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Abstract
We present a mathematical optimization model for the determination of an energy-
minimal process chain, given a metro map describing the single process chain variants
and a description of the processes themselves. This approach is applied to a small
process chain example that includes a forging process. For some of the processes
several parameter settings can be used. That leads to process variants in the opti-
mization model that differ in the required input temperatures. After the calculation of
the optimal process chain for the considered example we extend our mathematical
model in such a way that uncertainties concerning the values of the energy demands
can be taken into account.
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1 Introduction
Due to the scarcity of resources and increasing environmental awareness there is
a need for energy-sensitive solution approaches in production. One way to reduce
the energy demand in production is to improve or substitute single processes. In this
paper we present a mathematical optimization model that, in addition to this, allows to
determine an energy-minimal process chain on basis of a given metro map [1] and a
description of the process variants via the input-throughput-output model [2]. The final
process chain satisfies given requirements concerning dependencies between the

R. Neugebauer, U. Götze, W.-G. Drossel (eds.), Energy-related and economic balancing and evaluation of
technical systems – insights of the Cluster of Excellence eniPROD, Proceedings of the 1st and 2nd workshop of
the cross-sectional group 1 “Energy related technologic and economic evaluation” of the Cluster of Excellence
eniPROD, Wissenschaftliche Scripten, Auerbach, 2013.
URN: http:// nbn-resolving.de/ urn:nbn:de:bsz:ch1-qucosa-105232



312 Fischer/Helmberg/Reghenspurgher

single processes. These dependencies between the processes may lead to solutions
that take advantage of combining certain processes, to the effect that some of these
processes are not optimal on there own while their combination is. This could, e. g.,
be the case for two processes with the second process using the exhaust heat of the
first one.

The paper is structured as follows. In Section 2 the mathematical model is introduced.
This is based on a directed graph G , that is closely related to the metro map and
represents several process chain variants. We describe in detail how the graph G

can be derived from the metro map and the information on the processes. A main
task is to create process variants for each process that may differ in the method of
process, i. e. the variants to realize the process, but also in the employed machines
and tools as well as in the parameters used for the process. We formulate this as a
binary minimum cost flow problem with coupling constraints. The latter ensure that
dependencies between the processes resp. process variants are taken into account,
for example if two processes are mutually exclusive. These models can be solved
using standard solvers for integer programming.

The method presented in Section 2 is applied to a small example. It starts with a metal
bar that is cut to length and may then be heated to one of five different temperatures.
After that the forging and deflashing processes are performed. We describe the
technical details for this in Section 3. In Section 4 we present the mathematical model
for this illustrative example and calculate the optimal value. During optimization we
have to ensure via coupling constraints that the input and output temperatures of the
workpiece fit together for the different processes.

In practice, the actual energy demands of the processes may differ significantly from
the estimated values employed in the optimization model. The correct energy demands
of the processes differ in comparison to the values used in optimization, for example
due to measurement errors. In Section 5 we extend the mathematical model so that
uncertainties concerning the energy demands are respected. Assuming normally
distributed energy demands we add so called chance constraints. The effect for the
solution of different covariance matrices is demonstrated.

2 Mathematical model for process chain
optimization

In this section we present a general way to describe the various process chains in an
optimization model and to find an optimal one among them. The mathematical model
is based on the metro map for the description of process chains that was developed
in eniPROD [1], see figures 1, 2 and 3 for various unrelated examples. In such a
map processes are represented by the “stations” S and a process that may succeed
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another process is connected by a line. The colors of the lines between the stations (in
a real metro map a part of a metro line) may encode that there are different materials
or semi-finished products at the beginning of the production (Figure 1) but at most one
of them may be used or that there is a certain number of starting materials (Figure
2), for example if one of the processes is a joining process. In [1] the metro map is
visualized with undirected edges, but it is better to think of them in a directed way. So
the lines are directed in all our figures.

bar (material 1) – S1

bar (material 2) – S2

S3 S4

S5

S6

S7 S8

Figure 1: Metro map for a small example with two possible materials

bar – S1

bar – S2

S3

S4

S5 S6

Figure 2: Metro map for a small example with joining

bar – S1 S2 S3

S4

S5

Figure 3: A metro map for a small example with a process (S3) that enlarges the number of important
components from one to two, i. e., after that both components are processed independently

Based on the metro map we develop an integer programming model with coupling
constraints for finding a best process chain with respect to the objective function. In
our investigations we only consider the energy demand of the whole process chain
but it is also possible to take costs and/or times into account. The solution of the
optimization model then corresponds to an optimal process chain.

In the following we construct a directed graph G = (N,P) with node set N and set of
directed arcs P . This graph is closely related to the corresponding metro map with the
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roles of nodes and arcs interchanged in the following sense. While in the metro map
nodes refer to stations and arcs to lines, in the new graph a node n ∈ N refers to the
state after a certain process has finished. An arc p = (p1, p2) ∈ P demonstrates that
after the process corresponding to p1 is finished there is the possibility to attain the
state corresponding to p2. So p ∈ P complies with a fully specified process or process
variant with specific input, throughput and output parameters. As we will see below
there may be several arcs from a node ni ∈ N to a node nj ∈ N, ni �= nj . This enables
us to describe on the one hand several methods of process and on the other hand for
example different input parameters like starting materials. This case is visualized in
Figure 4. Graph G contains two arcs from n1 to n2 (here the two lines [black and gray]
can be treated in only one graph with the same nodes; we later have to ensure via
coupling constraints that the determined process chain only uses arcs that correspond
to one color).

s n1 n2

n3 n4

n5

n6 n7 t

Figure 4: Graph G for the metro map in Figure 1 assuming that there is exactly one process variant for
each process and each of the two materials, for each process independent of the previous processes
(otherwise there may be more than one arc from one node to another).

Besides the processes themselves we can consider common resources like cooling,
certain machines or generators. We collect these in set R. The consideration of
resources separate from the processes themselves allows us, e. g., to restrict the time
spent on a certain resource or to count the base load of a resource only once if it is
used at all.

In the following we specify additional nodes and arcs that are introduced for the
treatment of the starting materials and of processes that change the number of
considered components. For the sake of simplicity we assume that if there are several
components before a process we know exactly which components are joined to one
component. Similarly, for splitting processes we know the number and kind of new
components. We changed the roles of nodes and arcs in comparison to the metro
map because we will assign the energy demands of the processes to the arcs resp. to
the variables of the arcs (there will be a variable for each arc). Because the starting
materials or components should be considered, too, we introduce an artificial node s

that is connected to all nodes that represent the state after the starting material was
taken but before a single process has started. In Figure 4 these are the two arcs from
s to n1 and in Figure 5 these are the arcs (s, n1), (s, n2) (via the constraints we will
ensure that in the first case only one of these arcs is used and in the second case that
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the energy demand of both components is considered). Moreover we add an artificial
node t that corresponds to the finished product or products (if more than one product
is built at the same time, e. g., as the result of certain cutting processes). Each state
n ∈ N that describes that the last process in this part of the process chain has been
performed is connected to t. In figures 4 and 5 we included only one arc (n7, t) resp.
(n6, t). Because two products are built in the example in Figure 6 we added the arcs
(n6, t), (n7, t).

s

n2

n1

n4

n3

n5 n6 n7 t

Figure 5: Graph G for the metro map in Figure 2 assuming that there is exactly one process variant
for each process (otherwise there may be more than one arc from one node to another).

s n1 n2 n3

n4

n5

n6

n7

t

Figure 6: Graph G for the metro map in Figure 3 assuming that there is exactly one process variant
for each process (otherwise there may be more than one arc from one node to another).

For a joining process with finished state q ∈ N, in which the number of considered
components has been reduced (Figure 5), e. g. by joining, we add an artificial node
aq ∈ N. This new node represents the case that the single components are ready. It is
connected via arcs (p, aq) from all states p ∈ N of components in which they can be
joined. Furthermore we include (a, q) from aq ∈ P to the node q ∈ P. The example in
Figure 5 depicts a joining process. For this we include the artificial node n5. Here the
joining process belongs to arc (n5, n6) with n6 the state of the workpiece after joining.

For splitting processes with the states qi ∈ N, i = 1, ... , qN , of the qN components
after the process we add a new node ap that represents that the respective process
has been performed but we still look at this as one component. The splitting can be
seen in the next nodes of the graph. Then we add arcs (p, ap) from the previous states
to the artificial node and connect via arcs (a, qi ), i = 1, ... , qN , node ap ∈ P. In the
example depicted in Figure 6 the number of components is increased. We included
the artificial node n3 as well as the arc (n2, n3) representing the process and the arcs
(n3, n4), (n3, n5) that show the splitting in two components. The presented procedure
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for joining and splitting processes simplifies the assignment of energy demands to
process variant as well as the description of input and output of these processes.

In the metro map a “process”, i. e. a single station in the map, can represent several
process variants that may differ in the process parameters or in the used machines
or tools. In the following we explain how the process variants are created. For the
description of processes the input-throughput-output model is used [2]. The input
includes the specification of the workpiece, i. e., information on the geometry of the
workpiece, on the material, on the temperature, on the precision and so on. For
the throughput the machine(s) and the methods of process have to be specified.
The specification of the methods of process comprises the used tools as well as
information on the required resources, e. g., cooling can but has not to be used for
turning. Furthermore one gives details on the process parameters and restrictions
on them. If the data was collected by measurements or via simulation, only discrete
values are available for the parameters but if there is a detailed model for the process,
e. g., as in turning [2], parameters may be specified via feasible intervals and there may
be restrictions that have to be fulfilled by the parameters (sometimes in dependence
on the used machines, tools and resources). Finally, the throughput gives a calculation
rule for the output and for the required resources, e. g., amount of cooling medium or
compressed air as well as the time used on resources r ∈ R.

The output describes the workpiece resulting from this process, especially changes
in the geometry and changes of important properties, e. g., if the temperature of the
workpiece has been increased by a certain amount. Besides, the output includes
information about the energy demand of each process variant, resp. the weighted total
energy demand for the forms of energy (we are only interested in the energy demand
for the forging example; if one takes further goals into account like time or costs,
information on these values are needed here as well). For results from measurements
the discrete data can be collected in a table. If the number of described variants in
such a table is not too large we assign an arc to each variant. In Figure 1 the variants
differ in the input, in particular on the material of the workpiece. In dependence of
the input there may be changes in the throughput or the output. If the number of
variants generated from the discrete values is too high, we can try to reduce this
number in a first step. For example if the input of two process variants is the same and
the geometry and the important properties in the output are the same, it suffices to
include only the process variant with the smallest energy demand. This simplification
is not possible if the required resources differ while at the same time the use of these
resources is constrained by other restrictions.

If there is a mathematical model that describes throughput and output for a process
for a given input with specified machines, tools and resources (the calculation of the
energy demand may depend on the resources, for example turning with and without
cooling) parameters are often allowed to be chosen from given intervals. Then we
cannot test all parameter settings. In the case that for the specified values (input and
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parts of the throughput) the changes on the workpiece are the same for all parameter
settings and there exist no further dependencies to following processes we can solve
an optimization model and determine the best variant. But if there exist dependencies
to subsequent processes we have to discretize the parameter values and determine
the throughput and output for each of these variants. To get a rough feeling for the
critical processes in the whole process chain it should be sufficient to create only few
process variants in a first step, to solve the model and to refine the variants for critical
processes in a second step before solving again.

Based on the graph G we build our optimization model. For this we introduce a binary
variable xp ∈ {0, 1} for all p ∈ P that is one if and only if the corresponding process
variant is used in the process chain. We identify each arc p = (n,m)i ∈ P, n,m ∈
N, i ∈ N, by its tail n, its head m and an index i , since there may be more than one
arc from node n to node m. The variables have to fulfill the so called flow conservation
constraints. These restrict the difference of the incoming and the outgoing arcs at
each node n ∈ N. They read

∑
a=(n,m)i∈P

xa −
∑

b=(m,n)i∈P

xb = cn for all n ∈ N, (1)

for a constant cn depending on the graph G resp. the metro map as well as on n ∈ N,
with cn = 0 in many cases. In general, cn, n ∈ N, describes the difference of the
number of considered components before this state and the number of considered
components after this state. For the example in Figure 4 cni equals zero holds for
all nodes ni , i ∈ {1, ... , 7}, because these nodes correspond to the state between
two processes. If we reach one of these states there exists a further process that
is performed afterwards or otherwise all variables summed up in (1) are zero. The
situation changes for the artificial nodes s, t. For s, exactly one of the two materials
should be used, so we get

∑
a=(s,m)i∈P xa = 1. Regarding node t we achieve that

exactly one product is built by setting ct = −1. This leads to −∑
b=(m,t)i∈P xb = −1.

The artificial node n5 of the joining process in Figure 5 has cn5 = 1 and we need
cn3 = −1 for the artificial node n3 of the splitting process in Figure 6.

It highly depends on the actual process chain which couplings occur between the
process variants and which of them have to be considered during optimization. We will
indicate some important possibilities here. In the case that a process variant p ∈ P

forbids another process variant q ∈ P , for example if the output of p is no feasible input
for q, we can add the constraint xp + xq ≤ 1. In the example shown in Figure 4 we
have to forbid by such constraints that solid black and solid gray arcs are used at the
same time because these correspond to different materials, e. g., x(n3,n4) + x(n2,n5) ≤ 1.
It may also happen that a process variant p ∈ P can only take place if another process
variant q ∈ P takes place, too. An explanation for such a behavior are processes that
use the exhaust heat of previous processes. Then the constraints xp ≤ xq have to be
added. In the simplest case a process variant p ∈ P is used if and only if process
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variant q ∈ P is used, too. This leads to xp = xq.

In the next part we consider the resources. We introduce a binary variable xr ∈ {0, 1}
for all resources r ∈ R with the interpretation that xr is one if and only if r is used in
at least one of the process variants and zero otherwise. This implies new coupling
constraints because xr = 0 forbids all process variants that use this resource (see
throughput). Similarly to the previous constraints we get xp ≤ xr for all processes
p ∈ P that use resource r ∈ R. In the case that for example the total time spent on
a certain resource r ∈ R is limited by Kr we get

∑
p∈P rpxp ≤ Kr with rp time used by

process variant p ∈ P on r .

Finally, we define the objective function. Let ep be the energy demand of process
variant p ∈ P, resp. the energy value assigned to the starting material for arcs
p = (s, n)i ∈ P. All arcs p = (n, t)i ∈ P fulfill ep = 0. The energy demand of a
process with changing number of considered components is assigned to the arc from
the introduced artificial node to the node representing the state after that process for a
joining process and to the arc of the previous state to the artificial node for splitting
processes. The coefficients of the other corresponding arcs are zero in both cases.
Looking at the graph in Figure 5 the coefficient of the variable corresponding to arc
(n5, n6) equals the energy demand of the joining process and the coefficients of the
variables x(n3,n5), x(n4,n5) are zero. Furthermore let er be the energy demand for the
base load of resource r ∈ R. Then the objective function reads

∑
p∈P

epxp +
∑
r∈R

erxr → min . (2)

3 Description of the process chain example
Improving the energy efficiency in forming processes resp. in corresponding process
chains is possible via saving resources, a reduction of the working time or a reduction
of the energy demands. As a practical example we choose a process chain of a
common product of the automotive sector like a transmission shaft. Even though it is a
rather short process chain, it contains several different kinds of operations. Each of
these is influenced by several parameters that have to be analyzed and then combined
to get an optimal process chain.

The first step is to prepare the part to be inserted in the forming dies. In our case
it has a simple cylindrical shape with radius 30 mm and we cut it to length from a
previous rolled rod of steel 20MnCr5, a typical material for that kind of component in
the powertrain segment. After that, we heat up the component to prepare it for the
deformation process. The steel which we selected can be forged in a temperature’s
range from about 800◦C to 1200◦C. We tested the five different temperatures 800◦C,
900◦C, 1000◦C, 1100◦C and 1200◦C.
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The part is heated up in an furnace, in our case a resistance furnace, in which the
electricity, flowing in a resistance’s system, heats them up following Joule’s law. Under
the same furnace conditions, the warming time depends on the required temperature;
the higher the temperature the shorter is the warming time. At the moment, different
kinds of measurements are performed on the test-furnace in the project PT of the
cluster eniPROD to find the real energetic demand of this step in order to validate the
numerical solutions by experimental results. In the example considered here it seems
an easy choice to select the lowest possible forming temperature. But in general,
looking only at the temperature does not offer us a complete insight on the forming
process because we have to evaluate the mechanical properties of the finished part,
which are strongly influenced by the forging temperature and have to consider the
mechanical loads applied on the forming dies which directly affect the number of
components produced within the tool’s life.

After heating it up, the hot part is taken out of the furnace as fast as possible and
inserted directly in the forming dies to be forged in order to reduce the heat loss of
the workpiece and the energy dissipation via irradiation in the environment. These
tools are preheated to the working temperature of approximately 150◦C in order to
avoid possible failures during the operation and too high thermal loads. The forming
process is accomplished by means of a fly press, a particular kind of screw press in
which the screw shaft driving the ram is actuated by a flywheel connected to a motor
using a friction coupling. We assume that we can vary the forming force of the ram
and the driving speed of the flywheel for the machine used. In impression-die forging
the workpiece acquires the shape of the die cavities while it is being upset between
the closing dies. Some of the material flows radially outward and forms a flash. The
higher the workpiece temperature the lower are the required forces by the machine to
form it and the lower the mechanical loads on the forming tools.

After that the workpiece is deflashed in order to prepare it for trimming and finishing
operations which completes our process chain. (In our example we do not take the
trimming and finishing operations into account.) This process is performed in another
working-step on a press in which the overflowing material is cut from the part in one
stroke by means of appropriate dies, which have a cutting contour of the same form
of the predicted flash. In our case, for a matter of costs, we decided to calculate the
energy demand of this process numerically instead of measuring it during the process.
Numerical modeling has increasingly been applied to the energy-efficient design and
optimization of hot forming processes. Using numerical simulation we were able to
reduce the number of required practical experiments in a laboratory significantly. We
selected several reasonable working conditions, varying workpiece’s temperature and
machine properties, and tested these in simulation, using the finite element software
FORGE2011 [3]. Figure 7 shows the energy demands for the three varying parameters
temperature, flash thickness and ram speed. As result of these analysis we gained
first insights of the necessary forming energy which will be soon compared with the
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result of the forthcoming experimental campaign in the laboratory of the Fraunhofer
IWU.

Figure 7: Energy demand of the forging process in different working conditions obtained via simulation
using the temperatures 800◦C (A), 900◦C (B), 1000◦C (C), 1100◦C (D), 1200◦C (E), flash thicknesses
2 mm, 3 mm, 4 mm, 5 mm and ram speeds 250 mm

s , 350 mm
s , 450 mm

s , 500 mm
s and 530 mm

s

4 Optimization model for the process chain
example

In this section we derive the optimization model for the process chain described in
the previous section. The metro map of this process chain is visualized in Figure 8.
Apart from the number of arcs this leads to the structure of the graph G presented in
Figure 9. The example graph Ge = (Ne ,Pe) consists of the nodes s, t and the nodes

bar cut to length heat forging deflashing

Figure 8: Metro map for the forging example

s n1 n2 n3 n4 n5 t

Figure 9: Structure of graph Ge for the metro map in Figure 8: There might be several arcs between
two nodes. Indeed, there is more than one arc for dashed connections.

ni , i = 1, ... , 5. Node n1 represents the state that all materials (the bar) are available.
The state that the bar has the correct length is assigned to node n2. Node n3 says the
workpiece is heated and n4 the workpiece is forged. Finally, n5 represents the state
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that the deflashing process is over. As described in Section 3 we use a fixed material
for the whole process chain. So we only use one arc (s, n1) and assign the energy
demand to this resp. the corresponding variable. On the next arc the metal bar is cut
to the correct length. Based on the investigations in [2] there is a model that describes
the energy demand of this process. The parameters that can be varied are the cutting
speed vc and the feed f . Since we assume that the choice of vc , f does not influence
the following processes we can determine the optimal parameter setting for a given
material and a fixed machine and tool. The theoretical formula for the energy demand
in J [2, 4, 5] reads

ecut = Wth · V =
kc1,1
1000

· Kst ·
(
100 m

min

vc

)mv

·
(

h0
f · sin(κ)

)m

· ap · π · r 2. (3)

For a further explanation of the values used here we refer the reader to [2, 4] and
the references therein. In our example the parameters for machine and tool are
kc1,1 = 2140 ( N

mm2 ) [6], Kst = 1.3, mv = 0.071, m = 0.25 [6], κ = 84◦, ap = 3.05 (mm).
Thus, (3) simplifies to

ecut =
8485.1
1000

π N
mm ·

(
100 m

min

vc

)0.071

·
(

1mm
f · sin(84◦)

)0.25

· r 2 (4)

with restrictions vc ∈ [120, 190]( m
min ) and f ∈ [0.05, 0.12] (mm) and radius r = 30mm

of the bar. We assume that there are no further restrictions and so the optimal value is
attained for vc = 190 ( m

min ) and f = 0.12 (mm) with eoptc ≈ 39000 (J).

The workpiece can be heated to the five different temperatures 800◦C (arcs with index
1), 900◦C (arcs with index 2), 1000◦C (arcs with index 3), 1100◦C (arcs with index 4),
1200◦C (arcs with index 5). So we include five arcs (n2, n3)

i , i = 1, ... , 5, one for each
temperature. The forging and the deflashing process depend on the temperature of
the input and on two further parameters that do not influence the next steps. For this
reason we can determine the best parameter setting for fixed input temperature and it
is sufficient to include five arcs (n3, n4)

i , i = 1, ... , 5, resp. (n4, n5)i , i = 1, ... , 5, each.
Finally, we add the arc (n5, t).

Then the optimization model contains the variables x(s,n1), x(n1,n2), x(n2,n3)i , x(n3,n4)i ,
x(n4,n5)i , i = 1, ... , 5 and x(n5,t). The flow conservation constraints for all nodes read:

x(s,n1) = −(−x(n5,t)) = 1 (5)

x(n1,n2) − x(s,n1) =
5∑

i=1

x(n2,n3)i − x(n1,n2) = x(n5,t) −
5∑

i=1

x(n4,n5)i = 0 (6)

5∑
i=1

x(n3,n4)i −
5∑

i=1

x(n2,n3)i =
5∑

i=1

x(n4,n5)i −
5∑

i=1

x(n3,n4)i = 0 (7)
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The correct treatment of the temperatures is achieved by coupling constraints

x(n2,n3)i = x(n3,n4)i = x(n4,n5)i , i = 1, ... , 5. (8)

With the energy demands determined via simulation, calculation and approximations
the objective function reads

ebarx(s,n1) + 39x(n1,n2) + 2000x(n2,n3)1 + 2350x(n2,n3)2 + 2600x(n2,n3)3

+ 2900x(n2,n3)4 + 3200x(n2,n3)5 + 53.873x(n3,n4)1 + 42.313x(n3,n4)2

+ 33.15x(n3,n4)3 + 26.017x(n3,n4)4 + 20.268x(n3,n4)5 + 0.143x(n4,n5)1

+ 0.105x(n4,n5)2 + 0.076x(n4,n5)3 + 0.057x(n4,n5)4 + 0.043x(n4,n5)5 (9)

with ebar the energy demand of the metal bar.

5 Robust process chain optimization
The coefficients in the objective function of the process chain model are uncertain due
to several reasons. For example measurement errors may occur for some experimen-
tally determined energy demands. For energy demands determined via simulation or
calculations, the models used cannot take all relevant aspects into account in detail.
Furthermore it might be necessary to obtain data estimates from comparable process
variants because, e. g., other machines should be used or previous tests were carried
out for different parameter settings. Even if the parameter setting is the same, toler-
ances of the raw material or varying precision of the feedstock may lead to (slightly)
differing energy demands. For this reason, the calculation of the exact optimal value
with corresponding solution for given fixed energy demands should not be used as the
only decision criterion. In fact, one is interested in robust solutions, i. e., solutions that
are good even if real data, that appears during production, varies in comparison to the
initial data. So we want to adapt the process chain optimization model in such a way
that robustness aspects can be respected.

Regarding the uncertainty, we assume that all given energy demands ep, p ∈ P, and
er , r ∈ R, are normally distributed with given expected value μ and covariance matrix
Σ, i. e., e ∼ N(μ, Σ). In general, Σ is not a diagonal matrix because some parts of
the energy data are correlated, e. g., because the same theoretical models, the same
machines or the same measurement devices were used or there are dependencies
between the single processes. Due to missing covariance information we will demon-
strate the effect of different specially chosen covariance matrices for the optimal robust
solutions. In this paper we add a so called chance constraint [7] to the original model.
This constraint will ensure that in an optimal solution the expected total energy demand
does not exceed a certain value (either a certain energy level is given or this value
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is minimized in the objective function) with high probability η, also called confidence
level.

The objective function of (2) resp. (9) describes the energy consumption. We will
concentrate on this energy demand of the process variants, but the approach can
also be applied to the case with additional consideration of resources. Since the
chosen temperature is the main influencing factor for the whole process chain we
show the effect of different covariance matrices for the heating process and the forging
process. In contrast to Section 4 we only use an input temperature of 800◦C and a
flash thickness of 5 mm but we vary the ram speed (as above 250 mm

s , 350 mm
s , 450 mm

s ,
500 mm

s and 530 mm
s ) and concentrate on these two processes.

The reduced optimization problem with nominal energy demand e = (e1, e
1
2 , ... , e

5
2 )

= (2000, 53.873, 56.25, 58.637, 59.57, 60.092) (in kJ) can be written as

min e1 +
5∑

i=1

e i2x
i
2 (10)

subject to
5∑

i=1

x i
2 = 1 (11)

x i
2 ∈ {0, 1}, i = 1, ... , 5 (12)

with e1 the energy demand of the heating process, e i2 the energy demand of the forging
variant i , i = 1, ... , 5, and a binary variable x i

2 for each variant that is one if and only if
the variant is used in the process chain.

For the robust model we add a new variable y ∈ R+ and assume e ∼ N(μ, Σ). In this
case, requiring the probability, that the total energy demand is not greater than y , to
be greater or equal to η, i. e.,

Prob(
∑
p∈P

μpxp − y ≤ 0) ≥ η (13)

may be expressed as a convex second order cone constraint (η ≥ 0.5) [8]

y −
∑
p∈P

μpxp ≥ Φ−1(η)‖Σ1/2x‖2 (14)

with Φ representing the standard normal cumulative distribution function. Finally, the
optimization problem reads min y subject to (11), (12) and (14).

We test this for probability η = 0.95 and three different covariance matrices Σ1, ... , Σ3

resp. three different correlations. Only Σ1 is a diagonal matrix. In Σ2 and Σ3 some
off-diagonal entries are non-zero. In these, we assume that the heating and the forging
variants influence each other.
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Σ1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

( 1
20
e1)

2 0 0 0 0 0

0 ( 1
10
e12 )

2 0 0 0 0

0 0 ( 1
10
e22 )

2 0 0 0

0 0 0 ( 1
10
e32 )

2 0 0

0 0 0 0 ( 1
10
e42 )

2 0

0 0 0 0 0 ( 1
10
e52 )

2

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

With σi ,j =
√

Σ1(i , i)Σ1(j , j), i , j = 1, ... , 6, the other matrices read

Σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1,1 0 − 1
2
· σ1,3 −σ1,4 − 1

2
· σ1,5 0

0 σ2,2 0 0 0 0

− 1
2
· σ1,3 0 σ3,3 0 0 0

−σ1,4 0 0 σ4,4 0 0

− 1
2
· σ1,5 0 0 0 σ5,5 0

0 0 0 0 0 σ6,6

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

Σ3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1,1 σ1,2
4
5
· σ1,3

3
5
· σ1,4

2
5
· σ1,5

1
5
· σ1,6

σ1,2 σ2,2 0 0 0 0
4
5
· σ1,3 0 σ3,3 0 0 0

3
5
· σ1,4 0 0 σ4,4 0 0

2
5
· σ1,5 0 0 0 σ5,5 0

1
5
· σ1,6 0 0 0 0 σ6,6

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

With η = 0.95 the first variant (x1
2 = 1) is optimal for Σ1, the third variant (x3

2 = 1) is
optimal for Σ3 and the fifth variant (x5

2 ) is optimal for Σ2. This shows that consideration
of dependencies between processes resp. process variants is important for the
determination of optimal process chains in production. So in future, a better knowledge
of the uncertainties of the data is necessary.
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