Dice, Cosine, Jaccard,

and Ward coefficients. They were used to analyse whether clustering approaches can

be used to select more diverse documents for automatic query expansion [104]. That

study demonstrated that retrieval effectiveness can be slightly improved for the given

test collection when a local document clustering approach is applied.
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Another important feature of Xtrieval is its abstract feedback module. Due to the

abstract illustration in Figure 5.1, it is not clearly shown how automatic or manual

feedback can be activated. The framework only provides an interface for feedback,

together with three different kinds of abstract feedback mechanisms. These are: (1)

relevance feedback, (2) blind feedback, and (3) manual feedback. The latter is only

available from the GUI and is implemented as a combination of relevance assessment

and user-specific relevance feedback, i.e. the manual feedback is not interactive. The

feedback algorithms are coupled with the corresponding IR cores. Terrier, for exam-

ple, provides a number of different weighting schemes for pseudo-relevance feedback.

All of the modules presented so far constitute major elements of IR systems. The

approach of the creation of a collection of these methods in order to compare them

based on scientific principles is an important contribution. In fact it is comparable to

the idea for the development of the Terrier platform. The difference between Xtrieval

and Terrier is the level of abstraction. While Terrier focuses on the core models of

IR, Xtrieval aims to unite all major tools of modern IR systems that are needed to

solve any possible search task. For this reason, the integration of two widely-used

IR frameworks, namely Lucene and Terrier, is discussed in the following subsections.

Although the integration of Lucene was a major contribution from [192], it is included

here in order to illustrate how different types of IR libraries are aggregated in Xtrieval.

Besides the Terrier platform and Apache Lucene, the Lemur toolkit has also been in-

tegrated in Xtrieval. However, the integration of Lemur had only little value for the

formulated goals of Xtrieval due to different problems. Lemur is written in C++, but

its major functionality is accessible through a Java API. Consequently, this interface

was the basis for the integration to Xtrieval. Due to this Java to C++ wrapper, there is

a severe limitation for simultaneous access to the data structures of the Lemur toolkit.

The library can only handle a single index and a single search request at a time. Sin-

gletons were used to avoid side effects when accessing the library with multi-threaded

components of Xtrieval. However, this was not only a problem regarding scalability. It

did also limit the flexibility of our framework, which was designed to allow the change
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of the configuration of components during runtime. Because of this major problem and

the fact that the development of the Lemur toolkit was terminated in the end of 2010,

the support for Lemur was discontinued in Xtrieval as well.

5.2.1 Lucene Integration

It was pointed out before that one of the most important aims for the development of

Xtrieval was to incorporate different IR toolkits and APIs. This was achieved by a re-

design of the first prototype of Xtrieval, which was built on top of Lucene. Note that

this initial design of the Xtrieval framework is a contribution of the work described

in [192]. The following discussion is based on the current version of the integration

of Lucene in Xtrieval. It resulted from continuous scientific experimentation with the

Xtrieval framework and illustrates the advancement since its initial design and imple-

mentation. In order to keep matters clear, the emphasis of this presentation is put on

the two major processes of all IR systems: indexing and retrieval.

As a first step concerning the integration of the indexing process of Lucene, the re-

lationship of Figures 5.1 and 5.2 is established. Figure 5.2 provides an overview on

the top part of Figure 5.1, where the major elements are denoted with the concepts In-

dexing, Transforming, and Document. The Xtrieval framework covers these elements

with according classes and interfaces. The text transformation process is managed by

implementations that access the text transformation architecture of Lucene which was

described in Section 4.1.1. Next, the emphasis is put on the abstraction of document

collections and the creation of retrieval indices. Figure 5.2 shows the main classes

for the integration of these two elements. Each of the rectangles represents a single

class. The colours indicate the type of the class: blue boxes are interfaces and green

boxes are abstract or actual implementation classes. The names of the classes and the

packages are presented in the top of each of the boxes. In the top of Figure 5.2 the

Xtrieval interfaces Indexer and DataCollection are shown. It can also be seen that the

central class for the integration of the indexing processes of Lucene is LuceneIndexer.
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Figure 5.2: Lucene integration in Xtrieval – Indexing process.

The Index class manages the access to all underlying index data structures of Lucene

or other IR toolkits. Note that the interfaces Indexer and DataCollection as well as

Index and DataDocument represent the abstract classes for the integration of the in-

dexing procedures. Thus, they will also appear in the corresponding figure in the fol-

lowing Subsection 5.2.2 describing the integration of Terrier. The classes Document,

IndexWriter, and SimpleFSDirectory are implementation classes of Lucene which are

accessed by methods of the LuceneIndexer. They are not illustrated in detail in order

to keep the presentation clear.

The next part of this discussion is concerned with incorporating the actual search pro-

cesses of Lucene into Xtrieval. It elaborates on the details of the middle element of

Figure 5.1 that is denoted as the retrieval component of Xtrieval. Figure 5.3 illustrates

the central classes that manage the retrieval process in Xtrieval. Again, there are two

major types of classes to distinguish: process-oriented classes for search and classes
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Figure 5.3: Lucene integration in Xtrieval – Retrieval process.

that manage the resulting data. Interface classes (in blue) and abstract and implemen-

tation classes (in green) are presented using the same colour-coding like before. The

Searcher interface class in the top-left of Figure 5.3 inherits the search method to all

underlying classes. All general settings for the retrieval process configuration based

on Lucene is managed by the LuceneSearcher class. The LuceneFeedbackSearcher is

the most convenient class to access Lucene via Xtrieval, because it also includes a

generic feedback mechanism. It was pointed out before, that the actual feedback can

be obtained from different sources, like explicit relevance assessments, or pseudo-

relevance feedback. The classes Topic, Hit, and HitSet in the top and right part of

Figure 5.3 manage the access and creation of the input and output data, i.e. queries

and corresponding result lists. The illustration demonstrates that Xtrieval attaches all

types feedback to the query representation in the Topic class. The classes that connect

the retrieval mechanisms of Xtrieval with the actual implementations of Lucene are

presented near the bottom of Figure 5.3. These include the LuceneSearcher class and
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the Document class. The connection to the classes Index illustrates that the configu-

ration of the index is needed in order to start the retrieval process. It can also be seen

that the feedback in Xtrieval is handled by the wrapper class QueryExpansionModel,

which provides access to the feedback algorithms of Terrier. The integration of Terrier

is described in more detail in the following subsection.

5.2.2 Terrier Integration

This section describes how the Terrier retrieval platform was integrated into Xtrieval.

Terrier can be configured using key-value pairs. For that reason it was necessary to

implement wrapper classes for the configurable components of Terrier in order to

retain the possibility of flexible configuration during runtime. Figure 5.4 provides an

overview of the main classes that realise this integration. Elements in the top-left of

the illustration represent general Xtrieval interfaces or abstract classes for indexing.

The elements in the bottom-right of Figure 5.4 are interfaces corresponding to Terrier.

All remaining components, between those that are labelled with Xtrieval in the top

and Terrier in the bottom, are needed to connect indexing interfaces of Terrier and

Xtrieval. Following the layout of our abstract illustration in Figure 5.1, elements in

the left generate and control index data structures, and elements in the right represent

document-level data structures.

The TerrierDocumentAdapter was implemented to transform a TerrierDocument into

an Xtrieval DataDocument and to adjust all document properties in the configura-

tion of Terrier. A class named TerrierCollection allows us to gain control over the

document processing during indexing. The actual processing of TerrierDocuments is

handled by a wrapper class called TerrierIndexer. It encapsulates various indexing

methods implemented in Terrier and controls the text transformation procedures. The

resulting index data structure is an Xtrieval Index. The Index object represents the

abstraction to access index data structures of different retrieval engines.
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Figure 5.4: Terrier integration in Xtrieval – Indexing process.

In order to ensure easy integration of various IR toolkits or libraries, the Indexer in-

terface was designed to be rather minimalistic. It covers only essential methods that

are needed to create an index from a collection of documents. A TerrierIndexer can be

configured to use either Lucene’s text transformation framework by passing a Lucene

Analyzer to the class constructor, or to rely on one of the TermPipelines supplied with

Terrier.

In practice, the latter are rarely used in experimental evaluations with Xtrieval be-

cause Lucene’s framework is more flexible (see Section 4.1.1). The implementation
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Figure 5.5: Lucene integration in Xtrieval – Retrieval process.

of the TerrierIndexer class is relatively complex because of all the different ways of

indexing that are supported in Terrier. A limitation of this low-level integration lies

in its maintenance. Any new release of Terrier that contains changes in the indexing

procedure will not be supported unless the presented wrapper classes are adapted ac-

cordingly. Section 4.1.2 showed that Terrier’s strength lies in its flexible weighting

and ranking model. Considering the motivation for integrating Terrier, all of the IR

models implemented in Terrier, should be available in Xtrieval.

Figure 5.5 illustrates classes and interfaces that were designed and implemented to in-

tegrate Terrier. Again, all the elements in the top of the illustration represent Xtrieval
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interfaces and classes. Terrier’s flexible weighting and ranking algorithms can be ac-

cessed through a single interface named SearchRequest. A particular model that was

chosen for retrieval can be passed as a parameter. For that reason, created two enu-

merations containing all weighting models for retrieval and feedback were created.

They are part of the essential TerrierSearcher class, which is a wrapper for Terrier’s

SearchRequests and serves as the connector to the retrieval architecture of Xtrieval. In

addition to the choice of the weighting model, both the selection and configuration of

automatic feedback models are also controlled via TerrierSearcher. Xtrieval contains

a further class named SimpleTerrierSearcher, which processes the queries and trans-

forms them into the corresponding query object in Terrier. SimpleTerrierSearcher also

controls the handling of document and query structures and it ensures that Xtrieval’s

structured query objects (Topics) are processed correctly. Retrieved documents are

handled and represented as Hits or HitSets in Xtrieval. HitSets serve as temporary stor-

age for returned document identifiers of search experiments. Since retrieved HitSets

are an essential element of any evaluation experiment, they are part of the information

that is exported and imported for experiment re-use.

5.2.3 Combining Lucene and Terrier in Xtrieval

This section illustrates how Lucene and Terrier are combined in Xtrieval in order

to conduct the large-scale empirical analysis in Chapter 7 for the standard ad-hoc

retrieval evaluation scenario. It has been pointed out in Section 4.1.1 that the strength

of Lucene lies in its flexible and feature-rich architecture for the transformation of text

into tokens. A flexible ranking and term weighting implementation is an outstanding

feature of Terrier (see Section 4.1.2 for details).

Figure 5.6 demonstrates that these two advantages are linked together using Xtrieval.

The illustration also shows the major components and corresponding instances that

will be analysed later. The generic process of an IR process is shown in the top of

Figure 5.6. It shows documents, queries, and results, which represent the input and
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output to this generic process. In this presentation the IR process is composed of three

major components: text transformation, matching and ranking, and feedback. Each of

these components is illustrated in more detail with the additional boxes in the bottom

of Figure 5.6.

Text transformation is the first main component of the illustrated IR process. It can be

observed that it consists of several filters that implement default operations to trans-

form text into tokens. In this dissertation the main focus of text transformation is

put on different stemming algorithms (see the corresponding box in the bottom-left of

Figure 5.6). A detailed analysis of the integrated algorithms and their implementations

was provided in Section 3.1. Matching and ranking represents the next key component

with various algorithms that can be accessed via Xtrieval. Currently, Lucene provides

only a single ranking model and Terrier covers the most widely-used ranking models

(see Section 3.2 for the foundations of the different models). The optional feedback

component consists of two thresholds that are controlled within Xtrieval and the actual

term weighting algorithms are provided by the Terrier framework.

This experimental set-up covers the major components that are necessary for ad-hoc

search tasks. It constitutes the general architecture for the large-scale empirical eval-

uation of state-of-the-art IR system component presented in Chapter 7. In contrast to

that, current search applications used in practice are more complex. This complexity

and the amount of additional components in these applications depends on the nature

of the documents and the desired type of service that the operator of the corresponding

application provides to the user. The abstract and flexible design of Xtrieval allows the

insertion of further components or the creation of completely new component-based

IR system architectures. As a result, it is possible to investigate more complex search

tasks, given that the required components are integrated accordingly.
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5.3 Future Directions

With the integration of widely-used IR core libraries and other extensions like various

text transformation approaches, Xtrieval supports a considerable number of evalua-

tion scenarios and application use cases. However, there are a few topics for research

in IR that remain open for future work. Given the ever-growing amounts of digital

information, scalability became an important issue in IR systems. Scalability in IR

can be divided into different requirements regarding efficiency, which depend on the

actual application. Most importantly, a modern IR system should be able to process

large amounts of new (or updated) documents efficiently and be able to provide the

answers to queries instantly. If a search application has to serve many users simultane-

ously, parallelisation becomes a third requirement. Since Xtrieval is designed for re-

search, the first two requirements are a primary concern regarding scalability. Section

4.1 demonstrated that Lucene and Terrier are designed to be used in highly-scalable

applications. However, there are a few constraints when the IR engines are used in

Xtrieval. In general, scalability is an efficiency problem that is closely coupled with

the design and the architecture of software. In the present case, it means that the IR

core engines, which are accessed through the meta framework Xtrieval, apply strate-

gies for scalability that are adapted to the underlying approaches and algorithms. As a

consequence, no common approach that accounts for efficient indexing and retrieval

exists in Xtrieval. Thus, if scalability does matter for a search application, one should

revert to the optimised version of one of the underlying toolkits. In order to support

highly-scalable evaluation scenarios and use cases, a concept for parallelisation at the

meta-level of Xtrieval is needed.

Another option to extend Xtrieval is to incorporate NLP tasks as analysers in the text

transformation component. A first step could be the integration of low-level NLP tasks

like POS tagging or named entity recognition. A primary concern should be the stor-

ing of the information in a convenient format in the index data structures to be able to

exploit such payload information for the retrieval process. According to all other com-
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ponents of Xtrieval, the design of NLP analysers should be flexible, i.e. the interface

should allow the exchanging of the algorithm or toolkit that performs the actual task.

Based on the brief analysis of state-of-the-art NLP toolkits provided in Section 4.2,

the integration of OpenNLP and Stanford’s CoreNLP library appears to be a promis-

ing step. Then, it would be possible to develop event-based IR models, which use POS

or entity information on terms either to optimise retrieval effectiveness, or to improve

result presentation.

More and more test collections are available for IR system evaluation, but there is no

authority that organises all experimental results. Although the IR community is aware

of the problem, only a few solutions have been proposed so far [8, 33]. Thus, a final

aspect that should be considered as a valuable enhancement not only to Xtrieval, but

to the entire IR evaluation community, is a persistent storage for empirical IR exper-

iments. However, the problem is complex for several reasons. First of all, in order

to re-produce the outcomes of experiments, a detailed and formalised description is

needed. An obvious solution could be a structured XML format. The elements of such

a standard experiment description should be discussed in the IR community to achieve

a high level of acceptance and use. It might be beneficial to implement the standard at

popular evaluation exercises like TREC in order to ensure its application. It is desir-

able that such a standard allows the description of information in existing experiment

archives, like those from TREC or CLEF. This could be achieved by defining different

levels of the standard, similar to the popular Dublin Core standard for libraries. The

IR evaluation experiment description standard should include references to the sys-

tem components and their configuration, either as abstract short description, or ideally

with references to the actual algorithm, or its implementation. The amount of possible

experiment configurations in Xtrieval would allow the study of the most important

components of modern IR systems. Such an analysis could be used to initiate the cre-

ation of a general standard to archive IR evaluation experiments.

Other potential applications of Xtrieval include the development of further system

components for specific search tasks, like Question Answering, or Opinion Mining.
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Another intended future use case of Xtrieval is teaching. It could be used to explain

the effects of different core retrieval models or other components. Here, the abstract

design of the framework is an outstanding feature that allows students without back-

ground in IR theory to get to know the most important components of IR systems.

5.4 IR Evaluation with Xtrieval

So far the motivation, architecture, and potential enhancements of Xtrieval have been

discussed. This section sheds light on the evaluation experiments that were completed

with Xtrieval over the past years. In the subsequent sections, brief descriptions of the

conducted experiments are given for the different retrieval tasks. Note that those ex-

periments have been previously published along with their system descriptions and

the empirical results. The experiments are replicated here in order to emphasise the

key aspects of the hypotheses in this dissertation. The presentation of previous exper-

iments is organised according to the type of the data collections that were used for the

experiments.

In most cases these evaluation task have a close relation to a real-world search sce-

nario. The following selection of empirical IR evaluation experiments demonstrates

the flexibility of the Xtrieval framework. Since the main focus of this dissertation is

on component-level comparison of IR system configuration on ad-hoc search tasks us-

ing English document collections, the experiments listed hereafter have been restricted

to English document collections and tasks that are similar to ad-hoc search scenarios.

5.4.1 Domain-Specific Document Collections

From 2006 to 2008, the Chemnitz retrieval group participated in the Domain-Specific

track at CLEF. Over time, the organisers assembled several document collections from

the social science domain. The German Indexing and Retrieval Test (GIRT) database
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has been used in different versions since the start of the track in CLEF 2001, and the

final evaluation in 2008. The GIRT corpus is a pseudo-parallel document collection in

English and German. It contains extracts from the SOLIS (Social Science Literature)

and SOFIS (Social Science Research Projects) databases from 1990 to 2000. German

is the original language of the documents, and the most important fields were manually

translated into English to create the corresponding pseudo-parallel corpus.

In addition to the GIRT collection, two Russian document collections were assembled

for the Domain-Specific track. The Russian Social Science Corpus (RSSC) was used

in 2005 and the INION/ISISS collection, covering Russian social science and eco-

nomics publications, served as data collection from 2006 to 2008. The English part

of the GIRT-4 collection was used for all experiments that are presented in this sub-

section. It contains about 150,000 document records with bibliographic information

like title, author, publication year, as well as several manually assigned controlled vo-

cabulary terms and last but not least about 17% of the documents contain abstracts in

natural language. In 2007, 20,000 documents that were extracted from the Sociologi-

cal Abstracts database from Cambridge Scientific Abstracts (CSA), were added to the

English document collection. These additional documents cover publications from the

years 1994-1996 and contain the document title, abstract, and subject keywords from

a CSA thesaurus. [139]

5.4.1.1 Experiments

For the first participation in CLEF 2006, only monolingual experiments were submit-

ted for evaluation. The main focus of the experimental set-up was put on diverse query

expansion (QE) using clustering techniques [102]. It has been pointed out that the fo-

cus of this work is on monolingual English ad-hoc retrieval, which is the reason for

reporting only those experiments here. Table 5.1 illustrates the results of the exper-
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Corpus Run ID1 Lang Stemmer QE Fusion MAP2 Rank2

GIRT-4 unineen2 EN Savoy PRF yes 0.4303 1/8
GIRT-4 tucmigirten2 EN Porter PRF2 + LDC no 0.3553 5/8
GIRT-4 tucmigirten4 EN Porter PRF1 no 0.3538 6/8
GIRT-4 tucmigirten1 EN Porter PRF2 no 0.3510 7/8
GIRT-4 tucmigirten3 EN Porter PRF2 + LTC no 0.3450 8/8

Table 5.1: CLEF 2006 Domain-Specific track – Results for the English subtask.

iments submitted for official evaluation. A detailed description of the system set-up

and the design of the experiment is provided in [104].

Two different QE approaches named PRF1 and PRF2 were implemented, where PRF2

was a two-step iterative approach with a blind feedback mechanism that was applied

twice to reformulate the original query. LDC and LTC describe the clustering approach

that was used for the second step, where the clustering to select terms for the reformu-

lation was either done by clustering terms (LTC) or documents (LDC). The resulting

MAP measure covers 25 topics, which is the standard size for the Domain-Specific

track at CLEF. The results are compared to the best performing experiment, which is

described in more detail in [163]. A relative difference of about 17.5% between the

best configuration from Chemnitz tucmigirten2 and the top-performing experiment

unineen2 can be observed in Table 5.1. Although no statistical significance test was

performed, this is a considerable difference. Nevertheless, no systematic failure in the

experiments was identified, which might have explained the large gap. The absolute

effectiveness values for the experiments from the Chemnitz retrieval group show only

little variance. An explanation for this result might be the fact that only the procedure

for selecting terms for PRF was adapted. In fact, if a topic has many relevant docu-

ments in the collection, the selected approach is very likely to select the same terms

that a standard PRF approach would return.

1 From now on all experiment identifiers starting with tuc or cut refer to experiments that have been submitted
for evaluation by the Chemnitz retrieval group, i.e. they represent either sole or collaborative work of the
author of this dissertation.

2 The MAP values and the experiment ranking were extracted from [51, p. 14].



184 5 Xtrieval Framework

Corpus Run ID Lang Stemmer Fusion MAP3 Rank3

GIRT-4, CSA unineen4 EN Savoy yes 0.3534 1/15
GIRT-4, CSA cut ds en merged EN Porter/Krovetz yes 0.2985 7/15
GIRT-4, CSA cut ds en unstruct EN Porter no 0.2952 8/15
GIRT-4, CSA cut ds en struct EN Porter no 0.1850 15/15

Table 5.2: CLEF 2007 Domain-Specific track – Results for the English subtask.

In 2007, three experiments were submitted to the English subtask of the Domain-

Specific track. The central lesson learned from the experiments in the previous year

was that an IR system is a complex combination of configurable components. Thus, it

was decided to investigate indexing as a central component of the complete retrieval

process. A question of particular interest was how the structure of the document ab-

stracts affects retrieval effectiveness. In order to investigate this problem, a straight-

forward approach based on two different types of indexes was implemented. The first

index mapped every field in the document structure to a corresponding field in the

index, i.e. the document structure was completely preserved. In contrast to that, the

document structure was omitted in the second index, i.e. the contents of all fields were

mapped to a single field in the index. A more detailed description of the experimental

set-up is given in [109].

Table 5.2 summarises the outcome of these experiments and reports the best perform-

ing experiment for reference. The presented MAP values were accumulated using a

new set of 25 topics. In contrast to the strategy of comparing and combining differ-

ent index structures, the top-performing experiment combined results from different

ranking algorithms and relevance feedback configurations [60]. Similar to the results

in 2006, there is a considerable gap of about 15% between the best experiment from

the Chemnitz retrieval group and the top-performing run. The hypotheses for the ex-

periments were two-fold. First, it was expected that a structured index would result

in stronger performance than a unstructured index. This assumption was based on the

loss of information that occurs when the document structure is omitted during index-

ing. The experimental results on the given test collection indicate that this hypothe-
3 The MAP values and the experiment ranking were extracted from [52, p. 47].
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Corpus Run ID Lang Stemmer Fusion Thes. MAP4 Rank4

GIRT-4, CSA cut merged EN Porter/Krov. yes no 0.3891 1/12
GIRT-4, CSA cut merged thes EN Porter/Krov. yes yes 0.3869 2/12
GIRT-4, CSA uninedsen1 EN Porter yes no 0.3770 3/12

Table 5.3: CLEF 2008 Domain-Specific track – Results for the English subtask.

sis is invalid, because of the low MAP values for experiment cut ds mono en struct.

However, a complex optimisation problem exists for that particular experiment. Due

to the number of different document fields and the tripartite topic structure, the selec-

tion and weighting strategy, that was needed to map the topic elements to document

fields, may have markedly affected the retrieval performance. A third experiment was

submitted in order to evaluate the second hypothesis that combining the results of both

indexes would result in better effectiveness. Although, there is a significant difference

between the basic experiments, a slight improvement for the combined experiment

cut ds mono en merged was found. This result was also consistent across collections

and languages.

In the following year, the Domain-Specific track was offered for the last time. The

data collections remained unchanged and thesaurus mappings for GIRT-4 and CSA

were provided in order to overcome differences in the technical language of different

controlled vocabularies [139]. The experimental set-up was based on the fusion ap-

proach of the previous year. A detailed description of these experiments is given in

[111] and a brief overview follows hereafter. Two indexes using the Porter and the

Krovetz stemmers were created. Due to the bad results of the previous experiments,

the structure of the documents was omitted in the index. The monolingual thesaurus

mappings between the two English data collections GIRT-4 and CSA were used to

extract additional terms from the topic. These terms were used to create the queries

that were submitted to our indexes. The last step of the retrieval process consisted of

a blind feedback approach using the top-k documents to extract frequent terms. In the

final step of the applied experimental set-up, the results obtained from the indexes

4 The MAP values and the experiment ranking were extracted from [53, p. 14].
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were combined into a single result list. Only two experiments have been submitted

to the monolingual English subtask of the track. Table 5.3 illustrates the outcome of

these experiments.

In contrast to the previous years, the experiments submitted by the Chemnitz retrieval

group achieved the strongest effectiveness in terms of MAP. These experiments re-

sulted in similar retrieval effectiveness. In contrast to the expectation that using the

monolingual thesaurus mapping for query formulation would improve effectiveness,

a small decrease in MAP could be observed for the thesaurus-based experiment. A

similar effect was found for the experiments with the other data collections of the

Domain-Specific track [111].

5.4.1.2 Lessons Learned

In the course of the participation in the Domain-Specific track, the first prototype of

the Xtrieval framework was designed and implemented. All experiments were based

on Lucene and the effects of different indexing schemes and query (re-)formulation

procedures on retrieval effectiveness were studied. The resulting MAP of the submit-

ted runs varied between about 0.30 and 0.40. Although comparison across test collec-

tions might be untidy, the quality of the system has improved over time. An indication

for this finding is the relative performance of the experiments in comparison to other

participating groups. Although this conclusion is not robust, a few veteran groups,

like the University of Neuchâtel and the University of Berkeley, can serve as refer-

ence baseline over the years. If the differences to the IR group from Neuchâtel, which

used similar fusion approaches over the years, are considered as a good reference the

Xtrieval framework was considerably improved.

Next, the approaches and their impact on retrieval effectiveness measured in MAP

are recapitulated. Two approaches to reformulate original queries were studied: a

cluster-based technique in 2006 and a thesaurus-based method in 2008. Both ap-
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proaches had only little impact on search quality. While the local document clustering

(LDC) method slightly increased mean average precision, the thesaurus-based expan-

sion slightly decreased the retrieval performance. The experiments based on structured

and unstructured indexing showed that omitting document structure does not decrease

retrieval effectiveness in domain-specific retrieval, it even outperformed several exper-

iments that made use of document structure. This effect is attributed to the complex

problem of determining optimal weights for the different elements of the document

structure during the query formulation process.

5.4.2 Open-Domain Bibliographic Collections

In 2008 and 2009, the Chemnitz Retrieval group participated in the Ad-Hoc track of

the CLEF initiative. The document collection consisted of approximately one million

library catalogue records from The European Library in English, French, and Ger-

man language. This document collection marked a change from using standard news

collections that contain large and well structured documents, to a sample from a real

document corpus of a library. Instead of actual text documents, this corpus consisted

of structured document descriptions. In addition to that, the data is very sparse, i.e.

most of the records contain only a few important fields like a title or an abstract. The

fact that the field contents of each document could appear to be in different languages

made matters even worse. Actually, only about half of the documents were in the lan-

guage that the data collection was labelled with, i.e. the English corpus that is referred

to hereafter contains only about 570,000 documents in English. Those typical artefacts

of a real-world multilingual document collection qualified the track as going beyond

standard retrieval evaluation. Another significant difference to the Domain-Specific

track is the larger size of the topic set, which consists of 50 queries here. TEL-BL is

used to refer to the English collection from the British Library. An in-depth description

of the track and the test collections is provided in [1].
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5.4.2.1 Experiments

In 2008, the Chemnitz retrieval group participated in the CLEF Ad-Hoc track for the

first time. The purpose was to investigate the track organisers’ supposition that the

knowledge about the multi-lingual nature of the documents could be exploited to in-

crease retrieval effectiveness. This required a specific experimental set-up. In order

to find documents that contain query terms in a language other than the language of

the topic, the original query was translated to the ten most common languages (in

terms of frequency of documents in the collection). As a consequence, a multilingual

query was obtained. Due to huge differences in the number of documents for each lan-

guage, a linear weighting scheme was implemented to compensate for this effect. Four

experiments were submitted in total to the monolingual subtask on the English collec-

tion, where one served as the baseline reference and did not account for the multi-

lingual documents, i.e. only the original query was used for retrieval. For the other

experiments, different strategies were applied to account for the frequency of each

language in the collection. The baseline experiment weighted (LW) all terms of the

query equally, regardless of the language. In one of the remaining configurations, the

frequency x of the documents in a each language was used to boost documents written

in the most frequent language of the collection. Whereas 1 − x was used for our last

experiment. This approach was based on the hypothesis that relevant documents might

appear in any language of the collection and query terms in a rare language should be

boosted in order to prefer those documents in the ranking. The general system configu-

ration was based on the findings from preceding participations in the Domain-Specific

track. The core retrieval system was Lucene. A language-specific stop-word list was

applied and two indexes were created, one using the Porter stemmer and another one

using the Krovetz stemmer. Again, the results were combined from both indexes and a

blind feedback approach was applied, which reformulated the original query using the

most frequent terms from the top-10 documents of an initial ranking. Further details

on the system configuration can be found in [107].
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Corpus Run ID Lang Stemmer Fusion LW MAP5 Rank5

TEL-BL unineen3 EN Savoy yes - 0.3753 1/37
TEL-BL cut merged simple EN Porter/Krovetz yes - 0.3561 4/37
TEL-BL cut multi10 wx++ EN Porter/Krovetz yes x 0.2484 30/37
TEL-BL cut multi10 w1-x++ EN Porter/Krovetz yes 1-x 0.1620 34/37
TEL-BL cut multi10 w1++ EN Porter/Krovetz yes 1 0.1453 35/37

Table 5.4: CLEF 2008 Ad-Hoc (TEL) track – Results for the English subtask.

Table 5.4 compares the best experiment to the results for the runs that were submit-

ted by the Chemnitz retrieval group. The empirical evaluation reveals that the strategy

to formulate multi-lingual queries was significantly outperformed by the baseline ref-

erence experiment cut merged simple. Nonetheless different weighting schemes for

the multilingual queries terms did affect retrieval effectiveness considerably. Using

equal weights for the multilingual query resulted in the worst MAP value. The experi-

ment based on frequency-inverse weights for the language of the query terms (namely,

cut multi10 w1-x++) produced slightly better results, but it did not achieve even half

of the effectiveness of the baseline experiment in terms of MAP. From the language

weight-based query formulation experiments, the weights based on the document fre-

quency of the language performed best. Nevertheless, there was still a significant dif-

ference to the reference experiment and the best experiment across all groups.

However, the consistent improvement of the Xtrieval framework, which can be at-

tributed to the combination of different indexing approaches, stimulated further ex-

periments on this particular test collection. In late 2008, the Xtrieval framework al-

lowed the access to different IR toolkits for the first time. As a consequence, different

ranking algorithms were compared by making use of the Lemur toolkit integration.

The system configuration and the empirical results were published in [110]. These

results are presented here, because the extension to exchangeable ranking models is

an important foundation for this dissertation. The goal of this post-workshop evalua-

tion was two-fold. First, an empirical verification of the technical implementation was

needed. And second, there was an interest in studying the effect that different retrieval

algorithms might have on retrieval performance. Again, two indexes were created us-
5 The MAP values and the experiment ranking were extracted from [53, p. 16].
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Corpus Run ID Lang Stemmer Ranking MAP
TEL-BL unineen3 EN Savoy - 0.3753
TEL-BL cut pws 1 EN Porter Okapi 0.3452
TEL-BL cut pws 2 EN Krovetz InQuery 0.3334
TEL-BL cut pws m e1e2 EN Porter/Krovetz Okapi/InQuery 0.3135
TEL-BL cut pws 3 EN Porter Lucene 0.3758
TEL-BL cut pws 4 EN Krovetz Lucene 0.3731
TEL-BL cut pws m e3e4 EN Porter/Krovetz Lucene 0.3880
TEL-BL cut pws m e1e3 EN Porter Okapi/Lucene 0.3800
TEL-BL cut pws m e2e4 EN Krovetz InQuery/Lucene 0.3837
TEL-BL cut pws m e1e4 EN Porter/Krovetz Okapi/Lucene 0.3908

Table 5.5: CLEF 2008 Ad-Hoc (TEL) track – Additional results for the English subtask.

ing the Porter and Krovetz stemmers. Four ranking algorithms, provided by Lemur,

and the TF-IDF variant, implemented in Lucene, were used for retrieval. Due to the

experimental state of the Xtrieval framework at that time, it was not possible to apply

blind relevance feedback. Since the empirical results were generated with different

retrieval cores, the results are reported in separate sections in Table 5.5. Again, the

best experiment from the official evaluation is presented in the first row. A list of three

experiments that were based on the Lemur toolkit follows. The experiments config-

urations cut pws en1 and cut pws en2 achieved the best retrieval effectiveness from

the eight runs in this small configuration grid (consisting of two stemming and four

ranking algorithms). A further experiment that combined different ranking and stem-

ming algorithms is also presented. This run did not outperform the other experiments

in terms of retrieval effectiveness.

The second group of experiments in Table 5.5 is solely based on Lucene as the re-

trieval core. Since the ranking model in Lucene is fixed, only the impact of two differ-

ent stemming methods are compared here. Runs cut pws 3 and cut pws 4 show that

both approaches result in similar retrieval effectiveness. The last experiment in that

group combines results from both indexes. Here, a small increase in retrieval perfor-

mance can be observed. Note that experiments cut pws m e3e4 from Table 5.5 and

cut merged simple from Table 5.4 used identical indexes and the same result combi-

nation approach. The only the difference is that run cut merged simple was configured
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with blind relevance feedback and run cut pws m e3e4 without. The results indicate

that omitting the blind relevance feedback slightly improved retrieval effectiveness

in terms of MAP (0.3561 vs. 0.3880) on this particular test collection. The last sec-

tion of Table 5.5 lists experiments that combine ranking models from the Lucene and

Lemur retrieval toolkits. The results of the top-performing experiments from each re-

trieval engine were combined in a data fusion algorithm. All experiment identifiers

of merged runs contain a reference to the experiments which they are based on. The

results demonstrate that the data fusion approach improves performance in each of the

test cases. Although there were only slight differences between the MAP values of

merged experiments, a consistent improvement over the corresponding baseline runs

was detected.

Bearing in mind the aim of the integration of different state-of-the-art retrieval models,

Terrier was also incorporated into Xtrieval for the participation in the Ad-Hoc track of

CLEF 2009, see Section 5.2.2. Except for a fresh set of topics and relevance assess-

ments, the test collection remained unchanged for this sequel of the track. Based on

further investigations of the previous strategy to exploit the multilingual content of the

document collection, the weighting scheme was adapted to account only for the most

common languages.

According to our previous observations (refer to Table 5.4), a weighting scheme based

on the frequency of the language in the collection was applied. It was assumed that

this particular experiment configuration would be superior to a standard monolingual

retrieval approach. In addition to that, the effect of the BB2 ranking model from the di-

vergence of randomness framework available in Terrier was studied. This experiment

was also compared to a parallel system configuration that used Lucene for ranking.

These two experiments were combined using our implementation of the Z-Score data

fusion. The details of the system configuration and all experiments are discussed in

[103]. In accordance with the previous results, Table 5.6 compares the outcome of our

experiments to the top-performing run.
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Corpus Run ID Lang Stemmer Ranking MAP6 Rank6

TEL-BL inesc.run11 EN Porter/N-Gram LM/Lucene 0.4084 1/46
TEL-BL cut11 EN Porter BB2/Lucene 0.4071 2/46
TEL-BL cut12++ EN Porter BB2 0.3914 7/46
TEL-BL cut9 EN Porter BB2 0.3864 9/46
TEL-BL cut10 EN Porter Lucene 0.3672 15/46

Table 5.6: CLEF 2009 Ad-Hoc (TEL) track – Results for the English subtask.

These results are analysed with respect to two hypotheses. First, the effect of the re-

vised multi-lingual query formulation and weighting approach was examined. Ex-

periments cut9 and cut12++ deal with this matter. Both experiments used identical

system configurations, but differed in the query construction procedure. The multilin-

gual query formulation method (cut12++) marginally improved retrieval effectiveness

on this test collection. However, it might be argued that this small gain is not statis-

tically significant. The second goal was to compare the ranking methods Lucene and

BB2. The results for the corresponding experiments (cut10 and cut11) indicate that

the BB2 method from the divergence of randomness framework is superior to Lucene.

Experiment cut11 verified our previous finding: that combining results from different

ranking or stemming methods improves retrieval effectiveness. However, these merg-

ing strategies require more processing time in order to apply different ranking models.

In addition, fusing different stemming methods obviously requires more storage space

for indexing. A final comment needs to made on the relation to the best experiment in-

esc.run11. It can be seen that both the runs under examination and the best experiment

merged different ranking models, but the resulting retrieval performance appears to be

similar. This could be considered as an evidence that combining different retrieval

strategies has a positive impact on retrieval effectiveness. Whether this advantage out-

weighs the additional requirements in terms of space and computation time or not,

remains an open question.

6 The MAP values and the experiment ranking were extracted from [54, p. 18].
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5.4.2.2 Lessons Learned

Throughout the two years of experimental evaluation with the Ad-Hoc TEL collec-

tion, Xtrieval has been extended to support access to Lucene, Lemur, and Terrier. This

allowed the comparison and combination of different retrieval models in actual eval-

uation settings. The obtained results indicate that different IR system configurations

vary in retrieval effectiveness. Consistent improvements in retrieval effectiveness for

combined ranking algorithms or indexes is another observation that can be made when

analysing the empirical results. An interesting note on the fusion approaches is that

an upper limit seems to exist regarding retrieval effectiveness measured in MAP. For

both the presented test collections the “winning” strategy was to use a result list fusion

process at the index and/or ranking levels. The experiments presented in this section

support this claim since the merged experiments achieved similar performance values.

Given the experiments on that particular test collection, a few questions remain unan-

swered. For instance, it is unclear whether the combination of different stemming

techniques affects retrieval performance more than merging different ranking algo-

rithms. In a realistic scenario, combining different ranking models might be infeasible

due to computational restrictions. Then, it is important to identify the optimal sys-

tem configuration that uses only a single index and ranking approach. Regarding the

multi-lingual aspect of the present document collection, it was shown that a weighted

query term translation approach can slightly improve retrieval effectiveness. The suc-

cess of such a strategy does, however, depend on an appropriate weighting scheme

that reflects the frequency distribution of languages in the document collection.

5.4.3 Searching Multimedia Descriptions

Rapid development of cheap still and moving picture capturing devices since the late

1990’s has led to huge amounts of available digital information. However, managing

such collections of multimedia objects in order to retrieve desired pieces of informa-

tion or an object itself, is more challenging than handling pure textual information.
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The reasons are the challenges of comparing the content of multimedia assets, be it an

image, an audio file or a video. Efficient information retrieval is based on the paradigm

of comparing condensed document surrogates. But obtaining these surrogates is dif-

ficult even from an abstract perspective. A textual document like a newspaper arti-

cle about a particular building in your home town will most likely contain its name

and other contextual information like its location. A photograph of that building will

not reveal this information, unless it was annotated by somebody in order to provide

this context. Generating such contextual annotations for media objects is a task that

can be accomplished in different ways. Textual annotations are, however, the basis of

common multimedia retrieval approaches. The most straightforward way is manual

description by a human. Of course, it is also the most expensive strategy. In contrast

to that, automatic analysis of multimedia data is less expensive in terms of costs, but

usually it is also limited in quality and accuracy. Switching from one form of media

to another one (i.e. text) is a central challenge in multimedia retrieval, which is often

referred to as semantic gap. In the following subsections three kinds of multimedia re-

trieval tasks are discussed. All of them are based on textual representations, but each

of them investigates different challenges according to the type of the underlying media

objects.

5.4.3.1 Image Retrieval

From 2006 to 2009 the Chemnitz retrieval group submitted contributions to several

evaluation tasks that dealt with retrieving images. These are briefly discussed in the

following. In 2006 and 2007 the ImageCLEFphoto track used a new collection named

IAPR-TC12 Benchmark. This collection contained 20,000 coloured photographs of

natural scenes provided by a travel company that organised trips to South America.

The images were supplied with semi-structured annotations in English and German.

These short image captions were organised in seven fields: (1) an image title, (2) a

textual description of its contents, (3) the time and (4) the place the photograph was

taken, as well as (5) notes for additional information, (6) the name of the photographer,
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and (7) an unique identifier. Since the collection was assembled to be realistic, only

about 70 percent of the annotations contain the first five fields. The remaining captions

were mostly supplied with location and date (20 percent), 10 percent also had a title

and a further 10 percent did not have any caption. The topics for the ImageCLEFphoto

tasks in 2006 and 2007 contained 60 queries that were carefully selected using a cus-

tom creation and administration system used at CLEF. A detailed description of the

IAPR-TC12 collection and the topic creation process is given in [69].

The purpose of the participation in the ImageCLEFphoto task was to develop and test

the predecessor of the Xtrieval framework. A specific requirement for image retrieval

was to incorporate textual and content-based retrieval approaches in order to com-

pare and combine them. Since 2006 marked the first year of participation in retrieval

evaluation campaigns, the focus was to implement and test the prototype implementa-

tion that was based on Apache Lucene (version 1.4) for textual retrieval and the GNU

Image-Finding tool (GIFT) for content-based image search. Unfortunately, it was not

possible to finish the integration of GIFT in time. Instead, a content-based technique

was implemented using Lucene. The MPEG-7 colour histogram descriptor was used to

calculate low-level features for every image. This content-based low-level description

was also indexed in Lucene by using binary fields. The main hypothesis concerning

the empirical evaluation was to investigate whether content-based retrieval methods

based on low-level descriptors can be utilised to increase retrieval performance. It

is commonly known that comparing visual features is computationally more expen-

sive than textual search. Even straightforward features like colour histograms generate

large vectors that have to be accumulated and processed by the ranking or similarity

function. This is arguably more complex than incorporating counts of words like in

text ranking functions. For that reason, the content-based method was integrated in

the query expansion procedure for the empirical experiments in 2006. This approach

ensured reasonable response times and yet allowed to test the hypothesis, because the

number of feature vector comparisons was small. Four monolingual English experi-

ments were submitted in total. The index was created using a standard stop-word list

and the Porter stemmer. The title and narrative fields from the topics were used to
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query the fields of the index and the topic description was abandoned. Terms in the ti-

tle of the topics were searched in the title, description, location, and notes fields of the

index and terms from the narrative topic description were queried against the descrip-

tion and notes. The baseline experiment tucEEANT was based on this configuration.

All other experiments contained a pseudo-relevance feedback step, which extracted

highly frequent terms from the top-20 documents in order to reformulate the initial

query. The configuration tucEEAFTI combined textual and content-based features for

the feedback step. The final score scoremixed(d, q) (see Equation 5.1) was obtained

by using a linear combination of the scores from the textual ranking scoret(d, q) and

the content-based similarity scorehist(d, dr) of the colour histograms of the retrieved

documents and the histograms of the three true relevant documents dr given in the

query. The Euclidean distance was implemented as the similarity function for the re-

ported configuration and the tuning parameter α was set to 0.3.

scoremixed(d, q) = (1− α) · scoretd, q + α · scorehist(d, dr) (5.1)

Using the visual features of relevant images could be considered as bias to boost

content-based approaches. In a real world application, these example images are usu-

ally not provided by the user. Nevertheless, it can be argued that an initial ranking

generated by a text-only ranking mechanism, could easily be re-ranked by presenting

the resulting images with an option for user relevance feedback. The last experiment

dealt with the assumption that using relevance information can also be used to boost

results of text-only image retrieval approaches. Of course this scenario is somewhat

artificial, because such an user information need would consist of three parts: (1) a

textual query, (2) three example images, and (3) annotations of the example images.

There was an interest in comparing this scenario to the other experiments. Therefore,

the most frequent terms were extracted from the captions of the examples images and

the original query was expanded with these terms in experiment tucEEAFT2. In ad-
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Corpus Run ID Lang MOD PRF RF MAP7 Rank7

IAPR-TC12 Cindi Exp RF EN mixed yes yes 0.3850 1/133
IAPR-TC12 tucEEAFT2 EN text yes yes 0.2436 unknown
IAPR-TC12 tucEEAFTI EN mixed yes yes 0.1856 unknown
IAPR-TC12 tucEEAFT EN text yes no 0.1830 unknown
IAPR-TC12 tucEEANT EN text no no 0.1714 unknown

Table 5.7: ImageCLEF 2006 – Results for the Photo Retrieval task.

dition to the user relevance feedback, the pseudo-relevance feedback approach was

applied as described before.

The obtained results are listed in Table 5.7. They are reported in terms of MAP and

briefly described with the modality of the search (MOD), which can be either text,

image, or mixed, whether the run was configured using pseudo-relevance feedback

(PRF) and user (or true) relevance feedback (RF). In order to illustrate the effective-

ness of the conducted experiments in comparison to the runs of other participating

groups, the best performing experiment is listed in the top of Table 5.7. The analysis

of the empirical evaluation confirmed the hypotheses. First, the baseline experiment

tucEEANT was outperformed by all our other configurations. It can also be seen that

using the content-based re-ranking approach based on example images, slightly im-

proved retrieval effectiveness compared to the reference experiment tucEEAFT, which

used only pseudo-relevance feedback. More interestingly, it was observed that the text

retrieval approach which was based on user relevance feedback, performed signifi-

cantly better. Table 5.7 also reveals a significant difference between the best experi-

ment obtained with the prototype system and the top-performer. The limitation of the

best experiment was that it relied on manual query generation and user relevance feed-

back, which explains the large gain in comparison to fully automatic experiments like

ours. These results suggest that the content-based approach needs further exploration.

A starting point for improvement was to incorporate other state-of-the-art visual con-

tent descriptors.

7 The MAP value and the experiment ranking were extracted from [42, p. 8f].
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Corpus Run ID Lang MOD RF # RF docs MAP Rank8

IAPR-TC12 cut-EN2EN-F50 EN mixed yes 50 0.3175 1/239
IAPR-TC12 cut-EN2EN-F20 EN mixed yes 20 0.2846 unknown
IAPR-TC12 cut-EN2EN EN text no 0 0.1515 unknown

Table 5.8: ImageCLEF 2007 – Results for the Photo Retrieval task.

The ImageCLEFphoto task in 2007 was a sequel to that of 2006 which used the same

test collection with a few modifications in the documents and topics. In order to mo-

tivate a higher proportion of content-based approaches, the organisers removed the

description field from the image captions. Another unique feature of this task was

re-using the topic set, which is why returning groups were asked to not to apply ma-

chine learning approaches on the relevance assessments from the previous year. The

organisers argued that re-using the topics could be omitted due to the changes in the

document collection, which defined a new challenge for participating systems [68].

However, it might also be difficult to find a new set of unique queries for a small

collection like IAPR-TC12, which also respects the features defined in [69]. Another

important change to 2006 affected the topics, which did not contain a detailed de-

scription of the information need any more. This is another step to challenge the

success of textual approaches to image retrieval and to motivate the development of

sophisticated content-based image retrieval techniques. The Chemnitz retrieval group

addressed this challenge by applying a thesaurus-based query expansion approach,

which automatically expanded the short keyword query to a query with a pre-defined

size. The content-based re-ranking approach was re-implemented and combined with

the edge histogram and scalable colour descriptors from MPEG-7. The remaining sys-

tem configuration remained the same. A complete description of the experiment and

system configuration is given in [194].

Based on the observations from last years experiments, an automatic user relevance al-

gorithm was implemented which used the relevance information from a given number

of documents in an initial ranked list. This approach was chosen to simulate manual

8 The experiment ranking was extracted from [67, p. 7f].
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user relevance feedback on a ranking created with pure textual search. The results for

the monolingual English experiments submitted to the ImageCLEFphoto task in 2007

are illustrated in Table 5.8. In this year, one of the experiments achieved the best per-

formance out of 239 submissions in total. Just like the best experiment in 2006, the

limitation of that experiment was the incorporated manual user relevance feedback.

Due to the focus on cross-lingual experiments in the participation at ImageCLEFphoto

2007, the effects of all implemented components can not be separated. Nevertheless, it

can be concluded that the simulated manual user relevance feedback strategy improved

retrieval effectiveness significantly. Considering the goal of the organisers to penalise

text-only approaches the runs cut-EN2EN from Table 5.8 and tucEEANT from Ta-

ble 5.7 have to be compared. The effectiveness in terms of MAP shows an absolute

difference of 0.0199, which indicates that the thesaurus-based query expansion strat-

egy could not fully compensate for the absence of detailed image captions and query

formulations.

In 2008, the Chemnitz retrieval group also participated in an ad-hoc image retrieval

evaluation task named wikipediaMM. As the name suggest this evaluation exercise

used a collection of images from Wikipedia and according unstructured annotations in

English. The document collection had an approximate size of 150,000 images and the

annotations usually contained a brief description of the image content and additional

information like copyright information, which may be less relevant for retrieval pur-

poses. Since the document collection was used for the INEX evaluation campaign in

2006 and 2007, the organisers provided additional meta-data, which was contributed

by different research groups in the meantime. In particular, they supplied an image

classifier with scores for 101 different MediaMill concepts and the full set of content-

based feature vectors that were used to obtain these classification scores. A set of 75

topics was provided for empirical evaluation. Each of the queries contained a short title

and a narrative description that defined the relevant images in more detail. In addition

to that, a concept field contained the classification scores for the MediaMill concepts.

Similar to the photographic retrieval tasks, a set of example images were provided in

the form of links to Wikipedia. The evaluation task and its resources are described in
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more detail in [176]. The main purpose for the participation in the wikipediaMM task

was to investigate whether using the large feature vector together with the previously

used MPEG-7 low-level descriptors could improve image retrieval effectiveness. In

total four experiments were submitted, where one was a text-only baseline experi-

ment. For the text retrieval component an index using a positional stop-word filter

and the Porter stemmer was created. In a second experiment the textual results were

combined with the content-based re-ranking approach. The major difference to the

previous experiments was the type and number of content descriptors, which were

used for visual similarity comparison. Two further experiments were used to investi-

gate the effect of query expansion techniques. Therefore, the thesaurus-based query

expansion approach was compared to an experiment, in which the textual descriptions

of the MediaMill concepts were used to expand the short keyword query.

Table 5.9 lists the experiments and the results in terms of MAP. From 77 experiments

that were submitted for evaluation in total, the submitted runs were ranked 27, 30, 32,

and 38. Both the ranks and the absolute MAP values show that there was only little

variance in the results of these experiments. Considering that one of the experiments

was the text-only baseline run, which was submitted to every image retrieval eval-

uation task, this is an unexpected outcome. The content-based re-ranking technique

cut-mix slightly decreased retrieval effectiveness on this test collection. It is, however,

not directly comparable to the other experiments, because a different feature set was

used here. The thesaurus-based query expansion performed best, with slightly higher

MAP values than the baseline experiment cut-txt-a and the according mixed-modality

experiment cut-mix.

A large gap can be observed between the effectiveness of the best experiment and the

best experiment submitted by the Chemnitz retrieval group. Even more astonishing is

the fact that the top-performing run did not use any form of user relevance feedback,

which was the case in most evaluations before. In the course of the evaluation of

the wikipediaMM task, participants were asked to assess a small part of the topics

for relevance. For most of the topics there were many relevant documents that had
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Corpus Run ID Lang MOD PRF MAP9 Rank9

Wikipedia zzhou3 EN text yes 0.3444 1/77
Wikipedia cut-mix-qe EN mixed yes 0.2195 27/77
Wikipedia cut-txt-a EN text no 0.2166 30/77
Wikipedia cut-mix EN mixed no 0.2138 32/77
Wikipedia cut-mix-concepts EN mixed no 0.2048 38/77

Table 5.9: ImageCLEF 2008 – Results for the wikipediaMM task.

almost no visual similarity. This fact explains to some extent why the content-based re-

ranking did not improve retrieval effectiveness in comparison to the text-only baseline

run.

In 2009, the organisers retained the main focus of the ImageCLEFphoto retrieval task,

but assembled a new document collection to facilitate the evaluation. This collection

consisted of roughly half a million images with unstructured annotations in English.

The collection was provided by the Belga Press Agency, a news agency from Belgium.

Whether a priori information about the query clusters helps to increase diversity in

image rankings was a particular research question the task organisers aimed to address

in 2009 [138]. Therefore, they created two sets of queries, 25 topics referred to as

Query Part 1, containing a cluster title and cluster description, and a further 25 topics

tagged as Query Part 2 without any cluster information. Participating groups were

encouraged to make use of the additional cluster information to obtain a diverse result

set. Although the queries were derived from actual search logs, the log files were not

distributed to the participants. The target metric of the empirical evaluation focused on

diversity, i.e. the organisers ranked systems according to the F1-measure comprised

of cluster recall and precision at rank position 10 [138].

At that time, the Xtrieval framework was ready to be used with different text ranking

models from the Terrier toolkit. Due to the limited number of experiments that could

be submitted for evaluation, only two different text-based approaches were compared.

9 The MAP values and the experiment ranking were extracted from http://www.imageclef.org/
2008/wikimm-results#chemnitz, retrieved on March 1, 2012.

http://www.imageclef.org/2008/wikimm-results#chemnitz
http://www.imageclef.org/2008/wikimm-results#chemnitz
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Corpus Run ID Lang MOD PRF Ranking F1 MAP10 Rank10

Belga lig2 tct txt EN text yes - 0.6393 0.5064 1/84
Belga cut2 t txt EN text yes BM25 0.5929 0.5041 4/84
Belga cut2 tct txt EN text yes BM25 0.6420 0.4821 10/84
Belga cut1 t txt EN text yes Lucene 0.5436 0.4468 17/84
Belga cut1 tct txt EN text yes Lucene 0.5717 0.4386 19/84

Table 5.10: ImageCLEF 2009 – Results for the Photo Retrieval task.

The target cluster fields were considered as a second variable parameter in the submit-

ted experiments, which resulted in four different experiment configurations. A stan-

dard stop-word list and the Porter stemmer were applied to create the text index. A

standard pseudo-relevance feedback strategy was applied by extracting the 10 most

frequent terms from the top-5 documents in an initial ranking for automatic query

expansion.

The results are presented in terms of MAP in Table 5.10. In line with the previous re-

sult discussion, the best experiment of the ImageCLEFphoto retrieval evaluation task

2009 was included for reference. Note that MAP was not the target metric of the or-

ganisers. Thus, the official evaluation resulted in a different ranking of participating

systems. The ranking of our experiments shows that BM25 outperformed Lucene for

this test collection. It is also obvious that the described experiments achieved strong

performance in terms of MAP. The used diversity metric F1, however, showed a dif-

ferent picture. Of the 84 experiments submitted for evaluation our runs were ranked

35th, 56th, 61st, and 64th. In fact, this is not a bad result, because the diversity was

not addressed at all and our experiments were pure text retrieval runs.

A more interesting observation can be made when comparing the effect of using or

omitting the cluster titles in Query Part 1. In terms of MAP, using the cluster titles

to formulate a more diverse query results in lower performance both for BM25 and

Lucene. But the opposite is the case when the runs are ranked according to the diver-

10 The MAP values and the experiment ranking were extracted from http://www.imageclef.org/
2009/photo/results, retrieved on March 1, 2012. Note that the experiment ranking is ordered by
MAP.

http://www.imageclef.org/2009/photo/results
http://www.imageclef.org/2009/photo/results
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sity metricF1. At first glance this observation may appear odd. But given the definition

of the F1-measure [10, 138] it becomes clear that F1 and MAP are not even remotely

comparable. This is due to the fact that the MAP metric assesses the complete ranking

of documents, whereas the present F1-measure only accounts for the top ten docu-

ments. A detailed analysis of the metrics underlying F1 revealed that all the presented

experiments achieved a similar P@10, but the experiments which considered the clus-

ter titles achieved markedly higher values for the diversity score CR@10, which is

incorporated in F1.

In order to conclude this section on image retrieval evaluation, general observations

and findings are summarised. A central technical problem with searching visual ob-

jects is the size of features, which describe the image contents, and the complexity of

similarity or distance measures. For that reason most of the content-based image re-

trieval approaches combine textual search using image annotations and content-based

retrieval methods. Typically a ranking by textual annotations is used to constrain the

number of feature vector comparisons. But this approach depends on the presence and

quality of textual annotations as well as the effectiveness of the ranking algorithm.

In the experiments discussed here, content-based features were used for re-ranking.

The experiments in various evaluation settings demonstrated that the success of the

multi-modal approach depends on the content-descriptors, i.e. the image features, and

the visual similarity of the images in the collection. In general, there were always

text-only experiments that achieved retrieval effectiveness similar to the more sophis-

ticated multi-modal approaches. Another stream of empirical results suggested that

user feedback increases image retrieval performance dramatically both for textual re-

trieval approaches and multi-modal techniques.

5.4.3.2 Question Answering on Speech Transcripts

A Question Answering system tries to find correct answers to questions that were sub-

mitted to the system in natural language. Traditionally, the systems use high quality,
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textual data sources to obtain answers. The QAST (Question Answering on Speech

Transcripts) task at CLEF 2008 was designed to extend this challenge by using tran-

scribed audio documents as resources. This is motivated by the fact that nowadays, a

lot of potentially interesting information appears in multimedia documents like broad-

cast news, meetings, or telephone conversations [177]. In contrast to typical textual

documents, transcripts of audio documents are far less precise in terms of syntax,

i.e. there are only few or even no punctuations in this kind data. Moreover, speech is

typically less fluent, which means it contains far more repetitions, restarts, and cor-

rections. The organisers offered five different document collections covering lectures

in English (CHIL corpus), meetings in English, news broadcasts in French, and de-

bates from the European Parliament in English (EPPS corpus) and Spanish. In total

ten different subtasks were offered by providing a manual and an automatically gen-

erated transcript for each of the document collections. The document collections were

selected, because they covered the three most frequent classes of speech: (1) sponta-

neous speech, (2) prepared speech, and (3) semi-prepared speech. Two sets of docu-

ments and questions were created and distributed to the participating institutions, one

for development purposes and a second set for evaluation. The development topic set

contained 50 questions and the test set 100. The focus of the QAST task was on fac-

tual and definitional questions. In order to assess the systems according to these types

of questions, each topic set contained about 70 percent factual questions, 20 percent

definitional questions, and 10 percent NIL questions, i.e. questions that cannot be an-

swered with the underlying document collection. Assessing the quality of Question

Answering systems is more complex than evaluating standard ad-hoc text retrieval,

because potential answers, besides being correct, should also be complete and short.

The details of the evaluation procedure and used measures are given in [177]. In short,

the participants were asked to submit up to five ranked answers to per question.

The main goal for the participation in the QAST task at CLEF 2008 was to test the

extensibility of the Xtrieval framework. The general system set-up with all major com-

ponents is illustrated in Figure 5.7. A Question Answering system is a combination

of data mining software and an information retrieval system. This is also reflected
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in the presented modular system configuration. In order to enrich both the document

collection and the questions, a pre-processing module that contained different state-

of-the-art natural language processing tools was created. As a first step, a POS tagger,

named CRFTagger11, annotated the terms. In a second step, a Named Entity Recog-

nizer (NER) was used to identify types of entities. The Stanford Named Entity Recog-

nizer [63] was chosen, because it provided classes of entities that were closely related

to those in the pre-defined classes of questions. The motivation for selecting this ap-

proach was the assumption that the system would be able to categorise the given ques-

tions based on the help of correctly recognised entities. Once the entities were known,

the system could perform a keyword search on the documents in order to rank the most

likely passages that might answer the question. In order to achieve this, a collection

processing module was designed which used the POS and NER annotations to split

the documents into meaningful passages. In this implementation the sentence splitter

that was part of the POS tagger was used to obtain document passages. These passages

were then indexed using the Xtrieval framework and Lucene as retrieval back-end by

applying stop-word removal and Porter stemming.

The actual question answering process consists of three components: (1) a question

processing and classification module, (2) the retrieval system, which ranks the pas-

sages according to a specifically formulated query obtained from the question pro-

cessing module, and (3) an answer selection module that ranks the passages according

to the type of question and selects any potential answer within each passage using its

score. Question classification and query generation are the most crucial parts of the

question processing module. The latter ensures the selection of appropriate candidate

passages by means of text retrieval. In order to emphasise phrases in the question and

they were submitted as phrases to Lucene to constrain the resulting passages. Question

classification was then used to select candidate passages from the retrieved result set

and to identify the actual answers within each passage. Both components are based on

a complex set of rules and are described in detail in [113], [106]. Four experiments

11 http://crftagger.sourceforge.net/, retrieved on March 1, 2012

http://crftagger.sourceforge.net/
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Figure 5.7: General system architecture for the QAST task at CLEF 2008, redrawn from [106].

were submitted for evaluation: two experiments for the manual transcriptions of the

CHIL corpus and the same two configurations for the EPPS corpus. For the first of

the two submissions for each collection the system was restricted to supply only one

answer. In the second experiment a cut-off at three answers was implemented, i.e. the

number of returned answer candidates could vary between zero (for an unsupported

question) and three. Table 5.11 lists these experiments and the corresponding results.

In order to critically assess the implemented approach, the best performing system

was included in this presentation.

Table 5.11 lists the following figures: (1) the total number #Q of questions that were

answered, (2) the amount of correctly answered questions #CA, (3) the mean recip-

rocal rank MRR for all questions, and (4) the overall accuracy ACC of the systems

under investigation. In general, the presented system was able to answer every fifth

question correctly. In comparison to the best system limsi1, which achieved an overall



5.4 IR Evaluation with Xtrieval 207

Corpus Run ID Lang #Q #CA MRR ACC
CHIL-manual limsi1 EN 100 52 0.45 41.0%
CHIL-manual cut1 t1a EN 100 16 0.16 16.0%
CHIL-manual cut2 t1a EN 100 24 0.20 17.0%
EPPS-manual limsi1 EN 100 56 0.42 33.0%
EPPS-manual cut1 t4a EN 100 21 0.21 21.0%
EPPS-manual cut2 t4a EN 100 23 0.22 21.0%

Table 5.11: CLEF 2008 – Results for the QAST task.

accuracy of 41 percent on the CHIL corpus and 33 percent on the smaller EPPS collec-

tion, these results appear to be poor, especially on the CHIL collection. However, the

focus was to simulate a realistic question answering scenario, where a system should

either return the correct answer, or nothing if it did not find any clues to answer a

question. The experiment configurations cut1 t1a and cut1 t4a followed this assump-

tion, which also explains the resulting figures with equal values for MRR and ACC.

The restrictive design choice is also reflected in the proportion of NIL answers, where

53 and 60 were obtained on the CHIL corpus as well as 41 and 44 on the EPPS cor-

pus. For the second configuration of the implemented system, about 70 percent of the

questions still returned only one answer, whereas two or three answers were returned

for 15 percent of the questions respectively. This fact explains the small gain in terms

of MRR, when comparing these two experiments per collection. Interestingly, the dif-

ference between these experiment configurations and the best system is much smaller

in terms of accuracy on the EPPS collection. In order to improve the rates of correctly

answered questions for the described system, one could modify the query generation

module in a way that all proper nouns are submitted to the passage retrieval engine.

5.4.3.3 Video Classification

The Chemnitz retrieval group participated in the VideoCLEF evaluation track in 2008

and 2009. In order to keep matters clear, the emphasis is put on the empirical eval-

uation in 2009. The VideoCLEF track 2009 offered three different evaluation tasks.

The Subject Classification Task was an extension of the main task of the previous
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year, i.e. an empirical evaluation of automatically assigned thematic subject labels to

videos. Two other tasks dealt with identifying narrative peaks (Affect Task) and finding

topically related resources about the same topic, but in a different language (Linking

Task) [115]. Because a main focus of the Chemnitz retrieval group is information ex-

traction from videos, this review is centred on the subject classification subtask. The

task re-used a dataset from TRECVid 2007 and 2008 and aimed at assigning subject

labels that are broad enough to cover the topic(s) of an entire episode. Since the task

was inspired by the manual work of documentation experts at the Netherlands Insti-

tute of Sound an Vision, a gold standard set of topical class labels could be used for

evaluation. Participants were provided with the 46 class labels and 212 videos from

TRECVid 2007 for development purposes, and 206 videos from TRECVid 2008 for

testing. Although there was a huge variation, the average length of the videos was

about 30 minutes. Zero or multiple labels could be assigned to each of the videos.

Based on the approaches to the problem and the evaluation results of the previous

year, the task was treated like an information retrieval task. In order to do so, the la-

bels were simply interpreted as queries that can be submitted to a retrieval engine.

The retrieval system ranks the video documents according to the query and the only

remaining question is the definition of a document cut-off from which lower ranked

documents will not be assigned with the label in question. The general workflow of

the implemented system is illustrated in Figure 5.8.

In order to design the experimental set-up, a set of parameters was defined which was

expected to affect the resulting performance. The most significant source of variance

is the meta-data provided to describe the videos. There were two types of data avail-

able: (1) automatic speech transcripts asr and (2) archival meta-data descriptionsmd.

Given these sources of annotations SF , it was decided to use both of them separately

and also in combination. Another crucial parameter was the threshold level, which

separated the documents that should receive a label and those that should not receive

this label. An automatically estimated threshold would probably perform better than a
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Figure 5.8: Abstract system design for the VideoCLEF classification task in 2009, redrawn from [105].

fixed threshold or no threshold at all. The formula given in Equation 5.2 was used to

calculate an automatic threshold TLpD to cut-off the video document ranking.

TLpD = RSVavg + 2 · (RSVmax −RSVavg
Dretrieved

) (5.2)

Technically, this implementation is different from defining a fixed threshold of allowed

labels per document. But it achieves the same functionality in this experimental set-up,

because it affects the absolute number of assigned labels directly. The given definition

used two score-based measures, namely the mean score RSVavg and the maximum

score RSVmax of all retrieved documents Dretrieved for a particular label (or query).

Thus, it directly depended on the underlying ranking function, which was defined to

be in the interval [0,1]. During the experiments with the development test set some

labels were found to return no or only very few documents when they were submitted

to our retrieval engine. In order to overcome this issue, a standard pseudo-relevance

feedback (PRF) procedure and a cross-language thesaurus (CLTQE) module were im-

plemented for query expansion. The latter was used to obtain similar English terms

for the class label. The applied PRF method simply obtained the most frequent term

from the top five documents of an initial ranking. Table 5.12 summarises the tested
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Run ID SF QE TLpD # L MAP
cut1 l1 base* asr no 1 27 0.0104
cut2 l1 base md no 1 63 0.2003
cut3 l1 base* asr/md no 1 112 0.2541
cut7 l1 qe* asr yes 1 158 0.0904
cut8 l1 base md yes 1 196 0.2867
cut9 l1 qe* asr/md yes 1 196 0.2561
cut4 l0 qe asr yes ∞ 1,571 0.1036
cut5 l0 base md yes ∞ 1,933 0.4391
cut6 l0 qe asr/md yes ∞ 2,276 0.4389
cut10 lx base md yes x 396 0.4115
cut11 lx qe asr/md yes x 482 0.4130

Table 5.12: VideoCLEF 2009 – Results for the Subject Classification task.

system configurations and the resulting performance in terms of MAP. Although us-

ing MAP as performance metric for a classification task appears to be questionable,

this metric is reported here, because it was used for the official evaluation of the task

[105], [115]. The total number of assigned labels L was included in the result table in

order to illustrate the problem of using MAP as the evaluation metric.

Table 5.12 is organised in four sections to distinguish the used experiment configura-

tions. All experiments that were part of the official evaluation are marked with *. The

first section covers experiments that did not contain the described two-stage query ex-

pansion strategy. In addition to that, the number of labels per document (denoted in

column TLpD) was restricted to one. The results indicate that using only automatic

transcripts results in very low performance, whereas using archival meta-data, both

alone and in combination with transcripts performs significantly better.

The second section (runs cut7 l1 qe*, cut8 l1 base, and cut9 l1 qe*) shows the effect

of the query expansion approach. It is obvious that it improves performance signifi-

cantly when the transcripts and meta-data descriptions are used alone. But there is no

gain when both types of annotations are used together. In fact, the comparison of the

total number of assigned labels (# L) for experiments cut8 l1 base and cut9 l1 qe*,
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reveals that both experiments assigned the same number of labels, but run cut8 l1 base

achieved a higher precision.

The last two sections of Table 5.12 show the effect of the restriction threshold TLpD .

A value of ∞ indicates that there was no restriction to the number of labels for a

single documents, i.e. each video could end up being tagged with every class label.

One can clearly see that this approach increases performance in terms of MAP for

all our experiments. It is, however, questionable whether assigning an average of 10

out of 46 labels to each document would be useful in a real-world scenario. The last

section of the result table includes two experiments that used the automatic threshold

approach (see Equation 5.2) to restrict the number of most likely wrongly assigned

labels. When these experiments are compared to the corresponding reference exper-

iments (cut8 l1 base and cut9 l1 qe*) it can be observed that the automatic thresh-

old achieves almost the same precision (MAP) as the non-restricted reference experi-

ments, but it reduces the amount of assigned labels dramatically. In general, one can

conclude that for this test collection and the given task, automatic speech transcripts

cannot compete with manually created annotations in terms of classification perfor-

mance.

Concluding the video subject classification evaluation experiments, one can state that

treating the task as an information retrieval problem appears to be the most successful

strategy. A promising approach to automatically restrict the number of subject labels

for each video document was introduced and compared to assigning only a single label

to every document, as well as to an exhaustive non-restrictive approach. Whether au-

tomatic speech transcripts or archival meta-data are the better source for classification

seems to depend on various aspects of the data sets under investigation. Factors that

might affect the performance in favour of one source of annotation could be the num-

ber of the class labels, their semantic relatedness, as well as the size of the document

collection.
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5.5 Summary and Implications

The present chapter tied in with the discussion of open-source IR toolkits and it

showed that two particular toolkits, namely Apache Lucene and Terrier, can be com-

bined in order to exploit the advantages of both. The design and architecture of the

Xtrieval framework exploited the rich text transformation architecture in Lucene and

the variety of ranking and feedback models provided by Terrier. Using Xtrieval to

design and test retrieval experiments against several empirical evaluation tasks that

used different types of textual document collections demonstrated the flexibility of the

proposed method and its implementation. In addition to this flexibility, the availabil-

ity of various toolkits in Xtrieval allowed the selection and adjustment of all system

components according to the respective retrieval task. This approach resulted in very

strong performance in terms of retrieval effectiveness at various evaluation tasks. A

summary of all participations presented in the previous section, together with corre-

sponding experiment configurations and the most important observations is provided

in Table 5.13. It illustrates that using different system components and configurations

improves the retrieval effectiveness and that the data fusion approach can be used to

increase these results further.

The empirical results on the evaluation tasks presented in Section 5.4 demonstrated

that the Xtrieval framework has been considerably advanced in terms of retrieval ef-

fectiveness. In 6 out of the 10 participations, the results submitted by the Chemnitz

retrieval group have been ranked among the top-4 experiments and 3 of these experi-

ments returned the best results overall. Each of these top submissions were achieved

for different kinds of evaluation tasks which highlights both the flexibility and the

quality of the Xtrieval framework.

Many system components and their parameters have to be tuned in order to maximise

the overall search effectiveness for a specific task. It is clear that in a setting of an

ad-hoc retrieval evaluation campaign, it is not possible to investigate all reasonable
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values of component and system parameters. This is one of the main reasons why IR

evaluation typically ranks systems (or experiments) instead of groups of experiments

that compare different instances of system components. This fact limits the usefulness

of IR evaluation, because it hides an entire universe of valuable information and re-

spective effects from scientific investigation. In the end of Chapter 2 recent approaches

to evaluate IR system components for different search tasks have been presented. The

following Chapter 6 picks up on this area of research and illustrates how the Xtrieval

framework can be used to contribute a series of experiments to investigate the effect

of, and relationships between IR system configurations.
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6 Component-Level Evaluation and

Empirical Analysis

Both the utility and the adaptability of Xtrieval have been demonstrated for a vari-

ety of traditional evaluation tasks. The present chapter aims to provide insights into

a much more detailed analysis of empirical evaluation results in IR. First, the goals

and findings of a closed workshop on Reliable Information Access (RIA) in 2003 will

be presented and discussed. Bearing in mind the key observations regarding topic and

system variance, which were analysed and published by the organisers of this work-

shop, the motivation and experimental set-up of grid experiments will be discussed

by using the Grid@CLEF pilot task as an example. Second, a discussion of the re-

sults that were obtained using Xtrieval for the participation in Grid@CLEF will be

provided. Finally, the ability of Xtrieval to reflect the state-of-the-art in IR research

is combined with the grid experiment approach to component-level evaluation. De-

sirable properties and general principles for transparent and reliable assessment of

important aspects in complex IR systems are derived based on the findings from these

experiments.

6.1 Topic-Level IR Evaluation

The formulation of an information need is highly variant across different users of

search applications. Empirical IR evaluations need to reflect this in the generated test

collections. The TREC ad-hoc test collections emphasises the variance in topics well,
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Figure 6.1: Retrieval performance in terms of MAP for different versions of the SMART system (1992-1998)
on the TREC-1 to TREC-7 test collections, redrawn from [75, p. 616].

given the large number of topic sets that have been developed over the years. In the

first years of TREC, the focus of research was to improve IR effectiveness on such a

given set of test queries. But it has been pointed out in [75] that, within a period of

seven years, the average retrieval performance reached a plateau. Figure 6.1 demon-

strates this effect, by plotting the retrieval performance of the SMART retrieval sys-

tem, which achieved high retrieval effectiveness across the first years of TREC. This

ceiling effect motivated the IR community to investigate current state-of-the-art sys-

tems more thoroughly and led to the organisation of the Reliable Information Access

workshop in 2003. A more recent study [9] which was briefly introduced in Chapter 2

found that even in the past decade no considerable improvements have been recorded

on the TREC ad-hoc test collections.

Figure 6.2 illustrates the effect based on a literature review containing 32 publications,

which used the TREC-8 ad-hoc test collection. An examination of this illustration sug-

gests that the retrieval performance plateau is still present today. The authors of the

latter study observed that although these results suggest that there has been no measur-



6.1 Topic-Level IR Evaluation 217

Figure 6.2: Retrieval performance in terms of MAP extracted from 32 publications (1998-2008) in comparison
to original TREC-8 ad-hoc results, redrawn from [9, p. 605].

able progress for more than a decade, almost all of the analysed publications claimed

that their presented approaches improved retrieval performance. This observation led

them to the conclusion that this unexpected trend might be due to a general problem

with the current methodology in empirical IR evaluation and the publication of re-

search articles. To overcome this problem it was suggested that archives be created

to give the opportunity for long-term evaluation. This would provide reasonable base-

lines for future experiments and allow any progress in effectiveness to be monitored.

The author of this work fully agrees with this opinion. The outcome of the empirical

evaluation supplied in Chapter 7 could serve as a meaningful addition to the efforts to

overcome the performance ceiling issue.

A common explanation for the performance ceiling effect is the variance across topics,

i.e. as stated in [75, p. 616]:
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“[...] retrieval techniques that work well for one topic do not work well

for others, leaving no improvement in performance on average.”

Thus, a central goal of the RIA workshop was to investigate the topic variance by com-

paring the effectiveness of different state-of-the-art IR systems. Seven research groups

with both theoretical expertise and ready-to-use IR systems were brought together for

a period of six weeks. In order to be able to manage the complexity of analysing a

large number of experiments in detail, the researchers decided to concentrate their in-

vestigation on techniques that most of the systems had in common. Prior to the actual

workshop they agreed to focus their analysis on two key aspects of system and topic

variability. Firstly, they conducted a massive comparative failure analysis across sys-

tems and topics to uncover where and why typical state-of-the-art systems fail, and

to identify concrete problems which future investigations could focus on in order to

improve retrieval effectiveness. Secondly, a series of strictly controlled experiments

were carried out in order to allow a thorough analysis of pseudo-relevance feedback

techniques (PRF). The reasoning behind this decision was based on the assumption

that these techniques depend greatly on the actual formulation of an information need

and could be highly correlated to variance across topics for this reason. Which ele-

ments of the IR evaluation process contribute to the variability of system effectiveness

across topics will be discussed in the next subsection.

6.1.1 Types of Topic Variance

The variability of retrieval performance across different topics is affected by most of

the elements of the evaluation process. A selection of possible factors that contribute

to the difficulty of separating the pure topic effect was discussed in [75, p. 616f]:

• Variation in the average precision of the best performing system

• Variation in the performance across topics for a given system or system variant
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Figure 6.3: Variation in topic performance (AP) for three systems (Best, OKAPI, PIRCS) compared on the
TREC-8 ad-hoc test collection, redrawn from [75, p. 617].

• Variation in the performance across topics of the effectiveness of particular sys-

tem components, such as a PRF method

• Variation in the performance across topics due to features of the test collection

The first two problems can be observed for almost every evaluation task. Figure 6.3

[75, p. 617] shows the performance of three systems, which participated in the TREC-

8 ad-hoc evaluation task. It illustrates that the performance of the best system varies

from very high average precision (left) to values that are close to zero. A second ob-

servation is that the variance across topics does not seem to correlate well for different

systems. In fact, the three depicted systems do not seem to agree on the difficulty of

the topics from the TREC-8 ad-hoc test collection. This observation was one of the

key aspects which provided the impulse for the experiments of the RIA workshop.

An understanding of why systems do or do not agree on the ease or difficulty of a

topic could allow the development of models that decide in advance, which system or

model should be used given a particular topic. Despite a lot of researchers attempting

to tackle this problem, no solution has been found thus far.
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Further sources of variance across a set of topics can be illustrated by using a recent

study on the limits of retrieval effectiveness [46]. The authors of that study conducted

an experiment using a best match ranking algorithm (BM25), in which they investi-

gated the effect of query length and query term selection on retrieval effectiveness.

Their goal was to find optimal query formulations from complete information needs,

i.e. using the description and narrative fields from TREC ad-hoc topics. A greedy al-

gorithm that used relevance information was implemented to find the best query terms

for a query with a fixed length. They compared the performance of this algorithm to

the ability of a number of IR experts to find such an optimal query formulation. Their

most surprising finding regarding topic variance was the following: the upper limit,

i.e. the highest retrieval effectiveness measured in MAP, for optimal query extraction

using their greedy algorithm, was about twice as high as using the entire information

need as a query, or letting an average user (here: IR experts) decide which query terms

should be used. Using their greedy algorithm to extract query terms from the entire

information need, they were able to show that almost perfect retrieval performance

can be achieved on small and medium sized TREC ad-hoc collections.

Figure 6.4 shows two important effects, by plotting retrieval performance in terms of

MAP against query length. The illustration is based on two types of query formula-

tion strategies: SYSTEM LIMIT refers to finding an optimal query to a system given an

information need and the corresponding relevance assessments and IN LIMIT repre-

sents the selection of the optimal query terms from a given information need. Note the

following difference between these strategies: the SYSTEM LIMIT defines the optimal

query that contains all possible query terms, whereas the IN LIMIT defines a query

that contains the optimal terms from an original information need. From the plots for

the four collections, namely the Financial Times (FT), the Federal Register (FR), the

Agence Press (AP), and the Wallstreet Journal (WSJ), a the large gap between the

(theoretically) optimal system performance (SYSTEM LIMIT) and the optimal query

formulation (IN LIMIT) can be observed. Based on these empirical results the au-
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Figure 6.4: Upper limit of MAP based on two optimal query formulation strategies (SYSTEM LIMIT and IN
LIMIT) on four test collections, redrawn from [46, p. 282].

thors of [46] concluded that it is more important to develop algorithms that choose an

optimal query formulation strategy than optimising the IR system or its configuration.

In a state-of-the-art IR system, query formulation is one of many processes and can

be considered as being a single, self-contained, component in an entire application.

From a technical perspective, a query formulation algorithm is closely related to term

weighting, which is part of the ranking algorithm in practice. In order to generate a

document ranking that optimally satisfies the initial query, current ranking algorithms

weight terms in documents based on document and collection features. In contrast

to that, an automatic query formulation process will be trained on sampled evidence,

i.e. complete formulations of information needs and respective optimal query derived

from relevance assessments. The present work examines IR systems and components

that do not rely on implicit or explicit relevance information. In spite of this decision,

a generic framework for component-level evaluation, like the one discussed in Sec-
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tion 2.6, can be extended to incorporate components which adapt machine learning

approaches to solve subtasks of the IR process.

6.1.2 Understanding Retrieval Variability

Two major conclusions can be drawn from the experiments that were presented in

the previous section. Firstly, the performance of IR systems on a set of topics varies

from query to query, but also the effectiveness of different systems or configurations

on particular topics is highly variant. Secondly, the experiment presented in [46] sug-

gests that even a particular system configuration may achieve almost optimal retrieval

performance, assuming that the optimal query formulation is known beforehand. How-

ever, as can be seen from Figure 6.4 this optimal retrieval performance, i.e. MAP of

1.0, cannot be reached for all test collections. The experiment also suggests that there

are other effects on retrieval performance, which must be due to the nature of the

document or test collection.

The in-depth failure analysis of the controlled experiments at the RIA workshop re-

vealed another interesting effect regarding topic and system variance. Although dif-

ferent systems (and different system configurations) retrieve different individual doc-

uments, they share general classes of failure documents, i.e. retrieved documents that

are not relevant or relevant documents that were not retrieved. These system failures

are typically due to the presence or absence of particular aspects of topics in the re-

sult sets. The researchers also found that the state-of-the-art IR technology from 2003

should be able to significantly increase retrieval performance on about half of the top-

ics studied. The same conclusion is drawn from [46]: it is more important to discover

which of the current techniques work well on which topics and why, than it is to im-

plement new methods and models for general applications. [75]

There are two major problems in the approach to formulate optimal queries given an

information need. First, the definition of this optimal query relies on relevance infor-



6.1 Topic-Level IR Evaluation 223

mation about documents, which may not be available in general. Second, assuming

the information about relevance of document is present or can be obtained, the opti-

mal query may include terms that are not present in the formulation of the information

need. Because of that it may be impossible to automatically generate the optimal query

formulation. For these reasons the purpose of this work is to conduct a set of controlled

experiments to investigate the effect of existing state-of-the-art IR system components

on ad-hoc retrieval effectiveness. The reason for integrating key system components

and their state-of-the-art instances is that all of those components have been shown

to increase retrieval performance in laboratory experiments. However, most of these

empirical investigations are limited, because researchers typically work with a single

system, i.e. there is no possibility for them to separate topic and system variability in

their experiments. As a consequence the results of experiments and any drawn con-

clusions should feature the same constraints and hence cannot be generalised unless

they were validated across other types of systems and other document collections.

6.1.3 Implications for Component-Level Evaluation

Retrospective analysis of empirical IR evaluation experiments has shown that results

are subject to variance of different kinds, although they are usually taken on average.

From all types of variation, the difference between topics is the most crucial for evalu-

ation, because it affects summary measures like MAP the most. In previous evaluation

experiments, systems were treated as monoliths (or black boxes) without explicitly

separating which components they have in common or to which extent they differ on

particular parts of the complete IR process. Thus, it was almost impossible to study

the difference between topic and system effects. Even if a system effect would have

been identified using statistical tools, it would be of no value other than the knowledge

of its presence.

One approach to component-level evaluation could be to continue the tradition of

aiming to improve average retrieval effectiveness. This could be done by conduct-
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ing straightforward TREC-like experimentation, but instead of comparing black box

systems each instance of every system component has to be assessed individually.

For components that can be configured using parameters, every (meaningful) con-

figuration should be considered. As a direct consequence, comparing IR systems at

component-level requires many experiments and may result in a very large parameter

space. Assuming a simple model consisting of only two major components, where

each component has only 5 state-of-the-art implementations, would result in 25 ex-

periments in total.

In order to allow the thorough analysis of empirical results, a component-level eval-

uation task should concentrate on a particular set of components. The experiments

at the RIA workshop focused on automatic (non-relevance based) pseudo-relevance

feedback (PRF) mechanisms and produced about 105,000 data points. The test col-

lection consisted of 150 topics, which were tested on seven different systems each

running about 100 different configurations. This large number appears to be arbitrary,

but in fact it can be simply explained by the two parameters that are used in most

PRF techniques. Firstly, a number of (usually) top-ranked documents D, is assumed

to be relevant. Secondly, a number of T terms is selected from these D documents

in order to expand an initial query. Analysing the large amounts of resulting data is

not only tedious, but it may also turn out to provide no answers to the targeted re-

search questions. This was a problem that appeared during the RIA workshop, where

the researchers expected to discover the reasons why particular PRF techniques fail

on certain topics and do well on others. It turned out that the effectiveness of PRF is

hard to analyse, because its success depends on both topics and systems. [75, p. 621]

6.2 Grid Experiments at CLEF

The Grid@CLEF pilot track was the first component-level evaluation task on ad-hoc

IR test collections. In Section 2.6 the methodology of the task has been described

and compared to other approaches. In this section it is described how Xtrieval was de-
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ployed to run experiments in the framework of the Grid@CLEF pilot task. The official

results are analysed in detail in order to draw conclusions regarding multilingual infor-

mation access. In addition to that, additional experimental results are also discussed.

They were not part of the official evaluation due to the limited number of experiments

that could be submitted by participating institutions. Finally, the observations from

the grid pilot task are summarised in order to develop ideas on how Xtrieval could be

extended to provide meaningful contributions to component-level IR evaluation.

6.2.1 Motivation and Goals

Similar to other component-level evaluation initiatives, the motivation for the

Grid@CLEF task was to improve the understanding of IR technology. In particu-

lar, the organisers focused on multilingual information access and the effect of lan-

guages on the retrieval effectiveness of multi-lingual search applications, like digital

libraries [61]. Modelling a framework for running controlled laboratory experiments

and providing a platform for conducting large-scale evaluation by using a series of test

collections are essential steps to gain these insights.

According to [61] the grid experiments were planned to be organised according to the

Cranfield evaluation paradigm using existing document collections that were previ-

ously used at CLEF. The task itself was formulated as a traditional ad-hoc experiment.

This abstract design investigated three major entities of the IR problem and their un-

known interactions, namely IR system component, language, and search/evaluation

task. Figure 6.5 illustrates the entities and the interaction effects in a straightforward

fashion. It is commonplace in IR research that the contributions of these three entities

on overall retrieval effectiveness are likely to overlap each other, as depicted in Fig-

ure 6.5. What remains unknown in classic system-level evaluation is to what extent

these entities overlap and whether their contributions to retrieval performance can be

combined in the sense of linear or more complex functions.
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Search Task

IR System 
ComponentLanguage

Figure 6.5: Three main entities examined at Grid@CLEF, redrawn from [61, p. 30].

6.2.2 Design of the Grid Evaluation Task

During the design of the Grid@CLEF task many IR system components were con-

sidered. See [61, p. 30] for a complete list of system components and respective

subtasks in a multilingual IR system. In anticipation of the potential problem of a

high-dimensional parameter space, which is both hard to visualise and difficult to

interpret, the components were restricted to text pre-processing. Since these compo-

nents are usually language-dependent, due to differences in syntax and morphology,

they were supposed to affect multilingual IR experiments more than other compo-

nents like retrieval models or relevance feedback approaches. It was noted before that

the Grid@CLEF task was deployed as an ad-hoc retrieval task using the Cranfield

methodology. This fact defined the first entity (the task) from Figure 6.5. The two re-

maining entities, language and IR system components, were also pre-defined for the

task. Their effect on retrieval effectiveness was studied by the participating research

groups individually. Each of these groups tested a few configurations of their own IR

system using the provided test collection. The general set-up was restricted to IR sys-

tem components that perform text pre-processing (see Section 3.1). The participants

of the Grid@CLEF task were asked to use their component implementations in order

to study the effect of different text pre-processing algorithms.



6.2 Grid Experiments at CLEF 227

Figure 6.6: Hypothetical grid surface generated by comparison of the effect of different IR system components
on retrieval effectiveness (MAP), redrawn from [62, p. 4].

The central aim of the task was described by means of the hypothetical illustration

in Figure 6.6. It shows the various instances for two entities from Figure 6.5: lan-

guages and IR system components. These instances of different languages and system

components, as well as the performance metric MAP, generate a “fine-grained grid

of points” [62, p. 4]. Mixing different types of components on one of the axis is de-

batable, because “parallel” and “aligned corpora”, for instance, are part of a search

task rather than IR systems. In contrast to the hypothetical illustration in Figure 6.6,

the Grid@CLEF pilot task focussed on 4 specific components: languages, stop-word

filtering, word de-compounding, and stemming. This is only as small fraction of the

17 components illustrated in Figure 6.6. In this work, 10 out of these 17 components

are examined with consideration of various configurations for stemming, ranking, and

PRF individually.

The methodology of the Grid@CLEF task was briefly described in Section 2.6. The

organisers decided to develop a framework for exchanging the intermediate output of

components from task participants in order to allow asynchronous experiments outside

of the traditional evaluation cycles. This design allowed the creation of new system
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configurations across participants, i.e. connecting intermediary system outputs from

different participants. These distributed configurations can be used to create addi-

tional data points on the grid surface described above. The Coordinated Information

Retrieval Components Orchestration (CIRCO) was designed and implemented to cre-

ate, exchange, and integrate the output from different text pre-processing components.

CIRCO required the intermediate output to be stored in well-defined XML files, which

can either be distributed among task participants or archived for re-use in other evalu-

ation tasks that focus on other aspects of IR systems. For the Grid@CLEF pilot task,

CIRCO implemented a pipeline architecture of the following components [62, p. 5]:

• Tokenizer: separate the input documents into a stream of tokens

• Stop-word Filter: removing stop-words from the token stream

• Stemmer: stem the tokens

• Indexer: store the tokens together with document and collection statistics

In order to deploy the designed task methodology, CIRCO was implemented using

three components: CIRCO Schema, CIRCO Web, and CIRCO Java. CIRCO Schema

is an XML schema, which defines the structure and content of the XML files to be

exchanged from one element of the pipeline to another. CIRCO Web is an on-line sys-

tem that is used to define the task model, i.e. the component pipeline. It also specifies

the format for the description of components and manages the exchange of the actual

data. CIRCO Java was supplied as implementation to facilitate the adoption of the

framework and lower the threshold for participation in the task. [62, p. 6]

The Grid@CLEF pilot task re-used existing ad-hoc test collections from CLEF 2001

and 2002. The evaluation task was organised in five different subtasks concentrating

on European languages (see Table 1 in [62, p. 9] for detailed statistics on the docu-

ment collections). A further constraint was implemented to limit the number of sub-

tasks. The Grid@CLEF task concentrated on monolingual experiments in contrast to
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most other evaluation tasks in the multilingual environment. The selected test collec-

tions have been extensively studied before and re-using them for a component-level

evaluation allows the comparison of the results with the existing research literature.

According to the organisers, Grid@CLEF concentrated on achieving two major goals.

Firstly, the participants were asked to adapt their systems to comply with the CIRCO

framework. Secondly, it would have been ideal to receive as many experiment submis-

sions as possible in order to populate the grid surface. But similar to other evaluation

initiatives, there was a limit of five experiments per subtask for each participants.

6.2.3 Experiments with Xtrieval

The main objectives for the participation in the Grid@CLEF pilot task were twofold.

First, as it was noted above, the CIRCO framework had to be integrated into Xtrieval

in order to be able to produce the required component outputs. The second goal was

to provide challenging baselines that could serve as references for future evaluations

using other types of system components [59]. Since Xtrieval and the underlying core

libraries Lucene and Terrier are implemented in the Java programming language, there

were no technical impediments to integrate the CIRCO framework. In fact, only few

changes had to be made in corresponding wrapper classes of Xtrieval. For this reason

it was possible to focus on the actual experiments.

Since the Chemnitz retrieval group did not participate in CLEF 2001 or 2002, the

provided document collections were unknown. This means it was necessary to analyse

the document structure and implement according parser programs to be able to process

the collections. Due to limited resources it was not possible to create parsers for all five

collections. Instead, the focus was on the English, French, and German collections.

It is important to define which parts of structured documents will be indexed, i.e.

which document sections of a present collection are likely to carry the information that

is essential for effective retrieval. Table 6.1 lists the field names from the document

structure of the respective collections that were extracted for indexing and retrieval.
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Language / Collection Indexed Fields
DE: Spiegel 1994/95 LEAD, TEXT, TITLE
DE: Frankfurter Rundschau 1994 TEXT, TITLE
DE: German SDA 1994 KW, LD, NO, ST, TB, TI, TX
EN: LA TIMES 1994 BYLINE, HEADLINE, TEXT
FR: Le Monde 1994 CHA1, LEAD1, PEOPLE, SUBJECTS, TEXT, TIO1
FR: French SDA 1994 KW, LD, NO, ST, TB, TI, TX

Table 6.1: Grid@CLEF 2009 – indexed fields per document collection, extracted from [59, p. 573].

Lang Stemmer # Docs # Terms # Distinct Index CIRCO Output
Terms Size (MB) Size (MB)

DE Snowball 225,371 28.71 M 3.37 M 743 15,695
DE n-gram 225,371 63.12 M 0.84 M 1,137 19,924
EN Snowball 113,005 20.21 M 0.69 M 448 14,293
EN Krovetz 113,005 20.70 M 0.70 M 477 14,293
FR Snowball 87,191 12.94 M 1.13 M 306 7,329
FR Savoy 87,191 13.26 M 1.24 M 316 7,323

Table 6.2: Grid@CLEF 2009 – index and CIRCO output statistics created with Xtrieval, extracted from [59, p.
573].

In order to allow the validation of the conducted results it is important to report such

information in empirical evaluation as it definitely affects retrieval performance.

Table 6.2 shows statistics on the terms, i.e. the processed tokens, and the resulting

storage size for the compressed output from the CIRCO framework. The CIRCO im-

plementation generates chunk files as intermediate component output. Each chunk file

contains tokens for a maximum of 1,000 documents.

Due to different types of token stream processors, and different amounts and lengths of

documents in the provided collections, the resulting data is highly variant in terms of

size. Moreover, the total size of the compressed output produced with CIRCO, which

covers three intermediate and one final result streams, is between 20 and 30 times

larger than the actual sizes of the indices. Considering the relatively small size of the

used collection this is a serious problem of the approach.
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Figure 6.7: Grid@CLEF 2009 – Xtrieval workflow for tested components.

As indicated above, the experiments were planned to serve as strong baselines for the

Grid@CLEF pilot task. For this reason, a small grid of experiments was designed and

implemented using Xtrieval. The analysis of previous empirical evaluations on test

collections of similar size indicated that combining results obtained from different text

pre-processing approaches and different retrieval models, usually improves retrieval

effectiveness (see Section 5.4). Due to the limitation of five experiments per subtask,

it was decided to investigate two state-of-the-art stemming techniques and two widely

used ranking models as well as one data fusion experiment per subtask.

Figure 6.7 illustrates the workflow that covers the presented experiment configura-

tions. These experiments resemble a mini-grid consisting of 15 MAP data points. In

addition to the pictured components, a standard tokenizer for European languages was

used to break the text stream into tokens. Moreover, Figure 6.7 does not show the

standard pseudo-relevance feedback method, which was used for the four basic ex-

periments with alternating stemmers and ranking models. The data fusion component

was implemented as result list merging and it combined the results of all four basic

experiment configurations per subtask.
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Run ID Stemmer Ranking Model PRF (d / t) Fusion MAP
cut en 1 Porter Bool + VSM 10 / 20 no 0.5067
cut en 2 Porter BM25 10 / 20 no 0.4924
cut en 3 Krovetz Bool + VSM 10 / 20 no 0.4937
cut en 4 Krovetz BM25 10 / 20 no 0.4849
cut en 5 both(s.a.) both(s.a.) 10 / 20 yes 0.5446
cheshire eng t2fb Porter Log. Regression yes no 0.5313

Table 6.3: Grid@CLEF 2009 – Results for the English subtask, partly extracted from [59, p. 574].

6.2.4 Results and Analysis

Table 6.3 lists all experiments for the English subtask. In total the subtask received

only six submissions, five of which came from Chemnitz and one from Berkeley. Re-

garding the defined goal of putting as many data points on the grid surface as possible,

this result is rather disappointing.

The best configuration on the English test collection was generated with the Xtrieval

framework and it achieved a retrieval performance of 0.5446 in terms of MAP. The

experiment from Berkeley achieved a MAP value of 0.5313, i.e. both groups achieved

similar retrieval effectiveness. The top performing configuration cut en 5 was the data

fusion experiment, which confirms the expectation that merging results from different

indices and different ranking models improves retrieval effectiveness. In fact it clearly

outperformed all of the four basic experiments. Considering the two components that

were tested in these experiments, it can be observed that the BM25 ranking method

from Terrier performed slightly worse than the combination of the Boolean and Vector

Space models in Lucene for both of the tested stemmers. Examining the retrieval ef-

fectiveness of the stemmers shows that Porter performed slightly better than Krovetz

for both of the tested ranking models.

The participation in the subtask on the French test collection was also low, i.e. again

only six experiments were submitted in total with an identical composition of contrib-

utors. The experimental results for the French subtask are listed in Table 6.4. Here,
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Run ID Stemmer Ranking Model PRF (d / t) Fusion MAP
cut fr 3 Snowball Bool + VSM 10 / 20 no 0.4483
cut fr 1 Snowball BM25 10 / 20 no 0.4538
cut fr 5 Savoy Bool + VSM 10 / 20 no 0.4434
cut fr 2 Savoy BM25 10 / 20 no 0.4795
cut fr 4 both(s.a.) both(s.a.) 10 / 20 yes 0.4942
cheshire fre t2fb Snowball Log. Regression yes no 0.5188

Table 6.4: Grid@CLEF 2009 – Results for the French subtask, partly extracted from [59, p. 574].

the best experiments in terms of retrieval effectiveness as measured by MAP came

from Berkeley. Again, from the experiments conducted with Xtrieval, the data fusion

experiment achieved the best MAP value of 0.4942. Thus, the initial hypothesis that

merging results from different components improves performance, was also confirmed

on this test collection.

Analysing the effect of the tested components led to rather inconclusive interpreta-

tions, especially for the stemmers. While the implementation of Savoy performed

slightly better than the Snowball implementation for French when it was used with

the Boolean and Vector Space models from Lucene, the opposite is the case when

BM25 was used for ranking. BM25 did slightly better than Lucene’s ranking model

on the index that was stemmed with Snowball and it clearly outperformed the ranking

of Lucene on the index that was based on the stemmer by Savoy. These observations

differ from those that were made on the English subtask, but with basically identical

system configurations. This indicates that the language, or the test collection, affects

the retrieval effectiveness of system configurations in a way that makes it hard to pre-

dict, which configuration should be used for optimal performance. Data fusion from

different system configurations seems to be the only aspect which is independent of

the test collection in the Grid@CLEF experiments, since these runs always outper-

formed any other configuration created with the Xtrieval framework.

Just like the English and French subtasks of Grid@CLEF, the German subtask re-

ceived only six submissions from the two groups, Berkeley and Chemnitz. As can be
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Run ID Stemmer Ranking Model PRF (d / t) Fusion MAP
cut de 1 Snowball Bool + VSM 10 / 50 no 0.4196
cut de 2 Snowball BM25 10 / 50 no 0.4355
cut de 3 N-gram Decomp. Bool + VSM 10 / 250 no 0.4267
cut de 4 N-gram Decomp. BM25 10 / 250 no 0.4678
cut de 5 both(s.a.) both(s.a.) both(s.a.) yes 0.4864
cheshire ger t2fb Snowball Log. Regression yes no 0.4002

Table 6.5: Grid@CLEF 2009 – Results for the German subtask, partly extracted from [59, p. 574].

seen from Table 6.5, the best experiment came from Chemnitz. But in contrast to the

two other subtasks there is a substantial gain in effectiveness compared to the best

experiment from Berkeley. An examination of the other experiment configurations

from Chemnitz reveals that all five experiment configurations outperformed the run

from Berkeley. Assuming that both systems used identical configurations for all three

subtasks, this observation suggests that there might be a notable test collection effect.

No additional experiments were made in order to explain this effect in more detail.

Here, the CIRCO framework could have been used to explore the issue on component

level. Given the present data, no definite conclusions can be drawn concerning the

question of whether the difference between the results was due to a particular compo-

nent in one of the two systems, or due to particular features of the test collection, i.e.

topics that favoured results from Chemnitz, or a combination of both effects.

The results indicate that the implemented n-gram decompounding algorithm, which

was specifically designed to handle German compounds, did slightly better than the

Snowball implementation for German when using Lucene for ranking, i.e. the ranking

is based on a combination of the Boolean and Vector Space ranking models. For the

BM25 ranking model provided by Terrier, the Snowball algorithm was clearly out-

performed by our custom n-gram decompounder. Comparing the effectiveness of the

ranking models, the results show that BM25 is superior to the combination of Boolean

and Vector Space models on this test collection.
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Three key observations can be made from these experiments:

• Firstly, there was only little variance in terms of retrieval effectiveness between

the BM25 and the combination of Boolean and Vector Space ranking methods,

when using the Snowball framework for stemming on the Grid@CLEF test col-

lections. This observation indicates that the two ranking approaches provide

robust results for retrieval of small test collections in English, French, and Ger-

man.

• A second aspect is related to the other stemming approaches that were tested.

For languages with more complex morphology, like German and French, our

results indicate that custom stemmers work better than the generic Snowball

framework. On these test collections the variance between the two tested rank-

ing methods (BM25 vs. Boolean and Vector Space) was much higher and in

favour of BM25.

• The third observation was, that combining the four tested configurations in a

late result list fusion approach based on the Z-score operator, always improved

retrieval performance on the given test collections. This suggests retrieval per-

formance can be improved, if storage and computational restrictions are not rel-

evant for a specific search application. It can be realised by the creation of sep-

arate indices, using generic and specific stemming algorithms, querying those

with different ranking models, and fusing the results into a final document rank-

ing.

6.2.5 Lessons Learned

Besides the empirical analysis of the results of the system configurations submitted

to the Grid@CLEF pilot task, further conclusions can be drawn from the design

and implementation of the component-level aspect. The most apparent issue of the

Grid@CLEF task was a lack of participation, which is fatal for the central goals of
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this type of evaluation. Two major reasons against the implementation of a common

API for component-level experiments were identified in the course of the evaluation

of the Grid@CLEF task [62]:

• First, the research groups were distracted from their main objectives in order

to integrate CIRCO into their systems. Since the CIRCO framework was im-

plemented for easy integration with Lucene, which is also implemented in the

Java programming language, the burden to incorporate the framework in other

IR systems was considerably larger. This resulted in a bias favouring those par-

ticipants with systems based on Lucene, because they did not have to spend a

lot of time on the integration of CIRCO.

• A second issue was the size of the intermediate output in terms of storage capac-

ity and computation time. Compared to a standard ad-hoc IR experiment, which

typically requires about two to three times the storage size of the test collection

for an arbitrary large number of experiments, the design of the Grid@CLEF

task took up to 30 times the size of the collection per experiment.

In spite of the unfruitful results obtained from the Grid@CLEF experiments, they

provided further insights as to which specific problems future component-level tasks

should concentrate on. It has already been pointed out in [75] that organising large-

scale experiments which focus on specific components of IR systems is a challenging

task. Moreover, a lot of unanticipated impediments may appear throughout the em-

pirical evaluation process, just like the storage issue of Grid@CLEF. Therefore, it can

be concluded that a well-designed experimental set-up for component-level evaluation

should solve elementary problems prior to the actual evaluation. The key challenges

from previous initiatives are the following:

• Define key system components and their state-of-the-art instances

Both the Grid@CLEF task and the RIA workshop clearly defined which compo-

nents should be examined by empirical evaluation. This is an important step in
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determining the scope of the evaluation.Another crucial factor for component-

level evaluation tasks is to investigate competitive state-of-the-art component

implementations. The organisers of the RIA workshop used an invitation-only

policy to restrict the participation to systems with a demonstrated track record in

previous evaluation campaigns. This abstract selection scheme did not guaran-

tee that each of the systems’ components reflected the state-of-the-art, although

it is very likely that they did. In contrast to that, Grid@CLEF had no restric-

tions. But the task defined a fixed component-level workflow which might have

put off research groups whose systems did not fit the given workflow.

• Formulate specific challenges to investigate

Motivating participation in new challenging search task is not a problem. It

also explains the shift from traditional evaluation to more specific and diverse

search problems [124]. A description of studies that supplied empirical evi-

dence for only little, or even no, progress on traditional IR collections in the

past decade was provided. Assuming that tools exist to increase performance

on these test collections, or the underlying general search tasks, there was ap-

parently not enough motivation to lead these new findings back to traditional

test collections. Thus, a key issue for transparent component-level evaluation is

to stimulate participation by defining new interesting goals. These goals have to

be both challenging and specific enough to inspire the interest of the research

community.

• Define the level of detail for result analysis

Traditional IR evaluation concentrates on general retrieval effectiveness and

thus is dominated by summary metrics like MAP or NDCG. In contrast to that,

component-level evaluations focus on particular aspects of IR systems. Thus,

it is necessary to study particular system or component failures in the great-

est possible detail. This allows the identification of possible systematic failures,

which – if corrected – will automatically increase retrieval effectiveness on av-

erage as well. Again, the actual level of detail for the evaluation depends on the

design of the experiment, i.e. the search evaluation task itself.
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• Organise the distribution of data and code

Another important challenge for component-level evaluation in distributed sce-

narios are protocols for exchanging data or programming code. RIA used a sim-

ple but effective protocol by bringing both the experiment data and the system

code into one place. In 2003, this was likely to be the most cost effective way.

Grid@CLEF attempted to exchange component outputs through XML, but the

redundancy of the intermediate output resulted in extremely large files. As a

result, actual exchange of component-level output between participating groups

did not happen. From this it follows that the decision as to whether exchange

data or programming code, or to implement a combination of both, depends on

the evaluation task. More specifically, it is dependent on the tasks which are

completed by the components under examination. As a consequence, exchang-

ing intermediate component output requires simple programming interfaces. In

principle, synchronous protocols are possible, but for the sake of comparability

in the future, protocols should allow asynchronous exchange of data.

• Preserve the results in full detail

Current IR evaluation methodology also needs to deal with preservation of em-

pirical experiments and their results. However, it is commonplace in IR research

that experimental results are stored by the organisers of evaluation tasks. Exper-

imental descriptions, summary figures about the results, and respective inter-

pretation are published in research publications. This methodology is a major

handicap for preservation and long-term analysis. Since the issue has already

been pointed out for traditional IR evaluation, it is important to design and es-

tablish simple but powerful meta-data descriptions in the IR evaluation domain.

This is particularly important for evaluation at the component-level. Because

detailed experiment descriptions can serve as powerful tool to select appropri-

ate baselines for the assessment of future system components.

The Xtrieval framework provides solutions for the conceptual problems of automated

evaluation at component level. It facilitates an architecture to address the organisa-
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tional issues. Its meta-level design for accessing and combining different state-of-

the-art retrieval toolkits allows fine-grained empirical studies at the component-level.

Incorporating the findings of previous initiatives, Xtrieval can be deployed to run a

large series of grid experiments that provide a better understanding of the orches-

tration of components in modern IR systems. Xtrieval allows to focus both on over-

coming practical limitations and addressing methodological issues without gathering

research groups (RIA workshop), or implementing additional data exchange protocols

(Grid@CLEF). The required resources are TREC-like campaigns that produce very

valuable test collections and IR toolkits like Terrier, Lucene, Lemur, and others which

reflect the state-of-the-art of specific aspects in IR systems.

6.3 Increasing Clarity in IR Evaluation

A central goal of Xtrieval is to make effectiveness evaluation more transparent. The

previous section presented key challenges that need to be addressed in order to achieve

this. These problems can be separated in two major groups. The first are organisa-

tional problems like exchanging the data that is needed to conduct empirical evalua-

tion, which includes test collections, test systems, evaluation results as well as experi-

ment designs. The second group of obstacles contains practical limitations, such as the

number of experiments that can be submitted in traditional evaluation tasks, or the spe-

cial focus of publicly available toolkits, which often result in IR systems combining

highly-effective and innovative system components with other outdated components

all into a single system.

It will be considered next, how Xtrieval can be used to address the challenges pre-

sented in Section 6.2.5 and which specific questions in the field of ad-hoc evalu-

ation can be studied. First of all, we have to decide what relevant system compo-

nents are, and which of their instances, i.e. implementations of different models for

a particular component, reflect the state-of-the-art. Chapter 3 discussed central sys-

tem components like text pre-processing and retrieval models, that are accessible
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through Xtrieval. Covering the complete state-of-the-art even for a single component

of modern IR systems is a task that requires a large amount of resources. For this rea-

son, Xtrieval integrates existing retrieval toolkits like Terrier and Lucene. Chapter 4

demonstrated that a large number of IR libraries have been developed in order to solve

specific tasks and underlying problems. However, the specificity of these tools does

not allow to take an holistic view on the technology. Xtrieval aims to fill this gap by de-

ploying Terrier and its variety of ranking models as well as by integrating Lucene with

its powerful framework for text pre-processing. This combination enables us to thor-

oughly assess the effect of state-of-the-art implementations for indexing and retrieval

on retrieval effectiveness. The actual selection of component instances is presented in

Chapter 7.

The formulation of specific challenges for component-level evaluation tasks is the

next argument. This problem has to be tackled by the community as a whole and not

by individual research groups. Nevertheless, there are a few arguments that deserve

attention. For this reason the present empirical analysis emphasises these. The most

dominant problem for component-level evaluation is the limitation of experiments

that can be submitted for evaluation. This restriction has its roots in the traditional

assessment strategy, which was inherited from the Cranfield paradigm and greatly

enhanced through the TREC experiments. In this model, obtaining relevance assess-

ments involves a great deal of human resources and is therefore expensive. Using 50

test questions (or topics) per task was shown to provide stable rankings of experimen-

tal systems at reasonable cost. However, this may not be the case for evaluation tasks

that target at discriminating between thousands of different system configurations in

order to create a better understanding of different component implementations and

component interactions in modern IR systems. The Million Query track at TREC [2],

[37] demonstrated that larger amounts of topics – in the order of thousands per task

– can be evaluated with reasonable effort. The success of this track should motivate

the IR community to create a similar track that conducts a deep pooling strategy, i.e.

assessing as many documents as possible per topic. Obviously, it is out of the scope

of this work to design and conduct the task here. Nevertheless, the experiments in
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the following Chapter 7 will evaluate the number of encountered non-evaluated docu-

ments with respect to the number of contributed experiments from different IR system

configurations.

A particular problem for component-level evaluation across many research groups is

the lack of a standard protocol for exchanging component output. Although, Xtrieval

was not designed to solve this issue, the present experiments show that all that is

needed already exists. In Chapter 4 a number of currently available IR toolkits and

libraries have been compared. This analysis demonstrated that only a few frameworks

are widely-used in the IR community. For this reason they are enhanced with new

features and latest findings from research more frequently. Xtrieval integrates these

libraries, namely Lucene and Terrier. But how does this relate to the lack of proto-

cols for exchanging component-level output? First of all, it is necessary to consider

which components actually need this kind of data flow. The RIA workshop focused on

pseudo-relevance feedback approaches. This required the exchange of ten to hundred

documents or terms between systems. Thus, there was neither a need for a complex

protocol nor did it demand any architecture to manage the data flow. In contrast to

that, the Grid@CLEF pilot task aimed to compare text pre-processing components

during index creation. Here, the CIRCO framework served as the protocol, but due

to the asynchronous nature of the protocol large amounts of data had to be created

and exchanged. In retrospect, it might have been better to rely on widely-used frame-

works like Lucene and Terrier and transfer the exchange protocol to an abstract meta

level. Both Lucene and Terrier provide powerful and yet simple protocols to create

and access their underlying index structures. With the help of Xtrieval both can be

used through one common programming interface. This brings up a simple idea to

mitigate the data explosion problem with CIRCO: creating index structures only for

selected text pre-processing components, but for each of them separately. A selection

is necessary to exclude trivial components like white space tokenizers, stop-word or

other simple filters. These are better exchanged in the form of the few lines of pro-

gramming or pseudo-code they need, instead of exchanging the transformed output.

In fact, it could be beneficial to implement these straightforward components as web
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services with free access, at least for participating research groups. Remaining com-

ponents that might be large or complex, like stemming algorithms, might stay closed

and therefore the transformed output needs to be preserved. Here, relying on existing

libraries and their resulting output requires the least amount of human effort. Thus, it is

necessary to define a simple protocol which preserves the trivial components that were

used to alter and filter the document collection before and after the more sophisticated

closed source components like stemmers. Altogether this would drastically reduce the

amounts of data that have to be exchanged and preserved for thorough analysis of text

pre-processing components.

One key problem in empirical IR evaluation is the lack of detailed result analysis.

It is related to the competitive character of evaluation campaigns, where systems are

ranked based on summary metrics like MAP. Published papers that deal with IR ef-

fectiveness often rely on such test collections and many of them attempt to develop

new techniques that increase average retrieval performance. In contrast to that our

component-level IR evaluation approach is targeted at the details of system compo-

nents and retrieval effectiveness. This approach includes analysis based on traditional

effectiveness figures like MAP, but its most important aspect lies in careful examina-

tion of the variance across instances and configurations of selected components (see

Sections 7.2.2 and 7.3). This variance analysis allows the interpretation of how robust

each instance is in relation to other implementations. For instance, higher variance

across different configurations of any particular component suggests that it is less ro-

bust compared to the remaining components of the system. Such information allows

to make decisions on the trade-off between robust and solid retrieval performance,

or a strong but error-prone configuration by adjusting system components accord-

ingly. Studying topic-level retrieval performance, however, permits the investigation

of the failures of particular components. Having at hand retrieval effectiveness val-

ues for comparable implementations of components provides the opportunity to esti-

mate whether such failures are systematic rather than random (see Sections 7.4.1 and

7.4.2). The result analysis for the experiments in Chapter 7 is founded on these as-

sumptions and considerations. These thorough analyses are intended to demonstrate
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that the traditional evaluation and result analysis paradigm only scratches the surface

of understanding the full potential in state-of-the-art retrieval technology.

Making the results of empirical evaluation experiments available to the research com-

munity is the final aspect within the contributions of this work. A critical problem of

traditional IR evaluation lies in the fact that experimental result data and experiment

descriptions are being archived separately due to the duality between IR evaluation

campaigns and the publication of research articles at major IR conferences. In line

with the present work, a tool was developed [112], [196] to capture these resources

(system configurations and empirical results) in order to visualise the effect of state-of-

the-art components on retrieval effectiveness. It will be argued that such a tool could

be established as the contact point for the selection of appropriate baselines for em-

pirical evaluation of new IR system components (see Section 7.6). In order to achieve

acceptance among the research community, such a tool has to be integrated into the

infrastructure of evaluation campaigns like TREC, CLEF, or NTCIR. Future work in

this direction could aim to consolidate the descriptions of IR experiments within a

formal meta-data standard. Using such a standard in IR evaluation campaigns will

considerably increase the utility of previous experiments. Finally, this would make it

possible to keep track of the improvements in the field of IR effectiveness research.





7 Automated Component-Level Evaluation

with Xtrieval

This chapter describes how Xtrieval has been deployed to run a series of ad-hoc ex-

periments on small and mid-sized document collections in order to study the effect

of system configurations on retrieval effectiveness. As a first step, the general set-up

of the designed experiments is presented. A number of specific goals and deduced

research questions serve as motivation for the selected empirical approach. They de-

fine the scope of this work and specify the variables of the experiment architecture.

The scientific methodology for the experiment design, as well as the data analysis and

interpretation, is presented with respect to the formulated research questions. The in-

troductory section is completed with a detailed description of the test collections that

were selected for our empirical analysis.

The key contribution of the present chapter lies in a detailed result analysis with re-

spect to our selection of state-of-the-art IR system components. The results are ex-

amined and interpreted in accordance with the presented guidelines for transparent

evaluation on component-level (see Chapter 6), in order to provide answers to the for-

mulated research questions. Besides detecting the optimal system configurations for

various test collections, the effect of test collections on the ranking of the tested system

configurations is discussed. The variance of variables that affect retrieval performance

in the experimental set-up will also be analysed.
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Since one of the major points of criticism was the lack of an infrastructure for captur-

ing both experimental set-up and results (see Chapter 6), a description of a straightfor-

ward tool that was developed to address the issues in Section 7.6 is provided. Firstly, a

discussion of the basic functions of the visualisation tool is provided to point out how

it could be integrated into existing infrastructures of evaluation campaigns like TREC,

CLEF, or NTCIR. Secondly, all experimental results will be published by making

them accessible in this web-based tool in order to encourage further analysis. Opti-

mal configurations per system component instance are selected for publication on the

platform presented in [8] in order to provide baseline references on component-level.

Finally, the chapter is concluded by summarising the major contributions of the pre-

sented large-scale experiment.

7.1 Experimental Setup

It has been pointed out in the preceding chapters that the Xtrieval framework can

be deployed to access open IR toolkits and libraries. It was argued that Lucene and

Terrier are the most powerful tools for text transformation, indexing, and retrieval. In

fact, due to different fields of application, wide applicability (Lucene) and coverage

of important IR models (Terrier), the combination of the two appeared to be the most

promising.

The potential benefit for IR evaluation lies in balancing the shortcomings of each

framework with the strengths of the other. The best example is the combination of

the powerful text transformation framework included in Lucene with the manifold IR

ranking and weighting models implemented in Terrier (see Section 5.2). This approah

allows the elimination of the drawback of Lucene, which relies on a combination of

the classic Boolean matching and Vector Space retrieval models, but at the same time

its powerful text transformation architecture is used to balance the less flexible term

pipeline approach in Terrier.
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Figure 7.1: Abstract representation of the deployed experimental set-up.

It has been demonstrated that this meta-framework approach achieved strong retrieval

performance with top-positions at several international comparisons (see Section 5.4).

But more importantly, the Xtrieval architecture allows the study of three key compo-

nents of standard IR systems: text transformation, matching and ranking functions,

and relevance feedback algorithms. As a result, it is possible to enhance the experi-

ments at the RIA workshop (see Section 6.1) and at the Grid@CLEF track (see Sec-

tion 6.2). Although every possible state-of-the-art component of IR systems could be

implemented and tested in Xtrieval, the focus remains on the three fundamental com-

ponents for the sake of manageability. The number of instances of each component

are limited for the same reason.

Figure 7.1 illustrates the overall workflow of the experiments, whereas all tested in-

stances of system components are listed in Table 7.1. Note, that a fixed text processing

workflow was implemented in order to create identical document representations for

the use with Lucene and Terrier. This fixed tokenising procedure was adapted using

Lucene. It preceded the variable stemming approaches presented in Table 7.1.

Figure 7.2 illustrates the data flow for breaking the document text into tokens. Most

of the presented steps are standard components from Lucene, like StandardTokenizer,
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Figure 7.2: Implemented text transformation chain for the creation of document and query representations.

StandardFilter, LowercaseFilter, and StopFilter (see Section 4.1.1 for details). The

class StopFilter requires a language-specific set of stop-words. A publicly available

list1 from the University of Neuchâtel was used for this purpose. The final step of the

tokenising process is to transform all tokens into stems. Here the SnowballFilter class

from Lucene is used to access the Porter stemming algorithm. The NGramTokenFilter

class from Lucene was modified in order to convert all tokens in character n-grams

with a maximum length of four (or five respectively). As a result, the token “all”

results in the single character 4-gram “all” (which is in fact a 3-gram, but was still

retained to avoid loss of information), whereas “characters” would produce the 4-

grams “char”, “hara”, “arac”, “ract”, “acte”, “cter”, and “ters”. Additionally, a

Lucene TokenFilter class named StemFilter was created which served as the interface

for other implementations of stemming algorithms.

For the experiments presented hereafter, the Krovetz stemmer [101], and a light rule-

based stemmer [88] named UeaLite for English from the University of East An-

glia were implemented. They were chosen, because of their similarity to the Porter

stemmer. These stemmers are rule-based, but they aim to avoid the problem of over-

stemming by implementing less aggressive rules (UeaLite) or using a dictionary for

check-up (Krovetz).

1 http://members.unine.ch/jacques.savoy/clef/englishST.txt, retrieved on March 1,
2012

http://members.unine.ch/jacques.savoy/clef/englishST.txt
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Component Instance From Parameter
Stemming none - -

Porter Lucene -
Krovetz Lucene word dictionary
UeaLite Lucene -
char n-grams Lucene n={4;5}

Ranking Boolean + VSM Lucene -
TF-IDF, BM25 Terrier BM25:b=0.75
LM (Dirichlet, Hiemstra) Terrier Dirichlet:µ=2500, Hiemstra:λ=0.15
DFR Terrier {BB2, DLH13, DPH, IFB2, In expB2}
DFI0, LGD Terrier -

Feedback none - -
Kullback-Leiber Terrier d={3;6;9;12;15;20;30}

t={5;10;15;20;25;30;40;50;60;
70;80;90;100}

Bose-Einstein2 Terrier d={3;6;9;12;15;20;30}
t={5;10;15;20;25;30;40;50;60;
70;80;90;100}

Table 7.1: Tested instances of variable system components and their configuration.

Next, the details of the considered ranking algorithms will be discussed. Twelve dif-

ferent weighting and ranking algorithms were selected which can be grouped in four

major classes: Vector Space and classic Probabilistic models, language models, diver-

gence from randomness models, and divergence from independence models.

From the ranking models listed in Table 7.1, the Boolean matching (see Section 3.2.1)

and Vector Space ranking (see Section 3.2.2), provided by Lucene, the TF-IDF rank-

ing (see Section 3.2.3), as well as the BM25 ranking formula (see Section 3.2.4.3),

belong to the first category of models. In the category of language models two im-

plementations were included: Dirichlet and Hiemstra (see Section 3.2.4.4). The im-

plementations BB2, DHL13, DPH, IFB2, and InExpB2 represent variations of the

divergence from randomness model (see Section 3.2.4.5). The two recently published

models DFI0 and LGD belong to the remaining group. Note that default parameters

are used for all configurable ranking models in these experiments. All default values

are listed in the rightmost column of Table 7.1 for reference. The reason for choosing

this pragmatic approach is twofold:
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(1) The test set-up is in line with traditional ad-hoc evaluation experiments and all

of the configurable models default to this scenario.

(2) If the parameters of configurable ranking models are included and they do not

necessarily have only one value, an additional dimension of the parameter space

with an unknown and varying number of values would be introduced.

Two different feedback models have been included in the empirical evaluation, namely

Kullback-Leiber and Bose-Einstein2, which are implemented in Terrier. The focus is

on two parameters of the pseudo-relevance feedback (PRF) models:

(1) D, the number of documents that are used to collect feedback terms from.

(2) T , the maximum number of terms to be extracted from the set of selected feed-

back documents.

Automatic PRF in Terrier defaults to using the three topmost documents of an initial

ranking and retrieves the ten most relevant terms according to the underlying metric,

i.e. the selected feedback model. In general this is a safe setting in the sense that it can

be expected to improve average retrieval effectiveness on a typical set of topics. It is

commonplace in the IR retrieval community that automatic PRF with fixed document

sets and maximum term numbers is a risky operation, because it is not known whether

applying the technique will improve or decrease retrieval effectiveness on a particular

topic. Moreover, the degree of the effect is also unknown beforehand.

Since both parameters are numerical values, the goal was to define a set of reasonable

values to investigate in our experiments. In order to keep the resulting parameter space

manageable it was decided to keep the overall number of feedback experiments per

model below 100. Since most evaluation campaigns use precision-based effectiveness

metrics like P@n, with typical values ranging from 1 to 20, the target range of docu-

ments for automatic feedback needed to be within these values. The maximum number
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of terms to expand the original query may be affected by the choice of stemmers. The

limitation of the maximum length of a token by using character n-gram stemming

during indexing also constrained the amount of information to be fed back into the

query reformulation step of PRF. In order to investigate this effect, it was necessary to

allow more terms than usual for standard stemmers. As a result, the interval [0, 30] for

parameter D and the interval [0, 100] for parameter T have been obtained. In order

to comply with the restriction to than 100 parameter combinations, the parameter sets

presented in Table 7.1 have been selected.

In order to conclude this section on the general experimental set-up, the total number

of generated experiments is determined. 6 different stemming algorithms generate the

dimension of the first component. Bearing in mind, that Lucene and Terrier are ac-

cessed through Xtrieval results in twelve indices, which have to be created to conduct

all experiments. The second main component is the ranking model which constitutes

the second dimension of the evaluation. As can be seen from Table 7.1, 12 different

ranking models were selected for comparison. The last system component is feedback

and it constitutes the third and largest dimension of our evaluation. Using 7 samples

for the parameter D and 13 samples for the parameter T results in 91 different pairs

of feedback parameters. Since two feedback models are compared, it is necessary to

multiply this figure by two. Finally, one should not forget each corresponding baseline

experiment without feedback. As a result, there are 183 unique instances for the feed-

back dimension in the test set-up. Finally, the number of instances in each of the three

dimensions can be multiplied which results in 13,176 unique system configurations in

total.

7.1.1 Goals and Research Questions

In order to demonstrate the possibility to address the issues formulated in the previous

chapter by adopting the Xtrieval framework (see Section 6.2.5), a few specific research

questions were formulated. This is achieved by re-considering the general goals in the
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domain of IR evaluation and in component-level evaluation specifically. One of the

most critical problems in IR evaluation is that test collections are re-used for verifica-

tion of improved IR models, but at the same time there is a lack of commonly used

and accepted baseline experiments. Since nobody is in the position to dictate, which

baseline experiments should be used for reference when a particular test collection is

being re-used, the situation can be improved by making baseline experiments easily

accessible. However, some questions regarding these baselines remain. Who decides

which experiment should serve as a baseline for reference, and what are the criteria

for selecting it? The question about an eligible authority to implement the decisions

may remain open. But one might argue that application-specific metrics exist to prop-

erly define the selection criteria. Thus, the first general goal is to provide experimental

descriptions and results, that enable the community to make such decisions.

Another aspect of the empirical evaluation is to verify the functionality of the Xtrieval

framework with respect to the combination of IR toolkits. The present experimental

set-up allows the testing of two important interfaces: Lucene’s generic text process-

ing framework to create index structures with Terrier and applying Terrier’s feedback

mechanism to experiments from Lucene. Although these two examples are quite spe-

cific, they are considered to be a meaningful contribution to IR evaluation for the

following reason. It was pointed out in Chapter 4 that Lucene and Terrier can be re-

garded as accepted standard tools in IR. The combination of their strengths within a

single framework, like Xtrieval, allows to automatically simulate default configura-

tions of state-of-the-art IR systems.

The experiments presented here were created in retrospect, i.e. they are based on test

collections which include corresponding sets of relevance assessments. The field of

application is restricted to ad-hoc retrieval. Thus, the most relevant system compo-

nents were selected accordingly. But in general the approach can be adapted to any

laboratory IR evaluation experiment. Assuming the question is to thoroughly investi-

gate a specific field of application for IR technology, the IR community could define

system components that are expected to be beneficial for the underlying task(s). These
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components can be included by integrating them in our general framework. As a fi-

nal step, several instances for each component can be defined and the framework will

provide results for all possible experiment combinations. This procedure allows the

IR community to ensure that the current state-of-the-art is covered.

Besides these generic goals, there are a number of specific questions that have to be

considered with the help of this empirical experiment. Naturally, they are related to

the system components and configurations that were tested. The main focus lies in

retrieval effectiveness measured using traditional metrics like average precision (AP)

and corresponding summary figures, which is mean average precision (MAP) in this

case. In the following list provides a number of key questions:

• Stemming:

Stemming algorithms help to improve retrieval effectiveness. Given the five se-

lected instances of stemming algorithms, the question of which of the imple-

mentations achieves the best retrieval performance on average (over a defined

set of standard topics) can be addressed. Another subject of this investigation

is the retrieval effectiveness at topic level. This is motivated by the assumption

that some stemming algorithms may perform badly on average, but on a sub-

set of the topics they might outperform the overall “winner”. If this is the case

and this subset also has some unique features, this information might be useful

to improve average performance by choosing the optimal stemming technique

on topic basis. Another specific investigation deals with the robustness of the

component instances against the misconfiguration of other system components.

Due to the experimental set-up, where each stemming algorithm is tested on the

same set of system configurations, it is possible to compare identical subsets of

configuration by altering only one component instance.

• Ranking:

Ranking functions build the core of every modern IR system. Here, twelve dif-

ferent implementations that were separated into four major groups (see Sec-
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tion 7.1) are studied in detail. Similar to the stemming component, the main

purpose is to investigate which of the IR models performs best on standard test

collections. Whether the models in the defined groups which are presented in a

chronological order, improved over time is another question, i.e. it is expected

that the vector space and classic probabilistic models be outperformed by the

models in the other groups. There is also an interest in topic-level performance

and its variance across the tested ranking models. The reasoning is the same

as for the stemming algorithms: assuming that topic subsets exist on which

some particular model(s) outperform the overall winner, it might be possible

to exploit this to improve average retrieval effectiveness beyond the level of

an experiment based on a single optimal model. A further aspect of this study

concerning the ranking models is to determine the relative difference between

groups of models. The review of the research on the theory of ranking mod-

els (see Section 3.2.4) demonstrated that some ranking functions, like TF-IDF,

BM25, and Hiemstra’s language model, are closely related from a mathematical

perspective. It is expected that these theoretical assumptions can be verified by

means of empirical observation in the experiment.

• Feedback:

Pseudo-relevance feedback is the last component under investigation. Feedback

instances provide many more different configurations than the other two com-

ponents. But in accordance with the other components, the purpose is to find

which of the tested feedback models, and which configuration of the parame-

ters D and T result in best retrieval effectiveness over different standard test

collections. The topic-level will also be studied by following the previous ap-

proach. But in contrast to the stemming and ranking models, it is not expected

that it is possible to find particular configuration that perform consistently better

on subsets of topics than the overall best feedback configuration. The effect of

the feedback configuration on the performance of the other components of the

system is a further topic of interest. Based on the assumption that top-ranked

documents retrieved using different systems, or system configurations, will be
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similar in order to fulfil the relevance criterion of the query, it is likely that the

optimal retrieval effectiveness is similar for these systems. How the feedback

mechanism affects the performance of the instances of the other components is

another important question. For example, if BM25 outperforms TF-IDF with-

out PRF, will it still outperform TF-IDF with the optimal feedback configuration

for both ranking mechanisms? And moreover, how will it affect the difference

between the two in terms of some effectiveness metric? Another aspect that

needs investigation is the relation between the two PRF parameters D and T .

One would expect that parameter T should always be larger than D, i.e. more

terms are extracted from more documents in order to achieve better effective-

ness. Experiments, where T <= D will also be conducted in order to validate

this hypothesis.

Alongside the investigation of effects of particular components, the experimental set-

up allows the study of how the system components and configurations interact with

each other and how these interactions affect retrieval effectiveness. Whether a stem-

ming algorithm affects the order of the ranking models or not is one of the more spe-

cific questions. For example, one can assume that the Porter stemmer is the best choice

for our first component. The ranking models under investigation will be in a specific

order when they are used in combination with Porter stemming. The following ques-

tion is then, if the order of the models will be the same for the other tested stemming

algorithms, or not? This could help to further clarify the investigation of robustness of

particular component instances. Of course, it will also be possible to answer the same

question from the opposite perspective. The ranking model dimension will be stud-

ied to observe, how the relative performance of the stemming configurations changes,

when different instances of ranking models are selected.

Different document collections and test sets that were generated for the evaluation of

ad-hoc retrieval tasks (see Section 7.1.3 for details) are another topic of interest of

the experiments. This allows the study of whether it is possible to observe general
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patterns across document collections or topic sets. For this reason specific document

collections have been selected. The experiments will be carried out on several topic

sets, which were aggregated to larger sets in order to smooth the effect of particular

topic sets. It also allows us to investigate the questions presented above with respect to

different original topic sets. This will help to understand, whether, or not, it is possible

to predict the behaviour of system configurations on standard test collections. Since

standard test collections for ad-hoc retrieval are being re-used here, it is possible to

relate the results to the original results at the corresponding evaluation campaign. This

allows to verify that the system configurations are working properly within Xtrieval.

This test set-up also allows the determination of appropriate baselines for particular

instances of system components, which can be used for testing and verifying future

components on the deployed test collections.

7.1.2 Scope and Methodology

It has already been pointed out that empirical experimentation is the selected method

to answer the formulated research questions. This section is intended to provide in-

sights into the scope of the present experiments, and to discuss the limits of the re-

search methodology. In general, the analysis of empirical evaluation is a standard tool

to assess theories and hypotheses. But the design of the underlying experiments has to

be adequate to the problems under investigation.

A typical problem in IR evaluation is that small topic sets limit the usefulness of em-

pirical observation. Since traditional ad-hoc test collections are re-used in the experi-

ments that are conducted for this work, the conclusions that can be drawn are limited

to the ad-hoc retrieval domain. The purpose of combining several topic sets into a sin-

gle experiment per document collection (see Section 7.1.3) is to derive more general

insights from our empirical analysis than the single topic sets would allow alone. In

order to do so, the following assumption needs to be made. Evaluation campaigns like

TREC and CLEF use document pooling to create the relevance assessments for the
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topic sets. This pooling strategy is dependent on the submitted experiments per task.

Since these submissions may differ from year to year due to different participants and

systems, a hidden effect of the participating systems may affect the comparability of

the topic sets for a corresponding document collection. In traditional IR evaluation it

is commonplace to assume that this effect can be ignored. In order to be able to gen-

eralise the observations on combined topic sets for the selected document collections

this assumption is also applied here.

Another possible limitation of the methodology in this work lies in the fact, that the

number of components under investigation and their corresponding instances are lim-

ited. Although major parts of this work are dedicated to motivating the selection of

algorithms to be included in the empirical analysis, the resulting choices can nei-

ther be complete nor cover all possible combinations or configurations of instances.

Throughout the selection process a few choices had to be made to keep the experi-

ments and the data analysis manageable. Nevertheless, these decisions are based on

common sense in IR evaluation. The number of documents D and terms T to be used

for PRF on standard ad-hoc test collections varies with typical values for D from 3 to

15 and from 10 to 50 for T . Both of these intervals are covered in the experimental

set-up.

Another aspect that needs pointing out, concerns the potential impact on IR effective-

ness evaluation. The lack of tools to select appropriate baselines for the evaluation of

new IR methods is beyond dispute. Future evaluation tasks should be able to provide

results for predefined subsets of standard system configurations beforehand. As a re-

sult, it is expected that these baselines could increase the challenge for participants,

simply because they do in fact cover the current state-of-the-art in IR technology. At

the same time, providing component-level configurations for standard test collections

will allow the comparison of the new contributions with the corresponding reference

implementations. This approach enables researchers to identify standard system con-

figurations and components that might not be working as expected. It will also lead
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to a more thorough analysis of system components and their orchestration for specific

use cases.

7.1.3 Selected Test Collections

This section is intended to describe the last and most important part of our experimen-

tal set-up: the test collection. It has already been indicated, that standard ad-hoc text

retrieval collections are being used for evaluation here. Although the IR community

has been tackling problems on a much larger scale in recent years (see Section 2.2),

older and smaller document collections are being used here. The reason for this de-

cision is twofold. Firstly, one of the goals is to provide further insights by assessing

the component and configuration level. In order to maximise the usefulness of this

investigation, it is necessary to run the experiments on the most frequently used test

collections in IR evaluation. A recent study [9] examined peer-reviewed publications

on IR evaluation over a period of ten years. One of the results was that the most widely

used ad-hoc test collections are those from TREC-7 and TREC-8. Thus, this empirical

analysis is also based on the corresponding document collection. The second reason

concerns the feasibility of the experiment. The Xtrieval framework and the available

computational resources are able to handle document collections at web-scale. But

the nature of the designed experiment, which involves testing of tens of thousands of

system configurations, does not allow another large-scale dimension, if the results are

expected to be achieved within a reasonable time frame.

In addition to the document collections from TREC, some additional document collec-

tions from CLEF are also included in the evaluation. To stay in line with the ad-hoc re-

trieval scenario, the selected collections from CLEF were tested for ad-hoc evaluation

tasks. A further requirement for inclusion in the present experiment was a minimum

number of 100 topics per document collection. As a result, the GIRT-4 corpus (used

for the Domain-Specific task for several years), and the TEL-BL collection (used for

the ad-hoc retrieval tasks in CLEF 2008 and 2009), were selected. Choosing further
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Doc. Collection # Docs Avg. Doc Size Topic Sets # Topics
Length (MB)

TREC disk 4
Financial Times 210,158 412.7 564
Federal Register 55,630 644.7 395

TREC disk 5
Foreign Broadcast IS 130,471 543.6 470
LA Times 131,896 526.5 475

TREC45-CR (total) 528,155 497.9 1,904 trec7-ah 50
trec8-ah 50
trec2003-robust-new 50
trec2004-robust-new 50

CLEF TEL-BL 1,000,100 30.6 1,152 clef2008-ah 50
clef2009-ah 50

CLEF GIRT-4 151,319 50.3 198 clef2003-ds 25
clef2004-ds 25
clef2005-ds 25
clef2006-ds 25

Table 7.2: General document collection characteristics and topic sets.

document collections allowed the investigation of the effect of collection features on

the defined test set-up. Evaluating identical topic set sizes on these different types

of document collections is expected to reveal general trends regarding the effects of

particular system configurations on retrieval effectiveness.

7.1.3.1 Document Collection Statistics

A general overview on statistical features of the document collections is presented

in Table 7.2. All figures for the TREC document collection, which consists of TREC

disks 4 and 5 without the Congressional Records collection, were extracted from [181,

p. 3]. For the CLEF TEL-BL and GIRT-4 collections no information could be found

on the average document length. As a result, the presented figures are estimates that

were obtained from the indexes created for the empirical analysis in this work. The

figures below demonstrate the differences between the collections. While the TREC

collection features documents with an average length of about 500 words, the CLEF

collections contain only about 30 (TEL-BL), and 50 (GIRT-4) words per document.

This is due to the structure and content of the underlying document sources. The TREC
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Doc. Collection Indexed Fields
TREC45-CR

Financial Times CO, CN, DATELINE, HEADLINE, IN, PE, TEXT, TP
Federal Register ADDRESS, AGENCY, DOCTITLE, FOOTNOTE, FURTHER,

SUMMARY, SUPPLEM, TEXT, USBUREAU, USDEPT
Foreign Broadcast IS ABS, F, FIG, H1, H2, H3, H4, H5, H6, H7, H8, TEXT, TI, TXT5
LA Times BYLINE, CHA1, HEADLINE, KW, LD, LEAD, LEAD1, NO,

PEOPLE, SUBJECTS, ST, TB, TI, TIO1, TITLE, TEXT, TX
CLEF TEL-BL dc:abstract, dc:contributor, dc:description, dc:relation, dc:subject,

dc:title, dcterms:alternative
CLEF GIRT-4 ABSTRACT-EN-HT, ABSTRACT-EN-MT, AUTHOR,

CLASSIFICATION-TEXT-EN, CONTROLLED-TERM-EN,
METHOD-TERM-EN, PUBLICATION-YEAR, TITLE-EN

Table 7.3: Indexed fields per document collection.

collection, which is denoted TREC45-CR from here on, consists of full-text natural

language articles, whereas the CLEF collections represent extracts of library records.

The total number of available test queries is 200 for the TREC45-CR collection, and

100 for each CLEF collection.

7.1.3.2 Specific Index Statistics

Next, the document statistics are discussed by presenting several index-specific fig-

ures. Table 7.3 lists the fields, that were selected for inclusion in the indexes. This

reduction approach was implemented to limit the size of the indexes and to exclude

tokens carrying no, or only little information. The indexing process and resulting fig-

ures are described in detail in order to ensure the utility of the experiments for future

reference. This may enable other researchers to reproduce these experiments and ob-

servations. Table 7.4 lists a few index statistics on the number of tokens for each col-

lection and stemming algorithm. A few interesting figures might serve as indicators

for the nature of each collection and stemmer. First of all, the number of unique tokens

in the rightmost column gives an idea about the vocabulary of the collection. It can bee

seen, that TREC45-CR and CLEF-TEL-BL have similar figures, whereas the CLEF

GIRT-4 has a vocabulary of about 15-20 percent the size of the other two. This is due

to the fact that CLEF GIRT-4 is a sparsely translated version of the corresponding
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Doc. Collection Stemmer Avg. Doc # Tokens # Unique
Length Tokens

TREC45-CR none 293.5 155,001,515 901,896
4-gram 1,147.4 605,995,312 234,581
5-gram 907.6 479,329,032 716,582
Krovetz 293.5 155,001,515 823,035
Porter 293.5 155,001,515 802,134
UeaLite 293.5 155,000,500 785,534

CLEF TEL-BL none 30.6 30,572,382 778,141
4-gram 130.1 130,132,722 259,585
5-gram 104.4 104,416,440 765,718
Krovetz 30.6 30,572,382 732,006
Porter 30.6 30,572,382 701,572
UeaLite 30.6 30,570,380 728,957

CLEF GIRT-4 none 50.3 7,605,354 130,812
4-gram 241.5 36,536,240 66,852
5-gram 195.5 29,589,492 159,519
Krovetz 50.3 7,605,354 113,288
Porter 50.3 7,605,354 106,428
UeaLite 50.3 7,605,336 116,126

Table 7.4: Index statistics in relation to stemming algorithms.

German collection. The total number of tokens could serve as a rough approximation

of query processing time and storage size of the index, because it is directly related

to the size of the posting lists. One can observe, that 4-gram stemming results in four

to five times more tokens than rule-based stemmers. A similar picture can be obtained

by analysing the figures for 5-gram stemming. Here, the factor varies between three

and four.

Another interesting observation can be made by comparing the number of unique

terms per collection for the rule-based approaches. From a theoretical analysis one

would suggest that the UeaLite stemmer is less aggressive than the Porter stemmer.

In fact, on the TREC45-CR collection the opposite is the case, whereas for the other

collections the figures follow our supposition. A resulting question is, whether, or

not, this fact might affect retrieval effectiveness. Since all ranking models rely on the

numbers reported in Table 7.4 in one or another way, it is likely that the observed effect

will influence the document ranking. What remains an open question at this point of
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Collection avg l(t) avg l(d) avg l(n) avg l(t+d) avg(num rel)
TREC45-CR

TREC7-AH 2.4 14.6 44.2 17.1 93.5
TREC8-AH 2.4 14.0 36.8 16.5 94.6
TREC2003-Robust 3.0 16.0 33.8 19.0 33.2
TREC2004-Robust 2.8 12.3 27.8 15.0 41.2

CLEF TEL-BL
CLEF2008-AH 3.3 14.3 0 17.6 50.7
CLEF2009-AH 3.8 16.3 0 19.1 50.5

CLEF GIRT-4
CLEF2003-DS 3.6 12.8 35.3 16.4 53.3
CLEF2004-DS 3.0 13.0 37.3 16.0 51.5
CLEF2005-DS 2.8 11.8 36.2 14.6 84.2
CLEF2006-DS 3.8 11.8 34.0 15.6 169.6

Table 7.5: Statistics for deployed topic sets.

the investigation is whether the difference in the document rankings will be reflected

in the used retrieval effectiveness metric.

7.1.3.3 Topic Set Statistics

The test topics are one of the key elements in every empirical evaluation. They are

necessary to be able to measure the quality of tested IR systems based on the returned

results. Due to the importance of the test queries, their main features are examined

here. Table 7.5 lists mean lengths of the topic fields (represented using the function

avgl()), and the average number of relevant documents.

Typical topic elements are abbreviated with the corresponding first letter of the topic

structure name, i.e. t for title, d for description, and n for narrative. All presented

figures are reported for the original topic sets from respective evaluation campaigns.

Special attention is directed to the two rightmost columns of Table 7.5. The average

length of the topic title and topic description, (avgl(t + d)), is important, because it

represents the terms that are used to create the queries in the experiments. The nar-

rative topic part was not included for evaluation, because it was not available for the



7.1 Experimental Setup 263

0

5

10

15

20

25

30

35

40

Q
ue

ry
 L

en
gt

h 
(T

+D
)

Individual Topics (n=100)

TREC-AH

TREC-Robust

CLEF-AH

CLEF-DS

Figure 7.3: Query lengths for individual topics (n=100, order by decreasing query length) for each of the 4
aggregated test sets: TREC-AH, TREC-Robust, CLEF-AH, and CLEF-DS.

CLEF TEL-BL collection. It can be seen that the average query length varies between

14.6 and 19.1 on the selected sets. Considering the average number of relevant docu-

ments per topic, a large variance ranging from 33.2 to 169.6 can be observed. Finally,

there is only little variation in the average lengths of the individual topic structures

(title, description, narrative).

One of the formulated goals for the designed evaluation experiment is to be able to

draw more general conclusions from the empirical analysis. In order to achieve this

goal, the topic sets for the three document collections were aggregated to test sets of

identical size. The assumption behind this approach is straightforward: the larger the

topic sets are, the more reliable they should become, because more test samples cover

the complete population of possible queries better. However, due to evolving topic

creation and assessment strategies, the features of individual topic sets may not be re-

motely comparable, even when they are created for the same document collection. For

the experiments in this work, four topic sets of identical size (100 test queries) were

generated. These include two sets for TREC45-CR, with TREC7-AH and TREC8-AH
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being grouped together. For CLEF TEL-BL and CLEF GIRT-4, all individual topic

sets were merged to form two additional topic sets containing 100 topics each.

In order to investigate the hypothesis that the comparability of the topic sets is in-

creased by merging the test queries into sets of identical size, two major features are

studied in detail. In Figure 7.3 and Figure 7.4, the length of the queries and the num-

ber of relevant documents per query are plotted for the merged topic sets. The query

lengths for the merged topic sets are illustrated in decreasing order for each of the four

test collections. Similar to the average query lengths presented in Table 7.5, there is

only little variance across the different test collections. Within each of the topic sets,

most queries consist of 10 and 25 terms with only a few outliers on both ends of the

range. As a result, it can be concluded that the topic sizes and their distribution are

homogeneous for the merged test query collections.

The number of relevant documents per topic in Figure 7.4 are also presented in de-

creasing order for each of the deployed topic sets. In contrast to the figures in Ta-

ble 7.5, the topic sets feature quite similar distributions of relevant documents for

each individual topic. However, the level of these distributions, which is represented

by the area under the curves, is quite different across our four merged test collections.

In fact, the distributions for TREC-AH and CLEF-DS are very similar with just a few

deviations. The CLEF-AH test collection has a similar distribution, but it has only

about half as much relevant documents for all topics.

A similar picture can be observed for the TREC-Robust test collection, which also

shares the general distribution across all topics with only about 40 percent of rele-

vant documents per topic in comparison to TREC-AH and CLEF-DS. The conclusion

of this analysis is mixed. On the one hand the general distribution of the number of

relevant documents per topics is similar for all test sets. But on the other hand, there

are quite different absolute numbers across the collections. The latter argument may

appear disturbing for the pupose of reliable component evaluation. However, it is com-
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Figure 7.4: Number of relevant documents for individual topics (n=100, order by decreasing number of rele-
vant documents) for each of the 4 aggregated test sets: TREC-AH, TREC-Robust, CLEF-AH, and
CLEF-DS.

monplace in IR evaluation, that there is no correlation between the number of relevant

documents per topic and the retrieval effectiveness.

In order to gain deeper insights on how combining the individual topic sets into sin-

gle sets changed or retained the features of the original topic sets, the corresponding

figures for the distribution of the query lengths and the number of relevant documents

were also captured. From the observations, that can be made in the corresponding fig-

ures in Appendix A, one can conclude, that the original topic sets for the TREC7-AH

and TREC8-AH, TREC2003-Robust and TREC2004-Robust, as well as CLEF2008-

AH and CLEF2009-AH, are homogeneous in terms of both features. In contrast to

that, the individual topic sets for the CLEF GIRT-4 document collection vary sig-

nificantly in terms of the number of relevant documents. The topic set combination

normalised the distribution of relevant documents in that particular case.
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7.2 Result Analysis and Interpretation

This section reports the results of the designed large-scale empirical experiment. In

order to discuss these results, an appropriate technique to illustrate the large amount

of results (n = 13, 176 observations) needs to be selected. In fact, the total number

of tested experiment configurations is n = 14, 274, due to two different implementa-

tions for the Hiemstra language modelling approach (see Section 3.2.4.4). A detailed

description for this problem is given in Section 7.4.1. The corrected implementation

of Hiemstra’s language model ranking was used for the following investigation.

Due to the number of experiments conducting traditional comparisons of the retrieval

effectiveness of systems is impossible. Instead, an exploratory data analysis is pro-

vided to investigate the effect of different component implementations on retrieval ef-

fectiveness. First of all, a description of the applied visualisation techniques is given.

Then, each of the system components is studied separately by examining the distribu-

tions of the tested software implementations. The corresponding results are reported

for all of the four test collections described in Section 7.1.3. This allows to gain gen-

eral insights into how the system configurations take effect on different types of test

collections.

Another aspect of the result analysis is to study optimal system configurations. But in-

stead of only reporting the single best system configuration for each of the test collec-

tions, optimal configurations are presented and discussed component-by-component.

Thus, the results for a selected subset of system configurations are presented and dis-

cussed. The obtained optimal system configurations are compared to the best contri-

butions of the original evaluation campaigns in order to allow an objective evaluation

of our results.

The scale of the present experimental set-up allows the study of the effect of the test

collections and more specifically, the impact of individual topics on the evaluation
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task as a whole. Since the actual configuration of all systems is known in the present

experiment, analysing the variance of topics on selected subsets of experiments will

provide a better understanding of the interaction between individual queries and the IR

systems (and its component configurations). The variance of the systems on individual

topics can be used to identify topics that are more useful for evaluation, because they

discriminate the rankings of system configurations better than others. From a more

general perspective, this approach could also be used to assess the utility of a test

collection for evaluation. Another use for the analysis of individual topics is finding

the optimal system configuration for each of the topics. A theoretical upper limit for

the mean average precision over a considered test collection is determined by using a

subset of optimal configurations.

A further aspect of the result analysis concerns the utility of Xtrieval for automated

evaluation. An additional experiment is designed to investigate this by means of intro-

ducing another component of Xtrieval. This component is based on the late data fusion

approach and is intended to increase the retrieval effectiveness by combining results

from individual system configuration. This experiment is chosen for the purpose of

establishing the validity of our approach to automated component-level evaluation.

Thus, a selected subset of optimal, but also distinguishable system configurations, is

used for a pair-wise data fusion approach. The results of these experiments show, that

it is possible to improve retrieval effectiveness measured in terms MAP beyond the

level of the best automatic IR systems from original ad-hoc evaluation tasks at TREC.

7.2.1 Exploratory Analysis: General Observations

In traditional IR evaluation, a standard approach is to assess the statistical significance

of the difference between two systems (see Section 2.4). Obviously, for the experi-

ments presented and discussed in this work, this is not only infeasible for all (or even

selected) pairs of systems configurations. But moreover, it would not provide any in-

sights into the effects of components and how their different implementation affect
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retrieval performance. Thus, other techniques from the field of statistics are applied in

order to obtain a graphical visualisation of our experimental results. These visualisa-

tions serve as the basis for the interpretation of the results in terms of specific research

questions.

It is a common approach to graphical analysis and interpretation of large empirical

data sets to study characteristic statistical features. Mean, median, maximum, and min-

imum of the observations are only a few examples of such figures. The five-number

summary [86] is a specific tool for visual interpretation of univariate variables. It relies

on the following figures: minimum, lower quartile, median, upper quartile, and maxi-

mum. In the present experimental set-up these univariate variables are the components

themselves, which appear as different instances (here: software implementations). In

fact, from an abstract perspective the pseudo-relevance feedback component is mul-

tivariate, because it depends on the used model, the number of documents, and the

number of terms. Since all three contribute to the desired effect, and can be quanti-

fied independently, they are considered as being three separate components in order

to examine their impact on the target metric. As a result, the outcome of the experi-

ments can be examined in terms of these typical statistical figures to summarise the

distribution of the observations.

The most common visualisation of a five-number summary is a boxplot [142]. Nowa-

days, there are many variants of the traditional boxplot visualisation. Most of them

differ in the representation of the lower and upper end. A standard boxplot (see Fig-

ure 7.5, top) usually exchanges the minimum for the 9th percentile and the maximum

the 91st percentile.

In spite of the concise visualisation of characteristic features of the underlying distri-

butions, boxplots do not provide any graphical interpretation of the probability density.

This might be problematic in situations, where the density function of the data pro-

vides further insights into the effects of the studied variables. The research literature in
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Figure 7.5: Comparison of a boxplot (top) and a beanplot (bottom) visualisation for the results of the test
configuration based the TREC45-CR document collection and the combined topic sets TREC7-
AH and TREC8-AH. In this example, the univariate factor under examination is the ranking model,
which has 13 different instances.

the field of statistics provides two solutions to the problem of the comparison of prob-

ability density functions of factors in large data sets: violin plots [85] and beanplots

[92]. Both of them replace the non-informative lines on the side of the boxes with ker-

nel density functions in order to provide a visual interpretation of the data. The violin

plot is based on a fixed kernel function for density estimation and an adjustable, but

constant, bandwidth parameter which enables a researcher to tune the presentation ac-
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cording to the data set. But the latter is also a limitation of the technique, because the

adjustment of the bandwidth parameter might fail on some particular data sets. In con-

trast to that, the beanplot presentation features a number of kernel density estimation

functions and it also supplies different bandwidth estimation procedures. In this par-

ticular scenario, where the probability density functions for different types of factors

(the software implementations of different IR system components) are unknown, the

latter feature is most important. For this reason, it was decided to base the exploratory

data analysis on beanplots.

Figure 7.5 illustrates the distribution of various ranking model implementations eval-

uated on one of the test collections, in terms of boxplot and beanplot visualisations.

This allows a comparison of the advantages and drawbacks of both types of graphi-

cal presentation. The boxplot visualisation provides an overview of the relation of the

five-number summaries for all tested instances of the ranking model component. Out-

liers are shown as circles if present (see the distributions for the Dirichlet and Hiem-

stra* models in the left). However, two specific goals of the present experiments are

the analysis of related groups of models, and to estimate the reliability of component

instances in relation to the complete system configuration. In order to answer these

questions, the beanplot visualisation allows the interpretation of the results based on

the graphical presentation of the probability density functions.

Next, the visualisations of the In expB2 and Lucene models in the boxplot and bean-

plot presentations are examined in detail (see Figure 7.5, number eight and twelve,

from left to right). In the boxplot presentation, both distributions look fairly similar,

except for the general expansion which is slightly higher for Lucene. In contrast to

that, the beanplot presentation reveals an interesting difference in the density function

for these two models. The probability density function for Lucene is almost uniform

which suggests that other parameters of the system configuration do not affect the

model much. A different picture can be observed for the In expB2 density function.

Here, one can see a variant of a bimodal distribution. This observation suggests that

some other parameter is likely to affect the retrieval performance. This effect will be
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elaborated in the following subsection. Similar observations can be made when com-

paring respective presentations for Dirichlet and Lucene.

7.2.2 Visual Comparison of Component Instances

This section provides a general overview on the effect of IR system components on

retrieval performance measured in terms of MAP. In order to study these effects thor-

oughly, each of the major components is considered separately. The following figures

are used to interpret these effects: minimum, mean, and maximum, as well as the aver-

age, across all instances. Moreover, the probability density functions are used to relate

the different groups of models for particular components, namely stemming and rank-

ing. The illustrations in the following subsections are organised in specific sequences

of the factors of the system components:

• Stemming algorithms: none, 4-gram, 5-gram, Porter, Krovetz, Uealite

• Ranking models (vector space and probabilistic group): TF-IDF, BM25, Lucene

• Ranking models (language model group): Dirichlet, Hiemstra*, Hiemstra

• Ranking models (DFR group): BB2, IFB2, In expB2, DPH, DLH13

• Ranking models (DFI group): LGD, DFI0

• Feedback models: none, Bo2, KLCorrect

This kind of presentation allows straightforward comparison of the effectiveness

across the considered test collections. The two numerical factors of the PRF com-

ponent, namely the number of documents and terms for PRF, increase from left to

right in order to illustrate the effect of the respective parameter values.
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In order to conduct a meaningful exploratory analysis of the experimental results, it is

necessary to make sure that the underlying data is free from systematic errors. There-

fore, Figure 7.5 should be considered again by focusing on this particular aspect. The

illustration clearly suggests that three ranking models, namely Dirichlet, Hiemstra*,

and DFI0, do not perform well in comparison to the rest of the ranking models. This

observation can be made for each of the four test collections (see Appendix B.1.2).

The observation that these models systematically fail on all test collections suggests

that the configuration is not correct, or the software implementation has errors (see

Section 7.4.1 for more details). Thus, it was decided to exclude these ranking models

from the exploratory analysis and to narrow the focus on the working configurations.

Nevertheless, all corresponding figures were also created for the sake of completeness

(see Appendix B.1).

7.2.2.1 Stemming

Figure 7.6 illustrates the impact of the five tested stemming algorithms on retrieval

effectiveness and relates this impact to the same set of configurations tested without

any stemming. Each of the sub-figures summarises one of the four test collections. The

total number of observations is n = 10, 980. Considering the effectiveness of the n-

gram stemming, it can be observed that these approaches perform consistently worse

than all of the other approaches, even in comparison to the configurations without

stemming.

On the full-text TREC45-CR test collections the performance of 4-gram and 5-gram

stemming is fairly similar. In contrast to that, on the library record collections CLEF

TEL-BL and CLEF GIRT-4, the 4-gram approach outperforms the 5-gram technique

on average. Following the outlined course of action, these observations suggest, that

the system configurations using n-gram stemming should be examined separately.
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Figure 7.6: Beanplot visualisation using different stemming implementations as factors (n = 10, 980 obser-
vations per sub-figure). Each figure illustrates the data for one of the merged topic sets created for
evaluation.

Therefore, the exploratory analysis of the remaining system components is based on

the subset of configurations that use the Porter, Krovetz, and UeaLite stemmers. The

corresponding figures for the analysis of configurations based on n-gram stemming

can be found in Appendix B.2.

Another point of interest of the visual analysis and interpretation concerns the proba-

bility density function of the n-gram stemmers in comparison to the other algorithms.
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The curve progression for the n-gram stemmers looks like a mixture of multi-modal

and uniform distributions, whereas the other algorithms produce shapes that are sim-

ilar to normal distributions. This suggests that the n-gram stemming influences the

effectiveness of other components of the entire system.

Next the emphasis is put on the comparison of the rule-based stemming algorithms

Porter, Krovetz, and UeaLite. The Porter and UeaLite implementations show similar

average performance on the TREC45-CR document collections, but on the CLEF col-

lections Porter achieves better effectiveness than UeaLite. Krovetz is the best of the

three on both TREC45-CR test collections. Its performance is similar to Porter on the

CLEF TEL-BL test collection and slightly worse than Porter on the CLEF GIRT-4

test set. These observations suggest that the Krovetz implementation is preferable on

full-text collections and that Porter is a good choice on sparse collections like library

records.

Another interesting aspect is the small difference between configurations using the

rule-based stemmers, and the configurations without stemming, on the TREC45-CR

test collection with robust topic sets. Here, there is an especially small gap between the

no stemming and rule-based stemming. However, no robust conclusion can be drawn

based on this observation without the examination of the other system components. A

final comment concerns the total expansion of the MAP values on the different test col-

lections. On the TREC45-CR test collections the range from minimum to maximum

performance is about 0.15 MAP regardless of the absolute MAP values. In contrast

to that, this variance is only 0.10 measured in MAP. This implies that the risk of sys-

tem mal-configurations for full-text collections is higher than for collections of library

records.
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7.2.2.2 Ranking Models

The following exploratory analysis of the effect of ranking models on retrieval effec-

tiveness is based on a subset of n = 5, 490 observations. In order to allow meaningful

interpretations, the graphical illustrations presented hereafter focus on system config-

urations that use Porter, Krovetz, or UeaLite stemming. Furthermore, ranking models

that are suspected to be configured erroneously, were also excluded from the pre-

sentation. All corresponding figures for the analogue investigation on a subset based

on the character n-gram stemming configurations (n = 3, 660) can be found in Ap-

pendix B.2.1.

Figure 7.7 shows a comparison of the ten remaining ranking models on the test collec-

tions for the TREC45-CR corpus. The corresponding presentation of the results on the

test collections from CLEF is illustrated in Figure 7.8. Again, the exploratory analysis

is focused on general characteristics of the different implementations of the ranking

component. The sequence of the ranking models used for presentation is in chronolog-

ical order of the publication of the models. Given this perspective, one would expect

the beanplots to be in increasing order from left to right. In fact this is not the case

for all collections used here. This observation suggests that newer ranking models do

not perform better than classic models on the tested collections. It can be observed

in Figure 7.7 and Figure 7.8 that the empirical observations demonstrate the close

relationships within the defined groups of ranking models. Next, the presentation of

the results for the TREC45-CR ad-hoc test collections is studied in more detail. It is

very clear that the ranking models TF-IDF and BM25 from the traditional group are

very similar in terms of minimum, mean, and maximum performance as well as in

the shape of their probability density function. A similar picture can be seen for BB2,

IFB2, and In expB2 from the DFR group of ranking models. However, in this group

DPH and DLH13 differ significantly in terms of the minimum, mean, and maximum

performance, but they still share a very similar density function on the experiment

subset under examination.
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Figure 7.7: Beanplot visualisation using different implementations of ranking models as factors (n = 5, 490
observations per sub-figure). Each figure illustrates the data for one of the merged topic sets created
for evaluation.

Another aspect that is worth noting, is the shape of the probability density functions

with respect to the different ranking models. An optimal density function would be

funnel-shaped, i.e. most of the system configurations would perform very well, and

the more the performance decreases the less configurations should appear. However,

this optimal shape criterion for the density function should only be applied to resolve

ties of models showing similar maximum and mean retrieval performance.
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Figure 7.8: Beanplot visualisation using different implementations of ranking models as factors (n = 5, 490
observations per sub-figure). Each figure illustrates the data for one of the merged topic sets created
for evaluation.

The density functions for Lucene and Hiemstra differ significantly from the distribu-

tions of the other models on the TREC45-CR ad-hoc test collection (see Figure 7.7,

top). Instead of a normal distribution, the density function for Lucene looks more like

the shape of a uniform distribution. Considering the subset of the system configura-

tions, which represent the distributions, this suggests that Lucene is more affected by

the configuration of other components than the models with normal distributions. This
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conclusion is also supported by the fact, that for Lucene the difference between mini-

mum and maximum performance is larger than for most of the other ranking models.

Yet another distribution can be observed for the Hiemstra ranking model, which looks

like a bimodal distribution. This indicates, that the performance of the model might

be dependent on two factors in one of the other system components, i.e. the stemming

algorithm or the feedback mechanism.

A comparison of the performance of the ranking models across the four different test

collections follows next. Figure 7.7 demonstrates how using different test topics on the

same document collection changes the relationship between the models. However, the

defined groups of ranking models still show similar performance on each test collec-

tion. There are two significant differences to be observed. Firstly, the DLH13 ranking

model clearly outperforms all other models on the TREC45-CR robust collection (see

Figure 7.7, bottom), whereas the Hiemstra ranking model showed best performance

on the TREC45-CR ad-hoc test set. Secondly, the difference between the minimum

and maximum among all ranking models is significantly larger on the robust topic set

than on the ad-hoc test collection.

Lastly, the analysis of the effect of the ranking models is considered on the collections

from CLEF (see Figure 7.8). They differ from the TREC45-CR corpus in the average

length of the documents. The differences in the nature of these document collections

are clearly visible. Obviously, they affect the probability density functions for the

ranking models. The shapes of the probability distributions are multi-modal for most

ranking models on the CLEF TEL-BL test collection with the exception of Lucene and

Hiemstra. For the CLEF GIRT-4 test collection most ranking models show a bimodal

distribution on the selected subset of experiments. These observations suggest that

there is another system component with two factors on the CLEF GIRT-4 collection.

For the CLEF TEL-BL collection the interpretation of the probability density func-

tion is even more diffuse. It indicates that other components severely affect retrieval

performance on this test collection. Bearing in mind the distributions of the stemming
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components for CLEF GIRT-4 (see Figure 7.6, bottom right), the bimodal distributions

can be explained with the influence of the stemming algorithms. Porter and Krovetz

show similar, high performance and account for the upper peak in the ranking model

distributions. The lower peak can be attributed to the UeaLite stemming component,

which achieves worse retrieval effectiveness than Porter and Krovetz on this collec-

tion. A conclusive explanation of the observations for the ranking model probability

distributions on the CLEF TEL-BL cannot be found without the consideration of the

effect feedback component.

7.2.2.3 Pseudo-Relevance Feedback

The third and last key component examined by means of exploratory data analysis

is pseudo-relevance feedback. It was noted before, that the configuration of PRF is a

multivariate variable due to the different parameters of the component. However, these

parameters can be separated into three variables, which can be quantified individually.

In order to study these, the results are reported and analysed in terms of these variables.

The selected experiment subset consists of n = 5, 490 configurations covering the

Porter, Krovetz, and UeaLite stemming algorithms, as well as the ranking algorithms

presented in the previous subsection (see Section 7.2.2.2). All corresponding beanplot

visualisations for the experiment subset (n = 3, 660 observations) covering the n-

gram stemming approaches, are listed in Appendix B.2.

The first variable considered for comparison is the PRF model used to select the terms

for query reformulation. Due to the large number of different configurations for PRF,

the total number of experiments using a specific PRF model (n = 2, 730) differs sig-

nificantly from the number of experiments without PRF (n = 30). As a result the

probability density functions for the latter factor (“none”), cannot be directly com-

pared to the distributions of the actual PRF models.



280 7 Automated Component-Level Evaluation with Xtrieval

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

none Bo2 KLCorrect

Feedback Model vs. MAP, tested on TREC45−CR,
 using topics TREC7−AH and TREC8−AH

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.25

0.30

0.35

0.40

none Bo2 KLCorrect

Feedback Model vs. MAP, tested on TREC45−CR,
 using topics TREC2003−Robust and TREC2004−Robust

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.28

0.30

0.32

0.34

0.36

0.38

0.40

none Bo2 KLCorrect

Feedback Model vs. MAP, tested on CLEF TEL−BL,
 using topics CLEF2008−AH and CLEF2009−AH

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.35

0.40

0.45

none Bo2 KLCorrect

Feedback Model vs. MAP, tested on CLEF GIRT−4,
 using topics CLEF2003−DS through CLEF2006−DS

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

Figure 7.9: Beanplot visualisation using different PRF models as factors (n = 5, 490 observations per sub-
figure). Each figure illustrates the data for one of the merged topic sets created for evaluation.

Figure 7.9 illustrates the results on the selected experiment subset by means of bean-

plots. The presentation clearly shows that both PRF models improve retrieval effec-

tiveness on average, and on all test collections. The presentation as beanplots reveals

another interesting aspect of the PRF component. As the focus is sharpened on the

TREC45-CR document collection (see Figure 7.9, top), it can be observed that the

two PRF models feature very different probability density functions. While the Bo2

implementation produced a distribution that might be characterised as a uniform dis-
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tribution, the KLCorrect implementation resulted in an almost perfect normal distribu-

tion for the ad-hoc test collection, and in a slightly biased normal distribution for the

robust test set. Another aspect concerning the different probability density functions

is the variance across the experiment subset under examination. The Bo2 implemen-

tation achieved a higher maximum performance on both test sets of the TREC45-CR

document collection than its counterpart implementation. But at the same time the

minimum performance was much lower than the minimum performance of KLCor-

rect. As a result, the KLCorrect implementation works better than the Bo2 algorithm

on average for the TREC45-CR document collection. This observation suggests that

KLCorrect as PRF model is more reliable than Bo2, but the latter has the potential to

perform significantly better than its counterpart if it is used with an optimal system

configuration.

The last question of interest is how the document collections affect the PRF models?

In order to address this it is necessary to compare the observations for the CLEF doc-

ument collections (see Figure 7.9, bottom) with the previous findings. On the CLEF

TEL-BL collections an interesting pattern can be seen for the probability density func-

tions. All instances share a similar tail, which suggest that some mis-configuration

may have appeared on this collection, or that a particular component fails systemati-

cally. Recalling the visual comparison of the ranking models on this experiment subset

and test collection (see Figure 7.8, top) reveals that the component in question is likely

to be the DPH ranking model.

The specific shape of the density functions on the CLEF TEL-BL collection indi-

cates some other systematic effect. This will be detailed when the other parameters

of the PRF component are graphically examined and interpreted. The illustration of

the results for the CLEF GIRT-4 test collection reveals that the observations on the

TREC45-CR collections are reversed here. This indicates that the Bo2 algorithm is
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Figure 7.10: Beanplot visualisation using different values for the number of PRF documents as factors
(n = 5, 490 observations per sub-figure). Each figure illustrates the data for one of the merged
topic sets created for evaluation.

more reliable than the KLCorrect implementation for sparse collections like library

records.

Figure 7.10 demonstrates the impact of the number of documents used for PRF on

retrieval effectiveness. The underlying data set is identical to those from Figures 7.7,

7.8, and 7.9. The visual presentation demonstrates that the standard configurations of

modern IR systems are fairly reasonable. Both the average and maximum retrieval
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Figure 7.11: Beanplot visualisation using different values for the number of PRF terms as factors, (n = 5, 490
observations per sub-figure). Each figure illustrates the data for one of the merged topic sets
created for evaluation.

effectiveness increase with the number of documents used for PRF up to a certain

threshold, after which using more documents decreases the performance more and

more. For the test collections used in this work this threshold varies from 3 to 9 docu-

ments, with the exception of the CLEF GIRT-4 collection. Here the threshold is about

20 documents, which differs significantly from the other test collections. As a final

comment on Figure 7.10, we focus once more on the probability density functions for

the instances of the variable. It can be observed that for all collections except CLEF
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TEL-BL, these functions look like stretched normal distributions. Moreover, the lower

end of the distribution gets longer for higher numbers of PRF documents, i.e. the min-

imum is lower for these values. This observation confirms, that the more documents

used the higher the risk that the PRF operation will fail. The examination of the shape

of the probability density function for the CLEF TEL-BL collection indicates that

other components affect the impact of the PRF component. Note, that the variation at

the low end stems from one particular ranking model, (DPH).

The impact of the last variable of the PRF component, the number of terms used for

PRF, is studied next. Figure 7.11 illustrates the distributions for the selected exper-

iment subset and presents the results in terms of the number of terms for PRF. The

visualisations demonstrate that the effect of the number of terms used for PRF is very

similar to the effect for the number of documents for PRF. This indicates that the two

variables could be correlated, but testing this hypothesis is beyond the scope of this

work. The illustrations show that, on average, the optimum number of terms to use for

PRF varies between 20 and 40 for all tested collections, except for CLEF TEL-BL.

For values larger than 50 the average performance of the PRF component decreases,

as it also does when larger numbers of documents are used for PRF.

Why the number of terms used for PRF shows an unexpected effect for the CLEF

TEL-BL collection is the next subject of this analysis. One can see that using a few

terms increases retrieval effectiveness in comparison to configurations that did not use

PRF. However, for larger values of the variable there is almost no change in retrieval

performance any more. Bearing in mind the expected effect of the number of terms

for PRF, this is an indication of a systematic failure. In order to verify this hypothesis,

the results were analysed by re-running a subset of the experiments. It turned out,

that the observed failure is indeed systematic. But in contrast to the expectation that

it might be due to an erroneous system and/or component configuration, the actual

problem is collection-specific: most documents in the CLEF TEL-BL collection are

very short (about five to ten terms after stemming). As a result, the actual threshold

for the number of terms to be selected for PRF is never met, due to the constraint on
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the number of documents for PRF. Finally, this results in the effect observed for the

CLEF TEL-BL test collection (see Figure 7.11, bottom left).

Finally, it should be noted once again that the results in this section were constrained

on rule-based stemming algorithms in order to allow a more meaningful exploratory

data analysis. However, one of the formulated research questions was concerned with

the effect of the different stemming algorithms. The actual question was whether n-

gram stemming algorithms need more terms for the PRF mechanism to work opti-

mally, than standard stemmers like Porter or Krovetz. In order to answer this question,

the results in Figure 7.11 need to be compared to the corresponding graphical pre-

sentations on the n-gram stemming experiment subset. These results are illustrated in

Appendix B.2.5. The beanplot illustrations demonstrate the expected effect. The aver-

age performance of the experiment subset increases with increasing numbers of terms

used for PRF on all test collections except CLEF TEL-BL, for which the collection

effect discussed in the previous paragraph is also visible. The graphical presentations

in Appendix B.2.5 also show that the gain in performance when using more terms for

PRF increases slower than on the experiment subset focusing on rule-based stemmers.

Moreover, the tested values for the number of terms used for PRF do not allow the con-

clusion that our selected maximum value of 100 terms results in the maximum gain

in retrieval effectiveness when using PRF. In fact, the results indicate that the average

optimal configuration of the variable is larger than 100 for the TREC45-CR ad-hoc

and the CLEF GIRT-4 test collections. For the TREC45-CR robust test collection the

graphical illustration shows that on average there is no gain in retrieval effectiveness

for more than 50 terms used for PRF.

7.2.2.4 Conclusion

In this section the different aspects of the IR system components and test collections

that were investigated by means of the exploratory analysis of large sets of experiment

configurations are briefly summarised. Here, the emphasis is put on the analysis of the
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key facets, the most important observations and their interpretation. Corresponding

implications are provided for cases where the results allow to draw robust conclusions.

• Stemming Algorithms:

The visual presentation of the results demonstrated that the n-gram stemming

techniques were clearly outperformed by the rule-based approaches on all se-

lected test collections. Even the configurations without stemming consistently

outperformed both tested n-gram implementations. This is a straightforward

observation. Another important observation is that Krovetz stemming outper-

formed Porter on full-text test collections like TREC45-CR, and that it achieved

similar retrieval performance (in comparison to Porter stemming) on sparse doc-

ument collections like CLEF TEL-BL or CLEF GIRT-4. The difference between

Krovetz and Porter on TREC45-CR can be attributed to the dictionary used in

Krovetz’ approach. The light stemming implementation UeaLite resulted in re-

trieval effectiveness similar to Porter on the TREC45-CR collection, but was

outperformed by the other two rule-based techniques on the library record col-

lections CLEF TEL-BL and CLEF GIRT-4. Due to the large difference between

the two key techniques for stemming (n-gram and rule-based) the experiment

sets were split in order to enable a clear interpretation of the other components.

• Ranking Models:

In this category the graphical illustrations indicated that some of the tested rank-

ing models, namely Dirichlet, Hiemstra*, and DFI0, failed systematically on all

test collections. Furthermore, the analysis of our results showed that the DPH

ranking model failed on the CLEF TEL-BL collection. The reasons for these

failures were not analysed in detail except for the Hiemstra* ranking model

(see Section 7.4.1). In general the visualisations and interpretation presented in

Section 7.2.2.2 demonstrated substantial variance in retrieval effectiveness for

the different ranking models. In contrast to the expectation that recent models

would consistently achieve better performance than traditional ranking mod-

els, no upward trend was found on the used test collections. Furthermore, the
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analysis showed that the implementations of the models in defined categories

result in fairly similar probability density function. This is an empirical veri-

fication of the theoretic relationships between the models within each specific

category. Another important implication is the fact that some ranking models

are more sensitive to other component configurations. As a result, they incorpo-

rate a higher risk to result in poor retrieval effectiveness.

• Pseudo-relevance Feedback Configurations:

The considered PRF component configuration had three major variables: the

number of documents, the number of terms, and the actual PRF model used for

the reformulation of an initial query. Starting with the latter variable, the analy-

sis indicated that the average and maximum optimal performance is collection-

dependent. For the full-text collection TREC45-CR the KLCorrect implementa-

tion worked better than the Bo2 algorithm on average. However, the PRF mod-

els are ranked vice versa in terms of maximum performance on this collection.

The number of documents used for PRF was the next parameter of interest. The

analysis of the experiment sets revealed that the optimal number of documents

varies between 3 and 9 (on average), depending on the test collection. Another

aspect of this analysis is the observation that more documents decrease the re-

trieval effectiveness. The last variable that was considered for evaluation, was

the number of terms used for PRF. The visualisation of the experiment result

sets indicated similar results as for the number of documents. The more terms

are being used the better the effectiveness of the PRF component will be. A

collection-specific threshold using more terms decreases the effectiveness. This

threshold varies between 20 and 40 on three of the four tested collections. A

further disadvantage of using more documents than this threshold is a higher

risk of poor retrieval performance.

• Test Collections:

The exploratory result analysis demonstrated that the retrieval effectiveness of

some of the system components are collection-specific. In particular the rela-

tive performance of the stemming techniques, the ranking models, and the PRF
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models, varied across the test collections used for evaluation. A very interest-

ing aspect was that some of the ranking models failed on all test collections

and the DPH failed on a single test collection. This indicates that the effective-

ness of ranking models may be dependent on the test collections. Furthermore,

the ranking models in the defined groups (see Section 7.2.2) achieved simi-

lar retrieval distributions on the evaluated experiment sets for each of the test

collections. This implies that using only one representative from each group

may be sufficient for the purpose of automated component-level evaluation of

other retrieval tasks. The investigation of the configurations of PRF components

confirmed the common knowledge that the optimum configuration for retrieval

effectiveness is hard to guess, because it is collection-specific. In general, using

more documents or terms results in higher risk of PRF failure.

On the one hand, the presented observations and their implications provide answers

to the general questions from Section 7.1.1, but on the other hand more specific ques-

tions remain open. This is due to the applied methodology. The exploratory data anal-

ysis was useful to identify problems in the general system configuration. This kind

of result interpretation also allowed to find specific component failures by means of

an empirical comparison of individual component implementations on several ad-hoc

test collections. As a result, the focus of this investigation was on average retrieval ef-

fectiveness. Another important question concerns the maximum retrieval effectiveness

and, more specifically, how the tested system components and their configurations can

be tuned to achieve optimal performance.

7.3 Optimal System Configurations

Finding the optimal system configurations in the pool of empirical experiments is a

straightforward task. Due to the large number of different configurations of the PRF

component (183), the entire experiment set is biased. However, finding the optimal

configuration for a PRF component is tricky, because of its variance in terms of re-
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trieval effectiveness across topics. In order to provide a plausible answer to the ques-

tion of the optimal overall system configuration per test collection, the PRF component

configurations are divided into two groups. First, the optimal experiment configura-

tions without PRF are selected for analysis. Second, for each of these experiment

configurations, the optimal PRF configuration is selected in order to compare it to the

corresponding baseline.

The exploratory data analysis in Section 7.2.2 demonstrated that the component con-

figurations need to be restricted due to systematic failures of particular component

implementations. As a result, the ranking component contributes only 10 out of 13

implementations to the study of optimal configurations. All stemming algorithms are

included in order to investigate their effect in relation to the ranking models. This re-

sults in two sets of 50 optimal configurations, which cover all key components of the

empirical evaluation set-up. In the following paragraphs, the results on the four test

collections are presented and discussed based on visual presentations and the retrieval

effectiveness values listed in two-dimensional matrices.

Figure 7.12 illustrates these two sets of optimal experiment configurations for the

TREC45-CR ad-hoc test collection, which consists of 100 topics. Each of the illustra-

tions for the test collections (see Figures 7.12, 7.13, 7.14, and 7.15), presents the set

of the configurations without PRF in the top and the configurations with optimal PRF

in the bottom. Starting with the configurations without PRF, it can be observed that

the Krovetz stemming implementation gives the best results for all presented ranking

models. The performance of Porter and UeaLite is very similar across the ranking

models. Some models prefer Porter over Uealite and others vice versa. The same is

the case for the 4-gram and 5-gram implementations. BB2 is the optimal ranking algo-

rithm on the TREC45-CR ad-hoc collection with PRF switched off. However, without

the actual MAP figures below the bar charts, it would be hard to determine this model

as the winner. In fact, IFB2, In expB2, and Hiemstra achieved similar effectiveness.
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TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.2006 0.2009 0.1986 0.1856 0.2091 0.2115 0.2147 0.1815 0.1860 0.1914

5gram 0.1979 0.1985 0.2142 0.1902 0.2130 0.2158 0.2152 0.1836 0.1896 0.1908

Porter 0.2292 0.2292 0.2234 0.2338 0.2375 0.2360 0.2378 0.2263 0.2315 0.2319

Krovetz 0.2371 0.2357 0.2312 0.2403 0.2446 0.2428 0.2441 0.2342 0.2391 0.2384

UeaLite 0.2289 0.2280 0.2189 0.2354 0.2359 0.2340 0.2352 0.2282 0.2325 0.2355
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TREC45-CR Ad-hoc: Overview on stemming & ranking configurations 
(without PRF)

TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.2406 0.2386 0.2304 0.2425 0.2400 0.2435 0.2489 0.2204 0.2405 0.2278

5gram 0.2393 0.2388 0.2585 0.2454 0.2389 0.2478 0.2491 0.2226 0.2413 0.2208

Porter 0.2813 0.2831 0.2835 0.2939 0.2760 0.2767 0.2770 0.2635 0.2857 0.2676

Krovetz 0.2839 0.2818 0.2872 0.3001 0.2769 0.2765 0.2762 0.2707 0.2869 0.2715

UeaLite 0.2812 0.2812 0.2765 0.2973 0.2678 0.2746 0.2732 0.2648 0.2847 0.2714
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TREC45-CR Ad-hoc: Overview on stemming & ranking configurations 
(with optimal PRF)

Figure 7.12: Illustration of the best system configurations for each of the components under investigation,
tested on the TREC45-CR ad-hoc collection. Baseline configurations without PRF (a) are com-
pared to the respective configurations by selecting the best PRF configuration for each of the 50
combinations for stemming and ranking (b). Note that the actual PRF configuration for each of
the bars (or each value in the matrix) might be different for this reason (see Appendix C.1 for
details).
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Next, the emphasis is put on the corresponding experiments with optimal PRF set-up

in order to investigate how the PRF configuration affects the effectiveness of the con-

figurations of the two other components. It can be seen that the absolute gain from PRF

varies between 0.04 and 0.06 in terms of MAP. Also, the gain of the Porter and UeaLite

stemming implementations is larger in comparison to the algorithm by Krovetz.

Some ranking models, like Hiemstra, DLH13, and Lucene, improve retrieval effec-

tiveness more than others, like BB2, IFB2, and In expB2. The variance across ranking

models is larger for configurations with PRF, than without. In contrast to that, the vari-

ance across different stemming configurations is smaller for the experiment configura-

tions with PRF, than without. Whether this effect is specific for this test collection will

be examined by the analyses of the optimal results on the remaining test collections.

The illustration in Figure 7.12 shows that the optimal configuration with PRF consists

of the Krovetz stemming algorithm and the Hiemstra ranking model implementation.

In this particular case, the PRF configuration is based on the Bo2 PRF model and

60 terms selected from the top-6 documents. The complete configurations of the 50

selected experiments are listed in Appendix C. After considering the optimal PRF

configurations on this test collection it was found that Bo2 works better than KLCor-

rect, and that the optimal number of documents varies between 3 and 12 depending on

the actual configuration of the other components. These observations suggest that the

optimal PRF configuration for a test collection depends on the actual configuration of

other system components.

How a different set of topics tested on the same document collection affects the ob-

servations regarding the optimal system component configuration is studied next. Fig-

ure 7.13 illustrates these optimal system configurations for the TREC45-CR robust

test collection. First the focus is on the different stemming algorithms. The bar chart

visualisation demonstrates that the Krovetz stemming implementation performs best

across all ranking model implementations.
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TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.2725 0.2736 0.2626 0.2400 0.2776 0.2864 0.2855 0.2496 0.2583 0.2676

5gram 0.2651 0.2661 0.2839 0.2418 0.2797 0.2823 0.2824 0.2427 0.2544 0.2638

Porter 0.3391 0.3365 0.3144 0.3270 0.3419 0.3353 0.3394 0.3370 0.3473 0.3432

Krovetz 0.3476 0.3459 0.3203 0.3344 0.3541 0.3490 0.3523 0.3436 0.3528 0.3521

UeaLite 0.3337 0.3314 0.3135 0.3227 0.3405 0.3335 0.3384 0.3336 0.3419 0.3422
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TREC45-CR Robust: Overview on stemming & ranking configurations 
(without PRF)

TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.3239 0.3217 0.3095 0.2802 0.3108 0.3299 0.3268 0.2851 0.3012 0.2885

5gram 0.2974 0.2970 0.3259 0.2870 0.3103 0.3151 0.3078 0.2748 0.2852 0.2847

Porter 0.3866 0.3822 0.3786 0.3888 0.3818 0.3819 0.3852 0.3742 0.3960 0.3851

Krovetz 0.3951 0.3939 0.3873 0.3992 0.3954 0.3901 0.3944 0.3836 0.4056 0.3924

UeaLite 0.3786 0.3801 0.3776 0.3906 0.3765 0.3677 0.3678 0.3711 0.3934 0.3880
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TREC45-CR Robust: Overview on stemming & ranking configurations 
(with optimal PRF)

Figure 7.13: Illustration of the best system configurations for each of the components under investigation,
tested on the TREC45-CR robust collection. Baseline configurations (a) without PRF are com-
pared to the respective configurations by selecting (b) the best PRF configuration for each of the
50 combinations for stemming and ranking. Note that the actual PRF configuration for each of the
bars (or each value in the matrix) might be different for this reason (see Appendix C.2 for details).
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The Porter and the UeaLite stemming implementations achieve similar retrieval effec-

tiveness. Furthermore, there is only little variance in the optimal performance of the

different ranking models. In contrast to the previous observation (see Figure 7.12) on

the experiment set with the optimal PRF configuration, the Krovetz stemming algo-

rithm remains at the top position here (see Figure 7.13, bottom). The 4-gram stemming

outperforms the 5-gram stemming in combination with most of the ranking models ex-

cept for Hiemstra and Lucene.

Considering the variance across the ranking models, one can see that it remains at

a low level for configurations with PRF. The variance across the different stemming

algorithms is similar for configurations with or without PRF.

The best overall retrieval effectiveness for the TREC45-CR robust test collection

was achieved by the Krovetz stemming algorithm, the DLH13 ranking model, and

the Bo2 PRF model using 40 terms from 6 documents for automatic query expan-

sion. The complete descriptions of the configurations of the optimal experiments for

the TREC45-CR robust test collection are presented in Appendix C.2. These results

demonstrate that the Lucene ranking model always works best in combination with

the KLCorrect PRF model whereas most of the other ranking models favour the Bo2

PRF model. In order to investigate whether these effects are due to differences in the

system components or caused by the composition of the test collections, the optimal

configurations on the CLEF TEL-BL and CLEF GIRT-4 have to be analysed.

Figure 7.14 presents the results for the described selection of optimal system con-

figurations per component on the CLEF TEL-BL test collection. The illustration of

the experiments without PRF (see Figure 7.14, top) reveals that the Porter stemming

algorithm works best for all ranking models except DPH.
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TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.2577 0.2535 0.3065 0.2618 0.2828 0.2858 0.2838 0.2403 0.2519 0.2484

5gram 0.2169 0.2133 0.2986 0.2198 0.2446 0.2465 0.2461 0.1994 0.2100 0.2090

Porter 0.3371 0.3367 0.3396 0.3431 0.3593 0.3591 0.3590 0.2965 0.3401 0.3414

Krovetz 0.3320 0.3314 0.3320 0.3352 0.3553 0.3550 0.3550 0.2971 0.3348 0.3387

UeaLite 0.3270 0.3270 0.3316 0.3328 0.3516 0.3514 0.3513 0.2866 0.3295 0.3325
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CLEF TEL-BL: Overview on stemming & ranking configurations
(without PRF)

TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.2827 0.2779 0.3291 0.2814 0.3056 0.3065 0.3064 0.2602 0.2759 0.2704

5gram 0.2404 0.2354 0.3099 0.2425 0.2593 0.2618 0.2606 0.2213 0.2380 0.2393

Porter 0.3811 0.3828 0.3745 0.3819 0.3911 0.3903 0.3904 0.3264 0.3752 0.3811

Krovetz 0.3747 0.3755 0.3652 0.3835 0.3926 0.3917 0.3934 0.3322 0.3757 0.3806

UeaLite 0.3697 0.3691 0.3696 0.3735 0.3813 0.3813 0.3815 0.3202 0.3644 0.3732
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CLEF TEL-BL: Overview on stemming & ranking configurations
(with optimal PRF)

Figure 7.14: Illustration of the best system configurations for each of the components under investigation,
tested on the CLEF TEL-BL collection. Baseline configurations (a) without PRF are compared
to (b) the respective configurations by selecting the best PRF configuration for each of the 50
combinations for stemming and ranking. Note that the actual PRF configuration for each of the
bars (or each value in the matrix) might be different for this reason (see Appendix C.3 for details).
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The Krovetz stemmer is the second best and performs slightly worse than the Porter

algorithm. It achieves slightly better MAP values than the UeaLite implementation in

combination with all ranking models except DPH. In general, all rule-based stemming

algorithms outperform the character n-gram implementations. The analysis of the re-

sults for the latter techniques shows that the 4-gram stemming clearly outperforms the

5-gram stemming approach on this test collection. There is only little variance in the

group of the rule-based stemming techniques in combination with each of the tested

ranking models. This observation is similar to the findings for the two test collections

on the TREC45-CR document corpus.

A thorough examination of the performance of the different ranking models shows

that the ranking models BB2, IFB2, and In expB2, achieve the best overall retrieval

effectiveness in combination with the rule-based stemming algorithms. In combina-

tion with the n-gram stemming techniques, the Lucene ranking implementation out-

performs the other ranking algorithms. In general, the variance across the different

ranking algorithms on each of the tested stemming implementations is about 0.02 in

absolute MAP values. This finding is in line with the observations on the other test

collections. An observation worth pointing out is the variance in performance of the

Lucene ranking approach across all tested stemming algorithms. The absolute differ-

ence between the best and the worst MAP values is only about 0.04. This indicates

that Lucene might be more robust than other ranking algorithms on structured test

collections like CLEF TEL-BL.

The retrieval effectiveness for the optimal PRF configurations on the CLEF TEl-BL

collection is presented in the bottom part of Figure 7.14. The most obvious observation

is the relative gain of the configurations including the Krovetz stemmer in relation to

the other rule-based stemming implementations. On all ranking models except the

ones from the traditional group, the Krovetz implementation performs better than the

Porter stemmer.
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TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.3130 0.3044 0.3529 0.2937 0.3289 0.3258 0.3300 0.2915 0.2993 0.3120

5gram 0.2813 0.2742 0.3542 0.2702 0.3027 0.2971 0.3023 0.2635 0.2688 0.2842

Porter 0.3839 0.3727 0.4031 0.3737 0.3991 0.3862 0.3945 0.3696 0.3782 0.3867

Krovetz 0.3773 0.3666 0.4003 0.3665 0.3899 0.3784 0.3859 0.3644 0.3742 0.3797

UeaLite 0.3575 0.3481 0.3805 0.3450 0.3692 0.3602 0.3653 0.3435 0.3509 0.3567
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CLEF GIRT-4: Overview on stemming & ranking configurations 
(without PRF)

TF-IDF BM25 Lucene Hiemstra BB2 IFB2 In_expB2 DPH DLH13 LGD
4gram 0.3538 0.3474 0.3994 0.3225 0.3717 0.3666 0.3714 0.3279 0.3366 0.3553

5gram 0.3209 0.3180 0.4024 0.2946 0.3427 0.3387 0.3431 0.2968 0.3011 0.3195

Porter 0.4449 0.4320 0.4663 0.4291 0.4535 0.4397 0.4505 0.4316 0.4419 0.4516

Krovetz 0.4333 0.4253 0.4672 0.4217 0.4420 0.4302 0.4377 0.4223 0.4323 0.4317

UeaLite 0.4202 0.4138 0.4421 0.4076 0.4277 0.4209 0.4249 0.4075 0.4174 0.4178
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CLEF GIRT-4: Overview on stemming & ranking configurations
(with optimal PRF)

Figure 7.15: Illustration of the best system configurations for each of the components under investigation,
tested on the CLEF GIRT-4 collection. Baseline configurations (a) without PRF are compared
to (b) the respective configurations by selecting the best PRF configuration for each of the 50
combinations for stemming and ranking. Note that the actual PRF configuration for each of the
bars (or each value in the matrix) might be different for this reason (see Appendix C.4 for details).
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This is surprising because of the lower performance on the corresponding baseline

without PRF. This indicates an interaction effect between the stemming and the PRF

components on this test collection. Other features, like the variance across ranking

models for each stemming algorithm, or the relationship between rule-based and n-

gram stemming approaches, remain the same as for the configurations without PRF.

The best configuration for this test collection incorporates the Krovetz stemmer, the

In expB2 ranking algorithm, and the Bo2 PRF model with 30 terms extracted from the

top-9 documents. The complete experiment configurations including the optimal PRF

parameter set-up for the CLEF TEL-BL test collection is presented in Appendix C.3.

The corresponding results for the last test collection CLEF GIRT-4 are illustrated in

Figure 7.15. The Porter stemming algorithm achieved the best results in combination

with each of the ranking models for the baseline configurations without PRF (see Fig-

ure 7.15, top). The results for the Krovetz stemmer are very close to the performance

of the Porter algorithm. From the rule-based stemming approaches UeaLite returned

the worst results in terms of MAP. For some ranking models, namely BM25, Hiem-

stra, DPH, and DLH13, the performance of the UeaLite stemmer is even worse than

the best result for the character n-gram stemming algorithms. Considering the empiri-

cal results on the other test collections, this is surprising. The variance of the different

implementations in the group of the rule-based stemmers in combination with each

ranking model is larger than on all other test collection. However, the absolute differ-

ences in terms of MAP are not higher than 0.03. From the tested n-gram stemming

techniques, the 4-gram implementation consistently outperforms the 5-gram imple-

mentation across the different ranking models, except for the ranking implementation

of Lucene. Here, the performance of both n-gram stemming component instances is

similar.

The performance of the different ranking models on the CLEF GIRT-4 collection is

our next topic. The ranking model of Lucene achieves the best retrieval effective-

ness in terms of MAP. Some of the models from the DFR group, namely BB2 and

In expB2, produced results of similar quality. The variance across the ranking models
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in combination with each of the stemmers is small, just as for the other test collections

considered for evaluation. Using the Porter stemmer as reference, the absolute MAP

values vary between 0.3696 and 0.4031. Both illustrations in Figure 7.15 demonstrate

the ability of the Lucene ranking implementation to achieve strong retrieval perfor-

mance regardless of the used stemmer. The results suggest that this is a unique feature

of the ranking implementation in Lucene on structured text collections, like CLEF

GIRT-4, or CLEF TEL-BL.

Comparing the results of the baseline experiments on the CLEF GIRT-4 collection to

the corresponding experiments with the optimal PRF configuration (see Figure 7.15,

bottom) provides only few additional findings. First of all, the best ranking model is

Lucene. What can also be seen is that the Krovetz stemmer performs slightly better

than the Porter stemmer in combination with Lucene as the ranking model. Here,

the reversal between the best stemming implementations when comparing baseline

experiments and configurations with optimal PRF, appears only in combination with

Lucene. The absolute difference in terms of MAP is very small. In general the gain

from using the optimal PRF configuration is about 0.05 in terms of absolute MAP.

This difference is larger than on the other test collections. It can be attributed to the

higher retrieval effectiveness of the baseline experiments. The optimal configuration

from the tested set of experiment configurations on the CLEF GIRT-4 test collection

includes the Krovetz stemmer, the Lucene ranking model, and the KLCorrect PRF

model, using 30 terms from the top-20 documents for automatic query expansion.

The complete list of all 50 experiment configurations with optimal PRF set-up (see

Figure 7.15, bottom) is presented in Appendix C.4.

7.4 Further Applications of the Experiment Set

It has already been pointed out in Section 6.3 that the clarity of IR evaluation can be

further enhanced. The experimental results generated for the evaluation in this work

enable a thorough analysis of system components and their interactions in terms of



7.4 Further Applications of the Experiment Set 299

retrieval effectiveness on standard test collections. In Section 7.2, an exploratory data

analysis and a selection strategy covering all component instances were applied to

study their effect on several test collections. Many other research questions can be

addressed with the created experiment set. For example, one could analyse which of

the components and configurations affect retrieval performance most. An analysis of

variance would be one approach to address this question. Further studies might inves-

tigate whether specific component instances are favoured by certain test collections.

Another detailed analysis may clarify whether the topics can be classified in different

groups that should be processed with different system configurations. The size of the

data set also enables the research community to conduct in-depth statistical analyses

across system components and test collections. Filling this list of potential topics for

research is beyond the scope of this work.

For that reason the focus is on two specific questions that have already been indicated

throughout the result analysis in Section 7.2. First, systematic failures of a particular

component implementation are analysed and then it is demonstrated how such prob-

lems can be identified and corrected. Based on a comparison across the selected test

collections, the functionality of the implemented correction is verified. Second, the op-

timal experiment sets from Section 7.3 are used to study the variance of the individual

topics from the test collections used for evaluation.

7.4.1 Detection and Analysis of Systematic Failures

The exploratory data analysis demonstrated that particular components fail systemat-

ically across test collections, or at least on particular test collections. This section is

intended to illustrate the course of action that is needed to detect, analyse and correct

such problems. For that purpose, the systematic failure of Hiemstra’s ranking model on

all four selected test collections is presented and discussed in detail. The effect of the

implementation of Hiemstra’s ranking model (Hiemstra*), in Terrier is documented

in Appendix B.1.2. It can be seen that the best system configuration incorporating
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Hiemstra* as the ranking model returns worse results in terms of retrieval effective-

ness than an average system configuration on most of the other ranking models. This

observation is consistent across the used test collections.

As a result the hypothesis that the implementation of the Hiemstra ranking model in

Terrier is incorrect has been formulated. Since Hiemstra’s ranking model is paramet-

ric, the root of the problem could also be due to a misconfiguration of the parameter

α. For this reason, the original publication on the model [83] was analysed in order to

study the issue in detail. Hiemstra suggested four ranking functions which are based

on Equation 3.22 from Section 3.2.4.4. In fact the first of the ranking functions pro-

posed in [83, p. 85] is equivalent to Equation 3.22.

A second ranking function replaced the background model estimation, which was

based on cqi , the number of times the query word qi that appeared in the collection C,

and |C|, the total number of words in the collection C, as presented in Definition 7.1.

It can be seen that cqi is substituted by fD,qi , the number of documents D, that con-

tain the query word qi (also known as document frequency), and that |C| was replaced

with |fD,t|, which denotes the sum over all document frequencies for each term t in

the collection C. Since |fD,t| is independent of the query, it can be approximated with

collection-specific figures like the total number of tokens in the collection.

log(P (Q|D)) =

n∑
i=1

log(λ · fqi,D|D| + (1− λ) · fD,qi|fD,t|
) (7.1)

The two remaining ranking functions proposed in [83] incorporate a document length

correction in the weight of the query word qi. In order to keep matters clear, the cor-

responding functions for Definition 3.22 and Definition 7.1 are not reproduced here.

According to [83, p. 85], the sum over all query words qi can be implemented by

multiplying the weight of qi by its number of occurrences in the query. The current

implementation in Terrier is based on Definition 7.2. It can be seen that it differs from
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the proposed ranking function in two points. Firstly, the implementation does not con-

tain the query term frequency factor that was suggested in [83, p. 85] to compensate

the re-computation of weights for terms that appear more than once. Secondly, the

background model is estimated by the fraction of cqi , the number of times the query

word qi appeared in the collection C, divided by |fD,t|, which is approximated by the

total number of tokens in the collection.

log(P (Q|D)) =

n∑
i=1

log(λ · fqi,D|D| + (1− λ) · cqi
|fD,t|

) (7.2)

Due to the bad results for the original implementation of Hiemstra’s ranking model in

Terrier, the ranking algorithm was re-implemented based on Definition 7.1. The two

implementations of the ranking model were compared using the experimental set-up

in order to verify the hypothesis of a systematic failure in the original implementation.

Table 7.6 lists the MAP values for the baseline experiment configurations without PRF

and using the Porter stemming algorithm. The original implementation of the ranking

model is denoted with Hiemstra*, and the corrected implementation as presented in

Equation 7.1 is designated as Hiemstra Corrected.

The comparison of the two implementations of the ranking model demonstrates that

our correction consistently outperforms the current implementation contained in Ter-

rier. The relative gain in MAP varies between 9.3 and 47.9 percent depending on the

test collection. It can be seen that the difference between the two ranking functions

is larger for structured document collections like CLEF TEL-BL and CLEF GIRT-4.

Based on this empirical evaluation, it is concluded that the initial hypothesis is valid.

As a result, the original implementation of the Hiemstra ranking model in Terrier has

to be considered as being incorrect. The suggested correction as shown in Equation 7.1
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Collection Hiemstra* Hiemstra Corrected
TREC45-CR

TREC7-AH 0.1791 0.2137 (+19.32%)
TREC8-AH 0.2190 0.2539 (+15.94%)
TREC2003-Robust 0.3269 0.3573 (+09.30%)
TREC2004-Robust 0.2580 0.2967 (+15.00%)

CLEF TEL-BL
CLEF2008-AH 0.2455 0.3545 (+44.40%)
CLEF2009-AH 0.2243 0.3318 (+47.93%)

CLEF GIRT-4
CLEF2003-DS 0.3198 0.4451 (+39.18%)
CLEF2004-DS 0.2802 0.3383 (+20.74%)
CLEF2005-DS 0.2932 0.3791 (+29.30%)
CLEF2006-DS 0.2467 0.3172 (+28.58%)

Table 7.6: Comparison of two implementations of Hiemstra’s ranking model.

was submitted for integration into the Terrier software core2. Currently, the status of

this integration is still pending.

7.4.2 Studying Interactions between Topics and Configurations

Topic sets used for empirical IR evaluation need to be designed carefully in order

to achieve maximum utility for the comparison of systems. Bearing in mind that the

present experimental design was evaluated against four different test collections with

similar features of the topic sets and two major types of document collections, the

resulting data can be used to study the variance of topic sets across identical and

known system configurations. Based on that reasoning the variance of the four selected

topic sets was analysed by using the optimal configurations that were presented in

Section 7.3.

This analysis provides implications for two major applications. Firstly, evaluating the

variance of a topic set on a fixed set of system configurations allows the assessment of

2 http://terrier.org/issues/browse/TR-183, retrieved on March 1, 2012

http://terrier.org/issues/browse/TR-183
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the overall usefulness of the test collection. Secondly, the results can be used to define

boundaries for topic-level optimisation. In theory, it is possible to select an optimal

system configuration for each topic. The generated experiment set provides an upper

limit for this approach. However, in order to put such a theory into practice, the topic

sets have to be considerably larger than those that have been used here.

Figure 7.16 illustrates the variance for each of the topics in the TREC45-CR ad-hoc

(see 7.16(a)), and robust (see 7.16(b)), test collections, which contain 100 query for-

mulations each. The range between the best and the worst experiment configuration

is presented by means of a red dashed line. Each topic set is organised in decreasing

order in terms of average retrieval effectiveness across the 50 selected system configu-

rations from Section 7.3. In order to visualise the lower and upper limit for the selected

set of system configurations, each of the figures includes two linear regression curves.

These regression models represent the worst case and the best case on the selected ex-

periment set, i.e. it shows the maximum (resp. minimum) retrieval effectiveness if the

best (resp. worst) system configuration is selected per topic. The linear curve above

the average line shows the fitted linear regression model for the optimal retrieval effec-

tiveness and the linear curve below the average illustrates the fitted linear regression

model for the worst case scenario.

For the TREC45-CR ad-hoc collection the average retrieval effectiveness across the

50 selected experiments in terms of MAP is 0.2630. Assuming an algorithm would

guess the system configuration for each topic, the worst case result on the experiment

set would be 0.1185 and the best case would be 0.3955. Note that the best system con-

figuration across all topics on this test collection resulted in a MAP values of 0.3001.

As a result the retrieval effectiveness of the best configuration across all topics can

be improved about 32 percent by selecting the best configuration for each topic. Fig-

ure 7.16(a) shows that the variance across the system configurations is low for topics

with an average performance greater than 0.4, between 0.25 and 0.16, and below 0.12.
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Figure 7.16: Variance in retrieval effectiveness across the selected optimal system configurations using PRF
(see Section 7.3) on (a) the TREC45-CR ad-hoc and (b) robust test collections. The topics are
sorted in decreasing order from left to right by using the average performance across the 50
system configurations as metric. Two linear regression curves illustrate the general trend for the
theoretical maximum (resp. minimum) in retrieval effectiveness resulting from selecting the best
(resp. worst) configuration per topic.
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In contrast to that, topics with an average performance between 0.4 and 0.25 as well as

between 0.16 and 0.12 display more variance across the system configuration under

examination. This observation indicates that further studies could focus on investi-

gating whether this effect is caused by specific features of the respective topics. Fig-

ure 7.16(a) also indicates that a considerable number of topics have a minimum perfor-

mance close to zero. This implies that some of the selected system configurations fail

on many topics even if an optimal system configuration achieved an average precision

between 0.3 and 0.5. Further studies are needed in order to investigate whether these

failures are due to specific components of the corresponding system configurations.

The average retrieval effectiveness across the same set of system configurations is

0.3526 for the TREC45-CR robust test collection. The best case scenario on the se-

lected system configurations would result in a MAP value of 0.5085, where as the

worst case scenario would return a MAP value of 0.1618. The optimal system config-

uration as reported in Appendix C.2 achieves a MAP of 0.4056. The potential gain in

retrieval effectiveness from selecting one of the system configurations for each topic

is about 25 percent. However, given the selected sample of system configurations, the

risk for a significant decrease in retrieval performance using the selection strategy is

very high. The relative loss could be up to 60 percent in comparison to the best system

configuration on this test collection.

Figure 7.16(b) shows different levels of variance in retrieval performance across the

topic set. But similar to the TREC45-CR ad-hoc test collection, the topics with high

and low average performance have a lower range in retrieval performance, across the

system configurations under examination, than topics with an average retrieval per-

formance. There are less topics with a MAP value close to zero in the worst case

scenario for this test collection. In general, the two linear regression models for the

minimum and maximum performance across the tested system configurations cover

a larger range than on the TREC45-CR ad-hoc test collection. This indicates that the

TREC45-CR robust test collection might be more effective in discriminating the 50

selected system configurations than the TREC45-CR ad-hoc collection.
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Figure 7.17(a) illustrates the topic variance for the selected set of system configura-

tions on the CLEF TEL-BL test collection. It can be seen that the variance is much

higher in general than on the other two test collections. Moreover, the number of top-

ics with a retrieval effectiveness close to zero in the worst case scenario is significantly

higher than on the other test collections. This indicates that particular system configu-

rations fail on many topics.

This assumption is supported by two observations. First, for most of these topics the

maximum performance of another system configuration is significantly higher than

the average across all system configurations. Second, our analyses in Sections 7.2.2.2

and 7.3 demonstrated that the DPH ranking model seems to fail systematically on this

collection. The average retrieval performance for the 50 selected system configura-

tion is 0.3326. The optimal system configuration for the entire topic set achieves a

MAP of 0.3934. The best case scenario results in a MAP value of 0.5107, whereas

the worst case scenario achieves a MAP value of 0.1422. As a result, the potential

for improvement in retrieval effectiveness is about 30 percent when the optimal sys-

tem configuration is selected for each topic. The potential loss in performance is 65

percent, which is the highest value across the four test collections.

Figure 7.17(b) presents the variance for each topic in the CLEF GIRT-4 test collection.

In general the range from minimum to maximum performance is lower than on the

other test collections. Topics with high average performance (AP > 0.5) across the

selected set of system configurations have smaller differences between minimum and

maximum than topics with lower average performance. This observation is in line

with the findings on the other test collections. The average performance across the

50 selected system configurations is 0.3963. This value could be increased to a MAP

value of 0.5481 by selecting the optimal configuration for each topic. This corresponds

to an increase of about 17 percent over the optimal system configuration with a MAP

value of 0.4672 (see Appendix C.4).
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Figure 7.17: Variance in retrieval effectiveness across the selected optimal system configurations using PRF
(see Section 7.3), on (a) the CLEF TEL-BL and (b) CLEF GIRT-4 test collections. The topics
are sorted in decreasing order from left to right by using the average performance across the 50
system configurations as metric. Two linear regression curves illustrate the general trend for the
theoretical maximum (resp. minimum) in retrieval effectiveness resulting from selecting the best
(resp. worst) configuration per topic.
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The potential loss for the topic-level configuration approach is about 54 percent, based

on the MAP value of 0.2139 for the worst case scenario. Note that the curves that were

fitted to the minimum and maximum performance using linear regression are almost

parallel for the CLEF GIRT-4 test collection. This indicates that the distribution of

topic difficulty measured in terms of the selected set of system configurations is almost

uniform. However, it remains unclear whether such a uniform distribution of topic

difficulty indicates higher utility of the test collection for the discrimination of system

configurations.

7.5 Integration of Additional Components: Data Fusion

The experimental results that have been reported and analysed so far, contained three

key components of IR systems. It was shown in Section 5.2 that the modular archi-

tecture of Xtrieval allows the integration of further system components. The empirical

results on different kinds of ad-hoc evaluation tasks demonstrated that the retrieval

performance of individual system configurations can be improved by the combination

of different instances of components in a data fusion approach (see Section5.4). In or-

der to answer the question of whether these observations are also valid for the optimal

results from Section 7.3, a pairwise data fusion approach was integrated in the general

experimental set-up.

This section illustrates the results of this integration into the automated component-

level evaluation process. Data fusion (or merging) describes the process of combining

multiple result sets from different systems, or system configurations, into a single list

of documents. This combination is typically achieved with standard operators that

incorporate two different types of information from the result lists: (1) the rank, i.e.

the position of documents in the list, or (2) the retrieval status value (RSV), the value

describing the confidence of the system that the document is relevant).
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System1 System2
Stemmer Ranking PRF (D, T) Stemmer Ranking PRF (D, T) MAP
Krovetz Lucene KLCorr(9, 20) UeaLite Hiemstra Bo2(6, 80) 0.3101
Porter Hiemstra Bo2(6, 100) Krovetz Lucene KLCorr(9, 20) 0.3090
Porter Lucene KLCorr(3, 15) UeaLite Hiemstra Bo2(6, 80) 0.3087
Porter Lucene KLCorr(3, 15) Krovetz Hiemstra Bo2(6, 60) 0.3084
Krovetz Lucene KLCorr(9, 20) Krovetz Hiemstra Bo2(6, 60) 0.3081
Porter BM25 Bo2(3, 25) Krovetz Hiemstra Bo2(6, 60) 0.3062
Porter DLH13 Bo2(6, 30) Krovetz Hiemstra Bo2(6, 60) 0.3056
Porter TF-IDF Bo2(3, 40) Krovetz Hiemstra Bo2(6, 60) 0.3052
Porter Hiemstra Bo2(6, 100) Krovetz DLH13 Bo2(6, 40) 0.3049
Porter Hiemstra Bo2(6, 100) Krovetz Hiemstra Bo2(6, 60) 0.3045

Table 7.7: Top-10 system configuration pairs that were combined with data fusion based on the Z-Score oper-
ator and tested on the TREC45 ad-hoc collection.

Most of these operators use the RSV in order to generate the merged result list. Such

data fusion operators have been proposed [65] in line with early TREC evaluation

experiments. Other empirical studies [102, 161] on test collections from the CLEF

campaign demonstrated that the Z-Score operator is preferable in most situations. The

Z-Score standardisation operator is based on the mean and the standard deviation of

a population, i.e. the RSV’s of documents in the result lists. In these experiments, a

more complex variant of the Z-Score operator taken from [161, p. 240] was applied. It

is illustrated in Definition 7.3, where αi represents a weight that can be used to favour

specific result lists, RSVk is the retrieval status value for document k in result list i,

and µi ρi, and mini, represent the mean, the standard deviation, and the minimum

RSV, for result list i.

n∑
k=1

RSVk − µi
ρi

+
µi −mini

ρi
(7.3)

Two test collections and their corresponding optimal experiment sets were selected

from Section 7.3 for the data fusion experiments. Since each of the experiment sets

consists of only 50 different system configurations it was decided to test all possible
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pairs of combinations. This resulted in a total number of 1,225 data fusion experiments

for each of the test collections: TREC45 ad-hoc and CLEF GIRT-4.

Table 7.7 lists the results for the 10 best data fusion results on the TREC45 ad-hoc

test collection. The best system configuration returned a MAP value of 0.3001 on this

collection (see Appendix C.1). It can be seen that the data fusion approach slightly

improved retrieval effectiveness. However, only 41 out of 1,225 pairs of combinations

achieved an improvement over the best individual system configuration. Table 7.7

demonstrates that the best pairs of configurations have some interesting features. The

optimal system configuration for the TREC45 ad-hoc collection (see Section 7.3 and

Appendix C.1) is part of 7 out of 10 pairs of system configurations. This observation

indicates that the optimal configuration should be part of a pairwise data fusion ap-

proach. In 9 out of 10 data fusion experiments the Krovetz stemmer was part of at least

one of the configurations. The Hiemstra ranking model appeared in one of the two sys-

tem configurations for each of the top-performing data fusion experiments. Only 3 out

of 5 stemmers, and 6 out of 10 ranking models, appear in any of the system configura-

tions presented in Table 7.7. Bearing in mind the significant variance across the topics

on this particular selection of experiments (see Figure 7.16 in Section 7.4.2), these

observations are surprising. From the presented experimental results it was concluded

that pairwise data fusion on the TREC45 ad-hoc collection using the Z-Score operator

has only little impact on average retrieval effectiveness. In order to test whether this is

due to the specific features of the TREC45 ad-hoc test collection, the same experiment

was conducted on the CLEF GIRT-4 test collection.

Table 7.8 lists the results for the data fusion experiment on the CLEF GIRT-4 test

collection. On this collection the best system configuration achieved a MAP value of

0.4672, as can be seen in Appendix C.4. This optimal configuration incorporates the

Krovetz stemmer, the ranking model of Lucene, and a PRF configuration based on the

KLCorrect PRF model using 30 terms from the top-20 documents. From the 1,225

data fusion experiments only 29 slightly improved retrieval effectiveness in compar-

ison to the best system configuration. It can be seen that this system configuration
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System1 System2
Stemmer Ranking PRF (D, T) Stemmer Ranking PRF (D, T) MAP
Porter BB2 Bo2(20, 100) Krovetz Lucene KLCorr(20, 30) 0.4816
Porter In expB2 Bo2(20, 100) Krovetz Lucene KLCorr(20, 30) 0.4793
Porter Lucene KLCorr(20, 25) Krovetz Lucene KLCorr(20, 30) 0.4786
Porter TF-IDF Bo2(20, 100) Krovetz Lucene KLCorr(20, 30) 0.4772
Porter DLH13 Bo2(15, 70) Krovetz Lucene KLCorr(20, 30) 0.4763
Porter IFB2 Bo2(20, 100) Krovetz Lucene KLCorr(20, 30) 0.4759
Porter Lucene KLCorr(20, 25) Krovetz Lucene KLCorr(20, 30) 0.4751
Porter BM25 Bo2(20, 100) Porter BB2 Bo2(20, 100) 0.4748
Porter LGD KLCorr(15, 60) Krovetz Lucene KLCorr(20, 30) 0.4746
Porter Lucene KLCorr(20, 25) Porter In expB2 Bo2(20, 100) 0.4739

Table 7.8: Top-10 system configuration pairs that were combined with data fusion based on the Z-Score oper-
ator and tested on the CLEF GIRT-4 collection.

is part of 8 out of the top-10 data fusion experiments. The ranking model of Lucene

appears in at least one of the two system configurations in 9 out of the 10 experi-

ments listed in Table 7.8. From the 10 implementations of ranking models that were

studied in our component-level evaluation experiments, 8 appear in the top-10 data

fusion experiments. The results also show that only 2 out of the 5 implementations of

stemming algorithms are part of any of the system configurations. In 8 out of the top-

10 data fusion experiments the system configuration pairs contain the Porter and the

Krovetz stemmer. These observations indicate that the retrieval effectiveness for the

best system configuration can be improved marginally by: (1), combining the optimal

system configuration with configurations that are based on other ranking models and

a different stemmer and (2), using the Z-Score data fusion operator.

The comparison of the results for the data fusion approach on the test collections

TREC45 ad-hoc and CLEF GIRT-4 demonstrated that the retrieval effectiveness can

be slightly improved. The data fusion experiments were also repeated on the two re-

maining test collections used for our large-scale evaluation on component-level. The

results were in line with those discussed in this section.
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7.6 Archiving Experiment Configurations and Results

It has been pointed out in Sections 6.2.5 and 6.3 that the preservation of experiment

configurations and results is necessary in order to ensure comparability in long-term

evaluations. Such long-term evaluations are needed in order to track the progress of IR

approaches and the evaluation methodology. Throughout this chapter, different subsets

of the empirical data resulting from the large-scale experiment have been presented

and different tools have been used to analyse these results. The discussed questions

cover only a fraction of the full potential of the data set. For this reason the complete

data set will be made publicly available for further studies. In addition to that, a selec-

tion of the optimal configurations on the original evaluation tasks will be published in

the open platform EvaluatIR.org3 for future reference.

Figure 7.18 illustrates a web-based tool [112], [196] that allows the archiving and ex-

ploration of component-level evaluation results in a flexible way. Other state-of-the-art

platforms for the archival storage of evaluation results are maintained by the organisers

of major campaigns like TREC4, CLEF5, or NTCIR6. All of these platforms provide

access to most of the generated test collections and allow the downloading of the sub-

mitted experiments. They also supply rich information on the results of the archived

evaluation experiments. But none of the systems allows access to or comparison of

the actual system configurations. The reason is obvious: the system configurations

are described in corresponding research articles that were published together with the

evaluation results. This is a major drawback which is addressed by the web-based tool

illustrated in Figure 7.18.

The key features of the developed tool for the component-level comparison of IR eval-

uation results are dicussed next. A more comfortable way to explore the key features

3 http://www.evaluatir.org/, retrieved on March 1, 2012
4 http://trec.nist.gov/results/, retrieved on March 1, 2012
5 http://direct.dei.unipd.it/, retrieved on March 1, 2012
6 http://research.nii.ac.jp/ntcir/data/data-en.html, retrieved on March 1, 2012

http://www.evaluatir.org/
http://trec.nist.gov/results/
http://direct.dei.unipd.it/
http://research.nii.ac.jp/ntcir/data/data-en.html
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Figure 7.18: Screen shot of the exploratory data archive for the presented empirical investigation of IR system
component configurations evaluated on standard ad-hoc test collections.

of the tool is to watch explanatory tutorial videos7. The evaluation tool provides a

flexible interface which allows the definition of the components that are part of a spe-

cific evaluation task. The data import interface allows the importing of CSV files, i.e.

the component-level experiments have to be described in this plain text format. After

the import of the data, the layout for the visual presentation can be defined. It is pos-

sible to re-arrange the columns of the input file and to assign new labels to each of

the columns. The sequence of the columns determines the visual presentation of the

parallel coordinates for the comparison of the system components.

Using this flexible model for the import of empirical evaluation results ensures that

the system components under investigation are free from any restriction, i.e. the focus

of each evaluation task can be configured individually by the definition of the com-
7 http://sachsmedia.tv/compeval/#tutorials, retrieved on March 1, 2012

http://sachsmedia.tv/compeval/#tutorials
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ponents under investigation. For example, a straightforward way to study the effect of

the three key IR system components covered in this work would be to arrange these

components as columns and show the different implementations as factors of the com-

ponent. The tool also allows the definition of the data type for each of the columns.

Alphanumerical factors are stored in a String data type, where as numerical factors,

such as the number of documents for PRF, are stored as integers. Since some numer-

ical factors and typical evaluation metrics are defined as floating point numbers, the

system also supports this data type and allows the definition of the precision that is

used for the visual presentation. Note that each data format has to be defined only

once, directly after uploading the first CSV file. All subsequent files will be added to

the previously defined data source if they have the same format.

The automated component-level evaluation of the key IR system components pre-

sented in this work resulted in 14,274 experiment configurations. Comparing all of

these configurations at once is not only hard to realise technically, it also provides

little additional insights beyond the findings that were presented in Sections 7.2.2 and

7.3. For that reason the web-based tool provides a mechanism to select specific sub-

sets of experiments in order to restrict the total number of experiments that will be

visualised. Once these experiments are presented in the form of parallel coordinates a

researcher can start to explore the data set. Each of the coordinates can be restricted

to an arbitrary range of values or factors. This allows the study of the effect of the

components individually or in a desired combination.

The interactive nature of the visual presentation of the data facilitates ideas for the

formulation of hypotheses about the data sets at hand. In order to test any formu-

lated hypothesis, the selected data set has to be analysed using statistical tools that

are appropriate for the corresponding hypothesis. Providing these statistical analyses

is beyond the scope of the visualisation tool. Nevertheless, it supplies an interface to

support this subsequent step. Once a selected part of the data set is visualised, this

selection of experiments can be exported for further scientific analysis. Other IR re-

searchers might be interested in the complete data set that was discussed in this work.
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In order to simplify access to the entire collection of experiments, it will be provided

independently from the visualisation tool.

7.7 Summary and Implications

Individual conclusions on the results of the presented and discussed experiments were

provided in the corresponding subsections of this chapter. The purpose of this final

section is to provide insights into the general impact of the presented experiments. The

approach to address this is twofold. First, the scope of the experiments conducted in

this work is emphasised in order to assess the results that were achieved. The basis of

this evaluation is the comparison of the results obtained here with the results that were

submitted to the original evaluation tasks at the TREC and CLEF campaigns. So it is

possible to critically assess both the applied methodology and the results in terms of a

standard retrieval effectiveness metric. Second, the most important conclusions of the

results of the evaluation experiments in Sections 7.2.2, 7.3, and 7.4.2 are condensed

and their implications on IR evaluation in general are outlined.

Before the results are presented and assessed with respect to the original evaluation

tasks, the general scope of the experimental set-up needs to be summarised. The focus

of our empirical investigation was on three major components of modern IR systems:

stemming algorithms, ranking functions, and automatic pseudo-relevance feedback.

Most of the tested algorithms are implemented in open-source frameworks that are

accessible with Xtrieval. It was argued that the choice of the included algorithms re-

flects the state-of-the-art for ad-hoc search tasks. However, there are more complex

implementations for each of the components under investigation in order to handle

the more specific search tasks that have emerged recently. The developed approach

to component-level evaluation is generic, i.e. it can be adapted for all possible search

tasks once the major system components are determined for a particular problem un-

der investigation. For this reason the present experiments do not cover all the latest and

most sophisticated techniques to address problems like selective automatic relevance
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feedback. Instead, the emphasis was put on ad-hoc retrieval in order to demonstrate

the potential of the combination of the most widely-used IR frameworks for automated

IR evaluation at the component-level in general. All the presented experiments have

been conducted in a closed laboratory environment, i.e. in order to improve retrieval

effectiveness, no external sources from the web or elsewhere were used.

The results of the discussed experiments on the 10 original test collections from TREC

and CLEF that formed the basis of the empirical study in this chapter are reported and

analysed next. The following discussion is organised in three separate sections which

focus on three different document collections. Each of these sections is based on four

different types of experimental results which are abbreviated as follows:

• @TREC / @CLEF represents the retrieval effectiveness for the best experiment

submitted to the corresponding evaluation task. In brackets we report the total

number of submissions to each of the tasks in order to illustrate the scale of the

competition for the best experiment.

• @System is the result for the optimal system configuration from Section 7.3 on

the corresponding test collection. Note that each reported figure represents the

best values out of 10,980 different IR system configurations.

• @Data-Fusion corresponds to the best result from the data fusion experiments

in Section 7.5. Based on the pairwise combination of the 50 optimal experi-

ments from Section 7.3, each of the values describes the outcome of the best

merging experiment from a total number of 1,225.

• @Topic-Select indicates the upper limit of retrieval effectiveness, given the op-

timal set of system configurations from Section 7.3 for each test collection and

assuming that an algorithm is able to identify the optimal system configuration

for each of the topics individually.
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Collection Best Experiment MAP Collection Best Experiment MAP
TREC7-AH @TREC (1/71)8 0.2961 TREC2003-Robust @TREC (1/69)8 0.3922

@System 0.3016 @System 0.4232
@Data-Fusion 0.3080 @Data-Fusion 0.4400
@Topic-Select 0.3975 @Topic-Select 0.5233

TREC8-AH @TREC (1/107)8 0.3207 TREC2004-Robust @TREC (1/58)8 0.4227
@System 0.3029 @System 0.3943
@Data-Fusion 0.3158 @Data-Fusion 0.4071
@Topic-Select 0.3935 @Topic-Select 0.4936

Table 7.9: Comparison of the best experiments from TREC7-AH, TREC8-AH, TREC2003-Robust, and
TREC2004-Robust with the best system configurations discussed in this work.

Table 7.9 summarises the corresponding figures for the four different topic sets of the

TREC45-CR document collection. For each of these test collections the best of the

first three figures is marked in bold. To separate the numbers for @Topic-Select from

the rest of the values, these numbers are shown in italics. The respective effective-

ness values for the best experiments from TREC were extracted from the web-based

platform EvaluatIR.org [8].

In Table 7.9 it can be seen that from the three experimental set-ups generated in this

work (@System, @Data-Fusion, @Topic-Select), the data fusion experiments resulted

in the highest retrieval effectiveness. For the TREC7-AH and the TREC2003-Robust

test collections the best individual system configurations from Section 7.3 (denoted

@System) outperformed the best experiment submitted to the corresponding evalua-

tion task at TREC.

The best individual experiment configurations submitted to the remaining test collec-

tions, TREC8-AH and TREC2004-Robust, achieved better retrieval effectiveness in

terms of MAP than any of our experiments. However, the absolute difference between

these submissions and our best experiments (@Data-Fusion) was only about 0.01 in

terms of MAP.

8 The presented number of submissions includes all experiments submitted to TREC that used the title and
description parts of the topics and that were classified as automatic experiments. The listed MAP value be-
longs to the best experiment of this subset of submissions. Note that the absolute best experiment submitted
to the corresponding TREC task may not be included in this subset.
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Collection Best Experiment MAP Collection Best Experiment MAP
CLEF2008-AH @CLEF (1/38)9 0.3754 CLEF2009-AH @CLEF (1/46)9 0.4084

@System 0.4055 @System 0.3872
@Data-Fusion 0.4124 @Data-Fusion 0.3976
@Topic-Select 0.5238 @Topic-Select 0.4976

Table 7.10: Comparison of the best experiments from CLEF2008-AH & CLEF2009-AH with the best system
configurations discussed in this work.

Given the repeated set-up for the evaluation task TREC8-AH and TREC2004-Robust,

these observations indicate that participating research groups tuned their systems

based on the outcome of the results from the previous year. The smaller difference be-

tween those results and the corresponding upper limits (@Topic-Select) also supports

this interpretation. The relative differences between the top configurations generated

in this work are either slightly better, or slightly worse, than the best experiments sub-

mitted to the corresponding TREC evaluation tasks. These empirical results suggest

that the selection of IR system configurations reflects the state-of-the-art in ad-hoc re-

trieval evaluation on full-text document collections like TREC45-CR. A final point is

the difference in the MAP values for the best system configuration @System and each

corresponding upper limit @Topic-Select. The absolute difference between these two

values shows very little variance across the test sets and lies between 0.09 and 0.1.

Table 7.10 shows the overall results on the CLEF TEL-BL test collection. The MAP

values for the best experiments submitted to these two evaluation tasks were extracted

from [53, p. 15] for CLEF2008-AH and from [54, p. 17] for CLEF2009-AH. It can be

seen that the best data fusion experiment returned the best results of all experiments

conducted within this work. On the CLEF2008-AH test collection this experiment out-

performed every experiment submitted to the original evaluation task. The best overall

submission to the CLEF2009-AH task was part of the original evaluation task. Neither

the best individual experiment, nor the best data fusion experiment, was able to beat

this baseline. However, there was only little absolute difference between these results

9 The presented number of submissions includes all experiments submitted to the respective CLEF tasks. The
total number of submissions to the tasks were extracted from [53, p. 16] and [54, p. 18].
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Collection Best Experiment MAP Collection Best Experiment MAP
CLEF2003-DS @CLEF (1/6)10 0.5192 CLEF2004-DS @CLEF (1/17)10 0.4053

@System 0.5239 @System 0.4243
@Data-Fusion 0.5413 @Data-Fusion 0.4526
@Topic-Select 0.6098 @Topic-Select 0.5122

CLEF2005-DS @CLEF (1/15)10 0.5065 CLEF2006-DS @CLEF (1/8)10 0.4303
@System 0.4995 @System 0.4347
@Data-Fusion 0.5098 @Data-Fusion 0.4400
@Topic-Select 0.5777 @Topic-Select 0.4913

Table 7.11: Comparison of the best experiments from CLEF2003-DS to CLEF2006-DS with the best system
configurations discussed in this work.

and the best experiment from CLEF2009-AH. Again, better retrieval effectiveness of

the experiments submitted to the original evaluation was found on the repeated eval-

uation task. It can also be seen from Table 7.10 that the absolute differences between

the @System and the @Topic-Select values are about 0.11 for both of the topic sets.

The corresponding results on the CLEF GIRT-4 document collection are listed in Ta-

ble 7.11. The MAP values for the best experiments submitted to these two evaluation

tasks were extracted from the run statistics provided at the CLEF website10 . The pre-

sented results show that the best data fusion experiment generated within this work

returned the best results in terms of MAP on each of the test sets. It can be seen

that the best system configuration from the experiments in Section 7.3 outperformed

the best experiments submitted of all original evaluation tasks except CLEF2005-DS.

The absolute difference in terms of MAP is small for all possible comparisons of the

presented results on each of the test collections, except for the @Topic-Select values

which are only reported to illustrate the upper limit of retrieval effectiveness.

Table 7.11 also demonstrates that the absolute number of experiments that were sub-

mitted to each task is much smaller than for the other test collections presented in

Table 7.9 and Table 7.10. Nevertheless, the differences in terms of retrieval effective-

ness between these experiments and the optimal system configurations are on the same

10 The presented number of submissions includes all experiments submitted to the respective CLEF tasks. The
total number of submissions to the tasks were extracted from [23, p. 1ff] for CLEF2003-DS, from [24, p.
1ff] for CLEF2004-DS, from [50, p. 9ff] for CLEF2005-DS, and from [51, p. 9] for CLEF2006-DS.



320 7 Automated Component-Level Evaluation with Xtrieval

level as the differences on the other test collections. Since the system configurations

created in this work were identical for all test collections, this observation indicates

that, despite the little participation in the evaluation tasks on the CLEF GIRT-4 collec-

tion, the best experiments achieved strong results in terms of retrieval effectiveness.

The absolute differences between the values for the @System and the @Topic-Select

retrieval effectiveness vary between 0.06 and 0.09. These slightly smaller values indi-

cate that the improvement of retrieval effectiveness is harder when the corresponding

baseline experiments achieved better results.

In order to conclude the comparison of retrieval results of the original evaluation tasks

with the experimental results generated in this work, the most important findings are

summarised. On 7 out of 10 ad-hoc test collections the optimal configurations out-

performed the best experiments of the respective evaluation task. The gap in terms

of absolute difference in MAP to the best experiments on the remaining test collec-

tions was small, with a maximum difference of 0.0156. These results demonstrate that

the IR system components included in this large-scale empirical analysis can serve as

robust baselines for IR evaluation.

The essential findings of the exploratory data analysis of the large-scale experimental

evaluation have been presented in Section 7.2.2.4. Here, the focus is on two important

aspects. First, the exploratory data analysis allowed the visual identification of inter-

action effects between different components of an IR system and their configurations.

For example, it has been observed that different types of probability distributions for

some of the tested ranking models. A particular model which produced a bimodal dis-

tribution is likely to be dependent on another factor, i.e. the configuration of one of the

other system components. Corresponding examples were discussed in Section 7.2.2.

Second, the visual comparison of software implementations of ranking models empir-

ically showed their theoretical relationship. To the knowledge of the present author,

this is the first empirical evidence that closely related ranking models like TF-IDF

and BM25 return almost identical probability distributions for a series of experiments

conducted on different ad-hoc test collections.
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The most essential observations on the optimal experiment configurations are the dis-

cussed next. Here, the focus was on the question of which individual system com-

ponent configurations perform best on the different test collections. The experiments

demonstrated that, given the optimal PRF set-up for a particular system configura-

tion, there was only little variance across different ranking models. The same obser-

vation was made for each of the two tested groups of stemmers (n-gram and rule-

based). Given a PRF set-up that works reasonably well, the differences between the

implementations of system components are smoothed. However, the experiments also

demonstrated that an optimal PRF configuration is hard to find, because it depends on

the topics in the test collection rather than on other factors like IR system components.

The presented analyses of the created set of experiment configuration are only a first

step in gaining a better understanding of the causal connections between different

types of IR system components and retrieval effectiveness. More statistical analyses

of the data are needed to exploit the full potential of the created experiment set. In

order to stimulate further research in this direction, a web-based tool for archiving

component-level evaluation experiments was developed (see Section 7.6). The pre-

sented tool complements existing platforms, like those maintained by the organisers

of the major evaluation campaigns, or EvaluatIR.org. It provides straightforward in-

terfaces for the creation of other component-level evaluation tasks, for the manage-

ment of the resulting data, and allows visual analyses of the stored experiments. It is

suggested that this tool or a similar application be implemented at major evaluation

campaigns. It will further increase the transparency in IR evaluation and so support

the advancement of the field in general.





8 Conclusion

This dissertation has proposed a generic approach to component-level evaluation of

IR systems. The implemented strategy is based on the integration of different IR

toolkits into the extensible retrieval and evaluation framework Xtrieval. A discussion

of the results for various evaluation tasks has illustrated the potential benefits of a

general framework like Xtrieval. Its meta-level design for accessing and combining

different state-of-the-art retrieval toolkits allows fine-grained empirical studies at the

component-level. By incorporating the findings of previous evaluation tasks that ad-

dressed particular components of IR systems, Xtrieval has been deployed to run a large

series of grid experiments in order to provide a better understanding of the orchestra-

tion of components in modern IR systems.

In order to illustrate the problems with the current IR evaluation methodology, key

elements of empirical evaluation, test collections and metrics for the assessment of the

quality of search results have been discussed in detail. The theories and assumptions

behind relevant IR system components have been carefully selected by an in-depth

review of the state-of-the-art in IR theory.

A large-scale empirical experiment was designed and discussed to study the effect

of state-of-the-art implementations of three key IR system components on retrieval

performance. In contrast to typical empirical IR experiments which assessed the effect

of one particular system component implementation with respect to some baseline

model, this thesis covered a total of 13,176 unique IR system configurations. Each of
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these configurations was tested on four different test collections which contained 100

test queries each. The proposed test set-up allowed the determination of appropriate

baselines for particular instances of system components which can be used for testing

and verifying future components on the deployed test collections.

The experimental results have been analysed by means of an exploratory data analy-

sis. This method allowed the identification of systematic failures of particular system

components as well as the detailed comparison of the effects of, and interactions be-

tween, the selected IR system components. The obtained results have been compared

to the optimal results for the corresponding evaluation tasks from TREC and CLEF. In

order to stimulate further studies with respect to the impact of IR system components

on retrieval effectiveness, the generated experimental data will be made publicly avail-

able to other researchers. This approach is intended to assist interested researchers in

formulating hypotheses on particular effects that can be observed.

8.1 Results

Since this thesis has been devoted to IR evaluation at the component-level, the con-

tinuous development of the Xtrieval framework is one of the most important results.

The foundation of all presented empirical results that are concerned with the com-

parison or combination of ranking models, stemming algorithms, or pseudo-relevance

feedback mechanisms, is the integration of Lemur, Lucene, and Terrier into Xtrieval.

Using Xtrieval for a variety of different kinds of evaluation tasks, like ad-hoc, domain-

specific, and library record retrieval, image retrieval on photographs, question an-

swering on speech transcripts, and video subject classification, helped to advance the

framework.

The impact of the strategy of integrating different IR toolkits into a common frame-

work has been substantiated with the presentation of strong results in empirical eval-

uation experiments. These include the different evaluation tasks above, as well as the
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results on the component-level experiment set that has been created in the course of

this work. In fact it has been shown that the combination of different core retrieval

models and the integration of different stemming algorithms is a good approach to

improve the retrieval performance over systems that only used one particular imple-

mentation for ranking and stemming.

An analysis of recent approaches to component-level evaluation has demonstrated

both conceptual problems and organisational issues. This thesis illustrated that the

conceptual problems can be addressed with the integration strategy employed in

Xtrieval. As a result it allowed the creation of an empirical experiment that covered

several IR system components simultaneously. To the knowledge of the present au-

thor, this work is the first that analysed the effect of the three IR system components:

text pre-processing, matching and ranking models, and pseudo-relevance feedback, on

different types of document collections. Typical IR evaluation campaigns restrict the

number of experiments that can be submitted for evaluation. With the the possibility

of re-using existing test collections a total amount of 13,176 unique system configu-

rations could be evaluated.

The results of this large experiment set have been studied by means of an exploratory

data analysis. This approach allowed the visual interpretation of probability density

functions for each of the tested implementations of the selected IR system compo-

nents. As a result it is possible to identify which of the instances of a component are

affected by other components. This is an extension of previous approaches to the anal-

ysis of experimental results which are typically focused on summary measures, like

minimum, mean, and maximum retrieval performance. The presented results demon-

strated that rule-based stemming performs significantly better than character n-gram

stemming in general. In particular the Krovetz stemmer outperformed the other imple-

mentations on full-text collections like TREC45-CR. But the experiments also showed

that the Porter stemmer works well across different types of document collections. The

comparison of the tested ranking models revealed that recent ranking models do not

outperform implementations which are based on classic models like the Vector Space
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model or the initial Probabilistic ranking model. The visual comparison of the prob-

ability distributions across the ranking models confirmed the relationships between

implementations that are based on similar theoretical assumptions. In particular the

tested instances that are based on the DFR model resulted in very similar result dis-

tributions. This empirical verification of the theoretical relatedness of ranking models

is a unique feature of the employed method for the data analysis. Pseudo-relevance

feedback was the third component of the study. The results suggest that the number

of documents depend on the composition of the test topics. The optimal number of

terms appears to be dependent on features of the document collection and the rank-

ing model. Further statistical analysis of the generated data set are needed in order to

verify this hypothesis. The analysis of the experiments has demonstrated that none of

the component instances performed consistently better than other instances on the test

collections.

The proposed method for the detailed comparison of IR system components has led

to an unexpected observations. The analysis showed that some instances of ranking

models consistently underperformed on a single or even on all test collections in com-

parison to other models or to the average of all models. This indication of systematic

failure has been detailed further for one of the relevant ranking models. A detailed

study of the foundations of the Hiemstra language model suggested that the corre-

sponding implementation in Terrier was incorrect. This hypothesis was confirmed by

implementing a corrected version of the ranking model and the empirical compari-

son with the previous implementation. The results showed a substantial improvement

across all test collections used in the empirical experiment.

In order to preserve the results of the component-level evaluation experiment in par-

ticular, and to encourage further studies on the data set in general, a web-based tool

has been developed. It is intended to illustrate that current impediments of component-

level IR evaluation can be addressed with collaborative platforms. The tool allows the

visual comparison of manually selected configurations and it features a flexible inter-

face for the import and export of component-level evaluation results. It can be used
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to define new component-level evaluation tasks by importing the general set-up of the

task in a simple format that can be adjusted to the specific components. This flexible

approach ensures that a wide range of possible tasks can be managed within the tool.

Similar platforms are already being maintained by the organisers of major evaluation

campaigns, but none of them facilitates the combination of experiment configurations

and corresponding results in this way.

8.2 Future Directions

In conclusion the impact and relevance of the discussed approaches and the obtained

results need to be pointed out. This thesis provided two distinct contributions. First, the

further development of the Xtrieval framework. And second, the creation of a large-

scale empirical data set for the comparison of state-of-the-art implementations of IR

system components.

The current version of the Xtrieval framework supports the access to widely-used IR

toolkits. This integration is also particularly appealing from the perspective of teach-

ing IR. The abstract architecture of Xtrieval enables the rapid design of IR evaluation

experiments, but it is not limited to this use. It can also be used to implement a proto-

type search engine for any particular search task and collection. In combination with

the accessibility of different ranking models that represent instances of general re-

trieval models, Xtrieval can be used for teaching IR courses in the academic field. In

2011, three groups of undergraduate students used the framework to design their own

IR experiments in order to address specific search tasks. The students submitted re-

sults and working notes to the Rich Speech Retrieval Task [165] and the Placing Task

[100] of the Multimedia Benchmark Workshop1 2011. This suggests that the Xtrieval

framework can be integrated into teaching classes on IR methods.

1 http://www.multimediaeval.org/mediaeval2011/, retrieved on March 1, 2012

http://www.multimediaeval.org/mediaeval2011/
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Figure 8.1: Prototype search application using Xtrieval as back end, redrawn from [99, p. 35].

Xtrieval is also being used for other applications, for instance, to provide access to

audiovisual content, which is a major goal of the sachsMedia2 research initiative. A

prototype search application (see Figure 8.1) has been implemented to illustrate the

potential support for editorial work in media companies. This application retrieves

publicly available clips of a popular German news broadcast (Tagesschau) and triggers

processes for automatic content extraction. The resulting meta-data is indexed using

Xtrieval and so the clips are ready to be found.

The created component-level experiment set can be used for further studies concerning

the interactions between IR system configurations. The following list outlines a few

of these possibilities:

• Component Variance

The analyses of the results have shown that the variance across IR system com-

ponents in terms of retrieval performance is substantial. This suggests that an

analysis of variance on the data set may allow the observation of which of the

components affect retrieval performance more than others. Several levels of

detail are possible. For instance, the emphasis could be put on entire test col-

lections in order to draw general conclusions. Another possibility is to focus on

individual topics which would address the question of whether specific groups

2 http://sachsmedia.tv/, retrieved on March 1, 2012

http://sachsmedia.tv/
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of topics cause the variance across the instances of particular system compo-

nents.

• Component Interactions

Studying interaction effects between the IR system components and their tested

instances is another subject for further studies. The obtained results indicated

that particular component instances seem to favour particular configurations

of the remaining components. For instance, ranking models like the Hiemstra

language model achieved the best results when using many terms for PRF. In

contrast to that, the Lucene ranking function worked well regardless of the used

stemming approach on sparse library collections. A detailed analysis of these

interactions between the tested components could result in general recommen-

dations for the optimal configuration of an IR system when using a particular

instances as point of origin.

• Test Collection Variance

The present empirical evaluation was conducted on four ad-hoc test collections.

But these test collections are based on three different document collections, i.e.

two test collections have one document collection in common. This constella-

tion allows to address the question of whether the topic sets or the document

collection affects the ranking of IR systems more. Given the identical system

configurations used here, a comparison of the rankings of these configurations

on the different test collections will provide insights into this question.

• Topic-Level Optimisation

In this thesis, the upper limit for optimal retrieval performance was defined

as the (manual) selection of the optimal system configuration for each topic

in a test collection. It was suggested that this optimisation at the topic-level

could be addressed with machine learning techniques. This would require the

identification of interactions between individual or particular groups of topics

that share specific features that can be observed before or during the retrieval
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process. Whether such groups of topics and the corresponding common features

exist is the first question to be addressed.

• Test Set Assessment

A specific feature of the generated data set is the investigation of identical sys-

tem configurations on different test collections. This allows the reversal of one

of the initial questions for the experiment: instead of finding the best system

configuration for each of the test collections, one could also try to answer the

question which test collection (or which part of each test collection) discrimi-

nates a selection of state-of-the-art IR system configurations best?

The generated experimental data set will be made publicly available in order to enable

other researchers to address these and possibly further questions.

A final comment on how the results concerning component-level evaluation might be

further developed. Currently, the Xtrieval framework allows the rapid configuration

and comparison of key IR system components. One particular direction for future re-

search is to establish automatic component-level baselines in IR evaluation. This could

be realised by providing the Xtrieval framework as a web service or a web-based appli-

cation. For every new evaluation task at TREC or other major evaluation campaigns,

the framework could be used to generate baseline results before the actual tasks is

opened. As a result, it would be possible to assess the submitted experiments with

respect to these baselines. Based on the assumption that these baselines are improved

by the submissions to the evaluation task, the new approaches have to be integrated

into Xtrieval in order to track the overall progress over time.
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[59] EIBL, M., AND KÜRSTEN, J. Putting it All Together: The Xtrieval Framework

at Grid@CLEF 2009. In Proceedings of the 10th cross-language evaluation

forum conference on Multilingual information access evaluation: text retrieval

experiments (Berlin, Heidelberg, 2009), Springer-Verlag, pp. 570–577.

[60] FAUTSCH, C., DOLAMIC, L., ABDOU, S., AND SAVOY, J. Domain-Specific

IR for German, English and Russian Languages. In CLEF 2007 Working Notes

(2007).

[61] FERRO, N., AND HARMAN, D. Dealing with MultiLingual Information Ac-

cess: Grid Experiments at TrebleCLEF. In Post-proceedings of the Forth Italian

Research Conference on Digital Library Systems (2008), DELOS: an Associa-

tion for Digital Libraries, pp. 29–32.



Bibliography 339

[62] FERRO, N., AND HARMAN, D. CLEF 2009: Grid@CLEF pilot track overview.

In Proceedings of the 10th cross-language evaluation forum conference on Mul-

tilingual information access evaluation: text retrieval experiments (Berlin, Hei-

delberg, 2009), Springer-Verlag, pp. 552–565.

[63] FINKEL, J. R., GRENAGER, T., AND MANNING, C. Incorporating Non-local

Information into Information Extraction Systems by Gibbs Sampling. In Pro-

ceedings of the 43rd Annual Meeting on Association for Computational Lin-

guistics (Stroudsburg, PA, USA, 2005), Association for Computational Lin-

guistics, pp. 363–370.

[64] FISHER, R. A. The Design of Experiments. Oliver & Boyd, 1935.

[65] FOX, E. A., AND SHAW, J. A. Combination of Multiple Searches. In Proceed-

ings of the 2nd Text Retrieval Conference (TREC-2), NIST Special Publication

500-215 (1994), pp. 243–252.

[66] GRIFFITHS, A., LUCKHURST, H. C., AND WILLETT, P. Using Interdocument

Similarity Information in Document Retrieval Systems. In Readings in infor-

mation retrieval. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1997, pp. 365–373.

[67] GRUBINGER, M., CLOUGH, P., HANBURY, A., AND MÜLLER, H. Overview
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[104] KÜRSTEN, J., AND EIBL, M. Monolingual Retrieval Experiments with a

Domain-Specific Document Corpus at the Chemnitz University of Technology.

In Evaluation of Multilingual and Multi-modal Information Retrieval (Berlin,

Heidelberg, 2007), Springer-Verlag, pp. 178–185.
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[196] WILHELM, T., KÜRSTEN, J., AND EIBL, M. A Tool for Comparative IR

Evaluation on Component Level. In Proceedings of the 34th international ACM

SIGIR conference on Research and development in Information Retrieval (New

York, NY, USA, 2011), ACM, pp. 1291–1292.

[197] YILMAZ, E., AND ASLAM, J. A. Estimating Average Precision with Incom-

plete and Imperfect Judgments. In Proceedings of the 15th ACM international

conference on Information and knowledge management (New York, NY, USA,

2006), ACM, pp. 102–111.



356 Bibliography

[198] ZHAI, C., AND LAFFERTY, J. A Study of Smoothing Methods for Language

Models Applied to Information Retrieval. ACM Transactions on Information

Systems 22, 2 (2004), pp. 179–214.

[199] ZOBEL, J. How Reliable Are the Results of Large-scale Information Retrieval

Experiments? In Proceedings of the 21st annual international ACM SIGIR

conference on Research and development in information retrieval (New York,

NY, USA, 1998), ACM, pp. 307–314.



A Topic Set Statistics

A.1 Query Length

0

5

10

15

20

25

30

35

40

Q
ue

ry
 L

en
gt

h 
(T

+D
)

Individual Topics (n=50)

TREC7-AH

TREC8-AH

TREC2003-Robust

TREC2004-Robust

(a) TREC45-CR

0

5

10

15

20

25

30

35

40

Q
ue

ry
 L

en
gt

h 
(T

+D
)

Individual Topics (n=50)

CLEF2008-AH

CLEF2009-AH

(b) CLEF TEL-BL

0

5

10

15

20

25

30

Q
ue

ry
 L

en
gt

h 
(T

+D
)

Individual Topics (n=25)

CLEF2003-DS

CLEF2004-DS

CLEF2005-DS

CLEF2006-DS

(c) CLEF GIRT-4
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Figure B.1: Beanplot [92] visualisation of the distributions of MAP values for the entire experiment set
(n=14,274) using stemming implementations as factors. Each figure illustrates the data for one
of the merged topic sets created for evaluation.
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Figure B.2: Beanplot [92] visualisation of the distributions of MAP values for the entire experiment set
(n=14,274) using ranking models as factors. Each figure illustrates the data for one of the merged
topic sets created for evaluation.
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Figure B.3: Beanplot [92] visualisation of the distributions of MAP values for the entire experiment set
(n=14,274) using feedback models as factors. Each figure illustrates the data for one of the merged
topic sets created for evaluation.
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B.1.4 Comparison of PRF Documents
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Figure B.4: Beanplot [92] visualisation of the distributions of MAP values for the entire experiment set
(n=14,274) using the number of PRF documents as factors. Each figure illustrates the data for
one of the merged topic sets created for evaluation.
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B.1.5 Comparison of PRF Terms
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Figure B.5: Beanplot [92] visualisation of the distributions of MAP values for the entire experiment set
(n=14,274) using the number of PRF terms as factors. Each figure illustrates the data for one
of the merged topic sets created for evaluation.
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B.2 N-gram Stemming Subset

B.2.1 Comparison of Ranking Models (TREC collections)
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Figure B.6: Beanplot [92] visualisation of the distributions of MAP values for the n-gram experiment subset
(n=3,660) using ranking models as factors.
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B.2.2 Comparison of Ranking Models (CLEF collections)

0.20

0.25

0.30

T
F

−I
D

F

B
M

25

Lu
ce

ne

H
ie

m
st

ra

B
B

2

IF
B

2

In
_e

xp
B

2

D
P

H

D
LH

13

LG
D

Ranking Model vs. MAP, tested on CLEF TEL−BL,
 using topics CLEF2008−AH and CLEF2009−AH

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.25

0.30

0.35

0.40

T
F

−I
D

F

B
M

25

Lu
ce

ne

H
ie

m
st

ra

B
B

2

IF
B

2

In
_e

xp
B

2

D
P

H

D
LH

13

LG
D

Ranking Model vs. MAP, tested on CLEF GIRT−4,
 using topics CLEF2003−DS through CLEF2006−DS

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

Figure B.7: Beanplot [92] visualisation of the distributions of MAP values for the n-gram experiment subset
(n=3,660) using ranking models as factors.
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B.2.3 Comparison of PRF Models
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Figure B.8: Beanplot [92] visualisation of the distributions of MAP values for the n-gram experiment subset
(n=3,660) using PRF models as factors.
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B.2.4 Comparison of PRF Documents

0.16

0.18

0.20

0.22

0.24

0.26

0 3 6 9 12 15 20 30

# PRF Documents vs. MAP, tested on TREC45−CR,
 using topics TREC7−AH and TREC8−AH

# PRF Documents

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0 3 6 9 12 15 20 30

# PRF Documents vs. MAP, tested on TREC45−CR,
 using topics TREC2003−Robust and TREC2004−Robust

# PRF Documents

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.20

0.25

0.30

0.35

0 3 6 9 12 15 20 30

# PRF Documents vs. MAP, tested on CLEF TEL−BL,
 using topics CLEF2008−AH and CLEF2009−AH

# PRF Documents

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

0.25

0.30

0.35

0.40

0 3 6 9 12 15 20 30

# PRF Documents vs. MAP, tested on CLEF GIRT−4,
 using topics CLEF2003−DS through CLEF2006−DS

# PRF Documents

M
ea

n 
A

ve
ra

ge
 P

re
ci

so
n

Figure B.9: Beanplot [92] visualisation of the distributions of MAP values for the n-gram experiment subset
(n=3,660) using the number of PRF documents as factors.



368 Appendix B Exploratory Result Analysis

B.2.5 Comparison of PRF Terms
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Figure B.10: Beanplot [92] visualisation of the distributions of MAP values for the n-gram experiment subset
(n=3,660) using the number of PRF terms as factors.



C Optimal System Configurations per Test

Collection

C.1 TREC45-CR Ad-hoc

Stemmer Ranking PRF (d, t) MAP Stemmer Ranking PRF (d, t) MAP
4gram TF-IDF Bo2(12, 100) 0.2406 5gram TF-IDF Bo2(6, 100) 0.2393

BM25 Bo2(9, 90) 0.2386 BM25 Bo2(6, 100) 0.2388
Lucene KLCorr(3, 40) 0.2304 Lucene KLCorr(12, 60) 0.2585
Hiemstra Bo2(6, 100) 0.2425 Hiemstra Bo2(15, 100) 0.2454
BB2 Bo2(3, 15) 0.2400 BB2 Bo2(3, 50) 0.2389
IFB2 Bo2(9, 60) 0.2435 IFB2 Bo2(6, 80) 0.2478
In expB2 Bo2(3, 10) 0.2489 In expB2 Bo2(6, 100) 0.2491
DPH Bo2(3, 100) 0.2204 DPH Bo2(6, 100) 0.2226
DLH13 Bo2(6, 100) 0.2405 DLH13 Bo2(6, 100) 0.2413
LGD Bo2(3, 60) 0.2278 LGD Bo2(3, 40) 0.2208

Porter TF-IDF Bo2(3, 40) 0.2813 Krovetz TF-IDF Bo2(6, 25) 0.2839
BM25 Bo2(3, 25) 0.2831 BM25 Bo2(6, 30) 0.2818
Lucene KLCorr(3, 15) 0.2835 Lucene KLCorr(9, 20) 0.2872
Hiemstra Bo2(6, 100) 0.2939 Hiemstra Bo2(6, 60) 0.3001
BB2 Bo2(3, 25) 0.2760 BB2 Bo2(3, 30) 0.2769
IFB2 Bo2(3, 25) 0.2767 IFB2 Bo2(6, 50) 0.2765
In expB2 Bo2(3, 25) 0.2770 In expB2 Bo2(3, 30) 0.2762
DPH Bo2(3, 25) 0.2635 DPH Bo2(3, 30) 0.2707
DLH13 Bo2(6, 30) 0.2857 DLH13 Bo2(6, 40) 0.2869
LGD KLCorr(6, 100) 0.2676 LGD KLCorr(6, 100) 0.2715

UeaLite TF-IDF Bo2(9, 40) 0.2812
BM25 Bo2(12, 30) 0.2812
Lucene KLCorr(15, 25) 0.2765
Hiemstra Bo2(6, 80) 0.2973
BB2 KLCorr(12, 100) 0.2678
IFB2 Bo2(9, 40) 0.2746
In expB2 Bo2(9, 40) 0.2732
DPH Bo2(3, 25) 0.2648
DLH13 Bo2(6, 30) 0.2847
LGD KLCorr(6, 100) 0.2714

Table C.1: Complete system configurations for each system component resulting in optimal retrieval perfor-
mance on the TREC45-CR Ad-hoc test collection.
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C.2 TREC45-CR Robust

Stemmer Ranking PRF (d, t) MAP Stemmer Ranking PRF (d, t) MAP
4gram TF-IDF Bo2(3, 100) 0.3239 5gram TF-IDF Bo2(3, 100) 0.2974

BM25 Bo2(3, 100) 0.3217 BM25 Bo2(6, 90) 0.2970
Lucene KLCorr(3, 50) 0.3095 Lucene KLCorr(3, 50) 0.3259
Hiemstra Bo2(3, 100) 0.2802 Hiemstra Bo2(6, 100) 0.2870
BB2 Bo2(3, 40) 0.3108 BB2 Bo2(3, 5) 0.3103
IFB2 Bo2(3, 100) 0.3299 IFB2 Bo2(3, 5) 0.3151
In expB2 Bo2(3, 100) 0.3268 In expB2 Bo2(3, 5) 0.3078
DPH Bo2(3, 100) 0.2851 DPH Bo2(3, 100) 0.2748
DLH13 Bo2(3, 100) 0.3012 DLH13 Bo2(3, 70) 0.2852
LGD Bo2(3, 40) 0.2885 LGD Bo2(3, 40) 0.2847

Porter TF-IDF Bo2(6, 25) 0.3866 Krovetz TF-IDF Bo2(3, 40) 0.3951
BM25 Bo2(6, 20) 0.3822 BM25 Bo2(6, 15) 0.3939
Lucene KLCorr(6, 20) 0.3786 Lucene KLCorr(9, 40) 0.3873
Hiemstra Bo2(12, 100) 0.3888 Hiemstra Bo2(12, 100) 0.3992
BB2 Bo2(3, 30) 0.3818 BB2 Bo2(3, 30) 0.3954
IFB2 Bo2(3, 50) 0.3819 IFB2 Bo2(3, 40) 0.3901
In expB2 Bo2(3, 40) 0.3852 In expB2 Bo2(3, 40) 0.3944
DPH KLCorr(3, 100) 0.3742 DPH Bo2(3, 40) 0.3836
DLH13 Bo2(6, 20) 0.3960 DLH13 Bo2(6, 40) 0.4056
LGD KLCorr(3, 90) 0.3851 LGD KLCorr(3, 60) 0.3924

UeaLite TF-IDF Bo2(6, 20) 0.3786
BM25 Bo2(6, 20) 0.3801
Lucene KLCorr(6, 40) 0.3776
Hiemstra Bo2(15, 70) 0.3906
BB2 KLCorr(3, 50) 0.3765
IFB2 Bo2(3, 40) 0.3677
In expB2 Bo2(3, 90) 0.3678
DPH Bo2(3, 30) 0.3711
DLH13 Bo2(6, 40) 0.3934
LGD KLCorr(3, 100) 0.3880

Table C.2: Complete system configurations for each system component resulting in optimal retrieval perfor-
mance on the TREC45-CR Robust test collection.



C.3 CLEF TEL-BL 371

C.3 CLEF TEL-BL

Stemmer Ranking PRF (d, t) MAP Stemmer Ranking PRF (d, t) MAP
4gram TF-IDF Bo2(6, 20) 0.2827 5gram TF-IDF Bo2(3, 20) 0.2404

BM25 Bo2(6, 20) 0.2779 BM25 Bo2(3, 25) 0.2354
Lucene KLCorr(3, 25) 0.3291 Lucene KLCorr(3, 30) 0.3099
Hiemstra Bo2(12, 100) 0.2814 Hiemstra KLCorr(6, 20) 0.2425
BB2 Bo2(3, 10) 0.3056 BB2 KLCorr(9, 50) 0.2593
IFB2 Bo2(3, 10) 0.3065 IFB2 KLCorr(9, 90) 0.2618
In expB2 Bo2(3, 10) 0.3064 In expB2 KLCorr(3, 15) 0.2606
DPH KLCorr(3, 20) 0.2602 DPH KLCorr(3, 25) 0.2213
DLH13 Bo2(3, 10) 0.2759 DLH13 KLCorr(3, 25) 0.2380
LGD KLCorr(3, 25) 0.2704 LGD KLCorr(3, 5) 0.2393

Porter TF-IDF Bo2(6, 90) 0.3811 Krovetz TF-IDF Bo2(6, 10) 0.3747
BM25 Bo2(6, 25) 0.3828 BM25 Bo2(6, 20) 0.3755
Lucene KLCorr(9, 25) 0.3745 Lucene KLCorr(9, 10) 0.3652
Hiemstra Bo2(6, 5) 0.3819 Hiemstra Bo2(9, 25) 0.3835
BB2 Bo2(6, 5) 0.3911 BB2 Bo2(9, 25) 0.3926
IFB2 Bo2(6, 5) 0.3903 IFB2 Bo2(9, 30) 0.3917
In expB2 Bo2(6, 5) 0.3904 In expB2 Bo2(9, 30) 0.3934
DPH KLCorr(6, 70) 0.3264 DPH KLCorr(9, 60) 0.3322
DLH13 KLCorr(9, 100) 0.3752 DLH13 Bo2(6, 5) 0.3757
LGD KLCorr(6, 25) 0.3811 LGD KLCorr(20, 15) 0.3806

UeaLite TF-IDF Bo2(3, 15) 0.3697
BM25 Bo2(3, 15) 0.3691
Lucene KLCorr(9, 30) 0.3696
Hiemstra Bo2(6, 15) 0.3735
BB2 Bo2(3, 5) 0.3813
IFB2 Bo2(6, 25) 0.3813
In expB2 Bo2(6, 25) 0.3815
DPH KLCorr(3, 50) 0.3202
DLH13 Bo2(3, 15) 0.3644
LGD KLCorr(3, 20) 0.3732

Table C.3: Complete system configurations for each system component resulting in optimal retrieval perfor-
mance on the CLEF TEL-BL test collection.
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C.4 CLEF GIRT-4

Stemmer Ranking PRF (d, t) MAP Stemmer Ranking PRF (d, t) MAP
4gram TF-IDF Bo2(6, 90) 0.3538 5gram TF-IDF Bo2(9, 100) 0.3209

BM25 Bo2(9, 100) 0.3474 BM25 Bo2(6, 100) 0.3180
Lucene KLCorr(20, 50) 0.3994 Lucene KLCorr(15, 80) 0.4024
Hiemstra Bo2(6, 100) 0.3225 Hiemstra Bo2(6, 100) 0.2946
BB2 Bo2(6, 100) 0.3717 BB2 Bo2(6, 100) 0.3427
IFB2 Bo2(20, 100) 0.3666 IFB2 Bo2(6, 100) 0.3387
In expB2 Bo2(15, 100) 0.3714 In expB2 Bo2(6, 100) 0.3431
DPH Bo2(12, 100) 0.3279 DPH Bo2(12, 90) 0.2968
DLH13 Bo2(15, 100) 0.3366 DLH13 Bo2(6, 100) 0.3011
LGD Bo2(9, 90) 0.3553 LGD Bo2(9, 100) 0.3195

Porter TF-IDF Bo2(20, 100) 0.4449 Krovetz TF-IDF Bo2(20, 90) 0.4333
BM25 Bo2(20, 100) 0.4320 BM25 Bo2(20, 100) 0.4253
Lucene KLCorr(20, 25) 0.4663 Lucene KLCorr(20, 30) 0.4672
Hiemstra Bo2(20, 100) 0.4291 Hiemstra Bo2(30, 100) 0.4217
BB2 Bo2(20, 100) 0.4535 BB2 Bo2(20, 100) 0.4420
IFB2 Bo2(20, 100) 0.4397 IFB2 Bo2(20, 100) 0.4302
In expB2 Bo2(20, 100) 0.4505 In expB2 Bo2(20, 100) 0.4377
DPH Bo2(9, 50) 0.4316 DPH Bo2(15, 50) 0.4223
DLH13 Bo2(15, 70) 0.4419 DLH13 Bo2(20, 100) 0.4323
LGD Bo2(15, 60) 0.4516 LGD Bo2(12, 50) 0.4317

UeaLite TF-IDF Bo2(20, 100) 0.4202
BM25 Bo2(20, 100) 0.4138
Lucene KLCorr(20, 50) 0.4421
Hiemstra Bo2(20, 100) 0.4076
BB2 Bo2(15, 90) 0.4277
IFB2 Bo2(20, 100) 0.4209
In expB2 Bo2(20, 100) 0.4249
DPH Bo2(15, 40) 0.4075
DLH13 Bo2(20, 80) 0.4174
LGD Bo2(20, 60) 0.4178

Table C.4: Complete system configurations for each system component resulting in optimal retrieval perfor-
mance on the CLEF GIRT-4 test collection.
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A Generic Approach to Component-Level Evaluation in Information Retrieval

Research in information retrieval deals with the theories and models that constitute the foundations for 
any kind of service that provides access or pointers to particular elements of a collection of documents 
in response to a submitted information need. The specifi c fi eld of information retrieval evaluation is 
concerned with the critical assessment of the quality of search systems. Empirical evaluation based on 
the Cranfi eld paradigm using a specifi c collection of test queries in combination with relevance assess-
ments in a laboratory environment is the classic approach to compare the impact of retrieval systems 
and their underlying models on retrieval effectiveness.

In the past two decades international campaigns, like the Text Retrieval Conference, have led to huge 
advances in the design of experimental information retrieval evaluations. But in general the focus 
of this system-driven paradigm remained on the comparison of system results, i.e. retrieval systems 
are treated as black boxes. This approach to the evaluation of retrieval system has been criticised for 
treating systems as black boxes. Recent works on this subject have proposed the study of the system 
confi gurations and their individual components. This thesis proposes a generic approach to the evalu-
ation of retrieval systems at the component-level.

The focus of the thesis at hand is on the key components that are needed to address typical ad-hoc 
search tasks, like fi nding books on a particular topic in a large set of library records. A central approach 
in this work is the further development of the Xtrieval framework by the integration of widely-used IR 
toolkits in order to eliminate the limitations of individual tools. Strong empirical results at international 
campaigns that provided various types of evaluation tasks confi rm both the validity of this approach 
and the fl exibility of the Xtrieval framework.

Modern information retrieval systems contain various components that are important for solving parti-
cular subtasks of the retrieval process. This thesis illustrates the detailed analysis of important system 
components needed to address ad-hoc retrieval tasks. Here, the design and implementation of the 
Xtrieval framework offers a variety of approaches for fl exible system confi gurations. Xtrieval has been 
designed as an open system and allows the integration of further components and tools as well as 
addressing search tasks other than ad-hoc retrieval. This approach ensures that it is possible to con-
duct automated component-level evaluation of retrieval approaches.

Both the scale and impact of these possibilities for the evaluation of retrieval systems are demonstrated 
by the design of an empirical experiment that covers more than 13,000 individual system confi gura-
tions. This experimental set-up is tested on four test collections for ad-hoc search. The results of this 
experiment are manifold. For instance, particular implementations of ranking models fail systemati-
cally on all tested collections. The exploratory analysis of the ranking models empirically confi rms the 
relationships between different implementations of models that share theoretical foundations. The 
obtained results also suggest that the impact on retrieval effectiveness of most instances of IR system 
components depends on the test collections that are being used for evaluation. Due to the scale of the 
designed component-level evaluation experiment, not all possible interactions of the system compo-
nent under examination could be analysed in this work. For this reason the resulting data set will be 
made publicly available to the entire research community.
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