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Abstract

This book is devoted to the study of operators on discrete structures.
The operators are supposed to be self-adjoint and obey a certain
translation invariance property. The discrete structures are given as
Cayley graphs via finitely generated groups. Here, sofic groups and
amenable groups are in the center of our considerations. Note that
every finitely generated amenable group is sofic. We investigate the
spectrum of a discrete self-adjoint operator by studying a sequence
of finite dimensional analogues of these operators. In the setting
of amenable groups we obtain these approximating operators by
restricting the operator in question to finite subsets Qn, n ∈ N. These
finite dimensional operators are self-adjoint and therefore admit a
well-defined normalized eigenvalue counting function. The limit of the
normalized eigenvalue counting functions when |Qn| → ∞ (if it exists)
is called the integrated density of states (IDS). It is a distribution
function of a probability measure encoding the distribution of the
spectrum of the operator in question on the real axis.

We prove the existence of the IDS in various geometric settings
and for different types of operators. The models we consider include
deterministic as well as random situations. Depending on the specific
setting, we prove existence of the IDS as a weak limit of distribution
functions or even as a uniform limit. Moreover, in certain situations
we are able to express the IDS via a semi-explicit formula using
the trace of the spectral projection of the original operator. This
is sometimes referred to as the validity of the Pastur-Shubin trace
formula.

In the most general geometric setting we study, the operators
are defined on Cayley graphs of sofic groups. Here we prove weak
convergence of the eigenvalue counting functions and verify the validity
of the Pastur-Shubin trace formula for random and non-random
operators . These results apply to operators which not necessarily
bounded or of finite hopping range. The methods are based on
resolvent techniques. This theory is established without having an
ergodic theorem for sofic groups at hand. Note that ergodic theory is
the usual tool used in the proof of convergence results of this type.

Specifying to operators on amenable groups we are able to prove
stronger results. In the discrete case, we show that the IDS exists
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uniformly for a certain class of finite hopping range operators. This is
obtained by using a Banach space-valued ergodic theorem. We show
that this applies to eigenvalue counting functions, which implies their
convergence with respect to the Banach space norm, in this case the
supremum norm. Thus, the heart of this theory is the verification of
the Banach space-valued ergodic theorem. Proceeding in two steps
we first prove this result for so-called ST-amenable groups. Then,
using results from the theory of ε-quasi tilings, we prove a version
of the Banach space-valued ergodic theorem which is valid for all
amenable groups.

Focusing on random operators on amenable groups, we prove uni-
form existence of the IDS without the assumption that the operator
needs to be of finite hopping range or bounded. Moreover, we verify
the Pastur-Shubin trace formula. Here we present different techniques.
First we show uniform convergence of the normalized eigenvalue
counting functions adapting the technique of the Banach space-valued
ergodic theorem from the deterministic setting. In a second approach
we use weak convergence of the eigenvalue counting functions and
additionally obtain control over the convergence at the jumps of the
IDS. These ingredients are applied to verify uniform existence of the
IDS. In both situations we employ results from the theory of large
deviations, in order to deal with long-range interactions.
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1 Introduction

1.1 Motivation

The topic of this book is located at the interface of geometric group
theory and mathematical physics. We study spectral properties of
operators defined on discrete structures. The considered operators
themselves are supposed to be self-adjoint on `2-spaces, of which the
most prominent example we treat is the discrete Laplacian. Self-
adjoint operators are of central interest in modeling physical systems,
where they appear in differential equations, e.g. in the Schrödinger
equation, the wave equation or the heat equation. In these cases the
operators are used to describe the time-evolution of a physical process
on a crystalline structure.

Besides the study of deterministic situations, it is of major impor-
tance to understand random systems too. This topic is of relevance
in the description of physical processes in perturbed media, i.e. in
situations where the underlying crystalline structure obeys impurities.
An example is the description of the spreading of waves or the trans-
port of electrons in (randomly) perturbed solids. The main reason,
why perturbed systems are modeled as random systems is a lag of
information. For instance, when describing an atom lattice with
impurities it is virtually impossible to detect the exact positions of
the missing or wrong atoms. Thus, one rather estimates the amount
of impurities and inserts them via random variables. In practice,
there are many ways to introduce randomness into a physical model.
One of them is to perturb the potential of the associated Hamiltonian,
leading to the so-called Anderson model [And58]. Another way is to
randomly delete elements of the edge or vertex set of an underlying
graph, which gives a random Laplacian. Such a model is known under
the term percolation model [Gri99, Kes06].

From the physical point of view, it is usual to assume that the
described system obeys a certain homogeneity or ergodicity property,
which is to be reflected in the associated operator. Thus, it is natural
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1 Introduction

to consider homogeneous or ergodic self-adjoint operators.
Much information about the solution of differential equations is

encoded in the spectrum of the associated operator. For example,
there is a strong connection between the type of the spectrum of
the Schrödinger operator and the long-time behavior of solutions
of the Schrödinger time evolution equation. The most prominent
example for a result describing this relation is the RAGE-theorem, see
for example [Tes09]. Important spectral properties are the spectral
type (absolutely continuous, singular continuous, pure point), the
distribution of the spectrum and the asymptotic behavior near the
spectral edges.

1.1.1 The spectral distribution

When studying properties of the spectrum, it turns out that one of
the relevant objects is a distribution function, associated to a certain
probability measure, encoding the distribution of the spectrum. Note
that the self-adjointness of the operators causes their spectrum to be
a subset of the real axis. Hence, this distribution function is defined
on R as well.

There are two generic ways to obtain such a function. Let us
describe them in the exemplary situation of a self-adjoint operator A
on `2(Zd). The first possibility is to consider the trace of the spectral
projector Eλ of the whole operator A on the interval (−∞, λ]. This
trace can be considered as counting the eigenstates of the operator
A, not exceeding the value λ. However, since we consider operators
on infinite graphs, the number of such eigenstates is very likely to be
infinite. Therefore, in order to make sense of this trace, one needs
to project on some finite cube Q ⊆ Zd, and afterwards normalize by
the number of elements in Q, which we denote by |Q|. The explicit
formula reads as follows

N(λ) := |Q|−1 Tr(χQEλ). (1.1)

This defines a function N : R → [0, 1], called spectral distribution
function (SDF). Here it is important to mention that usually (under
certain homogeneity assumptions) the spectral distribution function N
is independent of the choice of Q. Hence, in the special case where
Q consists of only one element x ∈ Zd, we get N(λ) = 〈δx, Eλδx〉.
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1.1 Motivation

Later in this work, we will see how this formula generalizes, when we
consider less restricted geometries or random models, respectively.

Let us remark that the SDF is sometimes also referred to as von
Neumann trace, see for instance [LPV07]. If the focus is rather on the
geometry, the associated measure is known as the Plancherel measure
or Kesten spectral measure, see [BW05]. In the language of physics,
one says that the spectral distribution function N at λ counts the
states (per unit volume) of a physical system which do not exceed
the value λ.

The second way of defining a distribution function for the spectrum
of a self-adjoint operator is more constructive. Focusing again on the
situation on Zd, one considers a sequence of cubes (Qn) of increasing
side length. For each n we obtain a finite dimensional operator An by
restricting A to the set Qn. In the canonical basis, the operator An can
be represented as a symmetric matrix with real-valued entries, having
at most |Qn| real eigenvalues. The eigenvalue counting function
e(An) : R → [0, 1] of An at the point λ is defined as the number
of eigenvalues of An not exceeding λ. Here one counts eigenvalues
according to their multiplicities. If there exists a function I : R→ N0

such that

I(λ) = lim
n→∞

|Qn|−1e(An)(λ), (1.2)

at least for all continuity points λ of I, then this function is called
the integrated density of states (IDS). Note that, depending on the
specific situation (operator and geometry), it is a priori not clear
whether the functions N and I coincide. If one can show that they are
equal, this equality is referred to as the Pastur-Shubin trace formula,
see [Pas71, Shu79]. For recent literature on this formula we refer to
[Ves08] and references therein. Let us emphasize the fact that there
exist examples where the Pastur-Shubin trace formula does not hold,
cf. [AS93].

If the operator under consideration is random, one has to deal
with a whole family of operators (A(ω))ω∈Ω. In this situation, the
SDF is defined as the expectation of the expression in (1.1). In order
to show the existence of the IDS, one has to prove that the limit
function in (1.2) is the same for almost all realizations. This is usually
a consequence of ergodicity. The Pastur-Shubin trace formula for
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1 Introduction

random operators reads as follows:

N(λ) := |Q|−1E
(
Tr(χQE

(ω)
λ )

)
= lim
n→∞

|Qn|−1e(A(ω)
n )(λ) =: I(ω)(λ),

(1.3)

where one needs to show that the right-hand side of this formula is

the same for almost all ω ∈ Ω. Here, E
(ω)
λ is the spectral projection

of A(ω) on the interval (−∞, λ] and A
(ω)
n is the restriction of A(ω) to

the set Qn.

1.1.2 Physical relevance of the IDS and the SDF

Having introduced the most important objects for this work, let us
proceed with the discussion of their relevance for the investigation
of self-adjoint operators. Fundamental quantities, which are often in
the center of the interest, are

(a) the behavior of N (or I) at the spectral edges,

(b) continuity properties of N (or I),

(c) the approximability of N with finite volume analogues.

Let us remark that item (c) covers two aspects. Firstly, the validity
of the Pastur-Shubin trace formula, and secondly, the topology in
which the convergence of the eigenvalue counting functions holds.

We already explained that in the context of perturbed solids, it is
convenient to describe the physical system via a random model. Thus,
one does not investigate one geometrical setting, but rather studies
a whole family of (similar) geometric settings. Each realization in
this family describes one specific physical system, as it may appear in
reality. A priori it is not clear whether different elements of this family
exhibit similar properties. However, under appropriate homogeneity
assumptions, one can show that certain (spectral) properties coincide
for almost all realizations. A well-known example for a result in this
direction is the non-randomness of the spectrum (as a set) for ergodic
operators, cf. [PF92]. In the present work, ergodicity (Definition
2.17) and translation invariance in distribution (formula (2.16)) are
the central homogeneity assumptions for random operators. Consid-
ering a random operator A = (A(ω)) which is ergodic or translation
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1.2 Geometry and operators

invariant in distribution, we prove for instance the existence of the
integrated density of states or the validity of the Pastur-Shubin trace
formula (1.3). These results are closely related to the non-randomness
of the spectrum: they show that the distribution of the spectrum of
a realization of this random operator is almost surely given by one
(non-random) distribution function.

As described before, by knowing the spectral type of an operator
one can draw conclusions about the long-time behavior of solutions
of differential equations. Precise information about the properties
(a) and/or (b) is a basic ingredient in many proofs determining the
spectral type. However, for the investigation of the quantities (a)
and (b), it is crucial to have information about (c). The reason is
that known methods allowing to understand continuity properties or
the low energy asymptotics of N (or I), relies at some point on an
approximation of the original operator by a finite dimensional one.
This shows the centered role of the Pastur-Shubin trace formula.

Besides this, it is of relevance in which topology the convergence
of the eigenvalue counting functions holds. The weakest (and usually
obtained) type of convergence of the eigenvalue counting functions is
weak convergence. This is by definition pointwise convergence of these
distribution functions at each continuity point of the limit function.
Knowing that there are situations where the IDS may exhibit jumps,
sometimes even at each point of a dense subset of the spectrum, shows
that weak convergence does often contain only little information. For
results in this direction we refer to [CCF+86, Ves05] and [KLS03],
where the authors studied these discontinuities for percolation op-
erators and operators on quasi-crystal graphs, respectively. Hence,
there is a growing interest in stronger forms of convergence, namely
convergence at any point in R or even uniform convergence.

1.2 Geometry and operators

In this book we will rather be concerned with points (b) and (c).
Thus, we are interested in verifying a Pastur-Shubin trace formula and
studying the type of convergence of the eigenvalue counting functions.
Besides this, we present situations where we are in the position to
estimate the speed of convergence by giving precise bounds on the
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1 Introduction

approximation error. Moreover, we will prove results concerning the
(dis-)continuity of the IDS. Large part of this book can be interpreted
as an investigation of issue (c) under different conditions, resulting
from the interplay of

• the generality of the geometric setting, and

• the generality of the operator in question.

1.2.1 Geometric setting

In the following, we discuss the variety of geometric settings and
operators.

From the geometrical point of view we cover a wide range of settings
since the graphs we consider are given in a very general manner, via
finitely generated groups. Fixing a finite set of generators, each such
group gives rise to a translation invariant graph in a natural way, a
so-called Cayley graph. To be precise, given a group G and a finite
and symmetric generating system S ⊆ G, the associated Cayley graph
Γ is the graph with vertex set G, where two vertices x and y are
adjacent if and only if xy−1 ∈ S. This graph is regular and G acts
on Γ via graph automorphisms. Hence, each finite generating system
gives rise to an induced metric on the group, the graph metric of the
Cayley graph. For instance, if we consider G = Zd with the canonical
generating system, we obtain the Zd-lattice. The induced metric is in
this case the `1-metric on Zd. As a second example, consider the free
group G = F2 with generator set S = {a, b, a−1, b−1}, which consists
of all finite products of the elements a, b, a−1 and b−1. The associated
Cayley graph is a 4-regular tree. The branch of mathematics which
investigates groups as geometric objects is known under the term
geometric group theory. We refer the interested reader to [dlH00] and
the references therein.

As the class of finitely generated groups is very rich, studying
Cayley graphs, one covers a huge range of geometries. For example,
one may study non-abelian groups, groups of different growth regimes
(polynomial, intermediate or exponential), residually finite groups,
amenable groups or sofic groups. The latter two (amenable and sofic
groups) are in the focus of our interest. In particular the class of sofic
groups is very large. It contains all amenable groups, all residually
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1.2 Geometry and operators

finite groups, all groups of intermediate and polynomial growth. One
specific example of a sofic group is the above mentioned free group
Fk, k ≥ 2, whose Cayley graph is a regular tree of exponential growth.
This shows that we deal with hyperbolic geometry as well. Note that
trees are discrete analogues of hyperbolic manifolds, while grids like
Zd correspond to euclidean manifolds.

1.2.2 Amenable versus sofic

Here we discuss the classes of groups which are in the center of
our investigations: amenable groups and sofic groups. We already
mentioned that the class of sofic groups contains all amenable group.
However, there exist substantially more sofic than amenable groups.

Let us first introduce amenable groups. A finitely generated group
G is amenable, if an only if there exists a Følner sequence in G. A
Følner sequence (Qn) is a sequence of finite subsets in G such that
for any finite K ⊆ G:

lim
n→∞

|KQn4Qn|
|Qn|

= 0.

Here KQn4Qn denotes the symmetric difference of the sets KQn and
Qn. This can be interpreted as follows: the volume of the boundary
of Qn, divided by the volume of the sets Qn tends to zero. Thus,
amenable groups are by definition those groups which contain sets
for which the proportion of the boundary with respect to the volume
can be made arbitrarily small.

Amenable groups have firstly been studied in 1929 by von Neumann
[vN29] in connection with the Banach-Tarski paradox. His definition
can be formulated as follows: a group G is called amenable if and only
if there exists a left-invariant mean on G. For finitely generated groups
this is equivalent to the existence of a Følner sequence. Though von
Neumann already studied this class of groups, the term “amenable”
firstly appeared in 1949, cf. [Day49]. From there on amenable groups
examined an increase in relevance. For our purposes a milestone in
the theory of amenable groups is [Lin01], where Lindenstrauss proved
a pointwise ergodic theorem for amenable groups, cf. Theorem 2.12.

Let us now discuss sofic groups. A finitely generated group is called
sofic, if we have for each r ∈ N a finite graph Γr, such that the r-balls
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1 Introduction

around the all elements of Γr, up to a portion of 1/r, are isomorphic
to the r-ball of the Cayley graph of the group.

The importance of sofic groups relies on two aspects: on the one
hand this class of groups is very rich, it contains not only the amenable
groups and the residually finite groups. In fact, there is - up to now -
no example of a non-sofic group known. On the other hand a sofic
group has very useful approximation properties. Roughly speaking,
the above definition says that the Cayley graph of a sofic group can
be approximated on arbitrary good scales by finite graphs.

The concept of sofic groups is rather new. It has been introduced
in 1999 by Gromov [Gro99]. The term “sofic” firstly appeared in
[Wei00b] where the author studied these groups in connection with
dynamical systems. For a survey on sofic groups we refer to [Pes08,
KP09]. Besides this, let us mention the papers [ES04, ES06, Cor11] for
research on the class of sofic groups concerning closedness properties.

Let us compare the approximability properties of amenable and
sofic groups. In the toy example from Subsection 1.1.1 we considered
an operator on Zd, which is an amenable group. There we already
made use of the fact that a sequence of cubes (Qn) in Zd with
increasing side length is a Følner sequence. Let us describe this in
detail. We restricted the operator in question to these cubes and
obtained a sequence (An) of approximating operators. The IDS in
(1.2) is defined as the pointwise limit of the associated normalized
eigenvalue counting functions. The hope that this limit exists, relies
on the idea that boundary effects, which are caused by the restriction
of the operator to the cube, vanish when n tends to infinity. In order
to justify of this “hope” rigorously, one shows that the error, which
appears with the restriction, can be estimated using the size of the
boundary. Since we divide by the volume of Qn in formula (1.2), the
Følner property implies that this error term vanishes for n to infinity.

1.2.3 Operators

Depending on the given geometry and on the aimed type of conver-
gence, we present our results for preferably large classes of operators.
Moreover, we establish many results for deterministic as well as for
random operators.

Let us briefly discuss some assumptions on the operators which

8



1.3 Historical remarks

frequently appear in our investigations. The most important property
which our operators need to fulfill is self-adjointness. Another central
assumption is that the operator under consideration A needs to be
translation invariant. In deterministic situations this means that for
all x, y, z ∈ G the matrix element 〈δx, Aδy〉 equals 〈δxz, Aδyz〉, where
δx is the Kronecker delta. If A is a random operator, the matrix
elements are random variables. In this case translation invariance
means that these random variables are identically distributed. A
stricter assumption which is sometimes needed is ergodicity of the
operator. In some cases this condition can be weakened using colorings
of graphs. Here a coloring of a graph is a mapping from the vertices
into some finite set (of colors).

Besides this, a relevant quantity is the hopping range of an operator.
We say that an operator A is of finite hopping range, if there exists r ∈
N such that for an arbitrary finitely supported φ we have Aφ(x) = 0,
whenever the distance between x and the support of φ is larger then
r. As we will see, a translation invariant operator which is of finite
hopping range (and in the random case admits uniform bound on the
matrix elements) is automatically bounded. In many situations we
deal with operators which are not of finite hopping range and which
can therefore be unbounded.

In Section 1.4 we discuss in further detail, in which geometric setting
which properties of the operator are necessary to obtain convergence
of the eigenvalue counting functions, cf. Table 1.1. Remark that, due
to our physical motivation, it is natural that in any geometric setting,
we ensure that the discrete Laplacian or the adjacency operator fits
in our framework.

1.3 Historical remarks

Let us give a short overview on previous results related to the present
work. Convergence of eigenvalue counting functions has firstly been
proven in the seminal papers [Pas71] by Pastur and [Shu79] by Shubin,
where they established weak convergence in the euclidean setting for
almost periodic and random ergodic operators. Starting from this,
there have been many results in the topology of pointwise convergence
for discrete operators [MY02, MSY03, DLM+03, Ves05] as well as
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1 Introduction

for continuous operators on manifolds [Szn89, Szn90, AS93, PV02,
LPV04]. We refer to [Ves08] for a survey on results up to the year
2007, but also recommend the book [PF92].

A related topic is the approximation of L2-invariants. These quanti-
ties can be interpreted as the evaluation of the IDS at one single point.
Results concerning the approximation of L2-invariants can be found
in [Lüc94, MSY03, DM97, DM98, Eck99, Sch01] and in references
therein. In a closely related geometric setting, namely on sofic groups,
these questions have been studied in [Tho08, ES05]. Moreover, let us
mention the monograph [Lüc02] as a survey on L2-invariants.

Having discussed pointwise convergence, let us remark that the
history of uniform convergence of eigenvalue counting functions is con-
siderably shorter. The first approach in this direction was established
in [LS05] for operators on Delone sets. In [LMV08] these ideas were
applied in order to show uniform existence of the IDS for operators on
Zd. This result was used in [GLV07] to verify uniform convergence of
the approximating functions for operators on metric graphs over Zd.
Besides this, in [LV09] the authors presented a method which applies
to a large class of discrete models. They are able to treat, for instance,
percolation models on groups and quasi-crystal Hamiltonians on De-
lone sets. In the chronological order of results concerning uniform
convergence of eigenvalue counting functions, this is the point, where
the topic of the present work is located. Let us mention that based
on papers constituting this book, in [PSS13] the authors established
uniform existence of the IDS and a Pastur-Shubin trace formula for
metric graphs over amenable groups.

Large part of the present work applies to (long-range) percolation
models and associated operators, where the graphs are given via
finitely generated groups. For such models we prove for example
the existence of the IDS, the validity of the Pastur-Shubin trace
formula and (dis-)continuity properties of the IDS, cf. aspects (b)
and (c) in the list in Subsection 1.1.2. Closely related work has been
done in [AV09b, AV09a]. The authors of these papers studied in the
same geometric setting the asymptotic behavior of the IDS at the
spectral edges, cf. aspect (a). Other spectral properties for a similar
model have been investigated in [Aya09] and [Aya10]. There it was
shown that scaled versions of the approximating operators lead to a
semicircle law of the limiting distribution. The last two mentioned
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1.4 Models and main results

deterministic random

sofic Chapter 3
• unbounded hopping range
• weak convergence
• approximation of the

free group

Chapter 4
• unbounded hopping range
• almost sure weak

convergence
• long-range percolation

amenable Chapter 5
• finite hopping range
• uniform convergence
• coloring of graphs
• tilings and ergodic theorems

Chapter 6
• unbounded hopping range
• almost sure uniform

convergence
• long-range percolation

Table 1.1: Outline of the book

papers show that the long-range percolation model can be interpreted
as an interpolation between the theory of random operators and
random matrix theory. For further investigation of the connection
between these topics we refer to [Pas12].

1.4 Models and main results

Here we give a short discussion of the main results of this work.
Chapter 2 is devoted to basic facts about finitely generated groups
and operators on groups. In the following Chapters 3 to 6 we study
properties of the integrated density of states for deterministic and
random operators on sofic and amenable groups, see Table 1.1. Let
us in the following list describe the content of the single chapters in
detail. We will formulate our main results and explain the applied
techniques.

• In Chapter 2 we present basic definitions and facts concerning
finitely generated groups and deterministic and random opera-
tors on groups. We prove essential self-adjointness for certain
random operators and give (for later purposes) useful results
on the measurability of certain sets or functions. Furthermore,
we give precise definitions of eigenvalue counting functions and
prove some elementary properties of them. We also introduce
different notions of convergence for distribution functions and
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discuss necessary and sufficient conditions to verify them.

The next four items can be regarded as a discussion of the four
cells in Table 1.1. Here we present the content of the main part of
this work.

• In Chapter 3 we consider deterministic operators on sofic groups.
The operators are supposed to be translation invariant and self-
adjoint. In particular the theory we present here applies to
unbounded operators and operators which are not of finite
hopping range.

A major step to prove existence of the IDS and to verify a
Pastur-Shubin trace formula is an appropriate choice of the finite
dimensional approximation operators. Here we use the fact that
Cayley graphs of sofic groups can be approximated (on arbitrary
good scales) by finite graphs and present a procedure to transfer
the operator under consideration to these graphs. This leads to
an appropriate sequence of approximating operators.

Having the right definition at hand, we use a method, known
as the resolvent method, to obtain weak convergence of the
eigenvalue counting functions. The idea is to integrate certain
test functions against the approximating distribution functions
and against the limiting distribution function. The verification
that the difference between these integrals tends to zero implies
the desired convergence. By the specific choice of these test
functions, one must deal with resolvents of the original operator
and of the approximating operators. This is the reason why
it is called resolvent method. The theorem we prove here is
closely related to [Lüc94], where the author obtains pointwise
convergence of eigenvalue counting functions for bounded oper-
ators in a more restricted geometry (given by residually finite
groups). For related results on sofic groups see [ES04].

As a specific example of a non-amenable sofic group, we consider
the free group Fk with 2k generators. We construct a sequence of
approximation graphs for Fk. This is especially important as the
Cayley graph of the free group is a tree and the approximation
of trees via finite graphs is an intensively studied problem.

12



1.4 Models and main results

In [AW06] the authors show that choosing the balls of the
free group does not lead to a (spectral) approximation of the
Cayley graph of the whole group. They rather prove that this
procedure leads to an approach of the canopy tree, i.e. the
horoball of the free group. In [FHS11] different approximations
are suggested. Here one also considers balls, but rewires the
vertices at the boundary with weighted edges. The idea we follow
in this chapter is that a regular tree should be approximated
using regular graphs with increasing girth, cf. [McK81]. The
construction of [Big88] leads us to the presented approach.

• The generalization of these deterministic results to random
operators is presented in Chapter 4. We consider random
operators, which are almost surely self-adjoint and translation
invariant in distribution. These conditions allow unbounded
operators and unbounded hopping range. In particular, the
developed theory of this chapter applies to the graph Laplacian
of a long-range percolation graph and the Anderson model.

We proceed in several steps. First, we give again an appropriate
definition of a sequence of approximating operators. Then we
prove weak convergence of the normalized eigenvalue counting
functions in expectation. Afterwards, using a large deviation
estimate by McDiarmid [McD98], this result is improved to
obtain weak convergence for almost all realizations.

The reason why we study the convergence in expectation in an
intermediate step, is that our operators are only translation
invariant in distribution, but not for each single realization.
Hence, taking the expectation makes them translation invariant.
This is crucial for our methods as we do not have an ergodic
theorem at hand. The results of Chapters 3 and 4 are published
in [SS12].

• The relevant objects of Chapter 5 are deterministic operators
on amenable groups. The operators are assumed to be of finite
hopping range and translation invariant with respect to a given
graph coloring.

As explained before, in the setting of amenable groups it is a
reasonable choice to restrict the operator under consideration

13
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to elements of a Følner sequence (Qn). This gives rise to a
sequence of finite dimensional operators and hence a sequence
of eigenvalue counting functions. For a moment let us consider
these functions as mappings, which take a finite subset of G (in
this case a set Qn) to the Banach space B(R) consisting of all
bounded, right-continuous functions, equipped with supremum
norm. Eigenvalue interlacing shows that these functions are
almost-additive. For such functions we prove and apply an
ergodic theorem. This gives convergence of the eigenvalue
counting functions as elements in the Banach space B(R). Thus,
we obtain uniform convergence of the approximating distribution
functions.

In order to verify the ergodic theorem, we follow the ideas of
[LS05, LMV08], where this procedure has been established in
a different geometric setting. The results of Chapter 5 can be
seen as a direct generalization of [LMV08] where the authors
considered Zd. The two basic problems one faces, when replacing
Zd by an arbitrary amenable group (and a sequence of cubes
by a Følner sequence), are the following: first one needs to
deal with non-abelian group structures; second one needs to
substitute the property that each large cube can be decomposed
into smaller cubes. Both facts are intensively used in previous
versions of the Banach space-valued ergodic theorem.

We address these problems one at a time. First we show,
how to handle non-commutativity and assume a certain tiling
condition, replacing the decomposition property of cubes. This
tiling condition allows to (symmetrically) tile the group with
each element of a certain Følner sequence. We refer to groups
fulfilling this property as ST-amenable groups. The class of
ST-amenable groups is a large subclass of the amenable groups,
cf. Remark 5.5. In the first part of Chapter 5 we already
obtain the ergodic theorem and uniform convergence of the
eigenvalue counting functions for ST-amenable groups. In order
to overcome the second difficulty, we apply results from the
theory of ε-quasi tilings, cf. [OW87]. Let us explain the two
basic ideas of this theory: first, one tiles the group not with one
element of a Følner sequence, but with finitely many elements
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1.4 Models and main results

of a Følner sequence. Second, one is not interested in an exact
tiling of the group, but rather allows small intersections of the
tiles. Here we generalize and improve results from the seminal
work [OW87], leading to a version of the Banach space-valued
ergodic theorem which is valid for all amenable groups.

After having established uniform existence of the IDS for amena-
ble groups, we discuss further properties of the IDS. For instance,
we prove a characterization of its discontinuity points via finitely
supported eigenfunctions. Besides this, we specify our results
to operators on Zd and the Heisenberg group, respectively. Let
us remark that the relevant papers where the results of this
chapter are published are [LSV11] and [PS12].

• In Chapter 6 we study random operators on amenable groups.
We assume these operators to be ergodic and almost surely
self-adjoint. In particular, we allow unbounded hopping range
and unbounded operators. Again, we firstly concentrate on
ST-amenable groups and afterwards present results for general
amenable groups. However, the methods we use in these two
cases are rather different.

Let us describe the part dealing with ST-amenable groups. Here
we present a random model given by a (long-range) percolation
process. We consider the Laplacian of a percolated sub-graph
of the complete graph on the vertices of an ST-amenable group.
This operator is due to long-range interactions almost surely
unbounded and not of finite hopping range. Applying results
from the theory of large deviation, namely a Bernstein inequality,
we prove again an almost-additivity property for the eigenvalue
counting functions. This enables us to verify an adapted version
of the ergodic theorems from Chapter 5, leading to the proof
of uniform convergence of the associated eigenvalue counting
functions. Studying a rather specific model, we are in the
position to give detailed information about the set of points of
discontinuity of the IDS.

In the second part of this chapter we pursue a different tech-
nique to verify uniform convergence. We firstly show that the
eigenvalue counting functions converge weakly to some limiting
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function and then improve this result by obtaining detailed
information about the convergence at the jumps. Note that
this procedure was firstly suggested in [LV09] in a similar, but
different setting. Again, we apply a Bernstein inequality in
order to obtain control over the number of edges exceeding a
certain length. This is used to prove estimates for error terms,
caused by long-range interactions. The results here generalize
the previous ones on ST-amenable groups, not just in terms of
the geometry, but also in terms of the operator. Here we allow
weighted edges where the weights are taken randomly from a
possibly uncountable and unbounded subset of R. Additionally
we prove a Pastur-Shubin trace formula.

Let us emphasize the fact that in all previous works studying
uniform existence of the IDS a central assumption is the finite
hopping range of the operator, cf. [LS05, LMV08, LV09]. The
results in this chapter are the first ones, where uniform existence
of the IDS is established for operators which are not of finite
hopping range. Large part of the content of Chapter 6 is
published in the papers [Sch12] and [ASV13].
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2 Preliminaries

2.1 Finitely generated groups

This section is devoted to the introduction of the objects which
determine the geometric setting of this work. We are interested in
operators defined on discrete structures, in particular on graphs. The
graphs are given via finitely generated groups, as so-called Cayley
graphs. The reason why we concentrate on groups which are finitely
generated is that these are exactly the groups, where the associated
Cayley graph has finite vertex degree. First, we present some notion
for general graphs. Then, we give definitions closely related to groups
and Cayley graphs. Finally, and divided into three subsections, we
present special cases of finitely generated groups, which will play an
important role in this book.

We begin with general graphs. Given a countable set V and a set
~E ⊆ V × V we call the pair ~Γ = (V, ~E) directed graph with vertex

set V and edge set ~E. The notion “directed” refers to the fact that
the elements (x, y), (y, x) ∈ V × V are not equal. Similarly we define
an (undirected) graph Γ = (V,E). Here again the set V is some
countable set, which we call the vertex set of Γ. The set E is in
this case a subset of the power set of V , containing only sets with at
most two elements. As before, the set E is called the edge set. In
particular, this allows loops but no multiple edges. In the special
case where E contains all subsets of V with at most two elements,
we say that Γ = (V,E) is the complete (undirected) graph over V .

Equivalently, ~Γ = (V, ~E) is called the complete directed graph over

V , if ~E = V × V . When speaking about undirected graphs, we will
often drop the notion “undirected”. Moreover, sometimes we omit
the arrow for directed graphs. A directed or (undirected graph) is
called finite, if the vertex set is finite.

A path of length n ∈ N in an undirected graph Γ is a sequence
(e1, . . . , en) of elements where ei = {zi−1, zi} ∈ E, i = 1, . . . , n for
some z0, . . . , zn ∈ V . In this situation we say that the path (e1, . . . , en)
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2 Preliminaries

connects the elements z0 and zn. A graph is called connected if for
each pair of vertices there exists a path connecting them. Using this
notion, there is a natural way to define a metric on the vertex set of a
connected undirected graph. If x, y ∈ V are distinct elements of the
vertex set of an undirected graph Γ, we define the distance dΓ(x, y)
to be the length of the shortest path, connecting the elements x and
y in Γ. If x = y ∈ V , we set dΓ(x, y) = 0.

In the same manner we define paths and distances in directed
graphs. Let ~Γ = (V, ~E) be a directed graph. A sequence (e1, . . . , en)

is called a directed path of length n in ~Γ, if there exist z0, . . . , zn ∈ V
such that ei = (zi−1, zi) ∈ ~E for all i = 1, . . . , n. Furthermore we

call (e1, . . . , en) an undirected path of length n in ~Γ if there exist

z0, . . . , zn ∈ V such that ei ∈ {(zi−1, zi), (zi, zi−1)} ∩ ~E for all i =
1, . . . , n. Hence, an undirected path ignores the direction of the
edges. With this notion, each directed path in ~Γ is an undirected
path. Again we say that the (un-)directed path connects x and y

if z0 = x and zn = y. A directed graph ~Γ is called connected, if
for each pair of vertices, there exists an undirected path connecting
them. Let ~Γ = (V, ~E) be a connected directed graph. The distance

d
~Γ : V × V → [0,∞) is given in the following way: if x, y ∈ V are

distinct and the length of the shortest undirected path connecting x

and y equals n, then we set d
~Γ(x, y) = n. If x = y, we set d

~Γ(x, y) = 0.
In the situation where the (un-)directed graph is not connected, one

defines the metrics in the almost same way. Here the only difference is,
that one sets the distance between elements which are not connected
by a path, to be equal to infinity. We will in the following refer to

the metric dΓ or d
~Γ as graph metric of Γ or ~Γ, respectively.

Applying the above defined metrics, we define balls in graphs. To
this end let Γ = (V,E) be and undirected graph and ~Γ = (V, ~E) a
directed graph. For x ∈ V and r ≥ 0 we define

BΓ
r (x) := {y ∈ V | dΓ(x, y) ≤ r}

and
B
~Γ
r (x) := {y ∈ V | d~Γ(x, y) ≤ r}.

In order to compare graphs, we use the language of graph iso-
morphism. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two undirected
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2.1 Finitely generated groups

graphs. A function Ψ : V1 → V2 is called a graph isomorphism, if
Ψ is bijective and for x, y ∈ V1 we have {Ψ(x),Ψ(y)} ∈ E2 if and
only if {x, y} ∈ E1. If such Ψ exists, the graphs Γ1 and Γ2 are called
isomorphic and we write Γ1 ' Γ2. A graph isomorphism for directed
graphs is defined in the same way, with the only difference, that here
we also require, that the direction of the edge is preserved by the
function Ψ.

For directed graphs, we will also need the notion of being (edge)

labeled. Let ~Γ = (V, ~E) be a directed graph and L some set. We say

that ~Γ is edge labeled by L with ϑ, if ϑ is a function ϑ : ~E → L.
In the following we assume that the directed graphs ~Γ1 = (V1, ~E1)

and ~Γ2 = (V2, ~E2) are both edge labeled by L, with ϑ1 and ϑ2,
respectively. Then we say that they are isomorphic as labeled graphs
if there exists a graph isomorphism Ψ : V1 → V2, which satisfies for
all (x, y) ∈ ~E1:

ϑ1((x, y)) = ϑ2((Ψ(x),Ψ(y))).

If ~Γ1 and ~Γ2 are edge labeled by L and isomorphic as labeled graphs,
we write Γ1 'L Γ2.

Let Γ = (V,E) be an undirected graph and U ⊆ V , then we define
the induced subgraph Γ|U as the graph with vertex set U and edge set

E|U = {{x, y} ∈ E | x, y ∈ U}.

Similarly for a directed graph ~Γ = (V, ~E) and U ⊆ V the induced

subgraph ~Γ|U is the graph with vertex set U and edge set ~E|U =

{(x, y) ∈ ~E | x, y ∈ U}. If ~Γ is edge labeled by L with ϑ, then ~Γ|U is

edge labeled by L with ϑ|U : ~E|U → L, where ϑ|U (e) = ϑ(e) for all e

in ~E|U .
In the following we introduce notion, which is related to finitely

generated groups. Let G be a group, then S ⊆ G is called a generating
set or set of generators, if each g ∈ G can be expressed as a finite
product of elements in S. A group G is called finitely generated , if
there exists a finite set of generators in G. Note that each finitely
generated group contains at most countably many elements. The
unit element of the group will always be denoted by id. Given a set
Q ⊆ G, we denote by Q−1 the set of the inverse elements, i.e.

Q−1 = {g ∈ G | g−1 ∈ Q}.

19



2 Preliminaries

A set Q ⊆ G is called symmetric, if Q = Q−1.
Let G be a finitely generated group and S ⊆ G a finite set of

generators. Then directed graph ~Γ(G,S) = (V, ~E) with vertex set
V = G and edge set

~E := {(x, y) ∈ V × V | xy−1 ∈ S}

is called directed Cayley graph of G and S. Furthermore, each such
graph can be interpreted as being edge labeled with S, where we
define the function ϑ by setting for (x, y) ∈ ~E: ϑ((x, y)) := xy−1.

We will refer to this as the canonical labeling of ~Γ(G,S). In order to
define an undirected Cayley graph, we need a symmetric generating
set S, i.e. S = S−1. Note that this implies: (x, y) ∈ ~E if and only if

(y, x) ∈ ~E. Let G be a group and S ⊆ G a finite and symmetric set
of generators. Then the (undirected) Cayley graph Γ(G,S) = (V,E)
is defined via the vertex set V := G and the edge set

E := {{x, y} ⊆ G | xy−1 ∈ S}.

If Γ = Γ(G,S) is an undirected Cayley graph, we will use the notation
dS := dΓ : G×G→ [0,∞) for the graph metric on Γ. Note that this
metric is sometimes called word metric and can be also defined by
setting for distinct x, y ∈ G:

dS(x, y) = min{k ∈ N | ∃s1, . . . , sk ∈ S with s1 · · · sky = x}

and dS(x, x) = 0. As indicated in the index, the word metric depends
on the specific choice of the generating set S. For a given group G
and finite generating set S ⊆ G we write for r ≥ 0 and x ∈ G:

BGr (x) := BΓ(G,S)
r (x) = {y ∈ G | dS(x, y) ≤ r}

and
BGr := BGr (id).

We will drop the superscript G in this notation whenever it is clear
to which group the balls are associated. We use the notations (Qn)
and (Qn)n∈N for a sequence of finite subsets of G, where the index
n takes values in N. The set of all finite subsets of G is denoted
by F(G). Given a set Q ∈ F(G), we define the diameter of Q by
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2.1 Finitely generated groups

diam(Q) := max{dS(g, h) | g, h ∈ Q} and use |Q| for the cardinality
of Q. For a set Q ⊆ G and K ∈ F(G) we define the K-boundary of
Q by

∂K(Q) := {g ∈ G | Kg ∩Q 6= ∅ and Kg ∩ (G \Q) 6= ∅}.

For r > 0 we set ∂r(Q) := ∂Br(Q). Furthermore, we will sometimes
use the inner or outer boundary, which we define by ∂rint(Q) :=
∂r(Q) ∩Q and ∂rext(Q) := ∂r(Q) \Q, respectively. It is easy to see
that

∂Rint(Q) = {x ∈ Q | dS(x,G \Q) ≤ R}

and

∂Rext(Q) = {x ∈ G \Q | dS(x,Q) ≤ R}.

Furthermore, we introduce the following notation: Q(r) := Q\∂rint(Q).
For δ > 0 and K ∈ F(G) we will say that a set Q ∈ F(G) is (K, δ)-
invariant if

|∂K(Q)| ≤ δ|Q|. (2.1)

The next lemma contains useful properties of the K-boundary.
Since the other types of boundaries which we defined above are based
on this notion, one can easily deduce similar properties for them.

Lemma 2.1. Let Q,U ⊆ G, K ∈ F(G) be non-empty and assume
that g ∈ G. Then:

(i) ∂K(Q) = ∂K(G \Q),

(ii) ∂K(U ∪Q) ⊆ ∂K(U) ∪ ∂K(Q),

(iii) ∂K(U \Q) ⊆ ∂K(U) ∪ ∂K(Q),

(iv) ∂K(Q) ⊆ ∂L(Q) if K ⊆ L ⊆ G,

(v) ∂K(Qg) = ∂K(Q)g,

(vi) ∂K(QU) ⊆ ∂K(Q)U and

(vii) ∂K(U \Q) ⊆ ∂K(U) ∪ (∂K(Q) ∩ U) if id ∈ K.
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Proof. The statements (i) to (v) follow directly from the definition of
the K-boundary. Let us prove (vi). In order to do so, choose some
g ∈ ∂K(QU). Then there exists some u ∈ U such that Kg ∩ Qu is
non-empty. Furthermore, we have

∅ 6= Kg ∩ (G \QU) ⊆ Kg ∩ (G \Qu).

Therefore, we obtain g ∈ ∂K(Qu) = ∂K(Q)u ⊆ ∂K(Q)U , where we
used (v).

In order to show (vii) let g ∈ ∂K(U \Q) be given and let id ∈ K.
We assume that g /∈ ∂K(U). Then, by definition of the K-boundary,
we have Kg ∩ (U \ Q) 6= ∅. Since U \ Q is a subset of U , we have
Kg ∩ U 6= ∅. This together with g /∈ ∂K(U) and id ∈ K yields
g ∈ Kg ⊆ U . Now it remains to show that g ∈ ∂K(Q). To see this,
we use statement (iii) and

g ∈ ∂K(U \Q) ⊆ ∂K(U) ∪ ∂K(Q).

This, g /∈ ∂K(U) and g ∈ U , implies g ∈ ∂K(Q) ∩ U . �

The (volume) growth of a group is defined using the cardinality
of balls. We say that a group G is of polynomial (volume) growth,
if there exists a > 0 and d ∈ N such that |Br| ≤ ard for all r ∈ N.
Furthermore a group is said to be of exponential (volume) growth,
if there exists c > 0 such that |Br| ≥ cecr for all r ∈ N. If a group
is neither of polynomial growth nor of exponential growth, one says
that it obeys intermediate (volume) growth.

We say that a group G is abelian, if for any g, h ∈ G we have
gh = hg. All finitely generated abelian groups, in particular Zd, are
of polynomial growth. The Heisenberg group is an example for a non-
abelian group of polynomial growth. The first group which was shown
to be of intermediate growth is the Grigorchuk group. Examples for
exponentially growing groups are the Lamplighter group as well as
the free group. We refer to [dlH00], as they give many examples and
study a variety of properties which are related to the volume growth
of a group.

In order to approximate infinite Cayley graphs of a finitely generated
group by finite graphs, there are several classes of groups, where one
has canonical candidates. The next three subsections discuss such
classes of groups.
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2.1.1 Sofic groups

The notion of sofic groups was introduced by Gromov in [Gro99] and
the specific definition we will use, goes back to Weiss [Wei00b].

Definition 2.2. Let G be a finitely generated group, S a finite and
symmetric set of generators and ~Γ = ~Γ(G,S) the canonically labeled
directed Cayley graph. Then G is called sofic, if for all ε > 0 and
r ∈ N there is a finite directed graph Γr,ε = (Vr,ε, Er,ε), edge labeled

by S with ϑ : Er,ε → S and a subset V
(0)
r,ε ⊆ Vr,ε, such that

(S1) |V (0)
r,ε | ≥ (1− ε)|Vr,ε|, and

(S2) for all v ∈ V (0)
r,ε the graph Γr,ε restricted to the r-ball around v

is isomorphic as a labeled graph to ~Γ|BGr , i.e.

Γr,ε|BΓr,ε
r (v)

'S ~Γ|BGr .

Note that the property of being sofic is independent of the specific
choice of the symmetric generating set S, cf. [Wei00b]. Though the
notion of being sofic was already introduced in 1999, there is up to
now no group which is known to fail being sofic. Besides this, it is
easy to show that each finitely generated amenable group is sofic,
cf. Lemma 2.11. Furthermore, each finitely generated residually
finite group is sofic, cf. Lemma 2.5. Both facts are well-known and
emphasize the importance of the investigation of sofic groups.

In this subsection we always assume that G is sofic and generated
by a finite and symmetric set S. In order to simplify notation of
the approximations, we choose some function ε : N → (0,∞) with
limr→∞ ε(r) = 0 and write

Γr := (Vr, Er) := (Vr,ε(r), Er,ε(r)), V (0)
r := V

(0)
r,ε(r). (2.2)

Hence, for each r ∈ N we obtain a finite approximating graph of the
Cayley graph Γ = Γ(G,S). We denote the graph metric in Γr by dr.

We fix r ∈ N. For each v ∈ V (0)
r we have by definition a graph

isomorphism
Ψr,v : BΓr

r (v)→ BGr , (2.3)
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which preserves the labels. It is immediately clear that Ψr,v(v) = id.

This implies for any choice v, w ∈ V (0)
r with dr(v, w) ≤ r, that

Ψr,v(w) = (Ψr,w(v))−1. (2.4)

Before we verify (2.4) let us briefly discuss some elementary prop-
erties of edge labeled Cayley graphs and sofic approximations. Recall
that the symmetry of S implies that if (x, y) is an edge of the directed

Cayley graph ~Γ = ~Γ(G,S), then the inverse edge (y, x) is an edge

of ~Γ as well. By property (S2) the same holds true for edges in the

r-balls in Γr around elements of V
(0)
r . Thus, for each v ∈ V (0)

r every
undirected path in Γr|BΓr

r (v) can be transferred in an directed path,

by an appropriate change of the directions of the involved edges.
Moreover, let (e1, . . . , ek) be a directed path in ~Γ = ~Γ(G,S) from

x to y and let s1, . . . , sk ∈ S be the canonical labels of these edges,
i.e. ϑ(ei) = si for all i = 1, . . . , k. Then by definition of these labels
we have s1 · · · sk = xy−1. Again using (S2) this property transfers to

the r-balls around elements in V
(0)
r in the approximating graph Γr.

With these considerations we easily conclude (2.4): let v, w ∈ V (0)
r

with dr(v, w) ≤ r be given and let s1, . . . , sk be the labels along a
directed path contained in BΓr

r (v) ∩ BΓr
r (w) from v to w. As the

labels are preserved by Ψr,v and Ψr,w we have

(Ψr,v(w))−1 = Ψr,v(v)(Ψr,v(w))−1 = s1 · · · sk
= Ψr,w(v)(Ψr,w(w))−1 = Ψr,w(v),

which shows (2.4). We generalize these ideas in the next Lemma.

Lemma 2.3. Let r ∈ N. If x, y ∈ Vr and v, w ∈ V (0)
r satisfy x, y ∈

BΓr
r/2(v) ∩BΓr

r/2(w), then we have

Ψr,v(x)(Ψr,v(y))−1 = Ψr,w(x)(Ψr,w(y))−1.

Proof. Let x, y ∈ Vr and v, w ∈ V (0)
r be such that x, y ∈ BΓr

r/2(v) ∩
BΓr
r/2(w). Then k := dr(x, y) ≤ r and hence all shortest paths in Γr

connecting x and y are completely contained in BΓr
r (v) as well as in

BΓr
r (w). We consider one of these shortest (directed) paths from x
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to y. Let s1, . . . , sk be the labels of this path. By the choice of Ψr,v

we have that

Ψr,v(x)(Ψr,v(y))−1 = s1 · · · sk(Ψr,v(y))(Ψr,v(y))−1 = s1 · · · sk.

As we also have Ψr,w(x) = s1 · · · sk(Ψr,w(y)), the claim follows. �

2.1.2 Residually finite groups

In this section we define residually finite groups. Roughly speaking,
this is the class of groups, where for each element of the group (except
the identity), one can find a normal, finite index subgroup, which
does not contain this element. Quotients of these groups will lead to
approximating graphs. Before stating the definition of a residually
finite group, let us explain the notion of quotients of groups. If G is
a group and U is a subgroup of G we call

G/U := {uG | u ∈ U}

the quotient of the groups G and U . The index of U in G is the
number of elements in G/U . We write [G : U ] := |G/U |. If [G : U ] is
finite, we say that U is a subgroup of finite index or a finite index
subgroup of G. A subgroup U of G is called normal in G if for any
g ∈ G and u ∈ U we have gug−1 ∈ U .

If U is a normal subgroup of G, the quotient G/U is a group itself.
The multiplication in G/U is given by induced by the multiplication
in G, i.e. for u, v ∈ U we have

(uG)(vG) = (uv)G.

In this situation the group G/U is called quotient group.

Definition 2.4. Let G be a finitely generated group. We call G
residually finite if there exists a sequence (Gn)n∈N of subgroups of G
such that

(R1) ∀ n ∈ N : Gn is normal in G,

(R2) ∀ n ∈ N : [G : Gn] is finite,

(R3) ∀ n ∈ N : Gn+1 ⊆ Gn,

(R4)
⋂
n∈NGn = {id}.
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Note that conditions (R1),(R2) and (R4) are already sufficient to
construct a sequence of subgroups (G̃n) for which (R1) to (R4) hold
true. In order to see this, let (Gn) be a sequence satisfying (R1),(R2)
and (R4). For each n ∈ N we set

G̃n :=
⋂

j≤n
Gj .

Then G̃n is normal in G. Condition (R2) holds true since for each
n ∈ N

[G : G̃n] ≤
∏n

j=1
[G : Gj ] <∞.

Besides this (R3) and (R4) are satisfied by construction. This shows
in particular, that a finitely generated group G is residually finite if
and only if for any x ∈ G \ {id} there is a normal subgroup Gx of G
which is of finite index and does not contain x.

Let us remark that among the finitely generated groups, all free
groups, all nilpotent groups as well as all linear groups are residually
finite.

In the following we investigate approximability properties of quo-
tient groups G/Gn. The calculations are rather basic and presented
in full detail. Let G be a residually finite group, generated by the
finite and symmetric set S. Furthermore, let (Gn) be the sequence
satisfying the conditions (R1) to (R4). For each n ∈ N we define Hn

to be the quotient group

Hn := G/Gn = {gGn | g ∈ G}.

Then Hn is generated by the set Sn := {sGn | s ∈ S}. Furthermore,
let d := dS be the word metric on G and dn := dSn be the word
metric on Hn. We write

Br = BGr = {x ∈ G | d(x, id) ≤ r}

and
B(n)
r = BHnr = {x ∈ Hn | dn(x, id) ≤ r}

for the balls of radius r ∈ N0 centered at the unit elements.
Let us assume that for all n ∈ N one has B2 ∩Gn = {id}. This is

possible by conditions (R3) and (R4) and as we are only interested
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in large n. Thus for s, s′ ∈ S with sGn = s′Gn we get s−1s′ ∈ Gn.
This implies s−1s′ ∈ B2 ∩Gn = {id} and hence s = s′.

Now, let ~Γ = ~Γ(G,S) and ~Γn = ~Γn(Hn, Sn) = (Vn, ~En) be the

associated directed Cayley graphs. We assume that ~Γ is canoni-
cally edge labeled. Let us define an labeling of the edges of ~Γn.
If (gGn, hGn) ∈ ~En, then gh−1Gn ∈ Sn. Thus there exists s ∈ S
with gh−1Gn = sGn. By the above considerations, this element s
is uniquely defined and we set ϑn((gGn, hGn)) := s. This construc-

tion gives a function ϑn : ~En → S, which labels the edges of ~Γn by
elements of S.

The following Lemma shows that for increasing n, the Cayley
graphs of the quotient groups equal the Cayley graph of the group G
on larger and larger scales.

Lemma 2.5. Let G be a finitely generated, residually finite group.
Then G is sofic. In particular, if ~Γ and ~Γn, n ∈ N, are given as
above, we have that for all r ∈ N there is n(r) ∈ N such that for all
n ≥ n(r):

~Γ|Br 'S ~Γn|B(n)
r
. (2.5)

Proof. Let r ∈ N be given. Then by conditions (R3) and (R4) we
can choose n(r) such that B2r+1 ∩ Gn = {id} for all n ≥ n(r).
Then for n ≥ n(r), g ∈ G and h, h′ ∈ gGn ∩ Br, one gets that
h−1h′ ∈ Gn ∩ B2r = {id} which shows that |gGn ∩ Br| ≤ 1. If one
additionally assumes that g ∈ Br, then |gGn ∩Br| = |{g}| = 1. The
r-ball in Hn around the identity element can be written as

B(n)
r = {gGn | g ∈ Br}.

For n ≥ n(r) we set

Ψ(n)
r : B(n)

r → Br with {Ψ(n)
r (gGn)} = gGn ∩Br,

which is well-defined by the above considerations. In particular we

obtain for g ∈ Br that Ψ
(n)
r (gGn) = g and hence Ψ

(n)
r is bijective.

Let (gGn, hGn) be an edge in ~Γn|B(n)
r

. Without loss of generality

we assume g, h ∈ Br. Then we have gh−1Gn ∈ Sn. This and
Sn = {sGn | s ∈ S} shows that there exists s ∈ S with s−1gh−1 ∈ Gn.
Since s−1gh−1 ∈ B2r+1 and n ≥ n(r), we obtain g = sh. Thus, (g, h)
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is an element of the edge set of ~Γ. The canonical label of (g, h) is s,
which coincides with the label of (gGn, hGn). Hence, we obtained
(2.5). Moreover, as Hn is homogeneous, (2.5) holds also for balls with
translated center, i.e. for all x ∈ Hn we have

~Γ|Br 'S ~Γn|BHnr (x).

This proves that G is sofic. �

2.1.3 Amenable groups

Let us start this subsection with the definition of amenability.

Definition 2.6. Let G be a finitely generated group. A sequence
(Qn)n∈N of finite subsets of G is called Følner sequence if for any
K ∈ F(G):

lim
n→∞

|KQn4Qn|
|Qn|

= 0.

The group G is called amenable if there exists a Følner sequence in
G.

Here KQn4Qn denotes the symmetric difference of the sets KQn
and Qn, i.e.

KQn4Qn = (KQn \Qn) ∪ (Qn \KQn).

This term can be seen as a boundary of the set Qn. With this
interpretation one can say that a Følner sequence is a sequence of
finite sets, where the ratio between the boundary and the volume
of the sets tends to zero. Originally, amenability was defined as
the existence of a left-invariant mean on the group. In his paper
[Fø55], Følner was the first who gave a combinatorial characterization
of amenability via the boundary of a set. For a discussion and
reformulation of this characterization see [Ada93]. For a survey on
amenability up to the year 1988 we refer to [Pat88]. In this work, we
will use several formulations of Følner sequences. Most of them are
provided by the next Lemma.

Lemma 2.7. Let G be a finitely generated group and let (Qn) be a
sequence of finite subsets in G. Then the following are equivalent:
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(i) (Qn) is a Følner sequence,

(ii) for all K ∈ F(G): limn→∞ |∂K(Qn)|/|Qn| = 0,

(iii) for all r > 0: limn→∞ |∂r(Qn)|/|Qn| = 0,

(iv) for all r > 0: limn→∞ |∂rint(Qn)|/|Qn| = 0,

(v) for all r > 0: limn→∞ |∂rext(Qn)|/|Qn| = 0.

Proof. Let (Qn) be a Følner sequence and let K ∈ F(G) be given.
Then we set K̄ := K ∪K−1 ∪ {id} and claim that for any F ∈ F(G)
we have

∂K(F ) ⊆ ∂K̄(F ) ⊆ K̄(K̄F4F ). (2.6)

If this holds true, then |∂K(F )| ≤ |K̄(K̄F4F )| which shows that (i)
implies (ii). The first inclusion of (2.6) follows from Lemma 2.1. In
order to show the second inclusion, let g ∈ ∂K̄(F ) be given. Then,
using symmetry of K̄, we have g ∈ K̄−1F = K̄F . If g /∈ F , then
id ∈ K̄ implies

g ∈ K̄F \ F ⊆ K̄F4F ⊆ K̄(K̄F4F ).

Next, we consider the case g ∈ F . Then for all k ∈ K̄ we have
kg ∈ K̄F . Since K̄g ∩ (G \ F ) 6= ∅, there exists some k̄ ∈ K̄ with
k̄g /∈ F which yields k̄g ∈ K̄F \ F and hence

g ∈ k̄−1(K̄F \ F ) ⊆ K̄(K̄F4F ),

which proves (2.6).
In order to show that (ii) implies (iii), use that ∂BGr (F ) = ∂r(F ).

By definition, assertion (iii) implies (iv).
Let us prove that (iv) implies (v). Assume (iv) and let F ∈ F(G),

r > 0 and g ∈ ∂rext(F ) be given. Then g /∈ F and there exists x ∈ F
with dS(g, x) ≤ r. Therefore x ∈ ∂rint(F ) and gx−1 ∈ Br, which
implies g ∈ Br∂rint(F ). Hence we conclude that

|∂rext(F )| ≤ |Br||∂rint(F )|.

This obviously implies (v).
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It remains to show that (v) implies (i). Let K ∈ F(G) be arbitrary
and set r := max{dS(k, id) | k ∈ K} and again K̄ := K ∪K−1 ∪{id}.
It suffices to prove

KF4F ⊆ K̄∂rext(F ) (2.7)

for arbitrary F ∈ F(G). To this end let g ∈ KF4F be given. Then
either g ∈ KF \ F or g ∈ F \KF . In the first case we have g = kg′

for some k ∈ K and g′ ∈ F . As g /∈ F , this implies dS(g, F ) ≤
dS(g, g′) ≤ r and hence g ∈ ∂rext(F ) ⊆ K̄∂rext(F ). Now assume that
g ∈ F \KF . Then we have for all k ∈ K that g /∈ kF or equivalently
ḡ := k−1g /∈ F . As g ∈ F we have dS(F, ḡ) ≤ dS(g, ḡ) ≤ r and hence
ḡ ∈ ∂rext(F ). This shows

g = kḡ ∈ K∂rext(F ) ⊆ K̄∂rext(F ). �

The next Lemma gives another equivalent condition for being a
Følner sequence. It has been proven in a similar form already in
[Ada93]. It is quite useful for showing that a given sequence is a
Følner sequence.

Lemma 2.8. Let G be a group generated by the finite and symmetric
set S and let (Qn) be a sequence of finite subsets in G. Then (Qn) is
a Følner sequence if and only if

lim
n→∞

|SQn \Qn|
|Qn|

= 0. (2.8)

Proof. If (Qn) is a Følner sequence then by the definition of the
symmetric difference (2.8) obviously holds. In order to prove the
converse implication, assume that (2.8) holds true and let K ∈ F(G)
be arbitrary. For any g ∈ K we have

|KQn \Qn| ≥ |gQn \Qn| = |Qn \ gQn| ≥ |Qn \KQn|

which implies |KQn4Qn| ≤ 2|KQn \ Qn|. Hence, we only need to
control the difference KQn \Qn. Next, choose m large enough such
that K is contained in the ball Bm and estimate

KQn \Qn ⊆ BmQn \Qn ⊆
m−1⋃
j=0

Bj+1Qn \BjQn, (2.9)
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where B0 = {id}. Besides this, we have for j ∈ {0, . . . ,m− 1}:

Bj+1Qn \BjQn =
⋃
g∈Bj

gB1Qn \BjQn

⊆
⋃
g∈Bj

gB1Qn \ gQn =
⋃
g∈Bj

g(SQn \Qn).

Thence, with (2.9) we end up with

|KQn \Qn| ≤
m−1∑
j=0

|Bj+1Qn \BjQn| ≤
m−1∑
j=0

|Bj ||SQn \Qn|,

which proves the claim. �

Recall that for a given set Q ∈ F(G) and r > 0 we denote the set
Q \ ∂rQ by Q(r).

Lemma 2.9. Let G be a finitely generated group and let r > 0 be

given. Then if (Qn) is a Følner sequence in G, the sequence (Q
(r)
n )

is a Følner sequence as well.

Proof. Let (Qn) be a Følner sequence. First we claim that for any
Q ∈ F(G)

∂rext(Q
(r)) ⊆ ∂rint(Q). (2.10)

To see this, let x ∈ ∂rext(Q
(r)) be arbitrary. Then, dS(x,Q(r)) ≤ r,

which means that there exists y ∈ Q(r) such that dS(x, y) ≤ r.
Suppose that x /∈ Q, then we have y ∈ ∂rint(Q) since y ∈ Q. This
would imply that y /∈ Q(r), which is a contradiction. Therefore we
have x ∈ Q. We use x /∈ Q(r) to obtain (2.10). Observe that by
Lemma 2.7 we get

lim
n→∞

|Q(r)
n |
|Qn|

= 1.

Hence there exists a constant n0 ∈ N such that |Qn|−1|Q(r)
n | ≥ 1

2 for
all n ≥ n0. Now, the above facts imply

0 ≤ |∂
r
ext(Q

(r)
n )|

|Q(r)
n |

≤ |∂
r
int(Qn)|
|Q(r)

n |
≤ 2
|∂rint(Qn)|
|Qn|
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for all n ≥ n0. Since (Qn) is a Følner sequence, the result follows by
Lemma 2.7. �

It is easy to construct an example, showing that the converse of
Lemma 2.9 is not true.

A Følner sequence (Qn) is said to be tempered if for some C > 0
and all n ∈ N ∣∣∣∣∣ ⋃

k<n

Q−1
k Qn

∣∣∣∣∣ ≤ C|Qn|
holds true. It can be shown that each Følner sequence has a tem-
pered subsequence, see e.g. [Lin01]. We call a sequence (Qn) strictly
increasing if |Qn| < |Qn+1| for all n ∈ N. Again one can show, that
each Følner sequence has a strictly increasing subsequence. As each
subsequence of a strictly increasing sequence is strictly increasing as
well, this yields that there is a strictly increasing tempered Følner
sequence in each amenable group. A Følner sequence (Qn) is said to
be nested if id ∈ Q1 and for all n ∈ N we have Qn ⊆ Qn+1. Obviously,
a nested Følner sequence is strictly increasing. The next Lemma
shows that each amenable group contains a nested Følner sequence.

Lemma 2.10. Each finitely generated amenable group contains a
nested Følner sequence.

Proof. Let G be a finitely generated amenable group. Then there
exists Følner sequence (Qn) in G. Choose some x ∈ Q1 and define
U1 := Q1x

−1. Now, we proceed inductively. If U1, . . . , Uk are chosen,
then by Lemma 2.7 there exists an n ∈ N such that |∂Uk(Qn)| < |Qn|.
By

|Qn \ ∂Uk(Qn)| ≥ |Qn| − |∂Uk(Qn)| > 0

we obtain that Qn \ ∂Uk(Qn) is non-empty. We choose some y ∈ Qn \
∂Uk(Qn). Then Uky ⊆ Qn or equivalently Uk ⊆ Qny−1. Thus, setting
Uk−1 := Qny

−1 gives a set which contains Uk. In this way we obtain a
sequence (Un)n∈N which consists translates of a subsequence of (Qn).
Therefore, (Un) is a Følner sequence and nested by construction. �

The class of amenable groups is quite large. It contains all groups
of polynomial growth as well as all groups of intermediate growth.
Furthermore, there exist groups of exponential volume growth, which
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are amenable, e.g. the Lamplighter group. A famous example for a
non-amenable group is the free group. The next Lemma shows that
each amenable group is sofic.

Lemma 2.11. Each finitely generated amenable group is sofic.

Proof. Let G be finitely generated and amenable, ε > 0 and r ∈ N
be given. Amenability implies that there exists a Følner sequence
(Qn) in G. By Lemma 2.7 there exist n = n(r, ε) ∈ N such that
|∂rint(Qn)| ≤ ε|Qn|. Then, define Γr,ε := (Vr,ε, Er,ε) as the restriction
Γ(G,S)|Qn of the Cayley graph Γ of G to Qn. This means, that
Vr,ε = Qn and two vertices are connected in Γr,ε if and only if they

are connected in Γ. Furthermore, set V
(0)
r,ε := Q

(r)
n = Qn \ ∂rint(Qn).

Then, for each x ∈ Q
(r)
n = V

(0)
r,ε the ball Br(x) is contained in

Qn = Vr,ε. This proves (S2). Condition (S1) follows immediately
from the choice of n:

|V (0)
r,ε | = |Q(r)

n | = |Qn| − |∂rint(Qn)| ≤ (1− ε)|Vr,ε|. �

Studying spectral properties of discrete operators, the geometric
setting of amenable groups can be seen as the natural generalization
of Zd. This is due to the fact, that many proofs rely on the property,
that boxes or balls in Zd have a vanishing boundary (in comparison
with its volume), if one increases the diameter. This property remains
true for the above defined Følner sequences.

In this context it is also important that many tools, which have been
established for the euclidean setting, can be generalized to amenable
groups. The most prominent example of these tools is the pointwise
ergodic theorem which is due to Lindenstrauss [Lin01, Theorem 1.2].
In Theorem 2.12 we cite a special (and for our purposes sufficient)
case of it. Before we do so, let use give some more definitions.

We say that a group G acts from the left on a probability space
(Ω,A,P) by measure preserving transformations Tg, g ∈ G, if for any
g ∈ G the mapping Tg : Ω→ Ω is a bijection satisfying:

(i) for all ω ∈ Ω and g, h ∈ G we have Tgh(ω) = Tg(Th(ω)),

(ii) for all ω ∈ Ω we have Tid(ω) = ω and

(iii) for all A ∈ A and g ∈ G we have Tg(A) = {Tg(ω) | ω ∈ A} ∈ A
and P(A) = P(Tg(A)).
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In this situation we also say that T = (Tg)g∈G is a measure preserving
left action of G on (Ω,A,P). Furthermore, this action T of G is called
ergodic, if for any A ∈ A with

Tg(A) = A

for all g ∈ G, one has P(A) ∈ {0, 1}. Note that (i) and (ii) imply that
for any g ∈ G we have T−1

g = Tg−1 .

Theorem 2.12 (Lindenstrauss). Let G be an amenable group and
let T = (Tg)g∈G be a measure preserving and ergodic left action of G
on a probability space (Ω,A,P). Furthermore, let (Qn) be a tempered
Følner sequence in G. Then for any f ∈ L1(P)

lim
n→∞

1

|Qn|
∑
g∈Qn

f(Tg(ω)) =

∫
Ω

f(ω)dP(ω)

holds almost surely.

2.2 Operators on groups

In this section we give some well-known definitions and facts about
linear operators on Hilbert spaces. In the first subsection, we concen-
trate on deterministic operators, whereas in the second subsection
we consider the random setting.

2.2.1 Deterministic operators on groups

Let A be an linear operator mapping from its domain D(A) to X,
where D(A) ⊆ X and X is a Hilbert space. Without indicating it
at each specific situation, in this work we always assume that the
operator under consideration is linear and the domain is a linear
subspace of the associated Hilbert space. We say that an operator is
densely defined when D(A) is dense in X with respect to the norm
which is induced by the scalar product on X. Furthermore A is called
symmetric, if for all x, y ∈ D(A) one has 〈x,Ay〉 = 〈Ax, y〉. If D is a
subspace of D(A), then we denote by A|D the restriction of A to D,
i.e. A|D : D → X, A|Dx := Ax for all x ∈ D. The graph G(A) of an
operator A is a subset of X2 := X ×X and given by

G(A) := {(x,Ax) | x ∈ D(A)}.
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We say that the operator A is closed if G(A) is closed in X2 with
respect to the norm defined by ‖(x, y)‖ := (‖x‖2 + ‖y‖2)1/2. The
operator A is called closable if the closure G(A) of G(A) is the graph
of an operator A. This operator A is unique and will be called the
closure of A. Note that each symmetric operator is closable.

Let A be a closed operator. A subspace D of the domain D(A)
is called core of A, if the closure of A|D equals A. If D is a core of
A, then the closure of D with respect to the graph norm given by
‖x‖A = (‖x‖2 + ‖Ax‖2)1/2 is the domain D(A).

The operator A is called self-adjoint if A is densely defined and
A = A∗. Here A∗ is the adjoint of a densely defined operator A given
by

D(A∗) := {x ∈ X | ∃ y ∈ X : 〈x,Az〉 = 〈y, z〉 for all z ∈ D(A)},
A∗x := y.

Note that each symmetric and bounded operator is self-adjoint and
each self-adjoint operator is closed. Furthermore, a symmetric opera-
tor is called essentially self-adjoint , if its closure is self-adjoint. In
order to prove essential self-adjointness, it is good to know that a
symmetric operator A on a Hilbert space X is essentially self-adjoint,
if and only if for all z ∈ C \ R one has that (z −A)D(A) is dense in
X, see for instance [RS80].

Given a complex number z ∈ C, we denote by <(z) ∈ R the real
part of z and by =(z) ∈ R the imaginary part, i.e. z = <(z) + i=(z).
Let us specify the Hilbert space on which our operators will be defined.
Let G be a finitely generated group. For K ∈ {R,C} and p ∈ {1, 2}
we will use the notation

`p(G,K) :=

{
f : G→ K |

∑
g∈G
|f(g)|p <∞

}
, and

Cc(G,K) :=
{
f : G→ K | |spt(f)| <∞

}
,

where spt(f) denotes the support of f , i.e. spt(f) := {g ∈ G | f(g) 6=
0}. The norm in `p(G,K) is defined by setting for f ∈ `p(G):

‖f‖p :=

(∑
g∈G
|f(g)|2

)1/p

.
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Furthermore, we set `p(G) := `p(G,C) and Cc(G) := Cc(G,C). In
many situations we consider operators on the Hilbert space `2(G).
The scalar product in `2(G) is given as follows: for f, g ∈ `2(G) set

〈f, g〉 =
∑
x∈G

f(x)g(x).

Thus, the following relation holds: ‖f‖22 = 〈f, f〉. Moreover, the
Cauchy-Schwarz inequality gives for f, g ∈ `2(G):

|〈f, g〉| ≤ ‖f‖2 ‖g‖2.

Note that as G is finitely generated, we have that G is countable
and hence `2(G) is separable. For x ∈ G we define δx ∈ `2(G) by
setting δx(z) = 1 if x = z and δx(z) = 0 if x 6= z. Furthermore, for
Q ∈ F(G) we use the mapping πQ : `2(G)→ Cc(G),

(πQφ)(x) =

{
φ(x) if x ∈ Q,

0 otherwise.
(2.11)

If the set Cc(G) is a subset of the domain of an operator A, then for
x, y ∈ G the expression 〈δx, Aδy〉 is well defined. We will often refer
to 〈δx, Aδy〉 as the matrix element of A (with respect to the canonical
basis of `2(G)). Sometimes we also use the notation a(x, y) :=
〈δx, Aδy〉. We say that an operator A with Cc(G) ⊆ D(A) is of
finite hopping range r ∈ N, if for all x, y ∈ G with dS(x, y) ≥ r
one has a(x, y) = 〈δx, Aδy〉 = 0. Moreover, an operator A with
Cc(G) ⊆ D(A) is called translation invariant if for all x, y, z ∈ G one
has a(x, y) = a(xz, yz).

Example 2.13. Here we verify many of the above defined properties
at the example of the graph Laplacian of a Cayley graph. Let G be
a finitely generated group and S ⊆ G a finite and symmetric set of
generators. The Laplacian or Laplace operator of the Cayley graph
Γ = Γ(G,S) is the operator ∆ : `2(G)→ `2(G) which acts for given
f ∈ `2(G) as follows

(∆f)(x) :=
∑
s∈S

(f(sx)− f(x)) .
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Let f ∈ `2(G) be given. With this definition we have for each x ∈ G:

|(∆f)(x)|2 =
∣∣∣∑
s∈S

(f(sx)− f(x))
∣∣∣2 ≤ |S|∑

s∈S
|f(sx)− f(x)|2.

We define g ∈ `2(G) by setting for each x ∈ G: g(x) := f(sx). Then
obviously we have ‖g‖2 = ‖f‖2. By the triangle inequality we obtain∑

x∈G
|f(sx)− f(x)|2 = 〈g − f, g − f〉 = ‖g − f‖22 ≤ 4‖f‖22.

The combination of the previous calculations gives∑
x∈G
|(∆f)(x)|2 ≤ |S|

∑
s∈S

∑
x∈G
|f(sx)− f(x)|2 ≤ 4|S|2‖f‖22 <∞,

which shows that for each f ∈ `2(G) we obtain that ∆f ∈ `2(G).
Thus, the Laplacian ∆ is well-defined on its domain D(∆) = `2(G).
Let us consider the matrix elements of the Laplacian. We calculate
for x, y ∈ G as follows:

〈δx,∆δy〉 =
∑
z∈G

δx(z)
∑
s∈S

(δy(sz)− δy(z))

=
∑
s∈S

(δy(sx)− δy(x)) = δxy−1(s)− |S|δy(x) (2.12)

Thus, if id /∈ S, each diagonal element equals −|S|. Non-diagonal
elements are either zero or one. They are one if and only if the
corresponding vertices are connected by an edge in the Cayley graph.
Moreover, equation (2.12) implies that for any x, y, z ∈ G we have

〈δxz,∆δyz〉 = δxz(yz)−1(s)− |S|δyz(xz) = 〈δx,∆δy〉 .

This shows that the Laplacian of Γ is translation invariant. Besides
this, the calculation of the matrix elements immediately gives that ∆
is of finite hopping range 2. Let us check that ∆ is symmetric. To
this end let f, g ∈ G be arbitrary. Then we have by symmetry of S:∑

x∈G

∑
s∈S

f(sx)g(x) =
∑
x∈G

∑
s∈S

f(x)g(sx).
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This is used to obtain

〈∆f, g〉 =
∑
x∈G

(∑
s∈S

f(sx)− f(x)

)
g(x)

=
∑
x∈G

∑
s∈S

f(x)g(sx)−
∑
x∈G

∑
s∈S

f(x)g(x)

=
∑
x∈G

f(x)

(∑
s∈S

g(sx)− g(x)

)
= 〈f,∆g〉 .

Thus, the Laplacian is symmetric. Since D(∆) = `2(G) it also is
self-adjoint and closed.

The following well-known Lemma shows how to express matrix
elements of powers of an operator via matrix elements of the operator
itself.

Lemma 2.14. Let G be a finitely generated group, Q ⊆ G and let A
be a bounded operator on `2(Q) with finite hopping range r. Then for
each m ∈ N and x, y ∈ Q one has

〈δx, Amδy〉 =
∑

v1...,vm−1∈Br(m−1)(x)∩Q

〈δx, Aδv1
〉 〈δv1

, Aδv2
〉 · · ·

〈
δvm−1 , Aδy

〉
.

Here the elements δx, x ∈ Q are the canonical basis of `2(Q).

Proof. We show the claim by induction. For m = 1 it is clear and for
m = 2 it follows from the fact that for x, y ∈ Q we have:〈
δx, A

2δy
〉

=
∑
v∈Q
〈A∗δx, δv〉 〈δv, Aδy〉 =

∑
v∈Br(x)∩Q

〈δx, Aδv〉 〈δv, Aδy〉 .

Assume that the claimed equality holds for m− 1. Then we have

〈δx, Amδy〉 =
〈
(Am−1)∗δx, Aδy

〉
=

∑
vm−1∈Q

〈
δx, A

m−1δvm−1

〉 〈
δvm−1

, Aδy
〉

=
∑

v1...,vm−1∈Br(m−1)(x)∩Q

〈δx, Aδv1
〉 · · ·

〈
δvm−2

, Aδvm−1

〉 〈
δvm−1

, Aδy
〉
,

which proves the lemma. �

38



2.2 Operators on groups

In order to deal with resolvents of self-adjoint operators the follow-
ing Lemma will be helpful.

Lemma 2.15. Let A : D(A) ⊆ `2(G) → `2(G) be a self-adjoint
operator, let z ∈ C \ R and assume that Cc(G) is a core of A. Then
for each κ > 0 and ξ ∈ `2(G) there exists ψ ∈ `2(G) such that

‖ξ − ψ‖2 < κ and (z −A)−1ψ ∈ Cc(G).

Proof. Let κ > 0 and ξ ∈ `2(G) be given. As Cc(G) is a core of A, it
is dense in D(A) with respect to the norm ‖ · ‖A. The map

z −A : (D(A), ‖ · ‖A)→ (`2(G), ‖ · ‖2)

is continuous and surjective, and so

(z −A)(Cc(G)) = {ψ ∈ `2(G) | (z −A)−1ψ ∈ Cc(G)} (2.13)

is dense in `2(G). This construction allows to find an element ψ ∈
(z−A)(Cc(G)) such that ‖ξ−ψ‖2 < κ. Furthermore, equation (2.13)
shows that (z −A)−1ψ is compactly supported. �

2.2.2 Random operators on groups

In this section we give precise definitions of random and ergodic
operators on groups. Here we stick to the notation of [PF92]. Let G
be a finitely generated group and (Ω,A,P) a probability space. Recall
that the space `2(G) is separable. Denote by L(`2(G)) the space of
linear operators on `2(G) and by L(`2(G)) the subspace of L(`2(G))
which consists of all bounded linear operators, i.e.

L(`2(G)) := {A : D(A)→ `2(G) | D(A) ⊆ `2(G), A linear}, and

L(`2(G)) := {A ∈ L(`2(G)) | D(A) = `2(G), A bounded}.

We say that ψ : Ω→ `2(G) is a random vector in `2(G) or that ψ is
weakly measurable, if for any φ ∈ `2(G) the function 〈φ, ψ〉 : Ω→ C,
ω 7→ 〈φ, ψ(ω)〉 is measurable. Sometimes, a ψ which fulfills this
condition is simply called measurable. If ψ : Ω → `2(G) satisfies
ψ−1(U) ∈ A for any open set U ⊆ `2(G), then ψ is called norm
measurable. This notion refers to the fact that the open sets in `2(G)
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are defined using the norm ‖ · ‖2. As `2(G) is separable, ψ is norm
measurable if and only if it is weakly measurable, cf. [Con99, § 52].

Let D be a dense linear subspace of `2(G). Then a mapping

A : Ω→ L(`2(G)), A 7→ A(ω),

or the family (A(ω))ω∈Ω , is called a random operator on the domain
D, if there is a set Ω̃ ⊆ Ω of full measure such that for all ω ∈ Ω̃
the set D is a subset of the domain of A(ω) and if for any φ ∈ D
the mapping Aφ : Ω̃→ `2(G), (Aφ)(ω) := A(ω)φ is a random vector
on the probability space (Ω̃, Ã, P̃). Here Ã := {A ∩ Ω̃ | A ∈ A}
and P̃(A ∩ Ω̃) = P(A) for all A ∈ A. Again, a family of operators
(A(ω))ω∈Ω which satisfies the conditions of a random operator on
the domain D is sometimes simply called measurable. Note that the
domain of a random operator is not uniquely determined.

Let us consider the special case, where A is mapping from Ω to the
set of bounded linear operators on `2(G), i.e.

A : Ω→ L(`2(G)), A 7→ A(ω).

Here one does not have to care about the domains, such that in order
to show that A is measurable (or a random operator on the domain
`2(G)), it is sufficient to show that for all φ, ψ ∈ `2(G) the mapping
Ω 3 ω 7→

〈
φ,A(ω)ψ

〉
is measurable.

This, and the fact that we are in particular interested in random
operators where D equals Cc(G) leads to the following definition.

Definition 2.16. Let A be a mapping from Ω to L(`2(G)). We
say that A is a proper random operator if for all ω ∈ Ω one has
Cc(G) ⊆ D(A(ω)) and for all φ ∈ Cc(G) the mapping Aφ : Ω →
`2(G), ω 7→ A(ω)φ is a random vector.

In particular, a proper random operator is a random operator on
the domain Cc(G). The random operators which we will consider
in the following will usually have (at least) the domain Cc(G). For
these operators we define what it means to be ergodic. To this end
let again Ω̃ be a set of full measure such that Cc(G) ⊆ D(A(ω)) for
all ω ∈ Ω̃. If the action T = (Tx)x∈G of G on (Ω,A,P) is a measure
preserving and ergodic left action, we define

ΩT :=
⋂
x∈G

Tx(Ω̃), (2.14)
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which is a set of full measure as G is countable.

Definition 2.17. Let A = (A(ω))ω∈Ω be a random operator on the
domain Cc(G) mapping each element of the probability space (Ω,A,P)
to a linear operator on `2(G). Then A is called ergodic or metrically
transitive, if T = (Tx)x∈G is a measure preserving and ergodic left
action of G on (Ω,A,P) such that for all ω ∈ ΩT and all x, y, z ∈ G
one has

a(Tzω)(x, y) = a(ω)(xz, yz),

where for all ω ∈ ΩT we use the notion a(ω)(x, y) :=
〈
δx, A

(ω)δy
〉
.

Note that the choice of ΩT in (2.14) ensures that for each ω ∈ ΩT
and y ∈ G we have δy ∈ D(A(ω)). If A is an ergodic operator with
T as in the definition, we define the family U := (Ux)x∈G of unitary
operators on `2(G) by setting for φ ∈ `2(G) and x, z ∈ G

(Uzφ)(x) := φ(xz). (2.15)

This yields U−1
z = Uz−1 for all z ∈ G and

A(Tzω) = UzA
(ω)U−1

z

for all ω ∈ ΩT . Let A be a random operator with matrix elements
a(ω)(x, y), x, y ∈ G, ω ∈ Ω. We call A translation invariant (in
distribution) if for any z ∈ G, F ∈ F(G) and E ∈ B(CF×F ) one has

P
((
a(x, y)

)
x,y∈F ∈ E

)
= P

((
a(xz, yz)

)
x,y∈F ∈ E

)
. (2.16)

Note that ergodicity implies translation invariance in distribution.
This property can also hold simultaneously for two operators. To
define this, let B be another random operator with matrix elements
b(ω)(x, y), x, y ∈ G, ω ∈ Ω. Then we say that A and B are jointly
translation invariant (in distribution) if for any F ∈ F(G), E ∈
B(CF×F × CF×F ):

P
((
a(x, y), b(x, y)

)
x,y∈F ∈ E

)
= P

((
a(xz, yz), b(xz, yz)

)
x,y∈F ∈ E

)
. (2.17)
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If A and B are ergodic operators on the same probability space and
with the same family T of transformations, then they are jointly
translation invariant in distribution.

Another important condition which our operators oftentimes have
to fulfill is the following:

E
(
‖Aδid‖21

)
= E

((∑
x∈G
|a(x, id)|

)2
)
<∞. (2.18)

Note that in the case where the operator is translation invariant in dis-
tribution condition (2.18) implies that E

(
‖Aδx‖21

)
= E

(
‖Aδid‖21

)
<

∞ holds for any x ∈ G. This gives immediately E
(
‖Aφ‖21

)
<∞ for

any φ ∈ Cc(G).
The following lemma is adapted from [PF92, Proposition 4.1]. For

a random operator B we denote by ‖B‖∞ the L∞(P)-norm of the
random variable ω 7→ ‖B(ω)‖ ∈ R, i.e.

‖B‖∞ = ess sup
ω∈Ω

‖B(ω)‖,

where ‖·‖ is the operator norm.

Lemma 2.18. Let A and B be random operators on the domain
Cc(G), which are jointly translation invariant and let both satisfy
(2.18). Furthermore let ‖B‖∞ be finite. Then for all x ∈ G and
r ∈ N,

E
(
‖AπBGr Bδx‖

2
2

)
≤ ‖B‖2∞E

(
‖Aδid‖21

)
,

holds true.

Proof. Let Ωc := {ω ∈ Ω | Cc(G) ⊆ D(A(ω)) ∩ D(B(ω))} and set
for all ω ∈ Ωc and x, y ∈ G as before a(ω)(x, y) := 〈δx, Aδy〉 and
b(ω)(x, y) := 〈δx, Bδy〉 the matrix elements of A and B. We have for
ψ ∈ `2(G) the equality ψ =

∑
z∈G〈δz, ψ〉δz. Using this, the triangle

inequality and monotone convergence, we obtain

E
(
‖AπBGr Bδx‖

2
2

)
= E

(
〈AπBGr Bδx, AπBGr Bδx〉

)
≤
∑

y,z∈G
E
(
|〈Aδy, Aδz〉b(y, x)b(x, z)|

)
=
∑

y,z
E
(
|〈Aδyz−1 , Aδid〉b(yz−1, xz−1)b(xz−1, id)|

)
,
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where we used joint translation invariance of A and B in the last step.
Substitution, monotone convergence and Cauchy-Schwarz inequality
leads to

E
(
‖AπBGr Bδx‖

2
2

)
=
∑

y′,z
E
(
|〈Aδy′ , Aδid〉b(y′, xz−1)b(xz−1, id)|

)
=
∑

y′
E
(
|〈Aδy′ , Aδid〉|

∑
z′
|b(y′, z′)b(z′, id)|

)
≤
∑

y′
E
(
|〈Aδy′ , Aδid〉|‖Bδy′‖2‖Bδid‖2

)
.

We estimate, using the norm ‖B‖∞ and again translation invariance
in distribution, to get

E
(
|〈Aδy′ , Aδid〉|‖Bδy′‖2‖Bδid‖2

)
≤ ‖B‖2∞E

(
|〈Aδy′ , Aδid〉|

)
= ‖B‖2∞E

(∣∣∣∑
z
a(z, y′)a(z, id)

∣∣∣)
= ‖B‖2∞E

(∣∣∣∑
z
a(id, y′z−1)a(id, z−1)

∣∣∣).
Next, we apply the triangle inequality and reorder the sum to obtain

E
(
‖AπBGr Bδx‖

2
2

)
≤ ‖B‖2∞

∑
y′,z

E
(
|a(id, y′z−1)a(id, z−1)|

)
= ‖B‖2∞E

(∑
y′′
|a(id, y′′)|

∑
z′
|a(id, z′)|

)
= ‖B‖2∞E

((∑
y
|a(id, y)|

)2)
= ‖B‖2∞E

(
‖Aδid‖21

)
. �

In the following theorem we use the previous result to obtain
essential self-adjointness.

Theorem 2.19. Let A = (A(ω))ω∈Ω be a symmetric random operator
on the domain Cc(G) which is translation invariant in distribution and
which satisfies (2.18). Then, for P-almost all ω ∈ Ω the operator A(ω)

is essentially self-adjoint.

Proof. We generalize the proof of [PF92, Theorem 4.2] to our more
general setting. As discussed before, in order to show almost sure
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essential self-adjointness, it is enough to prove that for P-almost all
ω and all z ∈ C \ R

(z −A(ω))D(A(ω))

is dense in `2(G). Note that by assumption we have Cc(G) ⊆ D(A(ω))
for almost all ω ∈ Ω. Therefore it suffices to show that (z−A(ω))Cc(G)
is almost surely dense in `2(G). To this end, choose some g ∈ G.

Hence, it is enough to find for almost all ω a sequence (φ
(ω)
k )k∈N of

finitely supported functions, such that limk→∞‖(z−A(ω))φ
(ω)
k −δg‖2 =

0.
Define for r ∈ N and ω ∈ Ω an approximating operator A

(ω)
r :

Cc(G)→ `2(G) by setting for φ ∈ Cc(G) and x ∈ G:

(A(ω)
r φ)(x) :=

∑
y∈G

a(ω)
r (x, y)φ(y)

where

a(ω)
r (x, y) :=

{
a(ω)(x, y) if |a(ω)(x, y)| ≤ r and dS(x, y) ≤ r,
0 otherwise.

Then there is a constant br ≥ 0 such that for all ω we have ‖A(ω)
r ‖2 ≤

br. Hence for each ω the operator A
(ω)
r is self-adjoint. Now we

introduce the element φ
(ω)
g,n,r ∈ Cc(G), which will, for an appropriate

choice of r and n, help to find an approximant for δg. We set

φ(ω)
g,n,r := πBGn (z −A(ω)

r )−1δg

and estimate

‖(z −A(ω))φ(ω)
g,n,r − δg‖2

=
∥∥(z −A(ω))πBGn (z −A(ω)

r )−1δg−

(z −A(ω)
r )(πBGn + πG\BGn )(z −A(ω)

r )−1δg
∥∥

2

≤ ‖(A(ω)
r −A(ω))πBGn (z −A(ω)

r )−1δg‖2+

(|z|+ br)‖πG\BGn (z −A(ω)
r )−1δg‖2, (2.19)

where we used ‖z − A(ω)
r ‖2 ≤ |z| + br for all ω ∈ Ω. In order to

estimate the expectation of the last summand in (2.19), note that the
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boundedness of (z −A(ω)
r )−1 implies (z −A(ω)

r )−1δg ∈ `2(G). Hence
we have

lim
n→∞

‖πG\BGn (z −A(ω)
r )−1δg‖2 = 0

and for all r ∈ N. Moreover, for all n ∈ N we obtain

‖πG\BGn (z −A(ω)
r )−1δg‖2 ≤ |=(z)|−1.

Therefore, Lebesgues theorem yields

lim
n→∞

E
(
‖πG\BGn (z −Ar)−1δg‖2

)
= 0.

Thus we can find ñ = ñ(g, r) such that

E
(
‖πG\BGñ (z −Ar)−1δg‖2

)
≤ 1

r(|z|+ br)
. (2.20)

In order to control the expectation of the first summand in (2.19),
we make use of Jensen’s inequality and Lemma 2.18:(

E
(
‖(Ar −A)πBGn (z −Ar)−1δg‖2

))2
≤ E

(
‖(Ar −A)πBGn (z −Ar)−1δg‖22

)
≤ ‖(z −Ar)−1‖2∞E

(
‖(Ar −A)δid‖22

)
. (2.21)

Furthermore, by definition we have∑
g∈G
|a(ω)(g, id)− a(ω)

r (g, id)| ≤
∑
g∈G
|a(ω)(g, id)| = ‖A(ω)δid‖1.

Using (2.18), this gives integrable bounds for the following application
of Lebesgue’s theorem:

lim
r→∞

E
(
‖(A−Ar)δid‖21

)
= lim
r→∞

E
((∑

g∈G
|a(g, id)− ar(g, id)|

)2)
= E

((∑
g∈G

lim
r→∞
|a(g, id)− ar(g, id)|

)2)
= 0.

This, the fact that for each ω we have ‖(z−A(ω)
r )−1‖ ≤ |=(z)|−1 and

(2.21) imply

lim
r→∞

E
(
‖(Ar −A)πBGn (z −Ar)−1δg‖2

)
= 0.
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The last equality, (2.20) and (2.19) yield

lim
r→∞

E
(
‖(z −A)φg,ñ(g,r),r − δg‖2

)
= 0,

which is L1-convergence. This implies the existences of a sequence
(rk)k∈N such that for P-almost all ω we have

lim
k→∞

‖(z −A(ω))φ
(ω)
g,ñ(g,rk),rk

− δg‖2 = 0,

which proves essential self-adjointness of A(ω). �

Remark 2.20. In the theory of random operators it is usual that
certain properties can not be verified for all, but only for almost all
realizations. This is for instance the case in Theorem 2.19, where we
showed essential self-adjointness almost surely. Similarly, we often
obtain that the operator in question is defined on Cc(G) only for
almost all ω. Let us briefly discuss two ways in order to deal with
the realization where we are not able to verify the desired properties.

Let A be a random operator on the probability space (Ω,A,P)
and let (P) be a property which is only fulfilled on Ω̃, a set of full
measure. In this situation we can restrict our probability space to
(Ω̃, Ã, P̃), where Ã := {D ∩ Ω̃ | D ∈ A} and P̃ : Ã → [0, 1] is given by
P̃(D∩Ω̃) := P(D) for all D ∈ A. Thus the operator Ã : Ω̃→ L(`2(G)),
ω 7→ A(ω) has property (P) for all ω ∈ Ω̃. Of course, proceeding this
way, one has to keep in mind that all proven results on this probability
space may only hold with probability one on the original one.

In this book, we rather pursue a second way to deal with realizations
of an operator A where a certain property (P) is not satisfied. We
redefine the operator A on the set of measure zero as the identity
if the property (P) holds for the identity. This is done for instance
in (4.6) and (6.1). In this way we obtain a “new” operator on the
original probability space, where (P) is satisfied for all ω.

In particular, we will oftentimes pass from a random operator on
the domain Cc(G) which is almost surely self-adjoint, to a proper
random operator which is self-adjoint for all realizations.

When dealing with resolvents of self-adjoint random operators it is
worth knowing that they are measurable. This fact is provided by
the next Lemma.
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Lemma 2.21. Let A = (A(ω))ω∈Ω be a proper random operator on a
probability space (Ω,A,P) such that for each ω ∈ Ω the operator A(ω)

is self-adjoint. Then for all z ∈ C \ R the mapping

(z −A)−1 : Ω→ L(`2(G)), ω 7→ (z −A(ω))−1

is a proper random operator and in particular measurable.

Proof. For each ω ∈ Ω we denote by a(ω)(x, y) := 〈δx, A(ω)δy〉 the
matrix elements of A(ω). We fix z ∈ C \ R. Define for r > 0 and
x, y ∈ G

a(ω)
r (x, y) :=

{
a(ω)(x, y) if |a(ω)(x, y)| ≤ r and x, y ∈ BGr ,

0 otherwise.

Denote by A
(ω)
r : `2(G) → `2(G) the operator with these matrix

elements. Note that this operator is not translation invariant in
distribution and has only finitely many non-zero matrix elements.

Besides this, for each ω ∈ Ω and r > 0 the operator A
(ω)
r is self-adjoint.

Since A is assumed to be a proper random operator, for all x, y ∈ G
the mappings Ω 3 ω 7→ a(ω)(x, y) are measurable.

Note that there are only finitely many matrix elements of ((z −
A

(ω)
r )−1) which depend on ω. By Cramer’s rule, each such element is a

quotient of polynomials of measurable functions and hence measurable,
too. Hence, for given φ, ψ ∈ `2(G) the mapping

ω 7→
〈
φ, (z −A(ω)

r )−1ψ
〉

is measurable. This implies that (z − Ar)
−1 is a proper random

operator and in particular measurable. Thus, for arbitrary φ ∈ `2(G)

the mapping Ω 3 ω 7→ (z − A(ω)
r )−1φ ∈ `2(G) in norm-measurable.

Here we used that `2(G) is separable.
Our next aim is to prove that these mappings converge strongly to

the resolvents of A, which will imply that they are measurable, too.
Note that for all ω ∈ Ω and r > 0 we have by self-adjointness

‖(z −A(ω))−1‖ ≤ |=(z)|−1 and ‖(z −A(ω)
r )−1‖ ≤ |=(z)|−1.
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We fix some ω ∈ Ω, ξ ∈ `2(G) and κ > 0. Using the above estimates,
triangle inequality and the second resolvent identity we obtain for
any ψ ∈ `2(G)∥∥((z −A(ω))−1 − (z −A(ω)

r )−1
)
ξ
∥∥

2

≤
∥∥((z −A(ω))−1 − (z −A(ω)

r )−1
)
ψ
∥∥

2
+ 2‖ξ − ψ‖2/|=(z)|

≤ ‖(z −A(ω)
r )−1(A(ω) −A(ω)

r )(z −A(ω))−1ψ‖2 + 2‖ξ − ψ‖2/|=(z)|
≤
(
‖(A(ω) −A(ω)

r )(z −A(ω))−1ψ‖2 + 2‖ξ − ψ‖2
)
/|=(z)|.

Since A(ω) is self-adjoint and Cc(G) is a core, we can choose this ψ
according to Lemma 2.15, i.e. we have

‖ξ − ψ‖2 < κ and φ := (z −A(ω))−1ψ ∈ Cc(G).

For each r ∈ N we set

ρ(r) := max{s ≤ r | a(ω)(x, y) = a(ω)
r (x, y) for all x, y ∈ BGs }

and obtain ρ(r)→∞ if r →∞. Using this quantity we calculate

‖(A(ω) −A(ω)
r )φ‖22 =

∑
x∈G\BG

ρ(r)

∣∣∣∣ ∑
y∈spt(φ)

(a(ω)(x, y)− a(ω)
r (x, y))φ(y)

∣∣∣∣2
≤ ‖φ‖2∞|spt(φ)|

∑
x∈G\BG

ρ(r)

∑
y∈spt(φ)

|a(ω)(x, y)− a(ω)
r (x, y)|2

≤ ‖φ‖2∞|spt(φ)|
∑

y∈spt(φ)

∑
x∈G\BG

ρ(r)

|a(ω)(x, y)|2.

As Cc(G) ⊆ D(A(ω)) we have A(ω)δy ∈ `2(G). This implies for
arbitrary y ∈ G:

lim
r→∞

∑
x∈G\BG

ρ(r)

|a(ω)(x, y)|2 = 0

and thus

lim
r→∞
‖(A(ω) −A(ω)

r )φ‖2 = 0.
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Therefore, we have

lim sup
r→∞

∥∥((z −A(ω))−1 − (z −A(ω)
r )−1

)
ξ
∥∥

2
≤ 2κ

|=(z)|
,

which shows the desired convergence of the resolvents, as κ > 0 was
arbitrary. This proves that (z − A)−1 is a proper random operator
and in particular that (z −A)−1 is measurable. �

We apply the previous lemma to obtain another result pointing in
this direction.

Theorem 2.22. Let A = (A(ω)) be a proper random operator which
is self-adjoint for all ω ∈ Ω, let κ > 0 and z ∈ C \ R. Then there
exists n ∈ N and a random vector ψ : Ω→ `2(G) such that

E (‖δid − ψ‖2) ≤ κ and spt
(
(z −A(ω))−1ψ(ω)

)
⊆ BGn .

for all ω ∈ Ω.

Proof. For each n ∈ N we denote the set{
ω ∈ Ω

∣∣ ∃f ∈ `2(G) : spt
(
(z −A(ω))−1f

)
⊆ BGn , ‖δid − f‖2 ≤

κ

2

}
by Mn,κ. In order to verify the measurability of Mn,κ ⊆ Ω we claim
that one can rewrite this set in the following way

Mn,κ =
⋂
m∈N

⋃
f∈D

‖f−δid‖2
<κ

2 + 1
m

⋂
g∈G\BGn

{
ω ∈ Ω

∣∣ |〈δg, (z −A(ω))−1f〉| < m−1
}
,

(2.22)
where

D := {φ ∈ Cc(G) | =(φ(x)) ∈ Q, <(φ(x)) ∈ Q for all x ∈ G}.

Note that D is countable and dense in `2(G). By Lemma 2.21 we
know that the mapping ω 7→ 〈δg, (z − A(ω))−1f〉 is measurable. As
level sets of measurable functions are measurable and the expression
in (2.22) contains only unions and intersections over countable index
sets, equality (2.22) implies measurability of Mn,κ.
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In order to prove (2.22), let us first verify the inclusion “⊆”. To this
end choose some ω ∈ Mn,κ and let f ∈ `2(G) be the corresponding
element with the desired properties. Then one has ‖δid − f‖2 ≤ κ/2
and for all g ∈ G \ BGn that

〈
δg, (z −A(ω))−1f

〉
= 0. Furthermore,

since D is dense in `2(G), we can find for all m ∈ N an element
fm ∈ D with

‖f − fm‖2 <
1

m
min{1, |=(z)|},

such that we get

‖δid − fm‖2 ≤ ‖δid − f‖2 + ‖f − fm‖2 < κ/2 +m−1.

Besides this, by Cauchy-Schwarz inequality we obtain for all g ∈
G \BGn :∣∣〈δg, (z −A(ω))−1fm

〉∣∣ ≤ ∣∣〈δg, (z −A(ω))−1(fm − f)
〉∣∣ < m−1.

This proves the inclusion “⊆”. Let us check the reverse inclusion “⊇”.
To this end let ω be an element of the set on the right hand side of
(2.22). Hence, for all m ∈ N there exists fm ∈ D with ‖fm − δid‖2 <
κ/2 +m−1 and |((z −A(ω))−1fm)(g)| < m−1 for all g ∈ G \BGn . For
arbitrary m ∈ N we have

‖fm‖2 ≤ ‖fm − δid‖2 + 1 ≤ κ/2 + 2. (2.23)

Thus, for all g ∈ G we have that (fm(g))m∈N is a bounded sequence
and hence contains a convergent subsequence. Using a diagonal
sequence we obtain a subsequence such that (fmk(g))k∈N converges
for all g ∈ G. We denote the pointwise limit of the sequence (fmk)
by f . Fatou’s Lemma yields∑

g∈G
lim
k→∞

|fmk(g)|2 ≤ lim inf
k→∞

∑
g∈G
|fmk(g)|2 ≤ (κ/2 + 2)

2
.

This implies f ∈ `2(G). Furthermore, we have

‖f − δid‖2 ≤ κ/2 and spt
(

(z −A(ω))−1f
)
⊆ BGn ,

which shows that ω ∈Mn,κ. Thus, we proved equality (2.22).
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Note that for any n ∈ N we have Mn,κ ⊆ Mn+1,κ. For each
ω ∈ Ω, the compactly supported functions Cc(G) form a core for A(ω).
Lemma 2.15 shows that for each ω ∈ Ω there exists ψ ∈ `2(G) with

‖δid − ψ‖2 < κ/2 and (z −A(ω))−1ψ ∈ Cc(G).

Hence, for arbitrary ω ∈ Ω we can find n̄ = n̄(κ, ω) ∈ N such that
ω ∈Mn̄,κ or equivalently

Ω =
⋃
n∈N

Mn,κ.

This immediately yields limn→∞ P(Mn,κ) = 1 and hence allows to
find n = n(κ) such that P(Mn,κ) > 1− κ/2. From now on we fix this
n.

Finally, we define

M̃n,κ :=
{

(ω, f) ∈Mn,κ ×B(κ) | spt
(
(z −A(ω))−1f

)
⊆ BGn

}
,

where

B(κ) :=
{
f ∈ `2(G) | ‖f − δid‖2 ≤ κ/2

}
.

We defer the investigation of the measurability of the set M̃n,κ to the

end of this proof. Assuming that M̃n,κ is measurable, the existence

of a mapping ψ̃ : Mn,k → `2(G) which is norm-measurable and fulfills

ψ̃(ω) ∈ B(κ) and spt
(
(z −A(ω))−1ψ̃(ω)

)
⊆ BGn

for all ω ∈ Mn,κ, follows directly from a selection theorem due
to R. J. Aumann, see [AB06, Corollary 18.27]. Recall that norm-
measurability means that ψ̃ is measurable with respect to the sigma-
algebra A|Mn,k

on Mn,k and the Borel sigma-algebra on B(κ). Here
we use the notion A|Mn,k

:= {C ∩Mn,k | C ∈ A}. The desired vector
ψ : Ω→ `2(G) is given by

ψ(ω) :=

{
ψ̃(ω) if ω ∈Mn,κ

0 otherwise.
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Hence, ψ is norm-measurable and a random vector. Moreover, we
have

E (‖δid − ψ‖2) ≤
∫
Mn,κ

κ

2
dP(x) +

∫
Ω\Mn,κ

‖δid‖2 dP(x) ≤ κ.

and for all ω ∈ Ω:

spt
(
(z −A(ω))−1ψ(ω)

)
⊆ BGn .

Thus it remains to verify the measurability of M̃n,κ. To this end,
we rewrite this set, similar as before the set Mn,k, as

M̃n,κ =
⋂
m∈N

⋂
g∈G\BGn

{
(ω, f) ∈ Ω×B(κ) |

〈
(z̄ −A(ω))−1δg, f

〉
≤ 1

m

}
.

Thence, to see the measurability of M̃n,κ, we need to show that
the function (ω, f) 7→

〈
(z̄ −A(ω))−1δg, f

〉
mapping elements from

Ω× `2(G) to C is measurable. Here the space Ω× `2(G) is equipped
with the product sigma-algebra A ⊗ B(`2(G)). But as the scalar
product is continuous we only have to show that the mapping V :
Ω × `2(G) → `2(G) × `2(G) where V (ω, f) := (V1(ω), V2(f)) and
V1(ω) := (z̄ −A(ω))−1δg and V2(f) = f is measurable, with respect
to the associated product sigma-algebras. As the involved operator in
V1 is (z̄ −A(ω))−1 the measurability of V follows from Lemma 2.21.
This finishes the proof of the theorem. �

2.3 Eigenvalue counting function

In this section we define the eigenvalue counting function and prove
elementary properties. Later in this book, the results obtained here
will be applied for operators on the Hilbert space `2(Q) where Q is
some finite subset of a finitely generated group. Note that the results
in this section are rather basic knowledge. For the sake of the reader
we provide the proofs thereof.

The eigenvalue counting function of self-adjoint operators on finite
dimensional Hilbert spaces is a distribution functions which encodes
the distribution of the spectrum on the real axis. The precise definition
reads as follows.
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2.3 Eigenvalue counting function

Definition 2.23. For a self-adjoint operator A on a finite dimen-
sional Hilbert space H we define its (cumulative) eigenvalue counting
function e(A) : R→ [0,∞) by setting for λ ∈ R:

e(A)(λ) := |{eigenvalues of A not larger than λ}|,

where the eigenvalues of A are counted according to their multiplicity.
The normalized eigenvalue counting function n(A) : R→ [0, 1] is given
by

n(A)(λ) :=
e(A)(λ)

dim(H)

The next lemma controls the eigenvalue counting function for
perturbed operators.

Lemma 2.24. Let A and C be self-adjoint operators on a finite
dimensional Hilbert space H, then we have for all λ ∈ R:

|e(A)(λ)− e(A+ C)(λ)| ≤ rank(C).

Before proving this lemma we mention some general facts concerning
self-adjoint operators on finite dimensional Hilbert spaces. As in the
setting of the Lemma let A and C be operators on the Hilbert space
H and let n := dim(H) be finite. We fix a basis of H. Thus, the
operators A and C are hermitian matrices of dimension n× n. Since
e(A) is defined as the eigenvalue counting function, we are interested
in the relation between the size of the eigenvalues of A and A+ C.
This will be given with the help of the min-max principle of Courant
and Fischer: let λ1(A) ≤ · · · ≤ λn(A) be the eigenvalues of A, then

λk(A) = min
ψ1,··· ,ψn−k∈Cn

max
φ⊥ψ1,··· ,ψn−k

‖φ‖=1

〈φ,Aφ〉 (2.24)

and

λk(A) = max
ψ1,··· ,ψk−1∈Cn

min
φ⊥ψ1,··· ,ψk−1

‖φ‖=1

〈φ,Aφ〉. (2.25)

For the proof of this see for example [HJ90], where it is also stressed
that the minimizing respectively maximizing vectors are exactly the
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eigenvectors. To be precise, denote for k = 1, . . . , n by fk the nor-
malized eigenvector for the eigenvalue λk(A). Then we have for
k ∈ {1, . . . , n}:

λk(A) = min
φ⊥f1,··· ,fk−1

‖φ‖=1

〈φ,Aφ〉 = max
φ⊥fk+1,··· ,fn

‖φ‖=1

〈φ,Aφ〉. (2.26)

Proof of Lemma 2.24. For a given vector ξ ∈ Cn the matrix B := ξξ∗

is hermitian and of rank one. Given an arbitrary element s ∈ C the
equality 〈φ, sBφ〉 = s〈φ, ξ〉〈ξ, φ〉 = s|〈φ, ξ〉|2 holds for all φ ∈ Cn.
Using (2.25) we get

λk(A+ sB) = max
ψ1,··· ,ψk−1∈Cn

min
φ⊥ψ1,··· ,ψk−1

‖φ‖=1

〈φ,Aφ〉+ s〈φ,Bφ〉

= max
ψ1,··· ,ψk−1∈Cn

min
φ⊥ψ1,··· ,ψk−1

‖φ‖=1

〈φ,Aφ〉+ s|〈φ, ξ〉|2.

We estimate the maximum from below by setting ψi = fi, i =
1, . . . , k−2 and ψk−1 = ξ, where fi, i = 1, . . . , k−1 are the normalized
eigenvectors. This yields

λk(A+ sB) ≥ min
φ⊥f1,··· ,fk−2,ξ

‖φ‖=1

〈φ,Aφ〉+ s|〈φ, ξ〉|2

≥ min
φ⊥f1,··· ,fk−2

‖φ‖=1

〈φ,Aφ〉 = λk−1(A),

where the last equality holds by (2.26). Similarly, by using the relation
(2.24) we get an upper bound for the k-th eigenvalue of A+ sB:

λk(A+ sB) = min
ψ1,··· ,ψn−k∈Cn

max
φ⊥ψ1,··· ,ψn−k

‖φ‖=1

〈φ,Aφ〉+ s|〈φ, ξ〉|2

≤ max
φ⊥fk+2,··· ,fn,ξ

‖φ‖=1

〈φ,Aφ〉 ≤ λk+1(A).

This proves for an arbitrary matrix B of rank one and s ∈ C the
inequalities

λk−1(A) ≤ λk(A+ sB) ≤ λk+1(A). (2.27)

In order to generalize this, let C be a hermitian matrix of rank
m. With the eigendecomposition we get C =

∑n
i=1 siξiξ

∗
i , where
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si are the eigenvalues of C and ξi the normalized eigenvectors for
i = 1, . . . , n. Since the rank of C equals m, there are exactly m non-
zero eigenvalues in the spectrum. Note that we count the eigenvalues
according to their multiplicities. Thus, the above sum consists of m
summands. Next we show by induction that

λk−m(A) ≤ λk
(
A+

m∑
i=1

siBi

)
≤ λk+m(A), (2.28)

where for each i = 1, . . . ,m the matrix Bi is given by Bi = ξiξ
∗
i .

From (2.27) we know that this is true for m = 1. The inductive step
follows from

λk−m−1(A) ≤ λk−1

(
A+

m∑
i=1

siBi

)
≤ λk

(
A+

m+1∑
i=1

siBi

)
≤ λk+1

(
A+

m∑
i=1

siBi

)
≤ λk+m+1(A).

Finally, we translate (2.28) into the language of the eigenvalue count-
ing functions. Let λ ∈ R be given. Setting k := e(A+C)(λ), leads to
λk(A+ C) ≤ λ < λk+1(A+ C), which implies

λk−m(A) ≤ λ < λk+m+1(A)

by using (2.28). This yields k −m ≤ e(A)(λ) ≤ k +m, and hence

e(A)(λ)−m ≤ e(A+ C)(λ) ≤ e(A)(λ) +m

for all λ ∈ R. The claim follows. �

Applying this lemma to operators defined on a finite dimensional
Hilbert space and their projections on a subspace leads to the following
lemma, which has already been proven in [LS05].

Lemma 2.25. Let H be a finite dimensional Hilbert space and U
a subspace of H. If i : U → H is the inclusion and p : H → U the
orthogonal projection, we have

|e(A)(λ)− e(pAi)(λ)| ≤ 4 · rank(1− ip)

for all self-adjoint operators A on H and all energies λ ∈ R. Note
that here 1 : H → H is the identity.
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Proof. We set P := ip : H → H and use the triangle inequality to
obtain

|e(A)(λ)− e(pAi)(λ)|
≤ |e(A)(λ)− e(PAP )(λ)|+ |e(PAP )(λ)− e(pAi)(λ)|. (2.29)

With the help of the equality

A− PAP = (1− P )AP + PA(1− P ) + (1− P )A(1− P )

and Lemma 2.24 we get

|e(A)(λ)− e(PAP )(λ)|
≤ rank(PAP −A)

= rank((1− P )AP + PA(1− P ) + (1− P )A(1− P ))

≤ 3 rank(1− P ). (2.30)

Let U⊥ denote the orthogonal complement of U and define 0U⊥ :
U⊥ → U⊥ with f 7→ 0. It is obvious that

PAP = ipAip = (pAi)⊕ 0U⊥

holds true. Therefore, we have

|e(PAP )(λ)− e(pAi)(λ)| = |e((pAi)⊕ 0U⊥)(λ)− e(pAi)(λ)|
= |e(0U⊥)(λ)| ≤ dim(U⊥).

Note that the dimension of U⊥ equals the rank of (1− P ). Together
with (2.30) and (2.29) we obtain the statement of the lemma. �

2.4 Convergence of measures

In this theses many results concern the convergence of certain prob-
ability measures on R. In the following we define different types of
convergence for probability measures or their distribution functions,
respectively. Furthermore, we discuss necessary and sufficient condi-
tions to verify them. By B(R) we denote the Borel sigma-algebra on
R.
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Let K ∈ {R,C} be given. Then we set

C(R,K) := {f : R→ K | f is continuous},
Cb(R,K) := {f ∈ C(R,K) | f is bounded},
Cc(R,K) := {f ∈ C(R,K) | f is compactly supported}, and

C0(R,K) := {f ∈ C(R,K) | for all ε > 0 ∃ compact B ⊆ K
such that for all x ∈ K \B one has |f(x)| ≤ ε}.

If K = C we write C(R) := C(R,C), Cb(R) := Cb(R,C), Cc(R) :=
Cc(R,C) and C0(R) := C0(R,C). For a function f : R→ R we denote
by cont(f) the subset of R where f is continuous and by disc(f) the
set of points of discontinuity.

Beside these spaces we will need

B(R) := {f : R→ R | f right-continuous and bounded}, (2.31)

which we will equip with supremum norm. Therefore, B(R) is a
Banach space containing the distribution functions of probability
measures on R. Let (φn) be a sequence of functions with φn ∈ B(R),
n ∈ N. If (φn) converges in B(R) to some φ ∈ B(R), then these
functions converge uniformly i.e. with respect to the supremum norm.
An easy fact related to this gives the following lemma.

Lemma 2.26. Let (φn) be a sequence of distribution functions of
probability measures, which converge uniformly to some φ : R→ R.
Then φ is a distribution function of a probability measure as well.

Proof. The monotonicity of φ is clear since we have for any λ′ ≤ λ

φ(λ)− φ(λ′) = lim
n→∞

(φn(λ)− φn(λ′)) ≥ 0,

as the functions φn are monotone. By the uniform convergence, the
right-continuity of the functions φn carries over to the limit φ. In
fact we use the uniform convergence to interchange the limits in the
computation:

lim
λ′↘λ

φ(λ′) = lim
λ′↘λ

lim
n→∞

φn(λ′) = lim
n→∞

lim
λ′↘λ

φn(λ′) = φ(λ).

Another application of uniform convergence yields

lim
λ→∞

φ(λ) = lim
λ→∞

lim
n→∞

φn(λ) = lim
n→∞

lim
λ→∞

φn(λ) = 1.
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Similarly, one obtains limλ→−∞ φ(λ) = 0. Hence, φ is the distribution
function of a probability measure. �

Definition 2.27. Let µ, µ1, µ2, . . . be probability measures on the
measurable space (R,B(R)). We say that (µn)n∈N converges weakly
to µ (and write µ = w-limn→∞ µn) if for any f ∈ Cb(R,R) one has∫

R
f(x)dµn(x)→

∫
R
f(x)dµ(x), n→∞.

The portmanteau theorem gives equivalent formulations of weak
convergence. It can be found for instance in [Kle08, Bil99].

Theorem 2.28 (portmanteau theorem). Let µ, µ1, µ2, . . . be proba-
bility measures on the measurable space (R,B(R)) and let φ, φ1, φ2, . . .
be the associated distribution functions. Then the following are equiv-
alent:

(i) µ = w-limn→∞ µn;

(ii) limn→∞
∫
R f(x)dµn(x) =

∫
R f(x)dµ(x) for all bounded and Lip-

schitz continuous f ;

(iii) limn→∞
∫
R f(x)dµn(x) =

∫
R f(x)dµ(x) for all bounded and mea-

surable f with µ(disc(f)) = 0;

(iv) limn→∞
∫
R f(x)dµn(x) =

∫
R f(x)dµ(x) for all f ∈ Cc(R,R);

(v) one has lim supn→∞ µn(F ) ≤ µ(F ) for all closed sets F ⊆ E;

(vi) one has lim infn→∞ µn(H) ≥ µ(H) for all open sets H ⊆ E;

(vii) limn→∞ φn(x) = φ(x) for all x ∈ cont(φ) .

Note that item (iv) of the theorem actually defines vague conver-
gence of measures, which is in the case of probability measures on R
equivalent to weak convergence. The property (vii) of Theorem 2.28
is often referred to as weak convergence of distribution functions. If
(vii) holds, we write

φ = w-lim
n→∞

φn.
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Note that if φ is the distribution function of a measure µ and f is
integrable with respect to this measure, we have∫

R
f(x)dµ(x) =

∫
R
f(x)dφ(x)

in the sense of Lebesgue-Stieltjes integrals. Another important fact
is that if a sequence of distribution functions (φn) of probability
measures converges weakly to some continuous φ ∈ B(R), then this
convergence is even uniform. In order to verify weak convergence it
turns out that it is useful to investigate the limit

lim
n→∞

∫
R
f(x)dµn(x) =

∫
R
f(x)dµ(x) (2.32)

for certain test functions f as done in (ii), (iii) and (iv) of the
portmanteau theorem. The class of the test functions can be even
more specified. In particular, in [CFKS09, Section 3] it is proposed
to use x→ (z−x)−1 for z ∈ C\R as test functions. This leads to the
Stieltjes transform of a probability measure. Let µ be a probability
measure on (R,B(R)), then the Stieltjes transform r(µ) : C \ R→ C
of µ is given by setting for z ∈ C \ R:

r(µ)(z) :=

∫
R

(z − x)−1dµ(x). (2.33)

Moreover, for m ∈ N the m-th moment of the probability measure µ
is given by

Mm(µ) :=

∫
R
xmdµ(x). (2.34)

If φ is the distribution function of µ, then we sometimes use the
notions r(φ) := r(µ) and Mm(φ) := Mm(µ). In this situation we
say that r(φ) is the Stieltjes transform of φ and Mm(φ) is the m-th
moment of φ. In the next lemma we use these quantities to formulate
other conditions which are equivalent to weak convergence.

Lemma 2.29. Let µ, µ1, µ2, . . . be probability measures on (R,B(R)).
Then the following are equivalent
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(i) µ = w-limn→∞ µn;

(ii) for all z ∈ C \ R one has limn→∞ r(µn)(z) = r(µ)(z).

If, furthermore, there is a k > 0 such that each of the measures
µ, µ1, µ2, . . . is supported on a subset of [−k, k] ⊆ R, then also the
following criterion is equivalent to (i) and (ii)

(iii) for all m ∈ N one has limn→∞Mm(µn) = Mm(µ).

In the proof of this Lemma we will make use of the Stone-Weierstrass
theorem in a complex-valued version to be found for instance in [dB59].

Theorem 2.30 (Stone-Weierstraß). Let A be a C-subalgebra of
C0(R,C) such that

(i) for any two points x, y ∈ R with x 6= y there is some f ∈ A
satisfying f(x) 6= f(y);

(ii) for any x ∈ R there exists f ∈ A with f(x) 6= 0;

(iii) for any f ∈ A one has f̄ ∈ A.

Then A is dense in C0(R,C) with respect to supremum norm.

Proof of Lemma 2.29. First assume that (µn) converges weakly to
µ. Then by definition of the Lebesgue-Stieltjes integral we have for
z ∈ C \ R∫

R
(z − x)−1dµn(x)

=

∫
R
<
(
(z − x)−1

)
dµn(x) + i

∫
R
=
(
(z − x)−1

)
dµn(x).

This expression tends by definition of weak convergence for n→∞
to ∫

R
(z − x)−1dµ(x)

=

∫
R
<
(
(z − x)−1

)
dµ(x) + i

∫
R
=
(
(z − x)−1

)
dµ(x),

60



2.4 Convergence of measures

which proves (ii). Assuming additionally that there is some k > 0 such
that the support of each of the measures µ, µ1, µ2, . . . is contained in
[−k, k] we get for m ∈ N∫

R
xmdµn(x)

=

∫
R
xm1[−k,k](x)dµn(x)

n→∞→
∫
R
xm1[−k,k](x)dµ(x) =

∫
R
xmdµ(x),

where we used (iii) of Theorem 2.28. This shows that (i) implies (iii).
Now we assume (iii). By linearity of the Lebesgue-Stieltjes integral

we obtain that 2.32 holds for all polynomials f . The application of
the approximation theorem of Weierstraß gives that (2.32) holds as
well for each continuous f with support in [−k, k]. Again by the
portmanteau theorem this proves weak convergence of the measures.

It remains to prove that (i) is implied by (ii). To this end, assume
that (ii) holds and define the set

R := {φ : R→ C | ∃z ∈ C \ R with φ(x) = (z − x)−1}.

We write alg(R) for the algebra which is generated byR. Furthermore,
denote the set of all functions f : R→ C such that (2.32) holds by K.
Let us show that the space K is closed under limits with respect to
supremum norm. To this end, choose a sequence (fj) in K and some
f : R→ C satisfying limj→∞‖fj − f‖∞ = 0 and calculate∣∣∣∫

R
f(x)dµn(x)−

∫
R
f(x)dµ(x)

∣∣∣ ≤ ∣∣∣∫
R
f(x)− fj(x)dµn(x)

∣∣∣
+
∣∣∣∫

R
fj(x)dµn(x)−

∫
R
fj(x)dµ(x)

∣∣∣+
∣∣∣∫

R
fj(x)− f(x)dµ(x)

∣∣∣
≤ 2‖f − fj‖∞ +

∣∣∣∫
R
fj(x)dµn(x)−

∫
R
fj(x)dµ(x)

∣∣∣.
This gives that the limit f is an element of K as well.

We claim that

alg(R) ⊆ K and fulfills (i), (ii) and (iii) of Theorem 2.30. (2.35)

Then the Stone-Weierstrass theorem gives that the closure of alg(R)
with respect to supremum norm equals C0(R,C) and is a subset of K.
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As Cc(R,C) ⊆ C0(R,C) we obtain using the portmanteau theorem
w-limn→∞ µn = µ. Therefore, it remains to prove (2.35).

Point (i) and (ii) of Theorem 2.30 are obvious. Furthermore R is
by definition closed under conjugation, which carries over to alg(R)
and thus proves assumption (iii) of the Stone-Weierstrass theorem.
Now we show alg(R) ⊆ K.

Let z, z′ ∈ C \ R be distinct. Then we have by partial fraction
decomposition

1

z − x
1

z′ − x
=

1

z′ − z

(
1

z − x
− 1

z′ − x

)
.

Therefore, products of distinct functions in R are in K. If one
considers integer powers of an elements of R the situation is more
difficult. Let z ∈ C \ R and m ∈ N be given. Then by Cauchy’s
integral formula we have

1

(z − x)m
=

1

2πi

∮
∂B=(z)/2(z)

1

(t− x)(z − t)m
dt,

where the integration over ∂B|=(z)|/2(z) means the integration along
the circle of radius |=(z)|/2 around z. We set

γz : [0, 1]→ C, γz(s) := z +
|=(z)|

2
e2πis.

By definition of the curve integral we have∮
∂B=(z)/2(z)

1

(t− x)(z − t)m
dt =

∫ 1

0

|γ′z(s)|
(γz(s)− x)(z − γz(s))m

ds.

We write the integral as a limit of Riemann sums

∫ 1

0

|γ′z(s)|
(γz(s)− x)(z − γz(s))m

ds

= lim
k→∞

1

k

k−1∑
j=0

|γ′z(j/k)|
(γz(j/k)− x)(z − γz(j/k))m

,
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define for x ∈ R and t ∈ [0, 1]

d(x, t) :=
|γ′z(t)|

(γz(t)− x)(z − γz(t))m

and consider the difference

Dk(x) :=

∣∣∣∣
1∫

0

d(x, s)ds− 1

k

k−1∑
j=0

d(x, j/k)

∣∣∣∣
=

∣∣∣∣k−1∑
j=0

(j+1)/k∫
j/k

d(x, s)ds− d(x, j/k)

k

∣∣∣∣
≤
k−1∑
j=0

∫ (j+1)/k

j/k

∣∣d(x, s)− d(x, j/k)
∣∣ds.

Now, choose ε > 0 arbitrary and consider two cases using the compact
set

K :=

{
x ∈ R

∣∣∣ |z − x| ≤ |=(z)|
2

(
1 +

π2m+2

ε|=(z)|m
)}

.

First let x /∈ K then we have

|d(x, s)| = π|=(z)|
|z − x+ 2−1=(z)e2πit||2−1=(z)|m

≤ π2m|=(z)|1−m

|z − x| − |2−1=(z)|
≤ ε

2
,

which in turn gives Dk(x) ≤ ε for all k ∈ N. Now let x ∈ K be given.
Then as K × [0, 1] is compact and d : R× [0, 1]→ C is continuous we
obtain that d restricted to K × [0, 1] is even uniformly continuous.
Therefore we can choose k0 large enough such that for all s, t ∈ [0, 1]
with |s − t| ≤ 1/k0 we have |d(x, s) − d(x, t)| ≤ ε. This proves for
x ∈ K and all k ≥ k0 that Dk(x) ≤ ε. We conclude that powers of
elements in R are uniform limits of linear combinations of elements in
R and are therefore elements of K, which finally shows (2.35). This
finishes the proof. �
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3 Deterministic operators on sofic groups

In this chapter we assume that G is a sofic group, S is a finite and
symmetric set of generators and we consider deterministic operators on
the Cayley graph of G. The aim is to define classes of operators on the
Cayley graph Γ = Γ(G,S) which can be transferred to operators on
the approximating graph Γr given in (2.2). These finite dimensional
operators are supposed to approximate spectral properties of the
original one. More precisely, we show that the normalized eigenvalue
counting functions of the approximating operators converge weakly.
Moreover, we obtain a Pastur-Shubin trance formula. We start with
an investigation of non-random operators in Chapter 3 and prove in
Chapter 4 similar results for the random setting. The results of both
chapters are already published in [SS12], a joint work with Christoph
Schumacher.

3.1 Weak convergence

We verify weak convergence of the eigenvalue counting functions
for deterministic, translation invariant, self-adjoint operators on a
sofic group G. An important part in the proof of this result is the
appropriate choice of the approximating operators. To define these
operators, we make use of the property that the Cayley graph of a
sofic group can be approximated on arbitrary good scales by a finite
graph, cf. Definition 2.2. Having one of these finite graphs at hand,
we define the approximating operator by transferring certain matrix
elements of the original operator to this approximation, see (3.2).
After defining these approximations, we study the Stieltjes transforms
of the associated eigenvalue counting functions. Their convergence
implies by Lemma 2.29 weak convergence of the distribution functions
or the measures, respectively. Let us start with the definition of the
operator under consideration.

Let A : D(A) ⊆ `2(G) → `2(G) with Cc(G) ⊆ D(A) be a self-
adjoint operator and set a(x, y) := 〈δx, Aδy〉. We assume that A
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3 Deterministic operators on sofic groups

is translation invariant and that Cc(G) is a core of A. Recall that
translation invariance means that for all x, y, z ∈ G we have a(x, y) =
a(xz, yz). These assumptions imply for all x ∈ G:

‖Aδx‖22 =
∑
y∈G
|a(x, y)|2 =

∑
y∈G
|a(id, y)|2 = ‖Aδid‖22 <∞. (3.1)

Remark 3.1. Let A : D(A) ⊆ `2(G) → `2(G) be a self-adjoint and
translation invariant operator with Cc(G) ⊆ D(A). Then the condi-
tion that Cc(G) is a core is in particular satisfied if A is bounded.
However, the above formulated conditions do not imply boundedness
of the operator. In Subsection 3.3 we present an example of an un-
bounded, self-adjoint, translation invariant operator on `2(Z) with
core Cc(Z).

As in Section 2.1.1, we choose a function ε : N → (0,∞) with
limr→∞ ε(r) = 0 and define for r ∈ N the objects Γr = (Vr, Er) and

V
(0)
r as in (2.2). We define the projection Ar : `2(Vr)→ `2(Vr) of A

to the graph Γr by

(Arf)(x) :=
∑
y∈Vr

ar(x, y)f(y),

where

ar(x, y) :=

{
a(Ψv,r(x),Ψv,r(y)) if ∃v ∈ V (0)

r : x, y ∈ BVrr/6(v),

0 otherwise.

(3.2)

This operator is well-defined by Lemma 2.3. Note that Ar is a
symmetric and hence self-adjoint operator on `2(Vr).

Remark 3.2. For the operators to be well-defined, it would have been
sufficient to choose r/2 instead of r/6 in the definition of ar(x, y) in
(3.2). The reason for the choice r/6 is a calculation in the proofs of
Theorem 3.3 and Theorem 4.5. There we want that y ∈ BVrr/2(x0)

whenever x0 ∈ V
(0)
r , x ∈ BVrr/6(x0) and ar(x, y) 6= 0. By triangle

inequality this follows exactly from the above choice of r/6 in (3.2).
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3.1 Weak convergence

Define for each r ∈ N the normalized eigenvalue counting func-
tion nr of Ar by

nr : R→ [0, 1], nr := n(Ar), (3.3)

where n(Ar) is given by Definition 2.23. If the (pointwise) limit of
these functions for increasing r exists, it is called the integrated density
of states of A. Given the operator A, we denote by Eλ the spectral
projection on the interval (−∞, λ]. Using this we set N : R→ [0, 1]
as

N(λ) := 〈δid, Eλδid〉. (3.4)

This is a distribution function of a probability measure, which we call
the spectral distribution function (SDF). The next theorem shows that
the integrated density of states exists and that it equals the spectral
distribution function. In other words we show the Pastur-Shubin
trace formula.

Theorem 3.3. Let G be a finitely generated sofic group and A :
D(A)→ `2(G) a self-adjoint, translation invariant operator with core
Cc(G). Furthermore let N and nr be given as above. Then

N = w-lim
r→∞

nr.

Proof. In order to prove this theorem, we make use of the equivalence
of (ii) in Lemma 2.29 to weak convergence of measures. Therefore we
fix some arbitrary z ∈ C \ R and only have to show

lim
r→∞

r(nr)(z) = r(N)(z).

Here r(nr) and r(N) are the Stieltjes transform of the distribution
functions nr and N, respectively, cf (2.33). To this end we set

Dr := |r(nr)(z)− r(N)(z)|

=
∣∣∣∫

R
(z − λ)−1dnr(λ)−

∫
R

(z − λ)−1dN(λ)
∣∣∣
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and use∫
R
(z − λ)−1dnr(λ) =

1

|Vr|
∑

λ∈σ(Ar)

mλ(z − λ)−1

=
1

|Vr|
Tr((z −Ar)−1) =

1

|Vr|
∑
x∈Vr

〈δx, (z −Ar)−1δx〉, (3.5)

where for an eigenvalue λ we denote its multiplicity by mλ. With the
spectral theorem we obtain

Dr =

∣∣∣∣ 1

|Vr|
∑
x∈Vr

〈δx, (z −Ar)−1δx〉 −
〈
δid, (z −A)−1δid

〉∣∣∣∣
≤ 1

|Vr|
∑

x∈V (0)
r

∣∣〈δx, (z −Ar)−1δx〉 −
〈
δid, (z −A)−1δid

〉∣∣
+

1

|Vr|
∑

x∈Vr\V (0)
r

∣∣〈δx, (z −Ar)−1δx〉 −
〈
δid, (z −A)−1δid

〉∣∣.
Now the Cauchy-Schwarz inequality, and the fact that the norm of
the resolvents is bounded from above by the absolute value of the
inverse of the imaginary part of z imply

Dr ≤
1

|Vr|
∑

x∈V (0)
r

∣∣〈δx, (z −Ar)−1δx〉 −
〈
δid, (z −A)−1δid

〉∣∣+ 2
ε(r)

|=(z)|
.

(3.6)

Here we also made use of property (S2) in the definition of sofic
groups.

The aim of the next steps is to rewrite 〈δx, (z − Ar)−1δx〉 as a
resolvent of an operator evaluated at id ∈ G. We choose for all

x ∈ V (0)
r an injective extension

Ψ′r,x : Vr → G

of the graph isomorphism Ψr,x : BΓr
r (x)→ BGr form (2.3). Note that

Ψ′ does not need to be a graph isomorphism itself. This map induces
a bijection

Φ̃r,x : `2(Ψ′r,x(Vr))→ `2(Vr), Φ̃r,xf := f ◦Ψ′r,x.
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Note that Φ̃r,x is in fact a unitary operator. Since Ψ′r,x(x) = id we

obtain Φ̃r,xδx = δid. We use this to define

Ãr,x := Φ̃∗r,xArΦ̃r,x : `2(Ψ′r,x(Vr))→ `2(Vr).

Then we have

〈δx, (z −Ar)−1δx〉 = 〈δx, (z − Φ̃r,xÃr,xΦ̃∗r,x)−1δx〉
= 〈δx, Φ̃r,x(z − Ãr,x)−1Φ̃∗r,xδx〉
= 〈Φ̃∗r,xδx, (z − Ãr,x)−1Φ̃∗r,xδx〉
= 〈δid, (z − Ãr,x)−1δid〉.

Next, we extend the operator Ãr,x to an operator acting on `2(G).
To this end we set

Φr,x : `2(G)→ `2(Vr), Φr,xf := f ◦Ψ′r,x

and

Âr,x := Φ∗r,xArΦr,x : `2(G)→ `2(G).

Comparing the operators in the sense of their matrix elements, we
obtain for a, b ∈ G:

〈δa, Âr,xδb〉 =

{
〈δa, Ãr,xδb〉 if a, b ∈ Ψ′r,x(Vr),

0 otherwise.

Thus, the operator (z − Âr,x) is block diagonal. Therefore, a matrix
element of the inverse of this operator can be obtained by inverting
the corresponding block. In particular we have

〈δid, (z − Ãr,x)−1δid〉 = 〈δid, (z − Âr,x)−1δid〉.

This together with (3.6) gives

Dr ≤ sup
x∈V (0)

r

|〈δid,
(
(z − Âr,x)−1 − (z −A)−1

)
δid〉|+ 2

ε(r)

|=(z)|
.
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In the next step we introduce an element ψ ∈ `2(G) use the triangle
inequality, the Cauchy-Schwarz inequality and again the estimation
of the resolvents using the imaginary part of z. We get

Dr ≤ sup
x∈V (0)

r

|〈δid,
(
(z − Âr,x)−1 − (z −A)−1

)
ψ〉|

+ 2
ε(r) + ‖δid − ψ‖2

|=(z)|
.

Now use the second resolvent identity and Cauchy-Schwarz inequality
to estimate:

Dr ≤ sup
x∈V (0)

r

|〈δid, (z − Âr,x)−1(A− Âr,x)(z −A)−1ψ〉|

+ 2
ε(r) + ‖δid − ψ‖2

|=(z)|

≤ 1

|=(z)|
sup

x∈V (0)
r

‖(A− Âr,x)(z −A)−1ψ‖2 + 2
ε(r) + ‖δid − ψ‖2

|=(z)|
.

(3.7)

The next aim is to find an appropriate ψ such that (z − A)−1ψ is
finitely supported and at the same time the norm ‖δid − ψ‖2 is small.
To this end, fix some κ > 0 and make use of Lemma 2.15, which is
applicable as A is self-adjoint with core Cc(G). We obtain ψ ∈ `2(G)
with

‖δid − ψ‖2 < κ and φ := (z −A)−1ψ ∈ Cc(G).

Using this special choice of φ and ψ and choosing r ≥ 6 diam(sptφ),
we continue our estimation by considering ‖(A− Âr,x)φ‖2. Applying
the Cauchy-Schwarz inequality and the fact that the operators coincide
on a ball BGr/6 yields

‖(A− Âr,x)φ‖22 =
∑

g∈G\BG
r/6

∣∣∣ ∑
h∈sptφ

〈(A− Âr,x)δg, δh〉φ(h)
∣∣∣2

≤ ‖φ‖22
∑

g∈G\BG
r/6

∑
h∈sptφ

|a(g, h)− âr,x(g, h)|2.
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3.2 Special case: the free group

The triangle inequality for norms leads to

‖(A− Âr,x)φ‖2
‖φ‖2

≤
( ∑
h∈sptφ

∑
g∈G\BG

r/6

|a(g, h)|2
) 1

2

+

( ∑
h∈sptφ

∑
g∈G\BG

r/6

|âr,x(g, h)|2
) 1

2

.

By Remark 3.2, âr,x(g, h) 6= 0 with h ∈ sptφ ⊆ Br/6 implies g ∈ BGr/2.
Therefore we get∑
h∈sptφ

∑
g∈G\BG

r/6

|âr,x(g, h)|2 =
∑

w∈Ψ−1
r,x(sptφ)

∑
v∈BVr

r/2
(x)\BVr

r/6
(x)

|ar(v, w)|2

≤
∑

w∈Ψ−1
r,x(sptφ)

∑
v∈BVr

r/2
(x)\BVr

r/6
(x)

|a(Ψr,x(v),Ψr,x(w))|2

≤
∑

h∈sptφ

∑
g∈G\BG

r/6

|a(g, h)|2. (3.8)

These considerations show that for arbitrary x ∈ V (0)
r we have

‖(A− Âr,x)φ‖2 ≤ 2‖φ‖2
( ∑
h∈sptφ

∑
g∈G\BG

r/6

|a(g, h)|2
)1/2

.

This and (3.7) yield

Dr ≤
2

|=(z)|

(
‖φ‖2

( ∑
h∈sptφ

∑
g∈G\BG

r/6

|a(g, h)|2
) 1

2

+ ε(r) + κ

)
→ 2κ

|=(z)|

for r → ∞. Here we used
∑
g∈G|a(g, h)|2 < ∞ for all x ∈ G, see

(3.1). This finishes the proof, since κ > 0 was arbitrary. �

3.2 Special case: the free group

Here we study the free group as an example of sofic groups. We
present a specific example for a sequence of approximating finite
graphs.
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3 Deterministic operators on sofic groups

Let k ∈ N and Fk be the free group with set of generators

Sk := {s1, . . . , sk, s
−1
1 , . . . , s−1

k }.

For each element g ∈ Fk there exists exactly one possibility to express
g as a (reduced) word of elements in Sk. Here a word is called reduced,
if no element is followed by its inverse. Note that the Cayley graph
Γ = Γ(Fk, Sk) is a 2k-regular tree. The group Fk, k ≥ 2 is is an
example of a non-amenable residually finite group. Hence Fk is sofic.

In this subsection we give an explicit construction of a sequence
of approximating graphs. The existence of this sequence of graphs
in particular shows that Fk is residually finite and sofic. In fact
we construct a sequence of normal subgroups and quotient groups
fulfilling the conditions (R1) to (R4) in Definition 2.4. As shown in
Lemma 2.5, the Cayley graphs of the quotient groups serve as approx-
imating graphs fulfilling conditions (S1) and (S2) in Definition 2.2.
The idea of the construction presented here goes back to [Big88].

As Γ = Γ(Fk, Sk) is a 2k-regular tree, the idea is to approximate
Γ with finite 2k-regular graphs Γn, n ∈ N, which contain only large
cycles. More precisely, if γn denotes the length of the shortest circle
in Γn, we want γn tend to infinity if n → ∞. The quantity γn is
called the girth of the graph Γn. Here, the graphs will not just be
regular, they will even be Cayley graphs of a group. The motivation
of this idea is that, if Γn is the Cayley graph of group with girth
γn, then the graphs Γ and Γn coincide on balls of radius γn/2, cf.
property (2.5).

As before let Bn := BFkn (id) be the ball of radius n ∈ N in Fk
centered at the identity. It is easy to see that

|Bn| =
k(2k − 1)n − 1

k − 1
.

We will now consider permutations on Bn. Therefore denote by Sn
the symmetric group on Bn. For each s ∈ Sk we define p

(n)
s ∈ Sn by

p(n)
s : Bn → Bn, p(n)

s (w) :=

{
sw if sw ∈ Bn
w−1

1 w−1
2 · · ·w−1

m otherwise.

(3.9)

72



3.2 Special case: the free group

Here, w = w1 · · ·wm is expressed as reduced word with letters in

wi ∈ Sk, i = 1, . . . , k. Thus, a permutation p
(n)
s shifts an element

w ∈ Bn in direction of s, if this shifted element is still contained in

Bn. If sw /∈ Bn, the permutation p
(n)
s maps w to the element which

one obtains by point reflecting w at the center of the ball Bn. Note

that this gives (p
(n)
s )−1 = p

(n)
s−1 . The finite group Hn is now defined

as the subgroup of Sn which is generated by p
(n)
s , s ∈ Sk, i.e

Hn := 〈S(n)
k 〉, where S

(n)
k :=

{
p(n)
s | s ∈ Sk

}
.

Now let us give a bound for the girth of this group. Therefore note

that each circle in the Cayley graph Γn = Γn(Hn, S
(n)
k ) corresponds

to a reduced word with letters pi ∈ S(n)
k , i = 1, . . . , t with

pt · · · p1 = idn ∈ Hn. (3.10)

Hence, each such word maps the identity id ∈ Bn to itself, i.e.

(pt ◦ · · · ◦ p1)(id) = id ∈ Fk.

However, by definition of the permutations in (3.9), p1 maps id in
the sphere B1 \ B0. Then inductively we get for 1 < i < n that
each pi maps an element from the sphere Bi−1 \Bi−2 in the sphere
Bi−1 \ Bi−2. This continues until one reaches some g = s1 · · · sn in
the sphere Bn \Bn−1. Here the element pn+1 maps g to s−1

1 · · · s−1
n .

From there on, one needs again at least n further elements of S
(n)
k to

map this element again to the center of the ball. This shows that t
in equation (3.10) has to be at least 2n+ 1. Therefore we have for
the girth γn of Hn that γn ≥ 2n+ 1.

In this situation, we can define a group homomorphism ρn : Fk →
Hn by setting for each g = s1 · · · sm ∈ Fk

ρn(g) = p(n)
s1 · · · p

(n)
sm .

We furthermore define the group Gn := ker ρn := {g ∈ Fk | ρn(g) =
idn}, where idn is the identity in Sn. Then we have

Fk/Gn = Hn,
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3 Deterministic operators on sofic groups

which shows that Gn is normal in Fk and of finite index. Therefore
conditions (R1) and (R2) hold. Furthermore the condition (R4)
follows from the fact that limn→∞ γn = ∞, as for each n ∈ N the
homomorphism γn maps none of the elements in Bγn \ {id} to the
identity idn. Referring to the short discussion after Definition 2.4,
this shows that Fk is residually finite. Furthermore, for given R ∈ N
there exists n ∈ N with γn ≥ R. Then Γn fulfills (S1) and (S2) in
Definition 2.2 with R and arbitrary ε.

The Cayley graph of (Fk, Sk) is a regular tree. For such graphs
it is due to [McK81] that the spectral distribution function of the
adjacency operator can explicitly be stated using the following density
function

x 7→
k
√

4(2k − 1)− x2

π(4k2 − x2)
χ[0,2

√
2k−1](|x|).

This shows in particular that the spectral distribution function is
continuous. Thus, the limit in Theorem 3.3 does not only exist for
all λ ∈ R, but it is even uniform in λ.

3.3 Special case: an unbounded operator

In this section we provide an example of an operator which is un-
bounded and fits in the setting of Section 3.1. In fact, we define an
operator on A : D(A)→ `2(Z) which satisfies:

(a) A is self-adjoint,

(b) A is translation invariant,

(c) A is unbounded, and

(d) Cc(Z) is a core of A.

This operator will be given via a certain multiplication operator in
the Fourier space of `2(Z). Let

T = {z ∈ C | |z| = 1}

be the unit circle in C and denote by L2(T) the space of the square
integrable functions on T, with respect to the normalized Haar mea-
sure. The scalar product and the norm in L2(T) are given by setting
for f, g ∈ L2(T):

〈f, g〉L2 :=
1

2π

∫ 2π

0

f(eit)g(eit)dt and ‖f‖L2 :=
√
〈f, f〉L2 .
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3.3 Special case: an unbounded operator

Let us define the Fourier transform F : `2(Z)→ L2(T). For f ∈ `2(Z)
and t ∈ [0, 2π) we set

(Ff)(eit) :=
∑
x∈Z

f(x)e−itx. (3.11)

If f ∈ `1(Z), the sum converges absolutely and thus it is well-defined
for each such f . If f ∈ `2(Z)\`1(Z), the sum is to be considered as an
`2(Z)-limit. This limit exists since for f ∈ Cc(Z) we have Parseval’s
identity ‖Ff‖2L2 = ‖f‖2. Let us prove this: for f ∈ Cc(Z) we have

‖Ff‖2L2 =
1

2π

∫ 2π

0

(Ff)(eit)(Ff)(eit)dt

=
1

2π

∫ 2π

0

∑
x∈Z

f(x)eitx
∑
y∈Z

f(y)e−itydt

=
1

2π

∑
x,y∈Z

f(x)f(y)

∫ 2π

0

eit(x−y)dt = ‖f‖22.

Here the last equality follows from

1

2π

∫ 2π

0

eit(x−y)dt = δx(y).

This shows that the Fourier transform defined on Cc(Z) is a bounded
linear function. Thus, the B.L.T. theorem implies that F is well-
defined on the whole domain `2(Z) and we have ‖F‖ = 1, cf. [RS80,
Theorem I.7]. Moreover, one can show that F is bijective and the
inverse F−1 is given by

F−1 : L2(T)→ `2(Z), (F−1ψ)(x) :=
1

2π

∫ 2π

0

ψ(eit)eitxdt.

Note that F−1 is an isometry as well. By Parseval’s identity and
polarization we have for f, g ∈ Cc(Z) that

〈F∗Ff, g〉L2 = 〈Ff,Fg〉 = 〈f, g〉L2 .

Furthermore, we obtain

〈FF∗f, g〉L2 =
〈
F−1FF∗f,F−1g

〉
=
〈
F∗f,F−1g

〉
=
〈
f,FF−1g

〉
L2

= 〈f, g〉L2 .
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3 Deterministic operators on sofic groups

This yields that F∗ = F−1 and that F is a unitary operator. Knowing
that the Fourier transform is unitary, the following well-known lemma
is very useful.

Lemma 3.4. Let H and V be Hilbert spaces, A : D(A) ⊆ H → H a
self-adjoint operator and U : V → H a unitary operator. Then the
operator

B := U−1AU : D(B)→ V with D(B) = U−1(D(A))

is self-adjoint and σ(A) = σ(B). Moreover, if K is a core of A, then
U−1(K) is a core of B.

Proof. The the self-adjointness of B and σ(A) = σ(B) rely on rather
basic calculations, see for instance [Wei00a, Satz 2.62]. Let us verify
the assertion with the core. Let K be a core of A and set L := U−1(K).
We need to show that B|L = B. As B is closed and L ⊆ D(B), we
obtain B|L ⊆ B. In order to show the reverse inclusion, let h ∈ D(B)
be given. Then g := Uh ∈ D(A) and, as A|K ⊆ A, we find a sequence
(gn) in K such that

lim
n→∞

‖g − gn‖H = 0 and lim
n→∞

‖Ag −Agn‖H = 0.

For each n ∈ N we set hn := U−1gn ∈ L. Since unitary operators
preserve norms, this yields

lim
n→∞

‖h− hn‖V = 0 and lim
n→∞

‖Bh−Bhn‖V = 0.

This implies B|L ⊇ B. �

In the following, we define an appropriate unbounded and self-
adjoint operator on L2(T). Using the Fourier transform, we will
obtain an operator in `2(Z) with the desired properties (a) – (d).

Let φ : T→ R be a measurable function. We define the operator
Mφ : D(Mφ)→ L2(T) by setting for g ∈ D(Mφ) and x ∈ T:

(Mφg)(x) = φ(x)g(x),

where

D(Mφ) = {g ∈ L2(T) | φg ∈ L2(T)}. (3.12)
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3.3 Special case: an unbounded operator

Then, one can show that Mφ is self-adjoint and that the spectrum
of Mφ equals the essential range of φ, cf. [RS80, § VIII.3]. Thus,
if φ /∈ L∞(T), i.e. ess supx∈T|φ(x)| = ∞, then the operator Mφ is
unbounded. In the following we show that if additionally φ ∈ L2(T),
then the domain of Mφ contains the set Θ := F(Cc(Z)). The elements
in Θ are finite sums of the type (3.11) and are called trigonometric
polynomials. Let φ ∈ L2(T) and choose some f ∈ Cc(Z). Then we
have by the triangle inequality

‖MφFf‖2L2 =
1

2π

∫ 2π

0

∣∣∣φ(eit)
∑
z∈Z

f(z)e−itz
∣∣∣2dt

≤ 1

2π

∫ 2π

0

|φ(eit)|2
∣∣∣∑
z∈Z
|f(z)|

∣∣∣2dt = ‖f‖21‖φ‖2L2 <∞.

Using Lemma 3.4, this shows that for a given function φ : T → R,
with φ ∈ L2(T) \ L∞(T) the operator

A := F−1MφF : D(A)→ `2(Z) with D(A) = F−1(D(Mφ))
(3.13)

is unbounded and self-adjoint and the domain D(A) contains the set
Cc(Z). Let us check that this operator is translation invariant. To
this end assume that f ∈ Cc(Z) and x ∈ Z are given and calculate
similar as before

(Af)(x) = (F−1MφFf)(x) =
1

2π

∫ 2π

0

φ(eit)
∑
z∈Z

f(z)eit(x−z)dt

=
∑
m∈Z

f(x−m)
1

2π

∫ 2π

0

φ(eit)eitmdt

=
∑
m∈Z

f(x−m)(F−1φ)(m).

This proves that A acts as a convolution. Besides this we obtain for
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3 Deterministic operators on sofic groups

a, b ∈ Z:

〈δa+z, Aδb+z〉 =
∑
x∈Z

δa+z(x)
∑
m∈Z

δb+z(x−m)(F−1φ)(m)

=
∑
x∈Z

δa(x− z)
∑
m∈Z

δb(x− z −m)(F−1φ)(m)

= 〈δa, Aδb〉 .

Thus, under the assumption ψ ∈ L2(T)\L∞(T), the operator A given
in (3.13) fulfills properties (a), (b) and (c). In order to verify (d) we
need an additional assumption on φ.

Let ψ : T → R be a continuous function such that φ := 1/ψ is
in L2(T) \ L∞(T). For instance one can choose ψ(eit) := |sin(t)|1/4
for t ∈ [0, 2π). We need to show that Cc(Z) is a core of A, i.e. that
A|Cc(Z) = A. By Lemma 3.4 it is sufficient to prove this in the Fourier
space. Thus, our aim is to verify the following equality:

Mφ|Θ = Mφ. (3.14)

Denote by C(T) the set of continuous functions mapping from T to
C. The first step to verify (3.14) is to show

Mφ|C(T) = Mφ. (3.15)

As before we only need to show the inclusion Mφ|C(T) ⊇ Mφ. To
this end let g ∈ D(Mφ) be given. By (3.12) we have g ∈ L2(T) and
Mφg = φg ∈ L2(T). As C(T) is dense in L2(T), we find a sequence
(hn) of elements in C(T) with limn→∞‖Mφg − hn‖L2 = 0. We set
gn := ψhn. As ψ ∈ C(T), we have gn ∈ C(T). Besides this, the
choice of (hn) gives:

lim
n→∞

‖Mφg −Mφgn‖L2
= lim
n→∞

‖Mφg − hn‖L2
= 0.

Moreover, we obtain

lim
n→∞

‖g − gn‖L2 = lim
n→∞

‖ψ(Mφg − hn)‖L2

≤ ‖ψ‖∞ lim
n→∞

‖Mφg − hn‖L2
= 0.
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3.3 Special case: an unbounded operator

Here, ‖ψ‖∞ = supx∈T|ψ(x)| is finite since ψ is continuous. Thus, we

verified Mφ|C(T) ⊇Mφ and (3.15).
In order to show (3.14) it is now sufficient to prove

Mφ|C(T) = Mφ|Θ. (3.16)

As trigonometric polynomials are continuous we have Mφ|C(T) ⊇
Mφ|Θ. In order to prove the reverse inclusion, it is sufficient to show

Mφ|C(T) ⊆Mφ|Θ. To this end, let g ∈ C(T) be given. Note that by
Weierstraß’ theorem the trigonometric polynomials are dense in C(T),
with respect to supremum norm, cf. [Rud87, Theorem 4.25]. Thus,
we find a sequence (gn) of elements in Θ with limn→∞‖g− gn‖∞ = 0.
This clearly gives

lim
n→∞

‖g − gn‖L2 = 0.

Moreover, we obtain

lim
n→∞

‖Mφg −Mφgn‖L2 = lim
n→∞

‖φ(g − gn)‖L2

≤ lim
n→∞

‖φ‖L2‖g − gn‖∞ = 0.

This shows Mφ|C(T) ⊆Mφ|Θ and (3.16).
Therefore, we verified the claim (3.14), which implies using Lemma

3.4 that if ψ ∈ C(T) with φ = 1/ψ ∈ L2(T)\L∞(T), then the operator
A : D(A)→ `2(Z) given by (3.13) fulfills properties (a) to (d).
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4 Random operators on sofic groups

This chapter is devoted to investigate random operators on sofic group.
Similar as in the previous chapter we are interested in the approxima-
tion of the spectral distribution function via finite volume analogues.
As before, we prove weak convergence of the normalized eigenvalue
counting functions and verify a Pastur-Shubin trace formula.

The random operators under consideration are given via their
matrix elements. More precisely, we define for each pair of vertices a
real-valued random variable. Each such random variable gives rise
to a non-diagonal matrix element. The diagonal matrix elements are
given as a composition of a new random variable and the non-diagonal
elements in the same row, cf. (4.3). In particular, this enables us to
treat the graph Laplacian of a long-range percolation graph, as well
as the Anderson model.

In Subsection 2.2.2 we already introduced random operators and
proved certain crucial properties. Therefore, the first aim in this
chapter is to show that the operators we consider here fit in setting
of Subsection 2.2.2. Note that here we need to implement certain
conditions on the underlying random variables, see (4.1) and (4.2). In
particular, this implies that the operators are almost surely essentially
self-adjoint and translation invariant in distribution. Afterwards and
proceeding in two steps, we first show convergence results in mean, see
Section 4.1, and improve this to almost sure convergence in Section
4.2. The reason why we need the intermediate step in Section 4.1
is that we do not have an ergodic theorem at hand. The random
operators are not translation invariant for each realizations, but only
in distribution. Thus, taking the expectation results in translation
invariance. We use this to write the expectation of the normalized
trace of an operator as the expectation of the matrix element at the
group element id. This and the suitable choice of the approximating
operators are basic ingredients for the proof of the convergence in
mean.

In order to improve this convergence to a convergence which holds
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4 Random operators on sofic groups

for almost all realizations we make use a concentration inequality
by McDiarmid, cf. Theorem 4.6. To apply this for our purposes, we
need to make sure that each approximating operator contains not
too many random matrix elements. In particular, we need that an
approximating operator on a graph with n vertices contains not more
than n3/2 random matrix elements. This is the reason for the rather
involved definition of the finite dimensional operators at the beginning
of Section 4.1

We start with the definition of the random operators. Let

Eco := {e ⊆ G | |e| ∈ {1, 2}}

be the set of all edges of the complete graph with vertex set G.
Furthermore, let Xe : Ω → R, e ∈ Eco, be independent random
variables such that for each g ∈ G the random variables in

{X{x,y} | x, y ∈ G, xy−1 = g} (4.1)

are identically distributed. We require further

E
((∑

x∈G
|X{id,x}|

)2
)
<∞. (4.2)

Let us emphasize that in this notation we have X{x,x} = X{x}. For
some fixed α ∈ R and using these random variables, we will define a

random operator Ã = Ãα = (Ã(ω))ω∈Ω = (Ã
(ω)
α )ω∈Ω. To this end, we

set for x, y ∈ G:

a(ω)(x, y) := a(ω)
α (x, y) := X{x,y}(ω)− αδx(y)

∑
z∈G\{x}

X{x,z}(ω).

(4.3)
The action of Ã is given by setting for ω ∈ Ω, f ∈ Cc(G) and x ∈ G:

(Ã(ω)f)(x) :=
∑
y∈G

a(ω)(x, y)f(y). (4.4)

The next aim is to show that this operator is well-defined as a mapping
in the space `2(G) and fits in the setting of Section 2.2.2.
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Lemma 4.1. For each ω ∈ Ω and x, y ∈ G let ã(ω)(x, y) be given
as in (4.3) and Ã = (Ã(ω))ω∈Ω as in (4.4). Then Ã is a symmetric,
translation invariant (in distribution) random operator on the domain
Cc(G) and the following three expectations are finite:

E
((∑

x∈G
|a(x, id)|

)2
)
, E

(∑
x∈G
|a(x, id)|

)
and E

(∑
x∈G
|a(x, id)|2

)
.

(4.5)
Furthermore, Ã is almost surely essentially self-adjoint.

Proof. Let us first verify the finiteness of the three expectations.
Using (4.2) we obtain

E
(∑
x∈G
|a(id, x)|2

)
≤ E

((∑
x∈G
|a(x, id)|

)2
)

≤ E
((∑

x∈G
|X{id,x}|+ α

∑
z∈G
|X{id,z}|

)2)
= (1 + α)2E

((∑
x∈G
|X{id,x}|

)2)
<∞.

Furthermore, by Jensen’s inequality we have(
E
(∑
x∈G
|a(id, x)|

))2

≤ E
((∑

x∈G
|a(x, id)|

)2
)
<∞.

Next, we show that for almost all ω each φ ∈ Cc(G) is mapped by
A(ω) into `2(G). Note that Cc(G) = lin{δg | g ∈ G}. For fixed g ∈ G
we have

E
(∑
x∈G
|(Ãδg)(x)|2

)
= E

(∑
x∈G
|a(x, g)|

)
= E

(∑
x∈G
|a(x, id)|

)
<∞.

Hence, for each g ∈ G there exists a set Ωg ⊆ Ω of full measure such

that ‖Ã(ω)δg‖2 is finite. Setting Ω̃ :=
⋂
g∈G Ωg and using linearity

gives a set of full measure such that for all ω ∈ Ω̃ and all φ ∈ Cc(G)
one has Ã(ω)φ ∈ `2(G).

To prove that Ã is a random operator on the domain Cc(G) it
remains to show that for all φ ∈ Cc(G) and ψ ∈ `2(G) the mapping
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4 Random operators on sofic groups

ω 7→ 〈ψ, Ã(ω)φ〉 from Ω̃ to C is measurable. Of course the correspond-
ing sigma-algebras are Ã := {D ∩ Ω̃ | D ∈ A} on Ω̃ and the Borel
sigma-algebra on C. For all x, y ∈ G the mapping ω 7→ a(ω)(x, y) on
(Ω̃, Ã) is measurable by construction. This carries over to

ω 7→ 〈ψ, Ã(ω)φ〉 = lim
r→∞

∑
x∈BGr (id)

ψ(x)
∑

y∈sptφ

a(ω)(x, y)φ(y)

as limits and sums of measurable functions are measurable. The
symmetry of Ã follows from the definition of the matrix elements
a(ω)(x, y) in (4.3). The translation invariance in distribution is implied
by the condition (4.1). Now, the fact that Ã is almost surely essentially
self-adjoint follows directly from Theorem 2.19. �

Lemma 4.1 shows that there exists a set Ω̃ of measure one such
that for each ω ∈ Ω̃ the closure Ā(ω) of Ã(ω) is self-adjoint and
Cc(G) ⊆ D(A(ω)). In order to define A on the whole probability
space we set for ω ∈ Ω:

A(ω) :=

{
Ā(ω) if ω ∈ Ω̃,

Id otherwise,
(4.6)

where Id is the identity on `2(G). Thus A = (A(ω))ω∈Ω is a proper
random operator. We will refer to the operator A as random Hamil-
tonian. The reason for that is described in the next remark.

Remark 4.2 (Random Hamiltonian). Let us briefly discuss the opera-
tor A for the different choices of α. In the case α = 0 the operator is
an adjacency matrix on graphs with vertex set G and random weights
on the edges. For α = 1 and X{x} = 0 a.s. A can be interpreted a
randomly weighted Laplace operator on such graphs. More gener-
ally, if the the diagonal terms X{x} do not equal zero, they can be
understood as random potential. This setting is well studied under
the term Anderson model.

Note that Lemma 4.1 implies

E
(
‖Aδid‖21

)
<∞, E (‖Aδid‖1) <∞ and E

(
‖Aδid‖22

)
<∞.

(4.7)
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Remark 4.3 (Ergodicity). One can show, if one considers the canonical
probability space with the canonical action of translations, that the
operator A as given in (4.6) is ergodic. This is of special interest as
one knows that ergodic operators exhibit a non-random spectrum.
Therefore it is natural to expect that the limit of the eigenvalue
counting functions, the integrated density of states, is non-random,
too.

However, in the following we do not consider A on its canonical
probability space. The reason for not using the canonical space is that
we need to introduce more random variables for the approximating
finite dimensional operators. Of course, this will not change spectral
properties of the operator and one can still expect non-randomness
the IDS.

The next well-known lemma gives conditions for boundedness and
unboundedness of the operator in question.

Lemma 4.4. Let A be a random Hamiltonian as given in (4.6) with
random variables Xe, E ∈ Eco and D := supx∈G‖X{id,x}‖∞ ∈ [0,∞].

(i) If D =∞, then ‖A(ω)‖ =∞ for almost all ω ∈ Ω.

(ii) If D <∞ and A is of finite hopping range R, i.e. for almost all
ω ∈ Ω we have a(ω)(x, y) = 0 whenever d(x, y) ≥ R, then there
exists c > 0 such that for almost all ω ∈ Ω we have ‖A(ω)‖ ≤ c.

Proof. Assume D =∞. Condition (4.2) implies that

k := E
(∑
z 6=id

|X{id,z}|
)
<∞.

Fix some m ≥ 2k|α|. As D is assumed to be infinite there exists
z ∈ G such that

‖X{id,z}‖∞ ≥ 2m. (4.8)

We distinguish two cases. If the z satisfying (4.8) is not id ∈ G,
the probability P(|a(id, z)| ≥ m) is strictly positive. If z = id,
i.e. ‖Xid‖∞ ≥ 2m, the same holds true, however we need a short
calculation to see this. By definition of a(id, id) and using triangle
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inequality we have

P(|a(id, id)| ≥ m) ≥ P
(
|X{id}| −

∣∣∣α ∑
z∈G\{id}

X{id,z}

∣∣∣ ≥ m)

≥ P
(
|X{id}| ≥ 2m,

∣∣∣α ∑
z∈G\{id}

X{id,z}

∣∣∣ ≤ m)

= P
(
|X{id}| ≥ 2m

)
P
(∣∣∣α ∑

z∈G\{id}

X{id,z}

∣∣∣ ≤ m).
As ‖X{id}‖∞ ≥ 2m, we get P(|X{id}| ≥ 2m) > 0. We use the Markov
inequality to obtain

P
(∣∣∣α ∑

z∈G\{id}

X{id,z}

∣∣∣ ≤ m) ≥ 1− |α|
m

E
(∣∣∣ ∑

z∈G\{id}

X{id,z}

∣∣∣) ≥ 1

2
.

This gives P(|a(id, id)| ≥ m) > 0. Thence, whenever D = ∞, there
exists z ∈ G such that P(|a(id, z)| ≥ m) is positive. Furthermore, by
construction we have that the random variables a(x, zx), x ∈ G are
independent and identically distributed, so we get∑

x∈G
P(|a(x, zx)| ≥ m) =∞.

Hence, Borel-Cantelli gives that for almost all ω ∈ Ω there are
infinitely many x ∈ G such that |a(ω)(x, zx)| ≥ m. For each such ω,
we choose one of these x and obtain with (A(ω)δzx)(x) = a(ω)(x, zx)
that

‖A(ω)‖ ≥ ‖A(ω)δzx‖2 ≥ m.

Since m ≥ 2k|α| was arbitrary, ‖A(ω)‖ =∞ for almost all ω.
Let D < ∞ and A be of finite hopping range R. We set m :=

(1 + |α||BGR |)D. Then we have

P(∃x, y ∈ G with |a(x, y)| ≥ m)= P
( ⋃
x,y∈G

{
ω ∈ Ω | |a(ω)(x, y)| ≥ m

})
≤
∑
x,y∈G

P
({
ω ∈ Ω | |a(ω)(x, y)| ≥ m

})
= 0.
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4.1 Weak convergence in mean

Using this we get for f ∈ `2(G) and almost all realizations ω ∈ Ω

‖A(ω)f‖22 =
∑
v∈G

∣∣∣ ∑
w∈BGR (v)

a(ω)(v, w)f(w)
∣∣∣2 ≤∑

v∈G
m2
( ∑
w∈BGR (v)

|f(w)|
)2

≤
∑
v∈G

m2|BGR |
∑

w∈BGR (v)

|f(w)|2 ≤ m2|BGR |2‖f‖22.

This shows that for almost all ω the operator A(ω) is bounded with
constant c := m2|BGR |2. �

4.1 Weak convergence in mean

In this section we investigate the operators A = (A(ω))ω∈Ω defined in
(4.6), which we call random Hamiltonians. We define finite dimen-
sional operators on the approximating graphs and study their eigen-
value counting functions. We are not yet able to show convergence of
the eigenvalue counting functions itself, but we first concentrate on
the convergence of the mean of these functions. This is easier since
taking expectations induces translation invariance, which is crucial
as we do not have an ergodic theorem for sofic groups.

We start with the definition of finite dimensional approximations
to A. We consider the approximating graphs Γr, r ∈ N, and use the
simplified notation (2.2). As before in (2.3) the map Ψr,x : BVrr (x)→
BGr is a labeled graph isomorphism. As in the deterministic set-
ting, we will use this function to transport the values of A to the
approximation.

We define an increasing function ρ : N→ R by setting for r ∈ N:

ρ(r) := max

{
0,

ln r

4 ln|S|
− 1

}
.

This ρ will substitute the r/6 from the deterministic setting, which we
discussed in Remark 3.2. Note that for all r ∈ N we have ρ(r) ≤ r/6
and ρ(r)→∞ if r →∞. In the deterministic setting it was enough
to set ρ(r) = r/6. This would be still sufficient for the proof the main
result of this section, namely Theorem 4.5. However, in the proof
of Theorem 4.7 we need this slow growth of the function ρ, since
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4 Random operators on sofic groups

there we require that our random matrices do not contain too many
random elements.

For an element e ∈ E(r)
co := {e ⊆ Vr | |e| ∈ {1, 2}} of the edge set

of the complete graph over Vr we define

Cr(e) := {v ∈ V (0)
r | e ⊆ BVrρ(r)(v)}.

Thus, Cr(e) consists of those elements in V
(0)
r , such that the ρ(r)-ball

around these elements contains the vertices of the edge e. In order to
introduce the approximating operator on `2(Vr), we need to choose a

suitable random variable for each e ∈ E(r)
co . These random variable

are selected in the following way. Let e = {x, y} ∈ E(r)
co and r ∈ N

be given. If Cr(e) = ∅, we set Xr
e = 0. Otherwise, we choose some

v ∈ Cr(e) and define Xr
e to be the a random variable which has the

same distribution as X{Ψr,v(x),Ψr,y(w)}. Moreover, we require that all
random variables in{

Xe

∣∣ e ∈ Eco

}
∪
{
Xr
e

∣∣ r ∈ N, e ∈ E(r)
co

}
are independent.

Note that the distribution of Xr
e does not depend on the choice of

v ∈ Cr(e). To see this, let r ∈ N and x, y ∈ Vr with |Cr({x, y})| ≥ 2
be given. Choose v, w ∈ Cr({x, y}) with v 6= w. Then, by definition
of Cr({x, y}) we have that x, y ∈ BVrρ(r)(v) ∩ BVrρ(r)(w). Thus, by

Lemma 2.3 the equality

Ψr,v(x)(Ψr,v(y))−1 = Ψr,w(x)(Ψr,w(y))−1,

holds. This gives that the random variables

X{Ψr,v(x),Ψr,v(y)} and X{Ψr,w(x),Ψr,w(y)}

are identically distributed, cf. (4.1). Hence, the distribution of Xr
{x,y}

does not depend on the v ∈ Cr({x, y}).
We are now in the position to define a random approximating

operator A
(ω)
r : `2(Vr)→ `2(Vr), ω ∈ Ω depending on the parameter

α ∈ R from (4.3). We set for each x, y ∈ Vr and ω ∈ Ω:

a(ω)
r (x, y) := Xr

{x,y}(ω)− αδx(y)
∑

z∈Vr\{x}

Xr
{x,z}(ω),
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4.1 Weak convergence in mean

and for x ∈ Vr and φ ∈ `2(Vr):

(A(ω)
r φ)(x) :=

∑
y∈Vr

a(ω)
r (x, y)φ(y).

Note, that A
(ω)
r has hopping range 2ρ(r), i.e. a

(ω)
r (x, y) = 0, as soon

as dr(x, y) > 2ρ(r). The operator A
(ω)
r is symmetric and hence self-

adjoint. As before, we define eigenvalue counting functions. For each
ω ∈ Ω, r ∈ N and λ ∈ R we set

n(ω)
r : R→ [0, 1], n(ω)

r (λ) := n(A(ω)
r )(λ),

where again n(A
(ω)
r ) is the normalized eigenvalue counting function

as given in Definition 2.23. Besides this, we set for ω ∈ Ω and λ ∈ R

N(ω) : R→ [0, 1] N(ω)(λ) := 〈δid, E(ω)
λ δid〉, (4.9)

where again E
(ω)
λ is the spectral projection of A(ω) on the interval

(−∞, λ]. Furthermore, we define the functions n̄r, N̄ : R → [0, 1] by
setting for λ ∈ R and r ∈ N:

N̄(λ) = E(N(λ)) and n̄r(λ) = E(nr(λ)). (4.10)

The function N̄ is called spectral distribution function of the random

operator A. If the limit I := limr→∞ n
(ω)
r exists, then I is called

integrated density of states.

Theorem 4.5. Let G be a finitely generated sofic group and let A be
given as in (4.6). Furthermore let n̄r, N̄ : R→ [0, 1] be as in (4.10).
Then

N̄ = w-lim
r→∞

n̄r.

Proof. By Lemma 2.29 it is sufficient to prove that the associated
Stieltjes transforms converge pointwise, i.e. for all z ∈ C \ R we have
to show

lim
r→∞

r(n̄r)(z) = r(N̄)(z). (4.11)
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4 Random operators on sofic groups

Fix z ∈ C \ R. The integral with respect to the distribution function
n̄r is actually a finite sum. This and linearity of the expectation yield

E
(
r(nr)(z))

)
= E

(∫
R

(z − λ)−1dnr(λ)

)
=

∫
R

(z − λ)−1dn̄r(λ) = r(n̄r)(z). (4.12)

The Riemann-Stieltjes-Integral with respect to N(ω) is as usual defined
by ∫

R
(z − λ)−1 dN(ω)(λ) =

∫ 0

−∞
(z − λ)−1 dN(ω)(λ)

+

∫ ∞
0

(z − λ)−1 dN(ω)(λ) (4.13)

where∫ ∞
0

(z − λ)−1 dN(ω)(λ)

:= lim
L→∞

lim
∆λ→0

k−1∑
j=0

(z − λj)−1
(
N(ω)(λj+1)−N(ω)(λj)

)
with partitions 0 = λ0 < λ1 < · · · < λk = L and their mesh size
∆λ := maxk−1

j=0 λj+1 − λj . Since |(z − λ)−1| ≤ |=(z)|−1, we have

∣∣∣∣k−1∑
j=0

(z − λj)−1
(
N(ω)(λj+1)−N(ω)(λj)

)∣∣∣∣ ≤ 1

|=(z)|
,

which gives an integrable bound. Therefore we get by Lebesgue’s
theorem

E
(∫ ∞

0

(z − λ)−1dN(λ)

)

= lim
K→∞

lim
∆λ→0

k−1∑
j=0

(z −λj)−1
(
N̄(λj+1)− N̄(λj)

)
=

∞∫
0

(z − λ)−1dN̄(λ).
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4.1 Weak convergence in mean

The same is true for the other summand in (4.13), which gives

E
(
r(N)(z)

)
= E

(∫
R

(z − λ)−1dN(λ)

)
=

∫
R

(z − λ)−1dN̄(λ) = r(N̄)(z). (4.14)

We define the difference Dr and apply (4.12) and (4.14):

Dr :=
∣∣r(n̄r)(z)− r(N̄)(z)

∣∣ =
∣∣E(r(nr)(z))− E

(
r(N)(z)

)∣∣.
In order to estimate Dr we use that for each ω we have∫

R
(z − λ)−1dn(ω)

r (λ) =
1

|Vr|
∑

λ∈σ(A
(ω)
r )

mλ(z − λ)−1

=
1

|Vr|
Tr((z −A(ω)

r )−1) =
1

|Vr|
∑
x∈Vr

〈δx, (z −A(ω)
r )−1δx〉,

where again mλ denotes the multiplicity of an eigenvalue λ. This and
the spectral theorem lead to

Dr =

∣∣∣∣∣E
(

1

|Vr|
∑
x∈Vr

〈δx, (z −Ar)−1δx〉
)
− E

(
〈δid, (z −A)−1δid〉

)∣∣∣∣∣ .
Now, we apply the triangle inequality and the properties of the sofic
approximation to obtain

Dr ≤
1

|Vr|
∑

x∈V (0)
r

∣∣E(〈δx, (z −Ar)−1δx〉
)
− E

(
〈δid, (z −A)−1δid〉

)∣∣
+

1

|Vr|
∑

x∈Vr\V (0)
r

∣∣E(〈δx, (z −Ar)−1δx〉
)
− E

(
〈δid, (z −A)−1δid〉

)∣∣
≤ sup
x∈V (0)

r

∣∣E(〈δx, (z−Ar)−1δx〉
)
−E
(
〈δid, (z−A)−1δid〉)

)∣∣+ 2ε(r)

|=(z)|
.

Here we used ‖(z − H)−1‖ ≤ |=(z)|−1 for self-adjoint H. Again,
we apply the construction of the proof of Theorem 3.3 to obtain
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4 Random operators on sofic groups

an operator A
(ω)
r,x which transports our approximation to the space

`2(G). As before we extend the graph isomorphism Ψr,x at x ∈ V (0)
r

from (2.3) injectively to

Ψ′r,x : Vr → G.

which induces a projection

Φr,x : `2(G)→ `2(Vr), Φr,x(f) := f ◦Ψ′r,x.

The operator A
(ω)
r,x is given by

A(ω)
r,x := Φ∗r,xA

(ω)
r Φr,x : `2(G)→ `2(G)

and satisfies as before for all x ∈ V (0)
r

〈δx, (z −A(ω)
r )−1δx〉 = 〈δid, (z −A(ω)

r,x )−1δid〉. (4.15)

However, we still need to change some matrix elements of A
(ω)
r,x in

order to control the difference of A(ω) and its approximation. For

each x ∈ V (0)
r we define a new approximating operator Â

(ω)
r,x : `2(G)→

`2(G) by its matrix elements

â(ω)
r,x (g, h) :=


a(ω)(g, h) if g, h ∈ BGρ(r), g 6= h,

X{g}(ω)− α
∑

k∈G\{g}
â

(ω)
r,x (g, k) if g = h ∈ BGρ(r),

a
(ω)
r,x (g, h) otherwise.

Here X{g}(ω) is the random variable which equals the matrix el-

ement a(ω)(g, g) of A(ω) in the case α = 0, see (4.3). This gives

that still for each g, h ∈ G, the distribution of a
(ω)
r,x (g, h) equals the

distribution of â
(ω)
r,x (g, h). Thus, we have the following equality in

expectation

E〈δid, (z −Ar,x)−1δid〉 = E〈δid, (z − Âr,x)−1δid〉. (4.16)

Now, we choose an arbitrary κ > 0 and obtain by Theorem 2.22 an
integer n ∈ N and a random vector ψ with E(‖δid − ψ‖2) ≤ κ and
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4.1 Weak convergence in mean

spt
(
(z−A(ω))−1ψ(ω)

)
⊆ BGn for all ω ∈ Ω. Note that here we applied

the fact that A is a proper random operator. We use the equalities
(4.15) and (4.16) in the last estimate for Dr and insert the random
vector ψ to get

Dr ≤ sup
x∈V (0)

r

∣∣E〈δid, (z − Âr,x)−1δid〉 − E〈δid, (z −A)−1δid〉
∣∣+

2ε(r)

|=(z)|

≤ sup
x∈V (0)

r

∣∣E(〈δid, ((z − Âr,x)−1 − (z −A)−1
)
ψ〉
)∣∣

+ sup
x∈V (0)

r

∣∣E(〈δid, ((z −Âr,x)−1− (z −A)−1
)
(δid − ψ)〉

)∣∣+
2ε(r)

|=(z)|
.

With another application of the Cauchy-Schwarz inequality and with
the boundedness of the resolvents we estimate the supremum in the
last expression. We deduce

Dr ≤ sup
x∈V (0)

r

∣∣E(〈δid, ((z − Âr,x)−1 − (z −A)−1
)
ψ〉
)∣∣

+ 2
ε(r) + E(‖δid − ψ‖2)

|=(z)|
.

The second resolvent identity and the special choice of ψ according
to Theorem 2.22 imply

Dr ≤ sup
x∈V (0)

r

∣∣E(〈δid, (z −Âr,x)−1(A−Âr,x)(z −A)−1ψ〉
)∣∣+ 2

ε(r) + κ

|=(z)|

≤ 1

|=(z)|
sup

x∈V (0)
r

E
(
‖(A− Âr,x)φ‖2

)
+ 2

ε(r) + κ

|=(z)|
, (4.17)

where φ is a random vector given by φ(ω) := (z −A(ω))−1ψ(ω). Now
assume that r is so large that ρ(r) ≥ n, where still n ∈ N is the
integer given by Theorem 2.22. Note that for all ω ∈ Ω the vector
φ(ω) is supported in BGn ⊆ BGρ(r) and

‖φ(ω)‖∞ ≤ ‖φ(ω)‖2 = ‖(z −A(ω))−1ψ(ω)‖2 ≤
1 + κ

|=(z)|
. (4.18)
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4 Random operators on sofic groups

Now we continue the estimation for x ∈ V (0)
r using subadditivity of

the square root:

E
(
‖(A− Âr,x)φ‖2

)
= E

((∑
g∈G

∣∣∣ ∑
h∈spt(φ)

(a(g, h)− âr,x(g, h))φ(h)
∣∣∣2)1

2
)

≤ E
(( ∑

g∈BG
ρ(r)

∣∣∣ ∑
h∈spt(φ)

(a(g, h)− âr,x(g, h))φ(h)
∣∣∣2) 1

2

+

( ∑
g∈G\BG

ρ(r)

∣∣∣ ∑
h∈spt(φ)

(a(g, h)− âr,x(g, h))φ(h)
∣∣∣2) 1

2
)
.

By construction of Â
(ω)
r,x we have a(ω)(g, h) = â

(ω)
r,x (g, h) for distinct

g, h ∈ BGρ(r). This yields

E
(
‖(A− Âr,x)φ‖2

)
≤ T1(r) + T2(r) (4.19)

with

T1(r) := E
(( ∑

g∈spt(φ)

∣∣∣(a(g, g)− âr,x(g, g))φ(g)
∣∣∣2)1/2)

and

T2(r) := E
(( ∑

g∈G\BG
ρ(r)

∣∣∣ ∑
h∈spt(φ)

(a(g, h)− âr,x(g, h))φ(h)
∣∣∣2)1/2)

.

Let us estimate these terms separately. In order to deal with T1(r),
recall the definition of the diagonal terms of A and Âr,x to obtain for
each ω ∈ Ω:

a(ω)(g, g)− â(ω)
r,x (g, g) = α

∑
h∈G\BG

ρ(r)

(
a(g, h)− â(ω)

r,x (g, h)
)
.

This gives, using the estimate (4.18), Cauchy Schwarz inequality and
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4.1 Weak convergence in mean

Jensen inequality,

T1(r) ≤ |α|‖φ‖∞E
(( ∑

g∈spt(φ)

∣∣∣ ∑
h∈G\BG

ρ(r)

(
a(g, h)− â(ω)

r,x (g, h)
)∣∣∣2) 1

2
)

≤ |α|(κ+ 1)

=(z)
E
(( ∑

g∈spt(φ)

( ∑
h∈G\BG

ρ(r)

|a(g, h)|+
∑

h∈G\BG
ρ(r)

|â(ω)
r,x (g, h)|

)2)1
2
)

≤
√

2|α|(κ+ 1)

=(z)

(
E
( ∑
g∈spt(φ)

( ∑
h∈G\BG

ρ(r)

|a(g, h)|
)2

+
( ∑
h∈G\BG

ρ(r)

|â(ω)
r,x (g, h)|

)2
)) 1

2

.

A calculation similar as in the deterministic setting, see (3.8) and

Remark 3.2, using ρ(r) ≤ r/6, shows that the sum over the â
(ω)
r,x (g, h)

can be estimated by a sum over a(g, h). To be precise, we first use
independence to obtain for g ∈ spt(φ):

E
(( ∑

h∈G\BG
ρ(r)

|âr,x(g, h)|
)2)

= E
( ∑
h,h′∈BGr \BGρ(r)

|âr,x(g, h)||âr,x(g, h′)|
)

=
∑

h6=h′∈BGr \BGρ(r)

E
(
|âr,x(g, h)|

)
E
(
|âr,x(g, h′)|

)
+

∑
h∈BGr \BGρ(r)

E
(
|âr,x(g, h)|2

)
.

Now, use that for g ∈ spt(φ) and h ∈ BGr \BGρ(r) we have âr,x(g, h) =

ar,x(g, h). As ρ(r) ≤ r/6, the element ar,x(g, h) can only be non-zero
if h ∈ BGr/2, cf. Remark 3.2. Thus, Lemma 2.3 ensures that we can

replace the matrix elements ar,x(g, h) by matrix elements of A, i.e.
we obtain

E
(( ∑

g∈G\BG
ρ(r)

|âr,x(h, g)|
)2)
≤

∑
g 6=g′∈G\BG

ρ(r)

E
(
|a(h, g)|

)
E
(
|a(h, g′)|

)
+

∑
g∈G\BG

ρ(r)

E
(
|a(h, g)|2

)
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= E
(( ∑

g∈G\BG
ρ(r)

|a(h, g)|
)2)

.

This gives

T1(r) ≤ 2
√

2|α|(κ+ 1)

=(z)

( ∑
g∈spt(φ)

E
(( ∑

h∈G\BG
ρ(r)

|a(g, h)|
)2
))1/2

,

which tends to zero as r tends to infinity, cf. Lemma 4.1.
Now we deal with the non-diagonal terms and estimate T2(r). By

an application of Cauchy Schwarz inequality and (4.18) we get

T2(r) ≤ 1 + κ

|=(z)|
E
(( ∑

g∈G\BG
ρ(r)

∑
h∈spt(φ)

|a(g, h)− âr,x(g, h)|2
)1/2)

.

We set c := (1 + κ)/|=(z)| and use again triangle inequality and
Jensen inequality to achieve

T2(r) ≤ c
( ∑
g∈G\BG

ρ(r)

∑
h∈spt(φ)

E
(
|a(g, h)|2

))1/2

+ c

( ∑
g∈G\BG

ρ(r)

∑
h∈spt(φ)

E
(
|âr,x(g, h)|2

))1/2

.

By a calculation as in (3.8) we obtain

T2(r) ≤ 2c

( ∑
h∈spt(φ)

∑
g∈G\BG

ρ(r)

E
(
|a(g, h)|2

)) 1
2

,

which tends to zero as r tends to infinity, see Lemma (4.1). This

gives using (4.19) that uniformly in x ∈ V (0)
r

lim
r→∞

E
(
‖(A− Âr,x)φ‖2

)
= 0.

Now conclude from (4.17)

lim sup
r→∞

Dr ≤
2κ

|=(z)|
.
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Since κ > 0 was arbitrary, this gives limr→∞Dr = 0, which finishes
the proof. �

4.2 Weak convergence, almost sure

In order to obtain almost sure convergence we make use of a concen-
tration inequality for functions of independent random variables. It
is taken from [McD98].

Theorem 4.6 ([McD98, Theorem 3.1]). Let X = (X1, . . . , Xn) be
a family of independent random variables with values in R, and let
f : Rn → R be a function, such that whenever x ∈ Rn and x′ ∈ Rn
differ only in one coordinate we have

|f(x)− f(x′)| ≤ c.

Then, for µ := E[f(X)] and any ε ≥ 0,

P(|f(X)− µ| ≥ ε) ≤ 2 exp
(
− 2ε2

nc2

)
.

We use Theorem 4.6 to upgrade the convergence in Theorem 4.5.
This is where we need the specifically slow growth of ρ. We obtain
almost sure convergence as well as a Pastur-Shubin-trace formula.

Theorem 4.7. Let G be a finitely generated sofic group and let A be
given as in (4.6). Furthermore, let nr and N̄ be as in (4.9) and (4.10).
Then there is a set Ω̃ ∈ A with full probability P(Ω̃) = 1 such that for
all ω ∈ Ω̃ we have

N̄ = w-lim
r→∞

n(ω)
r .

Proof. By definition, we need to show limr→∞ n
(ω)
r (λ) = N̄(λ) for

all λ ∈ cont(N̄). Let λ ∈ cont(N̄) and ε > 0 be given. By Theorem
4.5 there exists r0 > 0 such that |n̄r(λ)− N̄(λ)| ≤ ε/2 for all r ≥ r0.
Therefore, also for r ≥ r0, we have

P
(
|nr(λ)− N̄(λ)| ≥ ε

)
≤ P

(
|nr(λ)− n̄r(λ)| ≥ ε− |n̄r(λ)− N̄(λ)|

)
≤ P

(
|nr(λ)− n̄r(λ)| ≥ ε/2

)
. (4.20)
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In order to apply Theorem 4.6, we need to show that the functions
nr fit in the setting therein. To see this, note that by construction nr
depends on the matrix elements of Ar. The non-zero matrix elements
of Ar are constructed by random variables, and each random variable
has influence in at most two rows of the matrix. Denote the number
of these random variables by n. A change in one of these n random
variables causes at most a rank two perturbation, which implies by
Lemma 2.24 that the value of nr changes at most by c := 2/|Vr|.
Furthermore, the number of random variables which are used in our
approximation is limited using the function ρ. In fact we have for all
r ≥ |S|4

n ≤ |Vr||S|2(ρ(r)+1) = |Vr||S|
ln r

2 ln|S| = |Vr|
√
r.

This gives with Theorem 4.6

P
(
|nr(λ)− n̄r(λ)| ≥ ε/2

)
≤ 2 exp

(
− ε2

2nc2

)
≤ 2 exp

(
−ε

2|Vr|
8
√
r

)
.

Now use |Vr| ≥ r, which holds as a the r-balls around the elements

in V
(0)
r are isomorphic to the r-ball in G, to obtain∑

r∈N
P(|nr(λ)− N̄(λ)| ≥ ε) ≤ 2

∑
r∈N

exp

(
−ε

2
√
r

8

)
<∞.

This is by definition complete convergence of nr(λ) to N̄(λ) and
implies almost sure convergence, i.e., the existence of Ωλ ∈ A with
P(Ωλ) = 1 such that for all ω ∈ Ωλ

lim
r→∞

n(ω)
r (λ) = N̄(λ). (4.21)

As a N̄ is a monotone and bounded function, the set disc(N̄) is
countable. Therefore, we can choose a set M ⊆ cont(N̄) which is
countable and dense in R. The set Ω̃ :=

⋂
λ∈M Ωλ has measure one

since it is an intersection of countably many sets of measure one. We

fix ω ∈ Ω̃. By monotonicity of n
(ω)
r and (4.21), we get for all λ ∈ R

lim sup
r→∞

n(ω)
r (λ) ≤ inf

λ′∈M∩[λ,∞)
lim
r→∞

n(ω)
r (λ′)

= inf
λ′∈M∩[λ,∞)

N̄(λ′) = N̄(λ).
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4.3 Special case: percolation

Here the last equality holds since N̄ is monotone and continuous from
the right and since M is dense in R. The same arguments work for
the other direction if we restrict ourselves to λ ∈ cont(N̄)

lim inf
r→∞

n(ω)
r (λ) ≥ sup

λ′∈M∩(−∞,λ]

lim
r→∞

n(ω)
r (λ′)

= sup
λ′∈M∩(−∞,λ]

N̄(λ′) = N̄(λ).

These facts together give for all ω ∈ Ω̃ and all λ ∈ cont(N̄)

lim
r→∞

n(ω)
r (λ) = N̄(λ),

which proves the claim. �

4.3 Special case: percolation

As an application we show in this section that a percolation model is
covered by our abstract theory of random operators on sofic groups.
We study the existence of the IDS of the corresponding graph Lapla-
cian. The models in consideration contain short-range as well as
long-range percolation on sofic groups.

As before let G be a finitely generated sofic group, S a finite,
symmetric set of generators, and let (Ω,A,P) be a probability space.
Let Γco = (V,Eco) be the complete graph over the vertex set V := G,
i.e. the edge set is

Eco := {e ⊆ G | 1 ≤ |e| ≤ 2}.

Furthermore, let p ∈ `1(G,R) be such that for all x ∈ G one has

0 ≤ p(x) = p(x−1) ≤ 1

and define for distinct x, y ∈ G the random variables X{x,y} on
(Ω,A,P) by

X{x,y} =

{
1 with probability p(xy−1),

0 otherwise.
(4.22)
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4 Random operators on sofic groups

We assume that all these random variables are independent. Using
these random variables we define for each ω ∈ Ω a random subgraph
Γω = (V,Eω) of Γco via

Eω = {e ∈ Eco | Xe(ω) = 1}.

Such a graph Γω may contain edges between two arbitrary vertices.
In particular, if p is not finitely supported, there is with probability
one no uniform upper bound for the length of the edges which appear
in the graph, cf. Lemma 4.10. In this situation this model is referred
to as long-range percolation model . The following Lemma shows that
Γω is almost surely locally finite, i.e. each vertex is incident to only
finitely many edges in Γω.

Lemma 4.8. The graph Γω is locally finite for almost all ω ∈ Ω.

Proof. Fix an element x ∈ G and consider the events Ay := {X{x,y} =
1}, y ∈ G. Then clearly∑

y∈G
P(Ay) =

∑
y∈G

p(xy−1) <∞,

as p ∈ `1(G,R). Hence, the Borel-Cantelli Lemma gives a set Ωx of
full measure such that each ω ∈ Ωx is contained in only finitely many
Ay, y ∈ G. As G is countable, Ω̃ :=

⋂
x∈G Ωx is a set of full measure,

too. By construction Γω is locally finite for all ω ∈ Ω̃. �

Note that a special case of this model is short-range percolation
of the Cayley graph Γ = Γ(G,S). Here one sets all p(x) = 0 for all
x /∈ S. Then, obviously p is finitely supported and the random graph
Γω is a subgraph of Γ.

The matrix elements of the operator in consideration are given by

a(ω)(x, y) =

{
X{x,y}(ω) if x 6= y,

Xx(ω)−
∑
z 6=xX{x,z}(ω) otherwise.

(4.23)

In the following we define the Laplacian of this graph. For given
f ∈ Cc(G) and x ∈ G we set

(∆̃(ω)f)(x) :=
∑
y∈G

a(ω)(x, y)f(y). (4.24)
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4.3 Special case: percolation

See also Example 2.13. The next lemma show that this defines a
random operator on the domain Cc(G).

Lemma 4.9. The operator ∆̃ given in (4.24) is a symmetric, transla-
tion invariant (in distribution) random operator with domain Cc(G).
Moreover, this ∆̃ is almost surely essentially self-adjoint.

Proof. In order to prove this it is by Lemma 4.1 enough to show

E
((∑

x∈G
|X{id,x}|

)2
)
<∞.

To this end, we calculate using monotone convergence

E
((∑

x∈G
|X{id,x}|

)2
)

=
∑
x,y∈G

E
(
X{id,x}X{id,y}

)
≤
∑
x,y∈G

E
(
X{id,x}

)
E
(
X{id,y}

)
+
∑
x∈G

E
(
X{id,x}

)
With E(X{id,x}) = p(x) we obtain

E
((∑

x∈G
|X{id,x}|

)2
)
≤ ‖p‖21 + ‖p‖1,

which is finite by assumption on p. �

Thus, there is a set Ω̃ ⊂ Ω of full measure, such that there exists
for all ω ∈ Ω̃ a unique self-adjoint operator ∆̄(ω) : D(∆̄(ω))→ `2(G)
with matrix elements given by (4.23). We want to define a random
operator on all ω and set

∆(ω) :=

{
∆̄(ω) if ω ∈ Ω̃

Id otherwise.
(4.25)

This operator is called the Laplacian of Γω. Thence, the theory
developed in Chapter 4 is valid for this operator. In particular the
IDS exists for almost all realizations ω and does not depend on ω.

The following lemma investigates the situation where p is not
finitely supported. To formulate this we define for each x ∈ G and
ω ∈ Ω by

mx(ω) := |{y ∈ G | {x, y} ∈ Eω}|
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4 Random operators on sofic groups

the vertex degree of x in Γω.

Lemma 4.10. Let ∆ = (∆(ω)) be given as in (4.25) and let |spt(p)| =
∞. Then there exists a set Ω̃ of measure one, such that for all ω ∈ Ω̃
we have

(i) sup{dS(x, y) | {x, y} ∈ Eω} =∞,

(ii) sup{mx(ω) | x ∈ V } =∞, and

(iii) sup{‖A(ω)f‖2 | ‖f‖2 = 1} = ‖A(ω)‖ =∞.

Proof. Let k ∈ N be arbitrary. As |spt(p)| =∞, there exists x ∈ G
with d(0, x) > k and p(x) > 0. Then P({ω ∈ Ω | {y, xy} ∈ Eω}) =
p(x) for all y ∈ G. Using independence, we obtain a set Ωk of measure
one, such that for all ω ∈ Ωk there exists y ∈ G with {y, xy} ∈ Eω.
By construction we have dS(y, xy) ≥ k. As k ∈ N was arbitrary, we
get for each k ∈ N as set Ωk with these properties. Setting

Ω(1) :=
⋂
k∈N

Ωk

we obtain set of measure one, such that (i) holds for each ω ∈ Ω(1).
In order to prove (ii) and (iii) let K ∈ N be arbitrary. As |spt(p)| =
∞, there exist elements x1, . . . , xK ∈ G with p(xi) > 0 for all i =
1, . . . ,K. For each y ∈ G we define

Ay :=

K⋂
i=1

{ω ∈ Ω | {y, xiy} ∈ Eω}

and obtain using independence

P(my ≥ K) ≥ P(Ay) =

K∏
i=1

p(xi) > 0.

Note that if the distance between y and y′ is big enough, one obtains
independence of Ay and Ay′ . Choose a sequence (yn) such that for
distinct n,m ∈ N the sets Ayn and Aym are independent. Similar
as above, the set ΩK :=

⋃∞
i=1Ayn is of measure one. Thus for each
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4.3 Special case: percolation

ω ∈ ΩK there exists n ∈ N with myn(ω) ≥ K. Moreover, for this ω
and yn the following holds true:

‖∆(ω)δyn‖22 =
∑
x∈G
|∆(ω)δyn(x)|2 ≥ K.

We define
Ω(2) :=

⋂
K∈N

ΩK

and obtain a set of measure one such that (ii) and (iii) is satisfied
for each ω ∈ Ω(2). We define the desired set Ω̃ as the intersection
Ω(1) ∩ Ω(2). �

The obtained result in Lemma 4.10 is complementary to the one
in Lemma 4.4. Here we show that a random operator of type (4.6)
can be unbounded, even if supx∈G‖Xid,x‖∞ is finite. This shows in
particular that the converse of (i) in Lemma 4.4 does not hold.

Note that here we show weak convergence of distribution functions
for almost all ω. In more restricted settings one can obtain even more,
i.e. uniform convergence for almost all realizations. This will be done
for amenable groups in Chapters 5 and 6. However the methods rely
massively on the existence of sets with an arbitrary small boundary,
which is per definition not the case for non-amenable groups.
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5 Deterministic operators on amenable
groups

In this chapter we study deterministic operators on amenable groups.
The operators are assumed to be of finite hopping range and invariant
with respect to a given coloring of the group. These assumptions do
not coincide with the ones in Chapter 3, where we for instance did
not assume the operators to be of finite hopping range. However,
the invariance with respect to a coloring, weakens the condition of
translation invariance, which we assumed in Chapter 3. Roughly
speaking, the operators here only have to be translation invariant,
for points where the coloring in a certain neighborhood coincides.
Hence, the operators in this section are neither more general nor more
restricted than the ones we investigated for sofic groups.

The goal of this chapter is the verify uniform existence of the
integrated density of states. To this end, we define the approximating
operators by restricting the operator in question to the elements of a
Følner sequence. As before, let B(R) be the Banach space of the right
continuous, bounded functions on R, equipped with supremum norm.
The eigenvalue counting functions can be interpreted as mappings
which associate to given finite subset of the group (here an element
of the Følner sequence) an element of B(R). For such functions we
prove a Banach space-valued ergodic theorem. This shows that the
normalized eigenvalue counting functions converge uniformly to some
limit function in B(R). The idea to use a theorem of this type to
obtain uniform existence of the IDS has been established in [LS05] of
operators on Delone sets. Later in [LMV08] the authors presented an
adapted version in the euclidean setting. The results of this chapter
extend the latter work to the general case of amenable groups. This
content is already published in [LSV11] and [PS12].

In a first step, we prove this ergodic theorem under a certain tiling
condition on amenable groups. In fact we will verify this result for
the so-called ST-amenable groups, see Definition (5.4). This class of
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5 Deterministic operators on amenable groups

groups allows to find a Følner sequence such that each element of
the sequence is a monotile of the group and the corresponding grid
is symmetric. This property is intensively used in Theorem 5.8, our
first version of the ergodic theorem.

However, it is not clear whether each amenable group is ST-
amenable. Thus, the aim of the second part of this chapter is to
overcome the condition of Definition (5.4) and prove the ergodic theo-
rem for all amenable groups. To this end, we present results from the
theory of ε-quasi tilings. The ideas go back to [OW87] and have been
extended to the versions we present here in [PS12]. These results allow
to obtain in Theorem 5.24 the validity of the Banach space-valued
ergodic theorem for all finitely generated amenable groups.

Moreover, in the last part of this chapter we provide additional
results for the integrated density of states. We give characterizations
of its discontinuity points and show that under certain assumptions
the topological support of the associated measure is the spectrum of
the operator.

Let Z be an arbitrary finite set, which we interpret as the set of
possible colors. A coloring is a map C : G → Z and a pattern is a
map P : D(P ) → Z, where D(P ) ∈ F(G) is called the domain of
P . The set of all patterns is denoted by P and for a fixed Q ∈ F(G)
the subset of P which only contains the patterns with domain Q is
denoted by P(Q). Given a set Q ⊆ D(P ) and an element x ∈ G we
define a restriction of a pattern by P |Q : Q→ Z, g 7→ P |Q(g) = P (g)
and a translation of a pattern Px : D(P )x → Z, yx 7→ P (y). Two
patterns are called equivalent, if one is a translation of the other. The
equivalence class of a pattern P is denoted by P̃ . We write P̃ for the
induced set of equivalence classes in P. For two patterns P and P ′

the number of occurrences of the pattern P in P ′ is denoted by

]P (P ′) :=
∣∣{x ∈ G | D(P )x ⊆ D(P ′), P ′|D(P )x = Px}

∣∣ .
Counting occurrences of patterns along a Følner sequence (Uj)j∈N
leads to the definition of frequencies. If for a pattern P and a Følner
sequence (Uj)j∈N the limit

νP := lim
j→∞

]P (C|Uj )
|Uj |

exists, we call νP the frequency of P in the coloring C along (Uj)j∈N.
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Lemma 5.1. Let G be a finitely generated group and assume that C
is a coloring. If νP is the frequency of a pattern P along the Følner
sequence (Uj)j∈N, then for any r > 0 the value νP is the frequency of

P along (U
(r)
j )j∈N as well.

Proof. Let r > 0 be given and let (Uj) be a Følner sequence with
frequency νP . Then we have

lim inf
j→∞

]P
(
C|
U

(r)
j

)
|U (r)
j |

≥ lim inf
j→∞

]P
(
C|
U

(r)
j

)
|Uj |

≥ lim inf
j→∞

]P
(
C|Uj

)
− ∂r(Uj)
|Uj |

= νP .

Furthermore, for arbitrary κ > 0 we can find by Lemma 2.7 a number

jκ ∈ N with |U (r)
j | ≥ (1− κ)|Uj | for all j ≥ jκ. Therefore we obtain

lim sup
j→∞

]P
(
C|
U

(r)
j

)
|U (r)
j |

≤ lim
j→∞

]P
(
C|Uj

)
(1− κ)|Uj |

=
νP

1− κ
.

As κ was arbitrary, the claim follows. �

Now, we introduce the space on which the operators will be defined.
Let H be a finite dimensional Hilbert space with scalar product 〈·, ·〉H
and induced norm ‖·‖H. We define

`2(G,H) :=

{
u : G→ H

∣∣∣ ∑
x∈G
‖u(x)‖2H <∞

}
,

which is a Hilbert space as well. Here the scalar product of two
elements u, v ∈ `2(G,H) is given by

〈u, v〉 =
∑
x∈G
〈u(x), v(x)〉H .

As before let Cc(G,H) be the subset of `2(G,H) consisting of the
finitely supported functions. For an arbitrary element x ∈ G let

px : `2(G,H)→ H, u 7→ px(u) := u(x) (5.1)
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5 Deterministic operators on amenable groups

be the natural projection and

ix : H → `2(G,H), h 7→ ix(h) with (ix(h))(y) :=

{
h if x = y,

0 otherwise

(5.2)
the natural inclusion. Note that ix is the adjoint of px. These maps
can be generalized for subsets Q ⊆ G. The support of u ∈ `2(G,H)
is the set of those x ∈ G, such that u(x) 6= 0. We identify

`2(Q,H) =

u : Q→ H
∣∣∣∣∑
x∈Q
‖u(x)‖2 <∞


with the subspace of `2(G,H) consisting of all elements supported in
Q. The map pQ : `2(G,H)→ `2(Q,H) is given by setting

u 7→ pQ(u), where pQ(u)(x) = u(x) (5.3)

for x ∈ Q. Similarly, the inclusion iQ : `2(Q,H)→ `2(G,H) is given
by

u 7→ iQ(u), where iQ(u)(x) :=

{
u(x) if x ∈ Q,
0 otherwise

(5.4)

for x ∈ G. Given A : D(A) ⊆ `2(G,H)→ `2(G,H), where D(A) con-
tains Cc(G,H), we define for each Q ∈ F(G) the restricted operator
A[Q] by setting

A[Q] := pQAiQ : `2(Q,H)→ `2(Q,H).

Note that for x, y ∈ G the expression pyAix is an operator mapping
pyAix : H → H.

Definition 5.2. Let Z be a finite set, C : G→ Z a coloring and A
an operator on `2(G,H), such that D(A) contains Cc(G,H). Then
we say that

(a) A is of finite hopping range :⇔ ∃M > 0 such that pyAix = 0
for all x, y ∈ G with dS(x, y) ≥M ,
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(b) A is C-invariant :⇔ ∃N ∈ N such that pyAix = pytAixt for all
x, y, t ∈ G obeying(

C|BN (x)∪BN (y)

)
t = C|BN (xt)∪BN (yt),

(c) R(A) := max{M,N} is the overall range of A, if A is of fi-
nite hopping range with parameter M and C-invariant with
parameter N .

We observe that if A satisfies the condition (a) (or (b)) for some
M (or N), then it does so for any M̃ > M (or Ñ > N) as well.

Lemma 5.3. Let Z be a finite set and C : G→ Z a coloring. Then,
any C-invariant, finite hopping range operator A on `2(G,H) with
Cc(G,H) ⊆ D(A) is bounded.

Proof. Let A be of finite hopping range with constant M and C-
invariant with constant N . Moreover, assume that Cc(G,H) is a
subset of the domain of A. Set R := max{M,N}. We fix a basis
of the Hilbert space H. Since H is of finite dimension, for each
pair x, y ∈ G the mapping pyAix : H → H is given by a matrix of
dimension dim(H) × dim(H). The C-invariance of A implies that
the matrix corresponding to pyAix is a function which depends only
on the values of C on BN (x) ∪ BN (y). Since A is of finite hopping
range, the matrix is in fact a function of C|B2R(x) only. The reason for
this is that for x and y with distance larger than M , pyAix vanishes
identically, while for dS(x, y) ≤M the set BN (x)∪BN (y) is contained
in B2R(x). Since |Z| <∞ and |B2R(x)| <∞ there are only finitely
many functions P : B2R(x)→ Z and hence only finitely many values
which the matrix valued function pyAix can take. From this we
conclude that

c := sup
x,y∈G

sup {‖(pyAix)h‖H | h ∈ H, ‖h‖H ≤ 1} (5.5)

is finite. For a given φ ∈ `2(G,H) the finite hopping range of A
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5 Deterministic operators on amenable groups

implies Aφ(x) =
∑
y∈BR(x)(pxAiy)φ(y). Hence

‖Aφ‖2 =
∑
x∈G
〈Aφ(x), Aφ(x)〉

=
∑
x∈G

〈 ∑
y∈BR(x)

(pxAiy)φ(y),
∑

z∈BR(x)

(pxAiz)φ(z)
〉

holds. The Cauchy-Schwarz inequality implies

‖Aφ‖2 ≤
∑
x∈G

∑
y,z∈BR(x)

‖(pxAiy)φ(y)‖‖(pxAiz)φ(z)‖

≤
∑
x∈G

∑
y,z∈BR(x)

c2‖φ(y)‖‖φ(z)‖

with c as in (5.5). Young’s inequality 2‖φ(x)‖‖φ(y)‖ ≤ ‖φ(x)‖2 +
‖φ(y)‖2 yields that the last expression is less or equal to

c2

2

∑
x∈G

 ∑
y,z∈BR(x)

‖φ(y)‖2 +
∑

y,z∈BR(x)

‖φ(z)‖2


= c2|BR|
∑
x∈G

∑
y∈BR(x)

‖φ(y)‖2.

This shows the boundedness of A:

‖Aφ‖ ≤ c|BR|‖φ‖. �

Of course, if A is bounded, then D(A) = `2(G,H). Therefore,
instead of assuming for A that Cc(G) ⊆ D(A) and that A is self-
adjoint and of finite hopping range, we can equivalently assume
that A is a bounded, self-adjoint and finite hopping range operator.
For such an operator A we will study functions e(A[Q]) : R → R
where Q ∈ F(G). Dividing this function by the number of possible
eigenvalues dim(H)|Q| of A[Q] gives rise to a distribution function of
a probability measure. It encodes the distribution of the spectrum of
A[Q]. In the following we substitute Q by the elements of a Følner
sequence (Qj) and study the convergence of

n(A[Qj ]) =
e(A[Qj ])

|Qj |dim(H)
.
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In order to do so, we will formulate an abstract Banach space-valued
ergodic theorem. This theorem applies to cumulative eigenvalue
counting functions and will imply convergence of these functions as
elements in B(R), i.e. with respect to supremum norm.

For general amenable groups the proof of this theorem is rather
complex, such that for the sake of the reader we will first concentrate
on a special case. In this special case the proofs are shorter and more
accessible, however they already provide the major ideas. We will
assume that in addition to amenability the group satisfies a certain
tiling condition. To formulate this, we need some more notation.

Given a set Q ⊆ G, a partition of Q is a family of pairwise disjoint
subsets Qi, i ∈ I of Q such that

⋃
i∈I Qi = Q, where I is some index

set. We say that Q ⊆ G tiles the group G or Q is a monotile of G, if
there exists a set B ⊆ G such that Qg, g ∈ B is a partition of G. In
this case Qg, g ∈ B is called a tiling of the group along the grid B. If
additionally B = B−1 holds, we say that Q symmetrically tiles G or
Qg, g ∈ B is a symmetric tiling of G. If (Qn) is a sequence of finite
subsets, we say that (Qn) is symmetrically tiling, if for each n ∈ N the
set Qn symmetrically tiles G. The announced additional assumption
on the amenable group G is stated in the following definition.

Definition 5.4. A finitely generated groups G is called ST-amenable
if there exists a symmetrically tiling Følner sequence (Qn) in G.

Remark 5.5. Let us briefly discuss this definition. We assume that
G contains a Følner sequence (Qn) such that each Qn symmetrically
tiles G. This condition is particularly satisfied, if there exists a se-
quence of subgroups (Gn)n∈N, such that one can choose the associated
fundamental domains (Qn)n∈N to be a Følner sequence. Based on a
result of Weiss [Wei01], Krieger proves in [Kri07] that this is fulfilled
for any residually finite, amenable group. This gives that in particular
any group of polynomial volume growth fits in our framework.

Beside this, there is up to now no example of an amenable group
known where no symmetrically tiling Følner sequence exists. However
a verification of this property for all amenable groups seemed rather
complicated. Therefore in [OW87] the authors introduced the theory
of ε-quasi tilings, which can be established for all amenable groups.
We will present results based on these ideas in Sections 5.2.1 and
5.2.2.
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5 Deterministic operators on amenable groups

Before concentrating on the proof of a Banach space-valued er-
godic theorem for ST-amenable groups and later for general amenable
groups, let us introduce the class of functions with which such theo-
rems may deal.

Definition 5.6. A function b : F(G)→ [0,∞) is called a boundary
term if

(a) b(Q) = b(Qx) for all x ∈ G and all Q ∈ F(G),

(b) lim
j→∞

b(Uj)
|Uj | = 0 for any Følner sequence (Uj),

(c) there exists D > 0 with b(Q) ≤ D|Q| for all Q ∈ F(G),

(d) one has for all Q,Q′ ∈ F(G)

max
{
b(Q ∩Q′), b(Q ∪Q′), b(Q \Q′)

}
≤ b(Q) + b(Q′).

For a pattern P we define b(P ) := b(D(P )). Due to property (a)
the value b(P ) depends only on the equivalence class of a pattern.
Thus, b(P̃ ) := b(P ) is well-defined.

Definition 5.7. Let (X, ‖ · ‖) be a Banach space and F̃ a function
F̃ : P̃ → X. We call F̃ almost-additive, if there exists a boundary term
b such that for any P̃ ∈ P̃ and P ∈ P̃ and any disjoint decomposition
D(P ) =

⋃m
k=1Dk we have∥∥∥∥∥F̃ (P̃ )−

m∑
k=1

F̃ (P̃k)

∥∥∥∥∥ ≤
m∑
k=1

b(P̃k),

where P̃k := ˜P |Di ∈ P̃.

Let F̃ : P̃ → X be an almost-additive function and P : D(P )→ Z
an arbitrary pattern. For each x ∈ D(P ) define the pattern Px :=
P |{x} : {x} → Z. Then we obtain

‖F̃ (P̃ )‖ ≤
∥∥∥F̃ (P̃ )−

∑
x∈D(P )

F̃ (P̃x)
∥∥∥+

∥∥∥ ∑
x∈D(P )

F̃ (P̃x)
∥∥∥

≤
∑

x∈D(P )

b(P̃x) +
∑

x∈D(P )

‖F̃ (P̃x)‖. (5.6)
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Since each D(Px) contains exactly one element, c1 := b(P̃x) is in-
dependent of x. Furthermore F (P̃x) can take at most |Z| different
values. Let c2 be the maximal norm of these values. It follows

‖F̃ (P̃ )‖ ≤ C|D(P )|, where C := c1 + c2. (5.7)

A given coloring C on G and an almost-additive function F̃ : P̃ → X
give rise to a function

F : F(G)→ X, F (Q) := F̃ ( ˜C|Q) for Q ∈ F(G).

The following properties of F obviously hold:

(i) C-invariant : if x ∈ G is such that the patterns C|Q and C|Qx
are equivalent, then we have

F (Q) = F (Qx),

(ii) almost-additive: if Qk, k = 1, . . . , n are disjoint subsets of G,
then we have∥∥∥∥F( m⋃

k=1

Qk

)
−

m∑
k=1

F (Qk)

∥∥∥∥ ≤ m∑
k=1

b(Qk),

(iii) bounded : there exists a C > 0 such that

‖F (Q)‖ ≤ C|Q| for all Q ∈ F(G).

A C-invariant and almost-additive function F : F(G) → X is auto-
matically bounded. This follows from an estimate analogous to (5.6).
Instead of defining F based on F̃ one could also proceed the other
way around: if a function F : F(G)→ X with the properties (i) and
(ii) is given, define F̃ : P̃ → X by the following procedure. If for

P̃ ∈ P̃ there exists an Q ∈ F(G) such that ˜C|Q = P̃ set F̃ (P̃ ) = F (Q).
This definition is independent of the particular choice of Q by the
C-invariance of F . If such a Q does not exist, set F (P̃ ) = 0. Therefore
showing (i) and (ii) for F is the same as showing almost-additivity
for F̃ . To simplify the notation we will write F̃ (P ) instead of F̃ (P̃ )
for a given pattern P ∈ P.
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5 Deterministic operators on amenable groups

In order to be able to refer to it later, we now give a list of
assumptions which will be needed in this chapter. The reason for
introducing these assumptions here at once and not successively
during the sections, is that in many results will refer to more than
one of these assumptions.

Assumption 1. The group G is amenable and generated by a finite
and symmetric set S, Z is a finite set and C : G → Z is a map,
which we will call a coloring. The sequences (Qn) and (Uj) are Følner
sequences. The frequencies νP = limj→∞ |Uj |−1]P (C|Uj ) exist for
all patterns P ∈

⋃
n∈N P(Qn) along the Følner sequence (Uj)j∈N.

We denote by d(n) := diam(Qn) the diameter of Qn. Furthermore
(X, ‖ · ‖) is a Banach-space.

Assumption 2. The group G is ST-amenable and the Følner se-
quence (Qn)n∈N symmetrically tiles G.

Assumption 3. The space H is a finite dimensional Hilbert space
and the operator A : `2(G,H) → `2(G,H) is bounded, self-adjoint,
C-invariant and of finite hopping range. Let R = R(A) denote the
overall range of A.

Assumption 4. The frequencies νP are strictly positive for all pat-
terns P ∈ P which occur in C, i.e. for which there exists g ∈ G with
C|D(P )g = Pg

5.1 Deterministic operators on ST-amenable groups

As announced before we will first restrict ourselves to ST-amenable
groups. The results we present here are published in a joint work
with Daniel Lenz and Ivan Veselić, see [LSV11] and [LSV12].

5.1.1 An ergodic theorem for ST-amenable groups

Given the setting outlined above, we are in the position to formulate
and prove the announced ergodic type theorem for certain Banach
space-valued functions on ST-amenable groups.
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5.1 Deterministic operators on ST-amenable groups

Theorem 5.8. Let Assumptions 1 and 2 be satisfied. For a given C-
invariant and almost-additive function F : F(G)→ X and associated
F̃ : P̃ → X the following limits

lim
j→∞

F (Uj)

|Uj |
= lim
n→∞

∑
P∈P(Qn)

νP
F̃ (P )

|Qn|

exist and are equal. Furthermore, for j, n ∈ N the difference

∆(j, n) :=

∥∥∥∥F (Uj)

|Uj |
−

∑
P∈P(Qn)

νP
F̃ (P )

|Qn|

∥∥∥∥ (5.8)

satisfies the estimate

∆(j, n) ≤ b(Qn)

|Qn|
+ (C +D)

|∂d(n)Uj |
|Uj |

+ C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣.

(5.9)

Remark 5.9. In the special case where the group equals Zd, it is
convenient to think of the sets Uj as balls of radius j and of Qn as
cubes of side length n. While both of them are Følner sequences,
(Qn) has the additional property that each Qn symmetrically tiles
Zd. Here we require the frequencies of the patterns to exist along the
sequence of balls.

Proof of Theorem 5.8. First, we prove (5.9). By adding a zero we get

∆(j, n) ≤
∥∥∥∥F (Uj)

|Uj |
−

∑
P∈P(Qn)

]P (C|Uj )
|Uj |

F̃ (P )

|Qn|

∥∥∥∥
+

∥∥∥∥ ∑
P∈P(Qn)

( ]P (C|Uj )
|Uj |

− νP
) F̃ (P )

|Qn|

∥∥∥∥.
With another application of the triangle inequality this gives

∆(j, n) ≤ D1(j, n) +D2(j, n),
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5 Deterministic operators on amenable groups

where

D1(j, n) :=

∥∥∥∥F (Uj)

|Uj |
−

∑
P∈P(Qn)

]P (C|Uj )
|Uj |

F̃ (P )

|Qn|

∥∥∥∥
D2(j, n) :=

∑
P∈P(Qn)

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣‖F̃ (P )‖
|Qn|

.

We use the boundedness of F̃ , see (5.7)

‖F̃ (P )‖ ≤ C|Qn|, (5.10)

to obtain

D2(j, n) ≤ C
∑

P∈P(Qn)

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣. (5.11)

As G is ST-amenable, for each fixed n ∈ N the set Qn (symmetri-
cally) tiles the group G. Thus there exists a symmetric set Gn ⊆ G
such that G =

⋃
g∈Gn Qng, where Qng ∩ Qnh = ∅ for all g, h ∈ Gn

with g 6= h. This property remains valid after shifting the grid by an
arbitrary x−1 ∈ G. In fact we have

G = Gx−1 =
⋃
g∈Gn

Qngx
−1 =

⋃
g∈Gnx−1

Qng,

where Gnx
−1 := {gx−1|g ∈ Gn}. Still Qng ∩ Qnh = ∅ holds for all

distinct g, h ∈ Gnx−1, since g = g̃x−1 and h = h̃x−1 for some distinct
g̃, h̃ ∈ Gn and

Qng∩Qnh = ∅ ⇔ Qng̃x
−1∩Qnh̃x−1 = ∅ ⇔ Qng̃∩Qnh̃ = ∅.

Given a set K ∈ F(G) and an element x ∈ G, we introduce the set
of elements g ∈ Gnx−1 which gives rise to a translate Qng, which is
not disjoint from K:

S(K,x, n) := {g ∈ Gnx−1 | Qng ∩K 6= ∅}.

We distinguish two types of elements in S(K,x, n)

I(K,x, n) := {g ∈ Gnx−1 | Qng ⊆ K} and

∂(K,x, n) := S(K,x, n) \ I(K,x, n).
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5.1 Deterministic operators on ST-amenable groups

Since we have Qng ⊆ ∂d(n)K for all g ∈ ∂(K,x, n) and Qng ⊆ K for
all g ∈ I(K,x, n), the disjointness of the translates implies that the
following inequalities hold:

|∂(K,x, n)| · |Qn| ≤ |∂d(n)K| and |I(K,x, n)| · |Qn| ≤ |K|.
(5.12)

Given an n ∈ N, K ∈ F(G) and x ∈ G we have Qng = Qng ∩K for
g ∈ I(K,x, n) and thus

T (K,x, n)

:=

∥∥∥∥F (K)−
∑

g∈I(K,x,n)

F (Qng)

∥∥∥∥ =

∥∥∥∥F (K)−
∑

g∈I(K,x,n)

F (Qng ∩K)

∥∥∥∥
≤
∥∥∥∥F (K)−

∑
g∈S(K,x,n)

F (Qng ∩K)

∥∥∥∥+

∥∥∥∥ ∑
g∈∂(K,x,n)

F (Qng ∩K)

∥∥∥∥,
(5.13)

where the last inequality holds since S(K,x, n) is the disjoint union
of ∂(K,x, n) and I(K,x, n). Now we use almost-additivity and the
boundedness of F and later on the properties of the boundary term b
to obtain

T (K,x, n)

≤
( ∑
g∈I(K,x,n)

b(Qng) +
∑

g∈∂(K,x,n)

b(Qng ∩K)

)
+

∑
g∈∂(K,x,n)

C|Qng|

≤
∑

g∈I(K,x,n)

b(Qn) +
∑

g∈∂(K,x,n)

D|Qn|+
∑

g∈∂(K,x,n)

C|Qn|

≤ |I(K,x, n)|b(Qn) + |∂(K,x, n)|(C +D)|Qn|.

The inequalities (5.12) yield the estimate

T (K,x, n) ≤ |K|
|Qn|

b(Qn) + (C +D)|∂d(n)K|. (5.14)

Furthermore, we have the equality

{z ∈ G | Qnz ⊆ K} =
⋃̇
x∈Qn

{
z ∈ Gnx−1 | Qnz ⊆ K

}
(5.15)
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5 Deterministic operators on amenable groups

since for each z ∈ G there is x ∈ Qn and g ∈ Gn with z−1 = xg.
Hence, z = g−1x−1 ∈ Gnx

−1, as Gn is a symmetric subset of G.
To see that the union in (5.15) is disjoint, observe that for given
x, y ∈ Qn with x 6= y and z ∈ Gnx−1 we have z−1 ∈ xGn. Here we
again used the symmetry of Gn. By the tiling property of Qn this
gives z−1 /∈ yGn and hence z /∈ Gny−1.

The C-invariance of F and the equation (5.15) imply

∑
P∈P(Qn)

]P (C|Uj )F̃ (P ) =
∑

z∈G:Qnz⊆Uj

F (Qnz) =
∑
x∈Qn

∑
g∈I(Uj ,x,n)

F (Qng),

(5.16)
from which we deduce

|Uj |D1(j, n) =

∥∥∥∥F (Uj)−
∑

P∈P(Qn)

]P (C|Uj )
F̃ (P )

|Qn|

∥∥∥∥
=

∥∥∥∥F (Uj)−
∑
x∈Qn

∑
g∈I(Uj ,x,n)

F (Qng)

|Qn|

∥∥∥∥.
Using

∑
x∈Qn 1 = |Qn| we get

∥∥∥∥F (Uj)−
∑
x∈Qn

∑
g∈I(Uj ,x,n)

F (Qng)

|Qn|

∥∥∥∥
=

1

|Qn|

∥∥∥∥ ∑
x∈Qn

(
F (Uj)−

∑
g∈I(Uj ,x,n)

F (Qng)
)∥∥∥∥ ≤ 1

|Qn|
∑
x∈Qn

T (Uj , x, n),

where T (Uj , x, n) is given as in (5.13). Now we use the estimate (5.14)
for T (Uj , x, n) to obtain

D1(j, n) ≤ 1

|Qn|
∑
x∈Qn

(
b(Qn)

|Qn|
+ (C +D)

|∂d(n)Uj |
|Uj |

)

=
b(Qn)

|Qn|
+ (C +D)

|∂d(n)Uj |
|Uj |

.
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5.1 Deterministic operators on ST-amenable groups

Together with the upper bound for D2(j, n) in (5.11) we have

∆(j, n) ≤ D1(j, n) +D2(j, n)

≤ b(Qn)

|Qn|
+ (C +D)

|∂d(n)Uj |
|Uj |

+ C
∑

P∈P(Qn)

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣,

for all j, n ∈ N. This proves (5.9). Now the main part of the theorem
follows readily. One immediately sees that ∆(j, n) tends to zero, if j
and n tend (in the right order) to infinity, i.e.

lim
n→∞

lim
j→∞

∆(j, n) = 0. (5.17)

The triangle inequality shows that∥∥∥∥F (Uj)

|Uj |
− F (Um)

|Um|

∥∥∥∥
=

∥∥∥∥F (Uj)

|Uj |
−

∑
P∈P(Qn)

νP
F̃ (P )

|Qn|
+

∑
P∈P(Qn)

νP
F̃ (P )

|Qn|
− F (Um)

|Um|

∥∥∥∥
≤ ∆(j, n) + ∆(m,n)

holds for all j,m, n ∈ N. This implies that (|Uj |−1F (Uj))j∈N is a
Cauchy sequence and hence it is convergent in the Banach space X.
We use again (5.17) to obtain that∑

P∈P(Qn)

νP
F̃ (P )

|Qn|

converges to the same limit when n tends to infinity. �

With the help of the above theorem we are able to give an explicit
bound for the distance between the approximants and the limit term.

Corollary 5.10. Let Assumptions 1 and 2 be satisfied and let a C-
invariant and almost-additive function F : F(G)→ X and associated
F̃ : P̃ → X be given. Denote the limit by F̄ := limj→∞|Uj |−1F (Uj).
Then we have for all j, n ∈ N the estimates∥∥∥∥F̄−F (Uj)

|Uj |

∥∥∥∥ ≤ 2
b(Qn)

|Qn|
+(C+D)

|∂d(n)Uj |
|Uj |

+C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

−νP
∣∣∣
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5 Deterministic operators on amenable groups

and ∥∥∥∥F̄ − ∑
P∈P(Qn)

νP
F̃ (P )

|Qn|

∥∥∥∥ ≤ b(Qn)

|Qn|
.

Proof. We fix j, n ∈ N. By definition of F̄ and the triangle inequality
we have that

D1(j) :=

∥∥∥∥F̄ − F (Uj)

|Uj |

∥∥∥∥ = lim
k→∞

∥∥∥∥F (Uk)

|Uk|
− F (Uj)

|Uj |

∥∥∥∥
≤ lim
k→∞

(∆(k, n) + ∆(j, n))

holds, where ∆ is given as in (5.8). Using the estimate (5.9) for
∆(j, n) we obtain

D1(j) ≤ lim
k→∞

(
b(Qn)

|Qn|
+ (C+D)

|∂d(n)Uk|
|Uk|

+ C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uk)

|Uk|
− νP

∣∣∣
+
b(Qn)

|Qn|
+ (C+D)

|∂d(n)Uj |
|Uj |

+ C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣)

= 2
b(Qn)

|Qn|
+ (C+D)

|∂d(n)Uj |
|Uj |

+ C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣.

We use the same ideas to estimate

D2(n) :=

∥∥∥∥F̄ − ∑
P∈P(Qn)

νP
F̃ (P )

|Qn|

∥∥∥∥ = lim
k→∞

∆(k, n) =
b(Qn)

|Qn|
,

which proves the second claim. �

The assumptions of Theorem 5.8 and Corollary 5.10 are particularly
satisfied if there exists a symmetrically tiling Følner sequence (Qn)n∈N
along which the frequencies νP exist for all patterns P ∈

⋃
n∈N P(Qn).

This corresponds to the special case of Assumption 1, where it is
possible to choose (Uj) = (Qj).
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5.1 Deterministic operators on ST-amenable groups

5.1.2 Uniform convergence for ST-amenable groups

In this subsection we apply the obtained ergodic theorem of Sec-
tion 5.1.1 to prove uniform convergence of the eigenvalue counting
functions. This is stated in Theorem 5.11 below.

Theorem 5.11. Let Assumptions 1, 2 and 3 be satisfied. Then there
exists a unique probability measure µA on R with distribution function
IA, such that the estimate∥∥∥n(A[U

(R)
j ]

)
− IA

∥∥∥
∞
≤ 8
|∂RQn|
|Qn|

+ (1 + 4|BR|)
|∂d(n)Uj |
|Uj |

+
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣+
|∂RintUj |
|Uj |

holds for all j, n ∈ N. This implies in particular the convergence

n
(
A[U

(R)
j ]

)
→ IA

with respect to the supremum norm for j →∞. The function IA is
called the integrated density of states (IDS).

For the proof we establish a couple of auxiliary results. Before this
we define the functions

FAR : F(G)→ B(R) FAR (Q) := e(A[Q(R)])

and
b : F(G)→ [0,∞), b(Q) := 4|∂RQ|dim(H).

Lemma 5.12. Let Assumptions 1 and 3 be satisfied and let FAR and
b be given as above. Then FAR is C-invariant and almost-additive with
the boundary term b.

Proof. Since R is the overall range of A, the values of e(A[Q(R)]) only
depend on the coloring of Q, namely C|Q, and hence FAR is C-invariant.
To show almost-additivity we use a decoupling argument. Let Q be a
disjoint union of Qk for k = 1, . . . ,m. By definition, R is big enough
such that

A
[⋃m

k=1
Q

(R)
k

]
=

m⊕
k=1

A[Q
(R)
k ]
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holds. Therefore we can count the eigenvalues of A[Q
(R)
k ] for k =

1, . . . ,m separately

e
(
A
[⋃m

k=1
Q

(R)
k

])
=

m∑
k=1

e(A[Q
(R)
k ]).

Now, we apply Lemma 2.25 with the spaces V = `2(Q(R),H) and

U = `2(
⋃m
k=1Q

(R)
k ,H). Hence we get∥∥∥∥∥e(A[Q(R)])− e

(
A
[ m⋃
k=1

Q
(R)
k

])∥∥∥∥∥
∞

≤ 4

m∑
k=1

|∂RQk|dim(H)

=

m∑
k=1

b(Qk).

It remains to show that b given as above is a boundary term in the
sense of Definition 5.6. Therefore use Lemma 2.1 and Lemma 2.7. In
order to obtain b(Q) ≤ D|Q| set D := 4|BR|dim(H). This proves the
almost-additivity with boundary term b. �

From a calculation analogous to (5.6) it is clear that FAR is bounded.
Since the operator A[Q(R)] has exactly dim(H)|Q(R)| eigenvalues
(counted with multiplicities), the boundedness holds with the constant
C = dim(H).

Proof of Theorem 5.11. Since FAR is C-invariant and almost-additive,
we can apply Theorem 5.8 and Corollary 5.10 which gives the existence
of a function ĨA with∥∥∥∥FAR (Uj)

|Uj |
− ĨA

∥∥∥∥
∞

≤ 2
b(Qn)

|Qn|
+ (C +D)

|∂d(n)Uj |
|Uj |

+ C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣

≤ h
(

8
|∂RQn|
|Qn|

+ (1 + 4|BR|)
|∂d(n)Uj |
|Uj |

+
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣)
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5.1 Deterministic operators on ST-amenable groups

for all j, n ∈ N, where h = dim(H). What remains to be done is
to change the normalization of FAR (U) = e(A[U (R)]). We know that

|U (R)
j | = |Uj | − |∂Rint(Uj)| and by expansion one can show that

1

|Uj |
=

1

|Uj | − |∂Rint(Uj)|
− |∂Rint(Uj)|
|Uj |(|Uj | − |∂Rint(Uj)|)

holds true. This gives for all j, n ∈ N∥∥∥∥FAR (Uj)

|Uj |
− ĨA

∥∥∥∥
∞

=

∥∥∥∥FAR (Uj)

|U (R)
j |

− FAR (Uj)|∂Rint(Uj)|
|U (R)
j ||Uj |

− ĨA

∥∥∥∥
∞

≥
∥∥∥∥FAR (Uj)

|U (R)
j |

− ĨA

∥∥∥∥
∞
−
∥∥∥∥FAR (Uj)|∂Rint(Uj)|

|U (R)
j ||Uj |

∥∥∥∥
∞
.

By definition of FAR we have ‖FAR (Uj)‖∞ = dim(H)|U (R)
j |, which

implies ∥∥∥∥FAR (Uj)|∂Rint(Uj)|
|U (R)
j ||Uj |

∥∥∥∥
∞

= dim(H)
|∂Rint(Uj)|
|Uj |

for all j ∈ N. Finally, dividing everything by dim(H) and using

FAR (Uj) = dim(H)|U (R)
j |n(A[U

(R)
j ])

leads to∥∥∥n(A[U
(R)
j ]

)
− IA

∥∥∥
∞
≤ 8
|∂RQn|
|Qn|

+ (1 + 4|BR|)
|∂d(n)Uj |
|Uj |

+
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣+
|∂RintUj |
|Uj |

,

which holds for all j, n ∈ N with IA := ĨA/ dim(H). Using Lemma
2.7, this shows the claimed convergence. As we obtained uniform
convergence of distribution functions of probability measures we get
by Lemma 2.26 that IA is a distribution function of a probability
measure as well. �
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5 Deterministic operators on amenable groups

Since the eigenvalue counting function e is C-invariant, the function
ẽ on the set the equivalence classes of all patterns given by

ẽ : P̃ → B(R) ẽ(P̃ ) :=

{
e(A[Q(R)]) if Q ∈ F(G) s.t. P̃ = ˜C|Q,
0 otherwise

(5.18)
is well defined. As before we write ẽ(P ) instead of ẽ(P̃ ) for a given
P ∈ P. The following result is a direct consequence of the second
estimate in Corollary 5.10 and the boundary term from Lemma 5.12.

Corollary 5.13. Let Assumptions 1, 2 and 3 be satisfied and let IA
be defined as in Theorem 5.11. Then the bound∥∥∥∥IA − ∑

P∈P(Qn)

νP
ẽ(P )

|Qn|dim(H)

∥∥∥∥
∞
≤ 4
|∂R(Qn)|
|Qn|

holds for all n ∈ N.

We give a simple example to show that in general the IDS depends
on the choice of the Følner sequence (Uj).

Example 5.14. Consider the usual graph of Z with standard edges,
the set Z = {black, white} and the coloring

C : Z→ Z, C(x) =

{
white, if x ≥ 0 or x = 3k for k ∈ Z,
black, otherwise.

Deleting all edges which are incident to a white vertex gives rise to a
new graph and hence a new adjacency operator A. This operator is
self-adjoint, of finite hopping range and C-invariant. We choose two
Følner sequences (Uj) and (Vj) as follows

Uj = {1, . . . , 3j} and Vj = {−3j, . . . ,−1}. (5.19)

Since for all j ∈ N all entries of the matrix A[Uj ] are equal to zero,
the IDS IU with respect to the sequence (Uj) is

IU (λ) =

{
0 if λ < 0
1 otherwise.

Computing the IDS along the sequence (Vj) gives a completely dif-
ferent picture: The eigenvalues of the matrix A[Vj ] are −1, 0 and 1,
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each of them with multiplicity j. Therefore, the IDS IV with respect
to the sequence (Vj) is the function

IV (λ) =


0 if λ < −1,
1/3 if −1 ≤ λ < 0,
2/3 if 0 ≤ λ < 1,
1 otherwise.

5.2 Deterministic operators on general amenable
groups

This section is devoted to show that the results from the previous
section carry over to the setting of all finitely generated amenable
groups. To this end, we need to overcome the assumption that
there exists a Følner sequence such that each element of the group
symmetrically tiles the group. This will be done using the theory of
ε-quasi tilings. The results we present here are joint work with Felix
Pogorzelski, see [PS12]. They will also be part of the PhD thesis
of Felix Pogorzelski. For this reason we will be rather explicit with
assigning originality.

5.2.1 Tiling theorems for general amenable groups

In this subsection we provide results concerning the existence of
certain quasi-tilings which are valid for all amenable groups. We
present two tiling theorems. In the first tiling theorem, namely
Theorem 5.20 one finds contributions of both authors (for details see
the appendix). Theorem 5.22 is a development of Felix Pogorzelski.
The proofs of the announced theorems are to be found in the appendix
and will appear in [Pog14] as well. Let us start with some definitions.

Definition 5.15. Let G be a finitely generated group, ε > 0 and I
some index set. Then the sets Ti ⊆ G, i ∈ I are called ε-disjoint if
there are subsets T̊i ⊆ Ti, i ∈ I such that for any distinct i, j ∈ I we
have

(i) T̊i and T̊j are disjoint,

(ii) |T̊i| ≥ (1− ε)|Ti|.
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Definition 5.16. Let G be a finitely generated group. We say that
S ∈ F(G) α-covers a set T ∈ F(G) for 0 < α ≤ 1 if

|S ∩ T | ≥ α|T |.

Putting these notions together we formulate the following definition.

Definition 5.17. Let G be a finitely generated group, T ∈ F(G)
and ε, δ > 0. A finite subset K ∈ F(G) with a set C ∈ F(G) is called
a small ε-quasi tiling of T with accuracy δ if

(i) KC ⊆ T ,

(ii) Kc, c ∈ C are ε-disjoint,

(iii) (ε− δ)|T | ≤ |KC| ≤ (ε+ δ)|T |.

Moreover, for given B ∈ F(G) and ζ > 0 we call this small ε-quasi
tiling (B, ζ)-good if

(iv) there are pairwise disjoint sets K(c) ⊆ K, c ∈ C with the
equality KC =

⋃
c∈C K

(c)c, such that for each c ∈ C we have

|K(c)| ≥ (1− ε)|K| and K(c) is (B, ζ)-invariant.

Note that (iii) in the last definition implies that T is at least (ε−δ)-
covered (and at most (ε + δ)-covered) by KC. The notion small
in Definition 5.17 refers to the fact that here we only cover a small
portion of T . The set C in Definition 5.17 is called center set of
the small ε-quasi tiling. Now we formulate a Definition where nearly
everything of T can be covered.

Definition 5.18. Let G be a finitely generated group, T ∈ F(G)
and β, ε > 0. The sets Ki ∈ F(G), i = 1, . . . , N with sets Ci ∈ F(G),
i = 1, . . . , N are called ε-quasi tiling of T with accuracy β and
densities ηi, i = 1, . . . , N if

(i) for all i = 1, . . . , N we have KiCi ⊆ T ,

(ii) for all i = 1, . . . , N we have that Kic, c ∈ Ci are ε-disjoint,

(iii) the sets KiCi, i = 1, . . . , N are pairwise disjoint,

(iv) (ηi − β)|T | ≤ |KiCi| ≤ (ηi + β)|T |.
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Moreover, for given B ∈ F(G) and ζ > 0 we call this ε-quasi tiling
(B, ζ)-good if

(v) for each i ∈ {1, . . . , N} there are pairwise disjoint sets K
(c)
i ⊆

Ki, c ∈ Ci with the equality KiCi =
⋃
c∈Ci K

(c)
i c such that for

each c ∈ Ci we have |K(c)
i | ≥ (1 − ε)|Ki| and K

(c)
i is (B, ζ)-

invariant.

As before the sets Ci, i = 1, . . . , N are called center sets of the
ε-quasi tiling. For a given number b ∈ R, we will use the notation dbe
for the smallest integer greater than or equal to b, i.e. dbe := inf{m ∈
Z | m ≥ b}. Beside this, for given 0 < ε < 1, the number N(ε) is
defined by

N(ε) :=

⌈
log(ε)

log(1− ε)

⌉
. (5.20)

and for i ∈ N0 we set

ηi(ε) := ε(1− ε)N(ε)−i. (5.21)

Remark 5.19. Let us discuss Definition 5.18.

(a) If Ki with center sets Ci, i = 1, . . . , N is an ε-quasi tiling of T
with accuracy β and densities ηi, i = 1, . . . , N , then the part of
T , which is covered by translates of Ki, i = 1, . . . , N is by (iv) at

least
∑N
i=1 ηi −Nβ. This expression might be close to one if the

parameters β and ηi, i = 1, . . . , N are chosen appropriately.

(b) Item (iv) also explains why we call the values ηi “densities”. This
is emphasized by the fact, that with the special choice of ηi(ε),
i ∈ {1, . . . , N(ε)} and N(ε) in (5.21) and (5.20), the ηi(ε) almost
sum up to one (up to an ε). In fact we have for ε ∈ (0, 1)

1− ε ≤
N(ε)∑
i=1

ηi(ε) ≤ 1.

This is clear as N(ε) = dlog(ε)/ log(1− ε)e and

N(ε)∑
i=1

ε(1−ε)N(ε)−i = ε

N(ε)−1∑
i=0

(1−ε)i = 1−(1−ε)N(ε) ≤ 1. (5.22)
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Furthermore

1− (1− ε)N(ε) ≥ 1− (1− ε)log(ε)/ log(1−ε) = 1− ε

holds for all ε ∈ (0, 1).

(c) In the next theorem we will obtain an ε-quasi tiling with sets Ki

and center sets Ci of a set T , where N = N(ε) and ηi = ηi(ε) as
in (5.20) and (5.21). If in this situation β ≤ ε/N(ε) we get that
T is (1− 2ε)-covered by the corresponding translates of Ki. To
see this, note that by the properties (i) and (iii) we have∣∣∣T ∩⋃N(ε)

i=1 TiC
T
i

∣∣∣
|T |

=

N(ε)∑
i=1

|TiCTi |
|T |

≥
N(ε)∑
i=1

(
ε(1− ε)N(ε)−i − ε

N(ε)

)
With the calculation of the previous item we obtain

N(ε)∑
i=1

(
ε(1− ε)N(ε)−i − ε

N(ε)

)
≥ 1− ε− ε

N(ε)∑
i=1

1

N(ε)
= 1− 2ε,

which proves the claim.

Now let us state the first tiling theorem. The proof is to be found
in the appendix.

Theorem 5.20. Let G be a finitely generated amenable group and
(Qn) a nested Følner sequence. Then for any 0 < β < ε ≤ 1/10 there
are sets

{id} ⊆ K1 ⊆ K2 ⊆ · · · ⊆ KN(ε)

with Ki ∈ {Qn | n ≥ i} for all i = 1, . . . , N(ε), such that for any
set T , which is (KN(ε)K

−1
N(ε), β6−N(ε))-invariant, there exist center

sets CTi , i = 1, . . . , N(ε) with which the Ki, i = 1, . . . , N(ε) form an
ε-quasi tiling of T with accuracy β and densities ηi(ε), i = 1, . . . , N .
If additionally id ∈ B ∈ F(G) and ζ > 0 is given, then we can even
ensure that the ε-quasi tiling we obtain is (B, ζ)-good. Here N(ε) and
ηi(ε) are given as in (5.20) and (5.21).
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Definition 5.21. Let G be a finitely generated group, T ∈ F(G),
N ∈ N and β, ε, r > 0. Furthermore let γ = (γi)

N
i=1 and η = (ηi)

N
i=1

be elements of [0, 1]N . The sets Ki ∈ F(G), i = 1, . . . , N with index
set Λ and sets Cλi ∈ F(G), i = 1, . . . , N , λ ∈ Λ are called uniform
ε-quasi tiling of T with parameters (β, r, γ, η), if for all λ ∈ Λ the
following holds

(i) for all i = 1, . . . , N we have KiC
λ
i ⊆ T ,

(ii) for all i = 1, . . . , N we have that Kic, c ∈ Cλi are ε-disjoint,

(iii) the sets KiC
λ
i , i = 1, . . . , N are pairwise disjoint,

(iv) |
⋃N
i=1KiC

λ
i | ≥ (1− 3ε)|T |,

as well as the condition on the uniformity

(v) for all i = 1, . . . , N and all g ∈ T (r)

∣∣∣∣ 1

|Λ|
∑
λ∈Λ

1Cλi (g)− ηi(ε)

|Ki|

∣∣∣∣ ≤ 3β

|Ki|
+ εγi.

The sets Cλi ∈ F(G), i = 1, . . . , N , λ ∈ Λ are called the center sets
of the uniform ε-quasi tiling. Now we formulate the uniform tiling
theorem, for which a proof is also to be found in the appendix.

Theorem 5.22. Let G be a finitely generated amenable group and
(Uj) and (Qn) be Følner sequences, where we assume (Qn) to be
nested. Furthermore, let for 0 < ε ≤ 1/10 and 0 < β ≤ ε/N(ε) the
Ki, i = 1, . . . , N(ε) be chosen according to Theorem 5.20. Then there
exist j0, r ∈ N, such that for each j ≥ j0 we can find an index set Λj
and center sets Cλi (j) (i = 1, . . . , N(ε), λ ∈ Λj) and γ ∈ [0, 1]N(ε),
such that we obtain together with the Ki, i = 1, . . . , N(ε) a uniform
ε-quasi tiling of Uj with parameters (β, r, γ, η(ε)). Besides this, the

γi fulfill
∑N(ε)
i=1 γi|Ki| ≤ 2. Here again N(ε) and ηi(ε) are given as

in (5.20) and (5.21) and η(ε) = (ηi(ε))
N(ε)
i=1 .
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5.2.2 An ergodic theorem for general amenable groups

This subsection is devoted to generalize the Banach space-valued
ergodic theorem from Subsection 5.1.1. We will show that one can
drop the assumption that the group needs to fulfill condition of
Definition (5.4). In order to do so, we will make use of the tiling
theorems given in previous subsection.

The next Lemma is a joint work with Felix Pogorzelski. It shows
that almost-additive functions still fulfill a certain kind of almost-
additivity if one inserts not disjoint, but only ε-disjoint sets.

Lemma 5.23. Let G be a finitely generated group, (X, ‖·‖) a Banach
space and let F : F(G)→ X be almost-additive with boundary term b
and let ε ∈ (0, 1/2) and C > 0 be such that for all Q ∈ F(G) one has
F (Q) ≤ C|Q|. Then for any ε-disjoint sets Qi, i = 1, . . . , k we have∥∥∥∥F (Q)−

k∑
i=1

F (Qi)

∥∥∥∥ ≤ ε(3C + 9D)|Q|+ 3

k∑
i=1

b(Qi)

where Q :=
⋃k
i=1Qi and D is the constant from property (c) of

Definition 5.6

Proof. Let Qi, i = 1, . . . , k be ε-disjoint and set Q :=
⋃k
i=1Qi. Fur-

thermore let Q̊i ⊆ Qi be the sets from Definition 5.15. Moreover, we
use the notation Q̊ :=

⋃k
i=1 Q̊i. By triangle inequality we obtain∥∥∥∥F (Q)−
k∑
i=1

F (Qi)

∥∥∥∥ ≤ d1 + d2 + d3

where

d1 =
∥∥F (Q)− F (Q̊)

∥∥, d2 =

∥∥∥∥F (Q̊)−
k∑
i=1

F (Q̊i)

∥∥∥∥
and

d3 =

k∑
i=1

∥∥F (Qi)− F (Q̊i)
∥∥.

130



5.2 Deterministic operators on general amenable groups

By almost-additivity and the boundedness of F we get for arbitrary
sets V ⊆ U ∈ F(G)

‖F (U)− F (V )‖ ≤ ‖F (U)− F (V )− F (U \ V )‖+ ‖F (U \ V )‖
≤ b(V ) + b(U \ V ) + C|U \ V |
≤ b(V ) + (C +D)|U \ V | (5.23)

and

b(V ) ≤ b(U) + b(U \ V ) ≤ b(U) +D|U \ V |. (5.24)

We apply (5.23) as well as the inequalities |Q \ Q̊| ≤ ε|Q| and |Qi \
Q̊i| ≤ ε|Qi| to obtain

d1 ≤ b(Q̊) + ε(C +D)|Q| and d3 ≤
k∑
i=1

b(Q̊i) + ε(C +D)|Qi|.

Due to almost-additivity we also have d2 ≤
∑k
i=1 b(Qi), such that we

end up with∥∥∥∥F (Q)−
k∑
i=1

F (Qi)

∥∥∥∥ ≤ 3

k∑
i=1

b(Q̊i) + ε(C +D)

(
|Q|+

k∑
i=1

|Qi|
)
.

By (5.24) we have b(Q̊i) ≤ b(Qi) + εD|Qi| for all i = 1, . . . , n and
obtain∥∥∥∥∥F (Q)−

k∑
i=1

F (Qi)

∥∥∥∥∥
≤ 3

k∑
i=1

b(Qi) + ε(C + 4D)

k∑
i=1

|Qi|+ ε(C +D)|Q|. (5.25)

Finally we use again the ε-disjointness to estimate

1

2

k∑
i=1

|Qi| ≤
k∑
i=1

|Qi|(1− ε) ≤
k∑
i=1

|Q̊i| = |Q̊| ≤ |Q|,

which we plug in at (5.25) to obtain the claimed bound. �
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Let us formulate an appropriate assumption, which will be needed
in the Theorem.

Assumption 5. The sequence (Qn) is nested. For 0 < ε < 1 and
i ∈ N0 we use the notion N(ε) and ηi(ε) as given in (5.20) and (5.21).
Furthermore for given 0 < ε < 1/10 we denote by Kε

i , i = 1, . . . , N(ε)
the elements given by Theorem 5.20 where we set β := ε/N(ε).

Theorem 5.24. Let Assumptions 1 and 5 be satisfied. Let F :
F(G) → X be almost-additive and C-invariant and the associated
function F̃ : P̃ → X be given as before. Then the following limits
exist with respect to the Banach space norm and they are equal:

lim
j→∞

F (Uj)

|Uj |
= lim

ε↘0
ε<1/10

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

νP
F̃ (P )

|Kε
i |
.

The main idea of the proof is to extend the ideas of Theorem 5.8
to the situation where one has only ε-quasi tilings at hand. To do
so, we need an appropriate bound on an error term ∆(j, ε) defined
below. This bound corresponds to Inequality (5.9) in the situation of
ε-quasi tiles and will be given in Lemma 5.25. The extension to this
more general setting is due to Felix Pogorzelski, cf. [Pog14]. Inspired
by Theorem 5.8 we develop an adapted version of this result (namely
Theorem 5.24) using the uniform tilings given by Theorem 5.22.

Lemma 5.25. Let Assumptions 1 and 5 be satisfied. Let F : F(G)→
X be almost-additive and C-invariant and let F̃ : P̃ → X be the
associated function given as above. Furthermore let some 0 < ε <
1/10 be given. Then there exist some j(ε) ∈ N and r(ε) ∈ N such
that for every j ≥ j(ε), the difference

∆(j, ε) :=

∥∥∥∥∥∥F (Uj)

|Uj |
−
N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

νP
F̃ (P )

|Kε
i |

∥∥∥∥∥∥
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satisfies the estimate

∆(j, ε) ≤ (11C + 32D)ε+ C

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣

+ 4

N(ε)∑
i=1

ηi(ε)
b(Kε

i )

|Kε
i |

+ (C + 4D)
|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |. (5.26)

Proof. By Assumption 5 we have β = ε/N(ε) and Kε
i , i = 1, . . . , N(ε)

are chosen according to Theorem 5.22. Denote by j0 = j(ε) and
r = r(ε) the constants given by the Theorem. For the rest of the
proof we fix some j ≥ j0. Let the sets Λj and Cλi (j), i = 1, . . . , N(ε)
and the numbers γi, i = 1, . . . , N be the associated objects given by
Theorem 5.22. We start to estimate ∆(j, ε). Using triangle inequality
we obtain

∆(j, ε) ≤

∥∥∥∥∥∥∥
F (Uj)

|Uj |
− 1

|Uj ||Λj |
∑
λ∈Λj

N(ε)∑
i=1

∑
g∈Cλi (j)

F (Kε
i g)

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∑
λ∈Λj

N(ε)∑
i=1

∑
g∈Cλi (j)

F (Kε
i g)

|Uj ||Λj |
−
N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

]P (C|Uj )
|Uj |

F̃ (P )

|Kε
i |

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

(
]P (C|Uj )
|Uj |

− νP
)
F̃ (P )

|Kε
i |

∥∥∥∥∥∥∥.
Some more applications of triangle inequality yield

∆(j, ε) ≤ D1(j, ε) +D2(j, ε) +D3(j, ε),

where

D1(j, ε) :=
1

|Uj ||Λj |
∑
λ∈Λj

∥∥∥∥∥∥∥F (Uj)−
N(ε)∑
i=1

∑
g∈Cλi (j)

F (Kε
i g)

∥∥∥∥∥∥∥,
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D2(j, ε) :=

∥∥∥∥∥∥∥
∑
λ∈Λj

N(ε)∑
i=1

∑
g∈Cλi (j)

F (Kε
i g)

|Uj ||Λj |
−
N(ε)∑
i=1

ηi(ε)

|Kε
i |

∑
P∈P(Kε

i )

]P (C|Uj )
|Uj |

F̃ (P )

∥∥∥∥∥∥∥,
D3(j, ε) :=

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣ ‖F̃ (P )‖
|Kε

i |
.

In (5.7) we showed that F̃ is bounded, i.e. that there exists C > 0
with ‖F̃ (P )‖ ≤ C|D(P )| for all P ∈ P . As the patterns here all have
domain Kε

i , we get

D3(j, ε) ≤ C
N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣ . (5.27)

In order to estimate the term D2(j, ε) we use Cλi (j) ⊆ Uj which
holds due to the fact that each Kε

i contains id and property (i) in
Definition 5.21. Furthermore, we reorder the sum over all patters in
the same way as we did it in the first equality in (5.16). We obtain

D2(j, ε)

=
1

|Uj |

∥∥∥∥∥
N(ε)∑
i=1

∑
g∈Uj

∑
λ∈Λj

1Cλi (j)(g)

|Λj |
F (Kε

i g)−
N(ε)∑
i=1

ηi(ε)

|Kε
i |

∑
g∈Uj

Kε
i
g⊆Uj

F (Kε
i g)

∥∥∥∥∥
≤ 1

|Uj |

N(ε)∑
i=1

∑
g∈Uj

∣∣∣∣∣ 1

|Λj |
∑
λ∈Λj

1Cλi (j)(g)− ηi(ε)

|Kε
i |

∣∣∣∣∣ ‖F (Kε
i g)‖ .

Now we apply the boundedness of F and get

D2(j, ε) ≤ C

|Uj |

N(ε)∑
i=1

∑
g∈Uj

|Kε
i |

∣∣∣∣∣ 1

|Λj |
∑
λ∈Λj

1Cλi (j)(g)− ηi(ε)

|Kε
i |

∣∣∣∣∣.
In the inner sum we need to distinguish between elements g which

are in ∂r(ε)(Uj) and those g which are in U
(r(ε))
j . The reason for that

is, that only for the last ones we can apply the important property
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(v) in Definition 5.21 on the uniformity of the covering. With end up
with

D2(j, ε) ≤ C

|Uj |

N(ε)∑
i=1

∑
g∈U(r(ε))

j

|Kε
i |

∣∣∣∣∣ 1

|Λj |
∑
λ∈Λj

1Cλi (j)(g)− ηi(ε)

|Kε
i |

∣∣∣∣∣
+

C

|Uj |

N(ε)∑
i=1

∑
g∈∂r(ε)Uj

|Kε
i |

∣∣∣∣∣ 1

|Λj |
∑
λ∈Λj

1Cλi (j)(g)− ηi(ε)

|Kε
i |

∣∣∣∣∣
≤ C

|Uj |

N(ε)∑
i=1

∑
g∈Uj

|Kε
i |
(

3β

|Kε
i |

+ εγi

)
+ C
|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |,

where in the second summand we estimated the difference in absolute
values by one. Note that by the choice of β and Theorem 5.22 we
have

βN(ε) = ε and

N(ε)∑
i=1

γi|Kε
i | ≤ 2, (5.28)

which we apply to obtain

C

N(ε)∑
i=1

(3β + εγi|Kε
i |) = 3CN(ε)β + εC

N(ε)∑
i=1

γi|Kε
i | ≤ 5Cε.

This can be used to estimate the first summand in the last estimate
of D2(j, ε), such that we end up with

D2(j, ε) ≤ 5Cε+ C
|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |. (5.29)

It remains to estimate D1(j, ε). In order to do so, we first define
the set of elements in Uj , which are covered by some translate for
one specific λ ∈ Λj

Aλ =

N(ε)⋃
i=1

⋃
g∈Cλi (j)

Kε
i g.
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Using this and almost additivity, we estimate for fixed λ ∈ Λ

‖F (Uj)− F (Aλ)‖ ≤ ‖F (Uj \Aλ)‖+ b(Uj \Aλ) + b(Aλ)

≤ 3Cε|Uj |+ 3Dε|Uj |+
N(ε)∑
i=1

∑
g∈Cλi (j)

b(Kε
i g).

(5.30)

In the last step we applied the boundedness of F , properties (c) and
(d) of Definition 5.6 and property (iv) of Definition 5.21, which gives
|Uj \Aλ| ≤ 3ε|Uj |. Moreover, we use Lemma 5.23 to estimate∥∥∥∥F (Aλ)−

N(ε)∑
i=1

∑
g∈Cλi (j)

F (Kε
i g)

∥∥∥∥
≤ ε(3C + 9D)|Uj |+ 3

N(ε)∑
i=1

∑
g∈Cλi (j)

b(Kε
i g). (5.31)

Using triangle inequality and the Estimates (5.30) and (5.31), we
obtain

D1(j, ε) ≤ 1

|Uj ||Λj |
∑
λ∈Λj

(
ε(6C + 12D)|Uj |+ 4

N(ε)∑
i=1

∑
g∈Cλi (j)

b(Kε
i )

)

≤ ε(6C + 12D) +
4

|Uj ||Λj |
∑
λ∈Λj

N(ε)∑
i=1

|Cλi (j)|b(Kε
i ).

Again with the application of property (v) in Definition 5.21, we get
for each index i ∈ {1, . . . , N(ε)}:

1

|Λj |
∑
λ∈Λj

|Cλi (j)|

=
∑
g∈Uj

1

|Λj |
∑
λ∈Λj

1Cλi (j)(g)

≤
∑

g∈U(r(ε))
j

1

|Λj |
∑
λ∈Λj

1Cλi (j)(g) +
∑

g∈∂r(ε)Uj

1

|Λj |
∑
λ∈Λj

1Cλi (j)(g)

136
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≤ |Uj |
(

3β

|Kε
i |

+ εγi +
ηi(ε)

|Kε
i |

)
+ |∂r(ε)Uj |,

which gives

D1(j, ε)

≤ ε(6C + 12D) + 4

N(ε)∑
i=1

b(Kε
i )

(
3β

|Kε
i |

+ εγi +
ηi(ε)

|Kε
i |

+
|∂r(ε)Uj |
|Uj |

)

≤ ε(6C + 24D) + 4εD

N(ε)∑
i=1

γi|Kε
i |+ 4

N(ε)∑
i=1

b(Kε
i )

(
ηi(ε)

|Kε
i |

+
|∂r(ε)Uj |
|Uj |

)

≤ ε(6C + 32D) + 4

N(ε)∑
i=1

ηi(ε)
b(Kε

i )

|Kε
i |

+ 4D
|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |, (5.32)

where we used again (5.28). Putting the Estimates (5.32), (5.29) and
(5.27) together finally gives the desired bound on ∆(j, ε). �

Lemma 5.26. Let a complex-valued null sequence (αi)i∈N be given
and let N(ε) and ηi(ε) be as in (5.20) and (5.21). Then,

lim
ε→0

0<ε<1

N(ε)∑
i=1

αiηi(ε) = 0.

Proof. First note that for each ε ∈ (0, 1) we have the following
estimate:

N(ε)∑
i=1

ε(1− ε)N(ε)−i =

N(ε)−1∑
i=0

ε(1− ε)i ≤ 1.

Define k := sup{|αi| | i ∈ N} <∞ and let δ > 0 be given. Choose
a number n(δ) ∈ N with |αi| < δ/2 for all i ≥ n(δ). Then for all
0 < ε < δ/(2kn(δ)) we obtain using triangle inequality and the above
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estimate∣∣∣∣∣∣
N(ε)∑
i=1

ε(1− ε)N(ε)−iαi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n(δ)∑
i=1

ε(1− ε)N(ε)−iαi +

N(ε)∑
i=n(δ)+1

ε(1− ε)N(ε)−iαi

∣∣∣∣∣∣
≤ kεn(δ) +

δ

2

N(ε)∑
i=n(δ)+1

ε(1− ε)N(ε)−i ≤ δ.

Since δ is arbitrary, the claim follows. �

Proof of Theorem 5.24. Since (Qn) is a Følner sequence and b a
boundary term we have

b(Qn)

|Qn|
→ 0 as n→∞.

With no loss of generality we assume that this convergence is mono-
tone. If it was not, then we would pass over to a subsequence of (Qn)
and apply the tiling theorems with this subsequence.

Now we make use of the fact Kε
i ∈ {Qk | k ≥ i}. This gives

together with Lemma 5.26

lim
ε↘0
ε<1/10

N(ε)∑
i=1

ηi(ε)
b(Kε

i )

|Kε
i |
≤ lim

ε↘0
ε<1/10

N(ε)∑
i=1

ηi(ε)
b(Qi)

|Qi|
= 0

This, the existence of the frequencies along (Uj) and the bound on
∆(j, ε) given by Lemma 5.25 imply

lim
ε→0

lim
j→∞

∆(j, ε) = 0. (5.33)

In order to show the Cauchy property let κ > 0 be arbitrary. Using
(5.33) we find an ε0 ∈ (0, 1/10) such that limj→∞∆(j, ε0) ≤ κ/4.
Hence, there exists j1 ≥ j(ε0) with ∆(j, ε0) ≤ κ/2 for all j ≥ j1.
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We consider for j,m ≥ j1 the following difference and use triangle
inequality to obtain∥∥∥∥F (Uj)

|Uj |
− F (Um)

|Um|

∥∥∥∥ ≤ ∆(j, ε) + ∆(m, ε) ≤ κ.

This shows that(|Uj |−1F (Uj))j∈N is a Cauchy sequence and hence
convergent in the Banach space X. We denote the limit element by
F̄ ∈ X. It remains to prove the convergence of the second limit to F̄ .
This follows from∥∥∥∥F̄ − N(ε)∑

i=1

ηi(ε)
∑

P∈P(Kε
i )

νP
F̃ (P )

|Kε
i |

∥∥∥∥ ≤ lim
j→∞

∆(j, ε)

and (5.33). �

As in the setting of ST-amenable groups we can deduce a result
concerning the speed of convergence.

Corollary 5.27. Let Assumptions 1 and 5 be satisfied. Let F :
F(G)→ X be almost-additive and C-invariant and let the associated
function F̃ : P̃ → X be given as above. Denote the limit in Theorem
5.24 by F̄ . Then for given ε ∈ (0, 1/10) and j ≥ j(ε), where j(ε) is
given by Lemma 5.25 we have∥∥∥∥F̄ − F (Uj)

|Uj |

∥∥∥∥ ≤ (22C + 64D)ε+ C

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣

+ 8

N(ε)∑
i=1

ηi(ε)
b(Kε

i )

|Kε
i |

+ (C + 4D)
|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |

and∥∥∥∥∥∥F̄ −
N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

νP
F̃ (P )

|Kε
i |

∥∥∥∥∥∥ ≤ (11C+32D)ε+4

N(ε)∑
i=1

ηi(ε)
b(Kε

i )

|Kε
i |
.

Proof. Use Estimate (5.26) and proceed as in the proof of Corollary
5.10. �
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Remark 5.28. Note that if one assumes that (Qn) is a Følner sequence,
such that the sequence (b(Qn)/|Qn|)n∈N converges to 0 monotonically,
then we have for all ε ∈ (0, 1/10) and i ∈ {1, . . . , N(ε)}

b(Kε
i )

|Kε
i |
≤ b(Qi)

|Qi|
.

Therefore, in the estimates of Corollary 5.27 we can replace the
fractions b(Kε

i )/|Kε
i | by b(Qi)/|Qi|.

5.2.3 Uniform convergence for general amenable groups

In this subsection we show how one uses the Ergodic Theorem 5.24
to generalize Theorem 5.11 to all amenable groups.

Theorem 5.29. Let Assumptions 1, 3 and 5 be satisfied. Assume ad-
ditionally that (|∂RQn|/|Qn|), converges monotonically to zero. Then
there exists a unique probability measure µA on R with distribution
function IA, such that for all ε ∈ (0, 1/10) and j ≥ j(ε) we have∥∥∥n(A[U

(R)
j ]

)
− IA

∥∥∥
∞

≤ (22 + 256|BR|)ε+

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣

+ 32

N(ε)∑
i=1

ηi(ε)
|∂RKε

i |
|Kε

i |
+ (1+16|BR|)

|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |+

|∂RintUj |
|Uj |

,

Here j(ε) and r(ε) are given by Lemma 5.25. This implies in partic-
ular the convergence

n
(
A[U

(R)
j ]

)
→ IA

with respect to the supremum norm for j → ∞. As before, the
function IA is called the integrated density of states.

Proof. The proof works completely analogously to the proof of Theo-
rem 5.11. The only difference is that we use Corollary 5.27 instead of
Corollary 5.10. Since FAR is C-invariant and almost-additive, we can
apply Corollary 5.27. We set h := dim(H) and have D = 4h|BR| and
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C = h and for any Q ∈ F(G): b(Q) = 4h|∂RQ|. Therefore, we find a
function ĨA ∈ B(R) with∥∥∥∥FAR (Uj)

h|Uj |
− ĨA

h

∥∥∥∥
∞

≤ (22 + 256|BR|)ε+

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣

+ 32

N(ε)∑
i=1

ηi(ε)
|∂RKε

i |
|Kε

i |
+ (1 + 16|BR|)

|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |.

Changing the normalization and setting IA := ĨA/h we get∥∥∥n(A[U
(R)
j ]

)
− IA

∥∥∥
∞

≤ (22 + 256|BR|)ε+

N(ε)∑
i=1

ηi(ε)
∑

P∈P(Kε
i )

∣∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣∣

+ 32

N(ε)∑
i=1

ηi(ε)
|∂RKε

i |
|Kε

i |
+ (1+16|BR|)

|∂r(ε)Uj |
|Uj |

N(ε)∑
i=1

|Kε
i |+

|∂RintUj |
|Uj |

,

which was to show. Now use the assumption on the monotonicity of
(|∂RQn|/|Qn|) and proceed as in the proof of Theorem 5.24 to see
that this implies uniform convergence. Again by Lemma 2.26 we get
that IA is a distribution function of a probability measure. �

5.2.4 Sufficient conditions for the existence of frequencies

In this section we use the Lindenstrauss pointwise ergodic theorem,
i.e. Theorem 2.12 to prove the existence of frequencies in a randomly
colored Cayley graph along a tempered Følner sequence. This is mo-
tivated by the Banach space-valued ergodic theorems in the previous
sections, as the existence of the frequencies is a basic assumption for
their validity.

We consider a finitely generated amenable group G and a finite
set Z, which we will as before interpret as the set of colors. The
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probability space (Ω,A,P) is given in the following way. The sample
space is the set

Ω = ZG = {ω = (ωg)g∈G | ωg ∈ Z for all g ∈ G}.

The sigma-algebra A is generated by the cylinder sets and P is a
probability measure on (Ω,A). Setting for each ω ∈ Ω

Cω : G→ Z, g 7→ ωg,

shows that each ω can be interpreted as a coloring of G. Let T :
G× Ω→ Ω be given by

(g, ω) 7→ Tgω = ωg−1, (5.34)

where ωg−1 ∈ Ω is the element satisfying for each x ∈ G:

(ωg−1)x = ωxg.

We will assume that the action T of G on Ω is measure preserving
and ergodic. Using Theorem 2.12 we can prove the existence of the
frequencies νP along any tempered Følner sequence (Qj).

Theorem 5.30. Let the probability space (Ω,A,P) be given and let the
action T of G on Ω be measure preserving and ergodic. Furthermore
let (Qj) be a tempered Følner sequence. Then there exists a set Ω̃ of
full measure such that the limit

lim
n→∞

]P
(
Cω|Qj

)
|Qj |

exists for all P ∈ P and all ω ∈ Ω and the limit is independent of the
specific choice of ω.

Proof. Let P : D(P ) → Z be some pattern. As the number of
occurrences of two equivalent patterns P1 and P2 in another pattern P3

is the same, we can assume without loss of generality that id ∈ D(P ).
Set AP := {ω ∈ Ω | Cω|D(P ) = P} and let fP : Ω → {0, 1} be
the indicator function of AP . Now we can estimate the number of
occurrences of P in Cω|Qj by∑

g∈Qj\(∂D(P )Qj)

fP (ωg−1) ≤ ]P
(
Cω|Qj

)
≤
∑
g∈Qj

fP (ωg−1). (5.35)
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This proves on the one hand that

lim sup
j→∞

]P (Cω|Qj )
|Qj |

≤ lim sup
j→∞

1

|Qj |
∑
g∈Qj

fP (ωg−1)

and on the other hand

lim inf
j→∞

1

|Qj |
∑

g∈Qj\(∂D(P )Qj)

fP (ωg−1)

≥ lim inf
j→∞

(
1

|Qj |
∑
g∈Qj

fP (ωg−1)−
|∂D(P )Qj |
|Qj |

)
= lim inf

j→∞

1

|Qj |
∑
g∈Qj

fP (ωg−1).

We apply Theorem 2.12, which is possible since fP ∈ L1(P) and T
is a measure preserving and ergodic action. This yields that there is
a set ΩP of full measure such that

lim
j→∞

1

|Qj |
∑
g∈Qj

fP (ωg−1) = E(fP )

holds for all ω ∈ ΩP . Using this with (5.35) we obtain

lim
j→∞

]P
(
Cω|Qj

)
|Qj |

= E(fP )

for all ω ∈ ΩP . Next, set Ω̃ =
⋃
P∈P ΩP and use the fact that P

is countable to get the desired set Ω̃ of full measure such that the
frequencies along (Qj) exist for all patterns P ∈ P and all ω ∈ Ω̃.
The independence of the specific choice of ω is clear as E(fP ) is
independent of ω. �

Remark 5.31. In the case where the measure P has a product structure
P = Πg∈Gµ and µ is some measure on Z, it is easy to show that T ,
defined as in (5.34) is measure preserving and ergodic. This shows
that Theorem 5.30 applies in particular to i.i.d. models. For a result
in this direction see Lemma 6.30, where we prove ergodicity in the
situation of independent random variables.
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5.2.5 Additional results on the integrated density of states

Under certain assumptions we will be able to show that the spectrum
of the operator in question is the topological support of the measure
µA. Furthermore, we characterize the points of discontinuity of the
IDS as the eigenvalues of A with an associated finitely supported
eigenfunction. In order to do so, we will need the following two
lemmas. The first one is a well-known dimension argument from
linear algebra.

Lemma 5.32. Let H be a finite dimensional Hilbert space, U , V
subspaces of H with dimU > dimV, then dimV⊥ ∩ U > 0.

The next result can be found in [Sim87] and [LMV08]. It is a useful
tool in the proof of the Theorem 5.34.

Lemma 5.33. Let A be a self-adjoint operator on a finite-dimensional
Hilbert space V. Let λ ∈ R and ε > 0 be given and denote by U the
subspace of V spanned by the eigenvectors of A belonging to the
eigenvalues in the open interval (λ−ε, λ+ε). If there exist k pairwise
orthogonal and normalized vectors u1, . . . , uk ∈ V such that (A−λ)uj ,
j = 1, . . . , k are pairwise orthogonal and satisfy ‖(A − λ)uj‖ < ε,
then dim(U) ≥ k.

Proof. We assume dim(U) < k. Let S be the linear span of u1, . . . , uk.
By Lemma 5.32 there exists an unit element s ∈ S, which is orthogonal
to U , e.g s ∈ U⊥. Hence, s is a combination of elements uk with
‖(A− λ)uk‖ ≥ ε. This gives ‖(A− λ)s‖ ≥ ε. On the other hand we
know that s ∈ S is an unit element combined by elements uj with
‖(A− λ)uj‖ < ε, j = 1, . . . , k, which implies ‖(A− λ)s‖ < ε. This is
a contradiction. �

The proof of the following result is a generalization of a result in
[LMV08] to the situation of amenable groups.

Theorem 5.34. Let Assumptions 1, 3, 5 and 4 be satisfied. Then
the spectrum of A is the topological support of µA.

Proof. In this proof we apply Theorem 5.29, which gives uniform
convergence of the normalized eigenvalue counting functions. Since
the operator A is assumed to be of overall range R we have

‖(A− λ)u‖ = ‖(A[Q]− λ)pQu‖, (5.36)
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for all u with spt(u) ⊆ Q(R). Let λ be an element of the spectrum
σ(A), then A− λ is not invertible. Thus, for each ε > 0 we can find
a subset Q ∈ F(G) and a normalized vector u with support in Q(R)

such that ‖(A− λ)u‖ < ε holds. From this we know that (A− λ)u
is supported in Q and ‖(A[Q] − λ)pQu‖ < ε by (5.36). For each
j ∈ N we denote the number of disjoint occurrences of translates

of C|Q in the set U
(R)
j by k(j). This ensures the existence of k(j)

pairwise orthogonal normalized vectors ui, i = 1, . . . , k(j), where
also (A− λ)ui are pairwise orthogonal and of norm strictly less than
ε. Applying Lemma 5.33 we get that there must be at least k(j)
eigenvalues in the interval (λ− ε, λ+ ε), i.e.

e(A[U
(R)
j ])(λ+ ε)− e(A[U

(R)
j ])(λ− ε) ≥ k(j).

For a pattern P ∈ P Lemma 5.1 yields that the frequency νP along

(Uj) is the same as the frequency along (U
(R)
j ). As these frequencies

are assumed to be strictly positive for all patterns which occur in C,
the number of disjoint occurrences of C|Q in U

(R)
j grows linearly in

the volume of U
(R)
j for large j. Thus we can find a c > 0 such that

k(j) ≥ c|U (R)
j | holds for large j. Using the uniform convergence of

n(A[U
(R)
j ]) we see

µA([λ− ε, λ+ ε]) = lim
j→∞

n(A[U
(R)
j ])(λ+ ε)− n(A[U

(R)
j ])(λ− ε)

≥ lim
j→∞

k(j)

|U (R)
j |dim (H)

≥ c

dim (H)
.

As c is strictly positive and ε > 0 was arbitrary, we conclude that λ
is in the support of µA.

Now, we start with λ in the support of µA. Thus for each ε > 0 we
have a c > 0 such that µA([λ−ε, λ+ε]) ≥ c. By uniform convergence
this gives that

n(A[U
(R)
j ])(λ+ ε)− n(A[U

(R)
j ])(λ− ε) ≥ c

2

holds for large j. We use Lemma 2.25 to observe

‖n(A[U
(2R)
j ])− n(A[U

(R)
j ])‖∞ ≤ 4

∣∣∂RintU
(R)
j

∣∣
|U (R)
j |

,
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which leads together with triangle inequality to

n(A[U
(2R)
j ])(λ+ ε)− n(A[U

(2R)
j ])(λ− ε) ≥ c

2
− 8

∣∣∂RintU
(R)
j

∣∣
|U (R)
j |

for large j. As the right hand side is positive for large j, there
exists an eigenvalue λ ∈ [λ− ε, λ+ ε] and a normalized eigenvector

u ∈ `2(U
(2R)
j ,H) such that (A[U

(2R)
j ]− λ)u = 0 holds. From this we

have

‖(A[U
(R)
j ]− λ)p

U
(R)
j
u‖ = ‖(A[U

(R)
j ]− λ)p

U
(R)
j
u+ (λ− λ)p

U
(R)
j
u‖

≤ |λ− λ| ≤ ε

with a normalized vector u = i
U

(2R)
j

u ∈ `2(G,H) which is supported

in U
(2R)
j . By (5.36) we get ‖(A−λ)u‖ ≤ ε and σ(A)∩[λ−ε, λ+ε] 6= ∅.

Since ε > 0 is arbitrary, we obtain that λ belongs to σ(A). �

The following example shows that the positivity of the frequencies
is a necessary assumption.

Example 5.35. Consider the same situation as in Example 5.14 but
now choose the coloring C : Z→ Z

C(x) =

{
white if x ≥ 0 or x ≤ −100 or x = 3k for k ∈ Z
black otherwise.

Again we treat the case where edges only exist between black vertices
with distance one. The restricted adjacency operator A[Vj ], with Vj
as in (5.19), has for 1 ≤ j ≤ 33 the eigenvalues −1, 0 and 1 each of
them with multiplicity j. From this we get in particular that −1 and
1 are elements of the spectrum of A.
However the frequencies of the patterns that give rise to these eigen-
values is zero. For all j ≥ 34 the multiplicities of the eigenvalues
−1 and 1 remain 33 and the multiplicity of the eigenvalue 0 equals
33 + 3j. Therefore, for increasing j the steps of the cumulative eigen-
value counting become relatively small. This implies that the IDS is
the function

I(λ) =

{
0 if λ < 0
1 otherwise.
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Thus the topological support of the induced measure µA equals {0},
though −1 and 1 are in the spectrum of A.

The next corollary characterizes the set of points at which the
IDS is discontinuous. It has been obtained previously in [LV09] by
different methods. For earlier results characterizing the set of jumps
see e.g. [KLS03], [Ves05].

Corollary 5.36. Let Assumptions 1, 3, 5 and 4 be satisfied and let
λ ∈ R. Then the following assertions are equivalent:

(i) λ is a point of discontinuity of IA,

(ii) there exists a compactly supported eigenfunction of A corre-
sponding to λ.

Proof. Let λ be a point of discontinuity of IA. As stated in the
assumption (Uj)j∈N is a Følner sequence along which the (strictly
positive) frequencies exist. Theorem 5.29 shows that the distribution

function n(A[U
(R)
j ]) converges to IA with respect to the supremum

norm. Since λ is a point of discontinuity, the jump at λ will not get
small, i.e.

dim(ker(A[U
(R)
j ]− λ))

= lim
ε→0

(e(A[U
(R)
j ])(λ+ ε)− e(A[U

(R)
j ])(λ− ε)) ≥ c|U (R)

j |

for a c > 0 and all j ∈ N. We also know

dim(`2(∂2R
intU

(R)
j )) = |∂2R

intU
(R)
j | =

|∂2R
intU

(R)
j |

|U (R)
j |

|U (R)
j |

and since U
(R)
j is a Følner sequence

lim
j→∞

|∂2R
intU

(R)
j |

|U (R)
j |

= 0.

Thus we get that

dim(ker(A[U
(R)
j ]− λ)) > dim(`2(∂2R

intU
(R)
j ))
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5 Deterministic operators on amenable groups

holds for large j. Using Lemma 5.32, we find an eigenvector u of A

with sptu ⊆ U (3R)
j for some j ∈ N.

Now we prove the converse implication. To this end, let u be an
eigenfunction corresponding to λ with r > 0 such that spt(u) ⊆ Br
holds. Furthermore, let Q be some finite subset of G. Set P := C|Br ,
then each copy of P in C|Q adds a dimension to the eigenspace of
pQAiQ belonging to λ. We denote the number of disjoint copies

of P in Q by ]̇P (C|Q). A simple combinatorial argument shows

|B3r|]̇P (C|Q) ≥ ]P (C|Q). With this we get

e(A[Q])(λ− ε)
|Q|

≤ e(A[Q])(λ+ ε)− ]̇P (C|Q)

|Q|

≤ e(A[Q])(λ+ ε)

|Q|
− ]P (C|Q)

|B3r||Q|
.

Now we substitute Q by the elements of the Følner sequence (U
(R)
j )j∈N

e(A[U
(R)
j ])(λ+ ε)

|U (R)
j |

−
e(A[U

(R)
j ])(λ− ε)

|U (R)
j |

≥
]P (C|

U
(R)
j

)

|B3r||U (R)
j |

.

If j →∞ we get

IA(λ+ ε)− IA(λ− ε) ≥ νP
|B3r|dim(H)

> 0, (5.37)

where we used Lemma 5.1. As ε > 0 is arbitrary, this yields that λ is
a point of discontinuity of IA. �

Remark 5.37. Let us discuss the quantitative estimates on the jump
size in (5.37). In the situation where v is an eigenfunction correspond-
ing to the value λ, which is supported in Br, each pattern which
is equivalent to C|Br gives rise to a translate of v, which is again
an eigenfunction corresponding to λ. The frequency of a pattern
describes how often this pattern occurs in C. Thus, the frequency
encodes the density of occurrences of translates of v which are again
an eigenfunction for λ. Therefore, it is natural that the size of the
jump depends linearly on the frequency of the pattern. In order to
explain the denominator in (5.37) recall that the IDS measures the
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number of eigenstates per unit volume. Hence one could expect the
term |Br|dim(H) as normalization. The discrepancy to the actual
denominator is due to the fact that in the proof of the above corollary
we are interested in disjoint translates, whereas in the definition of
frequencies we count all (and not just disjoint) occurrences.

Furthermore if one knows that there are m linearly independent
eigenfunctions, which are corresponding to λ and all of them are
supported on Br, then one obtains using the arguments in the proof
of Corollary 5.36 the estimate

IH(λ+ ε)− IH(λ− ε) ≥ mνP
|B3r|dim(H)

,

for any ε > 0.

5.3 Special cases and applications

5.3.1 Abelian groups

In this subsection the main results of Section 5.1.2 are applied to
the case where the group G equals Zd, as an example for a finitely
generated abelian group. Let S be the usual set of generators given by
S = {±s1, . . . ,±sd}, where si is the i-th unit vector in Zd. It is easy to
check that the sequence (Qn) of cubes Qn = {0, . . . , n−1}d is a Følner
sequence. Moreover for each n ∈ N the set Qn symmetrically tiles Zd
with grid (nZ)d. This shows that Zd is in fact an ST-amenable group.
One obtains the following corollary as a special case of Theorem 5.8
by using the equalities

|Qn| = nd and diam(Qn) = dn. (5.38)

This result recovers the main result of [LMV08].

Corollary 5.38. Let (Qn) and S be as above and assume that Z
is a finite set of colors, C : Zd → Z a map called coloring and
(Uj) a Følner sequence along which the frequencies of all patterns
P ∈

⋃
n∈N P(Qn) exist. For a given C-invariant and almost-additive

function F : F(Zd)→ X the following limits

lim
j→∞

F (Uj)

|Uj |
= lim
n→∞

∑
P∈P(Qn)

νP
F̃ (P )

nd
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exist and are equal. Furthermore, for j, n ∈ N the difference

∆(j, n) :=
∥∥∥F (Uj)

|Uj |
−

∑
P∈P(Qn)

νP
F̃ (P )

nd

∥∥∥
satisfies the estimate

∆(j, n) ≤ b(Qn)

nd
+ (C +D)

|∂ndUj |
|Uj |

+ C
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣.

(5.39)

Now, consider the case where the assumptions of Corollary 5.38
are satisfied and assume additionally that that H is a Hilbert space
of dimension k < ∞ and A : `2(Zd,H) → `2(Zd,H) a self-adjoint,
C-invariant operator of finite hopping range with overall range R.
Then, by Theorem 5.11 there exists a unique distribution function
IA, called integrated density of states, such that the estimate∥∥n(A[Uj,R])− IA

∥∥
∞ ≤ 8

|∂RQn|
|Qn|

+ (1 + 4|BR|)
|∂dnUj |
|Uj |

+
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣+
|∂RintUj |
|Uj |

holds for all j, n ∈ N. Using the equalities (5.38) and the inequalities

|BR| ≤ (2R)d and |∂R(Qn)| ≤ (n+ 4R)d − nd (5.40)

leads to a slightly weaker corollary.

Corollary 5.39. Assume the situation of Corollary 5.38 and ad-
ditionally that H is a Hilbert space of dimension k < ∞ and A :
`2(Zd,H) → `2(Zd,H) a self-adjoint, C-invariant operator of finite
hopping range with overall range R. Then there exists a unique distri-
bution function IA, such that n(A[Uj,R]) converges to IA with respect
to the supremum norm as j →∞. In fact, the estimate∥∥n(A[Uj,R])− IA

∥∥
∞ ≤ 8

((
1 +

4R

n

)d
− 1

)
+ (1 + 4(2R)d)

|∂dnUj |
|Uj |

+
∑

P∈P(Qn)

∣∣∣ ]P (C|Uj )
|Uj |

− νP
∣∣∣+
|∂RintUj |
|Uj |
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holds for all j, n ∈ N.

In the situation where the frequencies νP of all patterns P ∈⋃
n∈N P(Qn) exist along the sequence of cubes (Qn) we set Uj := Qj

for all j ∈ N. Again by using (5.38) and (5.40), the estimate in
Corollary 5.39 can be replaced by∥∥n(A[Qj,R])− IA

∥∥
∞

≤ 8

((
1 +

4R

n

)d
− 1

)
+ (1 + 4(2R)d)

((
1 +

4dn

j

)d
− 1

)
+

∑
P∈P(Qn)

∣∣∣ ]P (C|Qj )
|Qj |

− νP
∣∣∣+

((
1 +

4R

j

)d
− 1

)
.

If furthermore Z consists of only one element, all information given
by a pattern P ∈ P is its domain D(P ). Therefore, in this situation
the frequencies νP exist for all patterns P ∈ P along any Følner
sequence (Uj). In fact

1 ≥
]P (C|Qj )
|Qj |

≥
|Q(diamD(P ))

j |
|Qj |

→ 1 for j →∞

holds and hence νP = 1 for all P ∈ P . Note that P(Qn) contains just
one element. In this situation we get

∑
P∈P(Qn)

∣∣∣ ]P (C|Qj )
|Qj |

− νP
∣∣∣ ≤ 1−

|Qj,d(n)|
|Qj |

≤ |∂
d(n)Qj |
|Qj |

≤
((

1 +
4dn

j

)d
− 1

)
(5.41)

and hence that the estimate

∥∥n(A[Uj,R])− IA
∥∥
∞ ≤ c

((
1 +

c

n

)d
+

(
1 +

cn

j

)d
− 2

)
holds for all j, n ∈ N, where c = 6(2R)d.
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5.3.2 Heisenberg group

The discrete Heisenberg group H3 is a prominent example for a non-
abelian, finitely generated group. A finite set of generators S gives rise
to the Cayley graph and the adjacency operator. We are interested
in the spectral distribution of this operator. Applying Theorem 5.11
leads to a uniform approximation of the IDS. The elements of the
discrete Heisenberg group are given by the set

H3 :=

(a, b, c) :=

1 0 0
a 1 0
c b 1

∣∣∣∣∣a, b, c ∈ Z

 .

The group multiplication is induced by the usual matrix multiplication.
Thus, the product and the inverse for two elements (a, b, c), (a′, b′, c′) ∈
H3 are given by

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + ba′)

and
(a, b, c)−1 = (−a,−b, ab− c).

It is easy to verify, that the symmetric set S := {s±1
1 , s±1

2 } with s1 =
(1, 0, 0), s2 = (0, 1, 0) generates H3. Let the sequence of subgroups
(Gn) be given by Gn := {(a, b, c)|a, b ∈ nZ, c ∈ n2Z}. One can show

that for each n ∈ N the set Qn = {(a, b, c)|a, b ∈ Zn−1
0 , c ∈ Zn

2−1
0 }

is a fundamental domain for Gn in H3, where we use for u, v ∈ Z
with u ≤ v the notation Zvu := {u, u+ 1, . . . , v}. Next, we prove that
(Qn)n∈N is a Følner sequence. By Lemma 2.8 it is enough to show
that

lim
n→∞

|SQn \Qn|
|Qn|

= 0.

For this special choice of sets we have the equality

|SQn \Qn| =
∑
s∈S
|sQn \Qn|.

Hence we study the size of the four disjoint parts of the boundary
|sQn \Qn|, s ∈ S separately. For the first part we get

|s1Qn \Qn| =
∣∣∣{(n, b, c)

∣∣b ∈ Zn−1
0 , c ∈ Zn

2−1
0

}∣∣∣ = n3.
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5.3 Special cases and applications

The boundary we obtain by shifting with s2 calculates as follows

|s2Qn \Qn|

=
∣∣∣{(a, b+ 1, c+ a)

∣∣a ∈ Zn−1
0 , b = n− 1, c ∈ Zn

2−1
0

}∣∣∣
+
∣∣∣{(a, b+ 1, c+ a)

∣∣a ∈ Zn−1
0 , b ∈ Zn−2

0 , c ∈ Zn
2−1

0 , a+ c ≥ n2
}∣∣∣

= n3 + (n− 1)

n−1∑
a=0

n2−1∑
c=0

1{a+c≥n2} =
3

2
n3 − n2 +

1

2
n,

where we used
∑n
i=1 i = 1

2n(n+ 1). Similarly one can show

|s−1
1 Qn \Qn| = n3 and |s−1

2 Qn \Qn| =
3

2
n3 − n2 +

1

2
n

for the other generators. Hence, we have

|SQn \Qn| = 5n3 − 2n2 + n

for the boundary of a set Qn. As the volume of the fundamental
domain Qn is equal to n4, we get

lim
n→∞

|SQn \Qn|
|Qn|

= 0.

Thus, the sequence (Qn) is a Følner sequence and H3 is amenable.
We consider the trivial coloring on H3, i.e. |Z| = 1. In this case
νP = 1 for all patterns P ∈ P, cf. (5.3.1). The adjacency operator
A : `2(H3)→ `2(H3) is defined pointwise for x, y ∈ H3 and f ∈ `2(H3)
by

Af(x) =
∑
y∈H3

a(x, y)f(y), where a(x, y) :=

{
1 if dS(x, y) = 1
0 otherwise.

This operator is obviously self-adjoint, of finite hopping range and
C-invariant with overall range R(A) = 2. Hence, the assumptions of
Theorem 5.11 are fulfilled, which yields the uniform convergence of
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the eigenvalue counting function and the estimate∥∥n(A[Q
(2)
j ])− IA

∥∥
∞

≤ 8
|∂2(Qn)|
|Qn|

+ (1 + 4|B2|)
|∂diam(Qn)Qj |

|Qj |

+
∑

P∈P(Qn)

∣∣∣ ]P (C|Qj )
|Qj |

− νP
∣∣∣+
|∂2

int(Qj)|
|Qj |

≤ 8
|∂2(Qn)|
|Qn|

+ 70
|∂diam(Qn)Qj |

|Qj |
+

∑
P∈P(Qn)

∣∣∣ ]P (C|Qj )
|Qj |

− νP
∣∣∣.

Here we used that the ball of radius two contains exactly 17 elements.
Since there exists only one pattern with domain Qn the last sum is
not larger than |Qj |−1|∂diam(Qn)Qj |, cf. (5.41). Thus,

∥∥n(A[Q
(2)
j ])− IA

∥∥
∞ ≤ 8

|∂2(Qn)|
|Qn|

+ 71
|∂diam(Qn)Qj |

|Qj |

holds for all j, n ∈ N.

5.3.3 Periodic operators

Periodic operators are an important class to which our theory applies.
In the following, we consider a graph Γ = (V,E), which is related to
the group G, in the sense that G acts via graph isomorphisms on Γ.
We can use these isomorphisms to transport an operator on `2(V )
to `2(G,H), with an appropriately chosen finite dimensional Hilbert
space H.

Let G be a finitely generated group, Γ = (V,E) a locally finite graph
with a countable set of vertices V . For each g ∈ G let Tg : Γ → Γ
be a graph isomorphism. We denote the family (Tg)g∈G by T . We
furthermore assume that the action T of G on Γ is free and cocompact.
Here free means that for any distinct g, h ∈ G and all γ ∈ Γ we have
Tgγ 6= Thγ. By the cocompactness assumption we have that the
quotient space Γ/T is compact and in this case even finite. Note
that the quotient space Γ/T is the set of all equivalence classes in
Γ, where two elements γ and γ′ are called equivalent, if there exists
g ∈ G with γ = Tgγ

′. We observe that cocompactness implies that Γ
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5.3 Special cases and applications

needs to have bounded vertex degree. A fundamental domain D ⊆ Γ
contains by definition exactly one element of each equivalence class.
This set D is therefore finite. We define H := `2(D).

Now let us consider a bounded operator A : `2(V )→ `2(V ), which
we assume to be self-adjoint and invariant under the action T , i.e. for
all x, y ∈ V and g ∈ G we have

a(x, y) = a(Tgx, Tgy), (5.42)

where as usual a(x, y) := 〈δx, Aδy〉 with the scalar product in `2(V ).
Furthermore, we assume that A is of finite hopping range, which
means that whenever the graph distance dΓ(x, y) between x and y is
larger than a constant ρ, we have a(x, y) = 0.

Our next aim is to transport this operator, using the action T , to the
space `2(G,H), with H chosen as above. To this end let δk ∈ `2(D),
k ∈ D be the usual basis of this space. Hence for each ψ ∈ `2(G,H)
and g ∈ G we find uniquely determined complex numbers ψk(g) ∈,
k ∈ D with

ψ(g) =
∑
k∈D

ψk(g)δk.

We use these elements to the define the following operators U :
`2(G,H)→ `2(Γ) by setting for ψ ∈ `2(G,H) and γ ∈ Γ

Uψ(γ) := ψk(g) if γ = Tgk,

which is well defined as the action T is assumed to be free. It is
not hard to check that the operator U∗ : `2(Γ)→ `2(G,H) given by
U∗φ(g) =

∑
k∈D φ(Tgk)δk for φ ∈ `2(Γ) and g ∈ G is the inverse and

the adjoint of U . Now we are in the position to define

H := U∗AU : `2(G,H)→ `2(G,H).

If we would like to apply our theory, we need to check that H fits to
the setting of Chapter 5, cf. Assumption 3. To be precise, we need
to show that H is of finite hopping range and C-invariant, for some
coloring C. The last property is easy to verify as here we can consider
C to be the trivial coloring. Then one can show, using property (5.42)
that for each g, h, t ∈ G we have pgHih = pgtHiht. Here the natural
projection pa and inclusion ib are defined as in (5.1) and (5.2).
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Now let us show that H is of finite hopping range. For each b ∈ G
we have that Uib maps in the following way:

Uib : H → TbD := {γ ∈ Γ | ∃k ∈ D such that γ = Tbk}.

Besides this, for given φ ∈ `2(V ) and a ∈ G the value of paU
∗φ

only depends on the elements φ(γ), γ ∈ TaD. Thus, if the distance
between TaD and TbD

dΓ(TaD, TbD) = min{dΓ(v, w) | v ∈ TaD and w ∈ TbD}

is larger than ρ, the operator paU
∗AUib is equal to zero. As D is finite

we can find a R > 0 such that dS(a, b) ≥ R implies dΓ(TaD, TbD) > ρ
and hence paHib = 0.
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In this chapter G is assumed to be a finitely generated amenable
group and S ⊆ G a finite and symmetric set of generators. As in
Chapter 4, we will consider random operators on G. However, the
models we treat here will slightly differ from the ones treated before.
In particular, we are able to prove convergence results for ergodic
operators, where the matrix elements are not necessarily given via
independent random variables.

In Section 6.1 we study ergodic operators and obtain weak conver-
gence of the eigenvalue counting functions and a Pastur-Shubin trace
formula. Before, similar results have been proven on sofic groups
for more restricted operators, cf. Chapter 4. Besides the generality
of the operators, another important difference to the procedure in
Chapter 4 is the choice of the approximating operators. While in
the setting of sofic groups approximations are obtained by a rather
involved strategy of copying certain matrix elements, the setting of
amenable groups allows to define the approximating operators as
restrictions of the original operator.

To be precise, we obtain a sequence of finite dimensional operators
by restricting the operator under consideration to the elements of a
Følner sequence, cf. (6.2). However, this setting defies the applica-
tion of the procedure presented in Chapter 4 in order to show weak
convergence of the eigenvalue counting functions. There are two
reasons for this: first, the method we presented for sofic groups relies
massively on the fact that the non-diagonal matrix elements of the op-
erator are independent random variables. Second, the approximating
operators defined as restrictions of the original operator contain to
many random matrix elements. This makes it impossible to obtain a
useful error bound using the concentration inequality by McDiarmid.
Therefore, we present in Section 6.1 a proof for weak convergence of
the eigenvalue counting functions, which is independent of the results
in Chapter 4.

In the subsequent section we consider a long-range percolation

157
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model on ST-amenable groups. The operator under consideration
is the graph Laplacian, which is, due to long-range interactions,
almost surely unbounded and not of finite hopping range. Here we
obtain uniform convergence by adapting the Banach space-valued
ergodic theorems of Chapter 5 to this random setting. A key tool
is a result from the theory of large deviations, namely a Bernstein
inequality. Moreover, we give a precise characterization for the points
of discontinuity of the integrated density of states.

In Section 6.3 we consider general amenable groups and random
operators, which can almost surely be unbounded and of unbounded
hopping range. In comparison with the previous section, we allow
more general operators. For instance, the non-diagonal elements
are no longer elements of {0, 1} but are now taken (randomly) from
a possibly uncountable and unbounded subset of R. In the proofs
we extend ideas of [LV09] to obtain uniform convergence. Roughly
speaking, we use weak convergence and additionally obtain control
over the convergence at the jumps of the IDS. As we consider random
operators which are not necessarily of finite hopping range, we go
beyond the results of [LV09], where finite hopping range of the op-
erator is a central assumption. To deal with long-range interactions
it is again necessary to apply large deviations theory. The results
of Section 6.2 and Section 6.3 are already published in [Sch12] and
citeAyadiSV-12, respectively.

6.1 Weak convergence

In this section we verify weak convergence for the normalized eigen-
value counting functions. As mentioned before, the methods of
Chapter 4 can not directly be adapted. Therefore, we rather fol-
low the ideas of [PF92] where the authors proved weak convergence
for operators on Zd. The reason why the procedure on Zd can be
generalized to operators on amenable groups is that here we have
Lindenstrauss’ ergodic theorem at hand.

In order to apply this to an unbounded operator A, we need to
introduce an intermediate step of an approximating operator, namely
the operator A(t), cf. (6.3). The operator A(t) is by definition bounded
and of finite hopping range, such that Lindenstrauss’ theorem is
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applicable to obtain weak convergence of the eigenvalue counting
functions to the spectral distribution function of A(t), see Theorem 6.2.
Moreover, we show in Theorem 6.4 that for increasing t the SDF of A(t)

converges to the SDF of A. Thus, it remains to control the difference
between the eigenvalue counting function of the restrictions of A and
of A(t), respectively. This is provided in Lemma 6.3. Combining
these results, we prove in Theorem 6.5 (weak) existence if the IDS of
A and the validity of a Pastur-Shubin trace formula.

We start with the definition of the operator. Let Ã = (Ã(ω))ω∈Ω be
a symmetric, random ergodic operator on the domain Cc(G) which
satisfies E(‖Ãδid‖21) <∞. By Lemma 2.19, there exists Ω̃ ⊆ Ω of full
measure such that for each ω ∈ Ω̃ the operator Ã(ω) is essentially
self-adjoint and Cc(G) ⊆ D(A(ω)). For these ω ∈ Ω̃ we denote the
self-adjoint extension of A(ω) by Ā(ω) and set

A(ω) :=

{
Ā(ω) if ω ∈ Ω̃

Id otherwise.
(6.1)

Therefore A = (A(ω)) is a proper random operator, cf. Definition 2.16.
Moreover, A is ergodic and self-adjoint for all realizations. As before
we denote the matrix elements by a(ω)(x, y) :=

〈
δx, A

(ω)δy
〉
.

As G is amenable, there exists a Følner sequence, which we denote
by (Qj). For each ω ∈ Ω and j ∈ N we define the approximating

operator A
(ω)
j : `2(Qj)→ `2(Qj) by setting

A
(ω)
j := A(ω)[Qj ] := pQjA

(ω)iQj . (6.2)

Here the inclusion iQ : `2(Q) → `2(G) and the projection pQ :
`2(G)→ `2(Q) are given as in (5.4) and (5.3) with H = C. We define
an intermediate approximation of A on the whole group. For t > 0
we set for x, y ∈ G

a(t,ω)(x, y) :=

{
a(ω)(x, y) if dS(x, y) ≤ t and |a(ω)(x, y)| ≤ t
0 otherwise

and use this to define A(t,ω) : `2(G) → `2(G) by setting for any
φ ∈ `2(G) and x ∈ G

(A(t,ω)φ)(x) :=
∑
y∈G

a(t,ω)(x, y)φ(y). (6.3)

159



6 Random operators on amenable groups

The operator A(t) = (A(t,ω))ω∈Ω is ergodic and self-adjoint for all
realizations. We also define the finite dimensional operator given by

A
(t,ω)
j := A(t,ω)[Qj ] := pQjA

(t,ω)iQj . (6.4)

For the operators introduced in (6.2) and (6.4), we define the associ-
ated eigenvalue counting functions as before by

n
(ω)
j := n(A

(ω)
j ) and n

(t,ω)
j := n(A

(t,ω)
j ). (6.5)

Additionally, for each ω ∈ Ω and t > 0, we define the functions
N(ω) : R→ [0, 1] and N(t,ω) : R→ [0, 1] by setting for λ ∈ R:

N(ω)(λ) := 〈δid, E(ω)
λ δid〉 and N(t,ω)(λ) := 〈δid, E(t,ω)

λ δid〉, (6.6)

where E
(ω)
λ and E

(t,ω)
λ are again the spectral projections on the

interval (−∞, λ] of A(ω) and A(t,ω), respectively. Furthermore, we
define the distribution functions N̄, N̄(t) : R → [0, 1] by setting for
λ ∈ R:

N̄(λ) = E(N(λ)) and N̄(t)(λ) = E(N(t,ω)(λ)) (λ ∈ R, t > 0).
(6.7)

As before, the function N̄ is called spectral distribution function of

the random operator A. If the limit limj→∞ n
(ω)
j exists, it is called

the integrated density of states. We use the shorthand notation for
the Stieltjes transforms:

r
(ω)
j := r(n

(ω)
j ), r

(t,ω)
j := r(n

(t,ω)
j ), r̄(t) := r(N̄(t)) and r̄ := r(N̄).

(6.8)

Lemma 6.1. Let G be an amenable finitely generated group and let
B be a bounded operator on `2(G) with finite hopping range r. Then
we have for each Følner sequence (Qj) and m ∈ N

lim
j→∞

1

|Qj |
∣∣Tr ((B[Qj ])

m)− Tr
(
χQjB

m
)∣∣ = 0,

where B[Qj ] := pQjBiQj : `2(Qj)→ `2(Qj).
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6.1 Weak convergence

Proof. Let (Qj) be a given Følner sequence and fix m ∈ N. Then we
have by Lemma 2.14

Tr ((B[Qj ])
m)

=
∑
x∈Qj

∑
v1,...,vm−1∈Br(m−1)(x)∩Qj

〈δx, B[Qj ]δv1〉 · · ·
〈
δvm−1 , B[Qj ]δx

〉
=

∑
x∈Q(rm)

j

∑
v1,...,vm−1∈Br(m−1)(x)∩Qj

〈δx, B[Qj ]δv1
〉 · · ·

〈
δvm−1

, B[Qj ]δx
〉

+
∑

x∈∂rmint (Qj)

∑
v1,...,vm−1∈Br(m−1)(x)∩Qj

〈δx, B[Qj ]δv1
〉 · · ·

〈
δvm−1

, B[Qj ]δx
〉
.

Similarly we obtain

Tr
(
χQjB

m
)

=
∑

x∈Q(rm)
j

∑
v1,...,vm−1∈Br(m−1)(x)

〈δx, Bδv1
〉 · · ·

〈
δvm−1

, Bδx
〉

+
∑

x∈∂rmint (Qj)

∑
v1,...,vm−1∈Br(m−1)(x)

〈δx, Bδv1〉 · · ·
〈
δvm−1 , Bδx

〉
.

Now we use that for each v, w ∈ Qj we have the equality 〈δv, Bδw〉 =
〈δv, B[Qj ]δw〉, which gives

|Tr ((B[Qj ])
m)− Tr

(
χQjB

m
)
| ≤ 2

∑
x∈∂rmint (Qj)

∑
v1,...,vm−1∈Br(m−1)(x)

‖B‖m

= 2|∂rmint (Qj)|
(
|Br(m−1)|
m− 1

)
‖B‖m.

This proves the Lemma, as (Qj) is assumed to be a Følner sequence.
�

Theorem 6.2. Let G be a finitely generated group, let (Qj) be a
tempered Følner sequence and t > 0. Let the operators A and A(t)

be given by (6.1) and (6.3). Then there exists a set Ω̃ ⊆ Ω of full
measure, such that for all ω ∈ Ω̃

N̄(t) = w-lim
j→∞

n
(t,ω)
j ,

where n
(t,ω)
j and N̄(t) are given by (6.5) and (6.7).
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6 Random operators on amenable groups

Proof. First note that for all j ∈ N, t > 0 and ω ∈ Ω the measures

associated to the distribution functions n
(t,ω)
j , N(t,ω) and N̄(t) are

supported on the interval [−K,K], where K = supω∈Ω‖A(t,ω)‖ <∞.
Therefore, by Lemma 2.29 and Theorem 2.28 it is sufficient to show
that for almost all ω and all m ∈ N:

lim
j→∞

Mm(n
(t,ω)
j ) = lim

j→∞

∫
R
λmdn

(t,ω)
j (λ)

=

∫
R
λmdN̄(t)(λ) = Mm(N̄(t)). (6.9)

In order to do so, we study for j,m ∈ N, ω ∈ Ω and t > 0 the
following integral

|Qj |
∫
R
λmdn

(t,ω)
j (λ) =

∑
λ∈σ
(
A

(t,ω)
j

)mλλ
m = Tr

((
A

(t,ω)
j

)m)
,

where mλ denotes the multiplicity of the eigenvalue λ. Now we make
use of Lemma 6.1 and obtain

lim
j→∞

∫
R
λmdn

(t,ω)
j (λ) = lim

j→∞

1

|Qj |
Tr
((
A

(t,ω)
j

)m)
= lim
j→∞

1

|Qj |
Tr
(
χQj

(
A(t,ω)

)m)
.

By ergodicity of A(t) we have for almost all ω〈
δx, (A

(t,ω))mδx

〉
=
〈
δid, (A

(t,Txω))mδid

〉
.

Hence we obtain by Lindenstrauss’ ergodic Theorem 2.12

lim
j→∞

∫
R
λmdn

(t,ω)
j (λ) = lim

j→∞

1

|Qj |
∑
x∈Qj

〈
δx, (A

(t,ω))mδx

〉
= lim
j→∞

1

|Qj |
∑
x∈Qj

〈
δid, (A

(t,Txω))mδid

〉
= E

〈
δid, (A

(t))mδid

〉

162



6.1 Weak convergence

for almost all ω ∈ Ω. Now we investigate the moments of the distri-
bution function N̄(t). Therefore, we first realize that for all ω, the
Riemann-Stieltjes integral against N(t,ω) is as usual defined by∫

R
λmdN(t,ω)(λ)

=

∫ K

−K
λmdN(t,ω)(λ) := lim

∆x→0

k−1∑
i=0

xmi
(
N(t,ω)(xi+1)−N(t,ω)(xi)

)
,

with partitions −K =: x0 < x1 < · · · < xk := K and their mesh size
∆x := maxk−1

i=0 xi+1 − xi. Since∣∣∣∣k−1∑
i=0

xmi
(
N(t,ω)(xi+1)−N(t,ω)(xi)

)∣∣∣∣ ≤ Km,

by Lebesgue’s dominated convergence theorem we obtain∫
R
λmdN̄(t)(λ) = E

(∫
R
λmd〈δid, E(t)

λ δid〉
)

= E(
〈
δid, (A

(t))mδid

〉
).

Here the second equality follows from the spectral theorem. This
proves the claimed convergence in (6.9). �

For a selfadjoint operator B, z ∈ C\R and x, y ∈ G let us introduce
the notation

RzB(x, y) :=
〈
δx, (z −A)−1δy

〉
.

Lemma 6.3. Let G be a finitely generated group, let (Qj) be a
tempered Følner sequence and z ∈ C \ R. Let the operators A and

A(t), t > 0 be given by (6.1) and (6.3). Furthermore, let r
(ω)
j and

r
(t,ω)
j be given as in (6.8). Then we have

lim
t→∞

E
(
‖(A−A(t))δid‖1

)
= 0 (6.10)

and for almost all ω ∈ Ω

lim
t→∞

lim
j→∞

∣∣r(ω)
j (z)− r

(t,ω)
j (z)

∣∣ = 0. (6.11)
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6 Random operators on amenable groups

Proof. To show (6.10) note that for each ω ∈ Ω∑
g∈G
|a(ω)(g, id)− a(t,ω)(g, id)| ≤

∑
g∈G
|a(ω)(g, id)| = ‖A(ω)δid‖1,

which is integrable by assumption on A. Therefore, using dominated
convergence we get

lim
t→∞

E
(
‖(A−A(t))δid‖1

)
= lim
t→∞

E
((∑

g∈G
|a(g, id)− a(t)(g, id)|

))
= E

((∑
g∈G

lim
t→∞
|a(g, id)− a(t)(g, id)|

))
= 0.

For t > 0 and j ∈ N we use a similar calculation as in (3.5) and
the second resolvent identity to obtain

r
(ω)
j (z)− r

(t,ω)
j (z)

=
1

|Qj |
∑
x∈Qj

〈
δx,
((
z −A(ω)

j

)−1 −
(
z −A(t,ω)

j

)−1
)
δx

〉
=

1

|Qj |
∑
x∈Qj

〈(
z̄ −A(ω)

j

)−1
δx,
(
A

(t,ω)
j −A(ω)

j

)(
z −A(t,ω)

j

)−1
δx

〉
.

We have for ψ ∈ `2(G) the equality ψ =
∑
a∈G〈δa, ψ〉δa. We apply

this twice, which leads to

|Qj |
(
r
(ω)
j (z)− r

(t,ω)
j (z)

)
=

∑
x,a,b∈Qj

Rz
A

(ω)
j

(a, x)Rz
A

(t,ω)
j

(b, x)
〈
δa,
(
A

(t,ω)
j −A(ω)

j

)
δb

〉
=

∑
a,b∈Qj

〈(
z̄ −A(ω)

j

)−1
δa,
(
z −A(t,ω)

j

)−1
δb

〉〈
δa,
(
A

(t,ω)
j −A(ω)

j

)
δb

〉
.

Thence, using triangle inequality and ergodicity we obtain∣∣r(ω)
j (z)− r

(t,ω)
j (z)

∣∣
≤ 1

|=(z)|2|Qj |
∑

a,b∈Qj

∣∣〈δa,(A(t,ω) −A(ω)
)
δb

〉∣∣
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6.1 Weak convergence

≤ 1

|=(z)|2|Qj |
∑

a,b∈Qj

∣∣〈δab−1 ,
(
A(t,Tbω) −A(Tbω)

)
δid

〉∣∣
≤ 1

|=(z)|2|Qj |
∑
b∈Qj

∑
c∈G

∣∣〈δc,(A(t,Tbω) −A(Tbω)
)
δid

〉∣∣.
Now the ergodic Theorem 2.12 yields the inequality

lim
j→∞

∣∣r(ω)
j (z)− r

(t,ω)
j (z)

∣∣ ≤ |=(z)|−2E
(
‖(A−A(t))δid‖1

)
,

which clearly implies (6.11) using (6.10). �

Theorem 6.4. Let G be a finitely generated group and let the opera-
tors A and A(t), t > 0 be given by (6.1) and (6.3). Furthermore, let
N̄ and N̄(t) be given as in (6.7). Then we have

N̄ = w-lim
t→∞

N̄(t).

Proof. Here we use a similar procedure as in the proof of Lemma 6.3.
We fix some z ∈ C \ R. The definitions of N̄ and N̄(t), the spectral
theorem and the second resolvent identity imply

r̄(t)(z)− r̄(z) = E
(〈
δid, (z −A(t))−1(A−A(t))(z −A)−1δid

〉)
= E

( ∑
x,y∈G

RzA(y, id)Rz̄A(t)(x, id)
〈
δx, (A−A(t))δy

〉)
.

Again, we used the equality ψ =
∑
a∈G〈δa, ψ〉δa. As the operators A

and A(t) are ergodic with respect to the same group T of automor-
phisms, we can apply the joint translation invariance in distribution
and get for t > 0

r̄(t)(z)− r̄(z)

= E
( ∑
x,y∈G

RzA(id, y−1)Rz̄A(t)(xy
−1, y−1)

〈
δxy−1 , (A−A(t))δid

〉)
= E

( ∑
x,y∈G

RzA(id, y−1)Rz̄A(t)(x, y
−1)

〈
δx, (A−A(t))δid

〉)
= E

(∑
x∈G

〈
δx, (A−A(t))δid

〉∑
y∈G

RzA(id, y)Rz̄A(t)(x, y)
)
.
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6 Random operators on amenable groups

Using ∣∣∣∑
y∈G

RzA(id, y)Rz̄A(t)(x, y)
∣∣∣ ≤ |=(z)|−2

we obtain for t > 0

lim
t→∞

∣∣̄r(t)(z)− r̄(z)
∣∣ ≤ lim

t→∞

1

|=(z)|2
E
(
‖(A−A(t))δid‖1

)
= 0,

where we applied again Lemma 6.3. Now Lemma 2.29 and port-
manteau theorem imply the weak convergence of the corresponding
distribution functions. �

The next theorem proves the existence of the integrated density of
states and the validity of a Pastur-Shubin trace formula.

Theorem 6.5. Let G be a finitely generated amenable group, (Qj)

a tempered Følner sequence and let the operators A(ω) and A
(ω)
j for

ω ∈ Ω and j ∈ N be given as in (6.1) and (6.2). Furthermore, let

n
(ω)
j be given as in (6.5) and let the spectral distribution functions N̄

be given as in (6.7). Then for almost all ω ∈ Ω we have

N̄ = w-lim
j→∞

n
(ω)
j .

Proof. By Lemma 2.29 and portmanteau theorem it is enough to
show for arbitrary z ∈ C \ R and almost all ω the equality

lim
j→∞
|r(ω)
j (z)− r̄(z)| = 0.

Introducing the operator A(t) as in (6.3) and the associated Stieltjes

transforms r
(t,ω)
j and r̄(t) given in (6.8) we obtain for arbitrary t > 0∣∣r(ω)

j (z)− r̄(z)
∣∣

≤
∣∣r(ω)
j (z)− r

(t,ω)
j (z)

∣∣+
∣∣r(t,ω)
j (z)− r̄(t)(z)

∣∣+
∣∣̄r(t)(z)− r̄(z)

∣∣.
By Lemma 6.3 we have a set Ω1 ⊆ Ω of full measure such that for all
ω ∈ Ω1

lim
t→∞

lim
j→∞

∣∣r(ω)
j (z)− r

(t,ω)
j (z)

∣∣ = 0.

166



6.2 Random operators on ST-amenable groups

Theorem 6.2 together with Lemma 2.29 imply that for each t > 0
there exists a set Ω′t ⊆ Ω of full measure such that for all ω ∈ Ω′t

lim
j→∞

∣∣r(t,ω)
j (z)− r̄(t)(z)

∣∣ = 0.

Furthermore, we infer from Theorem 6.4 that

lim
t→∞

∣∣̄r(t)(z)− r̄(z)
∣∣ = 0.

These facts imply the assertion of the theorem for all ω ∈ Ω1 ∩⋂
t∈Q∩(0,∞) Ω′t. �

6.2 Random operators on ST-amenable groups

This section is devoted to prove uniform convergence for eigenvalue
counting functions for certain random operators on ST-amenable
groups, which are allowed to be of unbounded hopping range. The
procedure we follow is based on the ideas of [LMV08] and [LSV11],
where the authors prove uniform existence of the IDS for deterministic
finite hopping range operators, cf. Chapter 5. The results presented
in this section have already been published in [Sch12].

We consider the long-range percolation model from Subsection 4.3.
Here G is a finitely generated ST-amenable group and Γco = (V,Eco)
is the complete undirected graph over V = G, i.e.

Eco := |{e ⊆ G | 1 ≤ |e| ≤ 2}|.

Let p = (p(x))x∈G ∈ `1(G,R) be an arbitrary element satisfying

0 ≤ p(x) ≤ 1 and p(x) = p(x−1) for all x ∈ G.
(6.12)

In order to generate a random subset Eω ⊆ Eco by a percolation
process we define for each e ∈ Eco the probability that the edge
e = {x, y} is an element of Eω to be equal to p(xy−1).

More precisely we consider the following probability space: the sam-
ple space is given by Ω = {0, 1}Eco the set of all possible configurations.
We take A to be the sigma-algebra of subsets of Ω generated by the
cylinder sets. Finally we define the product measure P =

∏
e∈Eco

Pe
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6 Random operators on amenable groups

where for each e = {x, y} ∈ Eco the probability measure Pe on {0, 1}
is given by

Pe(ω(e) = 1) = p(xy−1) and Pe(ω(e) = 0) = 1−p(xy−1).

Define for each ω ∈ Ω the set Eω by

Eω := {e ∈ Eco | ω(e) = 1}.

Thus each ω ∈ Ω gives rise to a graph Γω = (V,Eω). Now we discuss
an alternative definition of the long-range percolation process.

Remark 6.6. We introduced the distribution of the probabilities
via an arbitrary function p ∈ `1(G,R) satisfying (6.12). There is
an equivalent way to do so, which is more common in the physics
community.

For each pair of vertices x, y ∈ G let Jx,y be a real number such
that

• Jxz,yz = Jx,y for all z ∈ G,

• J := Jx :=
∑
y∈G Jx,y is finite and independent of x ∈ G.

We fix β > 0 and declare an edge {x, y} to be open with probability
1− e−βJx,y . To see the equivalence to the above definition it suffices
to show that

∑
x∈G p(x) < ∞ holds if and only if

∑
y∈G Jx,y < ∞,

where p(xy−1) = 1 − e−βJx,y . Using that 1 − e−s ≤ s for all s ∈ R
one obtains∑

x∈G
p(x) =

∑
y∈G

p(xy−1) =
∑
y∈G

1− e−βJx,y ≤ β
∑
y∈G

Jx,y.

To prove the converse direction we apply Taylor’s formula, which
shows that there exists a constant T > 0 such that

1− e−βJx,y = βJx,y −
∞∑
k=2

(−βJx,y)k

k!
≥ 1

2
βJx,y
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6.2 Random operators on ST-amenable groups

holds for all x, y ∈ G satisfying d(x, y) ≥ T . Thus we get∑
y∈G

Jx,y =
∑
y∈G

d(x,y)≤T

Jx,y +
∑
y∈G

d(x,y)>T

Jx,y

≤
∑
y∈G

d(x,y)≤T

Jx,y +
2

β

∑
y∈G

d(x,y)>T

(
1− e−βJx,y

)
≤ c

∑
x∈G

p(x)

for c > 0 large enough.

Note that by definition P({x, y} ∈ Eω) = P({xz, yz} ∈ Eω) =
p(xy−1). We define

ε(R) :=
∑

y∈G\BR

p(y), (6.13)

which gives limR→∞ ε(R) = 0 since p ∈ `1(G,R). Moreover we have
for all x ∈ G: ε(R) :=

∑
y∈G\BR(x) p(xy

−1). We infer from Lemma
4.8 that there exists a set Ωlf ⊆ Ω of full measure such that for each
ω ∈ Ωlf the graph Γω is locally finite.

The operator we study is the Laplace operator ∆(ω) given as in
(4.25). It is self-adjoint for all ω ∈ Ω. Similarly the Laplacian
∆S : `2(VS) → `2(VS) on a finite subgraph S = (VS , ES) of the
complete graph Γco is given by

∆Sf(x) =
∑

y∈VS :{x,y}∈ES

(f(y)− f(x)) .

We denote the set of all finite subgraphs of the complete undirected
graph Γco by S. The subset of S consisting of all subgraphs with
vertex set Q ∈ F(G) is called S(Q). For a subgraph S = (VS , ES)
of Γco and Q ⊆ VS the induced subgraph of S on Q is denoted by
S[Q] := S|Q, i.e. S[Q] is the graph on vertex set Q, where two
vertices are adjacent in S[Q] if and only if they are adjacent in S.
Note that this definition coincides with the one at the beginning of
Section 2.1. Given a subgraph S = (VS , ES) of Γco and an element
x ∈ G the translation of S by x is the graph Sx whose vertex set is
VSx = VSx = {yx ∈ G | y ∈ VS} and the edges are ESx = {{y, y′} ∈
E | {yx−1, y′x−1} ∈ ES}.
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6 Random operators on amenable groups

In order to define the restriction of the Laplacian to a subset Q ⊆ G,
we introduce again the mappings pQ and iQ called projection and
inclusion. The map pQ : `2(G)→ `2(Q) is given by u 7→ pQ(u), where
pQ(u)(x) = u(x) for x ∈ Q. Similarly iQ : `2(Q)→ `2(G) is given by

iQ(u)(x) :=

{
u(x) if x ∈ Q,
0 otherwise.

Note that these definitions coincide with the ones in (5.4) and (5.3)
in the special case H = C. For given ω ∈ Ω and S = (VS , ES) ∈ S we
will be particularly interested in the restricted operators pQ∆(ω)iQ :
`2(Q) → `2(Q) and pU iVS∆SpVS iU : `2(U) → `2(U), where Q ⊆ G
and U ⊆ VS are finite. For this we will use the notation

∆(ω)[Q] := pQ∆(ω)iQ and ∆S [U ] := pU iVS∆SpVS iU .

Note that these operators are symmetric with real-valued matrix
elements, hence their eigenvalues are a subset of the real axis. Given
ω ∈ Ω, R ∈ N0 and Q ∈ F(G), we will be interested in the difference

DR
ω (Q) := ∆Γω[Q][Q

(R)]−∆(ω)[Q(R)], (6.14)

where as before Q(R) = Q \ ∂Rint(Q). Let us emphasize that the
boundary ∂Rint(Q) is deterministic and does not depend on the specific
choice of ω ∈ Ω.

For given Q ∈ F(G), R ∈ N0, ω ∈ Ωlf and S = (VS , ES) ∈ S we
define FRω , Fω : F(G)→ B(R) by

FRω (Q) := e(∆(ω)[Q(R)]) and Fω(Q) := F 0
ω(Q) = e(∆(ω)[Q]),

(6.15)
as well as F̃R, F̃ : S → B(R) by

F̃R(S) := e(∆S [(VS)(R)]) and F̃ (S) := F̃ 0(S) = e(∆S). (6.16)

In the following we study the question whether for a given Følner
sequence (Qj) the limit

lim
j→∞

Fω(Qj)

|Qj |
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6.2 Random operators on ST-amenable groups

exists. In order to do so, we need to control the long-range interactions.
Therefore, our next aim is to define random variables counting edges
exceeding a certain length R. Given an edge e ∈ Eco, we define Xe

as the random variable which is equal to one if e is an element of Eω
and zero otherwise. If an edge is given by a pair of vertices {x, y} it
is obvious that X{x,y} = X{y,x} and its distribution depends only on
the value xy−1.

For fixed R ∈ N and a finite subset Q = {x1, . . . , x|Q|} ⊆ G we
define random variables Yi, i = 1, . . . , |Q| by

Yi(ω) =
∑
y∈MR

i

X{xi,y}(ω), (6.17)

where

MR
i := {x ∈ G | dS(x, xi) > R, x 6= xj ∀j < i} .

Thus, Yi is the random variable counting the edges of length larger
than R, being incident to xi and not counted by any Yj , j = 1, . . . , i−1.
Note that the variables Yi are independent and Lemma 4.8 yields
P(Yi = ∞) = 0, i = 1, . . . , |Q|. Furthermore, the distribution
functions of these random variables fulfill FY1(z) ≤ FYi(z) for all
i ∈ {1, . . . , |Q|} and all z ∈ R. By equation (6.13) the expectation
value E(Y1) equals ε(R). We denote the centered random variable
Yi − E(Yi) by Ȳi for all i = 1, . . . , |Q| and set Y := Y1, Ȳ := Ȳ1. The
aim of Lemma 6.7 is to estimate the tails of the distribution of the
variables Yi.

Lemma 6.7. Let R ∈ N, Q = {x1, x2, . . . , x|Q|} ∈ F(G) and Yi,
i = 1, . . . , |Q| be given as above. Then the estimate

P(Yi ≥ t) ≤ ce−t

holds for all t ∈ N and all i = 1, . . . , |Q|, where c ∈ R is given by

c =
∏
y∈G

(1 + p(y)(e− 1)) .

Proof. Let y ∈ G be arbitrary and set x := x1 as well as Y = Y1,
then

E(eX{x,y}) = p(xy−1)e + (1− p(xy−1))e0 = 1 + p(xy−1)(e− 1)
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holds. The independence of Xe, e ∈ Eco implies that

E(eY ) =
∏

y∈G\BR(x)

E(eX{x,y})

=
∏

y∈G\BR(x)

(
1 + p(xy−1)(e− 1)

)
≤
∏
y∈G

(1 + p(y)(e− 1))

since Y =
∑
y∈G\BR(x)X{x,y}. The product converges to a finite

number since

∏
y∈G

(1 + p(y)(e− 1)) = exp

∑
y∈G

ln(1 + p(y)(e− 1))


≤ exp

(e− 1)
∑
y∈G

p(y)

 <∞

holds by assumption on p. Now we use Markov’s inequality to obtain
for given i ∈ {1, . . . , |Q|}

P(Yi ≥ t) ≤ P(Y ≥ t) ≤ e−tE(eY ).

This implies the claimed inequality with constant c not depending on
R. �

Lemma 6.7 implies that for each k ∈ N and i ∈ {1, . . . , |Q|} the
moments E(Y ki ) and E(Ȳ ki ) exist. This is clear from

|E(Y ki )| =
∞∑
t=0

tkP(Yi = t) ≤
∞∑
t=0

tkP(Yi ≥ t) ≤ c
∞∑
t=0

tke−t <∞

and

|E(Ȳ ki )| =

∣∣∣∣∣
∞∑
t=0

(t− E(Yi))
kP(Yi = t)

∣∣∣∣∣
≤
∞∑
t=0

|t− E(Yi)|k P(Yi ≥ t)

≤ c
∞∑
t=0

|t− E(Yi)|ke−t <∞.
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6.2.1 Bernstein inequality

In this section we verify a Bernstein inequality for independent random
variables ξi. This is a result from the theory of large deviations. It
estimates the probability that the sum of the random variables differs
too much from its expectation value. The proof follows ideas from
[AZ88], where similar estimates are shown.

Theorem 6.8 (Bernstein inequality). Let ξ1, . . . , ξn be independent
random variables satisfying

E(ξi) = 0 and |E(ξki )| ≤ 1

2
τk−2k! (6.18)

for all i = 1, . . . , n, all k ∈ N \ {1} and some constant τ > 0. Then

P(S ≥ α) ≤
{

exp
(
−α

2

4n

)
, 0 ≤ α ≤ n/τ

exp
(
− α

4τ

)
, α > n/τ

,

where S =
∑n
i=1 ξi.

Proof. We first prove that if a random variable ξ satisfies (6.18) then
we have for all k ∈ N \ {1}

E(|ξ|k) ≤
√

1

3
τk−2k!. (6.19)

If k is even, then obviously (6.19) holds by condition (6.18). Let
k ≥ 3 be odd. Then we can write k = 2m+ 1 for some m ∈ N and
Hölder inequality gives

E(|ξ|k) = E(|ξ|m|ξ|m+1) ≤
(
E(|ξ|2m)E(|ξ|2m+2)

)1/2
.

Using condition (6.18) leads to

E(|ξ|k) ≤ 1

2
τk−2((2m)!(2m+ 2)!)1/2

≤ 1

2
τk−2((k − 1)!(k + 1)!)1/2

=
1

2
τk−2k!(1 + k−1)1/2.
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As k ≥ 3 we have

E(|ξ|k) ≤ 1

2

√
4

3
τk−2k! =

√
1

3
τk−2k!.

Now, fix some i ∈ {1, . . . , n} and h ∈ (0, 1
2τ ]. Then we have using

monotone convergence

E(exp(|hξi|)) = E

( ∞∑
k=0

|hξi|k

k!

)
=

∞∑
k=0

hkE(|ξi|k)

k!

= 1 + hE(|ξi|) +

∞∑
k=2

hkE(|ξi|k)

k!

and with (6.19) and E(|ξi|) ≤ E(ξ2
i ) + 1 ≤ 2 we obtain

E(exp(|hξi|)) ≤ 1 + 2h+ h2
∞∑
k=2

(hτ)k−2

√
3

= 1 + 2h+
2h2

√
3
<∞.

This allows to use Lebesgue’s theorem in the following calculation

E(exp(hξi)) =

∞∑
k=0

E((hξi)
k)

k!
≤ 1 + h2

∞∑
k=2

hk−2 |E(ξki )|
k!

,

which gives together with condition (6.18)

E(exp(hξi)) ≤ 1 +
h2

2

∞∑
k=2

(hτ)k−2 ≤ 1 + h2 ≤ exp(h2).

Furthermore, the independence of the random variables implies

E(exp(hS)) =

n∏
i=1

E(exp(hξi)) ≤
n∏
i=1

exp(h2) = exp(nh2).

Using this and Markov inequality we obtain

P(S ≥ α) ≤ exp(−αh)E(exp(hS)) ≤ exp(nh2 − αh) (6.20)

for each α > 0.
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6.2 Random operators on ST-amenable groups

In the case 0 < α ≤ n
τ set h = α

2n ≤
1
2τ . Then (6.20) can be written

as

P(S ≥ α) ≤ exp
(
−α

2

4n

)
.

If α ≥ n
τ we set h = 1

2τ and conclude

P(S ≥ α) ≤ exp
(
− α

4τ

)
,

which proves the claimed estimate. �

The next Lemma shows that the variables Yi, i = 1, . . . , |Q| fulfill
the conditions (6.18) with some parameter τ > 0, which is independent
of R and Q. This allows to apply Theorem 6.8 in order to prove an
adapted inequality in Corollary 6.11.

Lemma 6.9. There exists an R0 ∈ N such that for each R ≥ R0 the
following holds: for any set Q = {x1, . . . , x|Q|} ∈ F(G) and associated
random variables Yi, i = 1, . . . , |Q| given in (6.17) each Ȳi = Yi−E(Yi)
satisfies the conditions (6.18) with τ = 6

∏
y∈G (1 + p(y)(e− 1)).

Remark 6.10. Notice that the existence of the moments E(Ȳ ki ), k ∈ N,
i ∈ {1, . . . , |Q|} is already clear from Lemma 6.7. However it is
not obvious that the conditions (6.18) hold with τ given as above.
Furthermore, we see τ = 6c, where c is the constant given by Lemma
6.7. If p is finitely supported then the second moment of Ȳi is zero
for large R. In this situation the conditions (6.18) are clearly fulfilled
since then E(Ȳ ki ) = 0 for all k ∈ N, i ∈ {1, . . . , |Q|}.

Proof of Lemma 6.9. Assume that Q = {x1, . . . , x|Q|} ∈ F(G) and
i ∈ {1, . . . , |Q|} are given and set x := x1. We first choose a certain
constant T ∈ N and give a condition for R0 in order to prove that
E(Ȳ 2

i ) does not exceed one for all i = 1, . . . , n and all R ≥ R0. Let
T ∈ N be such that

∞∑
t=T+1

t2e−t ≤ 1

3c
, (6.21)

where c > 0 is the constant given by Lemma 6.7. Now choose R0 ∈ N
such that

ε(R) ≤ −1

2
ln

1−

(
3

T∑
t=1

t2

)−1
 (6.22)
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for all R ≥ R0. This choice implies

E(Yi) ≤ E(Y ) = ε(R) ≤ 1

3
and p(y) ≤ 1

2
(6.23)

for all R ≥ R0 and all y ∈ G \BR0
. Furthermore we get for R ≥ R0

P(Yi = 0) ≥ P
( ∑
y∈G\BR(x)

X{x,y} = 0

)
=

∏
y∈G\BR(x)

(1− p(xy−1)).

and substitution leads to∏
y∈G\BR(x)

(1−p(xy−1)) =
∏

y∈G\BR

(1−p(y)) = exp

( ∑
y∈G\BR

ln(1−p(y))

)
.

Now, we use the inequality 1−z ≥ e−2z, which holds for all z ∈ [0, 0.5]
and obtain

P(Yi = 0) ≥ exp

−2
∑

y∈G\BR

p(y)

 = exp (−2ε(R)) .

Using (6.22), this shows that

P(Yi ≥ 1) = 1− P(Yi = 0) ≤ 1− exp(−2ε(R)) ≤

(
3

T∑
t=1

t2

)−1

.

(6.24)
As E(Ȳ 2

i ) can be written as

E(Ȳ 2
i ) =

∣∣E ((Yi − E(Yi))
2
)∣∣ =

∞∑
t=0

(t− E(Yi))
2P(Yi = t),

the estimates in (6.21),(6.23),(6.24) and Lemma 6.7 imply

E(Ȳ 2
i )

≤ (E(Yi))
2 +

T∑
t=1

(t− E(Yi))
2P(Yi = t) +

∞∑
t=T+1

(t− E(Yi))
2P(Yi = t)

≤ (ε(R))2 + P(Yi ≥ 1)

T∑
t=1

t2 +

∞∑
t=T+1

t2P(Yi ≥ t) ≤
1

3
+

1

3
+

1

3
= 1.
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Fix some k ≥ 3. The k-th moment of Ȳi is by definition the k-th
central moment of Yi, which yields

∣∣E(Ȳ ki )
∣∣ =

∣∣E((Yi − E(Yi))
k)
∣∣ =

∣∣∣∣∣
∞∑
t=0

(t− E(Yi))
kP(Yi = t)

∣∣∣∣∣ .
Since 0 ≤ E(Yi) ≤ 1

3 , by (6.23), we have that∣∣∣∣∣
∞∑
t=0

(t− E(Yi))
kP(Yi = t)

∣∣∣∣∣ ≤ (E(Yi))
kP(Yi = 0) +

∞∑
t=1

tkP(Yi = t)

≤ (E(Yi))
k +

∞∑
t=1

tkP(Yi ≥ t)

holds. Using P(Yi ≥ t) ≤ P(Y ≥ t) and E(Yi) ≤ E(Y ), this implies

∣∣E(Ȳ ki )
∣∣ ≤ (E(Y ))k + c

∞∑
t=1

tke−t,

where the last inequality holds with constant c > 0 from the Lemma
6.7. The function f : [0,∞]→ R, x 7→ xke−x takes its maximal value
at the argument x = k. Therefore we get

∞∑
t=1

tke−t =

k−1∑
t=1

tke−t + kke−k +

∞∑
t=k+1

tke−t

≤
∫ k

0

xke−xdx+ kke−k +

∫ ∞
k

xke−xdx

=

∫ ∞
0

xke−xdx+ kke−k.

Using partial integration proves that∫ ∞
0

xke−xdx =

∫ ∞
0

kxk−1e−xdx = · · · = k!

∫ ∞
0

e−xdx = k!

holds true. Now, it is enough to show that

2(E(Y ))k + 2ck! + 2c

(
k

e

)k
≤ τk−2k! (6.25)

177



6 Random operators on amenable groups

holds for τ = 6c. To this end we consider the three summands
separately. The first one gives by (6.21) and as τ > 1

2(E(Y ))k

τk−2k!
≤ 1

3
.

The second summand gives

2ck!

τk−2k!
=

2c

(6c)k−2
≤ 1

3

and for the third summand we use the Stirling formula k! ≥ kke−k

to obtain
2ckk

ekτk−2k!
≤ 2c

(6c)
k−2
≤ 1

3
.

This shows that (6.25) holds, which finishes the proof. �

Given a finite set Q = {x1, . . . , x|Q|} ⊆ G, we will use this result
to show that the probability that “too many long edges” are incident
to a vertex in Q is very small. To be precise, let R ∈ N and δ > 0 be
constants and set ε = ε(R) = E(Y ) as in (6.13). We decompose the
probability space Ω = Ω1(δ,R,Q) ∪ Ω2(δ,R,Q) by setting

Ω1(δ,R,Q) :=

ω ∈ Ω

∣∣∣∣ |Q|∑
i=1

Yi(ω) ≥ |Q|(ε+ δ)

 (6.26)

and
Ω2(δ,R,Q) := Ω \ Ω1(δ,R,Q). (6.27)

where Yi, i = 1, . . . , |Q| are given by (6.17). Thus the set Ω1(δ,R,Q)
consists of all configurations where the number of edges of length
longer than R that are incident to at least one vertex in Q is at least
|Q|(ε(R) + δ).

Corollary 6.11. Let R0 and τ be as in Lemma 6.9, let δ > 0, R ≥ R0

and Q ∈ F(G) be given and define Ω1(δ,R,Q) as in (6.26). Then
the following inequality holds

P(Ω1(δ,R,Q)) ≤

 exp
(
− δ

2|Q|
4

)
, 0 ≤ δ ≤ 1

τ ,

exp
(
− δ|Q|4τ

)
, δ > 1

τ .
(6.28)
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Proof. By definition of Yi, Ȳi and ε = ε(R) we have

P(Ω1(δ,R,Q)) = P

 |Q|∑
i=1

Yi ≥ |Q|(E(Y ) + δ)

≤ P

 |Q|∑
i=1

Ȳi ≥ |Q|δ

.
As the variables Ȳi, i = 1, . . . , |Q| are independent and fulfill condi-
tions (6.18) this term can be estimated using Theorem 6.8. Setting
α = δ|Q| we get

P(Ω1(δ,R,Q)) ≤

 exp
(
− δ

2|Q|2
4|Q|

)
, 0 ≤ δ|Q| ≤ |Q|τ ,

exp
(
− δ|Q|4τ

)
, δ|Q| > |Q|

τ ,

which gives the desired estimate. �

6.2.2 Almost additivity

This section provides crucial properties of the functions FRω and F̃R.
As in the deterministic setting, the most important condition which
needs to be proven is a version of almost additivity. This will be done
in Lemma 6.13.

Lemma 6.12. Let R ∈ N0, ω ∈ Ω and the functions FRω : F(G)→
B(R) and F̃R : S → B(R) be given as in (6.15) and (6.16). Then
the following holds true:

(i) the functions FRω and F̃R are linearly bounded, in fact

‖FRω (Q)‖ ≤ |Q| and ‖F̃R(S)‖ ≤ |VS |,

(ii) the function F̃R is invariant under translation, i.e. for any
S ∈ S and x ∈ G we have

F̃R(S) = F̃R(Sx).

Proof. This follows easily from the definition. �
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The next results are devoted to prove further properties of these
functions for R ≥ R0 with R0 from Lemma 6.9. We will not be able
to verify these properties for all ω ∈ Ω but only for all ω ∈ Ω̃ where

Ω̃ := Ω̃(δ,R,Q) := Ω2(δ,R,Q) ∩ Ωlf and Ω2(δ,R,Q) as in (6.27)
(6.29)

By Corollary 6.11 we have P(Ω̃) ≥ 1 − exp(−δ2|Q|/4) for δ ≤ τ−1.
The function FRω : F(G)→ B(R), Q 7→ FRω (Q) satisfies a weak form
of additivity, described in the next lemma.

Lemma 6.13. Let Q ∈ F(G), R ≥ R0 and δ > 0 be given and set
Ω̃ = Ω̃(δ,R,Q) as in (6.29) and ε = ε(R) =

∑
y∈G\BR p(y) as in

(6.13). Then for any disjoint sets Qi, i = 1, . . . k with Q =
⋃
iQi the

inequality∥∥∥∥∥FRω (Q)−
k∑
i=1

FRω (Qi)

∥∥∥∥∥ ≤ 4|Q|(ε+ δ) + 4

k∑
i=1

|∂R(Qi)|

holds for all ω ∈ Ω̃. Here R0 is the constant given in Lemma 6.9.

Proof. Let ω ∈ Ω̃ and disjoint sets Qi, i = 1, . . . k with Q =
⋃
iQi

be given. During the proof we will call the edges of length longer
than R the long edges. For given U ∈ F(G) we define an operator
Lω[U ] : `2(U)→ `2(U) which does only respect the long edges by

(Lω[U ]f)(x) = −
∑

y∈U:{x,y}∈Eω
d(x,y)>R

f(y)

and use the notation

∆
(ω)
L [U ] := ∆(ω)[U ]− Lω[U ].

As ω is an element of Ω2(δ,R,Q), the number of long edges in Γω
which are incident to a vertex in Q is smaller than |Q|(ε+ δ). Hence,
the matrices Lω[Q] and Lω[Q(R)] (with respect to the canonical basis)
contain not more than 2|Q|(ε+ δ) non-zero elements and we get

rank(Lω[Q]) ≤ 2|Q|(ε+ δ) and rank(Lω[Q(R)]) ≤ 2|Q|(ε+ δ).
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This combined with Lemma 2.24 gives

‖e(∆(ω)[Q(R)])− e(∆
(ω)
L [Q(R)])‖ ≤ rank(Lω[Q(R)]) ≤ 2|Q|(ε+ δ),

(6.30)
which immediately implies∥∥∥∥e(∆(ω)[Q(R)])−

k∑
i=1

e(∆(ω)[Q
(R)
i ])

∥∥∥∥
≤
∥∥∥∥e(∆(ω)

L [Q(R)])−
k∑
i=1

e(∆(ω)[Q
(R)
i ])

∥∥∥∥+ 2|Q|(ε+ δ).

Here the first term can be estimated by∥∥∥∥e(∆(ω)
L [Q(R)])−

k∑
i=1

e(∆(ω)[Q
(R)
i ])

∥∥∥∥
≤
∥∥∥∥e(∆(ω)

L [Q(R)])−
k∑
i=1

e(∆
(ω)
L [Q

(R)
i ])

∥∥∥∥
+

∥∥∥∥ k∑
i=1

(
e(∆

(ω)
L [Q

(R)
i ])− e(∆(ω)[Q

(R)
i ])

)∥∥∥∥.
For the next step recall that

∑
i rank(Lω[Q

(R)
i ]) is also bounded by

the number of non-zero matrix elements in Lω[Q]. This and another
application of Lemma 2.24 yield∥∥∥∥e(∆(ω)[Q(R)])−

k∑
i=1

e(∆(ω)[Q
(R)
i ])

∥∥∥∥
≤
∥∥∥∥e(∆(ω)

L [Q(R)])−
k∑
i=1

e(∆
(ω)
L [Q

(R)
i ])

∥∥∥∥+ 4|Q|(ε+ δ). (6.31)

Now we use a decoupling argument very similar to the one in Lemma

5.12. By definition of ∆
(ω)
L [·] and Lω[·] we get

∆
(ω)
L

[⋃k

i=1
Q

(R)
i

]
=

k⊕
i=1

(
∆

(ω)
L [Q

(R)
i ]
)
.
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Therefore we can count the eigenvalues of ∆
(ω)
L [Q

(R)
i ] for i = 1, . . . , k

separately

e

(
∆

(ω)
L

[⋃k

i=1
Q

(R)
i

])
=

k∑
i=1

e
(

∆
(ω)
L [Q

(R)
i ]
)
.

Next, we apply Proposition 2.25 with V = `2(Q(R)) and U =

`2(
⋃k
i=1Q

(R)
i ) and obtain∥∥∥∥e(∆(ω)
L [Q(R)])−

k∑
i=1

e(∆
(ω)
L [Q

(R)
i ])

∥∥∥∥
=

∥∥∥∥e(∆(ω)
L [Q(R)])− e

(
∆

(ω)
L

[⋃k

i=1
Q

(R)
i

])∥∥∥∥ ≤ 4

k∑
i=1

|∂RQi|.

This together with (6.31) finishes the proof. �

The next lemma shows that the functions FRω and F̃R behave
similarly with high probability.

Lemma 6.14. Let Q ∈ F(G), R ≥ R0 and δ > 0 be given and set
Ω̃ = Ω̃(δ,R,Q) as in (6.29) and ε = ε(R) =

∑
y∈G\BR p(y) as in

(6.13). Then ∥∥∥FRω (Q)− F̃R(Γω[Q])
∥∥∥ ≤ |Q|(ε+ δ)

holds for all ω ∈ Ω̃. Here R0 is the constant given in Lemma 6.9.

Proof. Let ω ∈ Ω̃ be given. By definition of F̃R, FRω and DR
ω (·), see

(6.14)∥∥∥FRω (Q)− F̃R(Γω[Q])
∥∥∥ =

∥∥∥e(∆(ω)[Q(R)])− e(∆Γω [Q][Q
(R)])

∥∥∥
=
∥∥∥e(∆(ω)[Q(R)])− e(∆(ω)[Q(R)] +DR

ω (Q))
∥∥∥

holds. Lemma 2.24 yields that∥∥∥e(∆(ω)[Q(R)])− e(∆(ω)[Q(R)] +DR
ω (Q))

∥∥∥ ≤ rank(DR
ω (Q))

≤
∑

x∈Q(R)

|DR
ω (Q)(x, x)|.

(6.32)
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Note that (−DR
ω (Q)) : `2(Q(R)) → `2(Q(R)) is a diagonal matrix

(with respect to the canonical basis) where the entry at (x, x) denotes
the number of edges in Γω from x ∈ Q(R) to G \Q. The sum of these
entries is bounded from above by the number of all edges of length
longer than R which are incident to some x ∈ Q(R). Therefore, the
last term in inequality (6.32) is not larger then |Q|(ε+ δ) as ω is an
element of Ω2. �

6.2.3 Uniform convergence

At the beginning of this subsection we introduce some notation
concerning frequencies of finite subgraphs in infinite graphs. Note
that bond percolation can be interpreted as a random coloring of the
edges in two colors. Therefore, the following notation is very similar
to the notation in the deterministic setting on amenable groups, where
we considered colorings of vertices, cf. the first pages of Chapter 5.

For two graphs S, S′ ∈ S the number of occurrences of translations
of the graph S in S′ is denoted by

]S(S′) := |{x ∈ G | VSx ⊆ VS′ , S′[VSx] = Sx}|.

Counting occurrences of graphs along a Følner sequence (Uj)j∈N
leads to the definition of frequencies. Let S ∈ S, (Uj)j∈N be a Følner
sequence and let Γ′ = (V,E′) be a subgraph of Γco on the full vertex
set V . If the limit

νS(Γ′) := lim
j→∞

]S(Γ′[Uj ])

|Uj |

exists, we call νS(Γ′) the frequency of S in the graph Γ′ along (Uj)j∈N.
Similarly frequencies can be defined for subgraphs which are not (or
sparsely) connected to the rest of the graph. Given R ∈ N and a
graph Γ′ = (V,E′) on the full vertex set V , we say that a graph
S = (VS , ES) is R-isolated in Γ′ if Γ[VS ] = S and {g, h} /∈ E′ for all
g ∈ VS , h ∈ G \VS satisfying d(g, h) ≥ R. Thence, a 1-isolated graph
S has no edge connecting it with the rest of the graph. For a given
graph S = (VS , ES) ∈ S, a set Q ∈ F(G), R ∈ N and Γ′ as above we
write

]S,R(Γ′, Q) := |{x ∈ G | VSx ⊆ Q and Sx is R-isolated in Γ′}|
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for the number of occurrences of R-isolated copies of S in Q. The
frequency of an R-isolated graph S along a Følner sequence (Uj) in
Γ′ is defined by

νS,R(Γ′) := lim
j→∞

]S,R(Γ′, Uj)

|Uj |
,

if the limit exists. In the following the graph Γ′ will always be given
by a percolation graph Γω, ω ∈ Ω. However, Lemma 6.15 shows that
the frequencies νS(Γω) will coincide for almost all ω ∈ Ω. The same
holds true for the frequencies νS,R(Γω).

We define the action T of G on (Ω,A,P) by

T : G× Ω→ Ω, (g, ω) 7→ Tg(ω) := ωg−1 (6.33)

where ωg−1 ∈ Ω is given pointwise by

ωg−1({x, y}) = ω({xg, yg}) for all x, y ∈ G.

Note that T is an ergodic and measure preserving left-action on
(Ω,A,P).

Lemma 6.15. Given R ∈ N and a tempered Følner sequence (Qn),
there exists a set Ωfr ⊆ Ω of full measure such that the frequencies
νS(Γω) and νS,R(Γω) along (Qn) exist for all S = (VS , ES) ∈ S and
all ω ∈ Ωfr, in particular

νS(Γω) =
∏

{x,y}∈ES

p(xy−1) ·
∏

{x,y}/∈ES
x,y∈VS

(1− p(xy−1)) and

νS,R(Γω) = νS(Γω) ·
∏

{x,y}∈E,x∈VS,
y/∈VS,d(x,y)≥R

(1− p(xy−1))

holds true. The values of νS := νS(Γω) and νS,R := νS,R(Γω) do not
depend on the specific choice of the sequence (Qn).

Proof. Let S = (VS , ES) ∈ S be a finite graph such that id ∈ VS . We
define AS = {ω ∈ Ω | Γω[VS ] = S} to be the subset of Ω consisting of
all configurations where Γω coincides with S on VS and we denote
the indicator function of AS by fS . Then, analogously to the proof
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of Theorem 5.30, we use Lindenstrauss’ ergodic theorem, namely
Theorem 2.12, to obtain a set ΩS ⊆ Ω of full measure, such that we
have for all ω ∈ ΩS that νS(Γω) = E(fS). In the same way we get for
each R ∈ N and S ∈ S a set ΩR

S ⊆ Ω of full measure, such that for
each ω ∈ ΩRS we have νS,R(Γω) = E(fS,R). Here fS,R is the indicator
function of the set

AS,R = {ω ∈ Ω | Γω[VS ] = S and S is R-isolated in Γω}.

We define

Ωfr :=

(⋂
S∈S

ΩS

)
∩

(⋂
S∈S

⋂
R∈N

ΩRS

)
,

which is of measure one, as the above index sets are countable. It
remains to calculate the expectations E(fS) and E(fS,R). For the first
one we get using the probabilities given by p ∈ `1(G,R) in (6.12):

E(fS) = P(fS(ω) = 1) =
∏

{x,y}∈ES

p(xy−1) ·
∏

{x,y}/∈ES
x,y∈VS

(1− p(xy−1)).

In the same manner we obtain

E(fS,R) =
∏

{x,y}∈ES

p(xy−1)·
∏

{x,y}/∈ES
x,y∈VS

(1−p(xy−1))·
∏

{x,y}∈E,x∈VS,
y/∈VS,d(x,y)≥R

(1−p(xy−1)).

Here the last product is finite since p ∈ `1(G,R). �

Theorem 6.16. Let G be a finitely generated, ST-amenable group
and let (Qn) and (Uj) be Følner sequences fulfilling

(a) (Uj) is strictly increasing and tempered;

(b) (Qn) is symmetrically tiling.

Let the functions Fω : F(G)→ B(R) and F̃ : S → B(R) be given as
in (6.15) and (6.16). Then the following limits

I := lim
j→∞

Fω(Uj)

|Uj |
= lim
n→∞

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|
(6.34)

exist and are equal almost surely. Furthermore, they do not depend
on the specific choice of (Qn) and (Uj). The function I is called the
integrated density of states of ∆(ω).
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Remark 6.17. Given a group G and Følner sequences with the above
properties, Theorem 6.16 ensures the existence of a set Ω′ of measure
one, such that the limits (6.34) exist for all ω ∈ Ω′. However, it
is not possible to find a set Ω′′ of full measure, such that the limit
exists for all Følner sequences satisfying (a) and (b). This is due to
the fact that for almost all ω ∈ Ω we can construct (by translation)
Følner sequences such that the associated sequences in (6.34) do not
converge.

A similar and well known phenomenon occurs in the theory of
Lebesgue measurable functions. Here one identifies functions which
agree up to a set of measure zero, however it is not possible to find
a set of full measure such that all functions in the same equivalence
class are equal on this set.

The proof of Theorem 6.16 is based on the following Lemma.

Lemma 6.18. Let G be a finitely generated, ST-amenable group and
let (Uj) be a strictly increasing, tempered Følner sequence and let
(Qn) be symmetrically tiling. Let j ∈ N, R ≥ R0 and 0 < δ ≤ τ−1

be given, where R0 and τ are constants given by Lemma 6.9. Set
ε = ε(R) =

∑
y∈G\BR p(y) as in (6.13) and Ωj = Ω̃(δ,R, Uj) ∩ Ωfr,

where Ω̃(δ,R, Uj) is as in (6.29) and Ωfr as in Lemma 6.15. The

functions FRω : F(G)→ B(R) and F̃R : S → B(R) are defined as in
(6.15) and (6.16). Then the difference

Dω(j, n,R) :=

∥∥∥∥∥∥F
R
ω (Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃R(S)

|Qn|

∥∥∥∥∥∥ .
satisfies the estimate

Dω(j, n,R) ≤ 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂d(n)Uj |
|Uj |

+ 5(ε+ δ) +
∑

S∈S(Qn)

∣∣∣ ]S(Γω[Uj ])

|Uj |
− νS

∣∣∣
for all ω ∈ Ωj and all n ∈ N, where d(n) := diam(Qn).
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Proof. Let n ∈ N and ω ∈ Ωj be given. By inserting zeros we estimate
the difference Dω(j, n,R) in the following way

Dω(j, n,R) ≤

∥∥∥∥∥∥∥
FRω (Uj)

|Uj |
−

∑
g∈G

Qng⊆Uj

FRω (Qng)

|Uj | · |Qn|

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∑
g∈G

Qng⊆Uj

FRω (Qng)

|Uj | · |Qn|
−

∑
S∈S(Qn)

]S(Γω[Uj ])

|Uj |
F̃R(S)

|Qn|

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

S∈S(Qn)

]S(Γω[Uj ])

|Uj |
F̃R(S)

|Qn|
−

∑
S∈S(Qn)

νS
F̃R(S)

|Qn|

∥∥∥∥∥∥ .
With another application of the triangle inequality this gives

Dω(j, n,R) ≤ D(1)
ω (j, n,R) +D(2)

ω (j, n,R) +D(3)
ω (j, n,R),

where

D(1)
ω (j, n,R) :=

1

|Uj ||Qn|

∥∥∥∥∥ ∑
x∈Qn

FRω (Uj)−
∑
g∈G

Qng⊆Uj

FRω (Qng)

∥∥∥∥∥,
D(2)
ω (j, n,R) :=

1

|Uj ||Qn|

∥∥∥∥∥ ∑
g∈G

Qng⊆Uj

FRω (Qng)−
∑

S∈S(Qn)

]S(Γω[Uj ])F̃
R(S)

∥∥∥∥∥
and

D(3)
ω (j, n,R) :=

∑
S∈S(Qn)

∣∣∣∣ ]S(Γω[Uj ])

|Uj |
− νS

∣∣∣∣ ‖F̃R(S)‖
|Qn|

.

We use the boundedness of F̃R(S) (see Lemma 6.12) to obtain

D(3)
ω (j, n,R) ≤

∑
S∈S(Qn)

∣∣∣∣ ]S(Γω[Uj ])

|Uj |
− νS

∣∣∣∣ . (6.35)

To estimate the other terms we make use of the assumption that
each Qn symmetrically tiles G. Here we proceed analogously to the
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proof of Theorem 5.11. For each n ∈ N there exists a set Gn = G−1
n ⊆

G such that G is the disjoint union of the sets Qnt, t ∈ Gn. For fixed
x ∈ G we shift the grid Gnx

−1 = {tx−1 | t ∈ Gn} and get

G = Gx−1 =
⋃
t∈Gn

Qntx
−1 =

⋃
t∈Gnx−1

Qnt

and Qnt ∩Qnt′ = ∅ for distinct t, t′ ∈ G−1
n . This shows that {Qnt |

t ∈ Gnx−1} is a tiling of G as well. Given a set U ∈ F(G) and an
element x ∈ G, we set

T (U, x, n) := {g ∈ Gnx−1 | Qng ∩ U 6= ∅}

and distinguish two types of elements in T (U, x, n)

I(U, x, n) := {g ∈ Gnx−1 | Qng ⊆ U}

and
∂(U, x, n) := T (U, x, n) \ I(U, x, n).

Therefore, translations of Qn by elements of I(U, x, n) are completely
contained in U , whereas translations of Qn by elements of ∂(U, x, n)
have non-empty intersections with both U and G\U . By construction
we have the following equality

{g ∈ G | Qng ⊆ Uj} =
⋃̇

x∈Qn
I(Uj , x, n). (6.36)

Here, the inclusion “⊇” is obvious. To obtain the other inclusion
one, take an element g ∈ G and choose x ∈ Qn and t ∈ Gn such that
g−1 = xt. This gives g = t−1x−1 ∈ Gnx−1 as Gn is symmetric. In
order to show that the union in (6.36) is disjoint, let x, y ∈ Qn with
x 6= y be given. Then xGn ∩ yGn = ∅ and again by symmetry of
Gn we have Gnx

−1 ∩ Gny−1 = ∅, which proves (6.36). We use the
invariance of F̃R under translation, see Lemma 6.12 and then (6.36)
to obtain

D(2)
ω (j, n,R) =

1

|Uj ||Qn|

∥∥∥∥∥ ∑
g∈G

Qng⊆Uj

(
FRω (Qng)− F̃R(Γω[Qng])

)∥∥∥∥∥
≤ 1

|Uj ||Qn|
∑
x∈Qn

∑
g∈I(Uj ,x,n)

∥∥∥FRω (Qng)− F̃R(Γω[Qng])
∥∥∥.
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As ω ∈ Ω̃(δ,R, Uj) and asQng∩Qnh = ∅ for distinct g, h ∈ I(Uj , x, n),
Lemma 6.14 leads to

D(2)
ω (j, n,R) ≤ 1

|Uj | · |Qn|
∑
x∈Qn

∑
g∈I(Uj ,x,n)

|Qn|(ε+δ) ≤ ε+δ. (6.37)

To estimate D
(1)
ω (j, n,R), firstly note that the disjointness of the

translates and the fact that Qng ⊆ ∂d(n)Uj holds for all g ∈ ∂(Uj , x, n)
imply the following inequalities:

|∂(Uj , x, n)| · |Qn| ≤ |∂d(n)Uj | and |I(Uj , x, n)| · |Qn| ≤ |Uj |.
(6.38)

We use again (6.36) to obtain

D(1)
ω (j, n,R) ≤ 1

|Uj | · |Qn|
∑
x∈Qn

∥∥∥∥∥FRω (Uj)−
∑

g∈I(Uj ,x,n)

FRω (Qng)

∥∥∥∥∥
(6.39)

and analyze one summand

ZRω (Uj , x, n) :=

∥∥∥∥FRω (Uj)−
∑

g∈I(Uj ,x,n)

FRω (Qng)

∥∥∥∥
=

∥∥∥∥FRω (Uj)−
∑

g∈I(Uj ,x,n)

FRω ((Qng) ∩ Uj)
∥∥∥∥

≤
∥∥∥∥FRω (Uj)−

∑
g∈T (Uj ,x,n)

FRω ((Qng) ∩ Uj)
∥∥∥∥

+

∥∥∥∥ ∑
g∈∂(Uj ,x,n)

FRω ((Qng) ∩ Uj)
∥∥∥∥,

where the last inequality holds since T (Uj , x, n) is the disjoint union
of ∂(Uj , x, n) and I(Uj , x, n). Next we use the weak form of additivity

given by Lemma 6.13. This is applicable since ω ∈ Ωj ⊆ Ω̃(δ,R, Uj)
and it gives, together with the boundedness of FRω (see Lemma 6.12)
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the following

ZRω (Uj , x, n)

≤ 4

( ∑
g∈I(Uj ,x,n)

|∂R(Qng)|+
∑

g∈∂(Uj ,x,n)

|∂R((Qng) ∩ Uj)|+ |Uj |(ε+ δ)

)
+

∑
g∈∂(Uj ,x,n)

|Qng|.

The invariance of ∂R(·) and |·| under translation and the inequalities
(6.38) yield

ZRω (Uj , x, n)

≤ 4|∂RQn||I(Uj , x, n)|+ 4|∂RQn||∂(Uj , x, n)|+ |Qn||∂(Uj , x, n)|
+ 4|Uj |(ε+ δ)

≤ 4|∂RQn|
|Uj |
|Qn|

+ 4|∂RQn|
|∂d(n)Uj |
|Qn|

+ |∂d(n)Uj |+ 4|Uj |(ε+ δ),

which we plug in (6.39) and obtain

D(1)
ω (j, n,R)

≤ 1

|Uj |

(
4|∂RQn|

|Uj |
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂d(n)Uj |+ 4|Uj |(ε+ δ)

)
= 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂d(n)Uj |
|Uj |

+ 4(ε+ δ). (6.40)

The combination of the estimates in (6.35), (6.37) and (6.40) gives

Dω(j, n,R) ≤ 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂d(n)Uj |
|Uj |

+ 5(ε+ δ) +
∑

S∈S(Qn)

∣∣∣ ]S(Γω[Uj ])

|Uj |
− νS

∣∣∣,
which proves the desired estimate on Dω(j, n,R). �
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Proof of Theorem 6.16. For given j, n ∈ N, R ≥ R0, 0 < δ ≤ τ−1

and ω ∈ Ωj := Ω̃(δ,R, Uj) ∩ Ωfr we set

Bω(j, n,R, δ) := 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂diam(Qn)Uj |

|Uj |

+ 5(ε+ δ) +
∑

S∈S(Qn)

∣∣∣ ]S(Γω[Uj ])

|Uj |
− νS

∣∣∣,
i.e. the upper bound for Dω(j, n,R) given in the previous lemma.
In the following we explain how to choose the mutual dependencies
of the parameters j, n,R, δ in order to obtain sufficient control on
Bω(j, n,R, δ) and P(Ωj) and be able to conclude the statement of the
theorem.

Since (Qn) is a Følner sequence we have for all R ∈ N

lim
n→∞

|∂RQn|
|Qn|

= 0.

The function R(n) is defined inductively in the following way: for
all k ∈ N we choose nk to be the smallest natural number such that
|Qn|−1|∂kQn| ≤ k−1 for all n ≥ nk. Now we set R(n) = R0 for all
n < nR0

and R(n) = k for all nk ≤ n < nk+1, k ≥ R0. This gives a
function n 7→ R(n) satisfying R(n) ≥ R0 for all n ∈ N as well as

lim
n→∞

R(n) =∞ and lim
n→∞

|∂R(n)Qn|
|Qn|

= 0.

Furthermore recall that ε = ε(R) =
∑
y∈G\BR p(y), as in (6.13). Thus

we have limn→∞ ε(R(n)) = 0. Setting δ(j) := (j1/4τ)−1 implies for
fixed n ∈ N

lim
j→∞

δ(j) = 0 and δ(j) ≤ 1

τ
as well as − δ(j)2|Uj |

4
≤ −j

1/2

4τ2

(6.41)
for all j ∈ N. Here we used j ≤ |Uj |, which holds since (Uj) is strictly
increasing. Now for j, n ∈ N Lemma 6.18 implies that

Dω(j, n) := Dω(j, n,R(n)) ≤ Bω(j, n,R(n), δ(j)) =: Bω(j, n)
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holds for all ω ∈ Ωj := Ω̃(δ(j), R(n), Uj) ∩ Ωfr. Note that P(Ωj) ≥
1 − exp(−j1/2/4τ2) by (6.41) and Corollary 6.11. Furthermore for
each ω ∈ Ωj we have

lim
n→∞

lim
j→∞

Bω(j, n) = 0.

Given j, n ∈ N we set

E
(n)
j := {ω ∈ Ωlf ∩ Ωfr | Dω(j, n) > Bω(j, n)}.

Therefore P(E
(n)
j ) ≤ exp(−j1/2/4τ2) for all j ∈ N and hence we

obtain
∑
j P(E

(n)
j ) < ∞. Applying Borel-Cantelli lemma leads to

P(A(n)) = 0, where

A(n) :=

∞⋂
k=1

∞⋃
j=k

E
(n)
j = {E(n)

j infinitely often }.

Thus, we get for all n ∈ N:

P
({

ω ∈ Ωlf ∩ Ωfr

∣∣∣ lim
j→∞

(Dω(j, n)−Bω(j, n)) ≤ 0

})
= 1.

Hence, there exists a set Ω̃ ⊆ Ωlf ∩ Ωfr with P(Ω̃) = 1 such that for
all ω ∈ Ω̃ we have

lim
n→∞

lim
j→∞

(Dω(j, n)−Bω(j, n)) ≤ 0,

which implies by definition of Bω(j, n):

lim
n→∞

lim
j→∞

Dω(j, n) = 0. (6.42)

Let κ > 0 and ω ∈ Ω̃ arbitrary. There exists an integer n0 =
n0(ω, κ) satisfying limj→∞Dω(j, n0) ≤ κ/8, thus there exists j0 =
j0(ω, κ) ∈ N such that Dω(j, n0) ≤ κ/4 for all j ≥ j0. Using triangle
inequality gives that for all j,m ≥ j0 we have

∥∥∥∥∥FR(n0)
ω (Uj)

|Uj |
− F

R(n0)
ω (Um)

|Um|

∥∥∥∥∥ ≤ Dω(j, n0) +Dω(m,n0) ≤ κ

2
.
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Furthermore, we use Lemma 2.25 to obtain that there exists a j1 =
j1(κ) ∈ N such that∥∥∥∥∥Fω(Uj)

|Uj |
− F

R(n0)
ω (Uj)

|Uj |

∥∥∥∥∥ =

∥∥∥∥∥e(∆(ω)[Uj ])− e(∆(ω)[U
(R(n0))
j ])

|Uj |

∥∥∥∥∥
≤ 4|∂R(n0)Uj |

|Uj |
≤ κ

4
(6.43)

for all j ≥ j1. Now, the triangle inequality yields for all j,m ≥
max{j0, j1}:∥∥∥∥Fω(Uj)

|Uj |
− Fω(Um)

|Um|

∥∥∥∥
≤

∥∥∥∥∥Fω(Uj)

|Uj |
− F

R(n0)
ω (Uj)

|Uj |

∥∥∥∥∥+

∥∥∥∥∥FR(n0)
ω (Uj)

|Uj |
− F

R(n0)
ω (Um)

|Um|

∥∥∥∥∥
+

∥∥∥∥∥FR(n0)
ω (Um)

|Um|
− Fω(Um)

|Um|

∥∥∥∥∥
≤ κ

4
+
κ

2
+
κ

4
= κ,

which implies for all ω ∈ Ω̃ that |Uj |−1Fω(Uj) is a Cauchy sequence
and hence convergent in the Banach space B(R). We denote the limit
function by I.

It remains to show that
∑
S∈S(Qn) νS

F̃ (S)
|Qn| converges to the same

limit. To this end, we fix ω ∈ Ω̃ and consider

lim
n→∞

∥∥∥∥∥∥I−
∑

S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥= lim
n→∞

lim
j→∞

∥∥∥∥∥∥Fω(Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ .
Adding zeros leads to the inequality∥∥∥∥∥∥Fω(Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥
≤

∥∥∥∥∥Fω(Uj)

|Uj |
− F

R(n)
ω (Uj)

|Uj |

∥∥∥∥∥+

∥∥∥∥∥∥F
R(n)
ω (Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃R(n)(S)

|Qn|

∥∥∥∥∥∥
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+

∥∥∥∥∥∥
∑

S∈S(Qn)

νS
F̃R(n)(S)

|Qn|
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ ,
which is valid for all j, n ∈ N. Now we take limn→∞ limj→∞ on both
sides and obtain that the three summands on the right vanish. The
first one is zero by an estimate as in (6.43). Applying (6.42) gives
that the second summand vanishes. The third summand tends to
zero since Lemma 2.25 yields∥∥∥∥∥∥

∑
S∈S(Qn)

νS
F̃R(n)(S)

|Qn|
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥
≤

∑
S∈S(Qn)

νS

∥∥∥F̃R(n)(S)− F̃ (S)
∥∥∥

|Qn|
≤

∑
S∈S(Qn)

νS
4
∣∣∂R(n)Qn

∣∣
|Qn|

and for some fixed y ∈ Qn∑
S∈S(Qn)

νS = lim
j→∞

1

|Uj |
∑

S∈S(Qn)

|{x ∈ G | VSx ⊆ Uj , Γω[VSx] = Sx}|

≤ lim
j→∞

1

|Uj |
∑

S∈S(Qn)

|{z ∈ Uj | x := y−1z, Γω[VSx] = Sx}|

= lim
j→∞

1

|Uj |

∣∣∣∣∣∣
⋃̇

S∈S(Qn)

{z ∈ Uj | x := y−1z, Γω[VSx] = Sx}

∣∣∣∣∣∣ .
This proves the claimed convergence for all ω ∈ Ω̃, since the last
term can not exceed 1. Finally we need to show the independence of
the specific choice of the sequences. Therefore let (U ′j) and (Q′n) be
two other Følner sequences satisfying (a) and (b), respectively. By
Lemma 6.15 we know that the frequencies νS do not depend on the
choice of the Følner sequence. Hence we can repeat the arguments
of this proof once with the sequences (U ′j) and (Qn) and afterwords
with (Uj) and (Q′m) to obtain

lim
j→∞

Fω(U ′j)

|U ′j |
= lim
n→∞

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|
= I
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and

I = lim
j→∞

Fω(Uj)

|Uj |
= lim
n→∞

∑
S∈S(Q′n)

νS
F̃ (S)

|Q′n|

almost surely. This finishes the proof. �

6.2.4 Discontinuities

In this subsection we investigate the points of discontinuity of the
integrated density of states. We firstly prove a criterion for the IDS
to have a jump at λ ∈ R. Afterwards we characterize the set of points
of discontinuity as a large subset of the real axis. The results of this
subsection are closely related to the ones in [Ves05], where the author
studied discontinuities of the IDS for (short-range) percolation models
on Zd.

Note that in this subsection we are always in the setting of The-
orem 6.16. The next Theorem is well-known in similar situations,
see Corollary 5.36. Here we complement ideas from Corollary 5.36
with the properties of our specific model to obtain an additional
equivalence.

Theorem 6.19. There exists a set Ω̃ ⊆ Ω of full measure such that
for each ω ∈ Ω̃ and λ ∈ R the following assertions are equivalent:

(a) λ is a point of discontinuity of I,

(b) there exists a finitely supported eigenfunction corresponding to
λ,

(c) there exist infinitely many mutually orthogonal finitely supported
eigenfunctions corresponding to λ.

Proof. Let (Uj) be a strictly increasing, tempered Følner sequence

and Ω̃ ⊆ Ωfr ∩Ωlf a set of full measure such that Theorem 6.16 holds
for all ω ∈ Ω̃. This implies in particular that for an arbitrary graph
S ∈ S and ω ∈ Ω̃ the frequency νS in Γω along (Uj) exists. As p
is assumed to be an element of `1(G,R) there exists R ∈ N such
that p(xy−1) is strictly smaller than 1 for all x, y ∈ G satisfying
d(x, y) ≥ R. We fix this R ∈ N and some ω ∈ Ω̃.
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Let λ be a point of discontinuity of I. Theorem 6.16 yields that
e(∆(ω)[Uj ])/|Uj | approximates the IDS I uniformly in the energy
variable. Hence there exists a constant c > 0 such that for all j ∈ N:

dim(ker(∆(ω)[Uj ]− λ))

= lim
ε→0

(
e(∆(ω)[Uj ])(λ+ ε)− e(∆(ω)[Uj ])(λ− ε)

)
≥ c|Uj |.

Since (Uj) is a Følner sequence, we have limj→∞ |∂RintUj |/|Uj | = 0,
which implies the existence of k ∈ N such that

dim(ker(∆(ω)[Uk]− λ)) ≥ c|Uk| > |∂RintUk| = dim(`2(∂RintUk))

holds true. Lemma 5.32 yields that there exists an element 0 6= u ∈
`2(Uk) satisfying (∆(ω)[Uk]− λ)u = 0 and u ≡ 0 on ∂RintUk. Now we
consider the subgraph

S := (VS , ES) := Γω[Uk]. (6.44)

Lemma 6.15 proves that the frequency of R-isolated occurrences of S
in Γω along (Uj) is given by

νS,R =
∏

{x,y}∈ES

p(xy−1)·
∏

{x,y}/∈ES
x,y∈VS

(1−p(xy−1))·
∏

{x,y}∈E,x∈VS,
y/∈VS,d(x,y)≥R

(1−p(xy−1)).

(6.45)
Here the first two products have to be non-zero as S is a restriction
of Γω. The positivity of the infinite product follows from the choice
of R and the summability condition on p. This implies that there is
an infinite set M ⊆ G such that Γω[Ukx] is an R-isolated copy of S
for each x ∈M . Furthermore there exists an infinite subset M ′ ⊆M
such that Ukx ∩ Uky = ∅ for all x, y ∈ M ′. For x ∈ M ′ we define
ux ∈ `2(G) by setting

ux(g) =

{
u(gx−1) g ∈ Ukx,
0 otherwise.

Then ux, x ∈M ′ are mutually orthogonal, finitely supported eigen-
functions of ∆(ω) corresponding to λ. This proves that (a) implies
(c).
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Obviously (c) implies (b), thus it remains to show that given a
finitely supported eigenfunction u corresponding to λ ∈ R the IDS is
discontinuous at λ. To this end let r > 0 be large enough such that
spt(u) ⊆ Br. As ω ∈ Ωlf the graph Γω is locally finite. Therefore we
find s > r such that there are no edges connecting the sets Br and
G \ Bs in Γω. Now we consider the graph S = (VS , ES) := Γω[Bt],
where t := s+ R. As S is a restriction of Γω the frequency νS,R of
R-isolated occurrences of S in Γω along (Uj) is strictly positive. Thus
there exists a constant c > 0 such that ]S,R(Γω, Uj) ≥ c|Uj | for j
large enough.

For given Q ∈ F(G) each disjoint R-isolated copy of S in Γω[Q]
adds a dimension to the eigenspace of pQ∆(ω)iQ corresponding to

λ. Therefore we define ]̇S,R(Γω, Q) to be the maximal number of
disjoint and R-isolated occurrences of the subgraph S in Γω[Q]. It is
easy to verify that in this situation the inequality |B3t|]̇S,R(Γω, Q) ≥
]S,R(Γω, Q) holds. For each ε > 0 we get

e(∆(ω)[Q])(λ− ε)
|Q|

≤ e(∆(ω)[Q])(λ+ ε)− ]̇S,R(Γω, Q)

|Q|

≤ e(∆(ω)[Q])(λ+ ε)

|Q|
− ]S,R(Γω, Q)

|B3t||Q|
.

Replacing Q by elements of the sequence (Uj) yields

e(∆(ω)[Uj ])(λ+ ε)

|Uj |
− e(∆(ω)[Uj ])(λ− ε)

|Uj |
≥ ]S,R(Γω, Uj)

|B3t||Uj |
.

We let j tend to infinity and obtain

I(λ+ ε)− I(λ− ε) ≥ νS,R
|B3t|

,

which proves that λ is a point of discontinuity of I. �

Next, we study the set of points of discontinuity, which obviously
depends on the specific choice of the function p ∈ `1(G,R). Here we
consider the case where the given function p satisfies not just (6.12)
but even

0 < p(x) < 1 and p(x) = p(x−1) (6.46)
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for all x ∈ G and define the set

W = {λ ∈ R | ∃ S ∈ S with λ ∈ σ(∆S)}.

Corollary 6.20. Let p ∈ `1(G,R) satisfying (6.46) and the associ-
ated probability space (Ω,A,P) be given. Then the set of points of
discontinuity of the IDS I is equal to W almost surely.

Proof. Let Ω̃ ⊆ Ωfr ∩ Ωlf be a set of full measure such that Theorem
6.16 holds for all ω ∈ Ω̃ and choose some ω ∈ Ω̃.

Let λ be a point of discontinuity of I. By Theorem 6.19 there is
a finitely supported eigenfunction u corresponding to λ. As in the
proof of Theorem 6.19 we find r > 0 such that spt(u) ⊆ Br and s > r
such that there are no edges in Γω connecting Br with G \Bs. We
set S = (VS , ES) = Γω[Bs]. Therefore, λ is an eigenvalue of ∆S with
eigenfunction pVSu.

Let λ be an element in W , i.e. there exists S = (VS , ES) ∈ S such
that λ is an eigenvalue of the associated Laplacian ∆S . Let u be an
associated eigenfunction. By Lemma 6.15 the frequency νS,1 is given
by

νS,1 =
∏

{x,y}∈ES

p(xy−1)·
∏

{x,y}/∈ES
x,y∈VS

(1−p(xy−1))·
∏

{x,y}∈E,x∈VS,
y/∈VS,d(x,y)≥1

(1−p(xy−1)),

which is strictly positive by assumption on p. Thus there exists a
x ∈ G such that Sx is a 1-isolated copy of S in Γω. Then u′ ∈ `2(G)
given by

u′(g) =

{
u(gx−1) if g ∈ VSx,

0 otherwise

is a finitely supported eigenfunction of ∆(ω) corresponding to λ. By
Theorem 6.19 this implies the discontinuity of I at λ. �

6.3 Random operators on general amenable groups

In this section we assume that G is an arbitrary finitely generated
amenable group and consider random operators on G. In comparison
with Section 6.2 the geometric setting is less restricted: we consider
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all amenable groups. Moreover, the operators under consideration
are more general. Recall that in Section 6.2 we studied the spectral
properties of the graph Laplacian. Here the operators are taken from
a certain class of ergodic operators.

As before, the aim is to verify uniform existence of the integrated
density of states. Here, we use that we already know that the approxi-
mants converge weakly to the spectral distribution function (Theorem
6.5) and upgrade this to obtain uniform convergence. Recall that
weak convergence means pointwise convergence at all points of conti-
nuity of the limit function. Thus, to obtain uniform convergence one
needs to control the approximations at the points of discontinuity of
the IDS. This will be done in Theorem 6.25. For similar reasoning
see [LV09] and also [MSY03].

In the special case, where G = Zd and with slightly more restricted
operators the results of this section are joint work with Slim Ayadi
and Ivan Veselić, see [ASV13].

Let Ã = (Ã(ω))ω∈Ω be a symmetric and ergodic operator on the
domain Cc(G) on the probability space (Ω,A,P). Here, as usual, we
define ã(ω)(x, y) := 〈δx, Ã(ω)δy〉. Furthermore, we assume∑

x∈G
E(|ã(x, id)|2) <∞ and

∑
x∈G

P(ã(x, id) 6= 0) <∞. (6.47)

By a calculation as in the proof of Lemma 4.8 we get that there exists
a set Ωlf , such that for all ω ∈ Ωlf and all y ∈ G

|{x ∈ G | ã(ω)(x, y) 6= 0}| <∞.

Using this we show that the above operator is almost surely essentially
self-adjoint.

Lemma 6.21. There exists a set Ω̃ of full measure, such that for all
ω ∈ Ω̃ the operator Ã(ω) is essentially self-adjoint.

Proof. As an ergodic operator is always translation invariant in dis-
tribution we only need to show E(‖Ãδid‖21) <∞, cf. Lemma 2.19. To
this end, we define N(ω) := {x ∈ G | ã(ω)(x, id) 6= 0} and calculate
for ω ∈ Ωlf :

‖Ã(ω)δid‖21 =

( ∑
x∈N(ω)

|ã(ω)(x, id)|
)2

≤ |N(ω)|
∑

x∈N(ω)

|ã(ω)(x, id)|2.
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Now, set Nx(ω) := |{y ∈ G \ {x} | a(ω)(y, id) 6= 0}| to obtain

E(‖Ãδid‖21) ≤
∑
x∈G

E(|N ||ã(x, id)|2)

≤
∑
x∈G

E(Nx + 1)E(|ã(x, id)|2)

≤ E(N + 1)
∑
x∈G

E(|ã(x, id)|2) <∞

where the finiteness follows from (6.47). �

Let Ω̃ be given by the previous Lemma and let for all ω ∈ Ω̃ the
operator Ā(ω) : D(Ā(ω))→ `2(G) be the unique self-adjoint extension
of Ã(ω). Then we set for ω ∈ Ω

A(ω) :=

{
Ā(ω) if ω ∈ Ω̃,

Id otherwise
and a(ω)(x, y) :=

〈
δx, A

(ω)δy

〉
.

(6.48)
Then A = (A(ω))ω∈Ω is an ergodic proper random operator which
is self-adjoint for all realizations ω. Let (Qj) be a tempered Følner
sequence. Set as in (6.2) for j ∈ N and ω ∈ Ω

A
(ω)
j := A(ω)[Qj ] := pQjA

(ω)iQj (6.49)

as well as for λ ∈ R

n
(ω)
j := n(A

(ω)
j ), N(ω)(λ) := 〈δid, E(ω)

λ δid〉 and N̄(λ) := E(N(λ)).
(6.50)

As before, the function N̄ is called spectral distribution function of
the operator. We obtain by Theorem 6.5 that N̄ is almost surely the

weak limit of n
(ω)
j . The aim of this section is to upgrade this result

to uniform convergence. Therefore we need to obtain control over
the convergence of the distribution functions also at the points of
discontinuity. This will be done in the next subsection.

6.3.1 Control of the jumps and uniform convergence

The aim of this subsection is to control the convergence at the jumps
of the limit function N̄ given in (6.50). The first result pointing in
this direction is the next lemma, which is valid for all λ ∈ R.
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Here we introduce the following notion for an operator A =
(A(ω))ω∈Ω as given in (6.48): for an interval I ⊆ R (which might
consist of only one point) and ω ∈ Ω we denote by EI(A

(ω)) the
spectral projection of the operator A(ω) on the interval I. This gives

in particular E(−∞,λ](A
(ω)) = E

(ω)
λ , where E

(ω)
λ is the spectral pro-

jection as used for instance in (4.9) and (6.6). Given ω ∈ Ω, let
Eig(A(ω), λ) denote the eigenspace of A(ω) corresponding to the value
λ, which could possibly be empty if λ is not an eigenvalue.

Lemma 6.22. Let A be the random operator defined in (6.48) and
let (Qj) be a tempered Følner sequence. Then there exists a set Ω̃ ⊆ Ω

of full measure such that for all ω ∈ Ω̃ and all λ ∈ R we have

lim
j→∞

Tr(χQjE{λ}(A
(ω)))

|Qj |
= E(

〈
δid, E{λ}(A)δid

〉
).

Proof. Let λ ∈ R be fixed. By definition of the trace we have for each
ω ∈ Ω:

Tr(χQjE{λ}(A
(ω))) =

∑
x∈G

〈
δx, χQjE{λ}(A

(ω))δx

〉
=
∑
x∈Qj

〈
δx, E{λ}(A

(ω))δx

〉
. (6.51)

Given z ∈ G, we have

φ ∈ Eig(A(ω), λ) if and only if Uzφ ∈ Eig(UzA
(ω)U−1

z , λ).
(6.52)

Here Uz is given as in (2.15). As A is ergodic there exists a set Ω′ of
full measure such that for each ω ∈ Ω′ we have UzA

(ω)U−1
z = A(Tzω).

Now we show for all ω ∈ Ω′〈
δid, E{λ}(A

(Tzω))δid

〉
=
〈
δz, E{λ}(A

(ω))δz

〉
. (6.53)

To this end, let δ′id ∈ Eig(A(Tzω), λ) and δ′′id ∈ Eig(A(Tzω), λ)⊥ such
that δid = δ′id + δ′′id. Then we obtain

〈δid, δ′id〉 =
〈
δid, E{λ}(A

(Tzω))δ′id

〉
+
〈
δid, E{λ}(A

(Tzω))δ′′id

〉
=
〈
δid, E{λ}(A

(Tzω))δid

〉
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and with the above equivalence (6.52) we get for ω ∈ Ω′

〈δid, δ′id〉 =
〈
U−1
z (δid), U−1

z (δ′id)
〉

=
〈
U−1
z (δid), E{λ}(A

(ω))U−1
z (δ′id)

〉
+
〈
U−1
z (δid), E{λ}(A

(ω))U−1
z (δ′′id)

〉
=
〈
δz, E{λ}(A

(ω))δz

〉
,

which implies (6.53). Applying (6.51) and (6.53) leads for all ω ∈ Ω′

to

Tr(χQjE{λ}(A
(ω)))

|Qj |
=

1

|Qj |
∑
x∈Qj

〈
δid, E{λ}(A

(Tx(ω)))δid

〉
.

Finally, we use Theorem 2.12 to obtain the existence of a set Ω̃ ⊆ Ω
of measure one such that for each ω ∈ Ω̃ we have

lim
j→∞

Tr(χQjE{λ}(A
(ω)))

|Qj |
=

∫
Ω

〈
δid, E{λ}(A

(ω))δid

〉
dP(ω). �

The following easy fact is taken from [LV09]

Lemma 6.23. Let r > 0, Q ⊆ G and U ⊆ `2(Q) be given and denote
by Ur the subspace of U consisting of all functions which vanish on
∂r(Q). Then

0 ≤ dim(U)− dim(Ur) ≤ |∂rint(Q)|.

Proof. Let P : U → `2(∂rint(Q)) be the natural projection with
(Pφ)(x) = φ(x) for all x ∈ ∂rint(Q). Then we have

0 ≤ dim(U)− dim(kerP ) = dim(RanP ) ≤ |∂rint(Q)|,

which proves the claim as kerP = Ur. �

For given ω ∈ Ω, R ∈ N and Q ⊆ G finite, let L(ω)(R,Q) be given
by

L(ω)(R,Q) :=
∣∣∣{{x, y} ∈ Eco | a(ω)(x, y) 6= 0, d(x, y) ≥ R

and {x, y} ∩Q 6= ∅
}∣∣∣. (6.54)
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Note that this quantity is well-defined as a(ω)(x, y) = 0 if and only
if a(ω)(y, x) = 0. Therefore L(ω)(R,Q) counts the interactions of the
elements of Q of length not less than R.

In the next lines we fix dependencies between certain parameters
which appear in this section. We adjust these dependencies in a such
a way that the approximation error in Theorem 6.25 vanishes. Let
(Qj) be a Følner sequence. Using a diagonal sequence, we choose a
function R : N→ N such that

lim
j→∞

R(j) =∞ and lim
j→∞

|∂R(j)Qj |
|Qj |

= 0 (6.55)

and set
L

(ω)
j := L(ω)(R(j), Qj). (6.56)

Additionally, we set for R ≥ 0

εR :=
∑

x∈G,d(id,x)≥R

P(a(ω)(id, x) 6= 0))

and for j ∈ N0

ε(j) := εR(j) as well as δ(j) := (j)−1/4. (6.57)

Note that by condition (6.47) and by the definition of R(j) we have
that

lim
j→∞

ε(j) = lim
j→∞

δ(j) = 0.

The next result estimates (independently of R) the probability that
L(ω)(R,Q) takes “large” values. The first part follows directly from
the calculations in Section 6.2.1 and Corollary 6.11.

Lemma 6.24. Let G be a finitely generated amenable group, (Qj) a
strictly increasing Følner sequence and the operator A be given as in
(6.48). Then the following holds:

(a) There exist constants R0 ∈ N and δ̄ > 0, such that for all
0 < δ < δ̄, all R ≥ R0, and all finite Q ⊆ G:

P
(
L(ω)(R,Q) ≥ |Q|(εR + δ)

)
≤ exp

(
−δ

2|Q|
4

)
.
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(b) Let R : N→ N be as in (6.55). Then there exists a set Ω̃ ⊆ Ω
of full measure such that for each ω ∈ Ω̃ there exists j0(ω)
satisfying for j ≥ j0(ω):

L
(ω)
j ≤ |Qj |(ε(j) + δ(j)).

Proof. The proof of statement (a) carries over from the proof of
Corollary 6.11. Let us prove part (b). Therefore, consider the events

Aj :=
{
ω ∈ Ω | L(ω)

j > |Qj |(ε(j) + δ(j))
}
.

Then part (a) shows that for j large enough we have

P(Aj) ≤ exp
(
−δ(j)2|Qj |/4

)
≤ exp

(
−
√
j/4
)
,

where the second inequality uses that (Qj) is strictly increasing. This
clearly gives

∑
j∈N P(Aj) < ∞. By the Borel-Cantelli Lemma we

have

P
(

lim sup
j→∞

Aj

)
= 0,

which implies the claim of part (b). �

We use Lemmas 6.22, 6.23 and 6.24 to obtain a result similar as
Lemma 6.2 in [LV09]. However, technically this is the point where we
go far beyond the calculations of [LV09]. The reason is that long-range
interactions force us to implement complex arguments to estimate
dimensions of certain `2-subspaces. This was not necessary in [LV09]
as the authors thereof dealt with finite hopping range operators.

Theorem 6.25. Let G be a finitely generated amenable group, let A
be given as in (6.48) and let (Qj) be a strictly increasing, tempered

Følner sequence. Furthermore let ρ
(ω)
j be the probability measure

associated to the distribution function n
(ω)
j . Then there exists a set

Ω̃ ⊆ Ω of full measure such that for all ω ∈ Ω̃ and all λ ∈ R we have

lim
j→∞

ρ
(ω)
j ({λ}) = E

(〈
δid, E{λ}(A)δid

〉)
.
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Proof. During the proof, we will rather use the measure ρ̄j := |Qj | ·ρj ,
which is the measure associated to the cumulative eigenvalue counting
function. Let Ω̃ ⊆ Ω be a set of full measure such that the results of
Lemma 6.22 and of Lemma 6.24 (b) hold for all ω ∈ Ω̃. We fix some
ω ∈ Ω̃ and λ ∈ R. With the function R : N → N given in (6.55) we
set

V
(ω)
j :=

{
v ∈ `2(G) | (A(ω) − λ)v = 0 and spt v ⊆ Q(R(j))

j

}
,

D
(ω)
j := dimV

(ω)
j .

Note that V
(ω)
j consists of the elements iQjv, where v ∈ `2(Qj)

satisfying v ≡ 0 on ∂
R(j)
int Qj ,

(pQjA
(ω)iQj−λ)v = 0 and

∑
y∈Q(R(j))

j

(a(ω)(x, y)−λδx(y))v(y) = 0

(6.58)

for all x /∈ Qj with x
ω∼ Q(R(j))

j . Note that here we write x
ω∼ Q(R(j))

j

if one can find y ∈ Q(R(j))
j with a(ω)(x, y) 6= 0.

We consider the following difference

|ρ̄(ω)
j ({λ})− Tr(χQjE{λ}(A

(ω)))| ≤ |ρ̄(ω)
j ({λ})−D(ω)

j |

+ |D(ω)
j − Tr(χQjE{λ}(A

(ω)))|
(6.59)

and estimate the two summands on the right hand side separately.
Let us estimate the first one. Therefore, consider the sets

U
(ω)
j :=

{
u ∈ `2(Qj) | (pQjA(ω)iQj − λ)u = 0

}
and

U
(ω)
j,R =

{
u ∈ Uj | u ≡ 0 on Qj \Q(R(j))

j

}
.

Then clearly, ρ̄
(ω)
j ({λ}) = dim(U

(ω)
j ) ≥ dim(V

(ω)
j ) and

dim(U
(ω)
j,R )− dim(V

(ω)
j ) ≤ |{y /∈ Qj | y

ω∼ Q(R(j))
j }|

≤ L(ω)(R(j), Qj) = L
(ω)
j , (6.60)
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where we used the definition (6.54). The application of Lemma 6.23
gives

0 ≤ ρ̄(ω)
j ({λ})−D(ω)

j = dim(U
(ω)
j )− dim(V

(ω)
j )

≤ dim(U
(ω)
j )− dim(U

(ω)
j,R ) + L

(ω)
j

≤ |∂R(j)
int Qj |+ L

(ω)
j . (6.61)

Now we estimate the second summand in (6.59). Therefore let vi,

i = 1, . . . , D
(ω)
j be an orthonormal basis (ONB) of V

(ω)
j and let ṽi,

i ∈ I be an ONB of the orthogonal complement of V
(ω)
j in the space

Eig(A(ω), λ). Furthermore, let v̄i, i ∈ J be an ONB of Eig(A(ω), λ)⊥.
Then we have

Tr(χQjE{λ}(A
(ω)))

=

D
(ω)
j∑
i=1

〈
χQjE{λ}(A

(ω))vi, vi

〉
+
∑
i∈I

〈
χQjE{λ}(A

(ω))ṽi, ṽi

〉
+
∑
i∈J

〈
χQjE{λ}(A

(ω))v̄i, v̄i

〉

=

D
(ω)
j∑
i=1

〈vi, vi〉+
∑
i∈I

〈
χQj ṽi, χQj ṽi

〉
,

which gives D
(ω)
j ≤ Tr(χQjE{λ}(A

(ω))). Next, let ui, i ∈ I be an
ONB of

Ū
(ω)
j := Ran(χQjE{λ}(A

(ω)))

and ũk, k ∈ J be an ONB of (Ū
(ω)
j )⊥. Then, using Cauchy-Schwarz

inequality, we obtain〈
χQjE{λ}(A

(ω))ui, ui

〉
≤ ‖ui‖ = 1

and 〈
χQjE{λ}(A

(ω))ũj , ũj

〉
= 0
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for all i ∈ I and all j ∈ J . This gives

D
(ω)
j ≤ Tr(χQjE{λ}(A

(ω)))

=
∑
i∈I

〈
χQjE{λ}(A

(ω))ui, ui

〉
+
∑
j∈J

〈
χQjE{λ}(A

(ω))ũj , ũj

〉
≤ dim(Ū

(ω)
j ), (6.62)

where we used dim(Ūj) = |I|. As before we denote by Ū
(ω)
j,R the subset

of Ū
(ω)
j consisting of those elements in Ū

(ω)
j which vanish outside of

Q
(R)
j . Therefore, we have

Ū
(ω)
j,R =

{
χQjv | v ∈ `2(G), (A(ω) − λ)v = 0, v ≡ 0 on ∂

R(j)
int Qj

}
.

(6.63)

In the next step we define a set ¯̄U
(ω)
j,R ⊇ Ū

(ω)
j,R by dropping conditions

in (6.63), in the following way

¯̄U
(ω)
j,R :=

{
χQjv

∣∣∣∣v ∈ `2(G), v ≡ 0 on ∂
R(j)
int Qj ,

∑
y∈G

(a(ω)(x, y)− λδx(y))v(y) = 0 for all x ∈ Z(ω)
j

}

=

{
χQjv

∣∣∣∣∣v ∈ `2(G), v ≡ 0 on ∂
R(j)
int Qj ,

∑
y∈Qj

(a(ω)(x, y)− λδx(y))v(y) = 0 for all x ∈ Z(ω)
j

}
,

where
Z

(ω)
j = Q

(R(j))
j \ {x ∈ Q(R(j))

j | x ω∼ (G \Qj)}.

Here we used that for all x ∈ Z
(ω)
j and y ∈ G \ Qj we have the

equality a(ω)(x, y) = 0.

Comparing this representation of ¯̄U
(ω)
j,R with the representation of

V
(ω)
j in (6.58), we realize that they differ in at most 2L

(ω)
j + |∂R(j)

int Qj |
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conditions. As each of these conditions may change the dimension at
most by one, we get

dim(Ū
(ω)
j,R ) ≤ dim( ¯̄U

(ω)
j,R ) ≤ D(ω)

j + 2L
(ω)
j + |∂R(j)

int Qj |. (6.64)

Applying (6.62), Lemma 6.23 and (6.64) gives

0 ≤ Tr(χQjE{λ}(A
(ω)))−D(ω)

j

≤ dim(Ū
(ω)
j )−D(ω)

j

≤ dim(Ū
(ω)
j,R )−D(ω)

j + |∂R(j)
int Qj | ≤ 2|∂R(j)

int Qj |+ 2L
(ω)
j . (6.65)

In the last step we apply Lemma 6.22, then we combine the estimates
for the two summands in (6.59) given in (6.61) and (6.65) and finally
use part (b) of Lemma 6.24 to obtain

lim
j→∞

ρ̄
(ω)
j ({λ})
|Qj |

− E
(〈

δ0, E{λ}(A
(ω))δ0

〉)
= lim
j→∞

|ρ̄(ω)
j ({λ})− Tr(χQjE{λ}(A

(ω)))|
|Qj |

≤ lim
j→∞

3|∂R(j)
int Qj |+ 3L

(ω)
j

|Qj |

≤ 3 lim
j→∞

(
|∂R(j)

int Qj |
|Qj |

+ ε(j) + δ(j)

)
= 0.

Here we used the definitions of R(j), ε(j) and δ(j) in (6.55) and
(6.57). �

Remark 6.26. (a) Let us stress the fact that proof of Theorem 6.25
does not contain any probabilistic argument. We show the
claimed convergence for any fixed choice of λ ∈ R and ω ∈ Ω̃,
where Ω̃ is a set given rather explicitly by Lemmas 6.22 and
6.24.

(b) Furthermore the proof gives an explicit error term on finite
scales. To be precise, we have for any j ∈ N, λ ∈ R and ω ∈ Ω̃

|ρ̄(ω)
j ({λ})− Tr(χQjE{λ}(A

(ω)))| ≤ 3|∂R(j)
int Qj |+ 3L

(ω)
j
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where L
(ω)
j = L(ω)(R(j), Qj) as in (6.56).

The following result is essentially standard and has been used in
the present context already in [LV09]. It shows that weak convergence
of measures plus convergence of the measures at each point implies
uniform convergence.

Lemma 6.27. Let ρ be a probability measure on R and let (ρj) be a
sequence of bounded measures on R which converge weakly to ρ and
fulfill

lim
j→∞

ρj({λ}) = ρ({λ})

for all λ ∈ R. Then the distribution functions Fj : R→ R, Fj(λ) :=
ρj((−∞, λ]) converge to the distribution function F : R→ R, F (λ) :=
ρ((−∞, λ]) with respect to the supremum norm.

The proof of the main theorem is now basically a combination of
the previous results. It shows that the integrated density of states
exists uniformly and the validity of a Pastur-Shubin trace formula.

Theorem 6.28. Let G be a finitely generated amenable group, let A
be given as in (6.48) and let (Qj) be a strictly increasing, tempered

Følner sequence. Furthermore let n
(ω)
j and N̄ be given as in (6.50).

Then there exists a set Ω̃ ⊆ Ω of full measure such that for all ω ∈ Ω̃
we have

n
(ω)
j → N̄ as j →∞

with respect to the supremum norm.

Proof. Let ρ, ρ
(ω)
j : B(R)→ [0, 1] be the measures associated to the

distribution functions N̄ respectively n
(ω)
j . Then obviously ρ is a

probability measure and the measures ρ
(ω)
j are bounded. As shown in

Theorem 6.5, there exists a set Ω1 ⊆ Ω with P(Ω1) = 1 such that for all

ω ∈ Ω1 the measure ρ is the weak limit of ρ
(ω)
j . Furthermore we have

by Theorem 6.25 a set Ω2 ⊆ Ω with P(Ω2) = 1 such that for all ω ∈ Ω2

and all λ ∈ R one has limj→∞ ρ
(ω)
j ({λ}) = ρ({λ}). Therefore, Lemma

6.27 yields the uniform convergence of the distribution functions for
all ω ∈ Ω1 ∩ Ω2. �
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6.3.2 Special case: randomly weighted Laplacians

In this subsection we consider a special case of the setting in Section
6.3. In fact we show that the results therein apply to randomly
weighted Laplacians on a long-range percolation graph. For simplifi-
cation we restrict ourselves to the case where G = Zd. However, the
results of this subsection are independent of that choice and randomly
weighted Laplacians can be defined on general amenable groups, in a
completely analogous way.

Let Γ be the Zd lattice and denote by dΓ : Zd×Zd → N0 the graph
distance in the lattice or equivalently the `1-distance in Zd. In the
language of finitely generated groups, Γ is the Cayley graph of Zd
with respect to the standard generators and dΓ = dS is the word
metric. With this metric the R-boundary of a set Λ ⊆ Zd is as before
given by

∂RintΛ = {x ∈ Λ | d(x, y) ≤ R for some y ∈ Zd \ Λ}.

Furthermore, we let Eco := {{x, y} ⊆ Zd | x, y ∈ Zd} be the set
of all subsets of Zd containing either one or two elements. As in
previous sections we interpret the set Eco as the edge set of the
complete undirected graph over Zd, containing loops at each vertex.

The probability space (Ω,A,P) is given in the following way. The
sample space is Ω =

∏
e∈Eco

(R× {0, 1}) and we denote the elements
in Ω by ω = (ω′e, ω

′′
e )e∈Eco . The appropriate sigma-algebra is A =⊗

e∈Eco
(B(R)⊗P({0, 1})). In order to define a measure on this space,

we fix some p ∈ `1(Zd,R) with

0 ≤ p(x) = p(−x) ≤ 1 (6.66)

for all x ∈ Zd. Let for each z ∈ Zd, νz be a Bernoulli measure with
parameter p(z). Besides this, let v ∈ R be some constant and µz,
z ∈ Zd be probability measures on R such that for all z ∈ Zd∫

R
x2dµz(x) ≤ v2. (6.67)

We set
P :=

⊗
{x,y}∈Eco

(µx−y ⊗ νx−y).
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Remark 6.29. The sigma-algebra A is generated by the cylinder sets
Y, which are given the following way

Y =
{
Z(Ae1 , Be1 , . . . , Aek , Bek) | k ∈ N, ei ∈ Eco, Aei ∈ B(R),

Bei ∈ P({0, 1}) for i = 1, . . . , k
}
,

where

Z(Ae1 , Be1 , . . . , Aek , Bek)

=
{
ω ∈ Ω | ω′ei ∈ Aei , ω

′′
ei ∈ Bei for i = 1, . . . , k

}
.

Now for each ω = (ω′e, ω
′′
e )e∈Eco

and e ∈ Eco we set Xe(ω) := ω′e
and Ye(ω) := ω′′e . This procedure gives independent random variables
Xe, Ye, e ∈ Eco satisfying P(Xe ∈ B) = µe(B) as well as P(Ye = 1) =
νe({1}) = p(x − y) for arbitrary e = {x, y} ∈ Eco and B ∈ B(R).
Furthermore, by (6.67) we have for each e ∈ Eco

E(|Xe|) ≤ v2 + 1.

These random variables induce for each ω ∈ Ω a graph Γω = (Zd, Eω)
with weighted edges. Here Zd is the vertex set and Eω is the subset
of Eco, where an edge e ∈ Eco is an element of Eω if and only if
Ye(ω) = 1. In this case, one can think of Xe(ω) as the weight of the
edge e.

As in the proof of Lemma 4.8 the assumption p ∈ `1(Zd,R) implies
that Γω is for almost all ω locally finite, i.e. each vertex is incident to
only finitely many edges in Γω. We denote by Ωlf the set of measure
one, such that for each ω of this set the graph is locally finite.

Given γ ∈ Zd, let us define translations Tγ : Ω→ Ω by

Tγ(ω) = Tγ((ω′e, ω
′′
e )e∈Eco

) = (ω′e+γ , ω
′′
e+γ)e∈Eco

,

where for e = {g, h} ∈ Eco we mean by e+ γ the element {g + γ, h+
γ} ∈ Eco. For γ ∈ Zd and B ∈ A we denote the image and the
preimage of B under Tγ by

Tγ(B) = {Tγ(ω) ∈ Ω | ω ∈ B}

and
T−1
γ (B) = {ω ∈ Ω | Tγ(ω) ∈ B}.
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Note that for B ∈ A we have T−1
γ (B) = T−γ(B). By definition,

the mapping γ 7→ Tγ maps each element of Zd into the space of
automorphisms on (Ω,A,P). We denote the family (Tγ)γ∈Zd by T .

The next result shows that the action T of Zd on (Ω,A,P) is
measure preserving and ergodic. This is rather elementary, but we
do not know an explicit reference in the literature, so we include a
proof for completeness sake.

Lemma 6.30. T is a measure preserving, ergodic left-action on
(Ω,A,P).

Proof. For an edge e = {g, h} ∈ Eco, vertices x, y ∈ Zd and ω ∈ Ω
we have T0(ω) = ω and

Tx+y(ω) = (ω′e+x+y, ω
′′
e+x+y)e∈Eco

= Tx(Ty(ω)),

which shows that T is a left action of Zd on Ω.
By definition of P and the random variables Xe and Ye we have

P(Xe ∈ B) = P(Xe+γ ∈ B) as well as P(Ye = 1) = P(Ye+γ = 1)
for any e ∈ Eco, γ ∈ Zd and B ∈ B(R). Furthermore, as Tγ is a
translation, P(Z) = P(Tγ(Z)) holds obviously for any γ ∈ Zd and
any cylinder set Z ∈ Y, which implies the same property for any set
B ∈ A, cf. Remark 6.29.

To prove ergodicity let B ∈ A with B = Tγ(B) for all γ ∈ Zd and
P(B) > 0 be given. We need to show that this implies P(B) = 1. In
the following we apply the approximation lemma for measures, which
belongs to the entourage of Carathéodory’s extension theorem, cf. e.g.
Theorem 1.65 in [Kle08]. Let ε > 0. As B ∈ A = σ(Y) and Y is a
semiring we can find cylinder sets Z1, . . . , Zn ∈ Y such that

P(B4Z) < ε where Z :=

n⋃
k=1

Zk.

This gives

P(B)2 − 2P(B)ε ≤ P(Z)2 ≤ P(B)2 + 2P(B)ε+ ε2. (6.68)

Furthermore, we have for any γ ∈ Zd

P ((Z \B) ∩ TγZ) ≤ ε and P (B ∩ (TγZ \ TγB)) ≤ ε.
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Thus we obtain

P (B ∩ TγZ) ≤ P (B ∩ (TγB ∪ (TγZ \ TγB))) ≤ P (B ∩ TγB) + ε

and hence

P(Z ∩ TγZ) ≤ P ((B ∪ (Z \B)) ∩ TγZ)

≤ P (B ∩ TγZ) + P ((Z \B) ∩ TγZ)

≤ P (B ∩ TγB) + 2ε.

By symmetry, we get for all γ ∈ Zd

P(B ∩ TγB)− 2ε ≤ P(Z ∩ TγZ) ≤ P(B ∩ TγB) + 2ε.

The T -invariance of B implies

P(B)− 2ε ≤ P(Z ∩ TγZ) ≤ P(B) + 2ε. (6.69)

As Z is a finite union of cylinder sets, it does only depend on finitely
many edges. Hence, there exists an element h ∈ Zd such that Z and
ThZ are independent, which gives

P(Z ∩ ThZ) = P(Z)P(ThZ) = P(Z)2,

since T is measure preserving. This implies together with (6.68) and
(6.69)

P(B)− 2P(B)ε− ε2 − 2ε ≤ P(B)2 ≤ P(B)

and dividing by P(B) > 0 leads to

1− 2ε− ε2 + 2ε

P(B)
≤ P(B) ≤ 1.

As this holds true for arbitrary ε > 0 we get P(B) = 1. �

Let us define the operator which is in the center of the investigations
of this subsection. In order to do so, we follow the procedure of the
beginning of Chapter 4. This means, we firstly define an operator
Ã by its matrix elements and afterwards show that this operator is
almost surely essentially self-adjoint. Finally, we define the desired
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operator (for all possible ω) as the self-adjoint extension of Ã and as
the identity elsewhere.

Let α ∈ R be some fixed number. In the following, we use the
random variables Xe, Ye, e ∈ Eco to define a random operator Ã(ω) =

Ã
(ω)
α = (Ã(ω))ω∈Ω = (Ã

(ω)
α )ω∈Ω. To this end, set

ã(ω)
α (x, y) :=

X{x,y}(ω)Y{x,y}(ω) if x 6= y,

X{x}(ω)Y{x}(ω)− α
∑
z 6=x

X{x,z}(ω)Y{x,z}(ω) if x = y,

and ã(ω)(x, y) := ã
(ω)
α (x, y). Moreover, define for φ ∈ Cc(Zd) and

x ∈ Zd:

(Ã(ω)φ)(x) := (Ã(ω)
α φ)(x) :=

∑
y∈Zd

ã(ω)(x, y)φ(y). (6.70)

Let φ ∈ Cc(Zd), ω ∈ Ωlf , then Ã(ω)φ ∈ `1(Zd) ⊆ `2(Zd). To see this,
we set M := sptφ, m := maxx∈A |φ(x)| and

Ny(ω) := {x ∈ Zd \ {y} | {x, y} ∈ Eω}

to estimate∑
x∈Zd

∣∣∣∣∑
y∈Zd

ã(ω)(x, y)φ(y)

∣∣∣∣ ≤ ∑
x∈Zd

∑
y∈M

∣∣∣ã(ω)(x, y)
∣∣∣ |φ(y)|

≤ m
∑
y∈M

∑
x∈Zd

∣∣∣ã(ω)(x, y)
∣∣∣

and∑
x∈Zd

∣∣∣ã(ω)(x, y)
∣∣∣ ≤ |ã(ω)(y, y)|+

∑
x∈Ny(ω)

x 6=y

∣∣∣ã(ω)(x, y)
∣∣∣

≤ |X{y}(ω)|+ (1 + |α|)
∑

x∈Ny(ω)

x 6=y

∣∣∣X̃{x,y}(ω)
∣∣∣ <∞.

Note that here we used that Ny(ω) is finite, as ω ∈ Ωlf and the

underlying graph Γω is locally finite. Therefore, the mapping Ã :
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Ω → L(`2(Zd)), ω 7→ Ã(ω) is a random operator on the domain
Cc(Zd). Here the measurability of Ã can be shown as in Lemma 4.1.
Moreover, it is easy to see that

(Ã(ω)φ)(x) =
∑
y 6=x

{x,y}∈Eω

(φ(y)− αφ(x))X{x,y}(ω) + φ(x)X{x}(ω).

(6.71)

Remark 6.31. The operator Ã(ω) depends on the choice of α ∈ R
and and the involved random variables. Later we will define the
self-adjoint extension A(ω) of this operator. Depending on α and the
value p(0) (since p(0) determines the distribution of random variables
Y{x}, x ∈ Zd), we have in particular the following special cases for

A(ω):

• if α = 1 and p(0) = 0, then A(ω) is the randomly weighted
Laplacian on the graph Γω,

• if α = 1 and p(0) > 0, then A(ω) is the randomly weighted
Laplacian on the graph Γω plus a random diagonal,

• if α = 0 and p(0) > 0, then A(ω) is the randomly weighted
adjacency operator of Γω plus a random diagonal,

• if α = 0 and p(0) = 0, then A(ω) is the randomly weighted
adjacency operator of Γω with zeros on the diagonal.

The diagonal elements which appear if p(0) > 0, can be interpreted
either as random weights on the loops, or as a random potential. For
values α ∈ (0, 1) the operator can be seen as an interpolation between
the adjacency operator and the Laplacian or the Schrödinger operator
of the graph Γω, respectively.

As in the situation for general groups, we define Uγ : `2(Zd) →
`2(Zd) by setting for φ = (φ(x))x∈Zd ∈ `2(Zd):

Uγ((φ(x))x∈Zd) := (φ(x+ γ))x∈Zd .

For x, y, γ ∈ Zd with x 6= y and ω = (ω′e, ω
′′
e )e∈Eco

we set s := {x, y}
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and have

ã(Tγ(ω))(x, y) = Xs(Tγ(ω))Ys(Tγ(ω))

= Xs((ω
′
e+γ , ω

′′
e+γ)e∈Eco

)Ys((ω
′
e+γ , ω

′′
e+γ)e∈Eco

)

= ω′s+γ · ω′′s+γ
= ω′{x+γ,y+γ} · ω

′′
{x+γ,y+γ}

= X{x+γ,y+γ}(ω) · Y{x+γ,y+γ}(ω) = ã(ω)(x+ γ, y + γ).

Furthermore, we obtain for the diagonal elements

ã(Tγ(ω))(x, x)

= X{x}(Tγ(ω))Y{x}(Tγ(ω))− α
∑
z 6=x

X{x,z}(Tγ(ω))Y{x,z}(Tγ(ω))

= X{x+γ}(ω)Y{x+γ}(ω)− α
∑
z 6=x

X{x+γ,z+γ}(ω)Y{x+γ,z+γ}(ω)

= ã(ω)(x+ γ, x+ γ).

This yields
Ã(Tγ(ω)) = UγÃ

(ω)U−1
γ . (6.72)

The next lemma establishes the assumptions on the operator made
in Section 6.3. We obtain essential self-adjointness and ergodicity.
Furthermore we show that we can define an operator A as in (6.48).

Lemma 6.32. Let (Ω,A,P) and the random operator Ã be given as
above. Then Ã is a symmetric and ergodic random operator on the
domain Cc(Zd) and we have∑

x∈Zd
E(|ã(x, 0)|2) <∞ and

∑
x∈Zd

P(ã(x, 0) 6= 0) <∞. (6.73)

Proof. We have already seen that Ã is a random operator on the
domain Cc(Zd). Beside this, Ã is obviously symmetric. The ergod-
icity of Ã follows directly from Lemma 6.30 and equation (6.72).
Furthermore, we calculate∑

x∈Zd\{0}

P(ã(x, 0) 6= 0) ≤
∑

x∈Zd\{0}

P(Y{x,0} = 1) ≤ ‖p‖1 <∞.
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It remains to consider the first expression in (6.73). We first study
the diagonal term for some ω ∈ Ωlf :

|ã(ω)(0, 0)|2 =

(
X{0}(ω)Y{0}(ω)− α

∑
x∈Zd\{0}

X{x,0}(ω)Y{x,0}(ω)

)2

≤ (|α|+ 1)2

( ∑
x∈N(ω)

|X{x,0}(ω)|
)2

≤ (|α|+ 1)2|N(ω)|
∑

x∈N(ω)

|X{x,0}(ω)|2.

Here we used again the notation N(ω) = {x ∈ Zd | Y{x,0}(ω) = 1}.
Moreover, we define Nx(ω) := |{y ∈ Zd \ {x} | Y{y,0}(ω) = 1}|. We
obtain

|N(ω)|
∑

x∈N(ω)

|X{x,0}(ω)|2 ≤
∑
x∈Zd
|X{x,0}(ω)|2Y{x,0}(ω)(Nx(ω) + 1)

and taking the expectation leads to

E(|ã(0, 0)|2) ≤ (|α|+ 1)2v2‖p‖1(1 + ‖p‖1) <∞,

where v is the constant from (6.67). Using this we finally get

E
(∑
x∈Zd

|ã(x, 0)|2
)
≤ E(|ã(0, 0)|2) + E

( ∑
x∈Zd\{0}

|ã(x, 0)|2
)

≤ E(|ã(0, 0)|2) + E
( ∑
x∈Zd\{0}

|X{x,0}|2Y{x,0}
)

≤ (|α|+ 1)2v2‖p‖1(1 + ‖p‖1) + v2‖p‖1 <∞,

which finishes the proof. �

The previous Lemma shows that the assumptions (6.47) are satisfied
for the operator Ã. Thus, Lemma 6.21 yields that there exists a set Ω̃
of full measure such that Ã(ω) is essentially self-adjoint for all ω ∈ Ω̃.
For each such ω we denote the self-adjoint extension of Ã(ω) by Ā(ω).
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As in (6.48) we define the random operator A = (A(ω)) by setting for
ω ∈ Ω:

A(ω) :=

{
Ā(ω) if ω ∈ Ω̃,

Id otherwise.

We can choose an appropriate Følner sequence by setting for n ∈ N:

Λn := ([0, n) ∩ Z)d (6.74)

Then, it is easy to check that (Λn) is tempered and strictly increasing.
We define for each n ∈ N the restriction

A(ω)
n := pΛnA

(ω)iΛn (6.75)

and for λ ∈ R

n(ω)
n := n(A(ω)

n ), N(ω)(λ) := 〈δ0, E(ω)
λ δ0〉 and N̄(λ) := E(N(λ)),

(6.76)
as we did it in (6.50). The function N̄ is called spectral distribution
function of the operator.

Corollary 6.33. Let A = (A(ω)), An = (A
(ω)
n ), nn and N̄ be given

as above. Then for almost all ω ∈ Ω:

lim
n→∞

‖n(ω)
n − N̄‖∞ = 0.

Proof. This result follows directly from Theorem 6.28. �

Thus, we also obtained uniform existence of the integrated density
of states as well as the validity of the Pastur-Shubin trace formula.
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Appendix: Tiling results for amenable groups

For the sake of the reader we provide here proofs of the tiling theorems
of [PS12], which we stated in the Section 5.2.1. They are crucial for
the understanding of the underlying decomposition approach, leading
to the ergodic theorem in Section 5.2.2. These tiling results constitute
a topic of importance by themselves, but not being in the center of
interest of this book, this topic is separated from the main part. A
second reason for locating these elaborations in the appendix is, that
these theorems will also appear in the PhD thesis [Pog14] of Felix
Pogorzelski, who contributed many ideas, as we will explain in the
following (at the appropriate position) in detail.

The ideas we use here are based on the seminal work [OW87]
of Ornstein and Weiss. We start with the two lemmas, which are
minor adaptions of results, which have already been proven in [OW87,
Section I.3].

Lemma A.1. Let G be a finitely generated group, δ > 0 and id ∈
K ∈ F(G). Besides this, let T ∈ F(G) be (K, δ)-invariant. Then for
the set

S := {g ∈ G | Kg ⊆ T},

the following holds true:

(i) |S| ≥ (1− δ)|T |,

(ii)
∑
c∈S 1Kc(g) ≤ |K| for all g ∈ G.

Proof. The proof of (i) follows from the fact S = T \ ∂K(T ) and
id ∈ K. In order to verify (ii) let g ∈ G be arbitrary. We use that
g ∈ Kc if and only if c ∈ K−1g to obtain∑

c∈S
1Kc(g) =

∑
c∈S

1K−1g(c) = |K−1g ∩ S| ≤ |K|. �
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Lemma A.2. Let G be a finitely generated group and let K,S, T ∈
F(G) be non-empty sets, where id ∈ K and |S| ≥ (1− δ)|T | for some
0 < δ < 1. Then for a given set A ∈ F(G) there is some c ∈ S such
that

|Kc ∩A| ≤ |A| |K|
|T |(1− δ)

. (A.1)

Proof. Let A ∈ F(G) be given. We prove the Lemma by contradiction.
To this end, assume that there is no c ∈ S such that (A.1) is satisfied.
Then we get ∑

c∈S
|Kc ∩A| > |A| |K| |S|

|T |(1− δ)
≥ |A| |K|. (A.2)

However, we also obtain∑
c∈S
|Kc ∩A| =

∑
a∈A

∑
c∈S

1K(ac−1) ≤
∑
a∈A

∑
g∈G

1K(g) = |A| |K|,

which contradicts Inequality (A.2). Therefore, we find c ∈ S such
that (A.1) holds. �

The following two lemmas are preliminaries for our main tiling
theorems, namely Theorem 5.20 and Theorem 5.22. The first of these
two lemmas says that that given ε > 0 and given some (KK−1, δ)-
invariant set T ⊆ G (and under certain additional assumptions), we
can cover a portion of T , which lies between ε − δ and ε + δ by
ε-disjoint translates of K. The lower bound was already known in
[OW87], whereas the idea to put an upper bound is due to Felix
Pogorzelski. A detailed look in the proofs shows that A.3 is a major
ingredient for Lemma A.4. In the second lemma we show that under
additional assumptions we can achieve that the part of T which
remains to be covered by translates still obeys a certain invariance
property. This makes it possible to apply this result inductively
in order to obtain the announced Theorem 5.20. Another feature
which is developed within these Lemmas is that the tiles keep certain
invariance properties with respect to a given set, cf. property (iv) of
Definition 5.17. The implementation of this idea was supported by
private communication with Benjamin Weiss.
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We we will use the notion of maximal ε-disjointness. Let (P ) be a
property which a subset of group G can obey, let I be some index set,
J ⊆ I and (Ki)i∈I a family of subsets of G. The family (Ki)i∈J is
called maximal ε-disjoint with property (P ), if (Ki)i∈J is ε-disjoint
and each Ki satisfies (P ), however for each j ∈ I \ J such that Kj

satisfies (P ), the family (Ki)i∈J∪j is no longer ε-disjoint. A family of
maximal disjoint sets with property (P ) is defined analogously. In
our examples the property (P ) will be “being a translate of a certain
set” or/and “being a subset of a certain set”. We use for instance
the term maximal ε-disjoint family of translates of K contained in T ,
where K,T ⊆ G.

For the next Lemma, recall the notion of a (B, ζ)-good small ε-quasi
tiling in Definition 5.17.

Lemma A.3. Let G be a finitely generated group, 0 < ε, δ < 1/2 and
0 < ζ ≤ δ/2. Furthermore let T,K,B ∈ F(G) be sets such that T is
(KK−1, δ)-invariant, K is (B, ζ2)-invariant and id ∈ K ∩B. Then
there exists a center set C ∈ F(G) such that K together with C is a
(B, 4ζ)-good small ε-quasi tiling of T with accuracy δ.

Proof. We start the proof with a simple calculation to estimate the
fraction |K|/|T |. For each g ∈ ∂K(T ) and t ∈ K we have tg ∈
∂KK−1(T ), which immediately gives |K| ≤ |∂KK−1(T )|. This implies

|K|
|T |
≤ |∂KK

−1(T )|
|T |

< δ, (A.3)

as T is (KK−1, δ)-invariant.
Now we formulate the following claim: If C ∈ F(G) is a set such

that the conditions (i), (ii) and (iv) of Definition 5.17 are satisfied
and additionally ∣∣∣∣⋃

c∈C
Kc

∣∣∣∣ < ε(1− 2δ)|T |,

then there exists some c̃ ∈ T such that conditions (i), (ii) and (iv) of
Definition 5.17 still hold for C ∪ {c̃}.

We postpone the proof of the claim and assume for the moment that
it holds. We proceed here inductively starting with a set C such that
only (iii) of Definition 5.17 is violated. Then we use the claim to add
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elements to C, such that in the end all conditions are satisfied with
this new set. To this end, we start with some maximal disjoint family
(Kc)c∈C of translates of K contained in T with |C||K| ≤ (ε+ δ)|T |,
which is possible by (A.3). Besides this, set K(c) := K, c ∈ C. Then
obviously (i), (ii) and (iv) of Definition 5.17 hold. If∣∣∣∣⋃

c∈C
Kc

∣∣∣∣ = |C||K| ≥ ε(1− 2δ)|T |,

then we are done with the proof since ε ≤ 1/2. Otherwise we apply
the claim and get some c̃ ∈ T such that conditions (i), (ii) and (iv) of
the Definition are still fulfilled for C ∪ {c̃}. By (A.3) we obtain∣∣∣∣ ⋃

c∈C∪c̃
Kc

∣∣∣∣ ≤ ε(1− 2δ)|T |+ δ|T | ≤ (ε+ δ)|T |.

If now the first inequality in condition (iii) of Definition 5.17 is satisfied
for C ∪ c̃ as well, then we are done, if not, we apply the claim again.
This procedure will end after finitely many steps since T contains
only finitely many elements and after each iteration we cover at least
(1− ε)|K| more than before. Thus, it remains to prove the claim.

Let C ∈ F be such that conditions (i), (ii) and (iv) of Definition
5.17 are satisfied and additionally |KC| < ε(1 − 2δ)|T |. We define
the sets

S := {g ∈ T | Kg ⊆ T}

and

U := {g ∈ S | |Kg ∩ ∂B(KC)| ≤ ζ|K|} .

As T is (KK−1, δ)-invariant, it is also (K, δ)-invariant, which gives
together with Lemma A.1 that |S| ≥ (1−δ)|T |. We use this to obtain

|T \ U | ≤ |T \ S|+ |S \ U | ≤ δ|T |+
∑
g∈S

1S\U (g)

≤ δ|T |+
∑
g∈S

|Kg ∩ ∂B(KC)|
ζ|K|

.
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A closer look on the last term gives with the application of Lemma
A.1 part (ii)∑

g∈S
|Kg ∩ ∂B(KC)| ≤

∑
g∈S

∑
h∈∂B(KC)

1Kg(h) ≤ |∂B(KC)||K|.

The ε-disjointness yields

(1− ε)|C||K| ≤ |KC| ≤ ε(1− 2δ)|T |,

which immediately implies, using the upper bounds for ε and δ, that
|K||C| ≤ 2|T |. With the above estimates and property (vi) of Lemma
2.1 we end up with

|T \ U | ≤ δ|T |+ |∂B(K)||C|
ζ

≤ δ|T |+ 2|T ||∂B(K)|
ζ|K|

≤ 2δ|T |,

where the last inequality follows from the fact that ζ ≤ δ/2. In other
words, we obtained |U | ≥ (1− 2δ)|T |, which puts us into the position
to apply Lemma A.2. Thus, we find some c̃ ∈ U such that

|Kc̃ ∩KC| ≤ |KC||K|
|T |(1− 2δ)

< ε|K|,

which proves that property (ii) of Definition 5.17 holds for C∪{c̃}. As
c̃ ∈ U ⊆ S we have Kc̃ ⊆ T , which gives that also (i) holds with the
new set C ∪ {c̃}. We set K(c̃) := (Kc̃ \KC) c̃−1 then by the above
inequality we get |K(c̃)| ≥ (1− ε)|K|. Hence, with the statements (v)
and (vii) of Lemma 2.1 and with c̃ ∈ U and the definition of U , we
have

|∂B(K(c̃))| ≤ |∂B(Kc̃ \KC)| ≤ |Kc̃ ∩ ∂B(KC)|+ |∂B(K)|
≤ ζ|K|+ |∂B(K)|

and using 0 < ε < 1/2, one obtains

|∂B(K(c̃))|
|K(c̃)|

≤ ζ|K|
(1− ε)|K|

+
|∂B(K)|

(1− ε)|K|
≤ 2ζ + 2ζ2 ≤ 4ζ.

Thus (iii) holds as well and the claim is proven. �
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In the following we refine the result of Lemma A.3. We show that
under additional assumptions we can ensure that the part of T which
is not yet covered by tiles, still satisfies an invariance property.

Lemma A.4. Let G be a finitely generated group, 0 < ε, δ < 1/6,
0 < ζ < δ/4 and η > 0. Furthermore let T,K,L,B ∈ F(G) with
id ∈ L ⊆ K, id ∈ B and let T be (KK−1, δ)-invariant and K be
(LL−1, η)-invariant, as well as (B, ζ2)-invariant. Then there is a
set C ∈ F(G) such that T \ KC is (LL−1, 2δ + η)-invariant and
K together with C is a (B, 4ζ)-good small ε-quasi tiling of T with
accuracy δ.

Proof. As the assumptions of Lemma A.3 are satisfied, we get a set C
such that the properties (i) to (iv) of Definition 5.17 are fulfilled, i.e.
we obtain a (B, 4ζ)-good small ε-quasi tiling of T with accuracy δ. We
show that with this set C, the set T \KC is (LL−1, 2δ+ η)-invariant.
Therefore, first note that by properties (i) and (iii) in Definition 5.17
and we have

|T \KC| = |T | − |KC| ≥ (1− (ε+ δ))|T | ≥ 2

3
|T |. (A.4)

Besides this, we obtain by another application of (i) and (iii) in
Definition 5.17

|C|
|T |
≤ (ε+ δ)|C|

|KC|
=

(ε+ δ)|C|∑
c∈C |K(c)|

≤ (ε+ δ)|C|
(1− ε)|C||K|

≤ 2

5|K|
. (A.5)

Now, we use properties (iii) and (vi) of Lemma 2.1 and put the
estimates (A.4) and (A.5) together to end up with

|∂LL−1(T \KC)|
|T \KC|

≤ 3|∂LL−1(T )|
2|T |

+
3|C||∂LL−1(K)|

2|T |

≤ 3

2
δ +

3|∂LL−1(K)|
5|K|

≤ 2δ + η.

Note that here, we used that T is (LL−1, δ)-invariant since L ⊆ K
and T is (KK−1, δ)-invariant, cf. property (iv) in Lemma 2.1. This
finishes the proof. �
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Now we are in the position to prove the first tiling theorem. It
improves results from [OW87] and it is joint work with Felix Pogorzel-
ski.

Proof of Theorem 5.20. Let ε and β with 0 < β < ε ≤ 1/10 be
given. Set δ := δ(ε, β) := β6−N(ε). We start choosing the sets
Ki ∈ {Qn | n ∈ N}, i = 1, . . . , N(ε) inductively in the following way:
set K1 := Q1 and if Ki = Qk then take Ki+1 ∈ {Qn | n ≥ k + 1},
which is (KiK

−1
i , δ)-invariant. Then obviously Ki ∈ {Qn | n ≥ i} for

all i = 1, . . . , N(ε). Furthermore, as (Qn) is nested each Ki contains
the unit element.

Now let some ζ > 0 and B ∈ F(G) with id ∈ B be given. Without
loss of generality we assume that each element of the sequence (Qn)
is (B, ζ2/16)-invariant and that ζ < δ. If the first assumption would
not hold, take the Ki from a subsequence of (Qn) containing only
(B, ζ2/16)-invariant elements. If ζ is not chosen to be smaller than δ,
then we can take some ζ̃ < δ and repeat all the steps of the proof.
Hence, all claimed statements will hold for the original ζ as well. We
will use the notation N := N(ε).

Now assume that T ∈ F(G) is (KNK
−1
N , δ)-invariant. We apply

Lemma A.4 with “T = T”, “K = KN”, “L = KN−1”, “B = B” and
“ζ = ζ/4” to obtain a finite set CTN such that KN with center set
CTN is a (B, ζ)-good small ε-quasi tiling of T with accuracy δ. And
we have that D1 := T \KNC

T
N is (KN−1K

−1
N−1, δ1)-invariant, where

δ1 = 3δ.

Now we use Lemma A.4 inductively. If for some l ∈ {1, . . . , N − 1}
the set Dl is chosen as a (KN−lK

−1
N−l, δl)-invariant set, we apply the

Lemma with “T = Dl”, “K = KN−l”, “L = KN−l−1”, “B = B”,
“δ = δl”, “η = δ” and “ζ = ζ/4”. Note that here it is important that
δl is small enough, which we will ensure afterwards. This gives an
appropriate set CTN−l ∈ F(G) such that Dl+1 := Dl \KN−lC

T
N−l is

(KN−l−1K
−1
N−l−1, δl+1)-invariant, where δl+1 := 2δl + δ. Again we

obtain a (B, ζ)-good small ε-quasi tiling with accuracy δl.

We set δ0 = δ and obtain the closed formula δl = (2l+1 − 1)δ for
all l = 1, . . . , N − 1. Therefore, for arbitrary l ∈ {1, . . . , N − 1} we
have δl ≤ δN−1 = (2N − 1)δ ≤ 1/6, which shows that all δl are small
enough to apply Lemma A.4. Furthermore the Lemma implies the
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inequalities

ε− δl ≤
|KN−lC

T
N−l|

|Dl|
≤ ε+ δl (A.6)

for all l = 0, . . . , N − 1, where D0 := T . We claim that for all
l = 0, . . . , N − 1 we have

ε(1− ε)l − 3lδl ≤
|KN−lC

T
N−l|

|T |
≤ ε(1− ε)l + 3lδl. (A.7)

We proceed by induction on l. Note that the case l = 0 follows from
inequality (A.6). Now let l ∈ N with l ≤ N − 1 and assume that
(A.7) holds for all k = 0 . . . , l − 1. By the induction hypothesis, we
can sum up the resulting inequalities and arrive at

ε

l−1∑
k=0

(1− ε)k −
l−1∑
k=0

3kδk ≤
|
⋃l−1
k=0KN−kC

T
N−k|

|T |

≤ ε
l−1∑
k=0

(1− ε)k +

l−1∑
k=0

3kδk.

The inductive definition of the set Dl gives the equality

T \Dl =

l−1⋃
k=0

KN−kC
T
N−k

and hence

1− ε
l−1∑
k=0

(1− ε)k −
l−1∑
k=0

3kδk ≤
|Dl|
|T |
≤ 1− ε

l−1∑
k=0

(1− ε)k +

l−1∑
k=0

3kδk.

This simplifies, using the sum formula for the geometric series and
δl ≥ δk for k ≤ l, to

(1− ε)l − 3lδl ≤
|Dl|
|T |
≤ (1− ε)l + 3lδl. (A.8)

A combination of the inequalities (A.8) and (A.6) gives

(ε− δl)
(
(1− ε)l − 3lδl

)
≤
|KN−lC

T
N−l|

|T |
≤ (ε+ δl)

(
(1− ε)l + 3lδl

)
.
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We use this to obtain∣∣∣∣ |KN−lC
T
N−l|

|T |
− ε(1− ε)l

∣∣∣∣ ≤ δl(1− ε)l + 3lδ2
l + 3lεδl

≤ δl(1 + 3lδl + 3lε).

In order to prove (A.7) it is sufficient to show 1 + 3lδl + 3lε ≤ 3l.
This is true since ε ≤ 1/4 and δl < 2Nδ ≤ 1/4 by the choice of δ.
Now we use that for all l ∈ {0, . . . , N − 1} we have 3l ≤ 3N and
δl < 2Nδ = β3−N to obtain for all i ∈ {1, . . . , N}:∣∣∣∣ |KiC

T
i |

|T |
− ε(1− ε)N−i

∣∣∣∣ < 3N2Nδ = β.

This proves (iii) of Definition 5.17. Properties (i), (ii) and (iv) of
Definition 5.17 follow from the construction of the sets CTk , k =
1, . . . , N . �

Now we have everything together to prove the uniform tiling theo-
rem, namely Theorem 5.22. This theorem substantially refines results
from [OW87]. The main ideas and the concept of the proof are due to
Felix Pogorzelski. Before starting the proof, let us roughly describe
the idea. In Theorem 5.20 we have seen that one can, for fixed ε and
β, find sets Ki, i = 1, . . . , N such that each sufficiently invariant set
T can be ε-quasi tiled by these sets. In Theorem 5.22 we show that
this result holds even in a certain uniformity. We claim that for each
sufficiently invariant T we can find several tilings with these (fixed)
sets Ki, such that on average each of these tiles Ki appears at any
position in T with the same “frequency”.

In order to find this family of tilings, we make use of Theorem 5.20
on different levels. First we apply Theorem 5.20 to obtain for the
given ε and β the sets Ki. Then, using the same theorem, we obtain
a collection of much more invariant tiles K̄l, in a way such that each
quasi tiling with the sets K̄l can be made disjoint using property (v)
of Definition 5.18. Then, the resulting disjoint sets are still invariant
enough, such that one can ε-quasi tile them with the sets Ki.

Having these different levels of tilings at hand, one chooses T so
invariant, such that it can be tiled with both sets of tiles. Furthermore
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a set T̂ is chosen even more invariant, in a way that it can be tiled
with the K̄l and that the TT−1-boundary of T̂ is very small.

This brings us in the position to choose the appropriate center
sets. First we choose these center set for a tiling of T̂ with elements
of K̄l. Then we make these translates disjoint, and choose for each
such set a center set for a tiling with the sets Ki. If we now consider
translates Ta of T , which are completely contained in T̂ , then also
these translates Ta are tiled by the K̄l and therefore as well tiled by
the sets Ki. Shifting these tilings with a−1 back to T then gives a
family of tilings for T .

Proof of Theorem 5.22. First realize that the assumptions of Theo-
rem 5.20 are satisfied and let

id ∈ K1 ⊆ · · · ⊆ KN(ε)

be the sets given by this theorem as elements of the nested Følner
sequence (Qn).

Define ζ := 6−N(ε)β. Furthermore, we introduce a new parameter,
namely δ := β2/(100|KN(ε)|2). During the proof we will need, that
this choice implies

δ ≤ β

2
, δ ≤ ε2

4
,

1

1− 5
√
δ
− 1 ≤ β

|KN(ε)|
and 5

√
δ ≤ β

|KN(ε)|
.

(A.9)

We proceed in nine steps.

(1) Let (Q′n) be a subsequence of (Qn) consisting of sets, which
are (KN(ε)K

−1
N(ε), ζ

2)-invariant and which satisfies the property

KN(ε) ⊆ Q′1. Furthermore, let β̄ := δ/N(δ) be given. We apply
Theorem 5.20 with the nested Følner sequence (Q′n), 0 < β̄ < δ,
B = KN(ε)K

−1
N(ε) and ζ = ζ and obtain sets

K̄1 ⊆ · · · ⊆ K̄N(δ).

As (Uj) is assumed to be a Følner sequence, we find j0 ∈ N
such that for each j ≥ j0 the set Uj is (K̄N(δ)K̄

−1
N(δ), δ/N(δ))-

invariant. Note that j0 does only depend on ε, β and the chosen
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sets K̄l, l = 1, . . . , N(δ). We choose an arbitrary j ≥ j0 and set
T := Uj . Now we choose another very invariant set: let T̂ be
(TT−1, δ)-invariant and (K̄N(δ)K̄

−1
N(δ), β̄6−N(δ))-invariant. One

can for instance take T̂ as an element of the Følner sequence (Uj)
for j large enough. We define

A := {a ∈ T̂ |TT−1a ⊆ T̂} and A := {g ∈ G |Tg ⊆ T̂}

and obtain with Lemma A.1 that |A| ≥ (1− δ)|T̂ |. Furthermore,
since for every s ∈ T we have A ⊆ sA the inequality |A| ≥
(1− δ)|T̂ | holds as well.

(2) As T̂ is chosen invariant enough, we find by Theorem 5.20 sets C̄l
such that the K̄l and C̄l, l = 1, . . . , N(δ) are a (KN(ε)K

−1
N(ε), ζ)-

good δ-quasi tiling of T̂ with accuracy β̄ and densities ηl(δ), l =

1, . . . , N(δ). As in Definition 5.18 we use the notation K̄
(c)
l ⊆ K̄l,

c ∈ C̄l for the pairwise disjoint (KN(ε)K
−1
N(ε), ζ)-invariant sets

which also fulfill the rest of the properties in (v) of Definition 5.18.
By a calculation in Remark 5.19 and the fact that β̄ = δ/N(δ)
we get

|B(δ)| =
N(δ)∑
l=1

∑
c∈C̄l

|K̄(c)
l c| ≥ (1− 2δ)|T̂ |, (A.10)

where

B(δ) :=

N(δ)⋃
l=1

⋃
c∈C̄l

K̄
(c)
l c, (A.11)

which shows that these disjoint translates (1−2δ)-cover the set T̂ .

(3) By Theorem 5.20 and since each K̄
(c)
l is (KN(ε)K

−1
N(ε), ζ)-invariant

and ζ = β6−N(ε) we find for each l ∈ {1, . . . , N(δ)} and c ∈ C̄l a
set Ci(l, c), such that Ki with center sets Ci(l, c), i = 1, . . . , N(ε)

are an ε-quasi tiling of K̄
(c)
l c with accuracy β and densities ηi(ε),

i = 1, . . . , N(ε). Using again the last item in Remark 5.19 and
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the assumption β ≤ ε/N(ε) we obtain

∣∣∣∣N(ε)⋃
i=1

KiCi(l, c)

∣∣∣∣ ≥ (1− 2ε)
∣∣∣K̄(c)

l

∣∣∣ . (A.12)

Now, define for i ∈ {1, . . . , N(ε} the set

Ĉi :=

N(δ)⋃
l=1

⋃
c∈C̄l

Ci(l, c).

This set Ĉi can be seen as a center set for the sets Ki in the set
T̂ . In fact we have that Kic, c ∈ Ĉi are ε-disjoint and for i 6= j

it follows from the disjointness of the K̄
(c)
l c, l ∈ {1, . . . , N(δ)},

c ∈ C̄l that KiĈi ∩KjĈj = ∅. Let us investigate the covering
properties of this tiling.

(4) In this step we show that the portion of T̂ which is covered
by KiĈi is ηi(ε) up to a (small) error of 2β. To this end we

first use the disjointness of the K̄
(c)
l c for all c ∈ C̄l and all

l ∈ {1, . . . , N(δ)} and get

|KiĈi| =
N(δ)∑
l=1

∑
c∈C̄l

|KiCi(l, c)| ≥
N(δ)∑
l=1

∑
c∈C̄l

|K̄(c)
l |(ηi(ε)− β).

Here we used property (iv) of Definition 5.18, which holds since
Ki with center sets Ci(l, c), i = 1, . . . , N(ε) are a ε-quasi tiling

of K̄
(c)
l c with accuracy β and densities ηi(ε), i = 1, . . . , N(ε), see

step (3). Now use the estimate (A.10) and the definition of B(δ)
in (A.11) to get

|KiĈi|
|T̂ |

≥ ηi(ε)− β
|T̂ |

|B(δ)| ≥ (ηi(ε)− β)(1− 2δ) ≥ ηi(ε)− 2β,

where we applied 2δ ≤ β, see (A.9). The upper bound is even
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easier. Again by property (iv) of Definition 5.18 we get

|KiĈi|
|T̂ |

≤
N(δ)∑
l=1

∑
c∈C̄l

|K̄(c)
l |

ηi(ε) + β

|T̂ |
= |B(δ)| ηi(ε) + β

|T̂ |

≤ ηi(ε) + β.

These estimates give together that for each i ∈ {1, . . . , N(ε)}:∣∣∣∣ |KiĈi|
|T̂ |

− ηi(ε)
∣∣∣∣ ≤ 2β. (A.13)

(5) In this step we fix i ∈ {1, . . . , N(ε)} and estimate the difference
between the quotients γi := |Ĉi|/|T̂ | and ηi(ε)/|Ki|. We use
triangle inequality, ε-disjointness and estimate (A.13) to get∣∣∣∣γi − ηi(ε)

|Ki|

∣∣∣∣ ≤ 1

|Ki|

∣∣∣∣∣ |Ĉi| |Ki|
|T̂ |

− |KiĈi|
|T̂ |

∣∣∣∣∣+
1

|Ki|

∣∣∣∣∣ |KiĈi|
|T̂ |

− ηi(ε)

∣∣∣∣∣
≤ 1

|Ki|
ε|Ĉi| |Ki|
|T̂ |

+
2β

|Ki|
= γi ε+

2β

|Ki|
. (A.14)

Now, let us show that with this choice of γi we have the estimate∑N(ε)
i=1 γi|Ki| ≤ 2. It follows from the ε-disjointness and the rough

bound ε ≤ 1/2 that

|Ki| |Ĉi| ≤
1

1− ε

∣∣∣KiĈi

∣∣∣ ≤ 2
∣∣∣KiĈi

∣∣∣ .
We use this to estimate

N(ε)∑
i=1

γi|Ki| ≤
N(ε)∑
i=1

|Ki||Ĉi|
|T̂ |

≤ 2

N(ε)∑
i=1

|KiĈi|
|T̂ |

=
2

|T̂ |

∣∣∣∣N(ε)⋃
i=1

KiĈi

∣∣∣∣ ≤ 2,

which proves the claimed inequality.

(6) This step of the proof is devoted to the investigation of the
translates of T which lie entirely in T̂ . We will show that most

of these translates are (1− 3ε)-covered by
⋃N(ε)
i=1 KiĈi. In step
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(1) we already defined the set A consisting of all a ∈ G such that
Ta ⊆ T̂ . For each a ∈ A we define

X(a) :=
|Ta ∩ (T̂ \B(δ))|

|Ta|
=
|Ta \B(δ)|
|T |

to be the part of Ta, which is not covered by translates K̄
(c)
l c,

l = 1, . . . , N(δ), c ∈ C̄l, see (A.11) for the definition of B(δ). Let
us for a moment treat this X as a uniformly distributed random
variable, with respect to the counting measure. Evidently X
maps from A to [0, 1]. We use Tschebyscheff inequality to obtain

√
δ
∣∣{a ∈ A | X(a) >

√
δ
}∣∣ ≤∑

a∈A
|X(a)|

=
1

|T |
∑
a∈A

∑
g∈G

1Ta\B(δ)(g).

The last sum can be estimated in the following way

1

|T |
∑
a∈A

∑
g∈G

1Ta\B(δ)(g) ≤ 1

|T |
∑
a∈A

∑
g∈T̂\B(δ)

1Ta(g)

≤ 1

|T |
∑

g∈T̂\B(δ)

∑
a∈A

1Ta(g)

≤ 1

|T |
|T̂ \B(δ)||T | = |T̂ \B(δ)| ≤ 2δ|T̂ |,

where the last step uses (A.10). We use the lower bound on |A|,
obtained in step (1) and δ ≤ 1/2 to get

|{a ∈ A | X(a) >
√
δ}| ≤ 2

√
δ|T̂ | ≤ 2

√
δ|A|

1− δ
≤ 4
√
δ|A|,

or in other words

|Λ| ≥ (1− 4
√
δ)|A|, where Λ :=

{
a ∈ A | X(a) ≤

√
δ
}
.

(A.15)

We have seen that, up to a portion of 4
√
δ, the translates of T

which lie entirely in T̂ are (1−
√
δ)-covered by our tiling. However,
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as for each a we are interested in a tiling of Ta with subsets of
Ta, we need to delete elements of this covering, which have a
non-empty intersection with G \ Ta. Define for l ∈ {1, . . . , N(δ)}
and a ∈ A the sets

∂(a, l) :=
{
c ∈ C̄l | K̄(c)

l c ∩ Ta 6= ∅, K̄(c)
l c ∩ (G \ Ta) 6= ∅

}
,

I(a, l) :=
{
c ∈ C̄l | K̄(c)

l c ⊆ Ta
}
.

Then we have for c̃ ∈ ∂(a, l) that K̄
(c)
l c̃ ⊆ ∂K̄lK̄−1

l
(Ta), which

gives

N(δ)⋃
l=1

⋃
c∈∂(a,l)

K̄
(c)
l c ⊆

N(δ)⋃
l=1

∂K̄lK̄−1
l

(Ta). (A.16)

Hence, using the assumed invariance properties of T in step (1),
this yields

1

|T |

∣∣∣∣N(δ)⋃
l=1

⋃
c∈∂(a,l)

K̄
(c)
l c

∣∣∣∣ ≤ 1

|T |

N(δ)∑
l=1

∣∣∂K̄lK̄−1
l

(T )
∣∣ ≤ N(δ)∑

l=1

δ

N(δ)
= δ.

(A.17)

Therefore, we have for each a ∈ Λ the estimate

∣∣∣∣N(δ)⋃
l=1

⋃
c∈I(a,l)

K̄
(c)
l c

∣∣∣∣ ≥ |Ta ∩B(δ)| −
∣∣∣∣N(δ)⋃
l=1

⋃
c∈∂(a,l)

K̄
(c)
l c

∣∣∣∣
≥ (1−

√
δ − δ)|T |. (A.18)

Now let us estimate the part of Ta, which is covered by translates
Ki, i = 1, . . . , N(ε), which lie completely in Ta. To this end, we
set for each a ∈ A

C̃i(a) :=

N(δ)⋃
l=1

⋃
c∈I(a,l)

Ci(l, c), and D(a) :=

N(ε)⋃
i=1

KiC̃i(a) ⊆ Ta.
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Then, using the disjointness of K̄
(c)
l c, l ∈ {1, . . . , N(δ)}, c ∈ C̄l

and the estimate (A.12) we have for a ∈ Λ:

|D(a)| =
N(δ)∑
l=1

∑
c∈I(a,l)

∣∣∣∣N(ε)⋃
i=1

KiCi(l, c)

∣∣∣∣ ≥ (1− 2ε)

N(δ)∑
l=1

∑
c∈I(a,l)

|K̄(c)
l |.

Thus, the bound in (A.18) and δ ≤ ε2/4, see (A.9), give for a ∈ Λ

|D(a)| ≥ (1− 2ε)(1−
√
δ − δ)|T | ≥ (1− 3ε)|T |. (A.19)

(7) This step is devoted to put things together and to show that
properties (i)-(iv) of Definition 5.21 are satisfied. The idea is
that we translate the covering we obtained for Ta by a−1, to
obtain a family of coverings for T . In the previous step we already
defined the set Λ, which obviously corresponds to T = Uj and
we therefore sometimes add the index j, i.e. we set Λj := Λ. The

combination of (A.15) and the estimate |A| ≥ (1 − δ)|T̂ | from
step (1) gives

|Λ| ≥ (1− 4
√
δ)(1− δ)|T̂ | ≥ (1− 5

√
δ)|T̂ |. (A.20)

Furthermore, we define for each λ ∈ Λ and i ∈ {1, . . . , N(ε)} the
set

Cλi := Cλi (j) := C̃i(λ)λ−1.

Then we have

N(ε)⋃
i=1

KiC
λ
i = D(λ)λ−1 ⊆ T. (A.21)

By construction we get that the properties (i), (ii) and (iii)
are fulfilled with this choice of Λj = Λ and Cλi , λ ∈ Λ, i ∈
{1, . . . , N(ε)}. Moreover, property (iv) is implied by the Esti-
mate (A.19) and (A.21).

(8) We start this step by choosing r := diam(K̄N(δ)K̄
−1
N(δ)). There-

fore, r depends only on ε, β and the choices of the tiles Ki,
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i = 1, . . . , N(ε) and K̄l, l = 1 . . . , N(δ). In particular, r is
independent of j, the index of Uj = T . Furthermore, we have

∂r(T ) ⊇ ∂K̄N(δ)K̄
−1
N(δ)

(T ) =

N(δ)⋃
l=1

∂K̄lK̄−1
l

(T ). (A.22)

In this step we prove that for any i ∈ {1, . . . , N(ε)} and g ∈
T \ ∂r(T ) = T (r) we have∣∣∣∣ 1

|Λ|
∑
λ∈Λ

1Cλi (g)− γi
∣∣∣∣ ≤ β

|Ki|
, (A.23)

where as before we have γi = |Ĉi|/|T̂ |. To this end, note that for
given i ∈ {1, . . . , N(ε)} and λ ∈ Λ we have g ∈ Cλi , if and only

if λ ∈ u−1C̃i(λ). Using that for each λ ∈ Λ we have C̃i(λ) ⊆ Ĉi
implies that for i ∈ {1, . . . , N(ε)} and g ∈ T we obtain∑
λ∈Λ

1Cλi (g) =
∑
λ∈Λ

1g−1C̃i(λ)(λ) ≤
∑
λ∈Λ

1g−1Ĉi
(λ) = |gΛ ∩ Ĉi| ≤ |Ĉi|,

(A.24)

such that we get with (A.20)

1

|Λ|
∑
λ∈Λ

1Cλi (g) ≤ |Ĉi|
|Λ|
≤ |Ĉi|

(1− 5
√
δ)|T̂ |

.

Applying the third inequality in (A.9), this results in

1

|Λ|
∑
λ∈Λ

1Cλi (g)− |Ĉi|
|T̂ |
≤
(

1

1− 5
√
δ
− 1

)
|Ĉi|
|T̂ |

≤ 1

1− 5
√
δ
− 1 ≤ β

|Ki|
. (A.25)

Now, we estimate in the other direction. To this end, we fix some
g ∈ T (r). First we claim that for each i ∈ {1, . . . , N(ε)} and
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λ ∈ Λ:

Ĉi ∩ Tλ ⊆ C̃i(λ) ∪
N(δ)⋃
l=1

⋃
c∈∂(λ,l)

Ci(l, c)

⊆ C̃i(λ) ∪
N(δ)⋃
l=1

∂K̄lK̄−1
l

(Tλ) ⊆ Cλi λ ∪ ∂r(T )λ. (A.26)

To see the first inclusion, let x ∈ Ĉi ∩ Tλ be given. Then there
exists l ∈ {1, . . . , N(δ)} and c ∈ C̄l with x ∈ Ci(l, c). If c ∈ I(λ, l),
we are done, since then x ∈ C̃i(λ). Therefore, let c /∈ I(λ, l). Then

we have K̄
(c)
l c * Tλ, but as x ∈ Ci(l, c) and id ∈ Ki we also

get x ∈ Kix ⊆ K̄
(c)
l c. This shows together with x ∈ Tλ that

c ∈ ∂(λ, l), which proves the first inclusion in the claim. The

second inclusion follows from Ci(l, c) ⊆ K̄
(c)
l c and (A.16). The

last inclusion uses (A.22) and (v) in Lemma 2.1. Now with (A.26)
we get

Ĉiλ
−1 ∩ (T \ ∂r(T )) ⊆ Cλi .

This implies with g ∈ T \ ∂r(T ) that we have for each λ ∈ Λ:

1Cλi (g) ≥ 1Ĉiλ−1∩(T\∂r(T ))(g) = 1Ĉiλ−1(g) = 1g−1Ĉi
(λ).

This shows with the above calculations in (A.24) that∑
λ∈Λ

1Cλi (g) = |gΛ ∩ Ĉi|.

Next, use gΛ∩ Ĉi ⊇ Ĉi \(T̂ \gΛ) and estimate (A.20) to calculate

|gΛ ∩ Ĉi|
|Λ|

≥ |Ĉi|
|T̂ |
− |T̂ \ gΛ|

|T̂ |
≥ |Ĉi|
|T̂ |
− 1 +

|Λ|
|T̂ |
≥ |Ĉi|
|T̂ |
− 5
√
δ.

With the fourth inequality in (A.9) this implies

|Ĉi|
|T̂ |
− 1

|Λ|
∑
λ∈Λ

1Cλi (g) ≤ 5
√
δ ≤ β

|Ki|
.

This, together with (A.25), proves (A.23).
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(9) In the final step we combine the estimates from step (8) and
step (5) to obtain property (v) of Definition 5.21. To be precise,
we use (A.14) and (A.23) to estimate for each g ∈ T (r) and
i ∈ {1, . . . , N(ε}:∣∣∣∣ 1

|Λ|
∑
λ∈Λ

1Cλi (g)− ηi(ε)

|Ki|

∣∣∣∣ ≤ ∣∣∣∣ 1

|Λ|
∑
λ∈Λ

1Cλi (g)− γi
∣∣∣∣+

∣∣∣∣γi − ηi(ε)

|Ki|

∣∣∣∣
≤ γiε+

3β

|Ki|
.

This finishes the proof. �
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The present work investigates spectral properties of operators on
graphs or finitely generated groups, respectively. First we present the
results concerning operators on finitely generated sofic groups. Here
one obtains approximating operators by an appropriate transforma-
tion of the operator in question to a finite dimensional operator on
the sofic approximation graph.

(1) Let A be a (deterministic) translation invariant, self-adjoint op-
erator on a sofic group, such that Cc(G) is a core of A. Then the
integrated density of states exists as a weak limit of distribution
functions. Moreover, the Pastur-Shubin trace formula holds true.

(2) Let A be a random Hamiltonian on a sofic group, given as in
(4.6). Then, almost surely, the normalized eigenvalue counting
functions converge weakly to a function, which is independent
of the specific realization. Moreover, the Pastur-Shubin trace
formula holds true.

(3) The convergence results of (1) and (2) hold in particular for
operators on the free group. Here we can state a specific sequence
of approximating finite graphs. In the special case where the
operator in question is the adjacency operator of the Cayley graph
of the free group, the IDS exists uniformly.

(4) The graph Laplacian of a long-range percolation graph on a sofic
group is a random Hamiltonian in the sense of (4.6). Thus, the
above results apply and we obtain for almost all realizations the
existence of the IDS as a weak limit of distribution functions and
the validity of the Pastur-Shubin trace formula.

The following assertions concern deterministic operators on amena-
ble groups. We assume that there is a fixed coloring C which maps
each element of the group into a finite set A. Furthermore, we require
that the frequencies of patterns exist along the Følner sequence (Uj).
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Here, the approximating operators are defined as restrictions of the
operator under consideration to the elements of the Følner sequence
(Uj).

(5) Let F be an almost-additive function, mapping a finite subset of
an amenable group into some Banach space. Then, for the Følner
sequence (Uj) the limit

lim
j→∞

F (Uj)

|Uj |

exists as element in the Banach space. Moreover, this limit can be
expressed using a semi-explicit formula in terms of frequencies of
patterns. Besides this, one can estimate the speed of convergence.
These facts are stated in a Banach space-valued ergodic theorem.

(6) Let A be a deterministic, C-invariant operator of finite hopping
range. Then the integrated density of states exists as a uniform
limit of the normalized eigenvalue counting functions of the ap-
proximating operators. Besides this, an estimate for the speed of
convergence can be verified.

(7) Assume the setting of (6). If the frequencies are strictly positive
for all patterns which occur in C, the spectrum of A is the
topological support of the measure associated to the IDS.

(8) With the same assumption as in (7) the points of discontinuity
of the IDS can be characterized as the elements in the spectrum,
which admit a finitely supported eigenfunction.

(9) If the coloring C of the group is given randomly with an underlying
measure preserving and ergodic group action on the probability
space, then the frequencies of all patterns exist along a given
Følner sequence almost surely.

Next, we discuss random operators on finitely generated amenable
groups. The approximating operators are here obtained by restricting
the operator in question to elements of a Følner sequence.

(10) Let a random operator as in (6.1) be given. Then, almost surely,
the normalized eigenvalue counting functions converge weakly to
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a non-random distribution function and the Pastur-Shubin trace
formula holds true.

(11) If A is a random operator as in (6.48) then associated integrated
density of states exists uniformly and the Pastur-Shubin trace
formula holds true. Note that (6.48) is slightly more restrictive
than (6.1).

(12) If the operator in consideration is the graph Laplacian of a long-
range percolation graph over an ST-amenable group, then uniform
convergence of (11) can be obtained by methods of a Banach
space-valued ergodic theorem. Moreover, under the additional
assumption that for each edge the probability of existence is
an number in (0, 1), we have: an element λ ∈ R is a point of
discontinuity of the IDS if and only if λ is an eigenvalue of some
finite graph.

(13) The results of (11) apply also to randomly weighted Laplacians.
Here the weights are independent random variables on the edges,
taking values in a possibly infinite and unbounded subset of R.

In (5) we referred to a Banach space-valued ergodic theorem. In
order to prove this for all amenable groups, it turns out that one needs
to apply the theory of ε-quasi tilings. The following assertions are
related to this topic and hold true for an arbitrary finitely generated
amenable group.

(14) Given positive ε and β, then one can find finitely many sets Ki,
i = 1, . . . , N(ε), such that each sufficiently invariant set T can
be ε-quasi tiled with these sets, accuracy β and densities ηi(ε),
i = 1, . . . , N(ε). For the precise definitions of ηi(ε) and N(ε) we
refer to (5.21) and (5.20), respectively.

(15) Given positive ε and β, then one can find finitely many sets
Ki, i = 1, . . . , N(ε), such that each sufficiently invariant set T
can be uniformly ε-quasi tiled by the sets Ki, i = 1, . . . , N(ε)
with respect to certain parameters (β, r, γ, η(ε)). This means
that there exists a family of ε-quasi tilings such that (nearly)
each element of T is covered by (nearly) the same amount of tiles
among this family.
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