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Referat

Ziel der vorliegenden Arbeit ist die Untersuchung der Einflüsse der zeitlich fluktuierenden

Verzögerungen in räumlich ausgedehnten diffusiven Systemen. Durch den Vergleich von

Systemen mit konstanter Verzögerung bzw. Systemen ohne räumliche Kopplung erhält man

ein tieferes Verständnis und eine bessere Beschreibungsweise der Dynamik des räumlich

ausgedehnten diffusiven Systems mit fluktuierenden Verzögerungen.

Im ersten Teil werden diskrete Systeme in Form von diffusiven Coupled Map Lattices un-

tersucht. Als die lokale iterierte Abbildung des betrachteten Systems wird die logistische

Abbildung mit Verzögerung gewählt. In diesem Teil liegt der Fokus auf Musterbildung,

Existenz von Multiattraktoren und laufenden Wellen sowie der Möglichkeit der vollen Syn-

chronisation. Masterstabilitätsfunktion, Lyapunov Exponent und Spektrumsanalyse werden

benutzt, um das dynamische Verhalten zu verstehen.

Im zweiten Teil betrachten wir kontinuierliche Systeme. Hier wird die Fisher-KPP Gle-

ichung mit Verzögerungen im Reaktionsteil untersucht. In diesem Teil liegt der Fokus auf

der Existenz der Turing Instabilität. Mit Hilfe von analytischen und numerischen Berech-

nungen wird gezeigt, dass bei fluktuierenden Verzögerungen eine Turing Instabilität auch in

1-Komponenten-Reaktions-Diffusionsgleichungen gefunden werden kann.

Schlagworte

Reaktions-Diffusionsgleichung, Coupled Map Lattice, Hutchinson Gleichung, Fisher-KPP

Gleichung, logistische Abbildung with Verzögerung, Systeme mit fluktuierenden Verzögerun-

gen, Musterbildung, Synchronisation, Stabilitätsanalyse, Masterstabilitätsfunktion, Multiat-

traktor, Turing Instabilität, laufende Wellen.
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Abstract

The aim of this thesis is to investigate the dynamical behaviors of spatially extended sys-

tems with fluctuating time delays. In recent years, the study of spatially extended systems

and systems with fluctuating delays has experienced a fast growth. In ubiquitous natural

and laboratory situations, understanding the action of time-delayed signals is a crucial for

understanding the dynamical behavior of these systems. Frequently, the length of the delay

is found to change with time. Spatially extended systems are widely studied in many fields,

such as chemistry, ecology, and biology. Self-organization, turbulence, and related nonlin-

ear dynamic phenomena in spatially extended systems have developed into one of the most

exciting topics in modern science.

The first part of this thesis considers the discrete system. Diffusively coupled map lattices

with a fluctuating delay are used in the study. The uncoupled local dynamics of the con-

sidered system are represented by the delayed logistic map. In particular, the influences of

diffusive coupling and fluctuating delay are studied. To observe and understand the influ-

ences, the results for the considered system are compared with coupled map lattices without

delay and with a constant delay as well as with the uncoupled logistic map with fluctuating

delays. Identifying different patterns, determining the existence of traveling wave solutions,

and specifying the fully synchronized stable state are the focus of this part of the study. The

Lyapunov exponent, the master stability function, spectrum analysis, and the structure factor

are used to characterize the different states and the transitions between them.

The second part examines the continuous system. The delay is introduced into the reaction-

term of the Fisher-KPP equation. The focus of this part of study is the time-delay-induced

Turing instability in one-component reaction-diffusion systems. Turing instability has pre-

viously only been found in multiple-component reaction-diffusion systems. However, this

work demonstrates with the help of the stability exponent that fluctuating delay can result in

Turing instability in one-component reaction-diffusion systems as well.

Key Words: Reaction-diffusion system, coupled map lattice, delayed logistic map, sys-

tem with fluctuating delays, Hutchinson’s equation, Fisher-KPP equation, pattern formation,

synchronization, master stability function, multiattractor, Turing instability, traveling wave

solution.
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1 Introduction

1.1 Motivation

The study of spatially extended systems and the study of delay systems are two advancing

fronts in nonlinear science. Both the spatial extension and the time delay of a signal can

influence the system dynamics and make the system more complicated. Hence the study

of such systems is of great interest. For instance, the time-delay systems used to model

retarded actions are relevant in many fields, such as optics [1], machining [2–5], biology,

or physiology [6, 7]. And for spatially extended systems, the self-organization of patterns

and structures under far-from-equilibrium conditions, turbulence, and other related nonlin-

ear dynamic phenomena, can occur in a wide variety of different fields. Consider, for in-

stance, the chemical and biological patterns in reaction-diffusion systems, vortex formation

in connection with chemical, optical, hydrodynamic, or magnetohydrodynamic turbulence

and technical applications in connection with liquid crystal displays or pulse compression

in optical communication systems [8, 9]. The study of these phenomena is one of the most

exciting topics in modern science. In recent years, the study of composed systems has be-

come more common, for instance , studying networks with delayed feedback [10–12], the

existence of traveling waves in the presence of time-delay in spatially extended systems

[13, 14], and the pattern dynamics in reaction-diffusion systems with time delay [15, 16].

In the last several years, the research of our group has focused on dynamical systems with

temporally fluctuating delay, systems ranging from discrete iterated maps to ordinary dif-

ferential equations [17–22]. The findings suggest that due to the fluctuating delay times,

complex behavior will appear in these systems. The stability of a system can not only be

strengthened but also weakened by fluctuating delay. Due to the fluctuating delays, a part of

the Lyapunov spectrum becomes equal to negative infinity and leads to a dimension collapse

[20]. The temporal behavior of the dimension collapse and its dependence on the system
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1.2. MODEL

parameters are complex. For example, in a simple map system with a delay fluctuating

between two values, the parity of the difference between the two delay values determines

the collapsed dimension. Going one step further, the complex behavior of spatially ex-

tended systems with fluctuating delay times is investigated. The influence of fluctuating

delay times on, for instance global stability, multiple attractors, pattern formations, spatial

non-localization, etc., are studied. The analysis of stability characteristics provides impor-

tant information on the system dynamics.

1.2 Model

The considered system is based on a typical partial differential equation

∂u(x, t)

∂ t
= f (u(x, t))+DΔu(x, t), (1.1)

where x and t are time and space variables, respectively. In such systems, there is a local

reaction term f (u) and a spatially diffusive coupling term DΔu, with the diffusion coefficient

D, resulting in a so-called reaction-diffusion equation. When the diffusion coefficient D= 0,

the system reduces to an ordinary differential system, in which a time delay was introduced

and which has been investigated for a long time. The general form of the system considered

in this thesis is

∂u(x, t)

∂ t
= f (u(x, t),u(x, t− τ(t)))+DΔu(x, t), (1.2)

where τ(t) is the temporally fluctuating time delay. In particular, here the famous Hutchin-

son’s equation

u̇(t) = au(t)(1−u(t− τ)) (1.3)

is used as an example for the reaction term. This equation was introduced by Hutchinson

[23] as an ecological model. It is also referred to as the delayed logistic equation. So the

continuous model studied here has the form

14



1.2. MODEL

∂u(x, t)

∂ t
= au(x, t)(1−u(x, t− τ(t)))+DΔu(x, t). (1.4)

The case with a time delay of τ = 0 is the famous Fisher-KPP equation [24, 25]. The Fisher-

KPP equation is one of the simplest models of a nonlinear reaction-diffusion equation. It

was introduced by Fisher in 1927 as a model of species diffusion and has also been used

later to study the propagation of flames and nuclear reactors.

For the discrete system studied in this thesis, a coupled map lattice with the form

ui
n+1 = f (ui

n)+D(ui+1
n +ui−1

n −2ui
n) (1.5)

is used, and the delay is introduced into the reaction function f . Note that the diffusive

coupling here is different from the form proposed in [26] by Kaneko

ui
n+1 = (1− ε) f (ui

n)+
ε

2
( f (ui+1

n )+ f (ui−1
n )), (1.6)

where ε = D
2

.

A simple model, which is used here, is the delayed logistic map

un+1 = f (un,un−T ) = aun(1−un−T ). (1.7)

This model was chosen because it can be viewed as the discretization of the continuous

model in Eq.(1.4).

Assume a system

∂u(x, t)

∂ t
= g(u(x, t),u(x, t− τ))+DΔu(x, t). (1.8)

The simplest method to simulate the partial differential equation numerically is the FTCS

(Forward-Time Central-Space) method. It is a finite difference method based on central

difference in space and the forward Euler method in time. For a general reaction-diffusion

equation (1.1) in one dimension, one can derive the following equation via FTCS:

un+1
j −un

j

Δt
= g(un

j,u
n−T
j )+D[

un
j+1 −2un

j +un
j−1

(Δx)2
]. (1.9)

15



1.2. MODEL

Here n is the index of the temporal discretization and j is the index of the spatial discretiza-

tion. Δt and Δx are the step sizes for time and space, respectively, and T = τ/Δt. For

reaction-diffusion systems, the FTCS method gives first-order convergence in time Δt and

second-order convergence in space Δx and is conditionally stable. Eq.(1.9) can be rewritten

as a coupled map lattice

un+1
j = un

j +Δtg(un
j,u

n−τ
j )+

DΔt

(Δx)2
(un

j+1 +un
j−1 −2un

j), (1.10)

which has the same form as Eq.(1.5). With such models, one has only one nonlinear delay

term in the system. And it is relatively easy to investigate and understand the influence of

delay in the discrete models, Eq.(1.10).
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2 Physical and Mathematical

Backgrounds

This chapter explains the physical and mathematical backgrounds that are important for

the current study. For instance, the considered spatio-temporal system consists of a local

process and spatial coupling. Thus, understanding the dynamic behaviors of local processes

is necessary. Some mathematical tools are introduced for investigating and understanding

dynamic behaviors.

2.1 Mathematical tools

2.1.1 Lyapunov exponent

Figure 2.1: Schematic diagram for Lyapunov exponent: the evolution of a circle after several

iterations.

17



2.1. MATHEMATICAL TOOLS

The Lyapunov exponent of a dynamical system, an exponent which is named after A.M.

Lyapunov [27], is a quantity that characterizes the rate at which two slightly different tra-

jectories in phase space separate from each other. Quantitatively, two trajectories in phase

space with an initial separation δZ0 diverge exponentially at a rate

λ = lim
t→∞

1

t
ln
|δZ(t)|
|δZ0| , (2.1)

where λ is the Lyapunov exponent.

For high-dimensional systems the rate λ can be different for different orientations of the

initial separation vector δZ0 (see Fig.2.1). Thus, there is a spectrum of Lyapunov exponents,

with the total number equal to the dimension of the phase space. It is common to use the

largest exponent in the spectrum, the Maximal Lyapunov exponent (MLE), to determine the

stability of system.

• When the MLE is positive, the neighboring trajectories will separate exponentially

and the system is chaotic.

• When it is negative, the system has a stable stationary state or a periodic state.

• When it is zero, limit cycles or a quasiperiodic orbit can be obtained.

2.1.2 Structure factor

The consideration of spatially extended systems requires the classification of the different

type of spatio-temporal structures. One mathematical tool for achieving this is the structure

factor. Originally, the structure factor was used in condensed matter physics and crystallog-

raphy to describe how a material scatters incident radiation [28, 29].

There are two types of structure factors. One is the static structure factor, which is measured

without resolving the energy of the scattered particle, and is defined as the Fourier trans-

formation of the scalar quantity. The other is the dynamic structure factor, which is used in

the energy-resolved case. The structure factor is most often denoted as S(�k,ω), with wave

vector�k and frequency ω . The dynamic structure factor is defined as

18



2.1. MATHEMATICAL TOOLS

S(�k,ω) =
1

2π

∫ ∞

−∞
F(�k, t)eiωtdt (2.2)

Here F(�k, t) is the so-called intermediate scattering function, which is the spatial Fourier

transform of the van Hove function G(�r, t) [30–32]

F(�k, t) =
∫ ∞

−∞
G(�r, t)e−i�k·�rd�r. (2.3)

As the spatio-temporal structure is studied in this thesis, a general form of the dynamic struc-

ture factor can be used to determine different spatio-temporal behavior: the two-dimensional

Fourier transformation of the autocorrelation function. For a continuous system u(�x, t), it

reads

S(�k,ω) =
∫ ∞

−∞

∫ ∞

−∞
Ruu(�r,τ)e

−i�k·�rd�re−iω·τdτ, (2.4)

where Ruu is the autocorrelation function with the form

Ruu(�r,τ) = lim
a→∞

lim
b→∞

∫ a

−a
dt

∫ b

−b
dxu(�x, t)u∗(�x−�r, t − τ). (2.5)

Note that there is a two-dimensional Fourier transformation in Eq.(2.4), whereas in Eq.(2.2)

there is an inverse Fourier transformation. This difference can only influence the amplitude

by a factor of 1
2π and reverse the ω-axis. It does not influence the determination of structures.

With the form in Eq.(2.4), the Wiener-Khinchin theorem can be applied to simplify the

calculation: "The power spectral density of a wide-sense-stationary random process is the

Fourier transformation of the corresponding autocorrelation function." [33, 34] The dynamic

structure factor can be calculated as the power spectral density of the state function u(�x, t)

S(�k,ω) = lim
T→∞

lim
X→∞

1

T

1

X
|
∫ T

−T

∫ X

−X
u(x, t)e−iωte−i�k·�xdtd�x|2. (2.6)

Different types of structures can present different dynamic spectrum factors. Some typical

examples will be shown in Section 2.3

2.1.3 Window function

Since spectral analysis is used to determine the structure, numerical artifacts, such as the

spectral leakage, will inevitably occur, interfering with my findings. Hence a window func-

tion is employed to alleviate this interference. Explained simply, a window function is a

19



2.1. MATHEMATICAL TOOLS

mathematical function that is zero-valued outside some chosen interval. The Fourier trans-

form is in general an integral in the interval from negative infinity to positive infinity. But

in the actual spectrum analysis, it is only possible to choose a finite interval for the sam-

ple. Such a choice can be considered as the simplest example of the window function, the

rectangular window, which is constant inside the chosen interval. For a periodic sample,

only if the chosen interval is exactly an integral multiple of the period can the spectrum

analysis with the rectangular window be exact. An example is shown in Fig.2.2. The signal

considered is a cosine-shaped function with a frequency of 15. In the spectrum analysis, a

signal peak is expected only at the frequency 15. One can see that with a window length

of 2 (Fig.2.2(b)), the result coincides with the expected value. But for an arbitrary window

length, there is leakage near the expected peaks (Fig.2.2(c)).
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Figure 2.2: (a)The signal used, y(x) = cos(30πx), (b) the spectrum obtained by using a rect-

angular window within the interval [0,2], (c) the spectrum obtained by using a

rectangular window within the interval [0,1.7]
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2.1. MATHEMATICAL TOOLS

In technical applications, most signals are complex, and it is not possible to ascertain the

period. Under such conditions, the leakage can interfere with the measurements, leading to

numerical artifacts. Hence different window functions have been proposed to reduce such

interference. Two common examples are the Hamming window and Hann window. Both

windows are in the family known as "raised cosine" or "generalized Hamming" windows.

They are named respectively after Julius von Hann and Richard Hamming [35]. The Ham-

ming window has the form

w(n) = 0.54−0.46 cos

(
2πn

N −1

)
. (2.7)
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(b)

Figure 2.3: (a) Hamming window with N = 1700. (b) Spectrum analysis for y(x)= cos(2πx)

with the Hamming window in the interval [0,1.7].

And the Hann window has the form

w(n) = 0.5

(
1− cos

(
2πn

N −1

))
. (2.8)

The two windows and their resulting spectra are shown, in Fig.2.3 and Fig.2.4 respectively.

In comparison with Fig.2.2(c), one can see that with these window functions, the leakage can

be effectively reduced in the spectrum analysis. In this work, these two window functions

are used in most spectrum analyses.

2.1.4 Master stability function

The master stability function is a mathematical and physical tool for studying the problem

of synchronous stability for any linear coupling of oscillators. It was first introduced by L.
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Figure 2.4: (a) Hann window with N = 1700. (b) Spectrum analysis for y(x) = cos(2πx)

with the Hann window in the interval [0,1.7].

M. Pecora and T. L. Carroll [36]. Since the coupled map lattice model used in this work can

also be considered as a simple network system, the master stability function will be used to

investigate the stability of some states with respect to the coupling.

In general, one considers a coupled N-node (oscillator) system with the form

ẋi = F(xi)+σ ∑
j

Gi jH(x j). (2.9)

Here xi is the component of the m-dimensional vector of the dynamical variables corre-

sponding to the i-th node. F(xi) represents the dynamics of the uncoupled nodes and should

be identical for each node. H : Rm → Rm is an arbitrary function of node variables. Gi j are

coupling coefficients that should satisfy ∑ j Gi j = 0 so that the synchronization manifold is

an invariant manifold. And σ is a coupling strength. The whole system can be rewritten as

the vector form

ẋ = F(x)+σG⊗H(x). (2.10)

Here the symbol ⊗ denotes the direct product; the vectors are defined as

F(x) = [F(x1),F(x2), . . . ,F(xN)],

and

H(x) = [H(x1),H(x2), . . . ,H(xN)],
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2.2. DYNAMIC PROPERTIES OF THE BASIC SYSTEMS

with

x = (x1,x2, . . . ,xN);

and G is the matrix of coupling coefficients {Gi j}. For the stability analysis, the linearized

equation with a small perturbation ξ is considered,

ξ̇ = [IN ⊗DF +σG⊗DH]ξ . (2.11)

This equation can be used to calculate Lyapunov exponents. The first term in Eq.(2.11) is a

block diagonal with m×m blocks, and the second term can be transformed by diagonalizing

G. Since the transformation only acts on the matrix IN , it does not affect the first term. In

this way, the Eq.(2.11) can be simplified and rewritten as a block-diagonalized differential

equation, with each block having the form:

ξ̇k = [DF +σγkDH]ξk, (2.12)

where γk is an eigenvalue of G, with k = 0,1,2, . . . ,N −1. With regard to the synchronized

state, the Jacobian functions DF and DH should be the same for each block. Thus for

the stability analysis, one can use Eq.(2.12) to calculate the so-called transverse Lyapunov

exponents. And Eq.(2.12) is called the master stability function.

2.2 Dynamic properties of the basic systems

Before starting to investigate the spatially extended systems with fluctuating time delay, it

is important to know the dynamic properties of the basic dynamical system, such as the

delayed logistic map and the Hutchinson’s equation.

2.2.1 Hutchinson’s equation

In 1838, the Belgian mathematician Pierre François Verhulst introduced the famous equation

[37]
dN

dt
= rN(1− N

K
) (2.13)
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2.2. DYNAMIC PROPERTIES OF THE BASIC SYSTEMS

to study the population growth problem, an equation which he later called the logistic equa-

tion [38]. Afterwards, the logistic function has been applied in a range of fields, includ-

ing biology, biomathematics, demography, economics, chemistry, mathematical psychol-

ogy, probability, sociology, political science, statistics, and so on. In 1948, Hutchinson [23]

appeared to be the first ecologist to investigate the role of explicit delays in ecological mod-

els and introduced the time delay into the logistic equation to form a more realistic logistic

model, as shown in Eq.(1.3).

The Hutchinson’s equation can have two different states depending on the values of the

parameter a and the delay τ . When aτ ≤ π
2

, the system converges to the fixed point 1,

otherwise one gets a periodic orbit. The threshold π
2

can be determined by stability analysis

of the fixed points [39]. For the equation

0 = au∗(1−u∗), (2.14)

one obtains two fixed points, 0 and 1, for the Hutchinson’s equation. Linearizing the

Hutchinson’s equation allows the governing equation for the perturbation

δ u̇(t) = a(1−u(t − τ))δu(t)−au(t)δu(t− τ) (2.15)

to be determined.

Suppose that δu(t) = δu0est , where s is the stability exponent, which is generally complex.

The real part of s is the Lyapunov exponent λ . By plugging it into Eq.2.15, one obtains

s = a(1−u(t − τ))−au(t)e−sτ. (2.16)

For the fixed point 0, s = a > 0, which means that this fixed point is always unstable. For

the fixed point 1, the situation is more complicated, and the characteristic equation is now

s =−ae−sτ , (2.17)

where s is a complex number which can be written as λ + iω . The stability of this fixed

point can only be changed through the non-hyperbolic fixed point, which means the real

part of s is equal to 0. When substituting s = iω in Eq.(2.17), one gets

iω =−ae−iωτ . (2.18)
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(a) (b)

(c) (d)

Figure 2.5: Temporal evolution of state for the Hutchinson’s equation under different param-

eter values of a, with a time delay of τ = 1, (a) a = 1.2, (b) a = 1.4, (c) a = 1.6,

(d) a = 1.8.

This equation can be rewritten as

0 = acos(ωτ), and (2.19)

ω = asin(ωτ). (2.20)

The solution of this pair of equations is simply ω = a, and ωτ = 2kπ + π
2

. This indicates

the threshold of this Hutchinson’s equation at aτ = π
2

.

In Fig.2.5, one can see the time evolution of the state for the Hutchinson’s equation. Panels

(a) and (b) correspond to the stationary state. The system converges to the fixed point 1 after

sufficient time. Panels (c) and (d) correspond to the periodic state. Here the periodic oscilla-

tion in the temporal evolution can be seen. The amplitude of the oscillation is in accordance

with the control parameter a · τ . In addition, starting from the same initial conditions, the

larger a · τ is, the more time is necessary for the system to achieve the fixed point.
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2.2.2 Delayed logistic map

Since the logistic map was introduced by the biologist Robert May in 1976 [40], it has

been used as "an archetypal example of how complex, chaotic behavior can arise from very

simple nonlinear dynamical equations" [41]. In 1968, Maynard Smith introduced a discrete

analogy of Hutchinson’s equation [42], obtaining a difference equation

un+1 = aun(1−un−1), (2.21)

which is the delayed logistic map Eq.(1.7) with a time delay of T = 1. Like the logistic

map, the dynamic of the delayed logistic map is also complex. Fig.2.6 shows the bifurcation

diagram and the Maximal Lyapunov exponent λ for Eq.(2.21) as functions of the control

parameter a.

(a) (b)

Figure 2.6: Bifurcation diagram and Maximal Lyapunov exponent for Eq.(2.21) as functions

of a

The delayed logistic map has two fixed points. One is u∗1 = 0. It is asymptotically stable for

0< a< 1 and unstable for a> 1. The other is u∗2 = 1− 1
a
. When a> 1, the second fixed point

is positive and thus significant. This fixed point is asymptotically stable for 1 < a < 2. But

there are two different kinds of relaxation dynamics towards the second fixed point in the

map’s stable region. For 1 < a < 1.25, the solutions starting near this fixed point approach

it monotonically, while for 1.25 < a < 2, the solutions starting near this fixed point exhibit

damped oscillations as approaching the fixed point. In Fig.2.7, the evolution of states is

shown, clearly demonstrating the difference between two kinds of transient dynamics.

The evolution of the stability and the dynamics of the fixed points can also be inferred from

the Maximal Lyapunov exponent λ . In Fig.2.6(b), λ is negative and monotonically increases
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(a) (b)

Figure 2.7: (a) a= 1.1, monotone approach to a fixed point, (b) a= 1.8, damped oscillations.

for 0< a< 1 and reaches 0 at a= 1, which means that the system dynamics change here and

a = 1 correspond to the stability threshold for changing the fixed points. Beyond this point,

λ turns negative again and monotonically decreases until a = 1.25. This value a = 1.25

is the threshold where the imaginary part of the stability exponent is no longer 0. This

result can be confirmed by analytical calculation. The linear equation of Eq.(2.21) for the

perturbation reads as

δun+1 = a(1−un−1)δun −aunδun−1, (2.22)

assuming a perturbation δun = δu0esn, where s is the stability exponent. In the interval

a ∈ [1.25;2], the stability of the equilibrium point u∗ = 1− 1
a

is studied. Thus, one can

obtain

es = 1− (a−1)e−s. (2.23)

As es �= 0, the Eq.2.23 can be rewritten as

(es)2 − es +(a−1) = 0 (2.24)

with the solution es =
1±
√

1−4(a−1)
2

. es is real only when 1−4(a−1)≥ 0. And this denotes

the threshold a = 1.25. When a ≤ 1.25, es is real. Otherwise es is a complex number.

For a > 2, the system dynamics are complex. Fig.2.8 shows an enlargement of Fig.2.6 in

this region. After the Poincare-Andoronov-Hopf bifurcation at a = 2, one can first observe

periodic or quasiperiodic sustained oscillations, which are also called a limit cycle and have

a Maximal Lyapunov exponent λ = 0. Then as the parameter a increases beyond 2, the

topology of the invariant curve and the dynamics on it undergo a sudden change and a

periodic attractor appears which is stable and has a negative Maximal Lyapunov exponent.

As the parameter a is increased further, the invariant closed curve loses its smoothness and

27



2.2. DYNAMIC PROPERTIES OF THE BASIC SYSTEMS

(a) (b)

Figure 2.8: Enlarged bifurcation diagram of the one in Fig.2.6(a) and the related Maximal

Lyapunov exponent for Eq.(2.21) as a function of a.

breaks down, giving rise to a strange attractor, for which the Maximal Lyapunov exponent

is positive. As Aronson et al. stated in their paper [43]: "In one parameter families the

transition from simple to complicated behavior is itself quite complicated." The dynamics

of the delayed logistic map are remarkably complicated when the parameter a is further

away from the bifurcation. One can observe different dynamics in a small parameter region

(see Fig.2.9).

Figure 2.9: Enlarged bifurcation diagram from Fig.2.8(a) for large a
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Furthermore, in Fig.2.10, the bifurcation diagram and the related Lyapunov exponents of

the delayed logistic map Eq.(1.7) with larger delay are shown. The delay T is chosen to be

2 or 3. One can see that when delay T increases, the second fixed point u∗2 = 1− 1
a

loses

its stability and the bifurcation point is shifted to a smaller value of the nonlinear parameter

a. And the parameter value where the trajectories describing the system dynamics becomes

divergent also becomes smaller. Thus the range of allowed nonlinear parameter a values is

compressed. Complex dynamic behaviors can also be seen beyond the bifurcation.

(a) (b)

(c) (d)

Figure 2.10: Bifurcation diagram for Eq.(1.7) with (a) T = 2, (b) T = 3 and the related

Lyapunov exponents as functions of a (c) T = 2 (d) T = 3

2.3 Dynamics of spatially extended systems

After the spatial extension is introduced in the model, some interesting phenomena appear.

The study of spatial structures (also called patterns) which are generated by such systems

is one focus of current research. Special structures, such as Turing patterns and traveling

waves, are of great interest.
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2.3.1 Turing instability

Turing instability, which is also known as diffusion-driven instability, was first studied by

Alan Turing [44]. In general, the diffusion process should smooth the concentration in-

equality and lead the system to a uniform stable state. For instance, a drop of ink dissolves

in water. But Turing instability shows another possible effect of diffusion. In his paper, A.

Turing came up with the idea of a so-called morphogen and tried to explain how the pat-

tern on an animal, for instance, stripes on a zebra, is generated through a reaction-diffusion

process. But at that time, his paper did not draw attention. There were three causes: First,

morphogen was not yet a term found in biology. Second, there were some negative con-

centration values in Turing’s model, which cannot be accepted by chemists. And last, at

that time, the Turing pattern was just considered to be an isolated phenomenon with no re-

lation to patterns in other systems. After Ilya Prigogine suggested the dissipative structure

theory [45], scientists realized that the pattern formation in different systems shared much

in common and found Turing’s speculations to be realistic. But this was already long after

the death of Turing. Today the study of Turing patterns is a research front in the study of

pattern formation in dissipative systems. In short, Turing instability shows that the interplay

of reaction and diffusion can cause the stable equilibrium of the isolated local system to

become unstable for the spatially extended system, leading to the spontaneous formation of

spatially periodic stationary structures.

In order to understand Turing instability, one can consider a two-component reaction-diffusion

system:

∂U
∂ t

= f (U,V )+DU ∇2U
∂V
∂ t

= g(U,V )+DV ∇2V,
(2.25)

where U , and V are the state variables, and DU , and DV are the diffusion coefficients. This

system consists of an activator U , which can facilitate its own reproduction, and an in-

hibitor V , which slows down the production of the activator. The mechanism of Turing

instability can be explained mathematically by a linear stability analysis. For simplicity,

we consider here only the one-dimensional case. Suppose that the system has stationary

solutions (U0,V0), which satisfies

f (U0,V0) = 0, and

g(U0,V0) = 0.
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The pair of linearized equations governing the perturbations to the stationary point of Eq.(2.25)

are
∂u
∂ t

= a11u+a12v+Du∇2u, and

∂v
∂ t

= a21u+a22v+Dv∇2v,
(2.26)

where u, and v are the perturbations and

a11 =
∂ f

∂U
|U0,V0

, a12 =
∂ f

∂V
|U0,V0

,

a21 =
∂ f

∂U
|U0,V0

, a22 =
∂g

∂V
|U0,V0

.

For the spatially extended system considered, the perturbation can be accounted for by the

form (
u

v

)
= ∑

k

(
c1

k

c2
k

)
eskt+ikx, (2.27)

where sk is the stability exponent, and k is the wavenumber. This form of the perturbation

can be substituted into the linearized equation (2.26), resulting in the characteristic equation

sk

(
c1

k

c2
k

)
=

(
a11 − k2DU a12

a21 a22 − k2DV

)(
c1

k

c2
k

)
. (2.28)

By solving the characteristic polynomial, one obtains

s2
k −Trksk +Δk = 0 (2.29)

with

Trk = a11 +a22 − k2(DU +DV ) = Tr0 − k2(DU +DV ), (2.30)

and

Δk = a11a22 −a21a12 − k2(a11DV +a22DU)+ k4DU DV

= Δ0 − k2(a11DV +a22DU)+ k4DU DV . (2.31)

Finally, one can derive the solution

sk =
Trk ±

√
Tr2

k −4Δk

2
. (2.32)

In contrast to the stability analysis solutions of ordinary differential equations, the solutions

of a partial differential equation can be stable only if the real parts of all eigenvalues sk
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are negative. Otherwise, perturbations with certain wavenumbers would be induced and the

system would become unstable. The dependence of the real part of s on the wavenumber k

can be roughly classified into two types (see Fig.2.11). For the first type, the maximum of

Re(sk) is located at k = 0 (Fig.2.11(a)), while for the other type, the maximum is found for

a nonzero wavenumber k > 0 (Fig.2.11(b)). Assuming μ is the set of control parameters,

there is a critical value μc, under which max(sk) = 0.

(a) (b)

Figure 2.11: Schematic diagram of the two different types of relationship between Re(s) and

k.

From the definition of Turing instability, one knows that the stationary state should be stable

for isolated local dynamics, which means s0 < 0 for k = 0, therefore

Tr0 = a11 +a22 < 0, (2.33)

and

Δ0 = a11a22 −a21a12 > 0. (2.34)

Because the diffusion coefficients DU and DU are positive in Eq.(2.30), Trk < Tr0 < 0.

Hence, with respect to Eq.(2.32) one eigenvalue is always negative. But the system is known

to be unstable for some value of k. Therefore, Δk = sk1 · sk2 should be negative for certain k

values, namely,

Δ0 − k2(a11DV +a22DU)+ k4DU DV < 0. (2.35)

To satisfy this inequality, the coefficient at k2 must be positive

a11DV +a22DU > 0. (2.36)
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By solving Eq.(2.31) for the local extreme of k2 (setting the first derivative of the equation

for k2 equal to 0), the critical value kc can be obtained:

k2
c =

a11DV +a22DU

2DU DV

. (2.37)

Plugging the critical value kc into Eq.(2.31) yields a new condition for Turing instability:

Δkc = Δ0 − (a11DV +a22DU)
2

4DU DV

< 0, (2.38)

which can be rearranged as

DV

DU

a11 +a22 > 2

√
Δ0

DV

DU

. (2.39)

So the sufficient conditions for Turing instability in a two-component reaction-diffusion

system are defined by Eqs.(2.33), (2.34), (2.36), and (2.39). With simple calculations, one

finds that the conditions can only be satisfied when DV >DU , which means that the diffusion

coefficient of the inhibitor should be larger than the diffusion coefficient of activator. In other

words, the propagation velocity of the inhibitor is faster than that of the activator. Hence,

the Turing instability is also called diffusion-induced instability.

When a system satisfies all four conditions, the spatially homogeneous state corresponding

to the state (U0,V0) becomes unstable to perturbations with wavenumber k within a finite

range

k1 < k < k2.

The boundary wavenumbers k1,2 can be calculated from the equation sk = 0,

k2
1,2 =

a11DV +a22DU

2DU DV
±
√

(a11DV +a22DU)−4DU DV Δ0

2DU DV
(2.40)

When studying a spatially extended system, one usually assumes the whole system to be

over a finite domain with no-flux boundary conditions. In this case, the spectrum of allowed

wavelengths becomes discrete:

kn = nπ/L, n = 1,2, . . .

ωn = 2π/kn = 2L/n,

where L is the discrete domain size. In the positive region several kn exist, and the structure

will be determined by the wavenumber with the largest real part of the stability exponent s.
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2.3.2 Traveling wave solutions

For a spatially extended system, in addition to the spatially periodic stationary solution

already discussed, more complex spatio-temporal dynamics can be observed. One such

important spatio-temporal state is the traveling wave solution with the general form

U(x, t) = φ(kx−ωt), (2.41)

where φ is a function, k is the wavenumber, and ω is the frequency. The evolution of the

system state depends on the whole term kx−ωt, which represents a wave propagation with

the velocity

vp =
ω

k
. (2.42)

As already discussed, the dynamic structure factor is used to characterize the structures. An

example is shown in Fig.2.12. Two simple states are considered. One is the traveling wave

solution

U(x, t) = sin(k0x−ω0t), (2.43)

and the other is a spatially and temporally decoupled wave state

V (x, t) = cos(k0x)sin(ω0t), (2.44)

which can also be understood as standing wave.

In Fig.2.12, the parameters are chosen to be k0 = 2 and ω0 = 3. The space domain has a size

of 4π with periodic boundary conditions.

According to the definition of dynamic structure factors, the related autocorrelation func-

tions should be calculated first. Generally, the autocorrelation function for a process f (x, t)

is defined as

R f f = lim
a→∞

lim
b→∞

∫ a

−a
dt

∫ b

−b
dx f (x, t) f ∗(x− s, t − τ). (2.45)

For the above, there are two functions:

RUU (s,τ) = lim
a→∞

[2abcos(k0s−ω0τ)− sin(2bk0)sin(2aω0)

2k0ω0

cos(k0s−ω0τ)], (2.46)

and

RVV (s,τ) = lim
a→∞

(a− 1

2ω0
sin(2ω0a))(

1

2k0
sin(2k0b)−b)cos(k0s)cos(ω0τ). (2.47)
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(a) (b)

Figure 2.12: Examples of (a) a traveling wave state and (b) a spatially and temporally de-

coupled wave state. k0 = 2 and ω0 = 3. The space domain has a size of 4π with

periodic boundary conditions.

For s = 0 and τ = 0, they read

RUU (0,0) = lim
a→∞

[2ab− sin(2bk0)sin(2aω0)

2k0ω0
] (2.48)

and

RVV (0,0) = lim
a→∞

(a− 1

2ω0
sin(2ω0a))(

1

2k0
sin(2k0b)−b). (2.49)

The normalization of R reads

rUU(s,τ) =
RUU(s,τ)

RUU (0,0)
≈ cos(k0s−ω0τ) (2.50)

and

rVV (s,τ) =
RVV (s,τ)

RVV (0,0)
≈ cos(k0s)cos(ω0τ). (2.51)

Thus, for the traveling wave state, a 2D Fourier transformation yields

r̃UU = πδ (k+ k0)δ (ω −ω0)+πδ (k− k0)δ (ω +ω0) (2.52)

and for the spatially and temporally separated state

r̃VV =
1

2
πδ (k− k0)δ (ω −ω0)+

1

2
πδ (k+ k0)δ (ω −ω0)

+
1

2
πδ (k− k0)δ (ω +ω0)+

1

2
πδ (k+ k0)δ (ω +ω0). (2.53)
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(a) (b)

Figure 2.13: Dynamic structure factors for the two examples in Fig2.12, (a) a traveling wave

state, and (b) a spatially and temporally decoupled wave state.

Now one can find the difference between two states. While the spatially and temporally

separated state has four symmetric peaks in Fourier space, for the traveling wave, there are

only two peaks, which are symmetrical with respect to the central origin. The velocity can be

obtained as the negative slope of the line between these two peaks in k-ω space. In Fig.2.13,

one can see the dynamic structure factor for the two examples. The signal size used is 4π in

space and 20 in time. Since the spatial periodic boundary condition is used, the Hamming

window is used in the temporal spectrum analysis to reduce the spectral leakage. One can

see that the peaks are located at k =±3 and ω =±2.

To test the applicability of the Wiener-Khinchin theorem in this case, one can also directly

calculate the 2D Fourier transformation of Eqs.(2.43) and (2.44), which gives

Ũ =−iπδ (k+ k0)δ (ω −ω0)+ iπδ (k− k0)δ (ω +ω0), (2.54)

and

Ṽ =
1

2
iπδ (k− k0)δ (ω −ω0)+

1

2
iπδ (k+ k0)δ (ω −ω0)

−1

2
iπδ (k− k0)δ (ω +ω0)− 1

2
iπδ (k+ k0)δ (ω +ω0). (2.55)

It is clear that the peaks are at the same position as in Eqs.(2.52) and (2.53).
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3 Coupled Map Lattices

This chapter studies discrete spatially extended systems with delays, in particular, diffu-

sively coupled map lattices. The study of the spatially extended system with delay can be

approached from two directions: one is from the isolated delay system to investigate the

influence of spatial coupling, and the other is from the spatially extended system to study

the influence of delay. The following results will be presented along these two directions.

3.1 Coupled map lattices without delay and with

constant delay

First the coupled map lattices without a delay as well as those with a constant delay are

studied. They are one starting point of the considered discrete model.

3.1.1 Coupled map lattice without delay

As a starting point, consider a lattice diffusively coupled logistic map

ui
n+1 = (1− ε)F(ui

n)+
1

2
ε[F(ui−1

n )+F(ui+1
n )] (3.1)

F(ui
n) = 1−a(ui

n)
2,

which has been investigated in depth by K. Kaneko [26]. Here the map F(un) is a variation

of the famous logistic maps. Details of this map can be found in Refs. [46, 47]. With this

model, different pattern classes were observed. Here it is used as a reference for understand-

ing the phenomena of our model with time delay.
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Figure 3.1: Bifurcation diagram and maximal Lyapunov exponent as functions of the non-

linear parameter a for Eq.(3.1) with ε = 0.4. The system size is chosen to be

256. Periodic boundary conditions and random initial conditions are used.

In Fig.3.1, the bifurcation diagram and maximal Lyapunov exponent of Eq.(3.1) as functions

of the nonlinear parameter a are shown. The states and the corresponding maximal Lya-

punov exponents can be compared. Fig.3.2 shows examples of various patterns which are

generated by this model. The classification of the different states refers mostly to Kaneko’s

work [26].
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The generated patterns depend on the parameters a and ε . For small a, the system has a

spatially homogeneous state. Beyond the bifurcation point a = 0.75, it exhibits the periodic-

doubling of kinks, and patterns with kinks (Fig.3.2(a)) can be observed. As the nonlinear pa-

rameter a is further increased, after a periodic-doubling cascade, the system exhibits chaotic

behavior correspondingly, with the domain structure sensitively dependent on initial condi-

tions. Frozen random patterns consisting of both chaotic and regular regions (Fig.3.2(b)) can

be observed. In the regular region, the dynamic behavior is not exactly regular, but slightly

fluctuates. As examples, two temporal trajectories at different sites for the frozen random

pattern (denoted by arrows in Fig.3.2(b)) are shown in Fig.3.3. In Fig.3.3(a) one can see

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 3.2: Different pattern classes of Eq.(3.1). The patterns are generated from random

initial conditions and are depicted after 2 · 105 iterations. Periodic boundary

conditions are considered. Unless mentioned otherwise, the system size is cho-

sen to be 256. (a) Pattern with kinks: a = 1.2, ε = 0.4, plotted per 32 time steps.

(b) Frozen random pattern: a = 1.5, ε = 0.4, plotted per 32 time steps. (c) Pat-

tern selection: a = 1.73, ε = 0.4, plotted per 32 time steps. (d) Spatiotemporal

intermittency: a = 1.77, ε = 0.4, plotted per 32 time steps. (e) Spatiotemporal

intermittency: a = 1.752, ε = 0.001, plotted per 32 time steps. (f) Fully de-

veloped spatiotemporal chaos: a = 1.9, ε = 0.4, plotted per 32 time steps. (g)

Traveling wave: a = 1.5, ε = 0.5, plotted per 32 time steps. (h) Traveling wave:

a = 1.8, ε = 0.5, plotted per 32 time steps. The system size is 60.

(a) (b)

Figure 3.3: Temporal trajectories for the structure in Fig.3.2(b) at sites (a) 160 and (b) 200.

the temporal evolution at the site 160, where chaotic dynamics can be observed in Fig.3.2(

b). In Fig.3.3(b) the temporal evolution at the site 200 is shown, which looks regular in

Fig.3.2(b). Here one can observe a slight fluctuation around a large mean value. In contrast
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(a) (b)

(c) (d)

Figure 3.4: Temporal trajectories for the structure in (a) Fig.3.2(a) at site 20, (b) Fig.3.2(d)

at site 82, (c) Fig.3.2(e) at site 120, and (d) Fig.3.2(f) at site 100.

to the temporal evolution of the pattern with kinks, the temporal evolution in the regular

region is stationary (see Fig.3.4(a)).

When a is further increased to values beyond the so-called 2 → 1 band merging point [48],

large spatial domains start to become unstable and split into smaller domains. The band

structure is no longer determined by the initial conditions. Smaller-sized domains are nor-

mally selected. This is called pattern selection (Fig.3.2(c)).

As a is further increased, before the system enters fully chaotic states (Fig.3.2(f)), spatio-

temporal intermittency can be observed. For the model Eq.(3.1) two types of spatiotemporal

intermittencies can be observed. In the first type, there is no spontaneous creation of bursts

(Fig.3.2(e)). If a site and its neighbors are laminar, this site remains laminar in the next step.

The temporal evolution at site 120 is shown in Fig.3.4(c). Some irregularity can be observed

for times between 10 and 40. At other times, it behaves regularly. In the second type, bursts

can be observed. For instance, in Fig.3.2(d), some bursts can be seen at the site even if all
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the states of the site and its neighbors are laminar. The temporal evolution at site 82 of this

structure is shown in Fig.3.4(b). The dynamics in this figure are irregular, but for the times

between 60 and 70, there is only a slight fluctuation around a large mean value.

Regarding the dependence on the parameter ε , when ε is small, the domain structures are

fixed in space. As the coupling ε is increased and becomes larger than 0.45, the domain

can move with a certain velocity and a traveling wave can be observed. At the parameter

value of a corresponding to the frozen random pattern, the motion of domain boundaries

is irregular (Fig.3.2(g)), while a regular traveling wave (Fig.3.2(h)) can be observed in the

pattern-selection region.

A slightly different version of the CML reads:

ui
n+1 = aui

n(1−ui
n)+D(ui+1

n +ui−1
n −2ui

n). (3.2)

Due to the change in the diffusive coupling term, the dynamic behavior of the model Eq.(3.2)

is different than that of the commonly used model Eq.(3.1). One phenomenon is that the

bifurcation point location, which depends on the nonlinear parameter a, is no longer fixed

when the coupling strength D is varied. Notice that for the model in Fig.3.1, even when

ε = 2 ·D = 0.4 the bifurcation point is still located at a = 0.75. In Fig.3.5 and Fig.3.6,

the bifurcation diagram and the maximal Lyapunov exponent as functions of the nonlinear

parameter a for the system described by Eq.(3.2) are shown for different D values. One

can see that the P1 → P2 bifurcation point shifts itself to the left with increasing coupling

strength D. Moreover, the allowed range of a also decreases with increasing D. Due to the

coupling, the value of the state variable of the coupled map lattice can be out of the interval

[0,1], which may cause divergence to infinity after some iterations.

To show the sensitiveness on the coupling strength, one can depict another bifurcation in

which the diffusion coupling D varies. Fig.3.7 is an example of this bifurcation diagram. As

can be seen, for a fixed parameter a = 1.6, the system does not converge to the fixed point

when the coupling strength D is sufficiently large.

The different classes of patterns, including patterns with kinks, frozen random patterns,

pattern selection, spatiotemporal intermittency, and traveling waves, which are observed in

the CML described by Eq.(3.1), can also be obtained in the model from Eq.(3.2). Due to the

change in coupling, the transitions of the various pattern classes are different and complex

in this model. Here we show some examples for the various patterns in Fig.3.9. Fig.3.8
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(a)

(b)

(c)

Figure 3.5: Bifurcation diagrams of Eq.(3.2) with different coupling strength D. The sys-

tem size is chosen to be 256. Periodic boundary conditions and random initial

conditions are used. (a) D = 0.01, (b) D = 0.1, and (c) D = 0.2.
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(a)

(b)

(c)

Figure 3.6: Maximal Lyapunov exponent as a function of a of Eq.(3.2) with different cou-

pling strength D. The system size is chosen to be 256. Periodic boundary condi-

tions and random initial conditions are used. (a) D = 0.01, (b) D = 0.1, and (c)

D = 0.2.
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Figure 3.7: Bifurcation diagram with the coupling strength D of Eq.(3.2) as the independent

variable, with a = 1.6.

Figure 3.8: Location of the parameters of the examples in Fig.3.9 in a-D-space.

shows the parameter locations for examples in a-D-space.

At very small a values, spatially homogeneous attractors are observed. After the P1 →
P2 bifurcation point, which depends on the coupling strength D, patterns with kinks can

be obtained (Fig.3.9(a)). But for large D, the large spatial domain between kinks splits

into small regions and the resulting pattern looks like pattern selection (Fig.3.9(e)). As the
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nonlinear parameter a is increased, random frozen pattern and pattern selection states are

obtained.

For a small D, the pattern selection states are directly obtained after the P1 → P2 transition

(Fig.3.9(b)), while the random frozen patterns can be obtained for large D (Fig.3.9(f)). When

a is further increased, before fully developed spatiotemporal chaotic states are generated

(Fig.3.9(d)), one can obtain the spatiotemporal intermittency (Fig.3.9(c)(g)). In this model,

both types of spatiotemporal intermittency can be obtained.

Because of the shrink in the value range, in this model for some large D values, the pattern

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 3.9: Space-time plot of Eq.(3.2). The patterns are generated from random initial

conditions and are shown after 2 · 105 iterations. Periodic boundary conditions

are considered. Unless mentioned otherwise, the system size is chosen to be

256. (a) a = 3.4, D = 0.01, plotted per 32 time steps. (b) a = 3.55, D = 0.01,

plotted per 32 time steps. (c) a = 3.6, D = 0.01, plotted per 32 time steps. (d)

a = 3.7, D = 0.01, plotted per 32 steps. (e) a = 2.7, D = 0.1, plotted per 32 time

steps. (f) a = 2.7, D = 0.2, plotted per 32 time steps. (g) a = 2.97, D = 0.2,

plotted per 32 time steps. (h) a = 3.4, D = 0.1, plotted per 32 time steps. The

system size is chosen to be 64. (i) a = 2.975, D = 0.2, plotted per 32 steps. (j)

a = 1.65, D = 0.45, plotted per 512 time steps.

cannot evolve to a fully developed spatiotemporal chaotic pattern with increasing nonlinear

parameter a. For instance, for the case D = 0.2, one finds that the maximum possible a value

is just under 3 (Fig.3.5(c) and Fig.3.6(c)). But even for a = 2.975, some sites in the pattern

are still laminar (Fig.3.9(i)) and the pattern belongs to a spatiotemporal intermittency class.

A schematic diagram of this phenomenon is represented in Fig.3.10. The allowed range of

the parameters a and D is below the black line. Between the blue and red lines is the regime

of spatiotemporal intermittency, and to the right of red line is the regime of fully chaotic
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states. For some D values there is no allowed value of a with which the system can present

fully chaotic states.

Figure 3.10: Schematic diagram of the allowed parameter range, spatiotemporal intermit-

tency(STI), and fully chaotic states.

For large coupling strength D, the domain structure may not be fixed in time and traveling

wave can be obtained (Fig.3.9(j)).

Additionally, in this model, one can see a new pattern. An example is shown in Fig.3.9(h).

This pattern seems to be an exact inverse of the frozen random pattern. In this pattern,

the large spatial domains contain periodic states and chaotic behavior can be seen in small

domains. In contrast, in the frozen random patterns, it is the small domains that contain

periodic states and chaotic behavior is present in the large domains. The difference between

these two patterns is apparent in Fig.3.11.

In reference to the logistic map, with the nonlinear parameter a = 3.4, a periodic orbit with

a period of 2 is obtained. Correspondingly, with this a value for a small coupling strength

D, patterns with kinks is obtained (Fig. 3.9(a)). The state variable values 0.842 and 0.452 of

the period orbit in an isolated logistic map are exactly the values of the state variables in the

stable regions in this new pattern. And the chaotic regions between the stable regimes can

be viewed as transitions between stable regimes. Without coupling, the state of each site

is determined by its initial conditions. Starting from random initial conditions, a random

configuration of the domain structure with many small domains will appear in the beginning.

Due to the large coupling strength, small domains are eliminated, leading to the presence of

only large domains. The transition between different domains is rough and chaotic.
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(a) (b)

Figure 3.11: Space-plot referring to (a) Fig.3.9(f) and (b) Fig.3.9(h). The first 64 sites are

plotted. The figure is generated by overlapping over 256 time steps.

3.1.2 Coupled map lattice with constant delay

Now consider the coupled map lattice with constant delay. The model reads

ui
n+1 = aui

n(1−ui
n−T )+D(ui+1

n +ui−1
n −2ui

n). (3.3)

The bifurcation diagrams and the corresponding Lyapunov exponents are shown in Fig.3.12

and Fig.3.13. These figures suggest that for the case with constant delay, the P1 → P2

bifurcation point is no longer dependent on the coupling strength. For the case with a delay

of T = 1 the P1 → P2 bifurcation point is always at a = 2, which is also the bifurcation

point of the delayed isolated logistic map with T = 1. In Fig.3.13(a)(b), the Lyapunov

exponents for this case with different coupling strengths D are shown. One can see that

the curves overlap perfectly in the neighborhood of a = 2. The range of allowed values of

the nonlinear parameter a still depends on the coupling strength D. With increasing D, the

allowed range of a will be compressed. Thus, for sufficiently large D, the maximum allowed

value of a can be less than the P1 → P2 bifurcation point a, and one can only obtain the

spatiotemporal homogeneous attractors.

As the delay is increased, the same behavior as for the delayed logistic map occurs. The

P1 → P2 bifurcation point shifts to left. But just after the bifurcation point, there is a small

chaotic region (see Fig.3.13(c)(d)) which does not exist in the case of T = 1. Examples

of such chaotic states are shown in Fig.3.14. The delay is chosen to be T = 2 and the

coupling strength D = 0.01. For the nonlinear parameter a, two values are chosen. One is

a = 1.63, which is in the chaotic region, with the maximal Lyapunov exponent λ = 0.002.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.12: Bifurcation diagrams for Eq.(3.3). (a) T = 1, D = 0.01. (b) T = 1, D = 0.1. (c)

T = 1, D = 0.2. (d) T = 2, D = 0.01. (e) T = 3, D = 0.01, (f) T = 3, D = 0.1.

The other is a = 1.66, with the maximal Lyapunov exponent λ = 0. The initial conditions

are randomly selected near the unstable fixed point 1− 1
a

with a perturbation of 0.1. In the

transitional chaotic region, the structure is weakly chaotic (Fig.3.14(a)). For the steady state,

the structure is regular (Fig.3.14(b)).
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(a) (b)

(c) (d)

Figure 3.13: Maximal Lyapunov exponent as a function of a (a) T = 1, each different color

refers to a different coupling strength. (b) Enlarged figure of (a). (c) T = 2,

D = 0.01. (c) T = 3, D = 0.01.

(a) (b)

Figure 3.14: Space-time plot for Eq.(3.12) with T = 2 and D = 0.01. The structure is gen-

erated from random initial conditions around an unstable fixed point 1− 1
a

and

depicted after 2 · 105 iterations. Periodic boundary conditions are considered.

The system size is chosen to be 256. (a) a = 1.63, (b) a = 1.66.
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With delay present, only some patterns can be generated in this model. Here one can com-

pare Fig.3.13 with Fig.3.6. While in the coupled map lattice without delay the dynamics are

complex and abundant after the P1 → P2 bifurcation point, in the coupled map lattice with

constant delay, the dynamics are relatively simple. For some constant delays, hardly any

chaotic region can be observed after the bifurcation point. This means that chaotic patterns,

such as fully developed spatiotemporal chaos, spatiotemporal intermittency, frozen random

pattern, and pattern selection might not be found in a coupled map lattice with constant

delays.

(a) (b)

Figure 3.15: Space-time plot for Eq.(3.12) with T = 1. The structure is generated from ran-

dom initial conditions around an unstable fixed point 1− 1
a

and depicted after

2 ·105 iterations. Periodic boundary conditions are considered. The system size

is chosen to be 256. (a) a = 2.235, D = 0.01, and (b) a = 2.25, D = 0.001.

For instance for the constant delay T = 1, one can observe a region with λ = 0 after the

bifurcation point. As the parameter a further increases, a stable region can be found for

small coupling strengths, for instance D = 0.01. In this region there are some patterns

with kinks. For example, with a = 2.235 and D = 0.01, the pattern in Fig.3.15(a) can be

generated. This pattern has a maximal Lyapunov exponent λ = −0.025. As the parameter

a further increases, the system diverges to infinity for most coupling. Only for very weak

coupling some chaotic structures can be found, for instance, with a = 2.25 and D = 0.001.

Here a pattern selection (see Fig.3.15(b)) with a maximal Lyapunov exponent λ = 0.066

occurs.

The region with λ = 0 after the P1 → P2 bifurcation point denotes another important effect

resulting from the presence of delay. The traveling wave solution can be found even in the

cases with weak coupling as well as in chaotic structure. Referring to Fig.3.14, one can
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(a) (b)

(c) (d)

Figure 3.16: Dynamic structure factor (a) corresponding to the structure in Fig.3.14(a), (b)

corresponding to the structure in Fig.3.14(b), (c) integration of the ω-spectrum

from (b) with k ≤ 0, (d) integration of the k-spectrum from (b) with ω ≤ 0

find some irregular structures in the chaotic state and a wave-shaped regular structure. This

finding can be verified by using the dynamic structure factor. Fig.3.16(a)(b) show the dy-

namic structure factors corresponding to Fig.3.14(a)(b), respectively. The amplitude of the

spectrum on a logarithmic scale is denoted with different colors. In the analysis, hamming

window with size 999 is used. The dynamic structure factor is averaged over 100 samples.

The dynamic structure factor for Fig.3.14(a) is rough, indicating chaotic behavior. In addi-

tion, this dynamic structure factor is not fully axially symmetric, which means that there are

also spatial displacements in the structure. For the wave-shaped structure several pairwise

occurring centrosymmetric peaks can be seen in the dynamic structure factor. For further

analysis, the spectrum is integrated for k with ω ≥ 0 and for ω with k ≥ 0, respectively

(Fig.3.16(c)(d)). One can see that the spectrum is not symmetric and the highest peak is

found at k ≈−2.70 and ω ≈−0.64. According to Fig.3.16(b), this pair of peaks is located

at (−2.7,0.64) and (2.7,−0.64). As mentioned in Section 2.3.2, the velocity can be ob-
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tained as the negative slope of the line between two centrosymmetric peaks in k-ω-space.

Determining the slope indicates that the velocity of wave has the value v = −ω
k
≈ 0.24

site/iteration.

The wave solution is not artificial and the coupling strength D = 0.01 is a weak coupling.

One can find that with the presence of delay, even for weak coupling, the structures are no

longer stationary in space. To verify that this phenomenon does not only occur for large

delay, an example for the case of T = 1 is shown in Fig.3.17. The nonlinear parameter is

chosen to be a= 2.05. Random initial conditions and periodic boundary conditions are used.

The system size is chosen to be 256. The structure is shown after 2 ·105 transient iterations.

In the temporal spectrum analysis, a hamming window with a size of 999 is applied. The

dynamic structure factor is averaged over 100 samples. A spatially unfixed structure can be

observed, and in the corresponding dynamic structure factor, some centrosymmetric peaks

are present. These indicate the existence of the traveling wave solution.

(a) (b)

Figure 3.17: Space-time plot and the corresponding dynamic structure factor for Eq.(3.12)

with T = 1, a = 2.05, and D = 0.01. The amplitudes of the spectrum analysis

are represented logarithmically with different colors.

3.2 Analysis of the bifurcation point shift

The previous results indicate that the bifurcation point becomes fixed in the presence of

delay. To determine the reason for this phenomenon, the stability of the fixed point 1− 1
a

will be calculated. With spatial coupling, the Jacobian matrix J becomes the sum of the
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extension matrix DF from the Jacobian matrix Jp for the isolated system and the coupling

matrix CD, where

DF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Jp

Jp

. . .

. . .

Jp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.4)

CD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CDC CDN CDN

CDN CDC CDN

. . .
. . .

. . .

. . .
. . .

. . .

CDN CDC CDN

CDN CDN CDC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

CDC =

⎛
⎜⎜⎜⎜⎝

−2
⎞
⎟⎟⎟⎟⎠ (3.6)

CDN =

⎛
⎜⎜⎜⎜⎝

1
⎞
⎟⎟⎟⎟⎠ . (3.7)

Here the matrices CDC and CDN have the same dimension as matrix Jp, which is determined

by the isolated system. Only CDC(1,1) =−2, CDN = 1, and the rest are equal to 0.

The stability of the stationary state of the system is characterized by the eigenvalues of the

Jacobian matrix J. If the absolute values of all eigenvalues are smaller than 1, the state

is stable, otherwise it is unstable. Since the matrix DF characterizes the system dynamics

corresponding to the local reaction term, the direct way to examine the influence of spatial

coupling is to infer the eigenvalues of J from the eigenvalues of DF and CD. But this idea
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leads to a mathematically unsolved problem: the relationship between the eigenvalues of the

individual matrices and the eigenvalues of their sum. Even though many mathematicians

have worked on this problem for about a hundred years, there are only some results for

special matrices, for instance, the Hermitian matrices and normal matrices [49–51]. From

another point of view, the coupled map lattice can be considered as a simple type of system

with network coupling. The stability analysis for the network, which is based on the so-

called master stability function, should also be applicable in this model.

Since the considered model is discrete, the corresponding master stability function should

also be reformed for the discrete system. For the case without delay, the considered system

can be written in the form

un+1 = F(un)+D ·G⊗H(un). (3.8)

Notice here that D is σ in the definition of the master stability function in Eq.(2.9). And the

linear equation for perturbation reads

ξ̇ = [IN ⊗DF +D ·G⊗DH]ξ . (3.9)

For the case without delay, the state variable has only one component of each node, thus the

matrix H(x) = 1 and

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 −1

1 −2 −1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1

1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.10)

The Jacobian function DF can be obtained from the linearized equation of the isolated iterate

map

DF = a−2au. (3.11)

As discussed previously, this model has two fixed points u∗1 = 0 and u∗2 = 1− 1
a
. The loss of

stability of the fixed point u∗2 is attributed to the considered bifurcation point. According to

the master stability function method, the equation

|ξ(n+1)k|= (a−2au∗2+Dγk)|ξnk| (3.12)
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can be used here to calculate the stability of the fixed point u∗2. Here γk is the k-th eigenvalue

of the coupling matrix G. Since the perturbation is assumed to be |ξnk| = |ξ0k|eλkn, one

obtains

eλk = |2−a+Dγk|. (3.13)

Thus, the the stability threshold of u∗2 is located at |2−a+Dγk|= 1.

• When |2−a+Dγk|> 1, the Lyapunov exponent is positive, the perturbation will grow

up, and the state u∗2 is unstable.

• When |2− a+Dγk| < 1, the Lyapunov exponent is negative, the perturbation will

shrink in size, and the state u∗2 is stable.

Recall that the diffusive coupling matrix G has eigenvalues γk ∈ [−4;0] [36, 52, 53].

Figure 3.18: Stability distribution of Eq.(3.2) for the fixed point u∗2 in a-Dγk-space.

The boundaries of the stable region can be obtained from Eq.(3.13):

Dγk = a−1 and (3.14)

Dγk = a−3. (3.15)

The stability of the fixed point u∗2 is determined by this system of equations. The fixed point

is stable for a given parameter set a and D only when the fixed point is stable for all possible

Dγk. For the left boundary, corresponding to Eq.(3.14), there is a maximum a = 1 for

Dγk = 0. This maximum exists for all D. Thus, the left boundary can be simplified as a = 1.
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The right boundary given by Eq.(3.15) describes the bifurcation point. The stability of u∗2 in

terms of a and Dγk is schematically represented in Fig.3.18. The results can be confirmed

by comparing bifurcation diagrams. For instance, for a case with coupling strength D = 0.2,

Eq.(3.15) gives a minimum a = 2.2 for Dγk ∈ [−0.8,0] (see red dashed line in Fig.3.18).

Thus, the bifurcation point for D = 0.2 is located at a = 2.2, as can be seen in Fig.3.5(c).

And for the case with coupling strength D= 0.1, a= 2.6 ( see black dashed line in Fig.3.18).

This result can also be used for comparison with Fig.3.5(b).

Now consider the coupled map lattice with a constant delay. The presence of delay effec-

tively adds other dimensions to phase space, thereby expanding it. Here the analysis for a

case with delay T = 1 is presented. For larger delay, the analysis can be performed in the

same way.

Figure 3.19: Stability distribution for Eq.(3.12) with a constant delay of T = 1 in a-Dγk-

space. Red: stable. Blue: unstable.

For the local reaction dynamics

un+1 = aun(1−un−1), (3.16)

the Jacobian matrix is

DF = Jp =

(
a(1−un−1) −aun

1 0

)
. (3.17)
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(a) (b)

Figure 3.20: Stability distribution for Eq.(3.12) with constant delay (a) T = 2, (b) T = 10 in

a-Dγk-space. Red: stable. Blue: unstable.

Since the spatial coupling is only applied on the component un, the matrix

H =

(
un 0

0 0

)
, (3.18)

so that

DH =

(
1 0

0 0

)
. (3.19)

Considering of the stability of the fixed point u∗2 = 1− 1
a
, the Jacobian matrix, which is

obtained through the master stability equation, has the form

J = DF(u∗2)+DγkDH =

(
a(1−u∗2) −au∗2

1 0

)
+Dγk

(
1 0

0 0

)
(3.20)

=

(
1+Dγk 1−a

1 0

)
.

Thus. one can calculate the Lyapunov exponents from this class of Jacobian matrices with

different a and Dγk values. Fig.3.19 shows the stability distribution in this case. The stable

region is indicated by red, and the unstable region is indicated by blue. For a diffusive

coupling, the coupling strength is generally not larger than 0.5, thus Dγk ≤ 2. The figure

shows that for D = D ∈ [0,0.5], the fixed point u∗2 = 1− 1
a

is always stable for a ∈ [1,2].

Hence the bifurcation point is fixed.

For the case with larger delay, the Jacobian matrix of the local reaction has a larger dimen-

sion T +1. The spatial coupling is always only applied on un, therefore the matrix DH is a
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(T +1)× (T +1) matrix with DH(1,1) = 1 and the rest equal to 0. Hence, in this case, the

stability for fixed point u∗ can also be analytically calculated through the Jacobian matrices

with a general form

J = DF(u∗)+DγkDH (3.21)

=

⎛
⎜⎜⎜⎜⎜⎝

a(1−u∗) −au∗

1

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠+Dγk

⎛
⎜⎜⎜⎜⎝

1
⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

a(1−u∗)+Dγk −au∗

1

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Here J is a (T +1)×(T +1) matrix with J(1,1) = a(1−u∗)+Dγk, J(1,T +1) =−au∗ and

a secondary diagonal occupied by the value 1. The rest is equal to 0.

As examples, the stability exponent for the fixed point u∗2 = 1− 1
a

for case with constant

delay T = 2 and T = 10 are calculated and the resulting stability distributions are shown in

Fig.3.20. The figure shows that for large delay, the right boundary of the stable region is

no longer Dγk-independent. With the help of the master stability function, a state is stable

only when all stability exponents for the corresponding Dγk values have negative real parts.

So for the boundary in Fig.3.20, the minimum of a on the right boundary can be found by

Dγk = 0 when Dγk is less than a certain value. This means the bifurcation point is fixed

before the coupling strength D reaches a certain value.

For instance, for the case with a constant delay T = 2, when the coupling strength is less

than a certain value, such as D = 0.1, 0.2, and 0.3, giving a corresponding range of Dγk

[−0.4;0], [−0.8;0], and [−1.2;0], respectively, a = 1.61 at Dγk = 0 is the minimum of a on

the right boundary. This means that the bifurcation point is located at a = 1.61. When the

coupling strength increases beyond a certain value, for instance, D = 0.4, corresponding to

a range of Dγk [−1.6;0], the minimum of a on the right boundary is a = 1.4 at Dγk =−1.6

for this case. This means that the bifurcation point is located at a = 1.4. This result can be

confirmed by the bifurcation diagram or Lyapunov exponent as a function of a. In Fig.3.21,
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Figure 3.21: Lyapunov exponent as a function of a for Eq.(3.12) T = 2.

the Lyapunov exponents as functions of the nonlinear parameter a for Eq.(3.12) with T = 2

for different coupling strengths are shown. One can see that the bifurcation point is fixed at

a = 1.61 for D = 0.1 (black line), 0.2 ( red line), and D = 0.3 (green line). It is shifted to

left only when D is very large (see blue line, D = 0.4).

The reason for this phenomenon is based on the Lyapunov exponents. For the delay T = 1,

the eigenvalue can be calculated from the Jacobian matrix (3.21) and can be obtained from

L2 − (1+Dγk)L+(a+1) = 0, (3.22)

where L is the eigenvalue. For this equation, Δ = (1+Dγk)
2 − 4(a+ 1). For this study,

Dγk ∈ [0,2] and a is in the neighborhood of 2. Thus Δ is always negative, which means

the eigenvalues are a pair of complex conjugate numbers with the same module. Hence,

this pair of eigenvalues can be considered as one. The right boundary of the stable region

therefore depends only on one eigenvalue. But for large T , one obtain T + 1 Lyapunov

exponents, which contains several pairs of complex conjugate numbers, real numbers, and

pure imaginary numbers. The stability is determined by the largest one of them and may

have a different behavior when Dγk changes. So the zig of the right boundary of the stable

region can be caused by the switch of positions in the Lyapunov sequence.module.
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3.3 Coupled map lattices with fluctuating delay

Now coupled map lattices with spatially and temporally fluctuating delay are investigated.

With regard to the time variation of the delay, this section concentrates on the periodic

case. The spatial variation of the delay can also be classified as two different cases: the

synchronized case and nonsynchronized case. For the synchronized case, the delay is only

dependent on time, which means that at any time step n, all nodes have the identical delay.

For nonsynchronized case the delay is dependent on both time and space. The initial delays

on the different nodes are randomly selected and varies with the same periodic sequence,

which means there is a random phase shift between the time evolution of the delays on

different nodes.

For simplicity, in this study, the delay is only considered to fluctuate between two different

values. More precisely, the time evolution of the delay is described by a step function:

T (n) =

{
T1 if n mod Tp < Tp1

T2 otherwise
, (3.23)

where T1 < T2, and Tp is the period of the delay and Tp1 is the duration where the delay takes

the value T1.

3.3.1 Synchronized periodic delay

This section discusses the case with synchronized periodic delay. First, the delays T1 and

T2 are chosen to be 1 and 2, respectively, and the durations Tp = 2, and Tp1 = 1. The

bifurcation diagram and the Lyapunov exponent as a function of the nonlinear parameter a

for different coupling strengths are shown in Fig.3.22. Here two interesting phenomena can

be observed. One is the bifurcation point, where the spatially homogeneous state loses its

stability. It is fixed on a = 2, which is also the bifurcation point for the case with a constant

delay of T = 1. The other is the dynamics after the bifurcation. In comparison with the

case with constant delay, the dynamics in this case are much more complex and abundant.

A typical phenomenon is the existence of stable states. In the case of fluctuating delay, one

can observe a large periodic window.

For the stability analysis of the homogeneous state, the master stability function can be used.

As calculated previously, in this case, the Jacobian matrices can be written as
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J1 =

⎛
⎜⎝

a(1−u∗2)+Dγk −au∗2 0

1 0 0

0 1 0

⎞
⎟⎠ (3.24)

for a delay of T1 = 1 and

J2 =

⎛
⎜⎝

a(1−u∗2)+Dγk 0 −au∗2
1 0 0

0 1 0

⎞
⎟⎠ (3.25)

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 3.22: Bifurcation diagrams and Lyapunov exponents for coupled map lattices with

synchronized periodic delay, T1 = 1, T2 = 2, Tp = 2, and Tp1 = 1. The results

are obtained from random initial conditions and depicted after 5 ·105 iterations.

Periodic boundary conditions are considered. The system size is chosen to be

100. (a),(b) D = 0, (c),(d) D = 0.01, (e),(f) D = 0.1, (g),(h) D = 0.2.

Figure 3.23: Stability distribution for Eq.(3.12) with synchronized periodic delay T1 = 1,

T2 = 2, Tp = 2 and Tp1 = 1 in a-Dγk-space. Red: stable. Blue: unstable.

for a delay of T2 = 2. Thus the stability of the fixed point u∗2 can be determined by the

eigenvalues of the matrix J1J2. Fig.3.23 shows the stability distribution for this case. The

stable region is indicated by red color and the unstable region by blue. The right boundary

of the stable region is similar to the case with a large constant delay. The minimum of a

is located at Dγk = 0 when Dγk is less than 1. For the examples in Fig.3.22, the maximum
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Figure 3.24: Maximal Lyapunov exponent as a function of a for Eq.(3.12) with synchronized

periodic delays T1 = 1, T2 = 2, Tp = 2, and Tp1 = 1 under different coupling

strength.

of the selected coupling strengths is 0.2, which corresponds to Dγk ∈ [0,−0.8]. So that the

bifurcation point appears to be fixed. Furthermore, the Lyapunov exponent as a function

of a for different coupling strengths D is shown in Fig.3.24. Here one can see that the

bifurcation point is fixed for small coupling strengths D = 0.01 (black line), D = 0.1 (red

line), and D = 0.2 (green line). For a large coupling strength D = 0.3 (blue line). it is shifted

to the left. Note that for case with a constant delay of T = 2, the domain of a is smaller than

the case with a constant delay of T = 1. Even for small D values after a ≈ 1.8, the system

states diverge to infinity. Correspondingly, for the case with fluctuating delay with D = 0.3,

the system states also diverge to infinity right after the fixed point loses its stability and there

are no finite states after the bifurcation.

When T2 increases, the behavior of the bifurcation point changes. First, when the difference

between the two delays is not very large, the bifurcation point is shifted to the left and fixed

there; for instance, see the cases with a delay of T2 = 3 or T2 = 7 (see Fig.3.25(a)(b)). As T2

further increases, one obtains an asymptotic shape of the stability distribution (see Fig.3.25).

When Dγk = 0, the bifurcation point is located at a = 1.99, which is slightly to the left of the

bifurcation point a = 2 for the case with a constant delay of T = 1. This can be explained by

the dynamic behavior of a delay system with large delays. For a constant delay system with

delay τ → ∞, the Lyapunov spectrum for an unstable state can be asymptotically split into

a point-like component which remains finite and an ordinary spectral component λ which
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(a) (b)

(c) (d)

Figure 3.25: Stability distribution for Eq.(3.12) with synchronized periodic delay with fixed

T1 = 1, Tp = 2, and Tp1 = 1 for different T2 values in a-Dγk-space. (a) T2 = 3,

(b) T2 = 7, (c) T2 = 10, and (d) T2 = 50. Red: stable. Blue: unstable.

satisfies

λτ · τ ≈ Λ as τ → ∞. (3.26)

Here Λ is a constant spectrum which can be analytically calculated [54, 55]. For coupled

map lattices with delay (Eq.(3.3)), the linearized equation can be written as

δ�un+1 = Aδ�un +Bδ�un−T +D ·G⊗δ�un, (3.27)

where δ�un = (δu1
n,δu2

n, . . . ,δuL
n), L is the spatial size. A and B are the matrices which are

based on the partial differential of the local iteration after ui
n and ui

n−T , and G is the coupling

matrix. The perturbation can be written as δ�un = δ�u0esn, where s is the stability exponent

and the real part of s is the Lyapunov exponent λ . Thus, Eq.(3.27) can be written as

δ�u0es = Aδ�u0 +Bδ�u0e−sT +D ·G⊗δ�u0. (3.28)
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As the maximal Lyapunov exponent is positive for T → ∞, the second part of Eq.(3.28) can

be neglected. Thus, the maximal Lyapunov exponent converges to a certain value when the

delay T → ∞. For the case with fluctuating delay, the boundary between stable and unstable

regions is determined by the interaction between the stability properties for the cases with

constant delays.

(a) (b)

Figure 3.26: Stability distribution for Eq.(3.12) with synchronized periodic delay with fixed

Tp = 2, Tp1 = 1, and T1 = 2 for different T2 values in a-Dγk-space. (a) T2 = 50,

(b) T2 = 100. Red: stable. Blue: unstable.

For the cases with fluctuating delays, the stability property is influenced by the stability

properties for cases with the corresponding constant delays. Since T1 is fixed and there

is an asymptotic state for T2 → ∞, asymptotic states may be obtained when the difference

between the considered delays ΔT = (T2−T1)→ ∞. In Fig.3.26, an example is shown. Here

the delay T1 is fixed at 2, and T2 is chosen to be 50 in (a) and 100 in (b). One can see that both

distribution diagrams appear identical. For Dγk = 0, the right boundary between the stable

and unstable regions is located at a ≈ 1.48. Compare this with the stability distribution

diagram for the case with a constant delay of T = 2 (see Fig.3.20(a)). There the boundary is

located at a ≈ 1.61 for Dγk = 0.

Now the dynamic behaviors after the bifurcation are studied. As the dynamics after the

bifurcation point are complex in this case, the same patterns which can be generated in the

Kaneko model (3.1) and the model of coupled map lattices without delay (3.2) can also be

generated in this case. Some examples are shown in Fig3.27. Compare with the patterns in

Figs.3.2 and 3.9. The focus here is the study of new phenomena, , which will be discussed

in the following text.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.27: Examples of different patterns which can be generated by the coupled map lat-

tice with fluctuating delay. T1 = 1. T2 = 2, Tp = 2, and Tp1 = 1. The patterns

are generated from random initial conditions and depicted after 2 · 105 itera-

tions. Periodic boundary conditions are considered. The system size is chosen

to be 256. The structure is plotted per 32 time steps. (a) a = 2.05, D = 0.01,

(b) a = 2.12, D = 0.01, (c) a = 2.13, D = 0.01, (d) a = 2.15, D = 0.01, (e)

a = 2.03, D = 0.2, (f) a = 2.035, D = 0.2.
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(a) (b)

(c) (d)

Figure 3.28: Space-time plots (a)(b)(c) and the related temporal trajectory at one site (d) of

Eq.(3.12) with synchronized periodic delay, T1 = 1, T2 = 2, Tp = 2, Tp1 = 1,

and a = 2.03. The patterns are generated from a random initial conditions and

depicted after 2 · 105 iterations. Periodic boundary conditions are considered.

The space size is chosen to be 256. (a) D = 0.01, plotted per time step. (b)

D = 0.1, plotted per time step. (c) D = 0.2, plotted per time step. (d) Black:

D= 0, red: D = 0.01 at site x = 23, green: D = 0.1 at site x = 50, blue: D= 0.2

at site x = 50.

One effect of the fluctuating delay and spatial coupling is the enhancement of a state’s

stability. In Fig.3.28, an example is shown. Here the delays are chosen to be T1 = 1, T2 = 2,

and the duration are chosen to be Tp = 2 and Tp1 = 1. The nonlinear parameter is a =

2.03. The space-time plot for different spatial couplings D are shown with initial conditions

randomly perturbated from the unstable fixed point 1− 1
a

with an amplitude 0.1. When the

spatial coupling is absent, a periodic orbit with a period of 8 is obtained. The temporal

trajectory of a site is shown in Fig.3.28(d) with a black dashed line and black circles. In this

figure, the green line with crosses, which is the temporal trajectory at one site for the case
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of D = 0.1, exactly overlaps the black line with circles. The corresponding space-time plot

shows it is a fully synchronized state (see Fig3.28(b)). The system has a maximal Lyapunov

exponent λ =−0.02.

(a) (b)

Figure 3.29: Master stability function for fully synchronized periodic states of a coupled

map lattice with delay. (a) Synchronized periodic delay T1 = 1, T2 = 2, Tp = 2,

Tp1 = 1, and a = 2.03. The periodic state has a period of 8. (b) Constant delay

T = 1, and a = 2.18. The periodic state has a period of 7.

The possibility of such a fully synchronized state occurring can be determined by the mas-

ter stability function. In Fig.3.29(a), the master stability function for the periodic state with

a = 2.03 is shown. One can see that the Lyapunov exponent is positive only in the domain

Dγk ∈ [−0.77,−0.6]. As γk ∈ [−4;0], it means that for D < 0.15, the fully synchronized pe-

riodic state can be achieved. For our example with D = 0.1, the allowed values of Dγk are in

[−0.4,0]. In this region, the Lyapunov exponent has a maximum λ ≈−0.02 at Dγk ≈−0.1.

This maximum is exactly the value which we have obtained directly from the structure. And

with Dγk = 0.1 and the coupling strength D = 0.1, the critical value of γk is 1, which rep-

resents the wavenumber of the Lyapunov vector corresponding to the maximal Lyapunov

exponent. In Fig.3.30, the Lyapunov vector and the related spectrum are shown. As ex-

pected, the vector has the wavenumber 1.

For comparison, consider the case with constant delays. For a delay of T = 1, a window for

the periodic state with a period of 7 can be found in the bifurcation diagram for the local

map (see Fig.2.8). In Fig.3.29(b), the master stability function for an example with a= 2.18.

One can see that the Lyapunov exponent becomes positive for very small absolute values of

Dγk. This means that full synchronization can only be obtained for very weak coupling

strengths for the case with a constant delay. In contrast, for the case with fluctuating delay,
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(a) (b)

Figure 3.30: (a) Lyapunov vector corresponding to the first Lyapunov exponent for the fully

synchronized periodic state in coupled map lattices with synchronized periodic

delay T1 = 1, T2 = 2, Tp = 2, and Tp1 = 1, with a = 2.03. (b) Power transfor-

mation of the vector.

the stability of the periodic orbits of the uncoupled units can be enhanced, and corresponding

synchronized states appear in the coupled map lattices with coupling strengths up to a large

value.

Besides the fully synchronized periodic stable state, other states can also be generated. For

weaker couplings, for instance D = 0.01, a pattern with kinks can be obtained. With the

coupling strength D = 0, random initial conditions lead to a structure with phase shifts.

Although fully synchronized periodic states are possible for weak couplings, the basins of

attraction for them are small. Thus, the phase shifts between the neighbor sites generally

cannot be fully eliminated. Hence one normally obtains a structure with kinks (Fig.3.28(a)).

The temporal trajectory at the boundary of domains in such a state is different from the

trajectory of uncoupled units. An example is given in Fig.3.28(d) and is represented with

a red line and stars . The temporal trajectory is shown for the site at x = 23, which is on

the boundary of two domains. In Fig3.32(a), a space time plot for every 32 time steps is

shown. There are different domains in the structure, which is temporally periodic. For

this example, the system has a maximal Lyapunov exponent λ = −0.01. The structure is

sensitively dependent on initial conditions. This indicates the existence of a multiattractor.

For a= 2.03 and D= 0.01, the considered system has at least two attractors. One is the fully

synchronized periodic state, the other is the kink state. For stronger couplings (for instance,

D = 0.2) the system cannot converge to stable periodic orbits, due to the strong influence

from neighbors. Therefore, chaotic structures will appear (Fig.3.28(c)). An example of the

71



3.3. COUPLED MAP LATTICES WITH FLUCTUATING DELAY

temporal trajectory at one site is shown in Fig.3.28(d) with a blue line and stars. For this

example, the system has a maximal Lyapunov exponent λ = 0.01.

When the nonlinear parameter a is increased, another pattern can be observed. For instance,

(a) (b)

Figure 3.31: (a) Space-time plot and (b) the corresponding temporal trajectories at different

sites for Eq.(3.12) with synchronized periodic delay, T1 = 1, T2 = 2, Tp = 2,

Tp1 = 1, a = 2.1, and D = 0.01. The patterns are generated from a random

initial conditions and depicted after 2 ·105 iterations. They are plotted for every

time step. Periodic boundary conditions are considered. The system size is 256.

The selected sites are x = 218 (black), x = 98 (red), and x = 245 (blue).

(a) (b)

Figure 3.32: Space-time plot for Eq.(3.12) with synchronized periodic delay, T1 = 1, T2 = 2,

Tp = 2, Tp1 = 1, and D = 0.01. The patterns are generated from random initial

conditions and depicted after 2 · 105 iterations. Periodic boundary condition

are considered. The system size is 256. (a) a = 2.03, plotted per 32 steps. (b)

a = 2.1, plotted per 32 steps.
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(a) (b)

(c) (d)

Figure 3.33: Space-time plot and the corresponding dynamic structure factor for Eq.(3.12)

with synchronized periodic delay, T1 = 1, T2 = 2, Tp = 2, Tp1 = 1, a= 2.01, and

D = 0.01. The patterns are generated from random initial conditions and de-

picted after 2 ·105 iterations. The patterns are plotted per 32 time step. Periodic

boundary conditions are considered. The space size is chosen to be 256.

for the case with a = 2.1 and D = 0.01, the structure in Fig.3.31(a) is plotted for every time

step. The structure looks similar to the pattern with kinks for the case with a = 2.03 and

D = 0.01. But here the system has a maximal Lyapunov exponent λ = 0.04, which means

that the system is chaotic. Note that in the study of Kaneko, as the nonlinear parameter

increases, the patterns with kinks transform to frozen random patterns, which are chaotic.

But unlike the normal frozen random patterns, the large domains here do not correspond

to large temporal periodicity. When one looks at the structure in Fig.3.32(b), which is

plotted for every 32 time steps, one finds that some temporally nonstationary structures

exist in small bands, such as at sites x = 98 and x = 218. The temporal trajectories are

shown in Fig.3.31(b). One finds periodic behavior with a period of 8 in larger bands (blue

line, selected at site x = 245). In contrast, periodic orbits with larger periods, for example
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at site x = 98 with a period of 24 (red line), or irregular orbits, for example at site 218

(black line), can be found in small bands. As mentioned previously, for the considered

system, patterns with kinks and rough transitions can be found for the case without any

delay. The continuation of these dynamics may be the reason that such patterns for cases

with fluctuating delays are found.

Additionally, the existence of traveling waves can be confirmed in the this case. Traveling

waves can also be obtained for weak coupling. For instance, for a = 2.01 and D = 0.01 it

is possible to obtain a structure as the one shown in Fig.3.33(a). The pattern is plotted per

32 time steps. Unlike the traveling wave in the case with a constant delay, the structure for

the case with synchronized periodic delay is complex. But the structure does not appear

to be fixed spatially. The dynamic structure factor for this state is calculated and shown

in Fig.3.33(b). The spectrum is not fully axially symmetric. To make the situation more

obvious, the spectrum for k with ω > 0 and for ω with k > 0 are overlapped respectively

and shown in Fig.3.33(c)(d). The spectra are yet not symmetric, which means the waves in

the structure are not standing.

As some fascinating phenomena can be found in the above examples, it would be interesting

to know if they can be obtained under other delays. Here two other cases are also investi-

gated. In one case, the delay fluctuates slowly, which means Tp and Tp1 are very large. In the

other case, the delays themselves are large. As mentioned above, the coupled map lattices

have stable states, no matter whether the states are synchronized or not, based on the stable

state in the local process. Thus, the existence of stable periodic states in the uncoupled units

is the precondition.

The bifurcation diagrams for some examples are shown in Fig.3.34. Because the delay in-

creases, stable periodic states cannot be obtained directly after the P1 → P2 bifurcation.

Windows for stable states, however, can be obtained afterwards. For instance, for the case

with T1 = 1, T2 = 3, Tp = 2, and Tp1 = 1, there is a window for period 12 between a = 1.76

and 1.79. For cases with slowly fluctuating delay, the dynamic behavior for the correspond-

ing case with constant delays plays a more important role. The bifurcation diagram becomes

more complex, but it is still possible to obtain periodic states. As periodic states can be ob-

tained in the uncoupled units with other delays, by using the master stability function, the

possibility of having a fully synchronized periodic state in the coupled map lattices can be

determined. Some examples are shown in Fig.3.35. One can see that periodic states in

periodic windows loses their stabilities very fast in the presence of spatial coupling. The
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Lyapunov exponent can be positive even for a very small |Dγk| (see Fig.3.35(a)(b)). Thus,

the fully synchronized periodic state can only be found for very weak coupling.

For the periodic state, which is found directly after the bifurcation, the fully synchronized

(a) (b)

(c) (d)

(e) (f)

Figure 3.34: Bifurcation diagrams for a logistic map with periodic fluctuating delay. (a)

T1 = 1, T2 = 3, Tp = 2, and Tp1 = 1. (b) T1 = 2, T2 = 5, Tp = 2, and Tp1 = 1. (c)

T1 = 2, T2 = 10, Tp = 2, and Tp1 = 1. (d)T1 = 1, T2 = 2, Tp = 4, and Tp1 = 2.

(e)T1 = 1, T2 = 2, Tp = 16, and Tp1 = 8. (f)T1 = 2, T2 = 5, Tp = 16, and Tp1 = 8.

75



3.3. COUPLED MAP LATTICES WITH FLUCTUATING DELAY

(a) (b)

(c) (d)

Figure 3.35: Master stability functions corresponding to the fully synchronized periodic

state of the coupled map lattice with synchronized periodic delay (a) T1 = 1,

T2 = 3, Tp = 2, Tp1 = 1, and a = 1.77, with a period of 12. (b) T1 = 2, T2 = 5,

Tp = 2, Tp1 = 1, and a = 1.57, with a period of 22. (c) T1 = 1, T2 = 2, Tp = 4,

Tp1 = 2, and a = 1.86, with a period of 16. (f)T1 = 1, T2 = 2, Tp = 16, Tp1 = 8,

and a = 1.86, with a period of 16.

periodic state can be found in a large range of spatial coupling. As an example, Fig.3.35(c)

shows the result of the master stability function for T1 = 1, T2 = 2, Tp = 4, Tp1 = 2, and

a = 1.86. There is a periodic orbit with a period of 16. One can see that the Lyapunov

exponent is negative for Dγk ∈ [−1.56,0], which means that the fully synchronized periodic

states can be observed for any spatial coupling D ∈ [0,0.39].

For cases with very slowly fluctuating delays, due to the retention of states for the corre-

sponding cases with constant delays, cases in which there are only periodic states in periodic

windows, the fully synchronized periodic state can only be found for very weak coupling.

For instance, for T1 = 1, T2 = 2, Tp = 16, Tp1 = 8, and a = 1.86, a periodic orbit with a

period of 16 can be found. As a result of the master stability function, some positive peaks
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(a) (b)

Figure 3.36: (a) Space-time plot and (b) the related temporal trajectories at different sites for

Eq.(3.12) with synchronized periodic delay, T1 = 1, T2 = 2, Tp = 4, Tp1 = 2,

a= 1.86, and D= 0.05. The pattern is generated from random initial conditions

and depicted after 2 · 105 iterations. The time is plotted in 32-step intervals.

Periodic boundary conditions are considered. The system size is 256.

(a) (b)

Figure 3.37: (a) Space-time plot and (b) the related dynamic structure factor for Eq.(3.12)

with synchronized periodic delay, T1 = 1, T2 = 3, Tp = 2, Tp1 = 1, a = 1.77,

and D = 0.01. The pattern is generated from random initial conditions and

depicted after 2 ·105 iterations. The time is plotted in 32-step intervals. Periodic

boundary conditions are considered. The system size is 256. The amplitudes

of the spectrum analysis is logarithmic and is represented with different colors.

can be found for very small |Dγk| (see Fig.3.35(d)).

In addition, patterns with kinks and traveling waves can also be obtained under weak cou-

pling. For example, for the case with T1 = 1, T2 = 2, Tp = 4, Tp1 = 2, a= 1.86, and D= 0.05,
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it is possible to obtain a pattern with kinks. Fig3.36(a) shows one such structure. The sys-

tem has a maximal Lyapunov exponent λ = −0.003. Though there are many bands with

different sizes in the structure, the size of the bands is not related to the temporal period

in the band. Thus, this structure is not a frozen random pattern. In Fig.3.36(b), one can

see temporal trajectories at sites 2 (black), 100 (red), and 250 (blue), which are located in

bands with different sizes. The trajectories are observed to have the same period of 16. For

case with T1 = 1, T2 = 3, Tp = 2, Tp1 = 1, a = 1.77, and D = 0.01, it is possible to obtain

traveling waves. An example is shown in Fig.3.37. Some spatial transitioning is apparent in

the space-time plot (Fig.3.37(a)). The corresponding dynamic structure factor (Fig.3.37(b))

confirms the result. Centrosymmetric peaks can be observed in the dynamic structure factor.

3.3.2 Nonsynchronized periodic delay

Here the case with nonsynchronized periodic delay is investigated. First, the case with delay

T1 = 1, T2 = 2, Tp = 2, and Tp1 = 1 is considered. In Fig.3.38, the bifurcation diagram and

the corresponding Lyapunov exponent as a function of nonlinear parameter a for different

coupling strengths D are shown. The space size is chosen to be 100. Periodic boundary con-

ditions are considered. The results are obtained from random initial conditions and depicted

after 5 ·105 iterations. The initial delays at different sites at t = 0 are also chosen randomly,

with an equal probability of either 1 or 2 being chosen. The difference between the case

with synchronized periodic delay and the case with nonsynchronized periodic delay can be

clearly observed. The bifurcation point is no longer fixed for different coupling strengths.

Fig.3.38(d) shows that for different coupling strengths D, the zero positions for Lyapunov

exponent are located at different values of the nonlinear parameter a. Due to different delays

at different sites, a fully synchronized stable periodic state is no longer possible. And the

master stability function cannot be applied in this case. For weak couplings, patterns with

kinks can still be obtained, such as for the case with a = 2.06 and D = 0.01. An example

space-time plot is shown in Fig.3.39. The pattern is generated from random initial condi-

tions and depicted after 2 · 105 iterations. The pattern is plotted per 32 time steps. Periodic

boundary conditions are considered. The space size is chosen to be 256. For this state, the

system has a Lyapunov exponent λ = −0.06. The temporal trajectories at sites 50 (black),

180 (red), and 240 (blue) are shown in Fig.3.39(b). One can see that all of these trajectories

have a period of 8, even if they are in bands with different sizes.
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(a) (b)

(c) (d)

Figure 3.38: Bifurcation diagrams and the maximal Lyapunov exponents for coupled map

lattices with non-synchronized periodic delays T1 = 1, T2 = 2, Tp = 2, and

Tp1 = 1. The results are obtained from random initial conditions and depicted

after 5 ·105 iterations. Periodic boundary conditions are considered. The space

size is chosen to be 100. (a) D = 0.01, (b) D = 0.1, (c) D = 0.2. (d) Black:

D = 0.01, red: D = 0.1, and green: D = 0.2.

In addition, the nonsynchronized periodic cases with other delay variations are studied. In

Fig.3.40, one can see the dependence of the Lyapunov exponent on the nonlinear parameter

a under different couplings for two other examples. Similar phenomena as those in Fig.3.38

can be observed. The bifurcation point is not the same for different coupling strengths.

Because delay can induce spatial transitions, for large delay, stable traveling waves (the

maximal Lyapunov exponent λ = 0) can be observed instead of nonsynchronized periodic

states. For instance, for T1 = 2, T2 = 5, Tp = 2, Tp1 = 1, a = 1.5, and D = 0.01 the struc-

ture in Fig.3.41(a) can be obtained. The system has a maximal Lyapunov exponent λ = 0.

The corresponding dynamic structure factor is shown in Fig.3.41(b). The amplitude of the

spectrum analysis is shown on a logarithmic scale represented with different colors. Here
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(a) (b)

Figure 3.39: (a) Space-time plot and (b) the related temporal trajectories at different sites for

Eq.(3.12) with nonsynchronized periodic delay, T1 = 1, T2 = 2, Tp = 2, Tp1 = 1,

a= 2.06, and D= 0.01. The pattern is generated from random initial conditions

and depicted after 2 · 105 iterations. The time is plotted in 32-step intervals.

Periodic boundary conditions are considered. The space size is chosen to be

256.

(a) (b)

Figure 3.40: Maximal Lyapunov exponent as a function of the nonlinear parameter a for a

coupled map lattice with nonsynchronized periodic delay. (a) T1 = 2, T2 = 5,

Tp = 2, and Tp1 = 1, black: D = 0.01, red: D = 0.1, green: D = 0.2. (b) T1 = 1,

T2 = 2, Tp = 8, and Tp1 = 4, black: D = 0.01, red: D = 0.1, green: D = 0.2.

some centrosymmetric peaks can clearly be observed, which proves the existence of travel-

ing waves. For cases with slowly fluctuating delays, due to the complexity of the bifurcation,

sequence patterns with kinks can hardly be found. Instead, quasi-periodic states appear. For

instance, for T1 = 1, T2 = 2, Tp = 8, Tp1 = 4, and D = 0.01, after the bifurcation, there are

some regions where the maximal Lyapunov exponent is nearly zero. An example is shown
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(a) (b)

Figure 3.41: (a) Space-time plot and (b) the related dynamic structure factor for Eq.(3.12)

with nonsynchronized periodic delay, T1 = 2, T2 = 5, Tp = 2, Tp1 = 1, a = 1.5,

and D = 0.01. The pattern is generated from random initial conditions and

depicted after 2 ·105 iterations. The time is plotted in 32-step intervals. Periodic

boundary conditions are considered. The space size is chosen to be 256.The

amplitudes of the spectrum analysis is shown on a logarithmic scale represented

with different colors.

(a) (b)

Figure 3.42: (a) Space-time plot for Eq.(3.12) with nonsynchronized periodic delay, T1 = 1,

T2 = 2, Tp = 8, Tp1 = 4, a = 1.82, and D = 0.01. The pattern is generated

from random initial conditions and depicted after 2 · 105 iterations. The time

is plotted in 32-step intervals. Periodic boundary conditions are considered.

The space size is chosen to be 256. (b) Spectrum analysis for the temporal

trajectory of the state (a) at site x = 5. A Hamming window is used to reduce

spectral leakage.
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in Fig.3.42. One can see that in the space-time plot in Fig.3.42(a), which is plotted per

32 time steps, the bands are located at fixed positions, which means there are no traveling

waves in the structure. But one can notice that some bands are not temporally stationary

in this structure, for instance, at site x = 5. Thus, the spectrum analysis for the temporal

trajectory at site x = 5 is calculated and shown in Fig.3.42(b). The length of the sample is

2 · 105. A Hamming window is applied to reduce spectral leakage. Here one can observe

several fundamental frequencies, indicating that the temporal trajectory is quasi-periodic.

And the system has a maximal Lyapunov exponent λ = 0.
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4 Partial Differential Equations

The second part of this study investigates the space-time continuous system. A Fisher-KPP-

type reaction-diffusion equation with delay is considered in this part of study.

4.1 Necessary conditions for Turing instability

The focus of this part of the study is the existence of a Turing bifurcation. In Chapter

2, the cause of Turing instability was already discussed. The classic Turing instability is

introduced in two-component reaction-diffusion systems and is found only in multiple-

component reaction-diffusion systems. Since the considered system is a one-component

reaction-diffusion system with delay, it is helpful to connect our considered system to a

multiple-component reaction-diffusion system. For the occurrence of Turing instability, the

following two conditions are necessary:

• There are activators and inhibitors in the system.

• The propagation of inhibitor is faster than activator (DV >DU in Eq.(2.25) in Chapter.

2).

So in the considered system (1.4), the reaction term is based on the Hutchinson’s equation.

Since the delay term is considered as another variable v(x, t) = u(x, t − τ), the system in

Eq.(1.4) can be rewritten as

∂u(x, t)

∂ t
= au(x, t)(1− v(x, t))+DΔu(x, t) (4.1)

v(x, t) = u(x, t − τ). (4.2)
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The larger u(x, t) is, the larger
∂u(x,t)

∂ t
is. And the larger v(x, t) is, the less

u(x,t)
∂ t

is. Thus,

u(x, t) can be considered as an activator, and the delay variable v(x, t) = u(x, t − τ) can be

considered as an inhibitor.

For the propagation, two possibilities can be considered. One is that the velocity depends

on the time and position. For this case, it is always possible to find some states where the

velocity of u(t − τ) is larger than that of u(t). Therefore, the second necessary condition is

fulfilled in this case. The other possibility is to treat the velocity as constant, which is com-

mon in the study of front propagation problems in reaction-diffusion systems. Through the

efforts of many scientists, the asymptotic constant propagation velocity in reaction-diffusion

system is now well understood [9, 56, 57]. Assuming that u has a constant propagation ve-

locity νu, and x0 is the location of u at t = 0, then at time t, u is located at x0 +νut, and v is

located at x0 +νu · (t −τ). When the delay τ is constant, v(t) also propagates with the same

velocity νu. But when the delay τ temporally fluctuates, the average propagation velocity of

v(t) between times t1 and t2 can be described as

νv =
x0 +νu · (t2− τ(t2))− (x0 +νu · (t1− τ(t1)))

t2− t1
= νu(1+

τ(t1)− τ(t2)

t2− t1
). (4.3)

Here the velocity νv is larger than νu if τ(t1) is larger than τ(t2). Thus, although the propa-

gation of the inhibitor is not always faster than the activator, it can be intermittently faster

in the case with fluctuating delays. Therefore, the considered system satisfies the necessary

conditions of Turing instability.

4.2 Influence of fluctuating delay in ODE’s

In Chapter 2, the dynamics of the Hutchinson’s equation are discussed, but to the best of my

knowledge, the influence of fluctuating delay on this system is still unknown. So before the

study of the reaction-diffusion system with delay, the dynamics of the Hutchinson’s equation

with fluctuating time delay are investigated and discussed in this section. The Hutchinson’s

equation with delay reads:

u̇(t) = au(t)(1−u(t− τ(t))) (4.4)
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Figure 4.1: The dependence of maximal Lyapunov exponent on the parameter a for Eq.(4.4)

with a step-shaped time-varying delay.

As discussed in the background chapter, the Hutchinson equation has only two states. The

first is the stable fixed point x∗ = 1 with a maximal Lyapunov exponent λ < 0 for aτ < π
2

.

The other is a stable periodic orbit with a maximal Lyapunov exponent λ = 0. But when the

delay fluctuates in time, more states can be generated. In this study, two different types of

fluctuating delays are considered. One is according to the unit step function; more precisely,

the variation of the delay can be generally described as

τ(t) =

{
τ1 if t mod Tp < T1

τ2 otherwise.
(4.5)

The other is a sine-shaped delay, which can be described as

τ(t) = τM + τA sin(ωt), (4.6)

where τM is the mean value of the delay, τA is the amplitude of the delay variation, and ω is

the frequency of the variation.

Fig. 4.1 shows the Lyapunov exponents for the case with a step-shaped delay. Here the delay

times are τ1 = 1 and τ2 = 2, and two different cases of fluctuation are selected. One is a fast

fluctuation (blue line), where Tp = 2 and T1 = 1, and the other is a slow fluctuation (orange
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line), where Tp = 20 and T1 = 10. For comparison, the Lyapunov exponents for cases with

constant delays τ = 1 (black line), τ = 2 (red line), and τ = 1.5 (green line) are also repre-

sented in the figure. Although the average value of delay is 1.5, the bifurcation points for the

cases with fluctuating delay are not the same as for the case with a constant delay τ = 1.5.

Furthermore, after the P1 → P2 bifurcation, the system dynamics are rather complex for the

cases with periodic fluctuating delays. Only for the cases with slow fluctuating delays can

zero Lyapunov exponents be found in a small region after the first bifurcation. Moreover,

the Lyapunov exponent for the case with a step-shaped periodically fluctuating delay can be

either positive, which corresponds to chaotic behaviors, or negative, which corresponds to a

stable state.

(a) (b)

(c) (d)

Figure 4.2: Trajectories of examples for Eq.(4.4) with a step-shaped fluctuating delay (τ1 =

1, τ2 = 2, Tp = 2, and T1 = 1), and the corresponding power spectra. (a)(b):

a = 1.485, (c)(d): a = 1.8.

In Fig.4.2, two examples for the trajectories in cases with step-shaped fluctuating delay

(τ1 = 1, τ2 = 2, Tp = 2 and T1 = 1) are shown. One is for the case a = 1.485, where

the Lyapunov exponent λ ≈ −0.03. One can observe a periodic orbit. The other is for
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(a) (b)

Figure 4.3: Trajectory of an example for Eq.(4.4) with a step-shaped fluctuating delay (τ1 =

1, τ2 = 2, Tp = 20, and T1 = 10) and the corresponding power spectrum. a =

1.25.

the case a = 1.8, where the Lyapunov exponent λ ≈ 0.20. Here the represented orbit is

chaotic. Additionally, in Fig.4.3, an example for the quasiperiodic orbit is shown, which

can be found in the case with a slow fluctuating delay (τ1 = 1, τ2 = 2, Tp = 20, and T1 =

10). Here the nonlinear parameter a = 1.25 and the maximal Lyapunov exponent λ ≈ 0.

The trajectories are obtained from random initial conditions and depicted after 2 · 105 time

units. To confirm the periodicity of the trajectories, the corresponding power spectra are

also calculated. The sample is selected with a size of 500 time units. The Hamming window

is applied in the analysis. One can see that in the case with fast fluctuating delays for

a = 1.485, the fundamental frequency for the periodic orbit can be clearly identified in

the power spectrum. And for a = 1.8, the trajectory looks irregular and the spectrum is

rough, indicating that it is a chaotic state. In the case with a slow fluctuating delay for

a = 1.25, a spectrum with three fundamental frequencies are obtained, which are related to

a quasiperiodic orbit.

For the case with a sine-shaped fluctuating delay, similar results are obtained. Fig.4.4 shows

the Lyapunov diagram for the cases with a sine-shaped delay with τM = 1.5, τA = 0.5, and

ω = π (fast fluctuating) or ω = 1
π (slow fluctuating). One can see that the first bifurcation

point for the case with a fluctuating delay is shifted away from the bifurcation point for the

case with a constant delay τ = 1.5, which is the average value of the fluctuating delays.

The dynamic behavior is also complex after the first bifurcation. Both stable states and

chaotic states can be seen. The quasi-periodic state can only be found in cases with a slow

fluctuating delay.
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Figure 4.4: The dependence of maximal Lyapunov exponent on the parameter a for Eq.(4.4)

with a sine-shaped delay.

As in the case with a step-shaped delay, examples for different types of trajectories and

the corresponding power spectra in cases with a sine-shaped fluctuating delay τM = 1.5,

τA = 0.5, and ω = 1
π are shown in Fig.4.5. After the P1 → P2 bifurcation, in cases with

a slow fluctuating delay one can obtain a small region where quasiperiodic orbit can be

found. For instance, three fundamental frequencies can be found in the power spectrum for

a = 1.3. The Lyapunov exponent is λ ≈ 0. When a further increases, the state can be stable

or chaotic. For instance, a periodic orbit is obtained for a = 1.45. In the related spectrum,

the fundamental frequency can be seen. And for a = 1.6, a chaotic orbit is observed.

For Hutchinson’s equation with fluctuating delay, the stable states after the bifurcation are

no longer fixed points but periodic orbits. Generally, in autonomous systems, the periodic

orbits have a maximal Lyapunov exponent of 0. Here due to the time fluctuation of the delay,

the system changes from autonomous to nonautonomous. Thus, the periodic orbits have a

negative maximal Lyapunov exponent.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Trajectories of examples for Eq.(4.4) with a sine-shaped fluctuating delay (τM =

1.5, τA = 0.5, and ω = 1
π ) and the corresponding power spectra. (a)(b): a = 1.3,

(c)(d): a = 1.45, (e)(f) a = 1.6.

4.3 Linear stability analysis for PDE’s

In order to determine the occurrence of the Turing instability, linear stability analysis is

necessary. In this section, several forms of linear stability analysis are studied. Both of the
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general form, which can be used to characterize the stability of certain solutions for a one-

component reaction-diffusion system with delay, and the form for the Fisher-KPP equation

with delay are investigated.

4.3.1 General form and linear stability analysis for stable equilibria

The one-component reaction-diffusion equation with delay is considered:

∂u(x, t)

∂ t
= f (u(x, t),u(x, t− τ(t)))+DΔu(x, t), (4.7)

where t and x are the time and space variables, respectively. The linearized equation for this

system is

∂δu(x, t)

∂ t
=

∂ f

∂u(x, t)
δu(x, t)+

∂ f

∂u(x, t − τ(t))
δu(x, t − τ(t))+DΔδu(x, t). (4.8)

According to the discussion in Section 2.3, the perturbation δu(x, t) can be assumed to have

the form

δu(x, t) = δu0est+ikx. (4.9)

Plugging this into Eq.(4.8) leads to the equation

s =
∂ f

∂u(t)
+

∂ f

∂u(t − τ)
e−sτ −Dk2. (4.10)

This equation is an extension of the characteristic equation for delay differential equations

[39], which can be numerically solved to obtain the Lyapunov spectrum. Formally, the

maximal stability exponent can also be calculated from Eq.(4.10) and reads as

s =
ftτ −Dk2τ +W ( fττe(Dk2− ft)τ)

τ
, (4.11)

where ft =
∂ f

∂u(t) , fτ =
∂ f

∂u(t−τ) , and W (. . .) is the Lambert W function. For a fixed point u∗,

90



4.3. LINEAR STABILITY ANALYSIS FOR PDE’S

ft and fτ are constant. Assuming a new control parameter K =Dk2− ft , which characterizes

the spatial perturbation, Eq.(4.10) can be written as

s = fτe−sτ −K, (4.12)

and Eq.(4.11) can be simplified as

s =−K +
W ( fττeKτ)

τ
. (4.13)

Since the formula for stability exponent (Eq.(4.13)) contains a Lambert-W function, which

is not an elementary function and is therefore complex to investigate, other analytical meth-

ods are considered here. With a complex notation of stability exponent s = l+ iω , the char-

acteristic equation for the stable fixed point Eq.(4.12) in a general one-component reaction-

diffusion equation can be rewritten as

l + iω +K = fτ e−lτ(cosωτ − isinωτ). (4.14)

Equating the real part and imaginary part on both sides yields

l +K = fτe−lτ cosωτ , and (4.15)

ω = − fτe−lτ sinωτ. (4.16)

From the second equation (4.16) one can obtain

e−lτ =−1

τ

φ

fτ sinφ
, (4.17)

with φ =ωτ . The left-hand side of this equation is always positive, limiting the domain of φ

to [2kπ ,2kπ +π ] or [−2kπ ,−2kπ −π ] with k = 0,1,2,3, . . . . Furthermore, from Eqs.(4.15)

and (4.16), l and K as functions of φ can be separately derived:

l =
1

τ
(lnτ + ln

− fτ sinφ

φ
), and

K =
1

τ
(ln

φ

− fτ sinφ
− lnτ −φ cotφ). (4.18)

As the parameter fτ and the delay τ do not include in trigonometric functions, they cannot

influence the monotonicity and domain of the functions. Hence, one can understand the
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(a) (b)

(c) (d)

Figure 4.6: Diagram of the relationship between (a)(c) l and φ and between (b)(d) K and

φ with fτ = −1 and τ = 1. (c) is the enlarged diagram of (a) in the interval

φ ∈ [0,π ] with a logarithmic axis of l, and (d) is the enlarged diagram of (b) in

the interval φ ∈ [0,π ] with an inverse axis.

behavior of Eq.(4.18) from an example. Diagrams of an example for these relationships

are shown in Fig.4.6. The parameter fτ is chosen to be −1, and the delay τ is 1. Notice

that the delay variable is an inhibitor, so fτ should be negative. One can find that l and K

vary smoothly in the intervals φ ∈ [2kπ ,2kπ + π ]. In the first domain [0,π ] of φ , which

is generally related to the maximal stability exponent, l monotonically decreases and K

monotonically increases. A directer diagram for the relationship between K and φ is shown

in Fig.4.6(d). Thus Fig.4.6(c) and (d) indicate that as K increases, φ also increases, which

leads l to decrease. The monotonic decrease of l with the increase of K means that the

maximum of l is at K = 0. Therefore, there is no possibility of Turing instability for the

fixed point of a one-component reaction-diffusion system with a constant delay.

For the fluctuating delays, there are two limiting cases. One is the case with very slowly

fluctuating delays, because the time is enough for the system to relax according to a partic-
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ular temporal evolution, the Lyapunov exponent for the system can be simply calculated as

a weighted mean of the Lyapunov exponent for all the involved temporal states [21, 22]. In

this sense, the relationship between l and K is similar to the constant delay case. Hence for

very slowly fluctuating delay, the Turing instability is also not possible for fixed points.

The other is the case with very fast fluctuating delay. In this case, fluctuating delays can

be considered as distributed delays [58]. This is another research area in the study of delay

system, but it is out of the scope of this study.

For a case with a general fluctuating delay, the dynamic behavior can be complex. A direct

conclusion cannot be reached with analytical calculations. The following text describes

some numerical results.

4.3.2 Linear stability analysis for the Fisher-KPP equation with

delay

For Fisher-KPP equation with delay, the reaction term is the Hutchinson’s equation. The

partial differential reads as

ft =
∂ f

∂u(t)
= a(1−u(t − τ)), (4.19)

and

fτ =
∂ f

∂u(t − τ)
=−au(t). (4.20)

The fixed point is u∗ = 1. Thus, one obtains ft = 0 and fτ = −a. Then Eq.(4.12) can be

simplified as

s =−ae−sτ −K, (4.21)

and the solution of Eq.(4.13) can be rewritten as

s =
−Kτ +W (−aτeKτ)

τ
. (4.22)

This formula can be used to investigate the stability of the fixed point u∗ = 1. For instance,

when K = 0, the equation becomes

s =
W (−aτ)

τ
, (4.23)
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which characterizes the stability of the fixed point in Hutchinson’s equation. Fig.4.7 indi-

cates how the real part of W (−aτ) varies with increasing aτ . Here the value of the real part

is positive for aτ > π
2

, where the dynamic of the Hutchinson’s equation changes from a fixed

point to a periodic orbit.

Figure 4.7: The dependence of the real part of W (−aτ) on aτ .

Because in this considered case, the delay is no longer constant and the investigated state

can also be periodic, the Lyapunov exponent cannot be solved from one equation. Hence,

with this method, huge calculation resources and time are necessary. Since the maximal

Lyapunov exponent is at the core of stability analysis, another numerical method which only

calculates the maximal Lyapunov exponent is preferable. Referring back to the description

of perturbation δu(t,s) (Eq.(4.9)), one finds that the variation of the perturbation can be

decomposed into two parts: One is the local time perturbation δ û(t) = δu0eλ t . The other

is the spatial perturbation eiks. The governing equation for the local time perturbation δ û(t)

can be obtained as

δ ˙̂u(t) =
∂ f

∂u(t,s)
δ û(t)+

∂ f

∂u(t − τ(t)),s
δ û(t − τ(t))−Dk2δ û(t). (4.24)

Numerically, the real part of the stability exponents can be calculated as

Re(s) = lim
T→∞

1

T
log |δ û(T )

δu0
|. (4.25)
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4.4 Results for PDEs

After understanding the influence of fluctuating delays on the behavior of the Hutchin-

son’s equation, one can start investigating the governing equation of the proposed reaction-

diffusion system with fluctuating delays, which reads

∂u(t)

∂ t
= au(t)(1−u(t− τ(t)))+DΔu(t). (4.26)

To facilitate the comparison of current results with previous results for the Hutchinson’s

equation with fluctuating delays, the same four different delay fluctuations are used here.

4.4.1 Step-shaped delay with τ1 = 1, τ2 = 2, Tp = 2, and T1 = 1

The study of this system begins with fast fluctuating step-shaped delay with τ1 = 1, τ2 = 2,

Tp = 2, and T1 = 1. First, the maximal Lyapunov exponents for the considered system with

different diffusion coefficients are numerically calculated and shown in Fig.4.8. Periodic

boundary conditions are considered and the space size is 10. For the discretization, the time

step is chosen to be δ t = 0.01 and the space step is δ s = 0.2. Here a small space size and

large discretization steps are chosen to obtain an overview of the dynamics of the considered

system with a periodically fluctuating delay. Further investigations with large space size and

fine discretization steps will follow.

Fig.4.8 shows that the Lyapunov exponents for the reaction-diffusion system are different

under different diffusion coefficients, indicating that Turing instability may appear. Further-

more, for some values of the nonlinear parameter a the system becomes unstable with the

presence of diffusion.

In contrast, in the left side of Fig.4.8 there is a region where the maximal Lyapunov expo-

nents for cases with different diffusion coefficients are identical. This region corresponds to

the fixed-point solution. This result indicates that in that region, the Turing instability cannot

be found from the fixed point u∗ = 1. Furthermore, before the P1 → P2 bifurcation point,

there is a region where the maximal Lyapunov exponents are different for different diffusion

coefficients. The dynamics for the case without diffusion is also a fixed point there. Here.

a = 1.3 is chosen as an example (see the first vertical dotted line in Fig.4.8). The temporal

trajectory and the stability exponent of this state are calculated and shown in Fig.4.9. Here
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Figure 4.8: Maximal Lyapunov exponents as functions of the nonlinear parameter a for

Eq.(4.26) with a step-shaped varying delay under different diffusion coefficients,

τ1 = 1, τ2 = 2, Tp = 2, and T1 = 1. The dotted lines indicate the values used for

examples in the following text. The discretization is Δt = 0.01 for time and

Δs = 0.2 for space. Random initial conditions and periodic boundary conditions

are used, and the space size is 10. Black: D= 0, red: D = 0.01, green: D = 0.05,

blue: D = 0.1, orange: D = 0.2, and brown: D = 0.4.

one can obtain a stable fixed point (see Fig.4.9(a)), and in this case, the maximum of the

real part of the stability exponent, which is negative, is located at k = 0. The system is thus

always stable under perturbations with any wavenumber k. Based on the numerical results,

the Turing instability is not possible in this case when starting from fixed points.

Now the stable periodic orbits will be investigated. In Fig.4.8, some periodic windows can

be found after the P1→P2 bifurcation point for D= 0. There, the dynamics of Hutchinson’s

equation with periodic fluctuating delay behave periodically and the maximal Lyapunov

exponent is negative. This fulfills one condition of Turing instability, namely, that the state

for k = 0 is stable. Next, the Turing instability in such periodic windows is investigated.

In Fig.4.10, the real part of the stability exponent for a periodic orbit as a function of the

parameter Dk2 is shown for the case with a = 1.727 (see the second dotted line in Fig.4.8).

Here one can find that for Dk2 = 0, the Lyapunov exponent is negative. This means that in

the absence of diffusion, the system has a stable periodic orbit. The trajectory and the related
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(a) (b)

Figure 4.9: (a) A trajectory for Eq.(4.4) with a step-shaped delay, τ1 = 1, τ2 = 2, Tp = 2,

T1 = 1, and a = 1.3. (b) The real part of the stability exponent of a spatial

homogeneous state with the same dynamics as in the figure (a) as a function of

Dk2.

Figure 4.10: The real part of the stability exponent as a function of Dk2, a = 1.727.

spectrum analysis are shown in Fig.4.11. The state variable varies periodically, and in the

corresponding spectrum, the fundamental frequency for the periodic orbit can be found.

With increasing Dk2, the real part of the stability exponent increases at first and becomes

positive at Dk2 ≈ 0.04. With further increasing Dk2 a maximum of Re(s) is obtained around

Dk2 = 0.11. After that ,the real part of the stability exponent starts to decrease and becomes

negative again after Dk2 ≈ 0.18. This indicates that in the presence of diffusion, the periodic

orbit can lose its stability under the influence of perturbations with certain wavenumbers.
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(a) (b)

Figure 4.11: Trajectory of the Hutchinson’s equation with fluctuating delay and the related

spectrum analysis, a = 1.727.

Figure 4.12: Space-Time plot for the considered reaction-diffusion system with periodic

fluctuating delay, a = 1.727,D = 0.1.

In Fig.4.12, an example of the state when the periodic orbit is unstable is shown. Here the

nonlinear parameter a = 1.727 and the diffusion coefficient D = 0.1. The structure is not

in an ordered state. The temporal variation of the state at any site is no longer periodic. In

Fig.4.13, the temporal variation of the state variable for this structure at three different sites

is shown, and additionally, the spectrum analysis for one trajectory is calculated. Here for

this state, the local temporal evolution is also not periodic, but chaotic.

Generally, for the Turing instability in spatially one-dimensional systems, when the stable

state loses its stability under perturbations with certain specific wavenumbers, one can ex-
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(a) (b)

Figure 4.13: (a) Temporal trajectories for Fig.4.12 at three different selected sites. Black:

x = 5, blue: x = 17.15, and red: x = 25. (b) Spectrum analysis for the temporal

trajectory at x = 17.15.

Figure 4.14: Spatial spectrum analysis of the structure in Fig.4.12, averaged over 2000 pro-

files at different moments in time.

pect that some patterns or structures with these wavenumbers can be observed. The spatial

spectrum analysis for the structure in Fig.4.12 is calculated and shown in Fig.4.14. Fig.4.10

shows that for D = 0.1 the wavenumber k should be between 0.632 and 1.342. But the

spectrum analysis does not conform to expectations. The time evolution of state variables

at local sites in this state (Fig.4.13(a)) is totally different from the periodic trajectory for the

local process without diffusion (Fi.4.11(a)). The reason for this phenomenon is the stability
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Profiles of the spatial state and the corresponding spectrum for the parallel

process with a spatial sine-shaped initial perturbation; the initial perturbation

is given by δu(x) = 0.1 · sin(5x) at t = 0. (a)(b) t = 0, (c)(d) t = 10, and (e)(f)

t = 50.

of the Turing pattern and that the states after the Turing bifurcation cannot be determined

by the stable state before the Turing bifurcation. In addition, the sensitivity to the initial

conditions for periodic orbit also has an influence.
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In general, for a Turing instability, the stable state, which loses its stability by perturbations

with specific wavenumbers, is a fixed point. The ideal one-dimensional Turing pattern can

be described by

c = c0 +Aeikcx + Āe−ikcx, (4.27)

where kc is the critical value of the wavenumber k. In the current case, the stable state

studied is periodic orbits. Thus c0 in Eq.(4.27) is not constant, but dependent on time t and

space x. Because of the diffusion process, the perturbation can then influence not only the

spatial structure, but also the local temporal evolution. For this reason, in addition to the

perturbation, there are also phase shifts between different sites in the generated structures or

patterns. In this case, in the spatial spectrum analysis, one does not obtain peaks only in the

expected wavenumber region. An example is shown in Fig.4.15. Here the phase shift due

to initial conditions is studied, and the diffusion coefficient D is therefore chosen to be 0.

The initial condition is the synchronized periodic orbit plus a sine-shaped perturbation δu =

0.1 · sin(5x). The state and the corresponding spatial spectrum are shown in Fig.4.15(a)(b).

In the beginning, the spatial profiles is a periodic curve, and in the spectrum, peaks can be

found at k =±5. As time continuous, one can observe how the tiny perturbations influence

the initial periodic orbit. Fig.4.15(c)(d) shows a complicated periodic profile at t = 10; the

fundamental wavenumber is still k = 5. Furthermore, at t = 50, the spatial profile is no

longer periodic, but chaotic (see Fig.4.15(e)(f)). In addition, the temporal evolution at two

different sites are plotted (see Fig.4.16). Here the perturbation is observed to affect the

phase of the final periodic state, and different perturbations need different time, to achieve

the stable state. This can lead to phase shifts between the sites in the spatially extended

system, shifts which are responsible for the disordered spatial structure.

Beside the Turing instability in Fig.4.8, one can observe another interesting phenomenon:

For a fixed value of the nonlinear parameter a, first some chaotic states are obtained for a

weak diffusion. Then as the diffusion strength increases, stable structures are generated.

But if the diffusion strength further increases, chaotic structure occurs again. For instance,

for the case with a = 1.9, a chaotic orbit is obtained for the local process without diffusion.

Since the uncoupled local process is already unstable, the discussed bifurcation scenario

is not related to the Turing instability. The cause of such phenomena is the stabilization

through diffusion and the existence of a multiattractor.

Fig.4.17 shows the relationship between the maximal Lyapunov exponent and the coupling

strength D with fixed a a = 1.9. Six different initial conditions are selected. One can see that
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(a) (b)

Figure 4.16: Temporal evolution at different sites of parallel process with spatially sine-

shaped initial perturbation, (a) x = 0.5, and (b) x = 15.5.

Figure 4.17: Maximal Lyapunov exponents as functions of D with a = 1.9. The space size is

selected to be 10, and the numerical discretizations are Δt = 0.005 and Δs = 0.1.

Random initial conditions and periodic boundary conditions are considered.

Six samples are denoted with different colors.

for a very weak diffusion coefficient, the diffusion cannot stabilize the system completely.

The Lyapunov exponent is less than that in the case without diffusion but is still positive.

When the diffusion coefficient is further increased, the system can be stable. Under such

a situation with different initial conditions, the system may go to different final states. An

example is shown in Fig.4.18 with the parameters fixed at a = 1.9 and D = 0.1. With

different initial conditions, two different states are obtained as shown in the figure. The
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state on the left side is space-time periodic and has a negative Lyapunov exponent, while

the one on the right side contains an irregular band and has a slightly positive Lyapunov

exponent ≈ 10−5, which can be treated as λ ≈+0.

(a) (b)

Figure 4.18: Space-time plot of two different final states with the same parameters a = 1.9

and D = 0.1. (a) λ =−0.001 and (b) λ ≈+0.

4.4.2 Step-shaped delay with τ1 = 1, τ2 = 2, Tp = 20, and T1 = 10

Now a slowly fluctuating case is studied. The fluctuating delay is selected to be τ1 = 1,

τ2 = 2, Tp = 20, and Tp1 = 10. The Lyapunov exponent as a function of the nonlinear

parameter a for different diffusion coefficients D is shown in Fig.4.19. The black curve

denotes the Lyapunov exponent for the case without diffusion. Here one can see that until the

first zero point for the case without diffusion, where the fixed point u∗ = 1 is still stable, the

curves with different colors, corresponding to the cases with different diffusion coefficients,

collapse on a single curve. Thus, the Turing instability of the fixed point cannot be observed

in this case. After the threshold for the fixed point u∗ = 1, one can observe many periodic

windows for the case without diffusion. In contrast, the Lyapunov exponents for the case

with diffusion are different there. Therefore, Turing instability of stable periodic orbits may

be found in this case. An example is given to show this possibility.

For a = 1.45, which is denoted in Fig.4.19 by a dashed line, a periodic orbit is observed for

the case without diffusion (see Fig.4.20(a)). From this stable state, the stability exponent

can be calculated as a function of k. Fig.4.20(b) shows the relationship between the real part

of the stability exponent and Dk2. As can be seen, the real part of the stability exponent is

negative for Dk2 = 0. And as Dk2 increases, it becomes positive for Dk2 ∈ (0.04,0.21). Two
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Figure 4.19: Maximal Lyapunov exponents as functions of the nonlinear parameter a for

Eq.(4.26) with a step-shaped varying delay under different diffusion coeffi-

cients, τ1 = 1, τ2 = 2, Tp = 20, and T1 = 10. The dotted line indicates the

values used for examples in the following text. The discretization is δ t = 0.01

for time and δ s = 0.2 for space. Periodic boundary conditions and random ini-

tial conditions are used, and the space size is 10. Black: D = 0, red: D = 0.01,

blue:D = 0.1, green: D = 0.2

(a) (b)

Figure 4.20: (a) A temporal trajectory for Hutchinson’s equation with a step-shaped fluc-

tuating delay, τ1 = 1, τ2 = 2, Tp = 20, T1 = 10, and a = 1.45. (b) The real

part of the stability exponent for a spatially homogeneous state with the same

dynamics as in (a) as a function of Dk2.
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examples of the spatio-temporal evolution are shown in Fig.4.21. The diffusion coefficient

is selected as D = 0.01 in panel (a) and D = 0.1 in panel (b). Although the evolution of the

state is rather irregular here, one can observe some wave-like structures in the plots. When

the real part of the stability exponent is positive in a certain region of Dk2, for a larger D,

the unstable wavenumber k is smaller, which means the wavelength will be longer. Fig.4.21

clearly demonstrates this phenomenon. The wave structure in panel (a) has a shorter wave-

length than that in panel (b).

(a) (b)

Figure 4.21: Spatio-temporal structures of states after the Turing instability in Fig.4.20 with

a = 1.45. (a) D = 0.01, and (b) D = 0.1.

4.4.3 Sine-shaped delay with τM = 1.5, τA = 0.5, and ω = π

Now the case with a sine-shaped fluctuating delay is considered. The delay setting τM = 1.5,

and τA = 0.5 is selected, so that the average delay and the maximum and minimum delay

lengths are identical to the case with the step-shaped delay. As discussed in the first section,

the angular frequency is first chosen to be ω = π . Fig.4.22 shows the dependence of the

maximal Lyapunov exponent on the nonlinear parameter a in this case for different diffusion

coefficients. Similar as in the case with the step-shaped delay, starting from the fixed point

u∗ = 1, Turing instability is not possible. The maximal Lyapunov exponent is negative

for all diffusion coefficients before the maximal Lyapunov exponent achieves its first zero

value. After this bifurcation point, some zigzags are apparent for D = 0.01 and D = 0.1.

As discussed above for the case with a step-shaped delay, such a phenomenon is due to the

existence of a multiattractor.
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Figure 4.22: Maximal Lyapunov exponent as a function of the nonlinear parameter a for

Eq.(4.26) with a sine-shaped varying delay under different diffusion coeffi-

cients, τM = 1.5, τA = 0.5, and ω = π . The dotted lines indicate the values

used for examples in the following text. The discretization of time is selected

to be δ t = 0.005 for the case without diffusion and δ t = 0.01 for the case with

diffusion. And for space, δ s = 0.2 is chosen. Periodic boundary conditions

and random initial conditions are considered, and the space size is 10. Black:

D = 0, red: D = 0.01, green: D = 0.1, and blue: D = 0.2.

However, in Fig.4.22, one cannot find any state which is stable in the absence of diffusion

but unstable in the presence of diffusion. Directly after the fixed point loses its stability, a

stable region is found for both the case with and the case without diffusion. In the chaotic

region of the case without diffusion, although there are some valleys, stable states can hardly

be observed. But in such stable regions, the maximal Lyapunov exponents are different

for different diffusion coefficients. Thus, from these regions, two examples are chosen to

determine the existence of Turing instability.

For the first example, the nonlinear parameter is chosen to be a = 1.7 (see the first vertical

dotted line in Fig.4.22). In the absence of diffusion, a stable periodic orbit can be observed

(see Fig.4.23(a)). For a large diffusion coefficient, the maximal Lyapunov exponent is zero.

The stability exponent of the stable periodic state is calculated, and the relationship between

the real part of the stability exponent and Dk2 is depicted in Fig.4.23(b). One can see that

there are no regions where the real part of the stability exponent is positive.
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For the second example, the nonlinear parameter is selected to be a = 1.85. It is located

in a periodic window in the chaotic region for the case without diffusion (see the second

vertical dotted line in Fig.4.22). For the case without diffusion, a stable periodic orbit can

be observed (see Fig.4.24(a)). For this state, the stability exponent is calculated. And the

relationship between the real part of the stability exponent and Dk2 is shown in Fig.4.24(b).

One can see that the real part of the stability exponent is always negative for any Dk2. Turing

instability is thus not possible for this stable periodic state.

Although the real part of the stability exponent is always negative in both of these examples,

its maximum is located at a certain Dk2 > 0. This means that for certain parameters, the

Turing instability for stable periodic orbits is possible.

4.4.4 Sine-shaped delay with τM = 1.5, τA = 0.5, and ω = 1
π

Now a case with a relatively slowly fluctuating sine-shaped delay is considered. The delay

parameters are chosen to be τM = 1.5, τA = 0.5, and ω = 1
π . The length of the period is

therefore 2π2 ≈ 19.74. First, the relationship between the maximal Lyapunov exponent and

the nonlinear parameter a for different diffusion coefficients is shown in Fig.4.25. Before

the maximal Lyapunov exponent achieves the first value, the curves with different colors

(a) (b)

Figure 4.23: (a) A temporal trajectory for Hutchinson’s equation with a sine-shaped fluctu-

ating delay, τM = 1.5, τA = 0.5, ω = π , and a = 1.7. (b) The real part of the

stability exponent for a spatially homogeneous state with the same dynamics

as in (a) as a function of Dk2.
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(a) (b)

Figure 4.24: (a) A temporal trajectory for Hutchinson’s equation with a sine-shaped fluctu-

ating delay, τM = 1.5, τA = 0.5, ω = π , and a = 1.85. (b) The real part of the

stability exponent for a spatially homogeneous state with the same dynamics

as in (a) as a function of Dk2.

Figure 4.25: Maximal Lyapunov exponents in dependence of the nonlinear parameter a for

Eq.(4.26) with a sine-shaped varying delay under different diffusion coeffi-

cients, τM = 1.5, τA = 0.5 and ω = 1
π . The dotted line indicates the values

used for examples in the following text. The discretization of time is selected

to be δ t = 0.01 for the case with diffusion. And for space δ s = 0.2 is chosen.

Periodic boundary conditions and random initial conditions are considered and

the space size is 10. black: D = 0, red: D = 0.01, green:D = 0.1, blue: D = 0.2
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collapse to a single curve. Thus, starting from the fixed point u∗ = 1, Turing instability is

not possible in this case. After the P1 → P2 bifurcation point, one can see some periodic

windows for the case without diffusion. In these windows, the case with diffusion can be

unstable or have a zero value for the maximal Lyapunov exponent. As a result, the Turing

instability may be found.

(a) (b)

Figure 4.26: (a) A temporal trajectory for Hutchinson’s equation with a sine-shaped fluctu-

ating delay, τM = 1.5, τA = 0.5, ω = 1
π , and a = 1.45. (b) The real part of the

stability exponent of a spatially homogeneous state with the same dynamics as

in figure panel (a) as a function of Dk2.

(a) (b)

Figure 4.27: Space-time plots of the states after the Turing instability (in Fig.4.25) with

a = 1.45. (a) D = 0.01, and (b) D = 0.1.

As an example, the nonlinear parameter is chosen to be a = 1.45. The maximal Lyapunov

exponent is now negative for the case without diffusion. The corresponding stable periodic

orbit is shown in Fig.4.26(a). For this state, the stability exponent is calculated. The rela-

tionship between the real part of the stability exponent and Dk2 is shown in Fig.4.26( b). The
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real part of the stability exponent is positive only for Dk2 ∈ (0.05,0.24). Turing instability

can hence be found in this case.

(a) (b)

Figure 4.28: Spatial spectra for structures in Fig.4.27. The spectra are obtained by averaging

over 10000 spatial profiles of the states. (a) D = 0.01, and (b) D = 0.1.

In Fig.4.27, the space-time plots beyond the Turing instability with a = 1.45 are shown.

Here different diffusion coefficients are chosen. One is D = 0.01 (Fig.(a)); the other is

D = 0.1 (Fig.(b)). Regular spatio-temporal periodic structures are observed for both cases.

The maximal Lyapunov exponent is equal to zero for both case. In the spatio-temporal plot,

one can see some wave structures. For a larger diffusion coefficient, the wavelength is also

larger. As the structure is regular, it is essential to investigate if the spatial wavelength of

the structure is related to the positive region of stability exponent. Thus, the spatial power

spectra for the structures are calculated and shown respectively in Fig.4.28. The panel (a) is

for D = 0.01, and (b) is for D = 0.1. Peaks in the spectrum confirm the spatial periodicity

in the structure. It is not hard to find out the fundamental wavenumber for the spatial peri-

odicity. Since the real part of the stability exponent is positive for Dk2 ∈ (0.05,0.24), the

unstable wavenumber k is expected to be in (2.24,4.90) for D = 0.01 and (0.71,1.55) for

D = 0.1. It is clear that in both cases, the highest peak lies in the expected region.
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5 Summary and Outlook

In this dissertation, spatially extended diffusive systems with fluctuating delays are studied.

Diffusively coupled map lattices and reaction-diffusion systems are considered as examples.

As a novel point, the fluctuating delay in the reaction term of the considered systems is

introduced. Through comparing the cases without diffusion and the cases without delay or

with constant delay, the influence of fluctuating delays and the influence of spatial extension

of the system are investigated.

Coupled map lattices

The first part of this thesis investigates the coupled map lattice as an example for discrete

systems. The delayed logistic map is considered as representative of the local dynamics in

this case. To facilitate the introduction of delay, a different type of diffusive coupling is

used than that in the typical model introduced by K. Kaneko. Therefore, before starting to

investigate the case with a fluctuating delay, the newly considered model was compared with

Kaneko’s model. The space-time patterns which can be generated in Kaneko’s model are

also found in the newly considered model. Furthermore, in the new model, one can observe

patterns with kinks and chaotic boundaries.

In the cases with a constant delay: (1) The P1 → P2 bifurcation point was shown to be

fixed in the presence of delay. With the help of a master stability function, the mechanism

responsible for this is shown analytically. For cases with a constant delay, the bifurcation

point is fixed up to a certain value of the coupling strength. (2) In the presence of constant

delay, the dynamics after the P1 → P2 bifurcation point are simple. Chaotic structures are

hardly found in the case with constant delay. (3) Additionally, delays are found to induce

spatial movement of the state. While traveling waves can only be found for large coupling
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strengths in coupled map lattices without delay, in coupled map lattices with a constant

delay, a traveling wave can already be found for weak coupling strengths.

After comparing diffusively coupled map lattices without delay and with a constant delay,

the case with a periodically fluctuating delay is considered. In this case, only the case with

delay as a step-shaped function is considered. Spatially synchronized delay and nonsyn-

chronized delay are considered respectively in the study.

In the cases with a spatially synchronized periodic delay: (1) The movement of the first

bifurcation point is also studied with the help of the master stability function. Cases with

different delay variations are studied. One can find phenomena similar to the phenomena in

the cases with a constant delay. The P1→P2 bifurcation point is fixed up to a given coupling

strength. (2) Due to the fluctuating delay, the system becomes more complex. Different

patterns can be generated in this case. (3) Additionally, two different stable states are found

in this case. One is the fully synchronized stable state in which all sites have identical

behavior at the same time. The existence and the conditions under which such a state occurs

can also be determined with the help of the master stability function. Furthermore, the

maximal Lyapunov exponent and the eigenfrequency of the associated Lyapunov vector for

such a state can also be determined by the master stability function. The other stable state is

spatially nonsynchronized. The related spatio-temporal state looks like patterns with kinks.

Temporal orbits at different sites are different and do not behave as the periodic orbit in the

case without spatial coupling. Such a state results from the interaction between the spatial

coupling and the periodic orbit of a local process. The coupling strength cannot be large.

(4) In addition, one can also find traveling waves in this case. When the same properties are

used in the case with a constant delay, one can also find traveling waves in the case with a

weak coupling. Due to the fluctuation of the delay, it is easy to find a multiattractor in the

considered system. For instance, stable periodic state and a traveling wave can coexist.

In the cases with a spatially nonsynchronized periodic delay: Due to the phase shift of the

delay at different sites, the master stability function method can no longer be used. The

bifurcation point is not fixed for different coupling strengths. Fully synchronized stable

periodic states cannot be generated, but nonsynchronized stable periodic states can still be

found under a weak coupling. Traveling waves can still be observed when the coupling

strength is weak.

112



Reaction-diffusion system

The second part of this thesis investigates reaction-diffusion systems as an example for

continuous systems. Delay is introduced into the famous Fisher-KPP equation. In this part,

two different types of periodically fluctuating delay are used. One is the step-shaped delay;

the other is the sine-shaped delay. These two functions are typical and fundamental for

many periodic functions. The reaction term can be considered as Hutchinson’s equation

with a fluctuating delay.

Since the dynamic behaviors for the Hutchinson’s equation with fluctuating delay are not

known, in this part, the investigation of this model serves as a starting point. Even for cases

where Hutchinson’s equation only has equilibrium points or periodic orbits (the maximal

Lyapunov exponent is equal to zero), when the delay fluctuates temporally, one can observe

chaotic orbits and periodic orbits with negative maximal Lyapunov exponents. Due to the

fluctuation of the delay, the Hutchinson’s equation becomes nonautonomous. For a nonau-

tonomous system, a periodic orbit can result in a negative value for the maximal Lyapunov

exponent.

Comparing the maximal Lyapunov exponent as a function of the nonlinear parameter a for

different diffusion coefficients in the considered model, some values of acan be found where

the system is stable in the absence of diffusion but has a different value of the maximal

Lyapunov exponent for some diffusion coefficients. This indicates the possible presence of

Turing instability. With the introduction of fluctuating delays, a one-component reaction-

diffusion system can fulfill the necessary conditions for Turing instability, which is generally

only possible in multiple-component reaction-diffusion systems.

The stability exponent as a function of the wavenumber of the spatial perturbations is calcu-

lated to determine the existence of a Turing instability. (1) For cases with a constant delay,

it is possible to analytically prove that starting from fixed points, a Turing instability is not

possible. (2) For the case with a fluctuating delay, the stability exponent is numerically

evaluated. The numerical result indicates that the fixed point will not become unstable in

the presence of diffusion. (3) Yet for some stable periodic orbits, Turing instability can be

obtained in the presence of diffusion. Because the related stable state is temporally periodic,

the related Turing pattern can be unstable even though the occurrence of the Turing insta-

bility has been confirmed. Thus, the Turing pattern may not be observed. The perturbations

can cause temporal phase shifts for different locations and lead the temporal trajectory in the
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system with diffusion being far different from the periodic orbit in the system without diffu-

sion. In the case with a sine-shaped delay, some regular Turing patterns are obtained. With

the help of spatial spectrum analysis, the numerical results and the stability exponent can be

confirmed. Therefore, fluctuating delays provide new possibilities for Turing instability in

one-component reaction-diffusion systems.

Outlook

This thesis has investigated simple one-component spatially extended models with fluctuat-

ing delay times. For future research multiple-component spatially extended systems could

be an interesting topic of research. The spatial coupling could also be anisotropic. Much

more complex delay fluctuations and extreme cases of delay fluctuation, such as very fast

and very slow fluctuations, could be considered. Furthermore, cases with distributed delay

are also a focus in the study of delay systems. The pattern dynamics for a higher dimension

are also an interesting direction of research. As this work has proven that a uniform periodic

orbit can become unstable via a Turing instability, it is important to study the stability of

the Turing pattern of periodic orbits. The possible Turing patterns for a higher dimension,

for instance, the striped pattern, hexagonal pattern, and spotted pattern, are also interesting

topics for future research.
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