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Abstract. A key component for automated driving is 360◦

environment detection. The recognition capabilities of mod-

ern sensors are always limited to their direct field of view.

In urban areas a lot of objects occlude important areas of in-

terest. The information captured by another sensor from an-

other perspective could solve such occluded situations. Fur-

thermore, the capabilities to detect and classify various ob-

jects in the surrounding can be improved by taking multiple

views into account.

In order to combine the data of two sensors into one co-

ordinate system, a rigid transformation matrix has to be de-

rived. The accuracy of modern e.g. satellite based relative

pose estimation systems is not sufficient to guarantee a suit-

able alignment. Therefore, a registration based approach is

used in this work which aligns the captured environment data

of two sensors from different positions. Thus their relative

pose estimation obtained by traditional methods is improved

and the data can be fused.

To support this we present an approach which utilizes the

uncertainty information of modern tracking systems to de-

termine the possible field of view of the other sensor. Fur-

thermore, it is estimated which parts of the captured data is

directly visible to both, taking occlusion and shadowing ef-

fects into account. Afterwards a registration method, based

on the iterative closest point (ICP) algorithm, is applied to

that data in order to get an accurate alignment.

The contribution of the presented approch to the achiev-

able accuracy is shown with the help of ground truth data

from a LiDAR simulation within a 3-D crossroad model. Re-

sults show that a two dimensional position and heading esti-

mation is sufficient to initialize a successful 3-D registration

process. Furthermore it is shown which initial spatial align-

ment is necessary to obtain suitable registration results.

1 Introduction

Humans were able to use indirect signals over mirrors or

through the windows of other vehicles to observe relevant

areas e.g. at difficult crossroad situations. To achieve a simi-

lar understanding of the surrounding with depth sensors, one

important aspect for future autonomous systems will be the

cooperative exchange of environment information denoted as

car to car (C2C) communication. Together with the use of

real time cloud or local infrastructure based services this will

improve the recognition and reaction capabilities towards ob-

jects located outside the direct field-of-view (FoV) of the

own sensors.

E.g. the green car of Fig. 1 could provide useful informa-

tion about the blue truck for the red car. The foundation of

such a dense data fusion is the availability of an highly ac-

curate relative pose estimation which can be transferred into

a homogeneous transformation matrix. This is hard to derive

by traditional satellite based relative localization methods but

their estimate could be improved using the gathered environ-

ment data of both cars. A method for achieving this is the

content of this paper which is mainly based on the master

thesis by Jähn (2014). For the rest of this paper we will refer

to the red car as target and to the green car as source and we

will use the coordinate definitions of the right picture from

Fig. 1.

To support the understanding of the reader the present pa-

per is organized as follows: Sect. 2 provides relevant back-

ground information’s which are necessary to ensure com-

prehensibility. Afterwards the general outline and the novel

ideas of the presented method are shown in Sect. 3. An eval-

uation of the presented approach is then given in Sect. 4. The

conclusion in Sect. 5 contains a summary of all findings, it’s

limitations as well as improvements and future work.
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Figure 1. The figure shows two cars which could exchange their en-

vironment information if an accurate enough pose estimation would

be available (left picture). If the pose estimation is inaccurate this

would yield an alignment error (center picture). The right picture

shows the coordinate system definitions which where used in the

paper.

2 Background

2.1 Depth sensors

Typical depth sensors, like LiDARs and stereo cameras, mea-

sures the surface of the surrounding environment. Using the

projective geometry their range images can be converted into

a point cloud which represents the surface shape of the sur-

rounding. During this conversion the pixel wise neighbor-

hood information is maintained which is useful for further

processing steps like normal feature estimation. In the case

that two of these sensors measures the same surface area

from different perspectives, this data can be used to align

them against each other if their relative pose estimation is

inaccurate. The process of doing this is called registration or

shape matching which is part of Sect. 2.3.

2.2 Normal feature estimation

To gain information about the underlying surface, which the

point cloud data represents, it is very common in 3-D data

processing to determine normal features1. We apply here the

standard weighted normal averaging scheme which uses tri-

angle combinations incorporating the neighbourhood points

(Klasing et al., 2009). In this work we use a weightning fac-

tor wj which is chosen as the reciprocal product of the dis-

tance between the neighbours qi,j of pi according to Eq. (1).

We refer to this method as distance weighted cross product

(DWCP).

wj =
1

|qi,j −pi | · |qi,j+1−pi |
(1)

2.3 Registration of point clouds

Registration, or shape matching, is the process to align two

or more surfaces against each other in such a way that a

1Vectors assigned to each point in space representing a local

plane patch of the approximated surface

mathematical metric is minimized. Although other registra-

tion methods exists (compare Pottmann et al., 2002) the most

popular one is the so called ICP algorithm introduced by Besl

and McKay (1992).

The general idea is to find at first point correspondences

between two slightly misaligned data sets. This is done usu-

ally by searching the currently closest point in the other data

set. Secondly a locally optimal rigid transformation matrix is

calculated which minimizes a certain distance metric in or-

der to align them against each other. Using the result from

the previous iteration this procedure is repeated. New cor-

respondences where determined and the alignment is opti-

mized again until some stopping criteria is fulfilled.

The original formulation of the algorithm by Besl and

McKay (1992) delivers bad results if the incorporated data

sets does include outliers2. This happens especially if the two

surfaces do not overlap completely or if there are holes due to

occlusion effects. As a consequence a still growing number

of different variations has been proposed. The main goals are

to speed up the convergence rate and improve the robustness

against outliers. Therefore, several heuristics and modifica-

tions are applied and additional features, like normals, are

incorporated. A comparison study of several methods can be

found at Pomerleau et al. (2013).

In this work we utilize a point to plane (Chen and Medioni,

1991) based ICP method which utilizes additional rejection

methods (Rusinkiewicz and Levoy, 2001). First all corre-

spondence where the angle between the corresponding nor-

mals exceeds 30◦ are ignored and secondly we remove the

worst 10 % due to the Euclidean distance (Pulli, 1999).

3 Method

The primary goal of this work is to include the captured point

cloud data of a sensor platform, like the green car (compare

Fig. 1), into the coordinate system of another, e.g. the red car.

Each of them has its own coordinate system indicated with

the superscript prefix S and T respectively. Thus, an arbitrary

point Sp =
[
xS,yS,zS

]T
in the source coordinate system can

be transformed in the target coordinate system, using TT S .

It follows that the corresponding point T p =
[
xT ,yT ,zT

]T
from Sp can be calculated with the following equation.[
T p

1

]
= TT S ·

[
Sp

1

]
(2)

Unfortunately, the exact transformation matrix TT S is in

general not known and has to be estimated by T̂T S . In or-

der to achieve an initial guess of this matrix, it is further

assumed that the target platform estimates the relative po-

sition and orientation of the source with a suitable, e.g. satel-

lite based, relative localization system which delivers a state

2E.g. points which do not have a corresponding partner repre-

senting the same physical object surface within the other data set.
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Figure 2. Overview of the processing steps within the presented

approach.

x =
[
x,y,z,φ,θ,ψ

]T
and its uncertainty, as covariance ma-

trix 6Cov. The accuracy of this transformation can be im-

proved, using a registration algorithm with environment in-

formation captured by both sensor platforms simultaneously.

To achieve this the environment data, which was captured

by both sensor platforms simultaneously, is determined.

Therefore the state and the corresponding uncertainty infor-

mation, namely the standard deviation values Diag(6Cov)=[
σ 2
x ,σ

2
y ,σ

2
z ,σ

2
φ ,σ

2
θ ,σ

2
ψ

]
, were used to estimate the theoret-

ical field of view (FoV) of the source sensor within the tar-

gets coordinate system in order to determine the data within

the overlapping FoV. Further on occlusion effects were re-

solved to achieve the relevant points for the registration pro-

cess within the target point cloud (denoted in the following

as T) and the source point cloud (S).

Once an accurate transformation is determined it can be

applied to the whole source point cloud. Both data sets are

now fused within the target coordinate systems and available

for further processing. An overview of the previously ex-

plained steps is given in Fig. 2 and some steps are explained

in detail in the following.

3 σ confidence interval
assuming no correlation

3 σ confidence interval
taking covariance into 
account

3 σ rectangular 
approximation X1

X2

E1 E2

E3
E4

Figure 3. Within this chart three different 3σ (γ = 3) confidence

intervals of the same two dimensional correlated normal distributed

sample set are shown. The red one uses the full covariance matrix

whereas the green one just neglects the covariance values. The rect-

angular confidence interval includes both ellipses and thus acts as

an upper bound.

3.1 Overlapping FoV estimation

The FoV is the geometrical area, which is theoretically vis-

ible for a sensor, without taking occlusion effects into ac-

count. For the most typical range sensors, like automotive

LiDAR, this can be approximated as a pyramid. All sensor

data have to lie within this field, thus it can be used as a

rough geometrical boundary. Such a pyramid can be defined

for the source and target sensor. In order to determine the

overlapping part it is necessary to transform them into the

same coordinate system.

3.1.1 Uncertainty field of view

Problematic in this context is the accuracy of T̂T S . The exact

origin and orientation of the source FoV is thus not known.

To overcome this problem the track uncertainty is used to in-

crease the source FoV such that it includes the error space,

which is considered as normal distributed, up to a certain

confidence interval. How this can be achieved efficiently is

dependent on its original shape. In this work a pyramid model

is used and therefore the basic idea to derive a proper uncer-

tainty field approximation is described in the following. The

full derivation can be found at Jähn (2014).

As mentioned already the uncertainty space is assumed to

be normal distributed with an expectation value of 0. Conse-

quently a surrounding confidence interval γ · σ would result

in a six-dimensional elliptical error space. If this is used to

transform the pyramid model into the uncertainty space this

would result in an extremely complex mathematical shape.

Therefore just the diagonal values of 6Cov are used to ap-

proximated this with a rectangular upper boundary space.

With this simplification it doesn’t matter if one would take

cross correlation values into account or not. To support the

understanding of the reader a two-dimensional example is

shown in Fig. 3.

Using this rectification, the confidence interval can be de-

scribed just with the maximum divergence from the state

space in positive and negative direction for each dimension.
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Figure 4. The two pictures show the coordinate system definitions and the nomenclature of the original field of view (left) and the increased

uncertainty field of view (right).

Consequently there are 26
= 64 different maximum error

variations. If all of these error variations are applied to the

FoV pyramid (compare Fig. 4, left panel) the resulting shape

can be approximated by a frustum pyramid as it is shown in

Fig. 4 (right panel).

This approximation of the uncertainty FoV can be used

to clip the points of the target sensor which could have no

corresponding partner within the source data set.

3.1.2 Point uncertainty ranges

In this section it is estimated which parts of both point clouds

could be visible to both sensors taking occlusion effects into

account. E.g. if an object is located within both fields of view

but it is occluded through another object from just one per-

spective. To figure this out the uncertainty of the initial trans-

formation matrix T̂T S have to be taken into account again.

Therefore the same assumptions, namely the rectification of

the uncertainty space, from the previous section are applied.

This time the uncertainty space is determined for each point

of the source point cloud separately and the resulting space

is approximated by a sphere around the point Spi ∈ S with a

radius ri according to Eq. (3).

ri =max
{
rmin,max

{
ri,j∀j

}
+‖terr‖∞

}
(3)

j ∈ {1,2, . . ., |6Rot|} terr ∈6Transl (4)

ri,j = |pS,i −Rot
{
rj

}
·pS,i | rj ∈6Rot (5)

6Transl = {±σx}×
{
±σy

}
×{±σz} (6)

6Rot =
{
±σφ

}
×{±σθ }×

{
±σψ

}
(7)

Transferred into the target coordinate system using T̂T S

these spheres represents the area where

[
pT ,i

1

]
= TT S ·[

pS,i
1

]
could be if TT S would be known exactly. Further it

represents the area where corresponding points of T could be

which were captured from the same object. Thus each source

point, which has no target point within its range defined by ri ,

is clipped. The other way around each target point is clipped

if it is not within at least one of the source uncertainty spheres

(compare Fig. 5).

4 Evaluation

The objective of the following evaluation is to show the ap-

plicability of the presented approach for cooperative environ-

ment recognition applications. Compared to the master the-

sis (Jähn, 2014), where this paper is based on, the data which

was used for the evaluation was re-evaluated to fit the limited

scope of this paper. For a more exhaustive evaluation please

refer to Jähn (2014).

4.1 Evaluation strategy

To show the effects of different steps of the presented ap-

proach a detailed cross road 3-D model was built with

SketchUp®3. This was used to simulate range data by two

virtual LiDAR depth sensors, which were moved through the

static model such that they overlap partially and enough non-

parallel surface details for registration were included. The

recorded data includes ground truth range data as well as po-

sition and orientation of both sensors. This was then super-

imposed by range and pose (position and orientation) noise.

These point clouds were afterwards aligned and the output

was compared with the applied pose error vector. This proce-

dure was than repeated 21 times with different data set com-

binations each with 100 different range and tracking noise

samples. Thus the quality of the registration process can be

statistically appraised.

4.1.1 Range data generation

The range data was captured using a simple ray tracing ap-

proach. Each laser beam of the virtual LiDAR has been mod-

elled as a single ray. In contrast to the simulation applied

by Gabriel (2010) the complete sensor optic simulation and

the 3 dimensional beam structure was not taken into account.

3A 3-D modeling software by Trimble Navigation

Adv. Radio Sci., 13, 209–215, 2015 www.adv-radio-sci.net/13/209/2015/
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Figure 5. To each source point an uncertainty range is assigned.

Within each sphere at least one target point has to be present and

each target point have to lie within at least on sphere.

This approach allows a much faster simulation but it does

not reflect the special properties of LiDAR sensors, e.g. just

the first echo is used. Anyhow this simple sensor model can

be applied also to other range sensors, like stereo and time

of flight cameras, hence it is used here. For the evaluation in

this work we used a LiDAR model with 40 layers each with

451 beams covering 72◦ horizontally and 10◦ vertically.

The range image taken directly from the simulation is

noiseless and therefore not very realistic. That’s why it is

superimposed by Gaussian noise. According to the manual

(Ibeo Automotive Systems GmbH, 2008) of the Ibeo LUX

laser scanner family, a typical standard deviation value σr is

10 cm, which is used here.

To simulate tracking noise n random error sample from

a normal distributed error space is superimposed to x ac-

cording to Eq. (8). The uncertainty standard deviation val-

ues σx,σy,σz,σφ,σθ ,σψ were taken from Table 1 to simu-

late different tracking conditions and quality. As described

in Sect. 3.1 this will influence how the overlapping area of

the sensor data is estimated.

x = x+ xErr xErr ∈N
(

0,
[
σx,σy,σz,σφ,σθ ,σψ

]T )
(8)

Table 1. Tracking noise setups.

σφ,σθ ,σψ σx ,σy ,σz

TN1 1◦ 30 cm

TN2 2◦ 60 cm

TN3 3◦ 120 cm

TN4 4◦ 240 cm

Table 2. Percentiles from N (0,σ ) intervals for direct comparison

with non-normal distributed error spaces.

N (0,σ ) Percentile Name

|x|< 0.5σ =̂ 38.29 % p38

|x|< 1.0σ =̂ 68.27 % p68

|x|< 1.5σ =̂ 86.64 % p86

|x|< 2.0σ =̂ 95.45 % p95

|x|< 2.5σ =̂ 98.76 % p98

4.1.2 Analysis of the results

Within each test cycle the resulting alignment vector xAlg is

subtracted from the previously applied tracking noise vector

xErr which results in the remaining error vector xRem (com-

pare Eq. 9). Over all, in total 2100, test cycles the expectation

value of this is assumed to be 0. To allow an easy comparison

between the input error space, which is normal distributed,

and the output error space, which is in general not normal

distributed, the equivalent percentiles are used according to

Table 2. These percentiles are calculated for each component

of xRem. If the resulting value of the percentile is smaller than

the equivalent interval from the input error space normal dis-

tribution the alignment was improved during the registration.

xErr− xAlg = xRem (9)

4.2 Contribution of clipping & confidence interval

To figure out the contribution of the FoV and uncertainty

range clipping from Sects. 3.1 and 3.1.2 the influence of the

applied confidence interval will be investigated now. There-

fore the confidence interval parameter γ is modified and an

additional test was done where both clipping methods were

deactivated.

According to Table 3 the smallest remaining error is for

γ = 1.75. With γ = 1.75 and without clipping at all the er-

ror increases. This effect decreases with higher tracking noise

due to the huge uncertainty ranges where occlusion and shad-

owing effects cannot be detected. Obviously the rejection

step works very efficiently such that bad correspondences are

detected reliably. Consequently this pre-processing does af-

fect the alignment accuracy just slightly but noticeable. Thus

we conclude that the FoV and uncertainty range clipping sta-

bilize the registration process. Furthermore it has an influ-

ence on the number of points, which have to be aligned and
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Table 3. The table shows the results of the remaining error percentiles for the point to plane metric with different clipping confidence intervals

γ . The light green colour indicates nearly perfect alignment results whereas dark red stands for unsuitable results above 1◦ or 20 cm. The

achieved accuracy and the necessary number of iterations is quite similar in all cases. Especially for higher tracking noise levels where the

uncertainty ranges were huge.

Table 3. The table shows the results of the remaining error percentiles for the point to plane metric with differ-

ent clipping confidence intervals γ. The light green colour indicates nearly perfect alignment results whereas

dark red stands for unsuitable results above 1◦ or 20cm. The achieved accuracy and the necessary number of

iterations is quite similar in all cases. Especially for higher tracking noise levels where the uncertainty ranges

were huge.

ϕ@[°] θ@[°] ψ@[°] x@[cm] y@[cm] z@[cm] Iter ϕ@[°] θ@[°] ψ@[°] x@[cm] y@[cm] z@[cm] Iter ϕ@[°] θ@[°] ψ@[°] x@[cm] y@[cm] z@[cm] Iter

p38 0,03 0,02 0,04 2,34 1,41 0,82 4 0,02 0,03 0,05 2,87 1,79 0,81 5 0,05 0,04 0,09 4,47 3,03 1,14 5

p68 0,06 0,08 0,10 5,35 3,49 1,51 5 0,05 0,10 0,12 7,07 4,47 1,50 6 0,09 0,13 0,23 10,66 7,57 2,15 6

p86 0,10 0,12 0,21 11,04 6,53 2,57 6 0,10 0,15 0,28 14,52 9,15 2,44 7 0,19 0,20 0,41 21,27 13,48 3,53 7

p95 0,13 0,15 0,32 26,89 10,15 3,41 7 0,15 0,17 0,52 25,44 16,16 3,42 9 0,47 0,27 0,70 37,67 20,86 6,88 9

p98 0,16 0,16 0,42 41,16 13,65 4,97 8 0,19 0,19 0,68 41,35 22,33 4,75 11 0,57 0,44 1,46 54,86 36,95 9,60 12

p38 0,04 0,03 0,06 3,52 2,32 1,07 5 0,04 0,04 0,07 4,34 3,00 1,08 6 0,05 0,04 0,08 4,32 2,99 1,20 6

p68 0,08 0,11 0,16 8,62 5,84 2,01 6 0,07 0,12 0,18 10,17 7,20 2,04 8 0,09 0,13 0,22 10,71 8,12 2,24 7

p86 0,11 0,17 0,34 16,38 11,47 3,29 7 0,12 0,17 0,42 20,66 14,65 3,57 10 0,19 0,20 0,43 22,80 14,24 3,68 9

p95 0,21 0,21 0,59 34,52 18,33 5,27 9 0,22 0,22 0,91 42,03 28,96 5,74 13 0,46 0,27 0,87 40,93 23,80 7,41 11

p98 0,25 0,22 0,87 47,67 26,11 8,57 11 0,28 0,24 2,75 80,49 112,58 8,37 17 0,56 0,43 2,64 83,89 109,92 9,42 15

p38 0,05 0,04 0,10 4,86 3,62 1,37 6 0,05 0,04 0,09 4,37 3,16 1,27 6 0,05 0,05 0,10 4,90 3,38 1,31 7

p68 0,10 0,14 0,24 12,28 9,37 2,61 8 0,09 0,13 0,23 11,79 8,04 2,43 8 0,10 0,14 0,26 13,38 9,49 2,48 9

p86 0,18 0,21 0,55 27,43 18,69 4,12 10 0,19 0,20 0,48 24,98 16,49 4,26 10 0,24 0,21 0,65 33,29 20,15 4,93 11

p95 0,30 0,26 2,44 79,39 104,60 8,31 13 0,33 0,25 2,86 94,78 115,22 8,69 15 0,47 0,33 2,90 98,05 118,19 8,76 16

p98 0,35 0,32 3,96 170,26 155,42 11,95 18 0,41 0,37 6,51 232,36 212,45 15,91 22 0,58 0,50 6,22 210,83 205,89 17,27 32

p38 0,06 0,06 0,14 7,09 5,22 1,74 8 0,06 0,08 0,16 8,16 6,06 1,77 10 0,06 0,07 0,13 6,83 4,75 1,80 8

p68 0,15 0,17 0,43 21,82 15,41 3,79 11 0,18 0,18 1,12 52,51 40,05 5,59 17 0,15 0,17 0,51 32,00 18,80 4,51 12

p86 0,41 0,29 3,65 171,35 151,58 11,82 17 0,43 0,38 6,80 258,97 282,38 21,37 28 0,46 0,35 5,68 229,45 266,33 18,78 21

p95 0,60 0,61 9,18 419,63 393,30 36,35 32 0,87 0,80 11,36 486,18 463,53 49,81 49 0,80 0,71 10,58 484,31 445,62 42,42 42

p98 1,37 1,32 17,78 883 612,24 72,87 49 1,65 1,50 17,02 932,33 776,66 79,49 49 1,42 1,25 17,08 816,36 789,18 81,89 49

TN
4

Point@to@Plane@[DWCP]@@@γ@=@1,75 Point@to@Plane@[DWCP]@@@γ@=@2,5 Point@to@Plane@[DWCP]@without@Clipping

TN
1

TN
2

TN
3

Within each test cycle the resulting alignment vector xAlg is subtracted from the previously applied

tracking noise vector xErr which results in the remaining error vector xRem(compare equation 9).

Over all, in total 2100, test cycles the expectation value of this is assumed to be 0. To allow an easy190

comparison between the input error space, which is normal distributed, and the output error space,

which is in general not normal distributed, the equivalent percentiles are used according to table 2.

These percentiles are calculated for each component of xRem. If the resulting value of the percentile

is smaller than the equivalent interval from the input error space normal distribution the alignment

was improved during the registration.195

xErr −xAlg = xRem (9)

4.2 Contribution of Clipping & Confidence Interval

To figure out the contribution of the FoV and uncertainty range clipping from chapter 3.1 & 3.1.2

the influence of the applied confidence interval will be investigated now. Therefore the confidence

interval parameter γ is modified and an additional test was done where both clipping methods were200

deactivated.

According to table 3 the smallest remaining error is for γ = 1,75. With γ = 1,75 and without

clipping at all the error increases. This effect decreases with higher tracking noise due to the huge

uncertainty ranges where occlusion and shadowing effects cannot be detected. Obviously the rejec-

tion step works very efficiently such that bad correspondences are detected reliably. Consequently205

this pre-processing does affect the alignment accuracy just slightly but noticeable. Thus we conclude

10

thus the computational complexity is decreased drastically.

This holds true especially if the overlap is small compared to

the rest.

A smaller confidence interval reduces the range where po-

tential correspondences could be found. This has positive ef-

fects if the error lies within this interval. In this case it does

not happen that some of the potential good corresponding

partners were clipped. However, if the current error is lo-

cated outside of the confidence interval, points were clipped

which could have a good corresponding partner in the other

set. Thus the number of details, which can be used for the

alignment, is reduced together with the overall possibility

that ideal pairings can be found in general. This limits the

alignment abilities drastically if the current initial error is

high.

Thus we conclude that the uncertainty FoV and range

clipping is especially useful for low tracking noise. There

the number of points, which have to be aligned is reduced

significantly and potential outliers were detected even be-

fore they could take any bad influence on the registration

process. The confidence interval should not be chosen too

small to avoid the clipping of potential useful point pair-

ings. For higher tracking noise the uncertainty range clipping

is less useful because occlusion effects can be detected just

roughly. Therefore, outliers within the overlapping area were

not thrown out. The FoV clipping on the other hand is al-

ways useful because the number of points, which have to be

aligned, is decreased at low computational costs and poten-

tial wrong pairings were avoided.

5 Conclusions

The results show that an alignment of two data sets can be

achieved with the help of a pose tracking system although

they were captured from completely different perspectives.

During the previous evaluation the contribution of certain

system design aspects have been examined and the findings

are summarized in the following sections.

The primary goal of the FoV clipping was to determine the

overlapping area of the sensors FoV due to the pose estima-

tion uncertainty. This reduces the number of points, which

have to be aligned, significantly especially if the overlapping

part is just a small subset of the complete data. Thus it fur-

ther reduces the amount of possible outliers, which were not

detected by the applied heuristics. That’s why we conclude

that the utilization of this method is always recommendable.

The idea of the uncertainty range clipping was to find the

points, which could have a corresponding partner in the other

data set, taking occlusion effects into account. This works

fine if the tracking accuracy is already good because in this

case the uncertainty ranges are small and a lot of poten-

tial outliers are ignored. Additionally the number of points,

which have to be aligned is reduced further, which improves

the overall performance. However, if the tracking noise is

high, the contribution of the uncertainty range clipping is re-

duced drastically. That’s why the uncertainty ranges are too

big to detect occlusion effects, caused by small and medium

sized objects like cars and trees, effectively. Nevertheless, oc-

clusions caused by huge objects like buildings, were detected

properly and thus points, which cannot have a corresponding
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point in the other data set are ignored. However, it is heavily

situation dependent, whether the benefits justify the compu-

tational costs of this method.

According to Table 3 a rotation and translation accuracy

below 0.5◦ and below 15 cm is attainable in most cases. Un-

der good circumstances with a lot of details this falls even un-

der 0.1◦ and 10 cm. This should be enough for a lot of prac-

tical applications. Using the improved transformation result

it is now possible to fuse the complete data of both sensors.

5.1 Limitations of the presented approach

The presented approach is suitable for scenarios where two

depth sensors observe partly the same surface of an arbi-

trary scene from completely different viewpoints. Addition-

ally their relative pose have to be roughly known, due to some

also known confidence interval. However some additional

conditions must be met. First of all, enough details should be

included in the overlapping part, such that an unambiguous

registration result is possible. Therefore, it must contain at

least 3 non parallel surface patches. This implies further that

the point density in this region is sufficient to estimate proper

normal features and point correspondences. Additionally the

extent of this region has to be significantly higher than the

measurement noise of the sensor data and the tracking error.

5.2 Further improvements and future work

So far there is no method applied which checks if the

above mentioned requirements were fulfilled. For practical

applications this have to be checked for each sensor data pair

separately before the presented approach can be applied. If

that is successfully done the plausibility of the registration

result should be checked. Currently there is no method

applied which is able to determine the quality of the registra-

tion result. A completely wrong alignment can be detected

easily by evaluating, if the alignment result lies within the

confidence interval of the applied tracking mechanism. For

a further assessment of the achieved alignment accuracy

it is necessary to develop a suitable metric. This could be

done based on the remaining average distance between the

correspondences found in the last ICP iteration. Further on

the similarity of the normal features between the point pairs

could be a helpful measurement.
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