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Abstract

Superpixels are the results of an image oversegmentation. They are an established in-
termediate level image representation and used for various applications including object
detection, 3d reconstruction and semantic segmentation. While there are various ap-
proaches to create such segmentations, there is a lack of knowledge about their proper-
ties. In particular, there are contradicting results published in the literature. This thesis
identifies segmentation quality, stability, compactness and runtime to be important prop-
erties of superpixel segmentation algorithms. While for some of these properties there
are established evaluation methodologies available, this is not the case for segmentation
stability and compactness. Therefore, this thesis presents two novel metrics for their
evaluation based on ground truth optical flow. These two metrics are used together with
other novel and existing measures to create a standardized benchmark for superpixel
algorithms. This benchmark is used for extensive comparison of available algorithms.

The evaluation results motivate two novel segmentation algorithms that better balance
trade-offs of existing algorithms: The proposed Preemptive SLIC algorithm incorporates
a local preemption criterion in the established SLIC algorithm and saves about 80 % of
the runtime. The proposed Compact Watershed algorithm combines Seeded Watershed
segmentation with compactness constraints to create regularly shaped, compact super-
pixels at the even higher speed of the plain watershed transformation.
Operating autonomous systems over the course of days, weeks or months, based on vi-

sual navigation, requires repeated recognition of places despite severe appearance changes
as they are for example induced by illumination changes, day-night cycles, changing
weather or seasons - a severe problem for existing methods. Therefore, the second part
of this thesis presents two novel approaches that incorporate superpixel segmentations in
place recognition in changing environments. The first novel approach is the learning of
systematic appearance changes. Instead of matching images between, for example, sum-
mer and winter directly, an additional prediction step is proposed. Based on superpixel
vocabularies, a predicted image is generated that shows, how the summer scene could
look like in winter or vice versa. The presented results show that, if certain assumptions
on the appearance changes and the available training data are met, existing holistic place
recognition approaches can benefit from this additional prediction step.
Holistic approaches to place recognition are known to fail in presence of viewpoint

changes. Therefore, this thesis presents a new place recognition system based on local
landmarks and Star-Hough. Star-Hough is a novel approach to incorporate the spatial
arrangement of local image features in the computation of image similarities. It is based
on star graph models and Hough voting and particularly suited for local features with low
spatial precision and high outlier rates as they are expected in the presence of appearance
changes. The novel landmarks are a combination of local region detectors and descriptors
based on convolutional neural networks. This thesis presents and evaluates several new
approaches to incorporate superpixel segmentations in local region detection. While the
proposed system can be used with different types of local regions, in particular the combi-
nation with regions obtained from the novel multiscale superpixel grid shows to perform
superior to the state of the art methods - a promising basis for practical applications.
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Make things clear.

Simon Lacroix

1
Introduction and Motivation

Computer vision and mobile robotics are strongly related research fields. Vision is a
powerful sensor for environmental perception as is evident from the biological examples.
Mobile robotics tasks like navigation or mobile manipulation can be build upon visual
information provided by 2d or 3d cameras. In the other direction, the field of computer
vision may benefit by (at least) three means from the combination with mobile robotics:
(1) From a so far rather theoretical point of view, placing cameras on mobile robots
enhances computer vision systems from passive data processing tools to active perception
systems that can explore and interact with the environment to raise interpretations and
validate them actively. (2) The application of cameras on mobile intelligent agents poses
a manifold of challenging research questions for the computer vision community. (3) The
practical usage of computer vision systems on real robots, acting in real environments,
brings computer vision systems from the laboratory to the field and reveals limitations
of existing solutions. The research field of computer vision originates from artificial
intelligence and mathematics back in the 1960s, two fields lesser-known for their practical
orientation. Therefore, the point (3), application of computer vision systems on practical
problems, can substantially enhance the field.

For instance, image segmentation is a computer vision task for which researchers have
proposed theoretically profound solutions for decades and all stumble at widespread
practical application. The objective of image segmentation is to find the outlines of
the objects in an image. While this is a simple task for humans (at least for everyday
images), it is surprisingly hard for artificial vision systems. A main reason is the plain
bottom-up nature of classic figure-ground segmentation approaches: the outlines of the
objects should be found without information what are the objects. The segmentation
makes hard decisions that can not be reverted later.

Therefore, alternative approaches have been developed, for example, for the task of
object detection. An approach to object detection, that showed to not work in real
world situations, is to take an image, segment the foreground object and give it to a
classifier. Instead, successful object detection systems skipped the segmentation step

11



Chapter 1. Introduction and Motivation

Fig. 1.1.: Relation of the parts of this work. The superpixel segmentations are the tool and place
recognition in changing environments is the application. Each grey box corresponds
to a chapter of this thesis.

and exhaustively searched for possible object locations in the image (the sliding window
approach). More recently, this exhaustive search was in turn replaced by segmentations
again - but this time it is not a single object segmentation, but a multi purpose segmen-
tation based on an oversegmentation of the image into superpixels. Superpixels carry
more information than single pixels, but are much smaller than objects. This kind of
intermediate image representation showed to be beneficial for many other applications
including semantic segmentation, 3d reconstruction from single views or stereo, track-
ing, video segmentation and semantic video annotation, traversability classification for
ground robots, classification of urban streets, and many others.
While there are various algorithms available to create superpixel segmentations, there

is a lack of insights on their properties and means for their evaluation - in particular,
there are contradicting results published in the literature. The analysis, comparison
and extension of superpixel segmentation algorithms is the topic of the first part of this
thesis. The overall structure is illustrated in Fig. 1.1. Starting from the identification of
important properties of these algorithms, novel metrics to measure them are proposed.
They are combined with existing metrics in a standardized benchmark. This benchmark
is used to compare a large set of available superpixel segmentation algorithms. The
evaluation reveals important trade-offs of the properties of the available algorithms: For
example, regarding the runtime and the segmentation quality or the control over geo-
metric properties of the resulting segments. These trade-offs motivate the development
of two novel superpixel segmentation algorithms that better balance the trade-offs.

12



Fig. 1.2.: The problem of place recognition in changing environments. Given an image of the
current appearance of a place (top left) and a set of images showing this place and
others subject to severe appearance changes: Which images show the same place?
(Nordland image credits: NRKbeta.no, cf. section 5.1.1.)

The topic of the second part of this thesis is the application of superpixel segmentations
for a mobile robotics task: Visual place recognition in changing environments. This task
is illustrated in Fig, 1.2.
Mobile robotics is an active and growing research field. For many subproblems, there

are established solutions. For example, the past DARPA Grand Challenges, Urban
Challenge and recent Robotics Challenge showed the progress in the field (but also
revealed the need for more autonomy and higher level understanding of the world for
creating and executing plans more robustly). Navigation is a fundamental capability for
mobile robots. Researches have been working on this from the very beginning of this
field. One of the currently most active research subjects is robust long term operation,
including long term autonomy and long term navigation.
A major challenge for long term navigation are changing environments that occur

when robots operate over hours, days, weeks and months. These changes can be caused
by dynamic objects (e.g. moving people or cars) or by systematic changes in the environ-
ments, e.g. induced by day-night cycles, changing weather or seasons. The goal of visual
place recognition algorithms is to match the current visual input with a set of images of
known places. While there exists a broad range of algorithmic approaches to visual place
recognition, in particular the systematic long term changes of the environment challenge
all existing solutions. The second part of this thesis will investigate how superpixels
can contribute to a solution and propose and evaluate two novel approaches: (1) Using
visual vocabularies of superpixel words to predict systematic appearance changes. (2)
Creating visual landmarks from superpixel and using them for place recognition.
The superpixel landmark based approach is integrated in a novel complete pipeline

for place recognition, comprising novel approaches for local region detection, landmark
description and computing image similarities from the landmarks. While the combi-
nation of these three steps (detection + description + matching) is quite common, for
each of these steps, a novel approach is presented - each being particularly suited for
the challenges induced by changing environments. The proposed system outperforms
existing solutions and can be considered a promising solution for practical application.

13



Chapter 1. Introduction and Motivation

1.1. Thesis outline, research questions and contributions

The contributions of this thesis are provided in the six chapters 2 to 7, each correspond-
ing to a grey box in Fig. 1.1. The key research questions and contributions can be
summarized as follows:

Chapter 2: Superpixel segmentations

Research questions: Why is image segmentation an ill-
posed problem? What are superpixel segmentations
and how can they contribute to overcome this issue?
Which superpixel segmentation approaches exist and
how do they work?
Contributions: This chapter provides an introduction
to superpixel segmentations and an overview of existing
approaches.

Chapter 3: Novel metrics and benchmarks for superpixel algorithms
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Research questions: What are important properties of super-
pixel segmentation algorithms? How can these properties be
measured? In particular, what are criteria to measure stabil-
ity and compactness of superpixel segmentations? What are the
properties of the available algorithm implementations? Why are
standardized benchmarks necessary?
Contributions: Motivated by contradicting results in the litera-
ture on the performance of superpixel algorithms, a standardized

benchmark is provided. Quality, runtime, stability, and compactness are identified as
important criteria for superpixels. Novel metrics to evaluate stability and compactness
based on ground truth optical flow are proposed. These and other novel and exist-
ing metrics are combined in the new benchmark and used for extensive experimental
evaluation of available algorithms.

Chapter 4: Novel, better balanced superpixel algorithms

Research questions: What are trade-offs of the existing algo-
rithms? Can these properties be better balanced? How can the
runtime of the SLIC algorithm be reduced while maintaining
its high quality segmentations? How can the irregularly shaped
oversegmentations created by the very fast Seeded Watershed
algorithm be turned into compact superpixel segmentations?
Contributions: Based on trade-offs that exhibited in the chapter
3, two novel algorithms are proposed: Preemptive SLIC incorporates a local preemption
criterion in SLIC and creates high quality segmentations similar to SLIC and is about
five times faster. Compact Watershed incorporates compactness constraints in a seeded
watershed segmentation to create regular, compact superpixels while retaining the high
speed of plain watershed segmentations.

14



1.1. Thesis outline, research questions and contributions

Chapter 5: Place recognition in changing environments

Research questions: What is place recognition in changing en-
vironments and what are the particular challenges? Which
approaches exist and what are their limitations? Which bench-
marks and datasets are currently available? How can super-
pixels contribute to a solution?
Contributions: Introduction of the problem of place recogni-
tion in changing environments and overview of related work.

Chapter 6: Appearance change prediction

Prediction

Matching

Research questions: Is it possible to learn systematic image changes?
How can superpixels be used to predict systematic appearance
changes? Can existing place recognition algorithms benefit from such
a prediction step? What are useful descriptors for superpixels? Do
superpixel words provide semantic meaning?
Contributions: The novel idea of appearance change prediction and
an implementation based on superpixel vocabularies. Superpixel de-
scriptors and vocabularies are introduced and experimentally eval-
uated. The chosen representation is motivated by experimental re-
sults that quantify the amount of semantic information of superpixel
words based on conditional entropy. Experimental results show that
existing holistic place recognition approaches can benefit from this
additional prediction step.

Chapter 7: Landmark based place recognition

Research questions: How can local landmarks be used
to overcome the limitations of holistic approaches to
place recognition? How sensitive are established de-
scriptors and detectors towards appearance changes?
Can descriptors based on convolutional neural networks
be used for local features in changing environments?

How can the spatial arrangement of landmarks with poor spatial precision and high out-
lier rates be incorporated in image matching? How can superpixels contribute to local
region detection? Can the resulting novel approach improve the state of the art?
Contributions: This chapter presents the novel idea of using local region detectors to-
gether with descriptors obtained from convolutional neural networks as landmarks for
place recognition in changing environments. To incorporate the landmarks’ spatial ar-
rangement despite poor spatial precision and high outlier rates due to the changing envi-
ronments, the novel Star-Hough image matching approach is proposed. The superpixel
segment soup, the multiscale superpixel grid, superpixel based importance reweigthing
of scale space extrema and the usage of object proposals are novel superpixel-related
approaches to local region detection for place recognition in changing environments.
The proposed system, in particular in combination with the multiscale superpixel grid,
performs superior to available methods.
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Chapter 1. Introduction and Motivation

In a nutshell, the four major contributions are the following:

• In terms of superpixel segmentations:

1. Novel metrics and a standardized benchmark to evaluate superpixel segmen-
tation algorithms.

2. Two novel algorithms: Preemptive SLIC and Compact Watershed.

• In terms of place recognition in changing environments:

3. The novel idea of appearance change prediction and an implementation based
on superpixel vocabularies.

4. A new local landmark based system combining novel approaches to landmark
detection, landmark description and incorporation of the landmarks’ spatial
arrangement.

The improvements over the existing methods are extensively evaluated in the respec-
tive chapters. In particular the proposed local landmark based system of chapter 7 is
supposed to be a promising contribution that improves the state of the art in place
recognition based on superpixel segmentations. The final chapter 8 will summarize the
achievements and discuss open questions and directions for future work.

A reading advice: The structure of the sections and subsections of this thesis was
designed to emphasize the structure of the content not the structure of my contribu-
tions. Thus, the contributions are sometimes “hidden“ in subsections. To simplify the
identification of my contributions to the field and the achieved results, ”Contribution
X.Y“ and ”Result X.Y“ statements are used throughout this thesis. If you ever get lost
in the details, it may be helpful to skip to the next contribution or result statement to
get a summary.

1.2. Publications and collaboration

Parts of this thesis have been published in a journal or conference proceedings. In
particular these are the related publications:

Chapter 3: [Neubert and Protzel, 2013], [Neubert and Protzel, 2012]
Chapter 4: [Neubert and Protzel, 2014]
Chapter 5: [Neubert et al., 2015b], [Sünderhauf et al., 2013]
Chapter 6: [Neubert et al., 2013], [Neubert et al., 2015b], [Neubert and Protzel,

2015a], [Sünderhauf et al., 2013]
Chapter 7: [Neubert and Protzel, 2015b]

The already published material is indicated in the text and by using footnotes. The
formulation “section X.Y including Fig. X.Z is published in very similar form in” is
used to indicate that these are citations of material from my own previously published
papers. This citation might be slightly adapted to the overall form of this thesis (e.g.
“this paper” is replaced with “this thesis”). Parts of the chapters 5 and 6 contain
material that has been developed and published in collaboration with Niko Sünderhauf.
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1.3. Open source software releases

Whenever I describe work developed or published with others, I use the plural form
(“we”), otherwise the first person singular form.

1.3. Open source software releases

The later presented results on existing comparisons in the areas of superpixel segmen-
tations and place recognition will underline the importance of standardized benchmarks
and the availability of ready to use implementations to allow for comparison. Imple-
mentations of the benchmarks and algorithms published in [Neubert and Protzel, 2012,
2013, 2014] were already provided together with the papers. They are available in form
of open source Matlab toolboxes, free for non-commercial usage. The remaining super-
pixel metrics, modifications of the algorithms and the novel landmark based approach to
place recognition in changing environments will be published together with this thesis.1

• The standardized superpixel benchmark is intended to enable researchers to com-
pare novel superpixel algorithms to existing methods, and to enable users to select
a suitable superpixel algorithm for the task at hand.

• The two novel superpixel algorithms extend the set of available, ready to use
segmentation algorithms.

• The implementation of the proposed landmark based approach is intended as novel
state-of-the-art baseline method for place recognition in changing environments.

1.4. My personal journey to this thesis

This section illustrates my personal journey to these thesis and can be skipped without
ramifications for the understanding of the remainder of this thesis.
The work for this thesis has been spread over several years and included some turns

and detours. In my diploma thesis, I worked on a biologically inspired approach to
place recognition: the combination of saliency based proto-objects and a biologically
inspired semi-metric SLAM system, RatSLAM. Proto-objects are image features in-
spired by bottom-up visual attention in the early human visual system. Basically they
are obtained from centre-surround differences and biologically motivated normalization
procedures. A main issue of these visual features is their lack of a reasonable spatial
image support - thus, I thought they could benefit from a combination with image seg-
mentations. A couple of months later, I found myself segmenting images and comparing
segmentation algorithms - after a short affair with figure-ground segmentations I already
found my way to the superpixel segmentations. I was very happy about being able to
make some contributions to this field.
However, working in a group of mobile robotics enthusiasts, who treat computer vision

mainly as a tool and not as a research field, I was gently guided back to the problem of
mobile robot navigation. While this is a mature field, the particular problem of place

1https://www.tu-chemnitz.de/etit/proaut/mitarbeiter/peerNeubert.html
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Chapter 1. Introduction and Motivation

recognition in changing environments (e.g. summer-winter) showed to be an appealing
challenge. In particular, since superpixels turned out to be a useful tool to implement a
novel idea to approach this problem: learning to predict systematic appearance changes
across seasons and other environmental changes. Together with Niko Sünderhauf, I
was able to demonstrate promising improvements on place recognition performance of
existing methods in combination with this novel prediction approach.
However, while the learning of systematic appearance changes for long term localiza-

tion is a theoretically appealing idea, it poses strong requirements on the training data
and can be considered a rather academic approach. At this point in time, the topic of
my thesis was more or less fixed: superpixels and their application for place recognition
in changing environments - I had a task (place recognition) and a tool (superpixels), any
further contribution to my thesis should be related to both.
Based on the experiences in both fields, various ideas appeared, how the task might

benefit from the tool and how the various challenges of changing environments could
be addressed. Many of the approaches contributed only to my personal experience, not
to a solution to the problem. However, the remaining ideas resulted in a novel system
that builds upon superpixels, outperforms the available methods for place recognition in
changing environments and can be considered a promising basis for a practical solution
to this problem.
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I

PART

SUPERPIXEL SEGMENTATION

ALGORITHMS AND BENCHMARKS

The first part of this thesis comprises:

• An introduction to superpixel seg-
mentations and existing approaches to
generate them in chapter 2

• A standardized benchmark and ex-
perimental comparison based on novel
and existing metrics in chapter 3

• Two novel superpixel algorithms in
chapter 4
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There’s more to the picture

than meets the eyes.

Neil Young, from the song
“My My, Hey Hey”, 1979

2
An Introduction to Superpixel

Segmentations

2.1. The problem of image segmentation

Images are omnipresent in our lives: in form of pictures on the walls, images obtained
from analogue or digital cameras or as the visual perception of the world through our
eyes. To understand why image segmentation is hard for artificial vision systems, one has
to understand that there is a fundamental difference between an image as the computer
(or algorithm) sees it and the visual perception of humans. I want to demonstrate this
by tasks that can easily be solved by one of them and are hard for the other.
The checkerboard illusion by Edward H. Adelson shown in Figure 2.1 is a well known

and notwithstanding fascinating example how the human visual system can be fooled.
For most humans it is hard to recognize (or even accept) that the two marked fields
share the same intensity. It is a catchy demonstration for the overall functioning of the
human visual system: We do not consciously construct the world from the particular
grey level perceived at the retinal rod cells, instead our mind interprets the whole scene
to reason about its individual components. Misleading this unconscious interpretation
is the basis for many visual illusions. In contrast, artificial computer vision systems can
solve some of these illusions easily. For example the checkerboard illusion vanishes for a
typical bottom-up image processing chain that works on raw pixel values and evaluates
illumination differences immediately.
On the other hand, telling the story of an everyday image, i.e. recognizing the con-

tained objects and interpreting their relations and possibly their actions, is trivial for
seven year old children but overcharges the most sophisticated computer vision pipelines
available today. In general, bottom-up interpretation of images fails at the latest when
it comes to image segmentation. Segmentation is the task of subdividing an image into
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Chapter 2. An Introduction to Superpixel Segmentations

Fig. 2.1.: A simple task for a computer and hard for humans. The checkerboard illusion by
Edward H. Adelson: Are the colours of the two marked squares in the left im-
age the same? Despite their obviously different appearance, they share the same
colour. The additional bars in the right image resolve the discrepancy. (Left im-
age licensed under Creative Commons (CC-Zero) http://web.mit.edu/persci/people/
adelson/checkershadow_illusion.html [Last accessed: 2015-08-14] )

its constituent regions or objects [Gonzalez and Woods, 2002, p. 567]. It is a handy
example for a task that is surprisingly hard for computer vision systems: ”Segmentation
of nontrivial images is one of the most difficult tasks in image processing“ [Gonzalez
and Woods, 2002, p. 567]. This becomes clearer if we think of increasingly complex
images as they are shown in Figure 2.2. Humans can recognize the individual grains,
the flippers at the feet of the diver (although one is partially occluded) and even the
objects on the table. Moreover, we can provide a reasonable contour for each - or in
other words, segment the object from the background. However, the way we humans see
the world is not to obtain raw sensory input from our eyes and then consciously inter-
pret them. It’s rather that a magical, ready to use interpretation of the raw information
becomes aware. The interpretation is strongly influenced by conscious and unconscious,
high and low level mechanisms like semantic knowledge or saccades (unconscious eye
movements). However, in bottom-up image segmentation, segmentation and recognition
are artificially separated and an ordering is induced between both. The bottom-up seg-
mentation system has to decide about the boundary of an object before knowing the
object.
In its general form, image segmentation is an ill-posed problem. ”Defining a criterion

for grouping pixels clearly depends on the goal of the segmentation. Consequently, a
unique general method cannot perform adequately for all applications.“ [Stolkin, 2007, p.
431]. An intuitive example is the so called figure-ground segmentation, which is defined
as separating the foreground object(s) from the background. Given the cluttered table
in Figure 2.2 it becomes clear, that we need higher level information to decide whether
the foreground is the table with all the stuff on top, or the stuff itself or even individual
parts of the stuff.
A major problem of bottom-up figure-ground segmentation algorithms in computer

vision pipelines are early hard decisions that can not be reverted later. E.g. an approach
to object detection that will not work is to take an image, segment the foreground object
and give it to a classifier. Thus, the dominant approach to object detection in images
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2.1. The problem of image segmentation

Fig. 2.2.: Beyond the Matlab rice grain counting example (top-left), segmentation can be chal-
lenging. For example due to object boundaries that are not induced by visual cues
(e.g. in the red box A) and objects that are split into parts (B). It is an ill-posed
problem. None of the segmentation boundary images in the bottom row can be con-
sidered the only true solution. Also, none of them can be considered a true solution
altogether since none of them captures all object boundaries. Scenes like that shown
in the right image underline the challenges for real world usage of image segmentation
algorithms.

has been the sliding window approach for many years. Instead of classifying the single
one foreground segment, the image is exhaustively searched by moving a classification
window (the part of the image that is given to the classifier) step by step over the entire
image. The sliding window approach to object detection has recently been superseded
by a new class of detection algorithms based on object proposals - which can in turn be
based on segmentations again. But this time, it is not a single foreground-background
segmentation but a so called multi purpose image segmentation, an oversegmentation
of the image that is given to higher level processing steps. This kind of segmentation
is also known as superpixel segmentation and has proven valuable for a broad range of
computer vision applications as will be discussed in the following section 2.2.
Before we proceed, I want to give a more formal definition of the basic entities involved

in image segmentation: In digital image processing, an image is the result of discrete
sampling of reflected light. More formally:

Definition 2.1 (Image) An image I of height h and width w is a vector function
I: W × H → Dc over the discrete set of pixels Pi,j with i ∈ H = {1, ..., h}, j ∈ W =
{1, ..., w}, number of channels c and codomain D for each channel.
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Typical choices for D are real numbers between 0 and 1: D = {d ∈ R : 0 ≤ d ≤ 1}
or the range of 8 bit integer values D = {d ∈ N0 : 0 ≤ d ≤ 255}. While there may be
different codomains amongst channels they are often converted to a common codomain
for the computational implementation. A typical configuration are three channels, one
for each of the colours red, green and blue - yielding an RGB colour image.

The result of an image segmentation is a partition of the image into disjoint sets of
pixels:

Definition 2.2 (Image Segmentation) Given an image I with the set P of pixels,
a set of disjoint subsets S = {S1, ..., Sm} of P such that P = ∪m

r=1Sr is called an image
segmentation.

This definition comprises all possible image segmentations. Additional criteria like
connectedness and homogeneous appearance should be incorporated to yield useful seg-
ments for the application at hand. Such criteria are later introduced together with image
segmentation techniques.
An image segmentation can e.g. be expressed by a mapping L(i, j) that assigns the

label of the assigned segment to each pixel P (i, j). In a foreground-background segmen-
tation, there are exactly two labels. Multi-object segmentation of k objects (including
a background object with label 0) yields L(i, j) ∈ {0, 1, ..., k}. The following section
presents and discusses segmentations with maxi,j(L) >> k for k objects in the image.
Such segmentations are called superpixel segmentations.

2.2. What are superpixels?

In one sentence, superpixels are an oversegmentation of an image - or seen the other
way around a perceptual grouping of pixels. Instead of finding the few (e.g one to five)
foreground segments that correspond to objects, superpixel segmentation algorithms
split the image into typically 25 to 2500 segments. The objective of this oversegmentation
is a partitioning of the image such that no superpixel is split by an object boundary, while
objects may be divided into multiple superpixels. This way, the object outlines can be
recovered from the superpixel boundaries at later processing stages. Such segmentations
are sometimes also coined multi purpose image segmentations. The difference between
a ”classical“ object-background segmentation and a superpixel segmentation becomes
obvious by the example segmentations in Fig. 2.3. Formally, a superpixel segmentation
can be defined as follows:

Definition 2.3 (Superpixel Segmentation) A superpixel segmentation is a seg-
mentation according to definition 2.2 with a total number of segments that is much
larger than the number of objects in the image. Given an image of size (w, h) with
n = w · h pixels that contains k objects, then for the number s of superpixels typically
yields: n ≫ s ≫ k.
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2.2. What are superpixels?

Fig. 2.3.: Example results of different oversegmentation algorithms on the same input (from left
to right: NC [Shi and Malik, 2000], EAMS [Comaniciu and Meer, 2002], FH [Felzen-
szwalb and Huttenlocher, 2004]). Each segmentation is visualized by the boundary
image drawn in red colour on the input image and by the label image, where all pixels
that belong to the same segment share the same colour.

For example, the image in Fig. 2.3 has 481 · 321 = 154, 401 pixels and maybe about
10-20 objects. It has been segmented into about 200 superpixels from which the object
boundaries could be recovered. Superpixels are an intermediate image representation
carrying more information than individual pixels while avoiding premature hard decisions
about object boundaries. These decisions are left for higher computational layers.
Before its current meaning, the term superpixel was used for slightly different concepts.

Initially it has been used for any group of neighboured pixels, particularly including
figure-ground segmentations. In the 90s, superpixels were commonly understood as the
3x3 or 5x5 neighbourhoods of a pixel. Today, the term is commonly used for any type
of oversegmentation of an image.
The example superpixel segmentations obtained by different algorithms in Fig. 2.3.

shows that the results can be quite different. In particular, there are algorithms that
produce compact segments which are regularly distributed and of similar size (e.g. the
left segmentation in Fig. 2.3). For other algorithms, the individual segments can vary
strongly in size and shape (middle and right segmentations in Fig. 2.3). In the literature,
the term superpixel is sometimes only used for the first type of regular segmentations,
while the latter irregular segmentations are coined oversegmentations. This is due to the
more pixel-like appearance and distribution of the compact segmentations. In this thesis,
the terms superpixel segmentation and oversegmentation will be used interchangeable for
both classes of multi purpose segmentations. However, there will be an extensive evalu-
ation of compactness properties of superpixels to gain a more detailed understanding of
regularity properties of oversegmentations in section 3.6.
The first superpixel algorithm in its current understanding was the Normalized Cuts

algorithm presented by Shi and Malik [1997]. The authors extended their approach in
subsequent work and established the term superpixel for this kind of segmentation in
[Ren and Malik, 2003]. A more detailed description of this algorithm can be found in
section 2.3.2.
Which problems can benefit from superpixel segmentations? They are an intermediate

image representation. As the term multi purpose image segmentations implies, they are
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used for various applications. Malisiewicz and Efros [2007] analysed the benefit of such
segmentations in the context of object recognition. They draw two important conclu-
sions: 1. Object recognition benefits from the right spatial support. 2. It is feasible
to provide this spatial support based on oversegmentations. This work led the way for
the inclusion of oversegmentation based object proposal algorithms in some of the cur-
rently best performing object detection pipelines. For example the winning and second
place object detection entries of the ImageNet Large Scale Visual Recognition Challenge
2013 (ILSVRC13) [Russakovsky et al., 2015] both build on object proposals [van de
Sande et al., 2014; Wang et al., 2013], as well as the 2014 wining entry Region-based
Convolutional Network (R-CNN) [Girshick et al., 2014]. The key idea of object proposal
algorithms is to replace the exhaustive search performed by sliding window object detec-
tion approaches. Instead of giving all possible bounding boxes of relevant location, size
and aspect ratio to the classifier, object proposal algorithms generate a set of promis-
ing candidates that are given to the classifier. Many state of the art object proposal
algorithms are build upon oversegmentations, e.g. Selective Search [Uijlings et al., 2013]
and Randomized Prim’s [Manen et al., 2013] build upon Felzenszwalb-Huttenlocher seg-
mentation [Felzenszwalb and Huttenlocher, 2004] while Category-Independent Object
Proposals [Endres and Hoiem, 2014] and Multiscale Combinatorial Grouping [Arbelaez
et al., 2014] use superpixels based on gPb [Arbelaez et al., 2011]. This nicely illustrates
how superpixel can be used to overcome the problems induced by the ill-posed problem
formulation of segmenting objects from images.
Other applications of superpixels include semantic segmentation [Miĉuŝik and Koŝecká,

2009], 3d reconstruction from single views [Hoiem et al., 2005] or stereo [Miĉuŝik and
Koŝecká, 2010], tracking [Wang et al., 2011], video segmentation [Vazquez-Reina et al.,
2010] and semantic video annotation [Kae et al., 2014], traversability classification for
ground robots [Kim et al., 2007], classification of urban streets [Upcroft et al., 2014],
and many more. Similar to superpixels, there exists a group of algorithms called su-
pervoxels. These are extensions of superpixels from the two dimensional spatial image
domain to the three dimensional spatial-temporal video domain, e.g. [Veksler et al.,
2010], or the three dimensional euclidean space, e.g. [Papon et al., 2013]. Although the
range of ready to use supervoxel algorithms is rather limited, their application should
be considered whenever superpixels are applied to such three dimensional data.
As a teaser: The second part of this thesis will deal with a particular application of

superpixel segmentation in the context of mobile robotics: How can superpixel segmen-
tations be used for place recognition in changing environments. However, this first part
will provide us the superpixel-related tools to approach this question.

2.3. Creating superpixel segmentations

There are almost as many different superpixel segmentation algorithms as there are pos-
sible applications. Depending on the intended usage, a different superpixel algorithm
may be the right choice. Figure 2.3 already gave an idea of the broad spectrum of pos-
sible outcomes that such algorithms can provide. To find the right algorithm for the
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task at hand, knowledge about available algorithms and their theoretical and practical
properties is crucial. The rest of this first part of the thesis is dedicated to the presen-
tation of existing and new superpixel algorithms, the identification of crucial properties
and an extensive evaluation of these properties using existing and newly proposed eval-
uation metrics. This section will first introduce some basic techniques and definitions in
section 2.3.1 to pave the way for the understanding of the selected superpixel algorithms
presented in section 2.3.2.

2.3.1. Fundamentals of image (over-) segmentation techniques

Finding the components or parts of an image is a fundamental problem in image pro-
cessing and computer vision. Image segmentation has a long history, tracing back to the
fields of artificial intelligence (e.g. image regions for scene analysis by Brice and Fen-
nema [1970]) and mathematics (e.g. segmentation through functional approximation by
Pavlidis [1972]). According to its long history, a variety of approaches to image segmen-
tation exits. Many of them were applied to both figure-ground- and oversegmentations.
In general, they are based on two region properties: similarity and discontinuity [Gon-

zalez and Woods, 2002, pg. 568]. A coherent image region is induced by either its inner
similarity or the discontinuities at the borders to other regions (or a combination of
both). There are various image cues that can be exploited to compute similarity and
discontinuity. Typical choices are grey level intensity, colour, texture cues and the spa-
tial image location. In particular, for colour and texture cues there exist a wide range
of possible alternatives.
For example texture cues may be obtained from statistical, geometrical, model based or

signal processing methods [Wu, 2003]. Statistical methods derive a set of statistics from
the grey level distribution of local neighbourhoods, e.g in form of a grey level cooccurance
matrix (also called GLCM or Haralick features) [Haralick et al., 1973]. Geometrical
methods try to find basic primitives or parts, that constitute the texture, e.g. [Rosenfeld
and Lipkin, 1970]. Model based methods aim at capturing the process that generated the
texture, e.g. in form of Markov Random Fields [Dubes and Jain, 1989]. Signal processing
methods analyse texture using spatial filters or through filtering in the frequency domain,
e.g. Law’s Filter [Laws, 1980] or Gabor filters [Bovik et al., 1990]. Increasingly complex
methods yielded progress for texture analysis: “[...] considerable progress was made in
both classification and synthesis by modelling textures using first the mean, then the
mean and variance and finally by the full joint PDF of locally computed filter responses”
[Varma and Zisserman, 2003]. Although simpler, e.g. texton-based approaches, also
showed competitive performance [Varma and Zisserman, 2003], computation of texture
cues is a fairly time consuming task. Superpixel segmentation algorithms that are used
as a preprocessing step often relinquish the effort of incorporating texture.
For colour features, there is a similar diversity. Beyond the often used RGB colour

space there exists a wide range of alternative colour spaces with different properties. The
RGB colour space is a result of the design of the imaging sensors used in most cameras.
They provide three types of sensor cells, one for red, blue and green. This is close to
the biological example in our eyes, where we have S,M and L type cells for perception
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of light with different wavelength. Nevertheless, it is hard for humans to find the RGB-
tuple that corresponds to the colour of a shown patch by trial-and-error. One reason is
that for example the intensity (or brightness/luminance) of a colour is influenced by all
three channels. There are colour spaces that better decouple independently perceived
appearance properties of the colour. For example, the HSV colour space is composed
by hue (H), the dominant wavelength, saturation (S), a representation of the purity of
the colour and the value (V), the intensity or brightness. The human visual system
performs a slightly different decoupling: Very early in the visual path, the excitation of
the above mentioned S,M and L cells is encoded in a channel for the intensity, and two
others for the red-green and the blue-yellow contrast. The CIE LAB colour space is a
technical implementation of this process. It provides the interesting property that the
Euclidean distance in the LAB colour representation is close to the difference perceived
by humans (at least for fairly similar colours). This makes the CIE LAB colour space
particularly interesting for segmentation algorithms that try to resemble human figure
ground segmentations. There exist many colour features beyond these, e.g. see [Gevers
and Smeulders, 1996] for an overview.
However, although the available implementations of segmentation algorithms use a

particular set of image cues, for most of them, this choice can be separated from the
algorithmic approach and the approach can be used with other image cues. An example
will be presented in section 4.2, where the influence of using the RGB or LAB colour
space for a particular approach is evaluated. While the selection of the right set of
features is important, the focus of this thesis is on the segmentation approaches and not
on the image cues used.
There are some general concepts and algorithms that are used in several of the de-

scribed algorithms in this section and over the course of this thesis. I want to introduce
these concepts in the following. Some of the terms have varying meanings in the litera-
ture and lack a common exact definition, e.g. the term image graph. The here presented
definitions are consistent through this thesis, but may be different from those in the
referenced literature.

2.3.1.1. Image segmentation and graph theory

Image segmentation can be formulated as a graph partitioning problem. Several state
of the art segmentation and oversegmentation algorithms are based on this analogy. A
graph can be defined as follows [Diestel, 2000]:

Definition 2.4 (Graph) In graph theory a graph G = (V,E) is the combination of a
finite set of vertices V and a set of edges E ⊆ [V ]2 that connect vertices. Each edge is
a 2-element subset of V , the edge connecting vertices i, j is denoted e{i,j}. In case of a
weighted graph G = (V,E,W ), a weight w{i,j} ∈ W ⊂ R is associated to each edge.

To relate graph theory to image processing, the image graph is a special graph that
associates vertices to pixels and weighted edges to relations between pixels.

28



2.3. Creating superpixel segmentations

Definition 2.5 (Image Graph) An image graph is a weighted graph G = (V,E,W )
associated to an image I where each node vi ∈ V represents an image pixel and each
edge e{i,j} ∈ E connects a pair of pixels i, j. The edge weights w{i,j} ∈ W are associated
to similarities (or dissimilarities) between the pixels corresponding to this edge.

The edge weights can be obtained from simple intensity or colour differences, or involve
higher order measures like texture. In case of oriented measures, like image gradients,
the edges may also be directed and constitute a directed graph. An often used form of
an image graph is a grid graph.

Definition 2.6 (Grid Graph) A grid graph is an image graph with an edge ei,j ∈ E
for each pair of neighboured pixels i, j. Typical neighbourhoods are the Von Neumann
neighbourhood (4-connected pixels) or the Moore neighbourhood (8-connected pixels).

This significantly reduces the number of edges from |V |2 for a fully connected image
graph to about 4 · |V | or 8 · |V | depending on the chosen neighbourhood. The difference
can be seen in the following example.

Example 2.1 (Image Graphs) The 30 pixels of the tiny (5 × 6) image, illustrated
by blue boxes in a), can be represented by a set of vertices in b). Connecting each pixel
to all other pixels by an edge yields a fully connected image graph. The edge set for
an example pixel is shown in c). The grid graph reduces the set of edges to the spatial
neighbourhood of a pixel. The resulting set of edges for a 4-connected neighbourhood and
the same example pixel can be seen in d).

For an image that is associated to an image graph, each graph partition yields a
segmentation of the image.

Definition 2.7 (Graph Partition) Given a graph G = (V,E), a set of disjoint sub-
sets P = {P1, ..., Pk} of the set of vertices V such that V = ∪k

i=1Pi is called a graph
partition.

This definition is very similar to the previous definition of image segmentation but
replaces pixels with vertices. This facilitates the application of a broad range of graph
theoretical approaches to compute graph partitions, most importantly those based on
graph cuts. Conceptually, a graph cut is the set of edges that connects two parts of a
graph.
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Definition 2.8 (Graph Cut) Given a weighted graph G = (V,E,W ) and a bipartite
graph partition P = {P1, P2}, the set of edges C = {c{i,j} ∈ E : ((vi ∈ P1) ∧ (vj ∈
P2)) ∨ ((vi ∈ P2) ∧ (vj ∈ P1))} is a graph cut. The weight of the graph cut is the sum of
the weights of its edges.

Given an image graph with edge weights derived from pixel similarities, a partition
with a small weight graph cut splits the set of vertices and correspondingly pixels such
that there are few similarities between connected pixels located in different subsets of
the partition.

Example 2.2 (Image Segmentation and Graph Cuts) The tiny image in a) can
be seen as a darker foreground object (pixels 9, 15, 16, 21 and 22) in front of a white
background. b) shows the edges of the corresponding grid graph with a 4-connected neigh-
bourhood. The weight of each edge can be computed from grey level similarity. High edge
weights correspond to high pixel similarity and are illustrated by thick edges in c). The
set of thin black edges in d) constitute a small weight cut yielding a partition of the image
graph that separates the foreground from the background.

There are well investigated algorithms to compute a partition with (approximately)
minimal weight graph cut, e.g. based on the MinCut-MaxFlow theorem [Ford and
Fulkerson, 56]. Recursive computation of such cuts can be used to iteratively refine
the partition. The outlined connections between graph theory and image segmentations
are exploited in several segmentation approaches [Shi and Malik, 2000; Felzenszwalb
and Huttenlocher, 2004; Veksler et al., 2010]. One of the challenges when computing
image segmentations based on graph cuts is to avoid trivial image graph partitions that
separate single pixels or very small groups. How this problem can be solved is further
discussed when the Normalized Cuts [Shi and Malik, 2000] algorithm is presented in
section 2.3.2.1.

2.3.1.2. Image segmentation and data clustering

Grouping pixels to image segments can also be approached using techniques for unsu-
pervised data clustering. A well known algorithm for this task is k-means. There are
several oversegmentation algorithms based on k-means (e.g. Achanta et al. [2012]) or
related algorithms like mean-shift (e.g. Comaniciu and Meer [2002]) and medoid-shift
(e.g. Vedaldi and Soatto [2008]). To prepare the presentation of these algorithms, I want
to shortly review the k-means algorithm.
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k-means is a vector quantization method that simultaneously finds k clusters in a set of
n observations and assigns the observations to the clusters. Finding the optimal solution
of this problem is NP-hard. The here presented approximation procedure published by
Lloyd [1982] goes back to an idea of Steinhaus [1956]. It uses an iterative algorithm to
find a local minimum of the following objective function: Given a set of n observations
{x1, x2, ..., xn} and the number of clusters k, and being P = {P1, P2, ..., Pk} a partition
of the set of observations, find:

argmin
P

k
∑

i=1

∑

x∈Pi

||x− µi||2

where µi is the mean of all observations assigned to cluster Pi. In simple words, k-
means searches a clustering that minimizes the within-cluster sum of squared distances.
Starting from a random initialization of the k cluster centres with samples from the
observations, two steps are repeatedly executed:

1. Assignment Assign each observation to the nearest cluster centre.

P
(t)
i = {xs : ||xs −m

(t)
i ||2 ≤ ||xs −m

(t)
j ||2∀j, 1 ≤ j ≤ k}

2. Update Compute the new cluster centres from the assigned observations.

m
(t)
i =

1

P
(t)
i

∑

xj∈P
(t)
i

xj

A main drawback of k-means is the necessity to choose the number of clusters k.
Moreover the results strongly depend on the choice of the initial clusters. For practical
applications, often multiple runs with different initializations and possibly different num-
bers of clusters are performed. The solution with the best value of the above objective
function is taken.

Section 2.3.2.7 presents the simple and elegant method by [Achanta et al., 2012] to
create superpixels based on k-means. In their approach, the parameter k can be used
to influence the number of created superpixels. However, the methods by Comaniciu
and Meer [2002] and Vedaldi and Soatto [2008] presented in sections 2.3.2.3 and 2.3.2.4
build on similar methods that can implicitly estimate the number of clusters. Moreover,
section 4.2 will present a novel segmentation method that is also based on k-means and
creates high quality segmentations at low runtime.

2.3.2. Algorithms

The following pages present a selection of superpixel segmentation algorithms from the
literature. The underlying algorithmic approach of each algorithm is outlined and ac-
companied by example segmentations that illustrate the segmentation characteristics.
A comparison of the technical properties of these algorithms is also given in table 2.1,
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followed by more segmentation examples in Fig. 2.13. Prerequisite for an algorithm
to be included in this comparison is a publicly available implementation. Further, this
comparison focuses on algorithms that provide sufficiently low runtime to be used as
a preprocessing step. The only exception is the Normalized Cuts algorithms that is
included due to its historical relevance.
Beyond the overview of their basic properties in table 2.1, these algorithms are exten-

sively evaluated regarding runtime in section 3.3, segmentation quality in section 3.4,
their stability in the presence of several types of distractions in section 3.5 and their
compactness properties in section 3.6. Readers that already know these algorithms or
are just interested in the comparison can directly skip to one of the aforementioned
sections.

2.3.2.1. Normalized Cuts (NC) - The very first superpixel algorithm

Properties NC

Technique Graph cuts
Cue(s) Intensity, colour, texture,

size
Compact? Yes
Runtime Minutes to hours

Fig. 2.4.: Example NC segmentation

Shi and Malik [1997] proposed a novel approach for solving the perceptual grouping prob-
lem in computer vision: the normalized cuts algorithm. A more detailed description can
also be found in Shi and Malik [2000]. Rather than focusing on local image features, they
incorporate a global optimization criterion. They propose to solve a general eigenvalue
problem on the image graph to optimize the total dissimilarity between image segments
as well as the total similarity within each segment. In subsequent years Malik et al.
[2001] extended the algorithm with the intervening contour framework, texton based
texture cues and proposed to use NC to produce an oversegmentation of the image as
a preprocessing step for the final segmentation. Ren and Malik [2003] investigated the
use of Gestalt principles for combining the result of the NC oversegmentation to large
segments and finally established the term superpixel for such oversegmentations. This
can be regarded as the dawn of the era of superpixel segmentation algorithms. The
difference between the ’97 and the later approaches is the number of produced segments:
in 1997 the Normalized Cuts algorithm was used to find the few (e.g. 4-7) major seg-
ments in the image, while later on the algorithm was used as a preprocessing step to
split the image into much more superpixels that could subsequently be grouped to larger
segments based on higher level cues. In [Malik et al., 2001] the number of superpixels
was 10-100 and further increased to 200 in [Ren and Malik, 2003].
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For the Normalized Cuts algorithm, the image is represented as a weighted undirected
graph G = (V,E). In terms of graph theory an image segmentation can be seen as a
graph partitioning (see Definition 2.7). The weights of all edges that connect vertices
that belong to two different sets sum up to the cut of these two sets. Thus, the edges
that belong to the graph cut between two parts of an image graph form the boundary
between the associated image segments. There exist efficient algorithms to find minimal
cuts in image graphs (e.g. based on the MinFlow - MaxCut theorem). Wu and Leahy
[1993] noticed in an earlier approach of graph cut based image segmentation that the
minimum cut criteria favours cutting small segments. This is not surprising since larger
segments contain more edges in their cut and thus have higher cut values. To avoid this
unnatural bias, the Normalized Cut computes the cost of a partition of V into subsets
A and B as a fraction of the total edge connections to all the nodes in the graph:

NC(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(2.1)

where
assoc(A, V ) =

∑

a∈A,v∈V

w(a, v) (2.2)

is the sum of weights from the subset of nodes A to all nodes in the graph. This definition
penalizes small sets of vertices since their cut value “almost certainly” (see Shi and
Malik [1997]) becomes a high fraction of their total sum of connection weights. One
key advantage of this approach is that a good approximation to the optimal partition
can be computed efficiently by solving a generalized eigenvalue system.1 Finding the
true optimal partition is an NP-hard problem. For details, please refer to Shi and Malik
[2000].
For computation of superpixels based on Normalized Cuts Ren and Malik [2003] use

a locally connected graph over the set of image pixels with weights based on the contour
and texture cues from Malik et al. [2001]. Locally connected means, there are edges
to all nodes within a certain distance. To produce higher numbers of segments using
NC, they propose to compute the second to the twelfth smallest eigenvalues, weight
the eigenvectors according to their eigenvalues, transform each pixel in this eigenvector
space and finally use k-means vector quantization to find clusters in this transformed
space. These clusters are the resulting superpixels. An open source implementation
of the original Normalized Cuts algorithm for Matlab and C++ is available2. Major

1The general idea is the following: Given the weight matrix W composed by all weights wi,j between
nodes i and j, and D the diagonal matrix containing the sum of all weights of each node: Di,i =
∑

j
wi,j . Shi and Malik [1997] showed that the Normalized Cut problem can be solved by computing:

y = argminNC = argmin
y

yT (D −W )y

yTDy
(2.3)

where y = {a, b}N is a binary indicator specifying for each pixel to which partition it belongs. Since
the above expression is a Rayleigh quotient, one can solve this expression by relaxing y to take on
real values (instead of discrete labels) and solving a generalized eigenvalue problem.

2http://www.timotheecour.com/software/ncut/ncut.html [Last accessed: 2015-08-14]
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drawbacks are the high runtime of several minutes for larger images and the fact that
the errors introduced by the approximation are not well understood [Felzenszwalb and
Huttenlocher, 2004].

2.3.2.2. Felzenszwalb-Huttenlocher segmentation (FH)

Properties FH

Technique Graph merging
Cue(s) Colour
Compact? No
Runtime About one hundred ms

Fig. 2.5.: Example FH segmentation

Felzenszwalb and Huttenlocher [1998] propose another graph-based segmentation ap-
proach that later became a well-known superpixel algorithm, more details can be found
in [Felzenszwalb and Huttenlocher, 2004]. They define a predicate for measuring the
evidence of a boundary between two regions and present an implementation in a greedy
algorithm that also satisfies global properties. Its goal is to preserve details in low-
variability image regions and ignore details in high-variability image regions. Starting
from a weighted 8-connected image graph with pixel dissimilarity values in the edge
weights (i.e. Euclidean distances in RGB colour space) two measures are defined:

1. The internal difference ID(C) of a component C is the largest weight in the mini-
mum spanning tree (MST) of the component. The MST is the cheapest (in terms
of the edge weights) structure to connect the whole component. Its largest weight
in the MST appears at the part of the component that is the most loosely coupled
to the component.

2. The external difference ED(C1, C2) between two components C1 and C2 is the
minimum weight of an edge connecting the two components (using median bound-
ary weight may be more robust but makes the problem NP-hard [Felzenszwalb and
Huttenlocher, 2004]).

To decide whether there is evidence for a boundary between two components the external
difference is compared to the internal differences.

D(C1, C2) =

{

true if ED(C1, C2) > min(ID(C1) + τ(C1), ID(C2) + τ(C2))

false otherwise
(2.4)

The external difference between the components has to be larger than the internal dif-
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ference of each component C plus an additional term τ(C).

τ(C) =
k

|C| (2.5)

This term requires smaller segments to have stronger evidence for a boundary. k is a
parameter of the system and sets a scale for the segmentation (larger k causes larger
segments). This parameter influences the size and number of segments, but it is neither
possible to enforce a minimum segment size nor a certain number of segments.
The function τ can be any non-negative function. E.g. the authors suggest to use the

ratio of perimeter to area to suppress long and thin segments. However, with the current
formulation, the algorithm would enforce just one of each neighboured segment pair to be
of the desired shape. An open source C++ implementation by the authors is available3.
In this implementation there exists a postprocessing step to enforce a minimum segment
size by merging too small segments with the neighboured components to which they are
connected by the smallest weight.

2.3.2.3. Edge Augmented Mean Shift (EAMS)

Properties EAMS

Technique Mean shift and edge detec-
tion

Cue(s) Intensity, colour, location
Compact? Possible
Runtime A few seconds

Fig. 2.6.: Example EAMS segmentation

Edge Augmented Mean Shift [Christoudias et al., 2002] builds on two modules: mean
shift segmentation and a confidence based edge detector. Mean shift is a mode seeking
algorithm originally proposed by Fukunaga and Hostetler [2006]. Given a set of discrete
data samples and an initial estimate of the modes of the density function underlying
these samples, mean shift iteratively computes a kernel-based weighted combination of
nearby samples to re-estimate the location in the feature space. A major difference to the
k-means algorithm is that mean shift does not need to know the number of cluster centres
in advance. Comaniciu and Meer [2002] describe its application to image segmentation.
They propose a two steps approach:

1. First the image is represented in the five dimensional Luv-colour and spatial feature
space and filtered using mean shift. In this step, each pixel converges to a mode.

3http://www.cs.brown.edu/~pff/segment/ [Last accessed: 2015-08-14]
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2. In a second step, the basins of attraction of these modes are recursively fused until
convergence (controlled by spatial and colour resolution parameters). Additionally
too small regions may be eliminated.

The used confidence based edge detector is a generalization of the traditional Canny edge
detector and described in [Meer and Georgescu, 2001]. The edge detector is integrated
in the mean shift filtering step. An implementation is available as part of the EDISON
system4 [Christoudias et al., 2002]

2.3.2.4. Quickshift (QS)

Properties QS

Technique Medoid shift
Cue(s) Intensity, colour, location
Compact? Yes
Runtime A few seconds

Fig. 2.7.: Example QS segmentation

The above mean shift algorithm implements the mode seeking approach essentially by
gradient ascent [Cheng, 1995]. This requires additional structure of the underlying data
space to define a gradient (e.g. Hilbert space or smooth manifold structure [Vedaldi and
Soatto, 2008]). Sheikh et al. [2007] proposed medoid shift to overcome this limitation.
Medoid shift also starts with a kernel density estimate of the probability distribution of
the data points but constrains the trajectories to pass through the data points. However,
the runtime of general medoid shift is considerably higher than that of mean shift.
For N data points with dimensionality d, the complexity of general medoid shift is
O(dN2 + N2.38) (unfortunately with high constant) and that of mean shift O(dN2T )
with T being the number of iterations which is normally much smaller than N . However,
Vedaldi and Soatto [2008] show that the computational complexity of medoid shift in
Euclidean space is only O(dN2), which is faster than mean shift. They further point
out that medoid shift is not able to consistently identify all modes of the density. This
issue can be addressed e.g. by reiterating medoid shift [Sheikh et al., 2007] or by using
medoid shift as preprocessing step to simplify the data for mean shift. Vedaldi and
Soatto [2008] also propose a further approach called Quickshift, which turned out to be
a useful superpixel segmentation algorithm: While mean shift moves the data points
in the underlying space, medoid shift restricts these paths to data points. In terms of
graph theory the resulting set of paths of the points can be seen as a forest. Quickshift
extends this idea by directly constructing a tree of paths by moving each data point to

4http://www.wisdom.weizmann.ac.il/~bagon/matlab.html [Last accessed: 2015-08-14]
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the nearest neighbour for which there is an increment of the density. The final clusters
are obtained by splitting the branches of the tree based on a threshold λ. To obtain
superpixels from an image, Vedaldi and Soatto [2008] use Quickshift to cluster the image
pixels in the combined Luv color and spatial position space (as in [Comaniciu and Meer,
2002]). An implementation is available as part of the VLFeat library5.

2.3.2.5. Watershed (WS)

Properties WS

Technique Seeded region growing
Cue(s) Intensity, colour
Compact? No
Runtime Milliseconds

Fig. 2.8.: Example WS segmentation

The idea of watershed segmentation originates from [Digabel and Lantuéjoul, 1978]. The
intuitive idea comes from geography: when a landscape is flooded by falling waterdrops,
dependent on the amount of water there are basins filled with water and dividing ridges
between them. These ridges are the watersheds. Since watershed segmentation is a well
known algorithm, there are various algorithmic implementations and adaptations, see
[Roerdink and Meijster, 2000] for an overview.
An open source implementation is available as part of OpenCV6. OpenCV implements

a seeded watershed segmentation (also called marker controlled watershed). The seeds
are externally provided to the algorithm. The choice of the markers has a large influence
on the resulting segmentation. For example, [Meyer, 1992] use local gradient minima.
The seeds grow iteratively pixel by pixel until they reach a border to the segment around
another seed. These borders form the watersheds. The next seed to expand by one pixel
is chosen based on the priority obtained from a distance function. In the OpenCV imple-
mentation, this distance function is based on the intensity or colour value of the pixels.
Additionally to this basic seeded watershed starting from local gradient minima, section
4.4 will present a novel adaptation, coined Compact Watershed, that initializes the seeds
to form a superpixel lattice and incorporates spatial constraints in the construction of
the superpixels. This section will also give more details on the algorithmic approach.

5http://www.vlfeat.org [Last accessed: 2015-08-14]
6http://www.opencv.org [Last accessed: 2015-08-14]
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2.3.2.6. Entropy Rate Superpixel Segmentation (ERS)

Properties ERS

Technique Graph merging
Cue(s) Intensity, colour, size
Compact? Yes
Runtime About a second

Fig. 2.9.: Example ERS segmentation

Liu et al. [2011] propose a new objective function for superpixel segmentation: the
combination of the entropy of a random walk on an image graph representation and
a balancing term on the size of the segments. In their formulation, a high entropy
favours homogeneous segments. The entropy rate is the asymptotic measure of the
remaining uncertainty of the random process of adding edges to form clusters. They
show that their objective function is submodular (the discrete analogue to convexity in
continuous domains) and exploit this property in a greedy algorithm that approximates
the optimal solution by a bound of 1

2 . Their algorithm starts with an empty set of edges
and sequentially adds the edge that yields the largest gain of their objective function.
They iterate until the right number of clusters is reached. For speed-up, they ignore
edges that would introduce cycles, which reduces the solution space to the set of forests.
This approach computes a hierarchy of segments. More details can also be found in their
journal paper [Liu et al.]. An implementation is available on Github7.

2.3.2.7. Simple Linear Iterative Clustering (SLIC)

Properties SLIC

Technique Local k-Means
Cue(s) Intensity, colour, location
Compact? Yes
Runtime A few hundred ms

Fig. 2.10.: Example SLIC segmentation

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012] is based on the concept
of a local k-means clustering. The cluster centres are initialized on a uniform grid in the

7https://github.com/mingyuliutw/ers [Last accessed: 2015-08-14]
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image plane. Local k-means denotes that each cluster considers only pixels in its spatial
neighbourhood. The metric during clustering is a weighted combination of LAB colour
distance and spatial distance in the image plane. The weight of the spatial component
(the “compactness” parameter) influences the regularity of the resulting segments shape
and size.

There are two implementations available: one by the authors8 and another as part of
VLFeat9. The implementation of the authors is slightly different from the description
in their paper: they use a modified distance function and a fixed number of iterations.
Thera are several adaptions of SLIC. E.g. Schick et al. propose to evaluate only the
boundary pixels during the k-means update. However, this makes the algorithm more
sensitive to image gradients. Section 4.2 presents a novel modified version of SLIC,
called Preemptive SLIC, that yields a significant speed-up by introducing a local termi-
nation criterion for each segment. This section also gives more details on the algorithmic
approach of SLIC.

2.3.2.8. Superpixels Extracted via Energy-Driven Sampling (SEEDS)

Properties SEEDS

Technique Moving boundary pixels
Cue(s) Intensity, colour, smooth

boundaries
Compact? Not by default, but there is a

compact variant available
Runtime About one hundred ms

Fig. 2.11.: Example SEEDS segmentation

Van den Bergh et al. [2012] describe a different approach on generating superpixels.
Starting from a grid of square superpixels, they iteratively reassign boundary pixels (or
blocks of pixels) from one segment to a neighboured segment. This way they start from
a complete segmentation and subsequently adapt it to the image content. They use
an objective function that enforces homogeneity of the segment colour distribution (in
LAB colour space) and smooth boundary shapes. Boundary smoothness is measured
by building histograms of superpixel labels in small local patches (e.g. 3 × 3). Inside
superpixels there will appear only a single superpixel label while at the borders there
will be different labels. They use the sum of squared histogram entries as measure for
the smoothness of the patch. Both terms in this objective function are designed for very
fast optimization by a greedy strategy. They can be evaluated and updated very fast for
changing segment boundaries. In each step, the algorithm proposes a set of single pixels

8oriSLIC: http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html [Last
accessed: 2015-08-14]

9vlSLIC: http://www.vlfeat.org/ [Last accessed: 2015-08-14]
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or blocks of pixels at segment boundaries to be exchanged between the two neighboured
segments. Invalid proposals (e.g. when a segment is split) are ignored. If the new
segmentation provides a gain of the objective function, it is retained, otherwise it is
rejected. In [Van den Bergh et al., 2013] two other boundary terms are proposed: First
a compactness term (average distance of pixels to the centre of gravity of the superpixel).
Second an edge prior that computes LAB colour edges and snaps segment boundaries
to these edges. They evaluate the boundary terms and their combinations and conclude
that all boundary terms negatively influence boundary recall and should be omitted if
no compactness property is necessary. An implementation is available directly from the
authors website10 or as part of OpenCV11 (Version ≥ 3.0).

2.3.2.9. Veksler superpixels

Properties VEK

Technique Energy minimization by
graph cuts

Cue(s) Intensity, size
Compact? Yes
Runtime A few seconds

Fig. 2.12.: Example VEK segmentation

Veksler et al. [2010] propose another graph cut based approach for superpixel tessellation
that focuses on regular partition. They formulate the segmentation problem as an energy
minimization problem that explicitly encourages regular superpixels.

Given a set of pixels P and a set of segment labels L, they search a labelling f that
assigns each pixel p = (xp, yp)

T the label fp. Their energy function builds on their prior
work on graph cut optimization [Boykov et al., 2001] and is the weighted sum of a data
and a smoothness term:

E(f) =
∑

p∈P

Dp(fp) + λ
∑

{p,q}∈N

wpq · Vpq(fp, fq) (2.6)

Unary constraints Dp(fp) express how likely is the label Fp for pixel p. Binary con-
straints Vpq(fp, fq) describe how likely labels fp and fq are for neighbouring pixels p and
q. Typically, the binary constraint supports the common labels for similar pixels and
inhibits common labels for pixels with e.g. a high gradient. They use an 8-connected
neighbourhood and Potts model Vpq(fp, fq) = min(1, |fp − fq|1). The weights wpq de-
scribe the similarity between pixels. They are inversely proportional to image intensity

10http://www.mvdblive.org/seeds/ [Last accessed: 2015-08-14]
11http://www.opencv.org [Last accessed: 2015-08-14]
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gradients, however, one could also incorporate other cues like colour or texture gradients.
For the data term, they start with a grid like initialization of the segment midpoints
m(l) = (x, y)T . They set the data term such that nearby pixels may have the same
segment label, while for pixels with distances larger than maxPatchSize there exists
no common label with finite energy. The open source implementation12 by the authors
provides two variants for the unary term:

1. Compact Superpixels (coined VEK in our experiments) with data term:

Dp(l) =

{

1 if ||p−m(l)||1 ≤ maxPatchSize

∞ otherwise
(2.7)

Since this term is invariant for all valid labellings (those without ∞ terms), the
weighting parameter λ in Equation 2.6 has no influence. Thus, the control over
boundary smoothness is implicit in the binary terms and can (and need) not be
adjusted by an additional parameter.

2. Constant Intensity Superpixels (coined VEK CI) with data term:

Dp(l) =

{

|Ip − Im(l)| if ||p−m(l)||1 ≤ maxPatchSize

∞ otherwise
(2.8)

Here, the unary term depends on the similarity of the pixel to the midpoint of the
segment. This requires an additional constraint in the label of the midpoints, see
[Veksler et al., 2010] for details.

In both cases, the number of resulting segments is controlled by the maxPatchSize
parameter. While optimizing this energy is NP-hard, the graph cut minimization method
described in [Boykov et al., 2001] guarantees a factor of 2 approximation. Compared
to NC, this graph based technique is much faster and produces visually similar results.
Moreover, there is a straight forward extension to image sequences (or 3d data) to create
supervoxels [Veksler et al., 2010].

2.3.3. Summary of the presented superpixel segmentation algorithms

Before we dive deeper into a detailed evaluation of these algorithms, I want to summarize
the presented algorithms. Table 2.1 provides an overview of the theoretical properties
of the algorithms. Fig. 2.13 shows example segmentations with varying numbers of
segments. Section 3.2.3 will present the available implementations of these approaches
including parameter settings that are used in the upcoming experiments.

12http://www.csd.uwo.ca/faculty/olga/code.html [Last accessed: 2015-08-14]
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NC Graph Cuts Minutes to hours ✓ ✓ ✓ ✓ ✓ ✓ - -b C GPL Shi and Malik [1997]
FH Graph merg-

ing
About hundred ms ✓ ✓ - - - - - ✓ C GPL Felzenszwalb and Huttenlocher [2004]

EAMS Mean-shift A few seconds ✓ ✓ - ✓ - ✓ - ✓ C, M - Comaniciu and Meer [2002]
QS Medoid-shift A few seconds ✓ ✓ - ✓ - ✓ - (✓)c C, M BSD Vedaldi and Soatto [2008]
WS Seeded region

growing
Some milliseconds ✓ ✓ - - - - - ✓ C, P BSD Meyer [1992]

ERS Random
walks

About a second ✓ ✓ - - ✓ ✓ - ✓ C, M d Liu et al. [2011]

SLIC k-means A few hundred ms ✓ ✓ - ✓ - ✓ ✓ (✓) C, M GPL Achanta et al. [2012]
SEEDS Move bound-

ary pixels
About hundred ms ✓ ✓ - - - (✓) ✓ ✓ C, M GPL Van den Bergh et al. [2012]

VEK Graph Cuts A few seconds ✓ - - - - ✓ ✓ (✓) C++ e Veksler et al. [2010]
CWS Seeded region

growing
Some milliseconds ✓ ✓ - ✓ - ✓ ✓ ✓ C, M GPL Neubert and Protzel [2014]

pSLIC k-means Tens of ms ✓ ✓ - ✓ - ✓ ✓ ✓ C, M GPL Neubert and Protzel [2014]

Table 2.1.: Overview of the compared algorithms. The two bottom lines show the novel algorithms CWS and pSLIC that are presented
in chapter 4.

aM Matlab, P Python, C C/C++
bThere are scattered single pixels in the used implementation.
c(✓) indicates that in rare cases or depending on the implementation segments may be not connected.
dFree for non-commercial usage.
eFree for research purposes only.
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2.3. Creating superpixel segmentations
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Fig. 2.13.: Example segmentations with about 25, 200 and 1000 superpixels.

43





To measure is to know.

If you can not measure it, you can not improve it.

Lord Kelvin

3
How to Compare Superpixel Segmentation

Algorithms

The previous section revealed the broad range of available superpixel segmentation al-
gorithms. Each of them with individual properties, advantages and disadvantages. De-
pending on the application at hand, a different superpixel algorithm may be the preferred
choice. To decide which algorithm might be the most suitable, two types of knowledge
are crucial: knowledge about the requirements of the application and about the prop-
erties of the superpixel algorithms. While there exist many superpixel segmentation
algorithms, there is a lack of a common base to compare their properties and to facil-
itate the right choice. In this part of my thesis I will work on establishing a common
base by four means:

1. Identifying and discussing important requirements on these algorithms. Namely

• Runtime

• Segmentation quality

• Robustness

• Compactness

This is done in Section 3.1 together with a review of related work and common
practise for comparing superpixel algorithms - this will emphasize the need for a
standardized benchmark.

2. The four sections 3.3 to 3.6 will propose a combination of established and novel
metrics to evaluate each of the above requirements on superpixel algorithms.

3. These metrics are combined to a standardized benchmark, including implementa-
tions of the metrics, datasets and usage guidelines (cf. section 1.3 on open source
software releases).
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4. Finally, the algorithms of the previous chapter 2 are compared using this bench-
mark. Since there are several metrics presented for the evaluation of the criteria,
the experimental results for each criterion are presented directly after the discus-
sion of the respective metrics in the sections 3.3 to 3.6.

More generally, this section is about the comparison of superpixel segmentation algo-
rithms on two levels of abstraction, approaching the two questions: How good are the
available superpixel segmentation algorithms? And on a more abstract level: What are
criteria for a good superpixel segmentation and what are metrics to measure them? The
answers to these questions will guide the direction towards the two novel segmentation
algorithms presented in the following chapter 4.

3.1. Superpixel segmentation benchmarks

There has been a lot of research on superpixels since the term has been established in
Ren and Malik [2003]. In particular, the previous sections showed the diversity of su-
perpixel segmentation algorithms that have been proposed. However, limited work has
been done on comparing these algorithms and on evaluating their properties. The state
of the art method to compare and benchmark superpixel segmentation algorithms is to
evaluate their capability to recover human figure-ground segmentations. The Berkeley
Segmentation Dataset and Benchmark (BSDS500) [Arbelaez et al., 2011] is a commonly
used comparison framework for segmentation algorithms including superpixel segmen-
tations [Achanta et al., 2012; Van den Bergh et al., 2012; Arbelaez et al., 2014]. It
consists of 500 manually segmented images where humans were asked to outline object
boundaries in the images to obtain ground truth segmentations. Although there exist
multiple manual segmentations for each image, the ground truth data depends on the se-
mantic interpretations of objects and their boundaries by the human annotators. Other
resources for manually annotated segmentations are e.g. the PASCAL VOC challenge
[Everingham et al., 2010] and the MSRC [Shotton et al., 2009] datasets. To overcome
the dependency on manual ground truth segmentations, Moore et al. [2008] propose to
use Explained Variation. This error metric describes the proportion of image variation
that is explained if all pixelvalues within a superpixel were replaced with the superpixel
mean colour. Although they established a human independent metric, Explained Vari-
ation has the drawback of penalizing segments with consistent texture but large pixel
variance. Koniusz and Mikolajczyk [2009] measure the robustness of superpixel segmen-
tations indirectly by the repeatability of features extracted from the segments. Their
evaluation depends on the additional processing step of feature extraction and is based
on a small dataset consisting of 48 images. Xu and Corso [2012] evaluate several super-
voxel methods based on video data. A supervoxel is the video equivalent to a superpixel
and covers a subset of the spatio-temporal lattice composed by the concatenated video
frames such that all supervoxels of a video comprise the full lattice and are pairwise
disjointed. They evaluate how well supervoxels cover human video segmentations based
on combined spatio-temporal error metrics and Explained Variation [Moore et al., 2008].
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3.1. Superpixel segmentation benchmarks
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X. Ren and J. Malik, Learning a classification model for segmentation, 2003, max. dist. 2

A. Levinshtein et al., TurboPixels: Fast superpixels using geometric flows, 2009

O. Veksler et al., Superpixels and Supervoxels in an Energy Optimization Framework, 2010

M. Liu et al., Entropy Rate Superpixel Segmentation, 2011

X. Ren and J. Malik, Learning a classification model for segmentation, 2003, max. dist. 1

R. Achanta et al., SLIC Superpixels, 2010

R. Achanta et al., SLIC Superpixels Compared to State of the Art Superpixel Methods, 2012

Fig. 3.1.: Why we need a standardized benchmark: This is a collection of plotted curves from
different papers showing the performance of the Normalized Cuts superpixel segmen-
tation algorithm. In each paper one of these curves was used to compare a new
superpixel algorithm to this established segmentation algorithm. Thus, each curve
was intended to show the result of the same algorithm using the same implementa-
tion, the same data set and the same error metric. The apparent differences in the
curves emphasize the need for a standardized benchmark.

Further information on the evaluation of video segmentations can be found in [Galasso
et al., 2013]. Other resources for comparison of oversegmentation algorithms with re-
spect to a particular application are [Strassburg et al., 2015] for image parsing and [Ge
et al., 2006] in the context of image saliency.

I want to emphasize two reasons why more work on superpixel benchmarks is needed:

1. The existing comparison procedures do not yield comparable results.

2. There exist more requirements than what can be measured by comparison with
figure-ground segmentations, i.e. regarding the segmentation stability or compact-
ness

Let me illustrate the first reason: Newly presented algorithms are often compared to a
couple of established algorithms for which publicly available implementations exist. Due
to its broad publicity and its free implementation, superpixel segmentation based on
Normalized Cuts [Ren and Malik, 2003] (cf. section 2.3.2.1) is one of the commonly used
algorithms for comparison. Together with the Berkeley Segmentation Data Set [Arbe-
laez et al., 2011] and the two error metrics “boundary recall“ and “undersegmentation
error“, this is a repetitive comparison framework in the literature. However, there are
small variations in the usage of the dataset or implementation of the error metric that
cause major differences in the benchmark results. This is illustrated in Fig. 3.1. In
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this plot each curve originates from a paper where the authors report to use the freely
available implementation of the Normalized Cuts superpixel algorithm, together with
the Berkeley Segmentation Data Set and the boundary recall error metric. One would
expect all papers to report the same curve. Nevertheless, the results are apparently dif-
ferent. A closer look reveals small differences in the usage of the dataset (e.g. Is the full
dataset used or just a part? How is the multiple ground truth handled?) and the imple-
mentations of the error metrics (e.g. How are boundary recall and undersegmentation
error implemented? What is the threshold on boundary recall?). The differences be-
tween the shown curves in Fig. 3.1 underline the demand for a standardized benchmark
that this part of the thesis addresses.

Result 3.1 There is a need for a standardized superpixel segmentation benchmark.

The remainder of this chapter 3 presents own contributions to comparison of super-
pixel segmentation algorithms based on the four aforementioned criteria: runtime, seg-
mentation quality, stability and compactness. It is based on the previous publications in
[Neubert and Protzel, 2012] and [Neubert and Protzel, 2013]. The first paper approaches
the described issue regarding standards for benchmarking superpixel segmentation al-
gorithms. It presents a standardized benchmark based on figure-ground segmentations
including an open source implementation of all parts: from accessing data, over imple-
mentation of all metrics, up to creation of the figures. The segmentation quality
evaluation in section 3.4 presents an enhanced version of this benchmark including an
extended set of metrics and results on more algorithms.
In [Neubert and Protzel, 2012], we also made a first step towards identification and

evaluation of superpixel properties beyond the accordance with human made manual
segmentations, the second reason from the above listing why more work on superpixel
benchmarks is needed. The application of superpixel algorithms on multiple images
showing the same scene or object raise the question about the stability of the extracted
segments: Are the same (or at least similar) segments extracted across different views or
different imaging conditions? While superpixel borders at considerable image gradients
may constantly be detected, oversegmentation algorithms tend to create lots of spurious
segment borders that vary strongly under image changes. Even slight changes of the
image, e.g. a small camera motion or changes in lighting, can cause substantial changes
of the produced segmentation. For some applications this might be irrelevant, while
others could benefit from a superpixel algorithm with more stable segmentations.
In [Neubert and Protzel, 2012], we evaluate the stability in terms of the algorithm’s

robustness towards affine image transformations. The transformations are manually
chosen and synthetically applied on the test images. However, affine image transfor-
mations do not cover all relevant image transformations, e.g. they exclude changing
lighting conditions, occlusions and image noise. To overcome the limitations of manu-
ally transformed images, we propose to use ground truth optical flow data to evaluate
the performance on video data in [Neubert and Protzel, 2013]. Moreover, the usage
of ground truth optical flow allows us to overcome the dependence on human ground
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truth segmentations biased towards semantic interpretation. The segmentation sta-
bility evaluation in section 3.5 builds upon this prior work and presents an extended
set of metrics to measure the repeatability of superpixel segmentations in the presence
of artificial and real world image changes including viewpoint changes, moving objects,
illumination changes, noise and motion blur.
The previously shown example segmentations (e.g. in Fig. 2.13) give an idea of the dif-

ferent possible characteristics of superpixel algorithms regarding size, shape and spatial
distribution of the segments. Section 3.6 discusses the importance of these characteristics
and measures them based on a segmentation compactness evaluation.

Contribution 3.1 This section identified segmentation runtime, quality, stability and
compactness to be relevant properties of superpixel segmentation algorithms.

For each of the mentioned evaluations of runtime, quality, stability and compactness,
first the fundamentals in form of the used metrics are provided, followed by experimen-
tal results for the algorithms presented in section 2.3.2. Table 3.1 gives an overview
of the evaluation metrics and the conducted experiments. To pave the way for these
evaluations, the following section describes the experimental setup including a presen-
tation of the datasets and details on the used implementations and parameters of the
segmentation algorithms.

3.2. Experimental setup

There are important differences between comparing theoretical properties of algorithms
(e.g. asymptotic runtime) or numerical evaluations based on test images. For the latter,
the performance of the algorithm strongly depends on practical aspects like parameter
choice, used image cues, involved preprocessing steps, implementation details and the
used test data. For example, an algorithm may perform superior to another just due
to a better parameter choice for the regarded test data or an additional preprocessing
step that is not part of the theoretical algorithm, but of the available implementation.
Section 3.2.3 gives details on the used implementations and parameters of the evaluated
superpixel algorithms, e.g. there are algorithms for which multiple implementations are
evaluated.

The results of a numerical evaluation also depend on the used datasets. The overview
in table 3.1 includes the most important requirements on the datasets for each metric.
The evaluation of segmentation quality is based on images with known object-ground
segmentation by human annotators. Other metrics, for the evaluation of segmentation
robustness and compactness, require image sequences with known ground truth optical
flow. The following two sections discuss these requirements and present the datasets
used in the subsequent experiments. This completes the experimental setup up to the
metrics which are presented in the corresponding sections, following the description of
the datasets and implementations.
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Criteria Metric Required data Used dataset Section

R
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Arbitrary images BSDS500 test 3.3

Q
u
a
li
ty

Boundary recall Manually annotated figure-ground segmentations BSDS500 test 3.4.1

Undersegmentation Error Manually annotated figure-ground segmentations BSDS500 test 3.4.2

MASA Manually annotated figure-ground segmentations BSDS500 test 3.4.3

S
ta
b
il
it
y

Stability to affine image transforma-
tions measured by Precision-Recall

Arbitrary images, transforms and transformed im-
ages

BSDS500 test 3.5.1

Stability to image noise measured by
Precision-Recall

Arbitrary images, noise models BSDS500 test 3.5.2

Motion Undersegmentation Error Image sequences with ground truth optical flow Sintel, KITTI 3.5.3

C
o
m
p
a
ct
n
es
s Geometric properties: Standard de-

viation of size; isodiametric and
isoperimetric quotients

Arbitrary images BSDS500 test 3.6.1

Motion Discontinuity Error Image sequences with ground truth optical flow Sintel, KITTI 3.6.2

Table 3.1.: Overview of conducted superpixel algorithm evaluations
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Fig. 3.2.: The first row shows example images from the BSDS500 dataset [Arbelaez et al., 2011].
Below each image, there are three manual segmentations, each by a different human
annotator. These ground truth segmentations can have very different levels of detail
and complexity. Nevertheless, none of them can be considered more true than the
other - a consequence of the ill-posed segmentation task. The bottom row shows an
example superpixel segmentation using the proposed PreemtiveSLIC algorithm.
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3.2.1. Figure-ground segmentation dataset

Evaluating superpixel segmentations based on figure-ground segmentations requires par-
ticularly suited error metrics and obviously knowledge about ground truth figure-ground
segmentations. Since its presentation in 2001, the Berkeley Segmentation Dataset (BSDS)
[Martin et al., 2001] is the standard database for evaluation of figure-ground segmen-
tation algorithms and provides such ground truth segmentations. The original dataset
consists of 300 colour images with ground truth object boundaries by human annota-
tors. The 481x321 RGB images are part of the Corel image database and show everyday
scenes. In 2011 the dataset has been extended to 500 images [Arbelaez et al., 2011].
The two datasets are distinguished as BSDS300 and BSDS500. Other resources for
ground truth segmentations are object recognition databases with pixel wise labels like
the MSRC database [Shotton et al., 2006], PASCAL VOC [Everingham et al., 2014] or
LabelMe [Russell et al., 2008] datasets. MSRC contains 591 natural images with ob-
jects belonging to 21 classes. The training and validation datasets of the segmentation
datasets of the 2008 PASCAL segmentation challenge provide 1023 images with pixel
wise labels for 20 object categories. While other large scale recognition datasets like
ImageNet [Deng et al., 2009] do not include object outlines, LabelMe provides several
thousand images with rough polygonal outlines of objects.
Since bottom-up image segmentation is an ill-posed problem, often, there is no unique

solution for outlining objects in images. Moreover when humans outline object bound-
aries, they almost inevitably incorporate semantic knowledge about the objects which is
inaccessible for bottom-up segmentation algorithms. The BSDS takes this into account
by providing multiple ground truth segmentations for all images, each by a different
human annotator.

Due to BSDS’s multiple ground truth annotations and its accuracy, the superpixel
segmentation comparison in this work is based on images from BSDS500. Example
images and ground truth segmentations can be seen in Fig. 3.2. The dataset is divided
in three parts:

1. Train There are 200 images for learning purposes.

2. Val The cross-validation dataset contains 100 images for adjusting the parameters
of an algorithm.

3. Test The 200 test set images are for the final comparison of different algorithms.

3.2.2. Using datasets with ground truth optical flow

Based on the above described datasets, the capability of a segmentation algorithm to
resemble human-made figure-ground segmentations can be evaluated. Besides runtime,
this is an often used criteria, e.g. in [Achanta et al., 2012; Van den Bergh et al., 2012;
Arbelaez et al., 2014]. While this is a crucial capability, section 3.1 discussed the seg-
mentation stability as another important property. The evaluation of an algorithm’s
stability can be based on datasets with known ground-truth optical flow [Neubert and
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a) How stable are the
    segmentations?

Segmentation

Ground Truth Optical Flow

Segmentation

b) How well are motion -
    discontinuities represented?

Fig. 3.3.: In [Neubert and Protzel, 2013] we propose to use ground truth optical flow fields to
compare superpixel segmentation algorithms. On top left and right are two Sintel
images with slight motion visualized by the optical flow field between them. Motion
direction is coded by hue, saturations codes the motion magnitude, see [Baker et al.,
2011] for details. Beneath the images there are example superpixel segmentations
(using ERS ). While some object contours are visible, there are a lot of additional
segment boundaries. The answers to the two posed questions are part of the here
presented comparison.

Protzel, 2013]. Given an image pair I1 and I2 from an image sequence, the optical flow
is the vector field describing the motion of each image point between I1 and I2. Beyond
evaluation of the stability, the knowledge of the pixel motion can also be used to evalu-
ate whether the additional segment boundaries that do not belong to object boundaries
(as they are outlined in manual figure-ground segmentations) carry useful information,
e.g. about motion discontinuities. Figure 3.3 illustrates the two criteria that will be
evaluated using ground-truth optical flow.

Stability-Criteria Does the segmentation algorithm find the same regions or object
boundaries independent of changes in the image?

Discontinuity-Criteria How well are motion discontinuities in the image sequence repre-
sented by the algorithm’s segment boundaries? E.g. the motion gradient between
a moving foreground object and the background or in the interior of a non-rigid
object.

The repeatability of segmentation boundaries, the first criteria, is the subject of the
presented stability evaluation in section 3.5 and the second question is related to the
compactness properties evaluated in section 3.6.

Contribution 3.2 This section presented the idea of using datasets with ground truth
optical flow to evaluate superpixel segmentations.
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Fig. 3.4.: The top row shows two example images of the KITTI dataset [Geiger et al., 2012].
The flow field (bottom-left) illustrates the forward motion of the car mounted camera.
Pixels with invalid optical flow are black. The bottom-right image shows the result
of applying the flow field on the first image: Large parts of the view of the second
image are recovered with pixels of the first image. However the many missing parts
emphasize the advantages of synthetic datasets with much denser ground truth flow
fields.

This part of the thesis builds upon the ground truth optical flow datasets already
described in [Neubert and Protzel, 2013]1. There exist several datasets for evaluation
of optical flow algorithms. Our benchmark is based on the KITTI [Geiger et al., 2012]
and the Sintel [Butler et al., 2012] datasets. While the Middlebury dataset [Baker et al.,
2011] is an established optical flow dataset, the amount of data with public ground
truth is limited to eight sequences, each with up to eight frames. Beyond Middlebury,
several large scale real world datasets for evaluation of optical flow algorithms have been
published: KITTI [Geiger et al., 2012], HCI [Meister et al.] and a collection on the Image
Sequence Analysis Test Site (EISATS)2. Due to the amount of data and the provided
ground truth, we decided to use the KITTI dataset for our evaluation. Image source
is a stereo camera mounted on a driving car, thus there is severe camera motion in
subsequent images. We only consider the left images of the stereo pairs. Ground truth
optical flow is available for the training subset of the original KITTI dataset, resulting
in 194 gray level image pairs with a size of 1226 × 370 pixels for our benchmark. Each
image pair shows an individual street scene. The ground truth has been generated using
a 3D laser scanner. Due to limited sensor range, occlusions and other restrictions in the
ground truth computation, there is flow information for about 25 % of the image pixels
(averaged over all image pairs). For example, there is no flow information for pixels
showing the sky. Note that although there is camera data available for longer sequences
(20 frames per sequence), no ground truth optical flow data is available for this extended
dataset.

1The remaining part of this section 3.2.2 including Fig. 3.3 and Fig. 3.4 is published in very similar
form in [Neubert and Protzel, 2013]

2http://tinyurl.com/EISATS-flow [Last accessed: 2015-08-14]
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Fig. 3.5.: Each row shows an example pair of consecutive frames from the Sintel dataset [Butler
et al., 2012] together with the ground truth optical flow field. For visualization of flow
fields, the direction of the motion vector is coded by hue and its length by saturation,
see Baker et al. [2011] for details. The Sintel flow fields are dense and accurate even
for small motions.

Besides the real world datasets, computer rendered images are a great data source due
to their near perfect ground truth information. The MPI Sintel Dataset [Butler et al.,
2012] is based on the open source animated short film Sintel produced by Ton Roosendaal
and the Blender Foundation. It provides naturalistic video sequences and is designed to
encourage research on long-range motion, motion blur, multi-frame analysis and non-
rigid motion. Moreover, the motion statistics of the dataset showed to be realistic [Butler
et al., 2012]. MPI Sintel constitutes the second dataset in our benchmark. It consists of
23 scenes, each with 20 to 50 colour images with a size of 1024×436 pixels. These longer
scenes allow us to combine flow fields to sequences over multiple frames. Moreover, there
is much denser ground truth flow data. There is even ground truth motion for pixels
that are occluded in one of the two scenes. This is possible since the ground truth optical
flow is directly extracted from the data used for rendering. From the different levels of
rendered details, the most realistic final rendering is used.
To exploit the ground truth optical flow, we transform the segmentations, by applying

the optical flow on the segment labels stored in the label image. The result is illustrated
in Fig. 3.4. To transform label images, inverse mapping with nearest neighbour inter-
polation is used. Given an image pair I1 and I2, there are several cases of pixels with
non valid information between the two images: (1) Pixels that are in I1 and disappear
in I2, e.g. they are occluded or have moved outside the image. (2) Pixels that are in
I2 but not in I1, i.e. these are pixels that appear behind a moving object or intrude
on the observed scene. (3) Pixels for that no valid ground truth motion could be gen-
erated due to further influences. For real world datasets, there are obvious reasons for
non-perfect ground truth (like limitations of the sensors used to generate the ground
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truth), but even in synthetic datasets there are few additional pixels marked as invalid
in the ground truth flow field. These pixels have to be handled separately when the flow
field is applied on an image. In the here presented evaluation, pixels for which there
are no ground truth flow information are ignored in computation of the metrics. The
high amount of invalid pixels in the real world datasets restricts the transformation of a
sparse image, e.g. boundary images. Therefore, metrics based on transformed boundary
images should be avoided when using such ground truth optical flow fields.

3.2.3. Compared algorithms

Section 2.3.2 introduced a selection of existing approaches to create superpixel segmen-
tations. The numerical evaluation presented in this chapter 3 uses publicly available
implementations of these algorithms. For each of the introduced algorithms there is
at least one implementation available, for some there are either multiple variants by
the respective authors or different implementations from different sources. We use the
implementations listed in table 3.2.
However, a numerical benchmark, evaluating algorithms by applying them to images,

strongly depends on the used implementation and, sometimes even more importantly,
the used parameters. While parameters of an algorithm provide the user the chance
to influence the results, they also pose the problem of finding a suitable parameter
value. For the full evaluation of an algorithm, one could exhaustively test all possible
parameter configurations. However, this is not feasible in practise for the here presented
comparison. To provide a fair comparison, we used the default parameters for each
implementation. If there are no default parameters available or not suitable for the used
data, we select those parameter values that provided the best segmentation quality on
the BSDS validation data in a small set of initial experiments.
In the benchmark, segmentations with varying numbers of superpixels are evaluated.

Some segmentation algorithms provide a parameter to set the number of superpixels
directly (while not all practically enforce this number). For the others the single param-
eter with the largest influence on the resulting number of superpixel is varied to create
the different segmentations. This approach should facilitate a fair comparison with a
feasible effort for parameter selection. The resulting parameter settings are listed in
table 3.3.
For different algorithms, each having the number of segments as an direct parameter,

the setting of this input number may differ since not all algorithms strictly enforce this
number of segments, some require (slightly) larger values.
I want to emphasize that the usage of such a selected set of parameters poses a lim-

itation to the generality of the results on the performance of an algorithmic approach.
The benchmark is comparing a certain implementation listed in table 3.2 with the par-
ticular parameter setup given in table 3.3. However, for practical applications of such
an algorithm, one has to make the same decisions on selecting a particular implementa-
tion and set of parameters. Moreover, implementations of the metrics presented in the
following sections, are freely available (cf. section 1.3) and can be used to evaluate other
implementations and further parameter settings.
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Algorithm, Publication

ID Used implementation

Normalized Cuts, [Ren and Malik, 2003]
NC res Due to its runtime, the input for NC is resized to 160 pixels on the longer side before

segmentation.
http://www.timotheecour.com/software/ncut/ncut.html

Felzenszwalb-Huttenlocher Segmentation, [Felzenszwalb and Huttenlocher, 1998]
FH http://www.cs.brown.edu/~pff/segment/

Edge Augmented Mean Shift, [Meer and Georgescu, 2001; Comaniciu and Meer, 2002]
EAMS http://www.wisdom.weizmann.ac.il/~bagon/matlab.html

Quickshift, [Vedaldi and Soatto, 2008]
QS http://www.vlfeat.org/

Marker-Controlled Watershed Segmentation, [Meyer, 1992]
WS We use the OpenCV implementation with markers at gradient minima. The image

is rescaled to obtain the desired number of local gradient minima. The runtime for
distribution of the markers is omitted.
http://opencv.willowgarage.com/wiki/

Entropy Rate Superpixel Segmentation, [Liu et al., 2011]
ERS https://github.com/mingyuliutw/ers

Simple Linear Iterative Clustering, [Achanta et al., 2012]
oriSLIC http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html

vlSLIC http://www.vlfeat.org/

Superpixels Extracted via Energy-Driven Sampling , [Van den Bergh et al., 2012]
SEEDS http://www.mvdblive.org/seeds/

Veksler Superpixel, [Veksler et al., 2010]
VEK Compact variant http://www.csd.uwo.ca/faculty/olga/code.html
VEK CI Constant intensity variant, available from the same website

Uniform grid
BOX For baseline comparison, BOX simply divides the image into a regular grid with the

given number of segments.

Table 3.2.: Listing of the compared implementations. All websites last accessed: 2015-08-14.
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ID Fixed parameters Varied parameters

NC res Resized to 160 pixels n ∈ {50, 100, 250, 500, 1000}
FH sigma=1 k ∈ {10, 25, 50, 100, 200, 250, 300, 400, 500, 1e3, 5e3, 25e4, 5e5, 1e6}

minSize=20
EAMS hs=8, hr=8 minSize ∈ {10, 25, 50, 100, 250, 1000, 2500}
QS ratio=0.5 maxDist ∈ {5, 10, 15, 20, 25, 37, 50}

kernelSize=2
WS - n ∈ {50, 100, 250, 500, 1000, 2500}
ERS - n ∈ {50, 100, 250, 500, 1000, 2000}
oriSLIC compactness=10 n ∈ {50, 100, 250, 500, 1000, 2000}
vlSLIC regularizer=1000 regionSize ∈ {10, 15, 20, 25, 37, 50, 100, 250}

minRegionSize=25
SEEDS - n ∈ {50, 100, 250, 500, 1000, 1500, 5000}

VEK - n ∈ {50, 100, 250, 500, 1000, 2500}, patchSize = 0.8 ·
√

(h · w)/n

VEK CI lamda=50 n ∈ {50, 100, 250, 500, 1000, 2500}, patchSize = 0.8 ·
√

(h · w)/n
BOX - n ∈ {50, 100, 250, 500, 1000, 2000}

Table 3.3.: Parameters that are different from defaults.

3.3. Runtime

The presentation of the compared superpixel algorithms in section 2.3.2 already delin-
eated the large differences of the computational efforts necessary to create the segmenta-
tions. For the presented algorithms, it ranges from a few milliseconds to several minutes
for a single image. In particular, for the usage of superpixels as a preprocessing step
in real world applications, the runtime of the algorithm can be an important selection
criterion. To evaluate the computational effort of an algorithm, we measure the average
runtime for segmenting an image of the 200 BSDS500 test images of size 481x321 pixels
on an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz with 16 GB RAM.
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SEEDS 0.10 0.15 0.20 0.16
vlSLIC 0.25 0.31 0.40 0.40
ERS 1.0 1.0 1.2 1.3
EAMS 2.0 2.0 2.0 2.0
QS 5.2 3.0 1.5 1.4
VEK 3.2 3.0 2.5 2.5
VEK ci 5.3 5.2 4.5 4.1
NC res. 4.0 7.9 140.0 653.9

Fig. 3.6.: (left) Runtime of segmentation algorithms (log-scale). BOX has zero runtime and is
thus not visible. (right) Runtime in seconds for different number of superpixels.
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Fig. 3.6 shows the results of the runtime measurements. The logarithmic scale for the
time axis induces the large differences - the runtime values cover 5 orders of magnitudes.
WS is by far the fastest algorithm and creates a segmentation of 1000 superpixels in
about 9 ms, which is more than 70,000 times faster than the slowest algorithm NC res.
However, one has to keep in mind that the runtime of WS excludes the time for creation
of the seeds. This is due to two reasons: 1. I made no special efforts to speed up the
detection of the local gradient minima. 2. The seeds may be known in advance, e.g.
due to the application (e.g. during tracking) or due to a fixed initialization as it will be
used later in section 4.4. The local minima detection used in WS takes about 10 to 40
ms per image depending on the number of seeds and the image size.

FH, SEEDS, oriSLIC and vlSLIC run in fractions of a second. The runtime differ-
ence between the two SLIC implementations is supposed to be caused by the simplifica-
tions made in oriSLIC compared to the algorithmic descriptor in the paper [Achanta
et al., 2012]. vlSLIC follows this description more closely (cf. section 2.3.2.7).

The runtime of most algorithms depends on the number of superpixels. Algorithms
that iteratively subdivide image regions tend to have increasing runtime (e.g. NC res),
while algorithms that merge image regions can have decreasing runtime (e.g. QS).
However, the involved pre- and postprocessing step in the used implementations (e.g.
handling not connected segments) can create computational efforts that superpose and
hide the asymptotic runtime behaviour of the core segmentation approach itself. The
general tendency is that more superpixels create more computational efforts.
In [Neubert and Protzel, 2012], we made similar runtime measures for some of the

algorithms using an Intel Core 2 Quad Q9400 CPU @ 2.66 GHz with 4 GB RAM. The
increased computational power compared to this earlier evaluation caused on average a
speedup of about factor two.

Result 3.2 The runtimes of the compared superpixel segmentation algorithms cover 5
orders of magnitude. Watershed segmentation is the fastest algorithm. It is at least ten
times faster than any other algorithm from the compared approaches.

3.4. Segmentation quality

There is a multitude of requirements on superpixel segmentation algorithms. Most im-
portantly, we want superpixels to correspond to object boundaries - we want them to
not overflow object boundaries and to correspond to objects and their parts as much as
possible. Intuitively, this can be measured by comparing the superpixel segmentations
to ground truth figure-ground segmentations. Therefore, there is a set of commonly used
evaluation criteria. Most frequently these are boundary recall, undersegmentation error
and maximum achievable segmentation accuracy. Boundary recall measures how well
object boundaries are represented by superpixel boundaries. This is an established mea-
surement to evaluate segmentation algorithms as well as figure-ground segmentations.
However, using boundary recall alone favours segments with long boundaries. E.g. think
of a segment with an anfractuous boundary that assigns each image pixel as boundary,
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this single segment would achieve perfect boundary recall. Thus, in figure-ground seg-
mentation, boundary recall is used together with boundary precision to take care of
the length of boundaries. However, since for superpixel segmentation a low precision is
inherent, undersegmentation error is more appropriate. Undersegmentation error evalu-
ates the area of superpixels (in contrast to the boundary) and penalizes those that flow
over figure-ground segment areas. Figure 3.7 illustrates this process. These two metrics
are supplemented by the maximum achievable segmentation accuracy measure that eval-
uates the best possible combination of superpixels to reconstruct a ground-truth object.
Since there exist various implementations of these error metrics, details and equations
are explained in sections 3.4.1 to 3.4.3. 3

3.4.1. Boundary recall

Boundary recall is an established measure for figure-ground segmentations, e.g. used in
[Martin et al., 2004]. I use our definition from [Neubert and Protzel, 2012]: Boundary
recall is the fraction of ground truth edges that fall within a certain distance d of at
least one superpixel boundary. We use d = 2. Given a ground truth boundary image G
and the algorithms boundary image B, the computation of boundary recall is straight
forward:

1. True Positives (TP) Number of boundary pixels in G for which a boundary
pixel in B exists within a range of d.

2. False Negatives (FN) Number of boundary pixels in G for which there is no
boundary pixel in B within a range of d.

3. Boundary Recall R = TP
TP+FN

Multiple ground truth boundary images are combined using the logical OR operation.
Thus, the resulting boundary map answers for each pixel the question: Is there a ground
truth segmentation with a boundary at this pixel?

3.4.2. Undersegmentation error

Again, I follow our definition from [Neubert and Protzel, 2012]: Undersegmentation
error compares segment areas to measure to what extent superpixels flood over the
ground truth segment borders. A ground truth segment divides a superpixel P into an
in and an out part. This is illustrated in Fig. 3.7. There exist various implementations of
undersegmentation error metrics. [Levinshtein et al., 2009] summarize for each segment
S over the out-parts of all superpixels P that overlap the segment:

UndersegmentationErrorTP =
∑

S∈GT

∑

P :P∩S 6=∅ |Pout|
|S| (3.1)

3Parts of sections 3.4.1, 3.4.2 and 3.4.4 including Fig. 3.7 are published in very similar form in [Neubert
and Protzel, 2012].
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Ground Truth Segment

Superpixel part Aout

Superpixel part Ain

Superpixel part Bout

Superpixel part Bin

Superpixel part Cout

Superpixel part Cin

Fig. 3.7.: Illustration of undersegmentation error. A ground truth segment (green) is covered
by three superpixels (A,B,C), that can flood over the ground truth segment border.

For the example in Fig. 3.7, this is: |Aout|+|Bout|+|Cout|
|S| . However, there is a serious

penalty for large superpixels that have only a small overlap with the ground truth seg-
ment. Thus, Achanta et al. [2012] use a similar model, but only superpixels with an
overlap with the segment of at least 5% of the superpixel size are regarded. To over-
come this free parameter, we propose a new formulation of the oversegmentation error
in [Neubert and Protzel, 2012]. There, we define the remaining error as the smaller error
introduced by either appending the out-part to the segment or by omitting the in-part
of the superpixel. Being N the total number of pixels, this results in:

UndersegmentationError =
1

N





∑

S∈GT





∑

P :P∩S 6=∅

min(Pin, Pout)







 (3.2)

The inner sum is the error introduced by this specific combination of ground truth
segment and superpixel. For the example in Fig. 3.7 this is: |Aout|+|Bout|+|Cin|

|S| .

Contribution 3.3 This section presented a parameter free formulation of the under-
segmentation error.

3.4.3. Maximum achievable segmentation accuracy

A common application for superpixels is to combine them to objects in higher level
processing steps. In typical one-directional processing pipelines, the hard segmentation
decisions are irreversible. Therefore, it is an interesting question to ask: How good
is the best possible reconstruction of image objects using a given set of superpixels as
units? The maximum achievable segmentation accuracy is such an upper bound measure
[Nowozin and Lampert, 2010]. It measures a similar property as undersegmentation error
but since both are repeatedly used metrics, I include both in this evaluation. Following
Liu et al. [2011], each superpixel is assigned to the ground truth segment with the largest
overlap and then the fraction of correctly labelled pixels is counted. Given a ground
truth segmentation labelling G and a superpixel segmentation S, maximum achievable
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segmentation accuracy is computed as follows:

MASA =

∑

k maxi |Sk ∩Gi|
∑

i |Gi|
(3.3)

3.4.4. Results on segmentation quality

The evaluation and results shown in Fig. 3.8 and 3.9 extend the evaluation presented
in our previous work [Neubert and Protzel, 2012]. The performance of the regular grid
BOX segmentation poses a baseline for each performance measure. In all metrics, the
benefits of superpixels become obvious.

The properties of the resulting superpixel segmentations strongly depend on the al-
gorithm. ERS produces similar sized superpixels, that carefully follow image gradients.
Increasing the number of segments results in a refinement of the prior segmentation (i.e.
only a few superpixel borders get lost, but some superpixels are divided). Further, ERS
allows one to catch an exact number of segments.
Superpixel borders of FH strictly follow image gradients. The resulting segments

vary strongly in shape and size. Sometimes, long, thin segments occur along strong
image gradients. This causes problems with very small segment numbers (e.g. 30) on
the test image size (481x321). However, FH yields the best boundary recall for higher
number of segments (≥ 500) but shows high undersegmentation error and low maximum
achievable segmentation accuracy. This is supposed to be caused by the graph merging
criterion that relies on the single maximum weight in the minimum spanning tree of
a component. If this criterion fails to detect a boundary between two image parts,
the resulting superpixel can excessively overflow objects boundaries. An interesting
question is the influence of this effect on the stability of these segmentations evaluated
in section 3.5.
EAMS segments also vary in size and shape, but are more regular than FH segments.

They yield high boundary recall and low undersegmentation error for low numbers of

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Number of Segments

B
o

u
n

d
a

ry
 R

e
c
a

ll

0 500 1000 1500 2000
0.05

0.1

0.15

0.2

0.25

Number of Segments

U
n
d
e
rs

e
g
m

e
n
ta

ti
o
n
 E

rr
o
r

ERS

oriSLIC

vlSLIC

QS

EAMS

BOX

FH

SEEDS

VEK

VEK ci

WS

NC res.

Fig. 3.8.: Results of segmentation algorithms on the proposed benchmark. For boundary recall
higher is better, for oversegmentation error, lower is better.
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Fig. 3.9.: Results on maximum achievable segmentation accuracy. Higher is better.

superpixels. Supplemented by the high maximum achievable segmentation accuracy,
EAMS is a good choice in particular for low segment numbers. Further, increasing the
number of segments provides a good refinement of the prior segmentation.

NC res does not give such refinement, but the superpixels are regularly sized, shaped
and distributed. The comparability of the evaluation of Normalized Cuts is limited since
we resize the image before we compute the segmentation due to computational reasons.
The negative effects of the rescaling become more severe with an increasing number of
superpixels.
QS produces more irregular shapes and there occur small artifact segments. The

regularity of segment borders of oriSLIC and vlSLIC strongly depend on the com-
pactness parameter. Tuning this parameter is crucial. Moreover both implementations
handle the compactness parameter differently. Values that create comparable smooth
results for large numbers of segments produce much smoother borders at oriSLIC for
small segment numbers. Nevertheless, the compactness parameter enables adjusting the
regularity of the superpixels at the cost of loosing some object borders.
WS is by far the fastest algorithm, at the cost of inferior performance in the qual-

ity measures. It can neither compete at boundary recall nor undersegmentation error
with the best performing approaches. In particular, the undersegmentation error and
the maximum achievable segment accuracy show that the used Watershed implementa-
tion provides a less accurate reconstruction of the ground truth segments even for high
numbers of segments.

Result 3.3 Boundary recall and undersegmentation error show different properties
of algorithms. The ordering of the performance of algorithms on maximum achievable
segmentation accuracy is similar to that on undersegmentation error since they measure
similar undersegmentation properties.
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Result 3.4 Superpixel algorithms provide better segmentation quality than the uniform
grid segmentation (BOX). Most superpixel algorithms are optimized for these quality
measures. ERS, SLIC, EAMS, QS and SEEDS provide good trade-offs between boundary
recall and undersegmentation. FH is optimized for boundary recall. Using NC with
resized images is not recommended.

3.5. The stability of superpixel segmentations

Section 3.1 discussed the importance of the segmentation quality. While runtime and
quality are established criteria with ready to use measures, evaluating the stability of
segmentations requires novel approaches. In [Neubert and Protzel, 2012] we were the
first to present an evaluation measure for the robustness of superpixel segmentation, in
particular towards affine image transformation. It bases on the comparison of segmenta-
tions of images and these images subject to affine transformation like rotation or scaling.
This enables us to evaluate how sensitively an algorithm reacts to a well defined change
in the image. In this thesis, I additionally evaluate to what extent the segmentations
are affected by different levels of noise in the input images.
To overcome the limitations of the artificial image modifications, we proposed to use

datasets with ground-truth optical flow in [Neubert and Protzel, 2013]. These datasets
provide more complex image changes and the necessary information to evaluate the
segmentation stability: If we know the motion of each pixel during an image sequence,
we can use this information to compare the accordance of segmentations across the
sequence. The ground truth optical flow information can also be used to identify object
boundaries without the need for manual annotations, this will be topic of section 3.6.
This section explains the developed metrics used to evaluate the stability criteria and
presents comparison results for the above set of superpixel algorithms.4

3.5.1. Benchmarking robustness to affine transformations

This section presents an approach to evaluate the following question: To what extent
does the modification of the input image affect the resulting segmentation? Here, the
modifications are affine image transformations: rotation, scaling, shearing and shift. The
goal is to identify superpixel segmentation algorithms, whose resulting changes of the
segmentation correspond to the changes of the input image. For example, if the input
is shifted by ∆x pixels to the left, we want the superpixel boundaries to be shifted by
∆x pixels to the left as well.

To evaluate the robustness of an algorithm A against an affine image transformation
T , we compute two superpixel boundary images using this algorithm and compare them.
The first boundary image A(I) is computed on the origin image directly. For the second

4Parts of section 3.5.1 including Fig. 3.10 are published in very similar form in [Neubert and Protzel,
2012]. Parts of section 3.5.3 including Fig. 3.11 are published in very similar form in [Neubert and
Protzel, 2013].
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Input Image I, Transformation T, Algorithm A 

Transformed Image
T(I)

Boundary Image
A(I)

Boundary Image 
of transformed Image

A(T(I))

Comparison based on Precision-Recall
on Boundary Images A(I)' and A(I')

A

T

A

Shift, e.g. 10 or 100 pixel

Rotate .e.g. 5 or 45 degree 

Shear, e.g. factor 0.025 or 0.25

Scale, e.g. factor 0.5 or 1.5

Input Image

T

T

T

T

Boundary Image
T (A(T(I)))

T -1

-1

Fig. 3.10.: Image transformations. (left) To evaluate the robustness to an image transformation
T , we compute two boundary images, A(I) and T−1(A(T (I))), and compare. For
more details, see text. (right) Illustration of example transformations.

boundary image, the image is first transformed by T to T (I) using inverse mapping, fol-
lowed by the computation of the boundary image A(T (I)). Back-transformation yields
T−1(A(T (I))) which is compared to the boundary map A(I) obtained from the seg-
mentation of the origin image. The transformation scheme is illustrated in Fig. 3.10
together with some example transformations. The evaluation metric for comparing the
two boundary maps is precision-recall represented by the F-score. Computation of TP,
FN and Recall is done according to their computation for boundary recall in section
3.4.1, FP and Precision are computed as follows (d is set to 2 again):

1. False Positives (FP) Number of boundary pixels in B for which there is no
boundary pixel in G within a range of d

2. Boundary Precision P = TP
TP+FP

3. F-score F = 2 · P ·R
P+R

Due to their non rectangular shape, a black border can appear on some transformed
images T (I). To minimize their effects on the segmentation, all origin images are padded
with a black border before the transformations. We evaluate the performance using the
images of the BSDS500 test dataset.

Contribution 3.4 This section presented an approach to evaluate the robustness of
superpixel segmentations towards affine image transformations. A very similar formula-
tion will be used for evaluation of robustness towards image noise.
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3.5.2. Robustness to noise

To evaluate the robustness of segmentation against image noise, the images of the
BSDS500 test dataset are spoiled with artificial noise of different intensities and the
influence on the resulting segmentations is measured. Two types of noise are evaluated.
First, a Gaussian noise term with standard deviation s is added independently to each
pixel:

n ∼ N (0, s2) (3.4)

I ′i,j = Ii,j + n ∼ N (Ii,j , s
2) (3.5)

This corresponds to noise induced during image acquisition, e.g. sensor noise caused
by poor illumination.
Second, Salt & Pepper noise is induced. Therefore, a certain rate of image pixels

is switched to either black or white. Such noise typically occurs due to transmission
errors. These two noise models are somehow contrary: the Gaussian noise affects all
pixels to a small amount, the Salt & Pepper noise changes a few pixels very dramatically.
The evaluation methodology is similar to that for the robustness against affine image
transformation: the original image and the image spoiled with noise are segmented
and compared based on maximum F score on the boundary images. Since there is no
change of pixel coordinates (there is zero optical flow) in the noise experiments, the back
transformation T−1 can be omitted.

3.5.3. A novel metric for stability based on ground truth optical flow

The evaluation based on affine image transformations and image noise both use syn-
thetic image modifications. This allows one to evaluate the influence of a particular and
well defined influence on the segmentation stability. However, in practical applications,
the influences will appear combined and together with further effects like non affine im-
age transformations (e.g. due to viewpoint changes, occlusions and dynamic objects),
motion blur, changing illumination and others. To evaluate the stability of superpixel
segmentations under such combined influences, we propose to use datasets that provide
such changes together with ground-truth optical flow in [Neubert and Protzel, 2013].

From the datasets with optical flow information presented in section 3.2.2, the syn-
thetic Sintel dataset provides dense flow fields. The real world KITTI dataset does not
provide flow information for all pixels (cf. Fig. 3.4). This prevents the transformation
of sparse images like boundary maps to evaluate their stability as it is done in case of
affine image transformations and noise. Therefore, we proposed the following region
based metric in [Neubert and Protzel, 2013].

The key idea is to segment two images showing the same scene before and after some
changes (e.g. dynamic objects, camera motion, illumination changes), then use ground
truth optical flow data to transform the segmentation of the first image into the view of
the second image to make them comparable, and evaluate how good one segmentation
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can be reconstructed from the other. We propose to use the following procedure to
measure the stability of a segmentation between two images I1, I2:

1. Segment both images, resulting in label images L1, L2. In a label image, all pix-
els belonging to the same segment have the same pixel value (see Fig. 3.3 for
examples).

2. Apply the given ground truth optical flow on the first segmentation L1 to transform
it into the second image, resulting in LF

1 . In other words, we transform the labels
of segmentation L1 to the pixels of image I2 (similar to the transformation in Fig.
3.4).

3. Use the undersegmentation error to evaluate how well segmentation LF
1 can be

reconstructed by segments of segmentation L2 and vice versa. In particular, we do
not expect to have the exact same label at a pixel in L2 and LF

1 , but if two pixels
are in the same segment in L2, we want them to be in the same segment in LF

1 ,
too.

Computation of undersegmentation error has been described in Sec. 3.4.2. To compare
two segmentations LF

1 and L2, and being N the total number of pixels, we define the
motion undersegmentation error (MUSE) to be computed as follows:

MUSE =
1

N





∑

a∈LF
1





∑

b∈L2:a∩b 6=∅

min(bin, bout)







 (3.6)

Each segment a of segmentation LF
1 is reconstructed with segments b of L2 that overlap

with a. MUSE accumulates the error that is introduced by b when reconstructing a either
when b is included in the reconstruction or not. If b is included, then the introduced
error is the number of pixels of b that are outside a (defined as bout). Otherwise, if we
do not include b, there is a gap in the reconstruction of a and the error is the number
of pixels in this gap (bin, the number of pixels that are in a ∩ b). Pixels without valid
flow information are ignored. Since this is not a symmetric metric (the error diverges
depending on whether comparing LF

1 to L2 or vice versa), we compute the average of
both cases. Fig. 3.11 visualizes for an example image pair, how often each pixel is
counted in equation 3.6. The evaluation results of the set of compared algorithms can
be seen in Fig. 3.14.

Contribution 3.5 The motion undersegmentation error is a novel metric to evaluate
the stability of superpixel segmentation algorithms based on ground truth optical flow.

3.5.4. Results on segmentation stability

Figure 3.12 shows results of all algorithms for the affine transformations shifting, rota-
tion, scaling and shearing. In these experiments the algorithms’ parameters are chosen
to result in about 250 segments per image.
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Fig. 3.11.: The two left images show segmentations of subsequent images of a Sintel sequence
with a high amount of background motion (using vlSlic). The flow field is visualized
in the upper middle with its gradient image beneath. Notice the high (dark) motion
gradients inside objects. The image on the right is a visualization of the motion
undersegmentation error (MUSE) (including segment boundaries): the gray level
shows how often the pixel is counted in equation 3.6. The grid effect on homogeneous
image regions is typical for algorithms with strong compactness constraints and
can hardly be completely avoided. However, algorithms diverge significantly in the
amount of border variation in homogeneous areas.

FH and EAMS are invariant to image shifts, QS is at least robust to shifts. The
other algorithms perform inferior, but still reasonable. oriSLIC and VEK show the
most severe problems. It is noticeable that with an increasing amount of shift, most
algorithms’ performance quickly drops until it reaches a rather stable level for the re-
maining larger shifts. This is coherent with the fact that the set of superpixel boundary
pixels contains salient image edges but also additional boundaries, e.g. induced by com-
pactness constraints. The set of salient edge pixels is to a large part recovered in the
modified images, while the additional boundaries are not. Moreover, a fraction of the
segment boundaries will always be counted due to chance. The performance of BOX
gives an idea of this lower bound. However, chance will increase with more irregular
and thus longer boundaries. The peaks of vlSLIC appear at shifts that correspond to
a multiple of the step width of the superpixel initialization.
A similar effect can be seen for rotation where the performance of most algorithms

is somehow periodic - rotations of 90 or 180 degrees are easier than arbitrary rotations.
While we used only integer shifts, the affine image transformations rotation, scale and
shear also include small interpolation effects that occur during inverse mapping. The
ordering of the performance of the compared algorithms is similar for all types of trans-
formations, except for scaling where some algorithms showed to be more sensitive (e.g.
WS) and other less (e.g. oriSLIC). Except for scaling, the large difference of BOX to
even the most sensitive superpixel algorithms illustrates their potential benefit.

Result 3.5 Algorithms with compactness constraints and/or grid initialization are
more sensitive to affine image transformations except for scaling.

The evaluation of the robustness towards image noise is shown in Fig. 3.13. The overall
performance of superpixel segmentations is as expected, increasing the amount of noise
decreases the boundary repeatability. In contrast to its previously shown robustness,
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Fig. 3.12.: Robustness of algorithms towards shifting, rotation, scaling and shearing. Higher is
better. Note: For shift, the EAMS curve is hidden behind the FH curve.

FH reveals a sensitivity for Salt & Pepper noise. There, the algorithm performs worse
than most other algorithms in this comparison. This is supposed to be due to the graph
based segment merging that relies on a single weight of a minimum spanning tree. If this
weight is changed significantly, the segmentation can become quite different. Changing
single parts of the image significantly is exactly the effect of Salt & Pepper noise. There
is a parameter for the amount of image smoothing in the used implementation. However,
as discussed in section 3.2.3, changing additional parameters of algorithms is beyond the
scope (respectively capabilities) of this here presented comparison. While enforcing the
smoothing could help for this issue, it might have a negative influence on other criteria,
e.g. the segmentation quality. Moreover, for the practically more important Gaussian
noise, FH performs stable again.
oriSLIC is stable against Gaussian noise with small standard deviation, but sensitive

to larger deviations. Again, the two SLIC implementations differ and vlSLIC performs
superior. EAMS shows to be stable again, except for high amounts of Gaussian noise.
VEC, VEC ci and WS are susceptible to one or both types of noise.

From this evaluation of individual, well defined image modifications, let us proceed
with a more realistic scenario. Fig. 3.14 shows the sensitivity to complex combi-
nations of various influences including camera motion, dynamic objects, illumination
changes, noise, motion blur and others using the proposed motion undersegmentation
error (MUSE). We independently evaluate this criteria on the two optical flow datasets,
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Fig. 3.13.: Robustness to Gaussian and Salt & Pepper noise. Higher is better.
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Fig. 3.14.: Results of the MUSE metric on several superpixel segmentation algorithms for both
datasets. Lower is better.

Sintel and KITTI, and average over all images of each dataset. To evaluate the algo-
rithms performance on varying numbers of segments, we run all algorithms with differ-
ent parameter sets according to the description in section 3.2.3. In terms of the motion
undersegmentation error, we can not expect an oversegmentation algorithm to solely
create stable segments, since they also split homogeneous image areas without image
gradient support. The effects can be seen at the grid-like areas on the visualization of
the MUSE metric in Fig. 3.11. For the ground truth optical flow datasets, the pixel
motions and other image changes are quite complex and we can not isolate individual
influences. However, we can use the BOX segmentation as indicator for the difficulty
of the dataset. BOX showed to be sensitive for affine image transformations. Its rea-
sonable performance on Sintel is due to the fact that in the film sequences, there are
moving foreground objects and little overall motion in the image (cf. Fig.3.5). More-
over, in many scenes, the background is rather homogeneous and the segment boundaries
created there are mainly due to regulation of the segment’s size or distribution. Algo-

70



3.6. Compactness properties of superpixel segmentations

rithms that strongly connect to image gradients and are not limited by regulation of
the segment’s size or distribution (like FH or EAMS) can capture the boundaries of
the moving objects and create large stable segments in the homogeneous background
resulting in low MUSE values in Fig.3.14.
The worse performance of BOX at the KITTI dataset also demonstrates the higher

amount of systematic camera motion in KITTI images since the camera is mounted on
a driving car. This results in higher overall motion in the image (cf. Fig.3.4) and a few
additionally moving foreground objects.
The performance on the ground truth optical flow datasets is in accordance with the

previous evaluations on robustness against affine image transformations and noise and
additionally reveals further insights. Most importantly, it is an evaluation on combined
influences as they happen in real world applications. Each curve on the MUSE metric
evaluates different numbers of segments. It is apparent that MUSE values increase with
a growing number of segments. This is contrary to the characteristic of the undersegmen-
tation error when comparing a superpixel segmentation to a figure-ground segmentation
(cf. section 3.4.2). The intuitive reason is that when comparing two superpixel segmen-
tations, an increasing number of segments in the segment set used for reconstruction is
connected to an increased number of segments in the set that is reconstructed. Thus, we
do have smaller building blocks, but also want to build more filigree elements. The mean
shift algorithms EAMS and QS can compensate this increase. In particular for smaller
numbers of segments, the motion undersegmentation errors of FH are considerably lower
than for the other algorithms.

Result 3.6 FH and EAMS provide the the most stable segmentations. For small num-
bers of segments, FH superpixels are considerably more stable than those of all compared
algorithms.

This evaluation also reveals a sensitivity of ERS towards these combined complex
image changes that did not appear for affine image transformations and noise. ERS
incorporates a compactness constraint on the size of the segments. However, while the
segment size is stable, the segment borders flicker in homogeneous image areas subject
to illumination changes and thus cause high motion undersegmentation error.
The Sintel dataset provides sequences of 20 to 50 images. The overall amount of

optical flow increases when comparing images with larger distances in the sequence.
For the compared algorithms, this results in higher MUSE values while preserving the
characteristics and ordering of the resulting curves. An example result can be seen in
Fig. 3.18.

3.6. Compactness properties of superpixel segmentations

The so far shown example segmentations revealed a broad variety of characteristics of
superpixel segmentations. Some algorithms produce uniformly distributed and shaped
segments of similar size and for others the geometric properties of the segments vary
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Chapter 3. How to Compare Superpixel Segmentation Algorithms

strongly. Compactness measures aim to quantify the location of a superpixel segmenta-
tion on this spectrum:

A segmentation has a high compactness, if its segments are uniformly distributed
and have uniform size and shape.

Some algorithms provide compactness constraints that allow the user to adjust the
amount of regularization on segment size and/or shape (e.g. SLIC and ERS).
A compact segmentation algorithm is intended to vary from the perfectly regular

shape (e.g. a circle or a square) only if there is considerable support from the image
data. In terms of strongly varying boundaries, non-compact segmentation algorithms
are related to overfitting in machine learning [Schick et al.]. An overfitted learning
algorithm lost generalisation capability since too much data was used to describe the
essential information. In case of irregularly shaped superpixels, too many boundary
pixels are used to describe the essential shape of the object.
While compact and non-compact segmentations are visually quite different, it is not

straight forward to develop a measure that captures the potential benefit of compactness
for practical applications. Compactness can help to prevent segmentations to excessively
overflow object boundaries. In accordance, compact segmentation algorithms tend to
provide smaller undersegmentation error. On the other hand, compactness constraints
create additional boundaries that are not solely caused by visual cues. Dependent on
the application, compactness may be helpful or not. For example, as basis for object
detection, compactness of a superpixel segmentation may not be required, while a su-
perpixel based stereo or 3d reconstruction algorithm may benefit from a prevention of
arbitrary large segments. Moreover, the majority of compact superpixel segmentations
provide a regular neighbourhood structure, e.g. the usual 4- and 8-neighbourhoods.
Subsequent processing steps may benefit from such a regular neighbourhood. Addition-
ally, this simplifies the usage of algorithms that are designed to work on a pixel level,
where the regular neighbourhood is obvious. For example, the SP-Grid algorithm, that
will be presented in the second part of this thesis in section 7.4.2, requires compact
segmentation algorithms with a regular neighbourhood - and will show to outperform
available methods on place recognition in changing environments.
I will approach the evaluation of compactness in two steps. The first being a collection

of measures of geometrical properties in section 3.6.1. Second, I will again use ground
truth optical flow to evaluate the benefit of compactness more closely to real applications
in section 3.6.2.

3.6.1. Compactness from geometric properties

As a straight forward measure, the amount of variation in superpixel segment size can
be expressed as average standard deviation of the segment sizes in the test images. The
results are shown in Fig. 3.15.
Schick et al. propose to use the isoperimetric quotient to measure the compactness

of segmentations. The isoperimetric quotient is the relation between the area of a given

72



3.6. Compactness properties of superpixel segmentations

shape and a circle of the same perimeter as this shape. Given the area As and the
perimeter Ls (the number of boundary pixels) of a shape, the circle with radius r = L1

2π
has the same perimeter as the shape but a different area Aepc. The isoperimetric quotient
IPQs is computed as follows:

IPQs =
As

Aepc
=

4πAs

L2
s

(3.7)

Given a set of superpixels s ∈ S for an image I, the weighted isoperimetric quotient
WIPQ of this segmentation is the average isoperimetric quotient weighted by the number
of pixels in each segment:

WIPQ =
∑

s∈S

IPQs ·
|s|
|I| (3.8)

This compactness measure incorporates two effects: eccentricity and boundary smooth-
ness. Elongated superpixels that deviate from close to circular shapes and irregularly or
wiggly boundaries cause low values. Regularly shaped segments (shapes close to a circle)
with smooth boundaries cause short perimeters and thus high compactness values.

However, to some extent a wiggly boundary can be smoothed by simple post process-
ing. To evaluate the regularity of the segment shapes without the influence of a wiggly
boundary, I adapt the compactness measure of Schick et al. by evaluating the deviation
from circular shape using the isodiametric quotient (in contrast to isoperimetric). This
is the ratio of the area As of the segment and the area Aedc of a circle with the same
diameter. The diameter d of a segment is defined as the maximum euclidean distance
between two points on its boundary.

IDQs =
As

Aedc

=
As

1
4d

2π
(3.9)

Analogue to Eq. 3.8, the weighted isodiametric quotient WIDQ of this segmentation
is the average isodiametric quotient weighted by the number of pixels in each segment:

WIDQ =
∑

s∈S

IDQs ·
|s|
|I| (3.10)

In section 3.6.3, the compactness properties of segmentations are evaluated using the
three presented measures: the standard deviation of the segment size, the smoothness
of the boundary by the weighted isoperimetric quotient WIPQ and the deviation of the
shape from a circle by the weighted isodiametric quotient WIDQ.

Contribution 3.6 This section proposed to use the standard deviation of the segment
sizes and the weighted isodiametric quotient to evaluate geometric properties of superpixel
segmentations.

73



Chapter 3. How to Compare Superpixel Segmentation Algorithms

3.6.2. A novel metric measuring the accordance with motion discontinuities

The previous section presented three measures to evaluate the geometric properties of
superpixels that yield the compactness of the segmentation. Beyond concrete properties
like variation in size or shape, the potential benefit of compactness is rather abstract.
Moreover, some properties are not that easy to quantify, e.g. what is a good distribution
of segments in the image? One advantage of compactness is the limitation of negative
effects due to missed object boundaries when reconstructing objects from superpixels as
it is measured by the undersegmentation error (cf. section 3.4.2).
However, there might be other important boundaries in the image that are not marked

in human figure ground segmentations, e.g. think of the individual components of ob-
jects or the individual moving parts of deformable objects. Separating these parts in
different superpixels might be crucial for subsequent processing steps like 3d reconstruc-
tion. Separating image parts with little or even no evidence from image gradients is an
important property of compact segmentations.
In [Neubert and Protzel, 2013], we propose to use datasets with ground truth optical

flow to evaluate how good motion discontinuities are represented by the algorithms’
segment boundaries. Motion discontinuities indicate differently moving image parts, e.g.
induced by a moving foreground object or a motion inside a non rigid image area. While
the boundary of the former is likely to be marked in a human made manual ground
truth segmentation, for the latter there are presumably no boundaries in a human made
segmentation. However, dependent on the application, both may be relevant.
In the gradient image of an optical flow field, both types of boundaries are present.5

Fig. 3.11 (bottom-mid) shows the gradient magnitude of the optical flow field between
two subsequent images of the Sintel dataset. One can clearly see how high motion gra-
dients (shown in dark colour) appear at boundaries of moving objects, supplemented by
smoother gradients inside objects. Dependent on the application, it is important to have
a segment boundary near areas with high motion gradients. The intuitive argument is
that the high motion gradient indicates objects or object parts that can move separately
and thus should probably be handled individually in the application. This formulation
includes objects as well as object parts, independently from a semantic interpretation
by humans. Following this argumentation, there should be segment borders near high
motion gradients to potentially handle differently moving parts individually. Since not
all of these motion gradients are also indicated by visual image gradients, the ability
to nevertheless capture them is a practical example for the benefit of compactness of
superpixel segmentations.
In [Neubert and Protzel, 2013] we propose the motion discontinuity error (MDE) to

evaluate how well motion discontinuities are captured. While the capability of a seg-
mentation algorithm to generate the boundaries of moving objects is intuitively covered
by a figure-ground segmentation evaluation, this is not the case for smooth gradients
inside objects. Moreover it is unclear, at which of the smooth gradients there should
be a segment border. To avoid arbitrarily chosen thresholds to separate important high

5The remaining part this section 3.6.2 is published in very similar form in [Neubert and Protzel, 2013].
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gradients from ignored low gradients, we propose to use the following error measure:
Given F , a ground truth optical flow field from an image I to another image, B the
boundary image of a segmentation of image I, and D(B) the distance transform of B
containing for each pixel the distance to the nearest segment boundary, we define the
motion discontinuity error as follows:

MDE =
1

∑

i

∑

j ‖∇F (i, j)‖2
∑

i

∑

j

‖∇F (i, j)‖2 ·D(B(i, j)) (3.11)

In one sentence, this is the Frobenius inner product of the optical flow gradient mag-
nitude and the distance transform of the boundary image of the segmentation, divided
by the sum of all gradients. A more intuitive formulation is to accumulate over all image
pixels a penalty, which is the product of the magnitude of motion discontinuity at this
pixel and its distance to the next segment border. Finally, the measure is normalized by
the total amount of motion in the image.
We want to penalize if there is a motion discontinuity (a high gradient magnitude

in the flow field) but no near segment border that can potentially separate the two
differently moving image parts. However, this is a slightly optimistic measure, since we
do not verify whether the nearest segment boundary really separates the two differently
moving parts. Similar to measures like boundary recall, MDE favors segmentations with
many boundary pixels (e.g. caused by strongly irregular segment borders) and should
be used together with complementing measurements (e.g. undersegmentation error).

Contribution 3.7 The motion discontinuity error is a novel measure to evaluate com-
pactness properties of superpixel segmentations based on ground truth optical flow.

3.6.3. Results on segmentation compactness

Fig. 3.15 shows the average standard deviations of the superpixel sizes in an image with
a certain number of segments. For each algorithm, the average segment size is the same
(the number of pixels in the image divided by the number of segments) but the amount
of variance of the individual superpixel from this mean value is quite different. For the
grid segmentation BOX there is almost no deviation, while the segment sizes of FH
and EAMS vary a lot. WS creates segments of considerably different sizes as well, in
particular for small numbers of segments.
The evaluation of the shapes based on the weighted isodiametric quotient, resembles

the visual impression of the algorithm’s properties. Algorithms like SLIC and VEK
create regularly sized, compact segments. The shape of FH segments closely follows the
image gradients without a shape prior resulting in arbitrarily shaped segments and low
compactness values. Although the EAMS segments vary strongly in size, their shape is
more compact than that of of FH. For all compactness measures, NC res suffers from
the image resizing and the fact that the pixels assigned to a segment are not forced to
be connected in the NC implementation as can be seen by the example segmentations
in Fig. 2.13.
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Fig. 3.15.: Standard deviation of segment size and compactness from weighted isodiametric
quotient (regular shape).
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Fig. 3.16.: Weighted isoperimetric quotient (boundary smoothness). Left: original boundaries.
Right: smoothed segment boundaries (morphological closing with radius 5).

The weighted isoperimetric quotient combines the effects of eccentricity and irregular,
wiggly boundaries. Fig. 3.16 shows on the left side the weighted isoperimetric quotient
as described above. The right figure shows the effect of additional smoothing of the
segment boundaries. Smoothing is done by a morphological closing operation on the
label image with a structure element with radius five. This smooths irregular segment
boundaries at a small scale while preserving the overall eccentricity. For some algorithms,
the isoperimetric quotient is sensitive to this smoothing since this measure mixes the
influences of eccentricity and irregularity of the boundaries. The smoothed boundaries
closer correspond to the results of the isodiametric quotient. The improvement from the
original to the smoothed boundaries indicates the amount of small scale flicker in the
segmentations. For example, the compactness of ERS and QS benefit more from the
rescaling than the compactness of WS. This indicates that the high perimeter values of
the former are to a higher rate due to small scale irregularities that are reduced by the
smoothing. The low compactness of WS is mainly caused by the overall eccentricity.
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Fig. 3.17.: Results of the MDE metric on several superpixel segmentation algorithms for both
datasets. Lower is better.
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Fig. 3.18.: (left) Motion discontinuity error (MDE) and motion undersegmentation error
(MUSE) of vlSLIC for concatenated motion fields of varying lengths. (right)
Boxplots of motion discontinuity error on the Sintel dataset for some algorithms
(whiskers at 1.5×IQR).

Result 3.7 The results on standard deviation of segment size and the weighted isodi-
ametric quotient are in accordance with the qualitative visual impression of superpixel
segmentation compactness.

Result 3.8 The SLIC and VEK variants are examples for compact segmentation al-
gorithms. FH, EAMS and WS show strongly varying sizes. SEEDS and ERS segments
are well distributes but show strongly varying boundaries.

At motion discontinuity error, superpixel algorithms with additional segment
boundaries caused by compactness constraints perform superior since they decrease the
average values of the distance transform of the boundary image. On the other hand,
algorithms that exclusively rely on image gradients (like FH and FH) miss many motion
discontinuities. The two SLIC implementations that already performed well on recov-
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ering object-ground segmentations in section 3.4, also show good results on recovering
motion discontinuities. The additional information about the statistics on MDE given
by the boxplots in Fig. 3.18 show that the high mean error of eams is mainly due to
constantly high outlier rate. The median error is much lower. Other algorithms show
statistics similar to ERS: median error is smaller than the mean and the number of
outliers decreases with larger numbers of segments.

To evaluate the dependency of the algorithm’s performance on the amount of motion,
Fig. 3.18 also shows exemplary results of one algorithm (vlSLIC) on concatenated flow
fields (combined flow fields over multiple frames). All algorithms show similar behaviour,
MDE uniformly increases with growing sequence lengths.

Result 3.9 Compact superpixel segmentations better capture motion discontinuities.
From the different compactness properties, a uniform distribution of the superpixel bound-
aries in the image (e.g. grid-like) is more important for MDE than regular shape or
smooth boundary. For this metric EAMS, FH and WS perform inferior.

3.7. Summary of the benchmark results

This section identified segmentation quality, runtime, stability and compactness as im-
portant properties of superpixel segmentation algorithms. While for runtime and seg-
mentation quality there are straight forward and established measures, I presented novel
evaluation methodologies for measuring stability and compactness. Particularly, I pro-
posed metrics that exploit datasets with known ground truth optical flow to evaluate
practical relevant complex combinations of influences. The implementations of these
benchmarks are publicly available to foster the evaluation of new approaches (cf. sec-
tion 1.3).
Based on these metrics, a set of existing algorithms has been compared. It turned out

that most algorithms are optimized for quality. There, boundary recall and underseg-
mentation error measure different aspects of segmentation quality, one attends to the
boundary of objects, the other to the area. Some algorithms are significantly better at
one of them, e.g. FH ist optimized for boundary recall and may produce large errors for
the reconstruction of the area of objects from the resulting segments. Algorithms like
SLIC, EAMS, SEEDS, QS or ERS are well balanced on both quality aspects. However
FH and EAMS turned out to be the most stable algorithms while WS is by far the fastest.
Compactness of algorithms has been measured in terms of geometrical properties. Some
algorithms like SLIC or ERS provide parameters to influence the compactness. However,
evaluation of these additional parameters is beyond the scope of this benchmark.
More compact segmentation turned out to be less stable. The compactness constraints

are a purely geometrically driven influence on the segment shape independent from vi-
sual image cues. In particular for affine image transformations like shift or rotation, the
prior on the geometry and distribution of segments is supposed to negatively influence
boundary recall. However, for non geometrical influences like image noise, the compact-
ness can in contrast support stable segmentations. Further, the evaluation based on
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the proposed motion discontinuity error showed that compactness can help to limit the
negative influence of image boundaries that are not indicated by image gradients, e.g.
inside non rigid objects.
The here presented comparison is somehow limited in terms of general insights on the

segmentation approaches since it compares particular implementations and a particu-
lar set of parameters for each of them. However, it provides information on practical
considerations that have to be made when selecting a particular algorithm for a task at
hand. Moreover, it can be used to benchmark new algorithms - the topic of the following
section.

Contribution 3.8 An open source implementation of the benchmarks is available, cf.
section 1.3 on open source software releases.

In a nutshell: How to select the best algorithm for the task at hand?

The crucial question is: What are relevant criteria for the task? If very high runtime is
important, then Seeded Watershed may be the only choice. If compactness is required
as well, then the Compact Watershed algorithm, that will be presented in the following
chapter, is preferable. In terms of compact superpixel with high quality and reasonable
stability, the SLIC variants are a good choice. The following chapter will introduce
PreemtiveSLIC, a faster version of SLIC that saves about 80 % of the runtime.

If compactness is not important, but boundary recall is essential, then FH is an es-
tablished superpixel method that showed to be fast and stable in the benchmark. FH
tends to provide small and very large segments - the latter may strongly overflow object
boundaries. If this is a problem, QS and EAMS are other reasonable choices for well
balanced stable algorithms.

Further, the taxonomy in table 2.1 may be helpful - and, of course, the multitude of
curves shown in this chapter.
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Divide and conquer.

Anonymous

4
Two Novel Superpixel Algorithms:

Preemptive SLIC and Compact Watershed

The comparison of existing superpixel algorithms in the previous chapter revealed some
trade-offs in the available algorithms. In this section, I will propose two novel segmen-
tation algorithms that better balance these trade-offs. Preemptive SLIC is a five times
faster approximation to SLIC. Compact Watershed incorporates compactness constraints
in the very fast seeded watershed segmentation algorithm. In a first step, I will discuss
the trade-offs, followed by algorithmic descriptions of the two novel algorithms together
with extensive evaluation based on the benchmarks introduced in the previous section.
Earlier versions of these novel algorithms and parts of the presented evaluation are also
published in [Neubert and Protzel, 2014].

4.1. Trade-offs of superpixel segmentation algorithms

Chapter 2 presented the broad range of existing superpixel segmentation algorithms.
Segmentation quality, runtime, stability and compactness have been identified as impor-
tant criteria to evaluate superpixel algorithms in chapter 3. A main insight from this
comparison is that each algorithm is a trade-off between these criteria. In theory, there
may exist a perfect superpixel segmentation algorithm, that runs sufficiently fast and
provides the perfect segments for the subsequent processing steps. However, in practice,
we have to look for the existing algorithm that provides the best balanced trade-off for
the task at hand.

The comparisons from the previous section can be used to identify significant trade-
offs in the existing algorithms. The most intuitive is the trade-off between segmentation
quality and runtime. Moreover, for some metrics, non compact oversegmentation al-
gorithms perform better than algorithms with compactness constraints, e.g. boundary
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Fig. 4.1.: This sections proposes two new adaptations of existing algorithms that change the
balance in trade-offs of superpixel segmentation algorithms. The three coloured axes
visualize a set of typical trade-offs: segmentation quality measures, runtime and ap-
propriate segmentation characteristics for subsequent processing steps (e.g. similar
size). The application of the segmentation results may give a weighting to the differ-
ent axes. But in general, a triangle with larger area indicates a better segmentation
algorithm. The proposed Preemptive SLIC algorithm is a much faster version of SLIC
[Achanta et al., 2012], running at frame-rates > 30 Hz on a standard desktop CPU.
This comes at the cost of slightly worse segmentation quality. The proposed Compact
Watershed algorithm is an extension of a seeded watershed segmentation, that con-
serves the high speed and gives the user control over the compactness of the segments.
This figure is also published in [Neubert and Protzel, 2014].

recall. At boundary recall, neither regularly shaped segments nor a grid like distribution
are helpful. For other metrics, e.g. undersegmentation error, constraints on the size and
shape of the segments help to prevent segments from growing unbounded at homoge-
neous image regions. Such constraints also influence the stability of segmentations. The
proposed novel algorithms are based on two interesting examples for trade-offs:

• SLIC shows good quality but at a rather low speed compared to Watershed

• Watershed shows worse quality and compactness properties, but performs at a very
high speed

This section presents approaches to do both: to speed up the good-but-slow algorithm
SLIC and to improve the worse-but-fast algorithm Watershed.
We were not the first laying hands on these well-know algorithms. For example, there

exists a frame-rate GPU version of SLIC [Ren and Reid, 2011] and for sure there exist
various implementations and distance metrics for watershed segmentation, see [Roerdink
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Fig. 4.2.: The top row shows the original SLIC (left) and the proposed Preemptive SLIC. The
middle column shows the influence of the switch to the RGB colour space (pSLIC t=0)
and the right column the influence of the preemptive termination (pSLIC t=0.25).
The resulting segmentations are visually similar, however, the proposed approach is
five times faster. The bottom row shows the original Watershed with seeds at local
gradient minima (left) and the proposed Compact Watershed. The middle column
shows the influence of the grid initialization (CWS c=0) and the right column the
influence of the compactness constraint (CWS c=25). The resulting segmentations
are visually similar to the above results of SLIC and pSLIC, however, the Compact
Watershed is more than twice as fast as pSLIC.

and Meijster, 2000] for an overview. However, to the best of our knowledge, we were
the first to present a frame-rate CPU version of SLIC and a ready-to use compact
superpixel segmentation based on watersheds. Recently and after the publication of our
Compact Watershed approach, Machairas et al. [2014] proposed a similar approach - a
very interesting candidate for future inclusion in the benchmark of chapter 3.
Fig. 4.1 illustrates the contributions of this section. The two implementations of SLIC

showed to provide high quality segmentations and the grid initialized segments exhibit
good compactness properties. SLIC is a repeatedly used superpixel algorithm. However,
the runtime of about 100 ms may be too high for consideration as a preprocessing step
for time critical applications. We propose an adaption of SLIC, Preemptive SLIC, that
preserves the high segmentation quality level of the original implementation and runs
at framerates >30 Hz on a standard desktop CPU, e.g. dependent on the parameter
setting it runs at about 40-50 frames per second on images of size (481 × 321). The
runtime improvement is based on proposed changes to the algorithm that adjust the
trade-off between runtime and quality in favour of a frame-rate acceleration. Section
4.3 evaluates the positive and negative effects on segmentation properties based on the
previously presented benchmarks.
Secondly, after speeding up a good algorithm, we try to improve the segmentation of a

very fast algorithm: Seeded Watershed [Meyer, 1992]. For application as typical super-
pixels, the main issue of Watershed segmentations are the highly irregular distribution,
size and shape of the resulting segments. We propose and evaluate the extension with
a grid initialization and a compactness constraint that turns Watershed segmentation
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from an oversegmentation algorithm into a “real” superpixel algorithm. This shifts the
balance at several trade-offs between metrics for segmentation compactness, quality and
stability which we are going to evaluate in detail in the results section 4.5. Fig. 4.2
shows first example segmentations for the original and the novel algorithms. While the
pSLIC segmentations are visually similar to the results of SLIC, they can be computed
much faster. The proposed CWS algorithm brings the Watershed segmentation visually
closer to the results of the high quality SLIC and pSLIC segmentations and is more than
twice as fast as pSLIC.
The following sections introduce the proposed algorithms starting with speeding up

SLIC, followed by details on how to introduce compactness in a Watershed segmentation.

4.2. Preemptive SLIC: Making a good algorithm faster

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012] is based on the concept
of a local k-means clustering. The cluster centres are initialized on a uniform grid in
the image plane. Local k-means denotes that each cluster considers only pixels in its
spatial neighbourhood. The metric during clustering is a weighted combination of colour
distance and spatial distance in the image plane. The weight of the spatial component
(the compactness parameter) influences the regularity of the resulting segment’s shape
and size.
SLIC provides good segmentation quality and stability and can be considered as a state

of the art superpixel segmentation algorithm according to the benchmarks in section 3).
Although SLIC belongs to the class of faster superpixel algorithms (e.g. compared to
Normalized Cuts), the runtime of about 100 ms can be considered the main drawback
(e.g. compared to Watershed). In the following, we present our approach on speeding
up SLIC by about factor five. The results section evaluates the impact of this shift in
the trade-off between quality and runtime.
Starting from the implementation of Achanta et. al1, we modify two parts of SLIC:

we change the used colour cues (dropping runtime from about 100 ms to 55 ms) and
we propose an algorithmic approximation, yielding a final runtime of about 20 ms for
images of size (481× 321).
A runtime analysis of the original implementation showed, that almost half of the time

is spent for colour conversions from RGB to LAB. There exist several fast approximations
and implementations for this colour space conversion. In [Neubert and Protzel, 2014]
we replaced the original colour conversion with an approximation of the LAB colour
space. However, directly working on the input RGB colour input yields similar results
and omits the computations for the colour conversion completely. Therefore, the results
presented in section 4.3 compare the segmentations on the original LAB and the input
RGB colour cues.
For a further speedup, we propose an approximation of the original algorithm. The

main idea of SLIC is to use k-means in a local manner by reducing the potential member

1http://ivrg.epfl.ch/research/superpixels [Last accessed: 2015-08-14]

84

http://ivrg.epfl.ch/research/superpixels


4.2. Preemptive SLIC: Making a good algorithm faster

pixels for each cluster to a local neighborhood. However, this is just half-way gone: SLIC
uses a single, global termination criterion. We propose to use a local termination criterion
for each cluster to avoid revisiting clusters and image areas without any major changes
since the last iteration. This preemptively stops the evolution of segment boundaries in
homogeneous image regions. The termination criterion of the original SLIC algorithm
is the following:

If the maximum number of iterations is reached or if there is no major change in
any cluster, the algorithm finishes.

In fact the original implementation uses a fixed number of 10 iterations. However, this
way, potentially large image parts without any changes in the previous iteration(s) are
updated every new iteration of the main k-means loop. Thus, we propose to introduce
an individual termination criterion for each cluster:

If there has not been any major change in this cluster or any neighbouring cluster
in the last iteration, do not update this cluster.

The global termination criterion is modified similarly. The oriSLIC implementation runs
for a fixed number of ten iterations, Preemptive SLIC also stops if the cluster converged
to a stable solution (as it is very common for such iterative algorithms):

If the maximum number of iterations is reached or only few clusters have been
updated, we are done.

This significantly reduces the number of pixel accesses at homogeneous image regions.
Even if the same number of iterations in the main loop are processed, not all clusters
are updated in each iteration. However, a cluster that has not been updated in one
iteration can become active in the next if a cluster in its neighbourhood had a major
change. Thus, the additional computational overhead reduces to counting the number of
added or removed pixels for each cluster and to evaluate this number for each cluster and
its neighbourhood before deciding whether to update this cluster or not in the current
iteration.
The listing in algorithm 1 gives details on the algorithmic steps. The implementation

is based on oriSLIC by Achanta et al. These are the major changes from the original
SLIC:

• The changed termination criteria can be seen in line 4, here the original SLIC
implementation runs for a fixed number of iterations. The termination criterion
in pSLIC is more similar to the commonly used criterion in k-means, where iter-
ation stops if the clustering converged to a stable solution. The used termination
criterion involves a parameter ti.

• The most important difference is the novel local preemption criterion in line 6.
SLIC updates all clusters in each iteration of the main loop. pSLIC only updates
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Algorithm 1: Outline of the algorithmic steps of Preemptive SLIC.

Data: Image, number of cluster, thresholds ti and tc
Result: Assignment of pixels to cluster

1 Initialize cluster centres on a regular grid;
2 Initialize region of each cluster as all cells in its 8 neighbourhood on this grid;
3 Mark all clusters as changed;
4 while Less than maximum number of iterations AND More than ti cluster changed do

// assign

5 foreach Cluster do

6 if More than tc pixels changed in the region of this cluster in the last iteration then

7 foreach Pixel in the region of this cluster do

8 Compute distance of this pixel to the cluster centre;
9 if Current cluster is the most similar cluster so far then

10 Assign label of this cluster to the pixel;
11 end

12 end

13 end

14 end

// count changes

15 foreach Pixel do
16 if Label changed since last iteration then

17 foreach Cluster that has the pixel in its region do

18 Increase number of changed pixels for this cluster;
19 end

20 end

21 end

// update

22 foreach Cluster do

23 Update centroid using all assigned pixels;
24 end

25 end

26 Enforce cluster connectivity;

those clusters for which a significant change has happened in the neighbourhood.
The significance is evaluated as rate on the total number of pixels controlled by a
parameter tc.

• To evaluate the amount of change in each cluster, the number of changed pixels has
to be counted for each cluster. This is done in lines 15-21. This is not necessary for
the original SLIC and causes additional computational effort that is also evaluated
in section 4.3.

The parameters ti and tc can be set independently. In the following evaluation, we
derive both from a single parameter t that quantifies the rate of change. We set ti = t ·n,
the rate t times the number of clusters, and tc = t · 9 · (w · h)/n, the rate t times the
average number of pixels in a cluster region (the cluster and its 8-neighbourhood). Fig.
4.4 shows the influence of this parameter t on the number of inner loop calls (line 8 in
algorithm 1) and the resulting runtime.
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Qualitative evaluation on the segmentation quality can be seen in the example seg-
mentations using SLIC and pSLIC in Fig. 4.3. The effects on segmentation quality and
runtime are more exhaustively evaluated in the following results section 4.3.

Contribution 4.1 This section proposed the integration of a local preemption criterion
in the SLIC algorithm.

4.3. Results of Preemptive SLIC

Fig. 4.4 shows an evaluation of the influence of the preemption threshold on the number
of inner loop calls. The parameter evaluation is done on the BSDS val dataset. It
can be seen how the number of inner loop calls decrease with increasing threshold. It
converges to a minimum for thresholds between 0.2 and 0.3. The resulting runtime is
shown beneath. A positive influence on the runtime is visible for thresholds larger than
about 0.1. The behaviour for RGB and LAB colour spaces is similar, however, the
number of calls in LAB colour space decreases faster and reaches the minimum earlier.
The right part of Fig. 4.4 shows the runtime improvement for the proposed Preemptive

SLIC. The blue curve is the runtime of the original SLIC implementation, it takes about
100 ms per image. The fastest configuration of the proposed Preemptive SLIC requires
about 20 ms per image - a speedup of factor five. The other curves show intermediate
steps. The green curve includes the additional time that is spent for counting the changes
in the clusters (lines 15-21 in algorithm 1). Our pSLIC implementation with LAB colour
space and an preemption threshold of 0 (pSLIC LAB 0) produces the same segmentations
(up to minimal differences) as the original SLIC implementation, but needs slightly more
time due to counting of the changes in the clusters. Setting the preemption threshold to
0.25 (pSLIC LAB 0.25) yields the black curve that shows a considerable improvement.
Using SLIC or pSLIC directly in RGB colour space is even faster (pSLIC RGB 0, the
yellow curve). Combining the faster colour space and the preemption provided by the
proposed approach is about factor three faster than the original RGB version (pSLIC
RGB 0.25).
SLIC already performed well at segmentation quality before (cf. chapter 3). The

boundary recall and undersegmentation error measurements in Fig. 4.5 show the slight
decrease in segmentation quality for the changed colour space and Preemptive SLIC.
The larger decrease is due to the changed colour space. The preemptive termination
causes a comparatively small additional loss.
The general similarity between the original SLIC and Preemptive SLIC segmentation

results can be seen in the example segmentations in Fig. 4.2. The local termination
criterion and the resulting preemptive stop of the evolution of superpixel boundaries
cause segments to remain more similar to the initial grid-like shape. This manifests as
straight vertical or horizontal segment borders in homogeneous image areas. The results
on all other presented metrics can be found in the appendix. In summary: Compactness
from isoperimetric quotient indicates that the boundaries of pSLIC are more irregular,
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Fig. 4.3.: From SLIC to Preemptive SLIC. These are examples of three images with the orig-
inal SLIC (left) and the proposed Preemptive SLIC. The middle column shows the
influence of the switch to the RGB colour space (pSLIC t=0) and the right column
the influence of the preemptive termination (pSLIC t=0.25). The results are visually
similar, but pSLIC with t=0.25 is about five times faster.
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Fig. 4.4.: (left) Evaluation of the number of inner loop calls (line 8 in algorithm 1) and resulting
runtime for different values of the preemption threshold parameter t on the BSDS
val dataset. (right) Results of the existing SLIC implementations and the proposed
Preemptive SLIC on the BSDS test dataset. Note: The runtime of vlSLIC (red)
rapidly exceeds the shown plot. It is about 300 ms, please see Fig. 3.6 for details.

results on all other compactness measures are similar for SLIC and pSLIC. The RGB
colour space version is more robust to Gaussian noise. The preemptive versions are more
robust against Salt & Pepper noise, but more sensitive to geometrical image changes
(affine image transformations and MUSE).

Result 4.1 Preemptive SLIC is a faster alternative for SLIC. The segmentation quality
is slightly worse while the runtime is improved considerably.

4.4. Compact Watershed: Getting from oversegmentations to
superpixels

While the introduction of superpixels stated that the terms superpixel and oversegmen-
tation are used interchangeably in this thesis, this section deviates from this convention.
Here I want to explicitly distinguish a superpixel segmentation as an oversegmentation
with regular grid like distribution of segments with similar shapes and sizes - similar to
enlarged pixels or the results of SLIC.
Watershed segmentation is a very fast algorithm. Plain watershed [Digabel and

Lantuéjoul, 1978] suffers from irregularly sized and shaped segments and strongly varying
boundaries. Seeded watershed reduces this problem significantly [Meyer, 1992]. How-
ever, the user still has no influence on the segmentation characteristics beyond choosing
the number of segments. In particular, the resulting segments still vary considerably
in size and shape as can be seen qualitatively by example segmentations of WS in sec-
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Fig. 4.5.: Results of the existing SLIC implementations and the proposed Preemptive SLIC. The
segmentation quality is almost not affected by the preemption criterion. However,
changing the colour space to RGB slightly increases the undersegmentation error. At
boundary recall, the vlSLIC implementation performs superior - however, it is even
slower than oriSLIC.

tion 2.3.2 or in the bottom left image in Fig. 4.2. and quantitatively in the evaluation
presented in section 3.6.
This part of the thesis describes our approach, presented in [Neubert and Protzel,

2014], on creating compact superpixel segmentations at the high speed of watershed
segmentations. In a first step, arranging the seeds on a grid creates a segmentation that
is visually closer to a real superpixel segmentation in contrast to an arbitrary overseg-
mentation. Secondly, we propose to incorporate a controllable compactness constraint
in a watershed segmentation to regularize the segment shape and size and give the user
additional influence on the segmentation results. The presentation of the algorithm
is followed by an evaluation of its influence on segmentation quality and compactness
properties.

Watershed based on an ordered set of priority queues

The idea of watershed segmentation originates from [Digabel and Lantuéjoul, 1978].
The Seeded Watershed algorithm has already been introduced in section 2.3.2.5, I want
to shortly refresh the algorithmic approach and give more details on the approach by
Meyer [1992] that is the basis of our Compact Watershed algorithm. The intuitive idea
comes from geography: when a landscape is flooded by falling waterdrops, dependent
on the amount of water, there are basins filled with water and dividing ridges between
them. These ridges are the watersheds. Since watershed segmentation is a well known
algorithm, there are various algorithmic implementations and adaptations, see [Roerdink
and Meijster, 2000] for an overview.
Meyer [1992] formalizes the idea of watershed in terms of a seeded region growing based

on an ordered set of priority queues. Fig.4.6 illustrates this central data structure that is
also used in our Compact Watershed implementation. Each of the orange coloured bins
is a priority queue, a first-in-first-out data structure that can be efficiently implemented
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Fig. 4.6.: Illustration of the set of ordered priority queues presented in [Meyer, 1992] and used
in the Compact Watershed algorithm.

based on ring buffers with moving start and end indexes or in the form of a doubly linked
list. Each priority queue provides the operation push to insert an element at the top
and the operation pop to retrieve (and remove) the bottom element. The set of priority
queues is ordered, i.e. all elements in queue Q(1) have a higher priority than elements in
Q(2) and so on. Using this combined data structure, elements can be inserted at different
priority levels using push at the corresponding queue. pop operations only happen at
the first non empty queue, the queue with highest priority that contains an element.
Basically this can be seen as a breadth-first search incorporating priorities.
Meyer [1992] uses an ordering relation for flooding, based on the watershed-height of

pixels in the landscape- and thus for insertion in the ordered set of priority queues.

1. A point is flooded before another point if the latter is regarded higher in the
landscape.

2. On plateaus: First all lower ordered points are flooded before the water floods
from the surrounding of the plateau towards the interior.

For grey level images, the watershed-height of a pixel is its grey level distance to an
already flooded pixel. For colour images, Meyer [1992] uses the maximum distance in a
colour channel. Starting from the seed pixels, the neighbours are recursively processed
by fist computing their watershed-height, quantizing this watershed-height into a priority
and inserting the pixel to the corresponding queue in the ordered set of priority queues.
The next pixel to be processed is selected by a pop operation of the first non empty
queue. Neighbours that are already processed are not inserted into the queues again and
the process stops when all pixels are flooded.

Incorporating compactness

The original watershed algorithm suffers from highly irregular segments [Digabel and
Lantuéjoul, 1978]. The choice of the seeds has a large influence on the resulting segmen-
tation. In the presented basic seeded watershed algorithm the seeds are obtained from
“minima of a severely filtered image” [Meyer, 1992, p. 303]. The particular design of
these filters has large influence on the number and distribution of the resulting minima.
Moreover, using the local minima results in an oversegmentation with very differently
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shaped and sized segments, orderless distributed in the image as can be seen in the
shown example segmentations and the compactness benchmark results in section 3.
In a first step, we therefore arrange the seeds on a regular grid to obtain a superpixel-

like initial arrangement. This yields much more regularly distributed resulting segments.
However, they still vary strongly in size and shape. Example segmentations can be seen
in the bottom mid image in Fig. 4.2 and in the middle column of Fig. 4.10.
Secondly, to give the user control over the size and shape, we propose to incorporate

a compactness constraint in [Neubert and Protzel, 2014]. To integrate a prior on the
resulting segment geometry, we change the criteria for the priority queue in which a pixel
is inserted based on the distance to the seed. More exactly, the length of the path that
has been taken to flood this pixel from a seed. This induces a compactness constraint
similar to the weighting of appearance difference and spatial distance in SLIC.

Contribution 4.2 This section proposes the incorporation of compactness in water-
shed segmentations by using a regular grid initialization and an additional distance term
in the watershed computations.

Algorithm 2 shows the processing steps. The algorithm is similar to the one presented
in [Meyer, 1992] but incorporates a compactness parameter c. In line 4, this parameter
is used to compute an increment stepC that is subsequently used to adapt the priority
of pixel. The computation of this increment is described later in this section, for now let
us assume it to be a non negative number, e.g. 1. The key idea is to store for each pixel
the length of the path to the corresponding seed. If a new pixel is explored, the length
of its path is the sum of this increment and the length of the path of the neighboured
pixel from which it is explored.
The priority queues are initialized in lines 5-11: Starting from the seeds and an empty

set of priority queues, all neighbours of seeds are inserted into the queue (line 10) cor-
responding to their distance in appearance (line 7). The pathLength is constant for all
neighbours to a seed (line 8). The computation of the index of the priority cues is
explained beneath together with the computation of the stepC.

Lines 12-30 describe the recursive flooding procedure. As long as there is a non empty
queue (lines 13 and 14), the remaining pixel with the highest priority is obtained (line
15). If this is a boundary pixel, the pixel is a watershed pixel, otherwise all neighbours
are processed similarly to those of the seeds. The crucial difference is the computation
of the pathLength, that now depends on the previously travelled path (line 22).
A fast implementation of the algorithm described in [Meyer, 1992] is available as part

of the OpenCV library. Our implementation of Compact Watershed is built upon this
implementation and freely available (cf. section 1.3 on open source software releases).
The influence of the compactness constraint on the resulting segmentations can be

qualitatively seen in Fig. 4.7. Section 4.5 will provide a more detailed quantitative
evaluation based on the compactness (and other) criteria presented in section 3.
The odd stepC values used for the segmentations in Fig. 4.7 are due to the fact that

they are not manually chosen but derived from the compactness weight c, the image size
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Fig. 4.7.: Example CWS segmentations with varying compactness. (Row major order) Input
image, segmentation with compactness parameter c = (0, 10, 25, 50, 100, 250) resulting
in stepC = (0.0648, 0.1619, 0.3238, 0.6477, 1.6192) for this image.

and the wished number of segments in line 4 of algorithm 2. Why and how this is done
is the topic of the following section.

Compactness parameter selection

Dependent on the application of the resulting segmentation, having influence on the
distribution, size and shape of the segments may be helpful or even crucial. The above
described algorithm gives the user a parameter to influence these properties. However,
such a parameter poses the additional problem of selecting a useful value for the task at
hand. While we want to be able to select the level of compactness, we do not want to
need to adjust this parameter for different numbers of segments or different image sizes.

In the proposed Compact Watershed algorithm this is approached in line 4, where the
path increment stepC is computed from the compactness parameter c, the size of the
image and the number of segments we want to obtain.

Given an image of size h × w with n superpixels. Assuming a perfectly compact
segmentation as composed from equally sized segments with square shape, the edge
length s of this square is

s =

√

h · w
n

(4.1)

The square is embedded in an image grid. A square in euclidean metric space with
norm L2 equals a circle in Chebyshev norm L∞ (the maximum distance in a coordinate,
also known as chessboard distance). In L∞ norm, the radius of this circle r = s/2 is the
minimum number of steps in the Compact Watershed algorithm on a path connecting
the seed to the boundary of the perfectly compact segment.

However, the boundary pixel can be reached using other paths than a direct connec-
tion. The taken path can be modelled as a random walk on a two dimensional lattice.
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Algorithm 2: Outline of the algorithmic steps of Compact Watershed.

Data: Image, number n of segments, compactness c
Result: Segment label for each pixel

1 Initialize seeds on a regular grid;
2 Assign individual label for each seed;
3 Create ordered set of priority queues Q[nQueues];

// Compute compactness step for this image and number of segments

4 stepC = getCompactnessStep(c, size(image), n);

// Initialize neighbourhood of seeds

5 foreach Neighbour n of a seed s do

6 n.label = s.label;
7 n.deltaA = getAppearanceDistance(s, n);
8 n.pathLength = stepC;
9 idxQ = getQueueIdx(n.deltaA, n.pathLength);

10 push(Q(idxQ), n);

11 end

// Recursively fill the basins

12 while True do

13 idxQ = findFirstNonEmptyQueue(Q);
14 if idxQ ≤ nQueues then

// Pop next element of this queue

15 p = pop(Q(idxQ));
16 if There is a neighbour with different label then
17 Mark p as watershed;
18 else

// Insert all neighbours in the ordered set of queues

19 foreach Neighbour n of p do

20 n.label = p.label;
21 n.deltaA = getAppearanceDistance(p, n);
22 n.pathLength = p.pathLength+stepC;
23 idxQ = getQueueIdx(n.deltaA, n.pathLength);
24 push(Q(idxQ), n);

25 end

26 end

27 else

28 break;
29 end

30 end
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Fig. 4.8.: Robustness of stepC selection for different numbers of segments. The top row shows
different segmentations of the left input image with varying numbers of segments
n=(500, 250, 100, 50) and a compactness parameter of 50. The characteristic of the
compactness for all numbers of segments is visually similar. This is in contrast to the
segmentations in the bottom row, where the stepC is fixed for all segmentations and
the coarse level segmentation is qualitatively much more (too) compact.

The expected distance from the starting point for a two dimensional random walk with
k steps is of order

√
k.

Therefore, to reach the boundary at distance r, we expect the number of steps to be
in the order of r2. The expected total costs c due to compactness for such a perfectly
compact boundary pixel and costs per step of stepC are in the order of:

c = r2 · stepC =





√

h·w
n

2





2

· stepC =
h · w · stepC

4 · n (4.2)

Fixing this cost for segmentations of arbitrary image sizes and numbers of segments
yields a constant cost due to the compactness constraint, independent from image size
or number of segments. Therefore, we compute the increment that is caused by adding
an additional pixel to a segment as follows:

stepC =
c

r2
=

4 · n · c
h · w (4.3)

Now the user can select the compactness parameter c that linearly weights the costs
due to compactness and those due to pixel colour or intensity values.

The compactness of the resulting segmentations will appear similar, independently of
the image size and the number of segments, in contrast to fixed increments. For different
numbers of segments this is illustrated in Fig. 4.8 and for different image size in Fig.
4.9.

To get a quantitative evaluation of the influence of the compactness constraint, the
following section presents results on the metrics described in section 3.
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Fig. 4.9.: Robustness of stepC selection for different image sizes. The top row shows differ-
ent segmentations of the left input image for rescaled images with a compactness
parameter of 50 and segmentations with 250 superpixels. From left to right, scale is
(0.5, 1, 2). Similar to Fig.4.8, the characteristic of the compactness of the segments for
all resized images is visually similar. Again, this is in contrast to the segmentations in
the bottom row, where the stepC is fixed for all segmentations and the segmentation
of the upscaled image is qualitatively much more (too) compact.

Result 4.2 The increment for a region growing step should be chosen dependent on the
image size and the number of segments. Based on the assumption of a two dimensional
random walk, the increment can be estimated as stepC = c

r2
= 4·n·c

h·w . c is a parameter that
is provided to the user to adjust the level of compactness. This choice of the increment
creates segmentations with qualitatively similar compactness characteristics for different
image sizes and numbers of segments.

4.5. Results of Compact Watershed

The presented incorporation of a compactness constraint influences the resulting seg-
mentations as can be qualitatively seen by the example segmentations in Fig. 4.10 and
other figures in this section. The additional constraint is expected to influence different
properties of the original algorithm. Of particular interest is the influence on segmenta-
tion quality, since the compactness constraint is independent from colour and intensity
values of pixels. To quantitatively evaluate the impact, we can use the above presented
metrics to evaluate compactness, quality, runtime and stability.
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Fig. 4.10.: From Watershed to Compact Watershed. These are examples of three images seg-
mented with the original Watershed with seeds at local gradient minima (left) and
the proposed Compact Watershed. The middle column shows the influence of the
grid initialization (CWS c=0) and the right column the influence of the compactness
constraint (CWS c=25).
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Fig. 4.11.: Results compactness. Results of Watershed and Compact Watershed with varying
compactness weights on standard deviation of segment sizes and compactness from
isodiametric quotient.
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Fig. 4.12.: Results isoperimetric quotient. Results of Watershed and Compact Watershed with
varying compactness weights on compactness from isoperimetric quotient. The left
figure belongs to the original label images and the right figure for the smoothing
with a morphological open of radius 5 as described in section 3.6.

Fig. 4.11 compares the seeded watershed algorithm without compactness constraint
WS with the proposed Compact Watershed algorithm CWS with different compact-
ness values c ∈ {0, 10, 25, 50, 100}. The setup c = 0 includes the grid initialization, but
eliminates the influence of the compactness constraint. The increasing weight of the
compactness constraint brings the segments closer to a square form as can also be seen
by the example segmentations with increasing compactness in Fig. 4.7. The quantitative
evaluation of standard deviation of segment size and the isodiametric quotient in Fig.
4.11 confirms this visual impression and reveals a considerable improvement in com-
pactness already at small compactness values. With increasing compactness weight, the
variation of the segment size becomes smaller and the segments eccentricity decreases
as is indicated by the isodiametric quotient.
The general improvement in isoperimetric quotient for increasing compactness for the

original (left) and the smoothed (right) label images in Fig. 4.12 confirms the result
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Fig. 4.13.: Results MDE. Results of Watershed and Compact Watershed with varying compact-
ness weights on motion discontinuity error MDE.
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Fig. 4.14.: Results quality. Results of Watershed and Compact Watershed with varying com-
pactness weight on segmentation quality.

from the isodiametric quotient indicating a reduced eccentricity of the segments. The
comparison of the two evaluations on the original label image and the smoothed label
image shows that the compactness constraint has only a small influence on the small
scale irregularities of the boundaries since the improvement in isoperimetric quotient for
increasing compactness is very similar for both plots.
While the geometrical compactness measures showed similar behaviour for the seed

initialization by local gradient minimum (WS) and the grid initialization (CWS), there
is large difference for motion discontinuity error shown in Fig. 4.13. The regularly
distributed segments are more likely to create segment boundaries close to the motion
gradients caused by differently moving image parts. For this metric, the additional
increase of the compactness parameter shows only minor further improvement.
The evaluation of segmentation quality shown in Fig. 4.14 shows an improvement

on maximum achievable segmentation accuracy when using the compactness constraint.
The compactness constraint improves the reconstruction of objects from the resulting
segments by avoiding segments that overflow object boundaries by very large amounts.

99



Chapter 4. Two Novel Superpixel Algorithms:Preemptive SLIC and Compact Watershed

A suitable choice of the compactness parameter also slightly improves boundary recall.
However, increasing the influence of the compactness term too much, results in lower
boundary recall.
Results in the other metrics can be found in the appendix A.2. In summary: The very

fast runtime is not affected (please keep in mind that runtime for CWS already includes
the computational effort for seed selection). Undersegmentation error improves similar
to MASA. The robustness towards image noise is increased but the compactness has a
negative influence on the boundary recall in the presence of affine image transformations.
The compactness constraint is an appearance independent influence purely based on
geometry and is supposed to negatively affect the boundary repeatability in image regions
with small image gradients that are subject to a geometric change as it is imposed by
the affine transformations. The combined stability evaluation based on the ground truth
optical flow confirms these results: While the MUSE metric improves for the Sintel data
with moving foreground objects, it decreases for the Kitti dataset with a higher amount
of overall background motion.

Result 4.3 Compact Watershed gives the user ability to create segmentations with
different compactness characteristics. This turns Watershed from an oversegmentation
algorithm into a compact superpixel segmentation algorithm. The fast runtime is not
affected.

4.6. Conclusion

This chapter presented two adaptations of superpixel segmentation algorithms and eval-
uated the changes in trade-offs between various performance measures. The first new al-
gorithm is Preemptive SLIC. It runs at frame-rate (>30 Hz) on a standard desktop CPU
and conserves the high segmentation quality level of SLIC. The runtime improvement
comes from two steps: the change of the used colour cues and a preemptive termination
criterion for each local cluster.
The second algorithm is Compact Watershed. It incorporates a compactness con-

straint in a grid seeded watershed segmentation and gives the user control over important
characteristics of the segmentation. This turns Watershed from an oversegmentation al-
gorithm to a real superpixel segmentation algorithm. The compactness is controlled with
a single parameter that controls the level of compactness independently of the number
of segments or the image size. Compact Watershed takes about 10 ms for segmentation
of an image with a size of (481× 321) pixels.
We evaluated the influence of the algorithmic changes on the trade-offs between various

performance measures. The individual importance of the different performance indica-
tors depends on the application of the resulting segmentations. However, the proposed
algorithms improve some performance measures to a large amount, while only slightly
decreasing others. Open source implementations of both algorithms are available, cf.
section 1.3.
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4.6. Conclusion

This finishes the first part of this thesis, which was about superpixel segmentation al-
gorithms. The rest of this thesis is about the connection of superpixels and loop closures.
The first loop I want to close goes back to the introduction of available segmentation
approaches in section 2.3.2, where I can now add two additional superpixel segmentation
algorithms to the list of available approaches:

Properties pSLIC

Technique Local k-means with preemp-
tion

Cue(s) Colour, size
Compact? Yes
Runtime ∼ 30 Hz

Fig. 4.15.: Example pSLIC segmentation

Properties CWS

Technique Seeded region growing with
compactness constraints

Cue(s) Colour, size
Compact? Yes
Runtime ∼ 100 Hz

Fig. 4.16.: Example CWS segmentation

These two novel algorithms have already been included in the recommendations for
selecting a suitable algorithm for the task at hand in section 3.7. All remaining loop
closures of this thesis are in the context of place recognition for mobile robots operating
in changing environments.
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II

PART

SUPERPIXEL FOR PLACE RECOGNITION

IN CHANGING ENVIRONMENTS

The first part of this thesis introduced superpixel segmenta-
tions, existing and novel criteria and benchmarks to compare
them, and finally two new segmentation algorithms. In this
second part, superpixels are used in the context of a partic-
ular application: place recognition in changing environments.
This part starts with an introduction of the place recognition
problem in general and the challenges induced by changing en-
vironments. Only few approaches exist that are particularly
suited for this challenging problem. I will propose and inves-
tigate two novel and somehow contrasting approaches how to
use superpixel segmentations for place recognition in chang-
ing environments - both will show advantageous compared to
existing methods.
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The only way to make sense out of change is to

plunge into it, move with it, and join the dance.

Alan Watts

5
The Problem of Place Recognition in

Changing Environments

Robust long term operation including long term navigation is one of the major challenges
in robotics today. Navigation of mobile autonomous robots is related to practical ap-
plications in related fields like driver assistance systems, automated transportation, self
driving cars and indoor localization from hand held cameras. An essential prerequisite
for navigating in an environment is an idea of the own position or location in the world
- in form of absolute world coordinates, the metric or topological relative position to
the navigation goal, or as information if and when the current place in the world has
been visited before. Localization can be based on various sensors including GNSS (e.g.
GPS) or 2d/3d laser range finders. This thesis deals with visual localization based on
visual input obtained from cameras. Cameras are cheap and readily available in many
devices. They are a great source of information about the environment and the human
visual system demonstrates that many problems, including navigation, can be solved
using vision as a primary source of information.

Fig. 5.1.: Overview of localization tasks. Topic of the second part of this thesis is visual place
recognition.
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Chapter 5. The Problem of Place Recognition in Changing Environments

Fig. 5.2.: This is meant by changing environments in this thesis. Each column shows an example
image pair of the same scene, subject to severe appearance changes. The problem I
want to solve is to decide whether two images show the same place or not despite
these changes. Image credits per column from left to right: NRKbeta.no (cf. section
5.1.1), Arren Glover (cf. section 5.1.2), Milford and Wyeth [2012] (cf. section 5.1.3).

Fig. 5.1 shows a coarse taxonomy of problems related to vision based localization.
Important tasks are visual place-recognition, visual motion estimation and visual simul-
taneous localization and mapping (SLAM).

Place recognition is the task to decide whether a given scene has been observed
before. For visual place recognition, images are associated to places and the decision
about place matchings is based on the evaluation of image similarities.

Place recognition is a fundamental step for all types of localization. Recognizing the
current position as a known place in the world induces a topological localization: the
current position is topologically related to a single or multiple priorly seen places. De-
pendent on the application, this might be subsequently refined to a metric localization
including the full transformation between the current pose and a map, which is the topic
of visual motion estimation, the second type of visual localization tasks. The third task,
SLAM, is the combination of creating a map while simultaneously localizing in this map.
This map can be based on pure place recognition, resulting in a topological map (e.g.
SeqSLAM [Milford and Wyeth, 2012]), place recognition in combination with motion
estimations, coined semi-metric maps (e.g. RatSLAM [Milford et al., 2004]), or full 3d
reconstruction resulting in dense or sparse 3d maps (e.g. PTAM, [Klein and Murray,
2007] or ORB-SLAM [Mur-Artal and Tardos, 2015]).
The increasing complexity from a plain place recognition to a full 3d reconstruction,

results in different environmental sizes that are nowadays addressed by these algorithms
- ranging from accurate mapping of a small desktop or room size environment up to
deciding whether places across a several hundred kilometers route, recorded in winter
and summer, are the same. The latter, matching image of places between summer
and winter, is an example for place recognition in changing environments. Fig. 5.2
illustrates what is meant by “changing environments” in this thesis. There are two types
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of dynamics in the environment: (1) dynamic objects and (2) changes of the whole scene
due to changing illumination, changing weather, day-night cycles or seasonal changes.
For dealing with dynamic objects, a common approach is to explicitly try to detect them
and handle them differently from the static elements of the scene. Typical examples are
people in indoor environments or cars in street scenes. However, handling single dynamic
objects is not in the scope of this thesis - I rather want to address severe whole image
changes as they are illustrated in Fig. 5.2.
Visual localization in small and medium scale environments (desktop, room or build-

ing scale environments) can be considered a mature field. At least from a theoretical
point of view, many problems are solved and highly accurate 3d reconstructions can
be created. In these environments, open problems are mainly related to challenging
environments or illumination conditions and the robustness of the approaches, e.g. in-
trospection capabilities to detect when the provided results are not reliable. Large scale
place recognition, e.g. matching places across a 1,000 km route, in non changing envi-
ronments has also been successfully demonstrated by combining techniques from mobile
robotics, computer vision and information retrieval [Cummins and Newman, 2011].

In contrast, for recognizing places across severe appearance changes, as they are shown
in Fig. 5.2, major problems are yet unsolved. Robots operating autonomously over
the course of days, weeks, and months have to cope with significant changes in the
appearance of an environment. A single place can look extremely different depending
on the current season, weather conditions or the time of day. Since state of the art
algorithms for autonomous navigation are often based on vision and rely on the system’s
capability to recognize known places, such changes in the appearance pose a severe
challenge for any robotic system aiming at autonomous long term operation.

In the overall context of this thesis, an obvious question is: Why should superpixels
be able to support place recognition in changing environments? Fig. 5.1 distinguishes
holistic and local feature based approaches to place recognition. In terms of holistic
approaches, superpixel segmentations provide an intermediate level representation of
the whole image. The full image is divided into local parts, well aligned with object
boundaries. Chapter 6 will use this intermediate level representation to learn to predict
image changes in each local part of an image. These predicted parts are then composed
into to a new, predicted image. The presented results will show, that existing holistic
place recognition algorithms can benefit from such a prediction.
On the other hand, each superpixel is a local image region - better aligned to object

boundaries than fixedly arranged rectangular patches. Moreover, independent from the
image content, there will be a superpixel representation of the image. This is in contrast
to interest point extraction like corner or scale space extrema detection. For example
think of an image taken with poor illumination conditions, e.g. nightfall. Maybe there
won’t be any SIFT features in a dark area, however, there will be a superpixel since
they cover the whole image and maybe it can provide useful information, e.g. about the
skyline. Chapter 7 will present a novel approach to place recognition in changing envi-
ronments based on locale region detectors including superpixels and powerful descriptors
based on the output of Convolutional Neural Networks. The spatial arrangement of the
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landmarks is included using a novel approach based on a star graph model and Hough
voting. The experimental results will show how the proposed system outperforms exist-
ing methods.
Although this order is rather unconventional, before the presentation of related work

in section 5.2, the following section 5.1 will present the datasets used for the later
evaluation. This is intended to deepen the understanding of the challenges induced by
changing environments. The datasets and related work will pave the way for two novel
approaches incorporating superpixel segmentations in place recognition across seasons,
changing weather and day-night cycles.

5.1. Datasets comprising changing environments

To run place recognition experiments for evaluation of existing and novel approaches,
datasets with traversals of the same places under different environmental conditions
are required. In particular, the learning based approach presented in chapter 6 poses
strong requirements on the used training data. To better illustrate the problems that are
imposed by the changing environments and to deepen the understanding of the severity
of the occurring appearance changes, this section presents the datasets that are later
used in the evaluation.

5.1.1. The Nordland dataset - A 3000 km journey through all seasons

In [Sünderhauf et al., 2013] we present the Norldand dataset, a more detailed presen-
tation can be found in [Neubert et al., 2015b] 1. It is based on the TV documentary
“Nordlandsbanen – Minutt for Minutt” by the Norwegian Broadcasting Corporation
NRK. This documentary provides video footage of the 728 km long train ride between
the cities of Trondheim and Bodø in north Norway. The complete 10 hour journey has
been recorded from the perspective of the train driver four times, once in every season.
Thus the dataset can be considered comprising a single 728 km long loop that is traversed
four times. As illustrated in Fig. 5.3, there is an immense variation in the appearance
of the landscape, featuring a complete snow cover in winter, fresh and green vegetation
in spring and summer, as well as coloured foliage in autumn.
In addition to the seasonal changes, different local weather conditions like sunshine,

overcast skies, rain and snowfall are experienced on the long trip. Fig. 5.4 shows the
altitude profile of the complete track and illustrates the high variance in appearance in a
single season due to the different vegetation zones the train passes. Most of the journey
leads through such natural scenery, but the train also passes through urban areas along
the way and occasionally stops at train stations or signals.
The videos of the journey have been recorded at 25 fps with a resolution of 1920×1080

using a SonyXDcam with a Canon image stabilizing lens of type HJ15ex8.5B KRSE-V.

1This section 5.1.1 including Fig. 5.4 is published in very similar form in Robotics and Autonomous
Systems, 69, Peer Neubert, Niko Sünderhauf, Peter Protzel, Superpixel-based Appearance Change
Prediction for Long-Term Navigation Across Seasons, Pages 15-27, Copyright (2015), with permission
from Elsevier. http://dx.doi.org/10.1016%2Fj.robot.2014.08.005
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5.1. Datasets comprising changing environments

Fig. 5.3.: The Nordland dataset consists of the video footage recorded on a 728 km long train
ride in northern Norway. The journey was recorded four times, once in every season.
Frame-accurate ground truth information makes this a perfect dataset to test place
recognition algorithms under severe environmental changes. The four images in each
row above show the same place in winter, spring, summer and fall. Images licensed

under Creative Commons (CC BY), Source: NRKbeta.no http://nrkbeta.no/2013/01/15/

nordlandsbanen-minute-by-minute-season-by-season/ [Last accessed: 2015-08-14]
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Fig. 5.4.: (left) GPS track of the complete Nordland dataset. The position of the training and
validation data sets have been marked in red and green respectively. Map data c©2014
Google. (right) On its 728 km long way from Trondheim to Bodø, the train moves
through different vegetation zones and altitude levels. The plot shows the altitude
profile along with typical images from the corresponding areas of the spring journey.
Some of the stations and their arrival time in the videos are marked as well. The
red dots indicate that the train stopped at stations or signals. The plot has been
generated using the GPS data that is published along with the videos.
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Chapter 5. The Problem of Place Recognition in Changing Environments

GPS readings were recorded in conjunction with the video at 1 Hz. Both the videos and
the GPS track are publicly available online2 under a Creative Commons licence (CC
BY). The full-HD recordings have been time-synchronized by the TV company NRK
such that the position of the train in an arbitrary frame from one video corresponds
to the same frame in any of the other three videos. This was achieved by using the
recorded GPS positions and interpolating the GPS measurements to 25 Hz to match
the video frame rate. The dataset therefore meets the requirements for almost pixel-
accurately aligned images during the training phase. Notice that the image alignment
is not absolutely perfect due to GPS interpolation errors and the 25 Hz sampling speed
while moving at high velocities. The misalignment between two corresponding images
in the dataset is, however, rather minor and in most cases only visible in objects close
to the train tracks, such as trees or poles. An illustration can be found in appendix A.3.
Fig. 5.4 illustrates the complete journey from Trondheim to Bodø. Similar to the

BSDS dataset, we split the track into a training, validation and test dataset. The avconv
commands to extract the corresponding frames can also be found in the appendix A.3.
The large test dataset covers the complete spring and winter journey. For testing we
subsampled the 10 h videos at 0.1 frames per second resulting in 3,587 test images per
season. For a velocity of about 70 km/h, this results in a distance of about 20 m between
two frames. From the four available videos, the spring video best resembled typical
summer weather conditions at the chosen part of the track. Thus, most experiments are
based on the spring and winter videos (otherwise it is explicitly mentioned). All images
were resized to 854× 480 pixels.

For the training and validation experiments described in the following, we extracted
30 minutes from the spring and the winter videos at a frame rate of 2Hz, starting at
approximately 2 hours into the drive. The first 900 frames (about 8 minutes) from
this 30 minute subset form a training dataset. The last 2700 frames of the remaining 22
minutes of this video subset are intended to be used as a validation dataset to evaluate the
influence of parameter settings. There are 200 unused frames between the training and
validation dataset since the train stopped at a station during this time. The much larger
test dataset covers the complete spring and winter journey. For testing we subsampled
the 10 h videos at 0.1 frames per second.

5.1.2. The Gardens Point dataset - Day and night with lateral shift

The Gardens Point Dataset is a vision only dataset comprising three runs of the same
route at the Gardens Point Campus, Queensland University of Technology, Brisbane,
Australia. It has been recorded by Arren Glover and is available online3. The dataset
provides a total of 3 · 200 = 600 images captured with a hand held iPhone 5. There
are two traversals at day and one at night. The first daytime traversal and the night
traversal are on the right side of the path, the second daytime run is on the left side of

2http://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/ [Last
accessed: 2015-08-14]

3https://wiki.qut.edu.au/display/cyphy/Day+and+Night+with+Lateral+Pose+Change+Datasets

[Last accessed: 2015-08-14]
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5.1. Datasets comprising changing environments

Fig. 5.5.: Example images of five places from the Gardens Point dataset. Each column shows
three views of the same place, from top to bottom: NightRight, DayRight, DayLeft.
GardensPoint image credits: Arren Glover.

Fig. 5.6.: The first ten images of the Gardens Point DayLeft dataset. How many places are
shown by these images? Supposedly there is no single true answer, this has to be
considered in the typical evaluation based on precision-recall curves.
GardensPoint image credits: Arren Glover.

the path. In contrast to the Nordland datasets, this enables the evaluation of day-night
cycles and the influence of an additional lateral viewpoint change that in particular
challenges holistic approaches. Fig. 5.5 shows example images. Each column shows the
same scene from all three traversals. The severe appearance change due to the day-night
cycle can be seen in the first and second row. The additional lateral shift can be seen
between the second and the third row.
In the Gardens Point dataset, images showing the same place are indicated by their

index in the dataset (the number in the file name). In particular, there is exactly one
image for each traversal and place. Fig. 5.6 illustrates an additional problem during
evaluation of all datasets: Which images of such a sequence are considered to show
the same place? For scale invariant descriptors all images may appear quite similar.
In the later presented experiments, this will either be considered by definition of the
ground-truth matchings (e.g. to allow matching images with distance <3 frames in the
sequence) or by selecting a subset of distinct places.
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Fig. 5.7.: Example images of eight places from the Alderley Dataset. Each image pair shows
the same place at daytime and during a rainy night. Alderley image credits: [Milford
and Wyeth, 2012].

5.1.3. The Alderley dataset - From sunny day to rainy night

The Alderley dataset by Milford and Wyeth [2012] provides two image sequences cap-
tured from a car driving through the suburb of Alderley in Brisbane, Australia. The
first sequence shows the traversal of the 8 km route on a sunny day, the second during
a stormy night with heavy rain and low visibility. The videos were captured using a
Panasonic Lumix DMC-TZ7 digital snapshot camera with a frame rate of 50 frames per
second and were subsequently cropped, resized to (640× 260) pixels and manually time
aligned.
It was first presented in [Milford and Wyeth, 2012] and is available online4. Fig. 5.7

shows example images illustrating the severe appearance changes. These images nicely
demonstrate why approaches that can match images in static environments fail for these
images. E.g. think of the chance of a typical keypoint detector or descriptor to find
corresponding regions and to match them. Nevertheless, the results using the novel
superpixel based approach presented in chapter 7 demonstrate that it is not beyond all
hope.

5.2. Related work and own contributions to the field

The datasets presented in the previous section showed that changing environments ex-
tend the problems of basic scene recognition to recognition of places that are subject to
severe appearance changes due to changing illumination conditions, weather, day-night
cycles or seasonal changes. This can be considered the more general problem compared
to place recognition in non changing, static environments. However, baseline and foun-

4https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395 [Last accessed: 2015-08-14]
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5.2. Related work and own contributions to the field

dation for solving the more complex problem are established solutions that showed to
handle the simpler static case.
As illustrated in Fig. 5.1, for non changing environments, place recognition has been

approached by local and holistic image features. The set of available established holistic
image descriptors include GIST [Torralba et al., 2003] and BRIEF-GIST [Sünderhauf
and Protzel, 2011]. Both compute a single, global feature vector for the complete image.
GIST is built upon image filtering and BRIEF-GIST uses simple binary comparisons
similar to the BRIEF keypoint descriptor [Calonder et al., 2010]. In terms of local image
features, the combination of interest point detectors and hand engineered descriptors for
the surrounding image patch showed to be useful in the context of localization. For
the matching of local features in successive video frames or rectified stereo image pairs,
correlation based measures on the image patch are often sufficient [Szeliski, 2010]. For
the matching of images from more varying viewpoints, more sophisticated descriptors
like the Scale Invariant Feature Transform (SIFT) [Lowe, 1999] can provide a large
benefit [Mikolajczyk and Schmid, 2005]. The success of SIFT inspired a lot of similar
approaches, including PCA-SIFT [Ke and Sukthankar, 2004] and SURF [Bay et al.,
2008] (section 6.2 will give more details on these descriptors). Cummins and Newman
[2008] presented FAB-MAP, that uses SURF features in a bag-of-words approach for
place recognition (more detail on visual vocabularies will be given in section 6.3). The
current version FAB-MAP 2.0 [Cummins and Newman, 2011] can be considered state
of the art for large scale visual place recognition in fairly static environments. However,
FAB-MAP is not designed for changing environments resulting in poor performance in
the presence of severe appearance changes [Milford and Wyeth, 2012].
Finding solutions that perform well in changing environments is an active field of

research. The related work can be arranged on two dimensions. The first being the time
dimension and the second being the approach to handle the changing environments. In
this second dimension, I want to distinguish the following approaches:

1. Using powerful standard localization techniques (and hope for the best)

2. Increasing robustness by matching image sequences

3. Using seasonally invariant types of features or sensors

4. Accept that the places cannot be matched and organize the different appearances
in the map

5. Attempt to learn or reason about systematic changes

Both dimensions are correlated since at different points in time, new ideas arose and
different approaches were popular. Fig. 5.8 illustrates both dimensions - the milestones
arranged on the timeline include colour codes for the type of approach that is used.
In the following, I want to give a short overview of attempts in each direction. This
extends the related work presented in [Neubert et al., 2015b] and roughly reproduces
the chronological order.
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Using powerful standard localization techniques (and hope for the best) - Part I

Based on local keypoint features, [Valgren and Lilienthal, 2007, 2010] show high recog-
nition rates on single image matching of five places across seasons and global topological
localization on the same dataset. They compare SIFT and SURF variants on omnidi-
recional images. They found U-SURF to perform best in this comparison and conclude
that high-resolution omnidirectional images and additional constraints on the matched
keypoints (epipolar geometry and reciprocal matchings) are necessary. Unfortunately,
it remains unclear what portion of matchings are on seasonally invariant objects (like
building facades) and how this approach generalizes to larger datasets.
Interest point based approaches in changing environments have to rely on the detec-

tion of keypoints on objects that vary strongly in their appearance. To overcome this
shortcoming, a fixed distribution of points can be used (e.g. a keypoint grid). Sift Flow
[Liu et al., 2008] computes a SIFT descriptor at each pixel and matching is based on local
and global constraints. While they show impressive results on scene alignment under
strongly varying conditions, this approach has not yet been used for across season place
recognition. Glover et al. [2010] present a combination of the sophisticated local feature
recognition system FAB-MAP [Cummins and Newman, 2008] and the biologically in-
spired SLAM approach RatSLAM [Milford et al., 2004; Milford and Wyeth, 2010] based
on pose cell filtering and experience mapping. RatSLAM is robust to false-positive loop
closures from the image processing front-end and integrates matching information over
time. The hybrid FAB-MAP + RatSLAM system has shown that mapping in challeng-
ing outdoor conditions with variances in illumination across different times of day is
possible. However, the authors conclude that the SURF features on which it is based,
are too variable under those varying conditions to form a truly reusable map.

Increasing robustness by matching image sequences

The pose cell filtering of RatSLAM is a step towards using sequences for matching.
In their subsequent work, the RatSLAM group presented two further approaches for
matching image sequences: CAT-SLAM and SeqSLAM. Continuous Appearance-based
Trajectory SLAM (CAT-SLAM) [Maddern et al., 2012] uses a particle filter with par-
ticle weighting based on local appearance and odometric similarity. They were able to
outperform FAB-MAP on the New College vision and laser data set. While this dataset
does not include environmental changes, Lowry et al. [2014b] use a combination of the
underlying CAT-graph and a probabilistic whole image matching framework for place
recognition in changing environments.
The second approach, SeqSLAM [Milford and Wyeth, 2012], builds upon a lightweight

visual matching front-end and explicitly matches local sequences of images. They show
impressive results on matching challenging scenes across seasons, time of day and weather
conditions. Although their system is limited to constant velocity motion and the holistic
visual front-end is sensitive to viewpoint changes, if these conditions are met, it provides
state-of-the-art results under changing conditions. Moreover, it is one of the very few
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2004

2015

•Milford et al. [2004]; Milford and Wyeth [2010] RatSLAM

••He et al. [2006] SIFT reweighting for summer-winter matchings

2006

•Valgren and Lilienthal [2007, 2010] SIFT, SURF and seasons

2007

•Cummins and Newman [2008, 2011] FAB-MAP

2008

•Konolige and Bowman [2009] Skeleton keyframe graph

2009

••Glover et al. [2010] Combination of FAB-MAP and RatSLAM

2010

•Milford and Wyeth [2012] SeqSLAM

2012

•Johannsson et al. [2012] Reduced pose graphs

•Badino et al. [2012] Topometric maps

•Maddern and Vidas [2012] Infrared + FAB-MAP

•Churchill and Newman [2012] Plastic maps

•Neubert et al. [2013, 2015b] Appearance change prediction → Chapter 6

2013

••Johns and Yang [2013] Feature co-occurrence maps and sequences

••Corke et al. [2013] Shadow removal

•Naseer et al. [2014] Dense HOG + network flows

2014

•[Pepperell et al., 2014] SMART

•Lowry et al. [2014a] Linear regression based image prediction

•Milford et al. [2013] Patch verification

•Lowry et al. [2014b] Probabilistic holistic matching based on CAT-graph

••McManus et al. [2014] Plain RGB & illumination invariant matching

•[Chen et al., 2014; Sünderhauf et al., 2015a] Holistic CNN descriptors

•[Neubert and Protzel, 2015b] Local region detector+CNN+Star Hough
→ Chapter 7

•[Sünderhauf et al., 2015b] EdgeBoxes+CNN

•[Neubert and Protzel, 2015a] Matching candidate selection

Fig. 5.8.: Timeline of place recognition approaches for changing environments. The coloured
dots indicate the area(s) of contributions: •using standard descriptors, •exploiting
sequences, •managing the different appearances, •using seasonal invariant sensors
or features, •learning or reasoning about changes.
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systems for which an implementation is available5.
Badino et al. [2012] implement the idea of visual sequence matching using a single

SURF descriptor per image (WI-SURF) and Bayesian filtering on a topometric map.
They show real-time localization on several 8 km tracks recorded at different seasons,
times of day and illumination conditions. Johns and Yang [2013] quantise local features
in both feature and image space to obtain discriminative statistics on the co-occurrences
of features at different times of the day. They combine their approach with a sequence
matching that can also handle non-zero acceleration. In contrast to the holistic visual
front-end of SeqSLAM, the usage of local features improves the robustness towards
viewpoint changes. They show results on a 20 km track over the course of one day,
where their method outperforms FAB-MAP and SeqSLAM.
Sequence Matching Across Route Traversals (SMART) [Pepperell et al., 2014] is an-

other approach to extend the robustness of sequence matching towards varying view
points and differences of the speed along the camera trajectories. They include a vari-
able offset image matching to increase robustness against viewpoint changes and sample
images at constant trajectory intervals, in contrast to constant time intervals, to han-
dle varying speed between the two traversals of the same route. Therefore, a source of
translational velocity is necessary. In [Pepperell et al., 2014], they used wheel encoders
of the cars on which the cameras were mounted.
Using a graph theoretical approach, Naseer et al. [2014] formulate image matching as

a minimum cost flow problem in a data association graph. For computation of image
similarities, they use a dense grid of HOG descriptors [Dalal and Triggs, 2005] and
generate multiple route matching hypotheses by optimizing network flows. They show
competitive results to SeqSLAM.
While most of the sequence based approaches exploit the grouping of images to reduce

the number of false positive matchings, the grouping can also be used to select promising
matching candidates. Very recently, in [Neubert and Protzel, 2015a], we proposed a
method that exploits similarities between images inside the given database (that are
typically not affected by environmental changes) to find matching candidates for the
current query image (that might be subject to severe appearance changes). Preliminary
result showed that in many configurations, the number of comparisons can be reduced
by about 90 % without considerable influence on the place recognition performance.
In summary, using groups of images can greatly improve the place recognition perfor-

mance. When using sequences, special care has to be taken on the length of the sequences
(to allow for different trajectories) and the ability to handle varying velocities. The novel
approaches presented in chapters 6 and 7 are single image based. However, they can
both be combined with the sequence matching techniques presented above - in particular
section 6 includes an evaluation in combination with SeqSLAM.

Using seasonally invariant types of features or sensors

Maddern and Vidas [2012] combine visible and long-wave infrared imaging for place

5https://openslam.org/openseqslam.html
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recognition through a day-night-cycle. Their system is based on FAB-MAP and com-
bines words of SURF features from the visible and infrared images (using two separate
vocabularies). They find the combination of both modalities to give the best results:
infrared is more robust to extreme changes while the visible modality provides better re-
call during the day. They present preliminary results on data of a 1.5 km track traversed
several times during a single day-night cycle.
He et al. [2006] learn an intermediate representation of images such that the distance of

two images in this intermediate representation reflects the distance between the places in
the world, where these images were taken. The intermediate representation is a vector of
weighted SIFT feature prototypes. Since they train their system on summer and winter
images, they search for a set of SIFT features that are suitable for place recognition under
this seasonal change. Their approach also relies on the extraction of local keypoints on
the same world object under the seasonal change.
Zhang and Kosecka [2005] focus on recognizing buildings in images. They use a hierar-

chical matching scheme based on localised colour histograms and SIFT features to search
for buildings in an image database. While they did not explicitly design their system for
place recognition across seasons, their test data (ZuBud) covers different weather condi-
tions and seasons. Thus, building facades could serve as seasonally invariant landmarks.
Robustness to environmental changes can also be addressed based on image prepro-

cessing: The heavy image normalization involved in the visual front end of SeqSLAM is
an important ingredient for its robustness towards appearance changes. Milford et al.
[2013] present another approach that involves the same patch normalization procedure
but uses single images for place recognition (in contrast to the sequences used in Se-
qSLAM). To decrease the number of false positive place matchings, they apply a patch
verification step on a set of candidate matchings. The candidates are obtained from a
holistic image comparison using the sum of absolute differences on patch normalized im-
ages - similar to the SeqSLAM front end. They show impressive results on the Alderley
dataset comprising images at daytime and during a rainy night. However, the candi-
dates are selected based on a holistic image comparison and for the patch verification,
only small variations of the position of compared patches are considered. Therefore, this
approach is supposed to be sensitive to viewpoint changes.

Accepting that the places cannot be matched and handling the different
appearances in the map

Changing environments are challenging for visual place recognition systems. But they
are also a challenge for the mapping side of the problem. Dayoub and Duckett [2008]
approach the problem of changing environments using long-term and short-term mem-
ory concepts. They update the representation of places in the world incrementally, by
gradually adding information about current features and removing information about
outdated features. Churchill and Newman [2012] present a mapping system based on a
plastic map, a composite representation of multiple experiences connected in a relative
framework. Each experience handles a sequence of images, motion and 3D feature data.
Multiple localizers match the current frame to stored experiences. Several experiences

117



Chapter 5. The Problem of Place Recognition in Changing Environments

can be active at once, when they represent the same place. The complexity of the plastic
map varies according to the amount of variation in the scene. They present results in
changing lighting and weather conditions over a three month period.
For pose graph SLAM, Biber and Duckett [2009] showed that the map grows un-

bounded in time, even for small environments that are repeatedly traversed. Johannsson
et al. [2012] proposed the reduced pose graph that reuses already existing poses in pre-
viously mapped areas and incorporates new measurements as new constraints between
existing poses. This can be used if the place recognition front end can match the poses.
Konolige and Bowman [2009] present a mapping system based on a skeleton graph of
keyframes from a visual odometry system. Views of keyframes are updated and deleted
to preserve view diversity while limiting their number. They showed their system to
handle changing illumination conditions in an office environment.
However, being able to associate places despite severe changes in their appearance is

advantageous to the mapping process since the rate at which new experiences [Churchill
and Newman, 2012], poses [Johannsson et al., 2012], or views [Konolige and Bowman,
2009] have to be introduced to the map can be reduced.

Learning or reasoning about systematic changes

Using (1) powerful descriptors that can recognize places despite severe appearance
changes or (2) accepting that those places can not be matched and the different ap-
pearances have to be organized in the map, are two very different approaches to place
recognition in changing environments. In [Neubert et al., 2013] we present a somehow
orthogonal approach by learning to predict systematic appearance changes from training
data. This approach is based on superpixel vocabularies and will be the topic of chapter
6. However, except for the learning of weights for SIFT matchings in [He et al., 2006], it
has been one of the first approaches to involve learning in place recognition in changing
environments. Since then, several other learning based approaches have been presented.
For example, the sequence based method presented in [Johns and Yang, 2013] also

involves learned feature co-occurrence maps. Ranganathan et al. [2013] show the benefit
of learning illumination invariance in terms of local image feature matching. They model
lighting variations using a probability distribution on a discretised descriptor space.
Lowry et al. [2014a] propose to use linear regression techniques to predict images across
different times of day. Based on training images showing the same scene at morning and
afternoon, they learn a linear whole image transformation that can be applied to images
from one condition to create a predicted image at the other condition. To cope with
different scene types, they also propose to cluster similar images based on k-means before
learning a transformation for this scene type. Query images are then first associated to a
scene type and the corresponding transformation is applied. In their experiments, using
the predicted images results in higher place recognition performance with an additional
benefit from distinguishing different scene types.
In her thesis, Lowry [2014] also presents several other approaches to place recogni-

tion in changing environments. In terms of modelling appearance changes, one of the
presented approach uses principal component analysis and builds upon the assumption
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that the condition dependent information are encoded in the first principal components.
This assumption is in accordance with results, presented in [Jacobs et al., 2007], on the
principal components of webcam images captured over large periods of time. If these
information of the first components are removed, the remaining image is only location
specific and can be used for place recognition.
The understanding how the appearance of visual features can change over time, can

either be obtained by learning, or by a model derived from natural and in particular
physical properties of the world. For example, the illumination changes that appear
in different images of the same place have a clear physical foundation. In particular,
shadows are supposed to significantly change over the course of a day. Corke et al.
[2013] evaluate the benefit from removing shadows in images before place recognition.
Exploiting a number of simplifying assumptions on the light source and the used sensor,
a colour image pixel can be mapped to a one dimensional pixel value which is a function
of only material reflectance properties. Although these assumptions do not perfectly hold
in real world applications, they show significant place recognition improvement using the
framework presented in [Churchill and Newman, 2012]. This insight was later used by
Upcroft et al. [2014] for the classification of urban streets and extended to a localization
system based on the combination of RGB and illumination invariant matching pipelines
in [McManus et al., 2014].

Using powerful standard localization techniques - Part II

The first class of approaches that uses available powerful image descriptors directly for
place recognition, currently experiences a revival with the rise of multi purpose image
features based on Convolutional Neural Networks (CNN). In recent years, CNN based
image descriptors showed impressive performance on a variety of computer vision tasks,
like image classification [Krizhevsky et al., 2012], object detection [Girshick et al., 2014;
Chatfield et al., 2014] and other recognition tasks [Razavian et al., 2014].
Chen et al. [2014] and Sünderhauf et al. [2015a] proposed to use descriptors obtained

from CNNs for place recognition in changing environments. Sünderhauf et al. [2015a] ob-
tained image descriptors from the stacked output of a single CNN layer. They evaluated
different layers and found the first convolutional layers to be the most robust against
image changes, but sensitive to viewpoint changes. These descriptors showed impres-
sive performance on a set of challenging datasets, including the cross-seasonal Nordland
dataset. For single image matching of images with similar viewpoint, the CNN based
holistic descriptor can be considered as state of the art - in particular since there are
ready to use networks available enabling the inclusion of this approach as baseline in
new experiments.
However, the used CNN descriptors are holistic representations and sensitive to view-

point changes. Therefore, in [Neubert and Protzel, 2015b] we propose to use local region
detectors in combination with CNN descriptors. We evaluate different types of region
detectors including keypoints, superpixel based approaches and object proposal meth-
ods. We further incorporate the landmarks’ spatial arrangement in the image matching
using a novel star graph model and Hough voting based approach. This novel approach
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will be presented in section 7.
Congruently and independently from our approach, [Sünderhauf et al., 2015b] pro-

posed to use CNN descriptors in combination with a particular object proposal method,
EdgeBoxes [Zitnick and Dollar, 2014]. They show impressive place recognition results on
several datasets including severe appearance changes. However, they do not incorporate
the spatial arrangement of landmarks and use a single region detector. The experimental
comparison of the components of these two CNN-landmark based approaches ([Neubert
and Protzel, 2015b] and [Sünderhauf et al., 2015b]) in section 7.7 will show the benefit
of the incorporation of the spatial arrangement and the variety of local features that are
used in our approach.

Summary

The timeline shown in Fig. 5.8 provides two general insights: (1) Place recognition in
changing environments is an active field of research. In particular since 2012 a lot of
approaches have been presented. (2) Even in the covered short period of time, different
approaches were popular at different times: After the usage of available image descriptors
like SIFT or SURF, exploiting sequence became popular. Starting in 2013, several
learning based approaches were developed. My own contribution to this development
and one of the first approaches of this kind, “Appearance Change Prediction” [Neubert
et al., 2013, 2015b], will be presented in detail in chapter 6.
At this point in time (before 2015), many different approaches existed - and (at least)

two major issues:

1. None of the existing methods showed to be robust against severe appearance
changes and viewpoint changes. The latter is due to the fact that the most success-
ful recognition methods for changing environments avoid the local feature detection
step and use holistic image descriptors.

2. Only very few methods are readily available for comparison to new approaches,
namely FAB-MAP and SeqSLAM. This hampers the measuring of progress in this
field.

The topic of chapter 7 is the novel CNN-landmark based approach briefly introduced
above [Neubert and Protzel, 2015b]. This approach, in particular, addresses the first of
the above issues since it is robust to appearance changes and viewpoint changes. The
second issue is addressed by a publicly available implementation (cf. section 1.3) and by
the fact that no dataset specific training is involved which enables the straight forward
application to new datasets. The consideration of these two issues together with the
overall performance of the proposed system is supposed to facilitate progress towards
real world application of algorithms for place recognition in changing environments.
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Fig. 5.9.: Creation of precision-recall curves. Input are image similarities illustrated by the sim-
ilarity matrix (dark values indicate high similarity) and knowledge about the ground
truth matchings (e.g. a diagonal matrix as it is the case for the Nordland dataset).
Each value of the similarity matrix is classified to be a matching or not based on a
threshold t. The comparison to the ground truth is used to obtain TP (green), FP
(red) and FN (blue). Each threshold t yields a point on the precision-recall curve
(t=0.5 and t=0.3 are shown).

5.3. Using precision-recall curves for evaluation of place
recognition experiments

Precision and recall were already used for evaluation of superpixel segmentations in
chapter 3. However, they are an established method for evaluation of place recognition
experiments as well, e.g. [Milford and Wyeth, 2012]. As a reminder, given true positives
(TP), false positives (FP) and false negatives (FN) of a classification experiment, they
are computed as follows:

Precision: P =
TP

TP + FP

Recall: R =
TP

TP + FN

Precision is the proportion of the found true place recognitions on all recognitions. Recall
is the proportion of the found true place recognitions on all existing true matchings. To
use them for evaluation of place recognition experiments, we have to define the values
TP, FP and FN.
This process is illustrated in Fig. 5.9. The result of a typical visual place recognition

experiment is a set of image similarities. In the most simple case, two sets of images are
given: database images and query images, and each image of the query set is compared
to all images of the database set. However, in alternative setups, the query images may
be iteratively inserted in the database set. In this case, it is also possible to start with an
empty database set. However, the resulting set of image similarities can be illustrated
as a (partially filled) similarity matrix. For evaluation based on precision-recall curves,
a set of classification tasks on these similarities is conducted.
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In the experiments presented in the following chapters, the performance evaluation is
based on ground truth knowledge about image pairings showing the same place and those
that show different places. Given the similarities between all possible image matchings,
they are divided into matchings and non-matchings based on a threshold t. All image
matchings that correspond to a ground truth place correspondence are counted as true
positives, all matchings that do not show the same place according to the ground truth
are considered false positives, and false negatives are all image pairings of the ground
truth that are not in the set of matchings. From these three values, a point on the
precision-recall curve is computed. To obtain the curve, the threshold t is varied.
However, there are alternative methods to obtain the precision-recall curves - with a

considerable influence on the shape of the curves. An example will be shown in section
7.7.4, where an alternative evaluation method is used in addition to the here presented
method to demonstrate the difference. Moreover, some place recognition algorithms
already select the single best matching for each place. This poses an upper bound on the
number of possible false positives - there can only be a single false positive for each image
of the query database. Although it increases the performance in the resulting curves,
this should not be used in a practical application, since it prevents the recognition of
multiply revisited places. Therefore, it is not used in this thesis - except for comparisons
using SeqSLAM. There the reduction to a single matching is part of the processing chain.
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Dream about the pictures that I play of changes

Green leaves of summer turn red in the fall

To brown and to yellow, they fade

Phil Ochs, from the song ”Changes”, 1973

6
Superpixel-based

Appearance Change Prediction

Section 5.2 provided an overview of existing approaches on place recognition in changing
environments. In the year 2013, the two dominant directions for dealing with changing
environments were either to try to find image descriptions that can match places despite
the severely changed appearances, or to deal with the fact that the places can not always
be matched. In previous work in [Neubert et al., 2013], [Sünderhauf et al., 2013] and
[Neubert et al., 2015b] we1 presented an approach that is somehow orthogonal to these
two directions and that is the topic of this chapter: Superpixel-based appearance change
prediction (SP-ACP).

6.1. The concept of appearance change prediction for long
term localization

What current approaches to place recognition (and environmental perception in general)
lack, is the ability to reason about the occurring changes in the environment. Most
approaches try to merely cope with them by developing change-invariant descriptors or
matching methods. Potentially more promising is to develop a system that can learn to

1While the underlying idea and the implementation are my own contributions, Niko Sünderhauf had
large influence on the work presented in this chapter 6 of the thesis. This includes theoretical
contributions in form of discussions and practical contributions in particular for the preparation of
the Nordland dataset, its description and the evaluation based on Open FAB-MAP and SeqSLAM.

The sections 6.1, 6.4 and 6.5 including Fig. 6.1 and 6.9-6.18 are published in very similar form in
Robotics and Autonomous Systems, 69, Peer Neubert, Niko Sünderhauf, Peter Protzel, Superpixel-
based Appearance Change Prediction for Long-Term Navigation Across Seasons, Pages 15-27, Copy-
right (2015), with permission from Elsevier. http://dx.doi.org/10.1016%2Fj.robot.2014.08.005

123

http://dx.doi.org/10.1016%2Fj.robot.2014.08.005
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State of the Art Approach

Learned Dictionary

Prediction

Proposed Approach With Scene Change Prediction

Matching

Matching

Training Dataset

Fig. 6.1.: State of the art approaches to place recognition will attempt to directly match two
scenes even if they have been observed under extremely different environmental con-
ditions. This is prone to error and leads to bad recognition results. Instead, we
propose to predict how the query scene (the winter image) would appear under the
same environmental conditions as the database images (summer). This prediction
process uses a dictionary that exploits the systematic nature of the seasonal changes
and is learned from training data.

predict certain systematic changes (e.g. day-night cycles, weather and seasonal effects,
re-occurring patterns in environments where robots interact with humans) and to infer
further information from these changes. Doing so without being forced to explicitly
know about the semantics of objects in the environment is the topic of this chapter.
Fig. 6.1 illustrates the core idea of our work and how it compares to the current

state of the art place recognition algorithms. Suppose a robot re-visits a place under
extremely different environmental conditions. For example, an environment was first
experienced in summer and is later re-visited in winter time. Most certainly, the visual
appearance has undergone extreme changes. Despite that, state of the art approaches
would attempt to match the currently observed winter image against the stored summer
images.
Instead, we propose to predict how the current scene would appear under the same

environmental conditions as the stored past representations, before attempting to match
it against the database. That is, when we attempt to match against a database of summer
images but are in winter time now, we predict how the currently observed winter scene
would appear in summer time or vice versa.
The result of this prediction process is a synthesized summer image that preserves the
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structure of the original scene and is close in appearance to the corresponding original
summer scene. This prediction can be understood as translating the image from a winter
vocabulary into a summer vocabulary or from winter language into summer language.
As is the case with translations of speech or written text, some details will be lost in
the process, but the overall idea, i.e. the gist of the scene will be preserved. Sticking to
the analogy, the error rate of a translator will drop with experience. The same can be
expected of our proposed system: It is dependent on training data, and the more and
the better training data it gets, the better can it learn to predict how a scene changes
over time or even across seasons.

Contribution 6.1 We propose to incorporate an additional prediction step before at-
tempting to match an image to a database of images captured under different conditions,
e.g. a different season, weather or time of day. This prediction is supposed to be learned
from training data.

6.1.1. Related Work: Correspondence to the texture transfer and image
analogy problems

The idea to predict images from training examples has some relations to two other image
processing tasks:

• The texture transfer problem [Efros and Freeman, 2001]: Given two images AS , AW

and a correspondence map C that relates parts of AS to parts of AW , synthesize
the first image with the texture of the second. C typically depends on image
intensity, color, local image orientation or other derived quantities.

• The image analogy problem [Hertzmann et al., 2001]: Given an image pair (AS , AW )
and a query image BS , compute a new “analogous” image BW that relates to BS

in the same way as AW to AS .

Speaking in the context of predicting image change across seasons: AS , AW are given
summer (S) and winter (W) training images and we learn to synthesize a new winter
image BW given a new summer image BS or vice versa. The approaches of Efros and
Freeman [2001] and Hertzmann et al. [2001] create visually appealing results but have
not yet been used in the context of place recognition. They focus on using single image
pairs instead of large collections of training data. Nevertheless, such approaches could be
used to improve the visual coherence of the images predicted by the proposed prediction
framework.

6.1.2. Overview of the main components

How can the severe changes in appearance a landscape undergoes between winter and
summer be learned and predicted? The underlying idea of our approach is that the
appearance change of the whole image is the result of the appearance change of its
parts - i.e. its superpixels. If we had an idea of the behaviour of each part, we could
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Superpixel Descriptors VisualVocabulariesImages

Fig. 6.2.: The key ingredients involved in the novel Appearance Change Prediction approach.

predict the whole image. Instead of trying to recover semantic information about the
image parts and model their behaviour explicitly, we make the assumption that similarly
appearing parts change their appearance in a similar way. While this is for sure not
always true, it seems to hold for many practical situations (e.g. changing colour of
the sky from sunny day light to dawn, appearance of a meadow in summer to its snow-
covered winter counterpart). This idea can be extended to groups of parts, incorporating
their mutual relationships.
Before diving deeper into the details of the proposed algorithmic approach in section

6.4, we want to introduce the main components shown in Fig. 6.2. Starting from a set
of input images, we use superpixel segmentations to obtain the parts of the image for
whose we attempt to learn the appearance changes. Superpixel segmentations were the
topic of the first part of this thesis. The remaining two main ingredients, descriptors for
superpixels and visual vocabularies, will be presented in the following two sections 6.2
and 6.3.
The following Section 6.2 will present the concept of image based descriptors and the

particular challenges for describing superpixels in a very general context. Section 6.3
will introduce visual vocabularies and evaluate a property of superpixel descriptors that
is closer related to the proposed Appearance Change Prediction task: What amount
of semantic meaning is provided by a superpixel word? This is relevant since the pro-
posed approach builds on the assumption that similar superpixel words undergo similar
appearance changes during the environmental changes - an assumption related to the
amount of common semantics of the words.

6.2. Superpixel descriptors

The first part of this thesis provided criteria and metrics to select an appropriate su-
perpixel segmentation method for the task at hand. While neither the development of
new descriptors nor the extensive comparison of existing descriptors are in the particular
scope of this thesis, the descriptors are an important component of the proposed SP-
ACP approach. Moreover, there are particular challenges when describing superpixels
in contrast to typical interest points.
Therefore, this section 6.2 will first give a gentle introduction to descriptors and com-

monly used approaches. The particular challenges in the context of superpixels are the
topic of section 6.2.2. The overlap criterion presented in section 6.2.3 is a novel approach
to evaluating the performance of descriptors for superpixels. It measures how well such
descriptors can distinguish to what extent two superpixels show the same part of the
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world. It is also published in [Neubert and Protzel, 2015a]. The there described metric
evaluates a very general property of superpixel descriptors. However, section 6.2.4 will
present some results of commonly used descriptors to pave the way for the subsequent
evaluation of superpixel descriptors in the context of visual vocabularies in section 6.3.

6.2.1. A gentle introduction to descriptors

In general, a descriptor is a collection of properties or attributes derived from an image or
a local region of an image such that the shown part of the world can (1) be distinguished
from other parts, and (2) the properties are invariant (or at least robust) to changes
during image acquisition like different scales, orientations, or viewpoints. Descriptors
can be used for identification of an individual aspect of the world (e.g. tracking an object
in a video sequence) or for recognizing instances of a group with common properties that
are also reflected in the descriptors (e.g. assigning a class label). For practical reasons,
in image processing, this set of attributes is typically given in form of numerical values
and combined to a vector, matrix or arbitrary tensor describing this image part.
While it is often distinguished between global (or holistic) descriptors for the whole

image and local descriptors that are computed for a defined sub region of the image,
both are based on similar underlying concepts and struggle with similar challenges. For
local features, the first step is the detection of a region that can be repeatedly found
in other images of the same scene, maybe seen from a different point of view or under
varying illumination. The second step is the description of this local region with a set of
attributes that is constant under the expected variations of the local region (e.g. affine
or other geometrical transformations or changed illumination).
Dependent on the application and the expected amount of variation in the images,

different descriptors are preferable [Szeliski, 2010]. In case of minor motion between
the located regions, simple measures like the sum of squared differences or normalized
cross-correlation of image patches can be used, e.g. for subsequent video frames [Shi
and Tomasi, 1993] or rectified stereo image pairs [Zhang et al., 1995]. These patch
based descriptors are sensitive to geometrical changes. Estimating an orientation and
scale of the local features and using them to resample the patch before computing the
descriptor is usually preferable [Szeliski, 2010]. In case of colour images, the statistics of
the colour are often used as well. For example in form of first and second order moments
[Barnard et al., 2003] or histograms [Gu et al., 2009], sometimes in combination with
other descriptors [Tighe and Lazebnik, 2010].
Lowe [1999] proposed an influential approach to feature description: Scale invariant

feature transform (SIFT). Basis for the SIFT descriptor are the gradients at each pixel
in a 16 × 16 window. These gradients are represented by orientation histograms with
8 orientations, one histogram for each 4 × 4 quadrant. To increase robustness, several
additional steps are processed: The gradient magnitudes are weighted by a Gaussian to
reduce the influence of off-centre gradients since these are supposed to be more affected
by small misregistrations. Further, the original 256 weighted gradient magnitudes are
softly added to (2 × 2 × 2) histogram bins using trilinear interpolation. Finally, the
resulting 128 dimensional raw SIFT vector is normalized in three steps: (1) The vector
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is normalized to unit length. (2) All values are clipped at value 0.2. And (3), the clipped
vector is normalized to unit length again.
SIFT is an intensively engineered image descriptor which had important influence on

many computer vision applications, e.g. object recognition [Lowe, 2004], image retrieval
[Sivic and Zisserman, 2003] and mobile robot navigation [Barfoot, 2005]. It also paved the
way for a multitude of similar descriptors. For example, Speeded-Up Robust Features
(SURF) [Bay et al., 2008] use Haar features and integral images to approximate and
speed up the computations. Ke and Sukthankar [2004] propose to use the (x, y) gradients
over a 39×39 patch directly and reduce the resulting 2 ·39 ·39 = 3042 dimensional vector
to 36 dimensions using principal component analysis, hence the name of the descriptor:
PCA-SIFT. Mikolajczyk and Schmid [2005] compare a subset of the above descriptors
and further propose Gradient Location-Orientation Histogram (GLOH), an adaption of
SIFT with a log-polar space binning, that performs superior to the existing methods in
their evaluation.
In particular in the context of object detection, there exists a wide range of further

approaches. For example Histogram of Oriented Gradients (HOG) [Dalal and Triggs,
2005] combines gradient orientations similar to SIFT, but on a dense grid of uniformly
spaced cells and with overlapping local contrast normalization. In case of regions with
discriminative contours, descriptors like shape context [Belongie and Malik, 2000] can
be used. It represents the shape by connecting a boundary point to all other boundary
points and collecting the resulting vectors in a normalized log polar histogram. For
practical applications, a subset of the boundary points is used.
While the above techniques are hand engineered (except for involved dimensionality

reduction techniques), there are also approaches based on learning. For example Lepetit
et al. [2004] treat wide baseline point matching as classification problem, each class cor-
responding to the set of all possible views of such a point. Given a training image, they
synthesize a large number of views of individual keypoints and use statistical classifica-
tion tools to create a compact description of this view set. However, in subsequent work
they found that image patches can be effectively classified on the basis of a relatively
small number of pairwise intensity comparisons. First, they learned these comparisons
by training based on random forests [Lepetit et al., 2005] and later proposed the sim-
plistic Binary Robust Independent Elementary Features (BRIEF) [Calonder et al., 2010]
that describe image patches by binary comparisons of a randomly chosen set of points
of the patch.
Recently, rich descriptors based on deep learning, in particular the output of Con-

voutional Neural Networks (CNN), demonstrated promising results for many applica-
tions, particularly for object recognition, e.g. [Chatfield et al., 2014; Girshick et al.,
2014], but also for other recognition tasks [Razavian et al., 2014]. Since they are com-
putationally more complex than the previous descriptors and, dependent on the used
network layer, very high dimensional (e.g. 86,528 dimensions for a conv3 layer of the
VGG-M network), special care has to be taken for their application. Chapter 7 and
in particular section 7.2 will give more details on their usage for place recognition in
changing environments.
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6.2.2. From keypoint descriptors to recognizing superpixels

The proposed application of superpixel segmentations in the context of place recognition
demands descriptors particularly suited for combination with superpixels. Descriptors
like SIFT, SURF or BRIEF were designed for combination with keypoint detectors like
the scale space extrema used in the SIFT detector [Lowe, 2004] or image corners, e.g.
[Harris and Stephens, 1988]. The relation between keypoints and superpixels is multifar-
ious: Keypoint descriptors can be involved in the description of superpixels [Tighe and
Lazebnik, 2010]. In the other direction, segmentations can be involved in the keypoint
detection phase. For example, the Maximally Stable Extremal Regions (MSER) [Matas
et al., 2002] are results of a set of segmentations obtained by thresholding an image and
searching for regions that are stable for a wide range of thresholds. In another direc-
tion, Navarro et al. [2014] propose to postprocess SIFT keypoints with the result of a
superpixel segmentation to split the SIFT region into multiple segments and compute a
descriptor for each.
While keypoints and superpixels are both image parts, there are fundamental differ-

ences which put somehow different requirements on their descriptors. For superpixels,
there is less a priori knowledge about their appearance. This contrasts with, for exam-
ple, keypoints obtained from a corner detector, where the surrounding image gradients
can be used for their description. Since the superpixels cover the complete image, there
is much higher visual ambiguity than for selected salient keypoints (similar problems
occur for dense SIFT approaches). Further, good keypoint detectors provide image loca-
tions that can be repeatedly detected in images showing the same scene and that can be
accurately localized. For some descriptors, i.e. patch based descriptors, even small devi-
ations of the keypoint location can drop recognition performance significantly [Szeliski,
2010]. This is also one of the mayor challenges when describing superpixels - although
there exist superpixel algorithms that are considered stable according to the benchmark
in section 3.5, the location of, for example, the midpoint or the centre of gravity of a
segment varies much more than that of a typical SIFT or Harris keypoint.

While a complete overview of descriptors and their performance is beyond the scope
of this thesis, we want to point out some important steps of their development. Many
superpixel descriptors are hand-crafted combinations of large sets of features, sometimes
in combination with dimension reduction techniques: E.g. Barnard et al. [2003] use a
combination of 40 features: size, position, averages and standard deviations in multiple
colour spaces, as well as responses to texture filters. Gould et al. [2008] extend this set to
a combination of 83 features, Gu et al. [2009] introduced more advanced contour and edge
shape features as well as Lab colour and texton histograms. Tighe and Lazebnik [2010]
further extend the feature set by keypoint features (SIFT features and histograms of
SIFT words). While there exist various comparisons of keypoint descriptors (e.g. [Miko-
lajczyk and Schmid, 2005] or [Bauer et al., 2007]), a comparably systematic evaluation
of superpixel descriptors doesn’t exist.

As already mentioned in the above introduction of section 6.2, descriptors can be
used for two types of recognition: (1) A matching-like recognition, where the task is to
find exactly the same feature (e.g. for tracking or wide baseline stereo correspondences).
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Fig. 6.3.: Given superpixel segmentations of two sequence frames, we can use ground truth
optical flow to evaluate superpixel descriptors.

And (2), a classification-like recognition, where the descriptor is used to associate the de-
scribed image part to a set of groups or to assign a class label (e.g. for object detection).
The following section shortly presents our approach to evaluation of the matching-like
recognition performance,2 an evaluation of the classification-like performance will be
topic of section 6.3.

6.2.3. What can a descriptor tell about superpixel overlap?

Fig. 6.3 illustrates the proposed approach which is related to the above presented metrics
for superpixel segmentation evaluation based on ground truth optical flow. Given pairs
of images for which we know the ground truth correspondences of each pixel (the optical
flow), we can create superpixels, compute descriptors for them and use the knowledge
about the ground truth optical flow to evaluate these descriptors.
A major challenge when comparing superpixels is that they almost never show exactly

the same part of the world - they vary in terms of location, size and shape. However, it is
an intuitive demand that their descriptors should be more similar the larger the fraction
of the world is that is common to both segments. E.g. two segments showing completely
different parts of the world should have a high descriptor distance, superpixels that share
70 % of common content should be more similar and segments that share 99 % should
have very close descriptors. For evaluating superpixel descriptors we render the above
question more precisly:

Given two arbitrarily shaped segments from two images that may show to some
rate x the same part of the world, what is a good segment descriptor to evaluate
this rate x?

How can this property be concisely evaluated? Let us assume we have a large set of
segment pairs for which we can compute any descriptor we want to evaluate, and for

2Sections 6.2.3 and 6.2.4 including Fig. 6.3 and 6.4 are published in very similar form in [Neubert and
Protzel, 2015a].
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which we have the ground truth overlap rate x. We propose to answer this question
by running a set of binary classification tasks: How well can the descriptor distinguish
whether there is ...

... any overlap between two segments?

... more than 5% overlap?

... more than 10% overlap?
...

... more than 95% overlap?

... more than 99% overlap?

To evaluate the performance of a descriptor, we run these 21 binary classification exper-
iments and compute precision recall curves. However, this results in a vast number of
curves when comparing several descriptors (21 curves for each compared descriptor). For
a condensed illustration, we plot the maximum F-score in each classification experiment
over the overlap threshold of this experiment. The resulting curves can be seen in Fig.
6.5.
In detail, the overlap criterion is computed as follows: Given two images I1, I2 and

their pixel wise associations F (the ground truth optical flow), such that F (I1) ∼ I2.
This means that F (I1) and I2 are equivalent up to pixels that newly appear in I2. Let
there further be segmentations S1, S2 assigning each pixel of I1, I2 the unique label of
the corresponding segment. We can now compute F (S1) by applying the ground truth
optical flow F on these labels (i.e. move each pixel with its label according to its optical
flow vector). This results in two segmentations S2 and F (S1) from two different images
that are now represented in the same image space of I2. Now we can easily compute the
rate of pixels p that are shared between each pair of segments s1 ∈ S1, s2 ∈ S2 as the
”intersection over union“ (IoU), also known as the Jaccard index:

OF (s1, s2) =
|F (s1) ∩ s2|
|F (s1) ∪ s2|

(6.1)

This constitutes the overlap of two segments from different images given the ground
truth optical flow between these images. For each classification problem, we can obtain
test data with ground truth from OF (s1, s2).

The proposed overlap criterion should be evaluated on prior-free test data: The binary
classification tasks are performed on pairs of segments of images related by ground truth
optical flow. The vast majority of all possible pairs have no overlap. This results in a high
skewness of the data. More importantly, the prior distribution is different for each binary
classification task. The sensitivity of precison-recall curves and F-scores to these changes
in the prior distribution would hide other effects: the F score would systematically
decrease with growing overlap. Therefore, we enforce constant prior distributions by
resampling positive and negative samples for each classification task. A reasonable
assumption for the prior in a real application would be to find for each segment of
one image the most similar segment in another. In case of 1000 segments per image,
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this would result in about 1000 negative samples for each positive sample. Therefore, we
resample about one million segment pairs for each image pair keeping a prior distribution
of 1:1000 (i.e. we randomly select one million negative and 1000 positive samples).

Contribution 6.2 The overlap criterion is a novel measure to evaluate the matching
performance of superpixel descriptors based on ground truth optical flow.

6.2.4. Experimental comparison

Similar to the MUSE and MDE metrics of chapter 3, evaluating this metric requires
ground truth knowledge of pixel wise associations between image pairs. For this de-
scriptor evaluation, we use the Sintel dataset from the segmentation benchmark, that
provides dense ground truth optical flow. We further include another dataset that is well
known in the context of keypoint and descriptor evaluation: the affine covariant region
dataset (ACR) [Mikolajczyk et al., 2005] available online3. Fig. 6.4 shows an example
image of the famous Graffiti scene. The dataset comprises eight image sequences, each
containing six images which are related by known homographies, that serve as source
for the ground truth optical flow. However, this ground truth is not perfect, e.g. due
to a not perfectly planar scene. The image sequences are designed for evaluation of the
influence of viewpoint changes, rotation, zoom, blur, illumination changes and JPEG
compression to keypoint detectors and descriptors. We present combined results of all
sequences excluding the JPEG compression sequence since this is not a natural image
change.

We include the following set of descriptors in the comparison. This selection is by far
not exhaustive, but includes examples for different types of descriptors.

• A native descriptor is a rescaled and contrast normalized Patch of the superpixel.
We rescale the bounding box around the superpixel to a 10× 10 colour patch and
blacken the parts that do not belong to the segment.

• Colour histograms are an often used descriptor for regions with varying shapes.
There exist various colour spaces with different properties, e.g. RGB, CIE Lab
or opponency colour space. Based on baseline experiments, we chose an RGB
histogram with 30 bins, equally spread over the three channels.

• As descriptor for the segment Shape, we compute the mean and standard deviation
over the shape context [Belongie and Malik, 2000] of boundary pixels.

• For a Keypoint like descriptor, we compute a SURF descriptor [Bay et al., 2008]
for each superpixel (parts that do not belong to the segment are blackened).

• We also include a 100 bin histogram of densely sampled SIFT [Lowe, 2004] words
in a bag-of-words BOW scheme. This showed to be a powerful representation for
complex textures [Tighe and Lazebnik, 2010]. More details on visual vocabularies
in the context of superpixels can be found in the next section 6.3. The vocabulary
was trained on the disjunct BSDS500 training data.

3http://www.robots.ox.ac.uk/~vgg/research/affine/ [Last accessed: 2015-08-14]
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Fig. 6.4.: (left) Propagating superpixels scheme. (right) The boxplots in the upper right part
show the best possible overlap for each segment and different viewpoint changes for
individual and propagated segmentations. The curves below illustrate the benefit
when using the propagated segments instead of independent segmentations for each
image in the ACR ”graf“ sequence: comparing ”Superpixels of I1“ with ”Superpixels
of I2“ results in the dashed curves, comparing ”Superpixels of I1“ with ”Propagated
SP of I1“ results in the solid curves.

• We further evaluate a combination of colour, keypoint, shape and texture features
by creating a PCA representation of the concatenated RGB, SURF, shape context
and BOW features. We segment images and compute descriptors on the BSDS500
training data to obtain a 100 dimensional representation by principal component
analysis (PCA).

From the compared superpixel segmentation algorithms of the first part of this thesis,
we select FH for an example of an oversegmentation algorithm that produces stable
segments and SLIC (more precisely the oriSLIC implementation) for an example of
a compact superpixel segmentation algorithm. We create about 1000 superpixels per
image. Although, in particular, FH showed to be robust against image changes in
the above benchmarks, there are only a few segment pairs with very high overlap in
the presence of severe image changes. The boxplots in Fig. 6.4 illustrate the maximum
overlap that can be reached for each superpixel for the challenging ”graf“ image sequence
of ACR (viewpoint changes up to 60◦). While the average values for SLIC and FH are
similar, FH provides more high overlap segments for large viewpoint changes. To identify
effects caused by these properties of the segmentation algorithms, we created a further
test set with higher overlap: FH propagated. Instead of segmenting both images of
the corresponding pair, we segment the first and apply the ground truth optical flow
to propagate the segments to the image space of the second frame. This procedure is
illustrated in the left part of Fig. 6.4, the descriptors are of course computed on both
images.
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Fig. 6.5.: Results on Overlap criterion for both datasets, using SLIC and FH segmentations.
(Higher is better)

Fig. 6.5 shows results of the above superpixel descriptor types on the proposed overlap
criterion. As a reminder, each point of these curves illustrates how well the descriptor can
decide whether superpixel pairs have at least the corresponding overlap or not. There
are two general tendencies: (1) More sophisticated descriptors tend to perform better.
(2) The higher the overlap, the easier it is to solve the classification problem. It seems
to be very hard for the evaluated descriptors to decide whether there is a small overlap
between segments or no overlap. However, this may be related to important generali-
sation capabilities in tasks like semantic label assignment. The larger the overlap, the
more similar is the problem to the keypoint matching problem for which well studied
descriptors exist. The plots on the right part of Fig. 6.4 show that particularly the low
overlap classification problem could benefit from more stable segmentations. The ACR
dataset does not provide enough segments with valid ground truth overlap >85% for a
robust evaluation. In contrast, the Sintel dataset provides enough segment pairs with
valid high ground truth overlap to see a massive improvement for most of the descrip-
tors at near perfect overlaps. While the Sintel dataset was created in a fundamentally
different way, the results are similar. However, the overall performance increased and
ranking order of some of the descriptors changed.

Obviously, the comparison presented here is not exhaustive but yielded the insight
that it is particularly hard to distinguish segment pairs with small overlap from non
overlapping ones and more stable segmentation algorithms could particularly help in
these cases. A more detailed evaluation on this rather general evaluation of superpixel
descriptors can be found in [Neubert and Protzel, 2015a]. There, we also evaluate a more
specific matching task and show preliminary results on including a saliency measure to
select interesting superpixels for the matching.
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Result 6.1 In terms of matching superpixels, more sophisticated descriptors like BOW
and PCA tend to perform superior. The higher the requested overlap of the superpixels,
the easier it is to solve the classification problem. In particular for the low overlap clas-
sification task, the descriptors are supposed to suffer from the variation of the superpixel
shape between compared images.

6.3. Superpixel vocabularies

Superpixel Descriptors VisualVocabulariesImages

Fig. 6.6.: Visual vocabularies are the final component for the preparation of the SP-ACP ap-
proach.

Fig. 6.6 recaps the main ingredients of the proposed SP-ACP system. The previous
section introduced available descriptors for superpixels and evaluated them with regard
to the rather general question what the descriptor can tell about the superpixel overlap
after some modification of the image. In the context of the proposed appearance change
prediction system, the descriptors are used to learn a superpixel vocabulary. Therefore,
I want to first give a gentle introduction to visual vocabularies, followed by an evaluation
of superpixel descriptors in this particular context. The vocabularies are used to predict
appearance changes based on the assumption that similar looking parts of the image
change similarly. However, the underlying property of this assumption is that for all
images, the same superpixel words are used to represent objects and parts of the world
that change similarly. For example, the same subset of superpixel words are associated
to image parts showing trees, and another subset is associated to buildings, and so on.
Section 6.3.2 approaches this assumption by evaluating the amount of semantic that is
contained in the superpixel words.

6.3.1. A gentle introduction to visual vocabularies

What are visual vocabularies? In natural languages, a word can be used to represent
a concept, e.g. the concept of an action or an object. For example the term “chair” is
used for objects that may have very different properties and appearances but share the
functionality that a human can sit on them [Murphy, 2002]. In computer vision, a visual
word is a representative for a class of similar image elements. Instead of a common
functionality (like in the chair example), image elements that are assigned to the same
visual words, share a common appearance - or at least some (the measured or described)
aspect of their appearance is similar. For practical implementation of this concept, the
measured appearance aspect is given by a descriptor as they were introduced in the
previous section.
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According to natural language, a visual vocabulary is a set of visual words. Sometimes,
visual vocabularies are also coined codebooks or visual dictionaries. However, the latter
term will be used for a different concept in this thesis, introduced in section 6.4.2. More
formally, according to [Delhumeau et al., 2013], a visual vocabulary V = {w1, ..., wk} is
a quantization function on a d dimensional input (e.g. image descriptors):

q : Rd → V ⊂ R
d

x 7→ q(x) = argminw∈V ||x− w||2 (6.2)

A well know application are Bag-of-Visual-Words (BoW) approaches for image re-
trieval. In their “Video Google” paper Sivic and Zisserman [2003] proposed to use a
BoW approach in the context of image search. There, the visual elements are keypoint
descriptors that are quantized into ∼ 104 visual words using the k-means clustering al-
gorithm. Each resulting cluster is a visual word and is used as a representative for a set
of similar keypoint descriptors. More specifically, it is a representative for all descrip-
tors for which there is no other word with a smaller descriptor distance. In [Sivic and
Zisserman, 2003], the image is then represented by the frequency histogram of visual
words that were assigned to all keypoint descriptors in this image. To compute the sim-
ilarity of images, they further incorporate term-frequency-inverse-document-frequency
(tf-idf) weighting, known from natural language processing and information retrieval
[Baeza-Yates and Ribeiro-Neto, 1999].
Since then, BoW approaches were successfully used and extended. For example, Lazeb-

nik et al. [2006] extended the BoW approach with spatial information in the form of a
spatial pyramid matching and applied it to scene categorization. In terms of the gener-
ation of the visual vocabulary, several improvements over the plain k-means have been
proposed. More complex vocabulary based representations like Fisher vectors [Perronnin
and Dance, 2007] and vectors of aggregated local descriptors (VLAD) [Jegou et al., 2012]
showed improved performance on image retrieval compared to plain BoW. While they
replace the frequency histogram of the BoW with a more sophisticated representation
based on Gaussian mixture models and residual vectors, they also build upon visual
vocabularies.
However, in this thesis, we are less interested in image retrieval, but in properties and

recent progress in the computation of visual vocabularies. Nister and Stewenius [2006]
generate a vocabulary tree that provides a hierarchical clustering. Words are not only
stored in leaves, but also in the inner nodes of the tree. These virtual or generic words
have a naturally lower inverse-document-frequency weight since more words are assigned
to them. This hierarchy provides some kind of soft-assignment. However, quantization
effects do not vanish, they are just shifted a few levels in the hierarchy. Therefore, Per-
ronnin [2008] propose a continuous space soft-assignment. Each feature is assigned to

three (approximate) nearest neighbours with a weighting of e−
d2

2σ2 , based on the descrip-
tor distance d. While this refines the assignment, it also causes higher computational
effort. Another approach of codebook refinement was presented by Jegou et al. [2008].
They use Hamming embedding to encode the localization of the descriptor in the Voronoi
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cell of the visual word obtained by a coarse quantization based on k-means. They show
how this binary signature in combination with a weak geometric consistency check based
on scale and angle improves the large scale image search performance. However, this
also increases runtime and requires additional memory to additionally store the binary
signatures, which is an important drawback in large scale image retrieval.
Mikulik et al. [2013] present another approach on learning visual vocabularies and

similarity measures for image retrieval based on bag-of-words. They estimate the prob-
ability of observing a visual word wj in a matching database image when the word wq

is observed in the query image. This is based on the observation that the similarity of
SIFT descriptors is not only dependent on their distance but also only on their location
in the descriptor space [Lowe, 2004]. This observation is also exploited in [Mikolajczyk
and Matas, 2007], where a globally learned Mahalanobis distance showed improved per-
formance for matching SIFT features.
Except for the approach presented by Mikulik et al. [2013], visual vocabularies are

an approximation to the direct matching of individual descriptors resulting in some
performance loss. In this chapter 6 visual vocabularies are used in a somehow different
way: Here we use the representatives of visual elements to learn something common for
all represented elements.

6.3.2. Evaluating the semantics of superpixel words

The proposed approach to use superpixel vocabularies to predict systematic appearance
changes relies on the assumption, that similar superpixel words are associated to parts
of the scene that changes similarly. This is the basis for learning a dictionary to trans-
late the words, e.g. from summer to winter. The goal of this section is to investigate
the validity of this assumption. The key idea is to evaluate the amount of semantic
meaning contained in a superpixel word. In particular, if the words do not provide some
semantic meaning, i.e. if there is no relation between the words and semantic concepts
like tree, street, or house, we cannot expect the proposed SP-ACP system to learn useful
predictions of appearance changes of these concepts.
In the here conducted experiments, the semantic meaning is provided in terms of class

names: given an image of a chair, its semantic information is ”these pixels of this image
show a chair“. This is similar to the outcome of semantic segmentations where the
task is to assign a class label to each pixel. Superpixel segmentations can be used as a
preprocessing step for such segmentations and superpixel vocabularies accordingly as a
preprocessing step for assigning such class labels. Therefore superpixel words cannot be
expected to directly provide (or correspond to) class labels, but to provide information
about possible class labels. The question is, how can the amount of this information be
quantified?
In information theory, the entropy, or more exactly Shannon entropy, is the expected

amount of information contained in a message. For a discrete random variable X with
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Fig. 6.7.: Example images from the SUN dataset. This dataset contains images showing a
broad variety of indoor and outdoor scenes, ranging from everyday street scenes from
different countries to living rooms and the interior of public buildings up to rare scenes
like rooms for acoustic measurements (like the bottom right image). In each image,
several objects are outlined and annotated with terms like window, sign or chair. The
term window is used for windows seen from a street and from the interior of a building
or an airplane.

possible values {x1, . . . , xn} with probabilities p(xi), the entropy can be computed as:

H(X) = −
∑

x∈X

p(x) logb p(x) (6.3)

The basis of the logarithm determines the unit of the resulting entropy. In the following,
the basis will be b = 2 and the resulting unit bits.

The conditional entropy H(X|Y ) quantifies the amount of information needed to
describe the outcome of a random variable X given that the value of another random
variable Y is known. In other words, it describes the remaining randomness of X.

H(X|Y ) =
∑

y∈Y

p(y)H(X|Y = y) =
∑

y∈Y,x∈X

p(y, x) log2
p(y)

p(y, x)
(6.4)

The relation between H(X) and H(X|Y ) quantifies what proportion of uncertainty is re-
moved. In this section, I want to use this measure to evaluate the remaining randomness
in the class labels (the ”random variable“ X) when the distribution of the superpixel
words (the ”random variable“ Y ) is given. The removed randomness or uncertainty is
the answer to the above question, what the superpixel word tells about the class of an
image area.
For such an evaluation, we need a set of images with ground truth class labels. The

Scene Understanding database (SUN) [Xiao et al., 2010] is a scene categorization and
object detection database containing about 130,000 images and more than 4,000 object
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Fig. 6.8.: (left) Distribution of the samples of the 200 class labels (top: resampled, bottom:
original). (right) Results on the SUN dataset. The uncertainty of the class label can
be reduced from 7.6 to about 3.8 if the word index is known.

categories. The following experiments use the 16,873 images subset provided for the
SUN2012 Object Detection Benchmark. For each image, there is a set of manually
annotated image regions. These annotations provide labels for objects like trees, cars,
buildings, tables or books, but also other regions like the sky, streets, walls and so on.
Example images are shown in Fig. 6.7.
The following experiments use the SUN data with additional tag unification. This

reduced the number of labels to about 200 by merging similar labels like ”trees“ and
”tree“ or ”person“ and ”child“. The labels have very different frequencies, e.g. there are
much more pixels labeled as ”tree“ than there are ”speaker“ pixels. To remove this prior,
the pixels are resampled to obtain not more than 25,000 samples for each class. The
distributions over the class labels before and after the resampling can be seen in Fig.
6.8. For some classes, there are less than this number of samples available, resulting
in lower bars in the histogram. For an increasing number of samples, the number of
classes that do not provide the requested number of samples also grows. Setting a
sample threshold also reduces the number of effectively incorporated images to 1,000.
The maximum entropy would be achieved by a uniform distribution, classes with less
than the maximum number of samples reduce the entropy of the distribution of the
class labels. The resulting entropy of the distribution of the 200 class labels shown in
the upper histogram in Fig. 6.8 according to equation 6.3 is H = 7.6 bits, this would
correspond to a uniform distribution of 194.6 classes.
In this evaluation a visual vocabulary is composed by a segmentation procedure (a

superpixel algorithm and its parameters, e.g. the number of segments), a descriptor that
can be computed for each segment and a clustering scheme to quantize the descriptors
according to equation 6.2. The vocabulary is learnt on the BSDS500 training data: each
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image is segmented and a descriptor is computed for each segment. The set of descriptors
is then quantized. Although more sophisticated clustering schemes are available, k-means
clustering (cf. section 2.3.1.2) is used in all experiments. Due to the intended inclusion
in the SP-ACP system, a compact segmentation algorithm is selected. In the following
experiments, the proposed Preemptive SLIC algorithm with n = 250 segments is used.

Fig. 6.8 shows the resulting curves for the descriptors from the previous evaluation
in section 6.2.4. Since this task is closer to object detection than the general evaluation
of superpixel descriptors, the histogram of oriented gradients (HOG) descriptor, that
has been developed for such tasks, is also included. It can be seen, that with increasing
numbers of words, the uncertainty drops. The intuitive explanation is that with larger
vocabulary size, more words can be used to encode the class labels and individual words
can correspond to more specific instances of classes. This comes at the cost of generalisa-
tion of the words - in these larger vocabularies, words are more specialized. This will, for
example, obstruct the generalization capabilities in the prediction step of the SP-ACP
system. Thus, the maximum vocabulary size in the comparison is limited to 2,500. The
order of the performance of individual descriptors is different to the order in the above
matching-like evaluation. This is not surprising since the two comparisons evaluate the
two different applications of the superpixel descriptors: the matching of exactly the same
image part and the recognition of image parts that belong to the same class. In particu-
lar, the image patch has very weak generalization capabilities while the colour histogram
performs better than before. Since the combination of different descriptors in the PCA
descriptor includes the shape context, its performance also drops. The combination of
the two best descriptors, RGB and SURF (the descriptors were simply normalized to
unit length and concatenated), performs comparable to its individual components. The
best vocabularies in this evaluation remove about half of the uncertainty. For compari-
son, the initial entropy of 7.6 bits corresponds to a classification problem with uniform
distribution of about 194 classes, the remaining entropy of 3.8 bits corresponds to a
classification problem with about 14 classes.
Similar to the above evaluation of superpixel descriptors in section 6.2.4, this com-

parison is by far not complete. However, it showed that superpixel words carry some
semantic information, although they are far away from providing class labels directly.
Moreover, we gained some insights on useful descriptors in this context.

Result 6.2 For the classification-like task, other descriptors than for the matching-
like task are preferable. Colour histograms and the keypoint descriptors are good choices.
The amount of semantic meaning in superpixels is promising for usage in the proposed
appearance prediction system.

6.4. Algorithmic approach SP-ACP: Learning to predict scene
changes

In this section we explore how the changing appearance of a scene across different envi-
ronmental conditions can be predicted based on the introduced components superpixel
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Condition 1
(e.g. Winter)

Condition 2
(e.g. Summer)

Superpixel

DescriptorsDescriptors
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Vocabulary for Condition 2
(e.g. Summer)

Learned Dictionary
(e.g. Winter - Summer)

Vocabulary for Condition 1
(e.g. Winter)

Known 
Correspondences

...

Fig. 6.9.: SP-ACP learning a dictionary between images under different environmental condi-
tions (e.g. winter and summer). The images are first segmented into superpixels and
a descriptor is calculated for each superpixel. These descriptors are then clustered
to obtain a vocabulary of visual words for each condition. In a final step, a dictio-
nary that translates between both vocabularies is learned. This is based on known
pixel-accurate correspondences between the input images.

segmentations, descriptors and vocabularies. Throughout the remainder of this section
these changing environmental conditions will be summer and winter. However, the con-
cepts described in the following can of course be applied to other sets of contrasting
conditions such as day/night or weather conditions like sunny/rainy etc.

We use superpixels as image parts and cluster them to vocabularies using a descriptor.
To predict how the appearance of a scene changes between summer and winter, we first
conduct a learning phase on training data (6.4.1) which comprises scenes observed under
both summer and winter conditions. In the subsequent prediction phase (6.4.3), the
appearance of a new image seen under one of the conditions is predicted as it would be
observed under the other viewing condition.

6.4.1. Learning a vocabulary for summer and winter

During the training phase we have to learn a vocabulary for each viewing condition and
a dictionary to translate between them. In a scenario with two viewing conditions (e.g.
summer and winter), the input to the training are images of the same scenes under
both viewing conditions and known associations between pixels corresponding to the
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same world point. Obviously the best case would be perfectly aligned pairs of images.
This requirement for almost pixel-accurately aligned training images is clearly a major
limitation of our current system. The Nordland dataset discussed in Section 5.1.1 fulfils
these needs.
Fig. 6.9 illustrates the training phase. Each image is segmented into superpixels and

a descriptor for each superpixel is computed. The set of descriptors for each viewing
condition is clustered to a vocabulary using hierarchical k-means. Each cluster center
becomes a word in this visual vocabulary. The descriptors and the average appearance
of each word (the word patch) are stored for later synthesizing of new images.

6.4.2. Learning a dictionary to translate between vocabularies

The learned visual vocabularies for both summer and winter conditions are able to
express a typical scene from their respective season. The next step is learning a dictionary
that allows translating between both vocabularies. This is illustrated in the lower part
of Fig. 6.9. Since the images from the training dataset are aligned, we can determine
how single words behave when the environmental conditions change. By overlaying the
two aligned images from both summer and winter conditions, every pixel is associated
with two words, one from the winter and another from the summer vocabulary. For each
combination of words from the summer and winter vocabulary we can then count how
often they have been associated to the same pixel coordinates.
This process is repeated for every pair of corresponding images in the training dataset,

step-by-step building a distribution over the occurring translations between words from
one vocabulary into the other. The final dictionary can be compiled by either storing the
full distribution or ignoring it and using a winner-takes-all scheme that stores only the
transition that occurs most often. The experimental results of section 6.5 will compare
both approaches.

6.4.3. Predicting image appearances across seasons

Fig. 6.10 illustrates how we can use the learned vocabularies and the dictionary to
predict the appearance of a query image across different environmental conditions.
The query image is segmented into superpixels and a descriptor for each superpixel

is computed. Using this descriptor, a word from the vocabulary corresponding to the
current environmental conditions (e.g. winter) is assigned to each superpixel. The
learned dictionary between the query conditions and the target conditions (e.g. winter-
summer) is used to translate these words into words of the target vocabulary.
Since the vocabularies also contain word patches, i.e. an expected appearance of each

word, we can synthesize the predicted image based on the word associations from the
dictionary and the spatial support given by the superpixel segmentation. Notice that
when the dictionary provides the full distribution over possible translations for a word
(as opposed to the winner-takes-all scheme), the resulting synthesized image patches are
built by the weighted mean over all patches from the target words in the distribution.
No further processing (e.g. as proposed in [Efros and Freeman, 2001; Hertzmann et al.,
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Query Image
(e.g. Winter)

DescriptorsSuperpixel

Winter Vocabulary

Translate with Dictionary
(e.g. Winter - Summer)

Predicted Image
(e.g. Summer)

Word Representation
of Query Image

...

Fig. 6.10.: SP-ACP predicting the appearance of a query image under different environmental
conditions: How would the current winter scene appear in summer? The query image
is first segmented into superpixels and a descriptor is calculated for each of these
segments. With this descriptor each superpixel can be classified as one of the visual
words from the vocabulary. This word image representation can then be translated
into the vocabulary of the target scene (e.g. summer) through the dictionary learned
during the training phase (see Fig. 6.12). The result of the process is a synthesized
image that predicts the appearance of the winter query image in summer time.

2001]) is done to improve the appearance or smoothness of the resulting word images.
Example word images and predictions are shown in Fig. 6.12.

Contribution 6.3 The described learning and prediction procedures provide a
superpixel-based approach to create predicted images for usage for place recognition in
changing environments.

6.5. Results on the Nordland dataset

After the previous sections explained our proposed appearance change prediction sys-
tem we can now describe the conducted experiments and their results. For the here
presented evaluation, we use the Preemptive SLIC algorithm as described in section
4.2 to segment the image into 1,000 superpixels. According to the previous insights on
superpixel descriptors for superpixel vocabularies, we use a combination of colour and
SURF descriptor. With respect to the characteristics of the image data that typically
occurs in place recognition tasks, we use an upright SURF descriptor (128 Byte) and
also include the y-coordinate of the superpixel centre. The influence of this additional
information is evaluated in Fig. 6.13. For colour, we use a 30 bin colour histogram in
Lab colour space.
We evaluate the proposed SP-ACP prediction system by using it as a preprocessing

step to the existing place recognition algorithms FAB-MAP [Cummins and Newman,
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Place Recognition Algorithm Validation Dataset Test Dataset

FAB-MAP Section 6.5.2 -
BRIEF-Gist Section 6.5.3 -
SeqSLAM Sections 6.5.4 and 6.5.4 Section 6.5.4.1

Table 6.1.: Overview of conducted experiments on the Nordland dataset

Parameter Value

Number of Superpixels 1,000
Number of Words 10,000
Incorp. translations all
Superpixel Descriptor normalized Lab histogram, 10 bins per channel

128 Byte upright SURF descriptor
superpixel center y coordinate

Table 6.2.: Overview of the SP-ACP default parameters.

2008], BRIEF-GIST [Sünderhauf and Protzel, 2011] and SeqSLAM [Milford and Wyeth,
2012]. For these established approaches, we will compare the respective performance of

1. directly matching between images of different seasons, e.g. winter vs. spring

2. using the proposed SP-ACP to predict the changed appearance of one of the seasons
and e.g. match a predicted winter image against the real winter images

We will calculate precision and recall curves according to section 5.3 and apply the
resulting F-score as the primary performance measure. As a reminder: Given the sim-
ilarities between all possible image matchings, they are divided into matchings and
non-matchings based on a threshold t. All image matchings that correspond to a ground
truth place correspondence are counted as true positives, all matchings that do not corre-
spond to a single place according to the ground truth are considered false positives, false
negatives are all image pairings of the ground truth that are not in the set of matchings.
From these three values, a point on the precision-recall curve is computed, the threshold
t is varied to obtain a curve.
Since modern SLAM systems do not have to rely on their place recognition front ends

to operate at 100% precision anymore [Sünderhauf and Protzel, 2013], the recall at 100%
precision is used as a secondary performance indicator only. Experiments with all three
mentioned algorithms will first be conducted on the validation dataset. We will use Se-
qSLAM to perform an analysis of the parameters of SP-ACP and determine the optimal
values for these parameters. Finally, SP-ACP using these optimal settings is applied to
the test dataset that covers the complete Nordland journey to demonstrate how place
recognition in changing environments can benefit from our proposed appearance change
prediction. Table 6.1 gives an overview of the experiments and table 6.2 shows the
default parameters. Deviations from these setting are indicated for each experiment.
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Fig. 6.11.: Example words and their translations. Each tiny image pair shows a word from the
spring vocabulary and the word from the winter vocabulary with the highest impact
on the translation.

6.5.1. Applying SP-ACP: Predicting images of the Nordland dataset

Using the Nordland training dataset (section 5.1.1) and the training procedure intro-
duced in section 6.4.1, we can learn vocabularies for spring and winter conditions and
a translation (dictionary) between them. Fig. 6.11 shows example pairs of words from
both vocabularies. For each spring word, we show the winter word with the highest
impact on the translation (which is the one that would be applied in a WTA setup).
Following the proposed prediction procedure of section 6.4.3, we can use the learned
vocabularies and dictionary to create a predicted winter image for a given spring image
or vice versa. Example predictions are visualized in Fig. 6.12 and Fig. 6.17. To evaluate
the benefit of the proposed prediction step for place recognition, we can now use such
predicted images as input for existing place recognition algorithms.

6.5.2. Experiments with FAB-MAP

In a first experiment we evaluated the performance of FAB-MAP [Cummins and New-
man, 2008] (using the openFAB-MAP implementation) on the Nordland dataset. We let
FAB-MAP learn its visual vocabulary on either the spring training dataset, the winter
training dataset or a combination of both. As expected, directly matching winter against
spring images was not successful with each of this setups: The maximum measured re-
call was 0.025 at 0.08 precision. This is presumably because FAB-MAP fails to match
common features in the images from both seasons. The images produced by our pro-
posed scene change prediction approach are not suitable for FAB-MAP since the patch
structure of the synthesized images interferes with the necessary keypoint detection. In
the following, we therefore examine two holistic approaches.

6.5.3. Extending and improving BRIEF-Gist

BRIEF-Gist [Sünderhauf and Protzel, 2011] is a so called holistic descriptor, i.e. a
descriptor that describes the appearance of the complete image and not of single regions
in it. The idea of a holistic scene descriptor was e.g. examined by Torralba et al.
[2003] with the introduction of the Gist descriptor. We chose the faster and more simple
BRIEF-Gist descriptor on the opponency colour space, using 32 bytes per channel.
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Image A Word Image A 

Predicted B
from A  (WTA)

Predicetd B
from A (Full) Word Image B Image B

Conventional Matching
Proposed Matching

Images generated from image A

Fig. 6.12.: Example images of the Nordland dataset, their word representations and predictions.
The first column shows input query images A given to the prediction framework.
The second column is a representation of the query image with words of the first
vocabulary. All superpixel segments are replaced by word patches (word image).
Applying a winner-takes-all dictionary (WTA) or a dictionary that uses the full dis-
tribution translates the words to the second vocabulary. Column three and four
show the resulting predicted images B. For comparison column six shows the corre-
sponding real image B and column five its word image representation. We propose
not to match the visually very different images A and B directly, rather we propose
to use a predicted image B for matching.

Experimental setup

In the following, the performance of BRIEF-Gist to recognize places of the Nordland
dataset between spring and winter images is evaluated. We contrast the performance
with and without the proposed prediction step and compare different setups of the pre-
diction framework using the validation dataset. For each setup we compute a similarity
matrix by comparing each combination of a spring and (potentially predicted) winter
image. Since we know that spring and winter image sequences are synchronized, the
ground truth similarity matrix is a diagonal matrix. For a quantitative evaluation we
apply thresholds and compute precision-recall curves (cf. section 5.3). Due to inaccura-
cies during synchronization and local self similarity we allow matchings of images with
up to five frames distance in the sequence. To evaluate a setup of the prediction frame-
work, we predict a winter image for each spring image based on the learned superpixel
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Fig. 6.13.: Evaluation of the SP-ACP framework with BRIEF-Gist. a) Matching predicted
winter images to winter images performs better than matching spring to winter
images directly. b)-d) Comparison of several setups of the prediction framework.
See text for details. The green curve represents the same setup in all plots.

vocabularies and dictionary and use this for matching against the real winter images.

Results

The results of the evaluation with BRIEF-Gist are illustrated in Fig. 6.13. The red curve
in Fig. 6.13 a) shows that due to the extreme appearance variations, direct matching
of spring to winter images fails. However, the green curve shows the performance im-
provement when the proposed additional SP-ACP step is applied and matching is done
between the winter and a predicted winter image. Although the recall at 100% precision
does not benefit from the prediction, the maximum F-score improves from 0.14 to 0.31.
Fig. 6.13 b) compares the two proposed methods to build the dictionary, namely

winner-takes-all (WTA) and storing the full probability distribution. The green curve
in b) is the same as in a). From the red curve we can conclude that the WTA scheme
has disadvantages in the important high precision area and storing the full distribution
is beneficial.
Matching the predicted winter images against the word representation of the original
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winter images leads to a very similar loss of performance as can be seen in Fig. 6.13
c). To illustrate what is lost due to the transition from real images to word images, the
blue curve in c) represents the performance of BRIEF-Gist when matching the spring
images to their own (spring) word representation. In a final experiment shown in d), we
removed the y-coordinate from the superpixel descriptor. The red curve illustrates the
slight performance drop if this additional knowledge is omitted.
We can conclude that predicting the changed appearance of a scene improves the

place recognition performance of BRIEF-Gist. This was clearly illustrated by Fig. 6.13
a). The best results were obtained when exploiting the full distribution over possible
translations in the dictionary, matching predicted images against original images, and
including the y-coordinate into the word descriptor.

Result 6.3 The overall performance of place recognition on the challenging Nordland
dataset using BRIEF-Gist is poor. There is clear benefit from the inclusion of the pro-
posed prediction step using the novel SP-ACP approach. Including the y-coordinate in
the descriptor and using the full distribution in the dictionary is preferable.

6.5.4. Extending and improving SeqSLAM

Published by Milford and Wyeth [2012], SeqSLAM performs place recognition by match-
ing whole sequences of images. This is in contrast to previous approaches like FAB-MAP
or BRIEF-Gist that search for a single globally best match. Milford and Wyeth [2012]
reported impressive recognition results on the Alderley dataset that contains footage
recorded from a moving car during bright daylight and a rainy night. However, the
matching performance comes at a price: SeqSLAM relies on relatively long sequences to
be matched in order to reject false positive candidates. If loop closures in the trajectory
form many but short overlapping sequences that are shorter than the required minimum
length, SeqSLAM would fail. In order to be applicable in more general settings for long
term navigation, this minimum sequence length has to be kept as short as possible.
Our goal is therefore to show that SeqSLAM’s performance on short sequence lengths

can be improved by combining it with our proposed scene change prediction.

Experimental setup

SeqSLAM preprocesses the camera images by first downsampling them to e.g. 64 × 32
pixels before performing patch normalization. A simple sum of absolute differences
measure determines the similarity between two images. Combining SeqSLAM with scene
change prediction is particularly easy, SP-ACP can be executed as a preprocessing step
before SeqSLAM starts with its own processing. Since in the experiments we attempted
to match spring against winter images, we predicted the visual appearance of each spring
scene in winter and fed the predicted winter images together with the original real
winter images into SeqSLAM. We use the open source implementation OpenSeqSLAM
[Sünderhauf et al., 2013] available online4. The processing chain for computing place

4https://openslam.org/openseqslam.html [Last accessed: 2015-08-14]
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Fig. 6.14.: Evaluation on the validation dataset. Precision recall plots obtained by combining
SeqSLAM [Milford and Wyeth, 2012] with the proposed SP-ACP approach (solid
lines) compared with SeqSLAM alone (dashed lines). Color indicates different tra-
jectory lengths (ds) used by SeqSLAM during the sequence matching. It is apparent
that our proposed approach can significantly improve SeqSLAM’s performance for
all values of ds. (For this experiment: #superpixels=2,500)

recognition using SeqSLAM incorporates a selection of the single best matching for
each query image. This influences the resulting precision-recall curves as was described
in section 5.3. However, this is not a problem since we compare SeqSLAM with and
without the additional prediction steps and both cases are affected identically.

Results on the validation dataset

Fig. 6.14 compares the achieved results on the validation dataset similar to the experi-
ments using BRIEF-Gist. The precision-recall plot shows the performance of SeqSLAM
alone (i.e. without scene change prediction) using the dashed lines. The precision-recall
curves for the combination of SP-ACP and SeqSLAM are drawn with solid lines. We
show the results for different settings of the SeqSLAM’s trajectory length parameter ds,
as indicated by the different colors.

The apparent result is that SeqSLAM can immediately benefit from the change pre-
diction. The gain in precision and recall, as well as the increased recall at 100% precision
is visible for all trajectory lengths ds. The F-score increases by almost 0.1 for short and
mid sequence lengths and tends towards 1 for the longest length. Notice that ds = 20
corresponds to a trajectory length of 10 seconds, since the validation data was captured
with 2Hz from the original video footage.
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We have to remark that the Nordland dataset is perfectly suited for SeqSLAM since
the whole dataset consists of one single long sequence and the camera observes the scene
from almost exactly the same viewpoint in all four seasons as the train follows its tracks.
Even more, the velocity of the train is equal most of the time in all seasons. In robotic
applications these conditions would usually not be met and we can expect SeqSLAM
in its current form to perform worse in general. Our point however, was to show that
SeqSLAM can in any case benefit from a combination with the proposed appearance
change prediction.
We can conclude that although SeqSLAM alone reaches good matching results, they

can be significantly improved by first predicting the appearance of the query scene under
the viewing conditions of the stored database scenes.
In the following, we are going to evaluate various influences on the prediction quality

and the resulting place recognition performance using the validation dataset. This is
followed by final results on the complete Nordland track using the test dataset.

Parameter evaluation on the validation dataset

Besides the characteristics of the training data, the number of words in the learned vocab-
ularies, the number of superpixel segments per image, and the amount of incorporated
transitions in the prediction are important parameters of the proposed SP-ACP sys-
tem. Starting from a default parameter setting (#words=10,000, #superpixels=1,000,
incorporate all translations during prediction) we vary each of these three parameters
to evaluate its influence on the prediction and resulting place recognition performance.
Fig. 6.15 shows results of the conducted experiments based on the spring and winter
training and validation datasets.
Number of visual words: To evaluate the influence of the number of words in the

visual vocabularies, we varied the branching factor of the hierarchical k-means we used to
cluster the superpixel descriptors. Since the depth of the tree was held constant (depth
4), this resulted in 81 to 10,000 words. Fig. 6.15 a) shows an obvious trend that more
words perform better. However, there are some peculiarities: e.g. 256 words perform
better than 625, and the performance for 4096 and 10,000 words is almost identical.
We assume this results from the limited amount of training data in our experiments.
Supposedly we cannot expect to learn the true full distribution to translate between two
10,000 word vocabularies from only one million training samples.
Number of superpixels: Fig. 6.15 b) shows the influence of the number of super-

pixel segments per image. We can observe an expected trade-off in the performance: The
higher the number of superpixels, the better object boundaries are covered. However,
this also means smaller superpixels, that cover less image content and are less meaning-
ful. In our experiments we observed that the optimal number of superpixels is 2500 per
image.
Incorporated translations: Fig. 6.15 c) evaluates the last of the three parameters:

the percentage of words incorporated in the prediction. Remember from section 6.4.3
that in order to predict an image from e.g. summer conditions to winter conditions, we
first compute a word representation of the summer image and then synthesize a winter
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Fig. 6.15.: Parameter evaluation of the proposed prediction framework using SeqSLAM on the
Nordland validation dataset. Starting from a default set of parameters, we vary
a single parameter to investigate its influence on the overall performance (see text
for details). In each plot, the blue solid line is the performance without the pro-
posed prediction framework and the solid red line shows the same default parameter
setup of the prediction framework in all plots (#words=10,000, #superpixels=1,000,
incorporate all translations during prediction).
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Fig. 6.16.: Predicting between different seasons. Evaluation based on SeqSLAM and the vali-
dation dataset. (left) Place recognition between fall and winter is a challenging task.
Here the prediction framework can help to improve the overall performance. (right)
In contrast, places in summer and fall (at least for the Norland dataset) are more
similar and place recognition is much easier (see Fig. 6.17). In such cases, the pre-
diction result can become worse. However, the overall place recognition performance
remains reasonable. (For these experiments: #superpixels=2,500)

representation for each of the summer words using the learned dictionary. During this
synthesis, we can either use only the single winter word that translates best according
to the training data (winner takes all, WTA); or we can use a weighted combination
of the words that explain e.g. 50% of the transitions from the training data or even
a weighted combination of all words. The results of this comparison are illustrated in
6.15 c). The obvious conclusion is that incorporating more words yields better results,
however, incorporating more than 75% of the probability mass does not yield much
improvement.
In this setup, WTA breaks the prediction. The similar experiment using BRIEF-Gist

(Fig. 6.13 b)) also shows problems in the high precision regime but a clear benefit in the
mid- and high-recall regimes. The example prediction results using WTA and the full
distribution in Fig. 6.12 show that the WTA predictions have higher contrast between
neighbored patches while the predictions from the full distribution are more smoothed.
These high local contrasts may have a negative influence in combination with the local
patch normalization of SeqSLAM.
Dataset characteristics: Fig. 6.16 shows another important factor for the influence

of the proposed prediction step for place recognition: the characteristics of the dataset.
These figures show the results for applying SP-ACP and SeqSLAM on other combina-
tions of seasons (i.e. other than spring-winter). In [Sünderhauf et al., 2013] we explored
the performance of SeqSLAM (without SP-ACP) for the various seasonal combinations
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Summer Predicted Fall Fall Predicted Winter Winter

Fig. 6.17.: Example images and predictions for summer, fall and winter. Each row shows the
same scene at three different seasons. The images between the original Summer, Fall
and Winter images are predictions from summer to fall and from fall to winter.

and found that fall-winter was the most difficult and summer-fall was the easiest combi-
nation for place recognition using SeqSLAM without appearance change prediction. We
therefore chose these two combinations for comparison.
Both plots in Fig. 6.16 illustrate the results for various sequence lengths with and

without the prediction step. We can see that independent of using the prediction or
not, finding correct matchings between summer and fall is much easier than between
fall and winter. This is an expected result. However, although using the additional
prediction step improves performance for the difficult (fall-winter) case, the performance
actually decreases for the easy (summer-fall) case. Although the overall performance
still remains reasonable, this result needs to be explained: A look at example images in
Fig. 6.17 shows that the predicted fall images are visually very similar to the real fall
images. However, we suppose that the smoothing and artifacts introduced by the SP-
ACP prediction step are a drawback in comparison to the high similarity between original
summer and fall images. The same effect is also visible on the comparison of spring
images and their word representation using BRIEF-Gist in Fig. 6.13 c). Although these
disturbing factors are the same for the comparison between fall and winter images, the
prediction still introduces a visually evident benefit since the original imaging conditions
are very different.
In the conducted place recognition experiments the prediction step improves the place

recognition performance with a prediction of winter from fall but the benefit is not
as large as for predicting winter from spring. This is due to the higher diversity in
appearance of trees, bushes, meadow etc. in the spring images compared to the fall
images. The example images of spring and fall in figures 6.12 and 6.17 give an impression
of the richer information in the spring images. This enables the proposed prediction
system to better learn the different appearance changes of different image content and
thus to produce better predictions from the spring images compared to the predictions
from fall images. Incorporating more contextual information (e.g surrounding image
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patches or high level knowledge) could help to better exploit the provided appearance
diversity. Directions for future work in this direction can be found in section 6.6.

6.5.4.1. Final results on the 728 km test dataset
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Fig. 6.18.: Final result on the complete Nordland track (test dataset). Again, we compare
the performance of the combination of SeqSLAM [Milford and Wyeth, 2012] with
the proposed scene change prediction approach (solid lines) and SeqSLAM alone
(dashed lines). Color indicates different trajectory lengths (ds) used by SeqSLAM
during the sequence matching. The proposed prediction framework, trained on an
8 minute subset, can significantly improve the place recognition performance on the
complete track. (For this experiment: #superpixels=2,500)

The final result of this work is a place recognition experiment using SeqSLAM on the
complete 728 km Nordland track between spring and winter using the test dataset of
section 5.1.1. The training dataset remains the same as for the previous experiments.
The ratio of training and test dataset has been illustrated in Fig. 5.4, where the red
part indicated the training part and the test dataset was shown in blue. Fig. 6.18
shows the result. Again we compare the place recognition performance with (solid) and
without (dashed) the prediction for different values for the SeqSLAM sequence length
ds. Since the test dataset is recorded with 0.1 frames per second, a sequence length of
3 corresponds to a 30 seconds trajectory in the original video.
It is apparent how SeqSLAM benefits from the proposed prediction step for all se-

quence lengths on the test dataset. Both the maximum F-score and the recall at 100%
precision improve significantly. This is a remarkable result, since it shows that our pro-
posed SP-ACP system is able to extract enough knowledge from the training dataset of
only 8 minutes to significantly improve the place recognition on the complete journey of
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almost 10 hours. Considering the very different environmental conditions met along the
journey (e.g. lowlands, highlands, mountains) and the rather homogeneous appearance
(lowlands) in the training dataset makes this result even more remarkable. However,
we have to clearly point out that this generalization capability is of course limited to
environmental conditions with similar systematic change. The proposed system can not
be learned on the Nordland dataset and applied to images of e.g. Manhattan.

Result 6.4 The performance of SeqSLAM on place recognition on the Nordland dataset
using reasonable sequence lengths is encouraging. Again, there is a clear benefit from
the combination with the proposed SP-ACP approach for challenging combinations of
seasons. The approach showed to be robust for a wide range of parameter configurations.
However, for less severe appearance changes (i.e. summer-fall) the artefacts introduced
by the prediction decrease the place recognition performance.

6.6. Current limitations of the approach and future work

The proposed SP-ACP system is a rather straightforward implementation of the idea
of incorporating an additional prediction step for place recognition in systematically
changing environments. However, there is plenty of space for improvements.
Obviously the prediction step incorporates smoothing and artefacts in the predicted

images. This can cause a decrease in place recognition performance if the compared
original sequences are very similar (e.g. summer and fall). However, the predicted images
are visually appealing and the place recognition performance remains reasonable. This
can be interpreted as a kind of “upper bound” for the recognition performance which is
introduced by the smoothing and the artifacts of the prediction.
In its current form, our algorithm requires perfectly (near pixel-accurate) aligned im-

ages in the training phase. This requirement is clearly a key limitation of the proposed
approach, since it is hard to fulfil and limits the available training datasets. An interest-
ing research direction would be to investigate ways to ease or overcome this requirement,
e.g. by anchoring the training images on stable features. This would increase the avail-
ability of potential training datasets collected by robots or vehicles in realistic scenarios
that are close to real-world applications.
Currently, we synthesize an actual image during the prediction. This simplifies the

qualitative evaluation by visually comparing the predicted with the real images and fur-
ther allows for using existing place recognition algorithms for quantitative evaluation.
However, the proposed idea of scene change prediction can in general be performed on
different levels of abstraction: It could also be applied directly onto holistic descrip-
tors like BRIEF-Gist, onto visual words like the ones used by FAB-MAP or onto the
downsampled and patch-normalized thumbnail images used by SeqSLAM.
Furthermore, the learned dictionary can be as simple as a one-to-one association (like

the mentioned winner-takes-all scheme) or capture a full distribution over possible trans-
lations for a specific word. In future work this distribution could also be conditioned
on the state of neighbouring segments, and other local and global image features and
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thereby incorporate mutual influences and semantic knowledge. This could be inter-
preted as introducing a grammar in addition to the vocabularies and dictionaries. How
such extended statistics can be learned from training data efficiently is an interesting
direction for future work.
If the dictionary does not exploit such higher level knowledge (as in the superpixel

implementation introduced here) the quality of the prediction is limited. In particular,
when solely relying on local appearance of image segments for prediction, the choice
of the training data is crucial. It is especially important that the training set is from
the same domain as the desired application, since image modalities that were not well-
covered by the training data can not be correctly modeled and predicted.
Exploring the requirements for the training dataset and how the learned vocabularies

and dictionary can best generalize between different environments will be an important
direction of future research. However, in its current form the approach is not expected to
generalize well to new environments. As already mentioned, the Nordland dataset pro-
vides somewhat optimal conditions (apart from the season-induced appearance changes)
for place recognitions, since the camera observes the scene from almost exactly the same
viewpoint in all four seasons and the variability of the scenes in terms of semantic cat-
egories is rather low. These conditions would usually not be met in a typical robotic
application.
In conclusion, the idea of learning systematic image changes is compelling. However,

while this presented implementation showed that there are cases where existing place
recognition approaches can benefit from the created predictions, the strong requirements
on the training data and unclear generalization capabilities limit the prospect of real
practical applications.
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One new feature or fresh take

can change everything.

Neil Young

7
Landmark-based Place Recognition in

Changing Environments

The previous chapter 6 used superpixels in the context of holistic descriptors for place
recognition - the evaluation showed, that for the Nordland dataset BRIEF-GIST and
SeqSLAM (that builds upon a lightweight holistic visual front-end) can both benefit from
a prediction based on superpixel vocabularies. According to the taxonomy of localization
approaches shown in Fig. 5.1, besides holistic image descriptors, there are also local
feature based approaches to visual place recognition. Holistic approaches are known
to be sensitive to viewpoint changes [Pepperell et al., 2014]. Moreover, the proposed
Appearance Change Prediction approach poses strong requirements on training data,
that are supposed to be very hard to fulfil for practical applications. Therefore, in this
chapter, I want to investigate whether local feature based approaches can also benefit
from superpixel segmentations.

7.1. The components of place recognition based on local
image features

Fig. 7.1 illustrates the components of a typical, simple pipeline for place recognition
based on local regions. In fact, these are only the steps of place recognition up to the
computation of the similarities of two images - for practical place recognition these image
similarities are just the beginning. This is further discussed in the conclusions chapter
8. However, the image similarities are an essential intermediate step and in this pipeline
they are obtained in three steps: Given a query image, the first step is to compute a set of
local regions. Typical choices for local regions are areas around interest points like scale
space extrema or corner points. In a second step, a numerical descriptor is computed for
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I

1. Local region detector 2. Descriptor 3. Image matching

Fig. 7.1.: Components of a typical, simple pipeline for place recognition based on local regions.
The first step is the extraction of local regions from the input image, followed by the
computation of a descriptor for each region (illustrated in form of a numerical matrix).
In a third step, these descriptors are evaluated to compute similarities between images.

each region, e.g. by computing a SIFT descriptor for the image patch associated to the
local region. Finally, these descriptors are used to find one-to-one matchings between
local regions from different images and to combine these matchings to a resulting image
similarity that can be used for place recognition.
For place recognition in changing environments, particular care has to be taken on

each of these steps. The local region detector is required to repeatedly extract corre-
sponding regions from images subject to severe appearance changes. Moreover, even
if the detected regions show the same parts of the world, their changed appearance
may pose a major challenge to the descriptor. For the final image matching step, the
extracted image regions are supposed to be less precisely detected in the images than
in non changing environments. Moreover, a small number of correct region matchings
and a large number of outlier region matchings can be expected. This poses additional
challenges for established outlier detector schemes like RANSAC or LMSE [Lowe, 2004].
In this chapter, I will lay hands on each of the steps shown in Fig. 7.1. The main

question, in the overall context of this thesis, will be if and how superpixel segmentations
can contribute to local region detection for place recognition in changing environments. I
will propose and evaluate four approaches: a segment soup, a multi scale superpixel grid,
a descriptor weighting based on superpixels and the usage of object proposal algorithms
that are related to superpixel segmentations.
To evaluate these methods in place recognition experiments and to compare them

with existing methods, I will further propose a novel, complete pipeline comprising the
three steps in Fig. 7.1. This pipeline can be used with a broad range of existing and
novel local region detectors. The key ingredients are a powerful descriptor based on
the output of intermediate layers of a Convolutional Neural Network (CNN) as well
as a novel image matching method based on a star graph model and Hough voting.
This image matching method is particularly suited for weakly localized image features
and high numbers of outliers. The resulting place recognition system is training free
and single image based, although the resulting image similarities can be combined with
sequence matching methods seamlessly. The proposed approach can handle changing
environments and viewpoint changes. It is intended to be the basis for a solution for
real world application in changing environments.
The following sections 7.2 and 7.3 deal with the second and third steps of Fig. 7.1 and
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will introduce the CNN-based descriptor and the star graph model and Hough voting
scheme used for computation of image similarities based on the local regions. Section
7.4 introduces the novel approaches to local region detection involving superpixel seg-
mentations. Section 7.5 presents metrics that will subsequently be used in section 7.6
for evaluation of the repeatability of the local region detectors, independently of a de-
scriptor or particular place recognition experiments. Finally, extensive place recognition
experiments on the datasets presented in section 5.1 are the topic of section 7.7

7.2. Local region descriptors based on Convolutional Neural

Networks

The related work presented in section 5.2 revealed problems of the established combi-
nations of local image feature detectors and descriptors (e.g. SIFT) in changing envi-
ronments. The results presented later in section 7.7 will in particular show, that the
processing pipeline illustrated in Fig 7.1 using SIFT keypoints fails at the description
step for the Nordland Spring-Winter dataset. Therefore, alternative descriptors are re-
quired.
Recently, deep learning based Convolutional Neural Networks (CNN) showed impres-

sive performance on creating descriptive representations for several computer vision
tasks, most notably image classification [Krizhevsky et al., 2012], object detection [Gir-
shick et al., 2014; Chatfield et al., 2014] and other recognition tasks [Razavian et al.,
2014]. In this thesis, readily trained and publicly available CNNs are used. Therefore, I
will reduce their presentation to an overview of their properties, their relation to place
recognition and remarks on the resulting computational efforts.

7.2.1. What is a Convolutional Neural Network?

A recent overview on deep learning and CNNs can, for example, be found in [LeCun
et al., 2015]. From the user’s perspective, the convolutional neural network computes a
feature vector (more specific a feature tensor at each layer) describing the input image.
Although it is higher dimensional, the feature vector at each layer can be used in a
similar way to other feature vectors like SIFT or HOG.
Convolutional Neural Networks (CNNs or ConvNets) are a class of feed-forward artifi-

cial neural networks with a specific structure and arrangement of their layers. The lower
levels are composed of convolutional and pooling layers. A convolutional layer typically
contains several feature maps. Each unit of a feature map has weighted connections to
local areas of feature maps in the previous layer. This set of weights is called a filter
bank. An important property is that all units of a feature map share the same filter
bank. Thus, the evaluation of a feature map can be implemented as convolution of the
corresponding areas of the previous layer with this filter bank - hence the name of these
networks. The results are then passed through a non-linearity, e.g. a rectified linear unit
(ReLU). The convolutional layers are intended to learn and detect distinct local motifs
of increasing complexity from layer to layer. A subsequent pooling layer collects the
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response of local regions of a feature map, e.g. by taking the maximum response of a
neighbourhood. This creates an invariance to small shifts and distortions. Several stages
of this combination, convolution, non-linearity and pooling, are stacked and finally cre-
ate the input for fully connected layers that combine information over the whole image
area. Typically, all the weights in the filter banks are learned using backpropagation
[Werbos, 1974] on large amounts of data.
The architecture of these networks has been inspired by insight on the early human

visual system. The local areas incorporated in the filter banks correspond to receptive
fields of cells in our early visual system. Common to both is also the increasing complex-
ity of visual structures that are regarded at later processing stages. While the lowest
layers respond to gradients similar to the hand engineered SIFT and HOG descriptors,
higher layers learn increasingly complex structures. However, the implementation and
applied learning mechanisms in CNNs are significantly different from the human visual
system and are adapted for execution on typical computational hardware like CPUs
and in particular GPUs. Moreover, important simplifications like the pure feed-forward
structure and weight sharing across feature maps are used to keep learning feasible.

7.2.2. CNN for place recognition

Although their structure, details and in particular training is quite complex, a readily
trained CNN can be used directly to create image descriptors. The image has to be
rescaled to the size of the input layer and properly normalized. The result of the run
through the feed-forward net is a set of tensors - one for each layer of the network. The
tensors are structured according to the structure of the corresponding network layer.
For example, a convolutional layer of size 13 by 13 comprising 512 filter banks creates a
13× 13× 512 tensor, or in other words 512 feature maps of size (13× 13). This inherent
spatial structure can be exploited - or the tensor can be simply reshaped to a feature
vector similar to a SIFT descriptor.
Sünderhauf et al. [2015a] investigated the application of CNN-based holistic image

descriptors for place recognition in changing environments. They compute a single CNN
descriptor from a particular network layer for the whole image and compare images
based on the cosine distance of these vectors. They found the lower convolutional layers
to be robust against seasonal changes but sensitive to shifts, e.g. induced by viewpoint
changes or rotations.
The sensitivity to viewpoint changes is a drawback of holistic image descriptors.

Therefore, I want to use these powerful CNN-based descriptors in combination with
local region detectors to create a system that is robust to both, changing environments
and viewpoint changes. To create the CNN-based descriptor for a local region, we feed
the image patch provided by the bounding box around the local regions into the con-
volutional neural network. We use the publicly available VGG-M network1. The CNN
descriptor is the vectorized output of the third convolutional (conv3 ) layer. To compare
two CNN descriptors, we compute their cosine distance.

1http://www.vlfeat.org/ [Last accessed: 2015-08-14]
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While the idea of computing CNN features for regions is not new (e.g. Girshick
et al. [2014] presented R-CNN: Regions with CNN features), the usage as landmarks
for place recognition is novel. We presented this idea in [Neubert and Protzel, 2015b].
In concurrent work and independently from our approach, Sünderhauf et al. [2015b]
also proposed the combination of CNN-descriptors with local image features for place
recognition. They show impressive place recognition results based on a single type of
local regions (EdgeBoxes) and a simple image matching scheme. Although an imple-
mentation of their complete processing chain is not available, the results section 7.7 will
evaluate the region detector they used and their matching scheme and show that both
are outperformed by our proposed approaches. There, the proposed approach will also
be compared to the holistic CNN.

Contribution 7.1 The output of the lower layers of convolutional neural networks
are promising descriptors for landmarks in changing environments. There are publicly
available, ready to use networks. We propose to use these descriptors in combination
with local region detectors for place recognition in changing environments.

7.2.3. Remarks on the computational efforts for CNN-based descriptors

In general, the training of a CNN is very time consuming. In contrast, the computation
of the network response for a particular input patch is a single run through the network.
On a GPU this can be done in few milliseconds. On a CPU the computation of the above
described conv3 descriptor takes about 40 ms including the computations for the Matlab
interface (Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz). Currently, each local landmark
has to be run through the system independently. However, novel CNN architectures like
SPPnet [He et al., 2014] and Fast-R-CNN [Girshick, 2015] aim at fast evaluation of all
local regions by a single run through the network.
The CNN descriptor is supposed to provide more information than a hand engineered

SIFT or HOG descriptor. However, at the lower layers, this comes at the cost of very
high dimensional feature vectors. For example, the 13× 13 tensor of the used networks
conv3 layer has in total 86,528 dimensions. Fortunately, we are not interested in the
feature vector itself, but in the cosine distance of feature vectors - the distance between
the descriptors of landmarks from two different images. The literature provides methods
for efficient approximation of the cosine distance of such high dimensional vectors using
binary locality-sensitive hashing [Charikar, 2002]: The cosine distance is obtained from
the angle between the vectors. Given a random hyperplane in the regarded vector space,
the probability that this hyperplane separates the two vectors is directly proportional
to the angle between the vectors. [Ravichandran et al., 2005] demonstrate how a large
number of randomly selected hyperplanes can be used to closely and efficiently approx-
imate the cosine distance in a high dimensional vector space. Given a set of k random
hyperplanes and a set of feature vectors (e.g. CNN descriptors) in a high dimensional
space, they compute for each feature vector a binary hash of length k. The i-th bit
indicates the sign of the scalar product of the normal of the i-th hyperplane and the
feature vector. The cosine distance of two feature vectors can then be approximated by
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the Hamming distance of the two binary hash vectors. Sünderhauf et al. [2015a] evaluate
this method in the context of holistic CNN descriptors for place recognition and found
that an approximation of the CNN vector using a 8,192 bit vector retains approximately
95% of the place recognition performance.
Thus, if efficiency of descriptor comparison plays a role, the 86,528 dimensional CNN

descriptor can be reduced to e.g. a 8,192 bit vector while retaining a large fraction of its
descriptive power for place recognition. This is eight times the storage required for a 128
byte uint8 SIFT descriptor. The comparison of two vectors is then done by computing
the Hamming distance of the bit vectors. The required operations (XOR + bit count)
are supported by native processor instructions in modern CPUs (≥SSE 4.2).
While runtime optimization is not in the particular scope of this chapter, the runtime

of the conducted experiments has to be feasible. For the later presented experiments,
we use the plain CNN descriptor and restrict the number of local landmarks to about
50 per image. Thus, the descriptors for an image are computed in about 50 · 40ms = 2
seconds using the Matlab interface of VLFeat. For the novel Fast-R-CNN, Girshick [2015]
reports a speed-up of factor >200 for the computation of the network output compared
to existing networks in the context of object detection. The place recognition based on
the full CNN descriptors is feasible for up to a few hundred thousand place comparisons
per experiment (e.g. about 3 hours for 100,000 place comparisons including the Matlab
interface, 2,500 descriptor comparisons are required for each place comparison when
using 50 landmarks). For larger datasets, the binary locality-sensitive hashing proposed
by Charikar [2002] can be used for a significant speed-up. Sünderhauf et al. [2015a]
report a runtime of 134 ms for 100,000 comparisons of binary hash vectors using an
Nvidia Quadro K4000 GPU. However, one has to additionally compute the binary hash
for each vector (each bit is basically obtained by computing a scalar product in the high
dimensional space).

Result 7.1 The computational effort for using CNN-based descriptors for local land-
marks is feasible. There are promising approaches to further reduce the runtime for
descriptor computation and comparison.

7.3. The novel Star-Hough matching scheme: From local
regions to image similarities

To use local regions and their descriptors for place recognition, the information about the
similarity of individual landmark comparisons (e.g. the CNN-based descriptor distance)
between two images has to be combined to an overall image similarity. This section
discusses the influence of changing environments on the existing methods and introduces
a novel matching scheme based on star graph models and Hough voting that is suitable
for matching images subject to severe appearance changes. In particular, it can cope
with small numbers of features including outliers and it is robust to variations in the
exact landmark locations.
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7.3.1. The basic problem and the challenges of changing environments

An intuitive first step to compute an image similarity is to find for each landmark
in the first image the most similar landmark in the second image. The similarity of
an image I1 to another image I2 can then simply be computed as the average best
similarity of a landmark of I1 to a landmark of I2. However, this is sensitive to outliers
and ignores available information about the spatial relation between landmarks. The
literature provides several general approaches and additional tricks, that significantly
increase the robustness and matching performance, e.g. left-right checks (also known as
reciprocal matchings), evaluation of the ratio of the best to the second best matching
and outlier detection based on epipolar geometry, cf. [Hartley and Zisserman, 2003].
More formally, we want to solve the following problem: Given the set of landmarks

F 1 = {f1
1 , f

1
2 , ..., f

1
n} from image I1 and the set of feature F 2 = {f2

1 , f
2
2 , ..., f

2
m} from

image I2, we want to find the distance of the two images using these feature sets
distImages(I

1, I2) = distLandmarks(F
1, F 2). Each landmark provides a descriptor dji =

descriptor(f j
i ) and similarly the position [xji , y

j
i ] of each landmark, e.g. the coordinates

of the centre of gravity.
For a baseline combination, we can compute the similarity between two images with

landmark sets F 1 and F 2 directly from the distance of all left-right matchings and the
total number of landmarks:

sim(f1
i , f

2
j ) = 1− dist(f1

i , f
2
j )

sim(F 1, F 2) =
1

√

|F 1| · |F 2|
∑

{f1
i ,f

2
j }∈matches(F 1,F 2)

sim(f1
i , f

2
j ) (7.1)

This the sum of the similarities of left-right matches weighted by the number of features
in F 1 and F 2. A left-right matching is a matching of two landmarks which best match
one another considering both search directions, that is searching the best match for a
landmark f1

i ∈ F 1 the best match in F 2 and vice versa. The similarity measure in
equation 7.1 is, for example, used in [Sünderhauf et al., 2015b] and as a baseline method
in [Neubert and Protzel, 2015b].
However, while the number of outliers is reduced by the left-right check, the spatial

consistency of the matchings provides additional essential information. A set of landmark
matchings of an image pair, for that the motion of the set of landmarks between the
images can not be explained by a reasonable camera motion, is suspected. To find the
set of correct matchings, i.e. to remove outlier matchings, spatial consistency checks
can be used. The spatial consistency can be evaluated in 3d if depth information is
available [Moravec, 1980] or in 2d based on epipolar geometry [Hartley and Zisserman,
2003]. While epipolar geometry provides a solid theoretical foundation and showed to be
beneficial for outlier rejection, there are two reasons why, for example, a Fundamental
matrix estimation is not used in the here presented place recognition approach:

1. Taking advantage of constraints based on multi view or epipolar geometry requires
repeated and precise localization of features in the image - they have to be at the
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Chapter 7. Landmark-based Place Recognition in Changing Environments

more or less exact corresponding position. In the presence of severe appearance
changes of the environment, we cannot expect, for example, scale space extrema
based on differences of Gaussians to be as precisely localized as in non changing
environments. For instance, think of the scale space extremum provided by the
crown of a tree - in summer and in winter. While both may be detected, their
location is supposed to vary significantly. Moreover, the here presented matching
scheme is intended for combination with very different types of local region de-
tectors including superpixel segmentations and object proposals - both lack the
repeated precise localization of for example corner points.

2. The second issue arises from the small number of features and the high expected
rate of outliers due to the changing appearance. For robust estimation of spatial
constraints based on epipolar geometry in the presence of outliers, random sample
consensus (RANSAC) or least median of squared error (LMSE) methods are often
used. However, both “[...] are known to perform poorly when the percent of inliers
falls much below 50%“ [Lowe, 2004, p. 21].

Fortunately, accumulating information in image space using the Hough transform
[Hough, 1962] provides an alternative solution, that showed to perform well in the pres-
ence of small inlier rates [Ballard, 1987; Grimson, 1990; Lowe, 2004].

7.3.2. The novel Star-Hough approach

For the application in the context of place recognition, in [Neubert and Protzel, 2015b]
we propose to use a simple two dimensional Hough accumulator on the shift of the star
graph model induced by the landmarks. The star graph model is similar to the implicit
shape model [Leibe et al., 2004]. To represent the mutual relative position of landmarks
with only few connections in the resulting dependency graph, all landmarks are anchored
at the centre of the whole landmark set. The visualization of the resulting graph has a
star-like appearance - hence the name.
Computing the star graph model for a set of landmarks can be implemented as simple

transformation into a normalized image coordinate system with origin at the centre of the
landmark set. Given a set of landmarks at positions [xi, yi], the star graph representation
[xsi , y

s
i ] is computed as follows:

xsi =
xi − 1

2 · (maxk xk +mink xk)

maxk xk −mink xk

ysi =
yi − 1

2 · (maxk yk +mink yk)

maxk yk −mink yk
(7.2)

[xsi , y
s
i ] is the normalized, relative position of a landmark to the centre of all land-

marks. For application to place recognition, we make the assumption, that this relative
position of corresponding landmarks to the centre of all landmarks is similar in two
images showing the same scene. We cannot expect that this relative position is invari-
ant, in particular since the location of the centre of the observed landmarks can vary
significantly, e.g. for different viewpoints.
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7.3. The novel Star-Hough matching scheme: From local regions to image similarities

Algorithm 3: Outline of the algorithmic steps to compute the image similarity
using the proposed Star Hough image matching.

Data: Two sets of Landmarks from images I1, I2 with descriptors d1i , d
2
j and positions [x1

i , y
1
i ]

and [x2
j , y

2
j ]

Hough accumulator radius r
Result: Similarity s of the landmark sets

// Get left-right matchings, each triple [idx1, idx2, sim]

// is a matching of d1idx1, d2idx2 with similarity sim

1 {idx1, idx2, sim} = getLeftRigthMatchings(d1i , d
2
j );

// get Star model coordinates

2 xs1 = (x1 − 1
2
· (max(x1) +min(x1)))/(max(x1)−min(x1));

3 ys1 = (y1 − 1
2
· (max(y1) +min(y1)))/(max(y1)−min(y1));

4 xs2 = (x2 − 1
2
· (max(x2) +min(x2)))/(max(x2)−min(x2));

5 ys2 = (y2 − 1
2
· (max(y2) +min(y2)))/(max(y2)−min(y2));

// initialize Hough accumulator

6 H = zeros(2 · r + 1, 2 · r + 1) ;

7 foreach matching [idx1, idx2, sim] do

// Get coordinates of the (x,y) shift in the Hough space

8 xh = r + 1 + (xs2idx2 − xs1idx1) · r;
9 yh = r + 1 + (ys2idx2 − ys1idx1) · r;

// update accumulator

10 H(yh, xh) = H(yh, xh) + sim;

11 end

// Combine neighboured bins

12 H = integrate(H, Gaussian σ = 0.1 · r);

// Image similarity is the maximum value of the accumulator

13 s = max(H);

However, similar issues are arise for object detection, where similar Hough voting ap-
proaches have been applied successfully. Lowe [2004] uses a Hough accumulator based
on the 2d location, scale and orientation of keypoint image features. Each of the image
features votes for the location of an object model. As Lowe points out, ”the simi-
larity transform implied by these 4 parameters is only an approximation to the full 6
degree-of-freedom pose space for a 3d object and also does not account for any non-rigid
deformations” [Lowe, 2004, p. 21]. We incorporate two approaches to deal with this
problem:

1. We use a coarse accumulator, e.g. of size (41 × 41) for images of size (854 × 480).
Thus, each bin includes a wide range of shifts.

2. We use soft binning to distribute votes over several bins. According to Szeliski
[2010, p. 223], “[...] softly distributing values to adjacent histogram bins is gen-
erally a good idea in any application where histograms are being computed, e.g.,
for Hough transforms”. In our implementation this is done by a simple smoothing
of the resulting accumulator image with a Gaussian kernel. For the (41 × 41)
accumulator, we use a Gaussian with σ = 2.
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Chapter 7. Landmark-based Place Recognition in Changing Environments

Fig. 7.2.: Isn’t it an appealing idea to have segmentation based landmarks? This example image
pair from the Nordland Spring-Winter datasets (with horizontal shift and time delay)
has been successfully matched based on landmarks from a superpixel segment soup.

The algorithmic steps are listed in algorithm 3. Given a set of landmarks, each with a
descriptor and a position in the image, a set of initial matchings using a left-right check
is computed in line 1. This results in triples [idx1, idx2, sim] indicating that landmark
idx1 from I1 has been matched to landmark idx2 from I2 and their similarity is sim.
Lines 2-5 implement the coordinate system transformation to the star graph given by

equation 7.2. The two dimensional Hough accumulator is initialized with zero (line 6)
and iteratively updated with each landmark matching (lines 7-11). Each shift between
matched landmarks votes for a shift of the star model centres. This shift is converted
to coordinates of the Hough accumulator (lines 8 and 9) and the value of the according
bin is increased by the similarity value of the matching. To implement soft binning,
the accumulator is smoothed with a Gaussian in line 12. Since no non-linearities are
involved in the iterative update of the accumulator, this smoothing can be done in a
single smoothing step for all matchings. The resulting image similarity is the maximum
value of the accumulator. For landmark sets of strongly varying size, this value has to
be normalized according to the normalization term in equation 7.1.
The benefit of this star graph model and Hough based image matching procedure will

be evaluated in section 7.7. There, it will be combined with a broad range of local region
detectors.

Contribution 7.2 This section proposed Star-Hough, a novel image matching scheme
based on star graph models and Hough voting for place recognition in changing environ-
ments. It is designed to deal with varying landmark positions and high numbers of outlier
matchings.

7.4. Novel superpixel-based local region detectors

The previous section presented methods for description (CNN-based descriptor) and
image matching (the Star-Hough approach). Topic of this section is the first step of
Fig. 7.1 - it will present novel local region detectors related to superpixel segmenta-
tions. There are various algorithmic approaches to provide the spatial image support for
place recognition landmarks. Keypoint detectors are a common choice for local region
detectors. An established example is the difference of Gaussian (DoG) based scale space
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7.4. Novel superpixel-based local region detectors

Fig. 7.3.: Example SIFT-DoG-6 regions for images from Nordland spring, GardensPoint day,
Alderley day and the same place at Alderley night (subset of 20 regions per image
shown).

extrema detector used for SIFT [Lowe, 2004], to which I will refer as SIFT-DoG in the
following. Example regions can be seen in Fig. 7.3. The results, referenced in the related
work section 5.2, indicate that the established combinations of local feature detectors
and descriptors have problems with changing environments, e.g. [Milford and Wyeth,
2012; Valgren and Lilienthal, 2010]. Our own results in [Neubert et al., 2015b] showed
that, for example, the SURF based FAB-MAP [Cummins and Newman, 2008] system
has severe problems with seasonal changes. The results sections 7.6 and 7.7 will provide
an evaluation of both, the detection and the description step of SIFT.
The there presented comparison of local region detectors will also include interest

points from Maximally Stable Extremal Regions (MSER). MSER is an established region
detector that builds upon segmentations. It provides regions that remain stable over a
certain number of thresholds during a region growing segmentation.
Similar to the region growing step in MSER keypoints, superpixel segmentation al-

gorithms provide a broad spectrum of methods to provide spatial image support. In
the remainder of this section I want to present the following approaches that incorpo-
rate superpixel segmentations in local region detection for place recognition in changing
environments:

1. Stable superpixel segmentation algorithms can be used directly as local regions
detectors. Multiple segmentations of an image can be combined to a segment
soup. Some details on this straight forward approach can be found in section
7.4.1.

2. Section 7.4.2 presents a novel approach to use compact superpixel segmentations
at multiple scales to create a set of local regions that will show to be particularly
suited in case of severe appearance changes.
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Fig. 7.4.: Example SP-Soup regions for images from Nordland spring, GardensPoint day, Alder-
ley day and the same place at Alderley night (subset of 20 regions per image shown).

3. Navarro et al. [2014] propose to use superpixel segmentations to subdivide SIFT-
DoG regions. Section 7.4.3 presents an extension of this approach that uses a
segment soup to weight the importance of each part of the local region.

4. Although they are not designed to detect landmarks, object proposal algorithms
are related to superpixel segmentation algorithms and included in the set of promis-
ing landmark detectors. Details can be found in section 7.4.4.

7.4.1. Using stable superpixel algorithms: Plain superpixels and segment
soups

Superpixels can be used straight forward as local regions for place recognition. The
superpixel comparison of the first part of this thesis showed that FH, EAMS and QS
create segmentations that are stable in the presence of affine image transformations,
noise and complex combinations of image changes. Oversegmention algorithms were
not specifically designed to select salient features. However, the detected regions are
somewhere located between small, local keypoints and the spatial image support for
holistic image descriptors. During superpixel segmentation, there is no criteria involved
to foster the creation of descriptive segments that are repeatedly detected across severe
appearance changes.
Besides the direct usage of superpixel segmentations, a superpixel soup (SP-Soup)

can be used. The SP-Soup is the combination of multiple segmentations of the same
image. These segmentations are created using different parameter sets of the same
segmentation algorithm or also different algorithms. The SP-Soup is the union of the
sets of superpixels created by each segmentation setup. Example regions can be seen in
Fig. 7.4. An example image matching based on a segment soup is illustrated in Fig.
7.2. The parameters that are later used in the experimental comparison are listed in
table 7.1.
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Algorithm Parameters

SIFT-DoG octaves=5, firstOctave=1, peakThresh is varied to obtain about 50 features
MSER minDiversity=0.8, maxVariation=0.25, delta=5, minArea=200
FH k=1, minSize=1500
EAMS hs=8, hr=4, minSize=2000
QS Ratio=0.5, kernelsize=2, maxDist=40
SP-Soup 3 FH segmentations: k=1, minSize ∈{2500, 5000, 10000}

Table 7.1.: Parameters that are different from defaults for the keypoint, plain superpixel and
segment soup approaches. For both keypoint approaches we use implementations
provided by http://www.vlfeat.org/ [Last accessed: 2015-08-14].

7.4.2. Using compact superpixel algorithms: The multi scale superpixel grid

The overview of place recognition approaches in Fig. 5.1 distinguishes in the field of
Local feature based methods between Local region detectors or Fixedly arranged patches.
For place recognition in changing environments, grid- (or patch-) based methods like
the visual front-end of SeqSLAM showed impressive performance in the presence of
severe appearance changes as they appear for example between “sunny summer days
and stormy winter nights” [Milford and Wyeth, 2012]. The potential benefit is obvious:
If no local region detector is involved in the place recognition, it cannot fail to detect
corresponding regions.
However, the decoupling of the region detection from the image content by using a

fixed grid of image patches, comes at the cost of reduced robustness to viewpoint changes.
Dependent on the arrangement of the grid there are critical cases - for example if the
image content shifts horizontally half the distance of two neighboured patch centres. In
this case, both neighboured patches are maximally different from the new patch position.
Is there a solution that combines the advantages of both approaches? A class of al-

gorithms that create patch-like regions that are adapted to the image content has been
introduced in the first part of this thesis - compact superpixel segmentation algorithms.
These algorithms are located somewhere between fixed patches and regions solely de-
tected from visual cues (like the outcome of a typical interest point detector, e.g. the
scale space extrema detector used in SIFT). In particular, the evaluation of the com-
pactness parameter of the proposed Compact Watershed superpixel algorithm in section
4.4 showed that there is a continuum of grid-like segmentations ranging from arbitrary
shaped segments to a perfectly regular grid segmentation.
Therefore, I want to propose a novel local region detector, named superpixel-grid

(SP-Grid), that uses compact superpixel segmentations to provide image regions that
are arranged according to a given grid-like structure and adapt their shape to the image
content to increase the robustness to viewpoint changes compared to fixed patches.
To implement the SP-Grid approach we have to answer two questions: (1) What is a

good initial grid configuration (independent from the subsequent superpixel segmenta-
tion)? And (2) How can compact superpixel segmentation algorithms be used to adapt
this grid to the image content?
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Fig. 7.5.: Comparison of different grid configurations on the Berlin Halenseestrasse dataset (this
is the fixed grid, not the SP-Grid). The Berlin Halenseestrasse dataset contains severe
viewpoint changes as can be seen by the example image pairs on the right.

The initial grid configuration

I want to clearly point out that finding an optimal grid configuration is beyond the scope
of this thesis. More information about potential viewpoint changes between images that
should be matched and robustness of the used descriptor (in this thesis the CNN-based
descriptor) towards viewpoint and scale changes should be involved. However, I want to
use a reasonable configuration that can deal with the viewpoint changes that typically
occur in the place recognition datasets used in this thesis.
To separate the tuning of this parameter from the test results of the following experi-

ments on place recognition in changing environments, this experiment is conducted on a
different dataset, the Berlin Halenseestrasse dataset [Sünderhauf et al., 2015b]. There,
the viewpoint changes between the camera mounted behind the windscreen of a car driv-
ing on a street and a camera on a bicycle on the cycle lane, more or less alongside the
road. To select the grid configuration, I evaluate a small set of promising configurations
on this dataset - a grid configuration that works for these severe viewpoint changes is
supposed to be a reasonable choice. Examples for corresponding images of the Berlin
Halenseestrasse dataset and results of the different grid configurations can be seen in
Fig. 7.5.
For reasons discussed in section 7.2, the number of local regions should be about 50.

Apart from the individual position of the image patches, the questions whether disjunct
patches or overlapping patches should be used and whether all patches should share the
same scale are interesting. The set of compared grid configurations comprises single and
multi scale grids. For a single scale grid, all patches share the same size. To obtain
about 50 features, a (7 × 7) grid is used. The patches at the image corners are aligned
with the image boundaries. The patch size and the positions of the remaining patches
can be computed from the image dimensions, the number of features and the overlap in
percent of the patch length. To obtain the multi scale grid, the single scale grids of size
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(1× 1), (2× 2), (3× 3), (4× 4) and (5× 5) are combined. This results in a total of 55
regions. Fig. 7.5 shows results of the place recognition experiment using these different
grid configurations in combination with the CNN-based descriptor and the Star-Hough
image matching. The evaluation reveals a general benefit of the multi scale grid and the
best performance for the combination of a multi scale grid and overlap of 50 % of the
patch width and height. While this may not be the optimal configuration, it is supposed
to be reasonable and will be used in the following.

Adapting an initial grid using compact superpixel segmentations

The proposed SP-Grid region detector builds upon a given grid configuration and a
compact superpixel segmentation algorithm. The used compact superpixel algorithm is
required to create superpixels in a grid like arrangement, in particular with a defined 4-
neighbourhood. However, some of the compact superpixel algorithms provide uniformly
shaped segments but lack this neighbourhood. For example, SLIC and the proposed
CWS are good superpixel choices for a SP-Grid.

For non-overlapping grid patches, a compact superpixel segmentation can be used
directly. To generate (k×k) regions, the image can be segmented into (k×k) superpixels
and each superpixel becomes an output region. To allow for overlapping patches, a
higher resolution of superpixels is computed and superpixels are subsequently grouped
into regions. This is illustrated in Fig. 7.6. Starting from a (4 × 4) segmentation, all
(2× 2) groups of neighboured superpixels are combined to obtain (3× 3) regions.

To create SP-Grid regions at multiple scales, an individual superpixel segmentation is
computed for each scale. While it is also possible to create regions at different scales from
a single fine grained superpixel segmentation and group different numbers of superpixels
(e.g. (2× 2), (3× 3) and so on) subsequently, using coarse segmentations is supposed to
better compensate larger image displacements. Fig. 7.7 shows example images together
with the (3×3), (4×4), (5×5), and (6×6) segmentations used to create the overlapping
regions as is illustrated in Fig. 7.6.

Although the algorithmic concept is quite intuitive, details on the necessary algorith-
mic steps tor extracting a set of SP-Grid regions from an image are given in algorithm
4. The first step in line 1 is an initial rescaling of the image. To create segmentations of
as few as (6× 6) superpixels, the image resolution can e.g. be halved without negative
effects. The main loop in line 3 iterates over all scales of the grid. For each scale, the
required number of superpixels is computed from the width and height of a region and
the overlap of regions, both measured in number of superpixels (lines 5 and 6). For the
example regions in Fig. 7.6, the width and height of a region is 2 superpixels and the
overlap is 1 superpixel. Changing these numbers can be used to vary the amount of
overlap and to generate regions of different sizes from a single superpixel segmentation.

In line 7 the superpixel segmentation is computed. The remaining lines 8-20 of the
main loop are dedicated to the computation of the regions using the superpixel label im-
age. For the conducted index arithmetic, it is assumed that the superpixels are arranged
grid-like and the labels are in column major order. For each region (x, y), the superpixel
label index at the top left corner is computed (lines 10 and 11) and subsequently all
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Fig. 7.6.: (left) Illustration of the superpixel groupings to obtain the SP-Grid regions for the
(3× 3) layer. All (2× 2) groups of neighboured superpixels are combined and result
in 9 regions. (right) Visualization of the region overlap: the same regions are added
iteratively to a common visualization - each image shows the corresponding region
from the left visualization and also all prior regions.

Fig. 7.7.: Example images from Nordland and the resulting SP-Grid superpixel layers.
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Algorithm 4: Outline of the algorithmic steps for creating the set of SP-Grid
regions.

Data: Image
Grid resolution for each scale: Grid
Width and height of a region in superpixels: nSpPerRegion
Overlap of regions in superpixels: spOverlap

Result: Set of regions: R

1 (Optionally) Resize the image;
2 Initialize empty set of regions R=∅;

3 foreach Scale level s of the grid configuration do

// Get grid resolution for the current scale level

4 (nx, ny) = getGridSize(Grid, s);

// Get size of the superpixel segmentation

5 nSpX = nx · nSpPerRegion - (nx-1) · spOverlap;
6 nSpY = ny · nSpPerRegion - (ny-1) · spOverlap;

// Compute the superpixel label image, superpixel labels

// have to be arranged column major order

7 L = performSuperpixelSegmentation(I, nSpX, nSpY);

// Create regions by collecting (nSpPerRegion × nSpPerRegion)

// groups of segments

8 for y=1:ny do

9 for x=1:nx do

// Get superpixel label coordinates of top left corner

10 xTL = (x-1) · (nSPperRegion-spOverlap)+1;
11 yTL = (y-1) · (nSPperRegion-spOverlap))+1;

// Collect all superpixel labels for this region

12 labels = ∅;
13 for yy=yTL:yTL+nSpPerRegion-1 do

14 for xx=xTL:xTL+nSpPerRegion-1 do

15 labels = labels ∪ {(xx-1) · nSpY + yy};
16 end

17 end

// Compute region from superpixel labels and include in R

18 R = R ∪ {getRegionFromSuperpixels(L,labels)};

19 end

20 end

21 end

Parameter Value

Grid resolutions (1× 1), (2× 2), (3× 3), (4× 4), (5× 5)
Resulting number of regions 55
Superpixel algorithm vlSLIC (compactness=30k)
Width and height of a region 2 superpixels
Region overlap 1 superpixel
Image rescaling factor 0.5

Table 7.2.: Default parameters for the SP-Grid
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Fig. 7.8.: Example SP-Grid regions for images from Nordland spring, GardensPoint day, Alder-
ley day and the same place at Alderley night (subset of 20 regions per image shown).

(nSpPerRegion × nSpPerRegion) labels are collected (lines 12-17). Line 18 collects
the resulting regions. They can be obtained from a merging of the assigned superpixel
areas or by any other combination (e.g. simply the bounding box containing all assigned
superpixels).

The proposed idea of a superpixel-grid-based local region detector can be realized in
various ways. While the presented algorithmic listing provides detailed computation
steps, there are also some parameters and other important decisions involved, e.g. the
choice of the superpixel segmentation algorithm. An extensive evaluation of these degrees
of freedom is beyond the scope of this thesis. The choice of the grid configuration is
reasoned by a first place recognition experiment in the previous section.
Suitable superpixel algorithms have been evaluated in the first part of the thesis,

e.g. SLIC and Compact Watershed are suitable choices. In particular, the vlSLIC
implementation showed to be the best grid-like segmentation in terms of segmentation
quality and stability. While the proposed Preemptive SLIC implementation is more
than 10 times faster than vlSLIC, if runtime really matters, than the novel Compact
Watershed algorithm (that runs at about twice the speed of Preemptive SLIC) should
be considered. A comparison can be found in the Appendix A.4.
So far, no special efforts have been made to optimize or evaluate the SP-Grid parame-

ters, they are obtained empirically from a very small set of basic experiments. Example
regions can be seen in Fig. 7.8. Section 7.7 will include extensive evaluation results of
SP-Grid using the default configuration given in table 7.2. An important question in the
evaluation will be whether the proposed SP-Grid outperforms the fixedly arranged grid
at place recognition in changing environments.
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7.4.3. Superpixel based weighting of scale space extrema

Superpixels can also be used to post-process keypoint regions to identify important
parts of the region. The SIFT descriptor incorporates a somehow similar mechanism by
Gaussian weighting of the gradient magnitudes to assign higher importance to the inner
part of the described region. For CNN-based descriptors, dependent on the used network,
the descriptor computations also inherently assign higher importance to the centre of the
input image patch - a mechanism that arises from the nature of the training data where
the important image content is often in the middle of the training patches. However,
for both approaches, the weighting does not incorporate the particular image content or
the region that is described.
To reduce the described region to the particularly interesting part, [Navarro et al.,

2014] propose to combine SIFT keypoints with superpixels. They use the SIFT-DoG
detector to extract local regions from an image and the SLIC superpixel algorithm to
segment the image. Each local region detected by SIFT-DoG is subsequently divided
into the k superpixels that cover at least 25 % of the region area. An individual SIFT
descriptor is computed for each of these k parts by removing all pixels from the patch of
the SIFT-DoG region that are not associated to the current superpixel and computing a
SIFT descriptor for the resulting patch. This results in k SIFT descriptors for each SIFT-
DoG region (even more if the descriptor is oriented and multiple principal orientations
occur). According to [Navarro et al., 2014], the descriptor distance of two SIFT-DoG
regions with k1 and k2 such parts is determined by the minimum distance between any
pairing of the k1 · k2 parts.
This increases the computational complexity of the region comparison and is supposed

to increase the visual ambiguity by increasing the number of descriptors and reducing the
information that is contained in each descriptor. While the idea of removing distracting
information caused by the inclusion of the background in the detected local region is
appealing, relying on a single segmentation to separate foreground and background is
supposed to be prone to errors.
Therefore, we propose an alternative, straight forward approach on post-processing

local regions obtained from scale space extrema in [Neubert and Protzel, 2015b]. Starting
from a set of scale space extrema detected using SIFT-DoG, we compute an importance
weight matrix of the size of the image patch that is used to compute the descriptor for
this region. Examples are illustrated on the right part of Fig. 7.9. Each entry in this
weight matrix is intended to represent the probability that the corresponding pixel of
the local region belongs to the foreground of this region.
There is no clear distinction between foreground and background of a SIFT-DoG

region. In particular, the scale of the used inner Gaussian of the difference-of-Gaussians
can not directly be applied since the image patches typically involved in the descriptor
computation are much larger. As a reminder, for a typical SIFT descriptor, the radius
of the described image patch is six times the scale of the inner Gaussian [Lowe, 2004].
However, an intuitive assumption is that if there are homogeneous image regions that
intersect with a SIFT-DoG region to a small fraction but largely lay outside the region,
then they more likely belong to the background than homogeneous image regions that
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Scale space extrema

Segment soup

Input image

Resulting weights

Fig. 7.9.: Superpixel-based reweighting. From the input image, scale space extrema (e.g. SIFT-
DoG) and a segment soup are computed. From the overlap of the segments and the
scale space extrema, a weighting of each cell of the rectangular image patch that is
input for the CNN can be computed. The intention is to get high weight (hot colour)
for cells that belong to many superpixels that have high overlap with the region.

are located completely inside the SIFT-DoG region.
In [Neubert and Protzel, 2015b], we propose to evaluate this simple criterion based

on superpixels. Instead of relying on a single segmentation, we compute a segment soup
that combines multiple segmentations of the same image as described in section 7.4.1.
For each segment of the soup we compute the intersection over union (IoU) as described
in section 6.2.3. As a reminder, given a set A comprising the pixel of the SIFT-DoG
region and a set B with the pixels of the superpixel, the IoU is computed as

IoU(A,B) =
|A ∩B|
|B ∪A| (7.3)

The values of the weight matrix are computed as the mean IoU of all superpixels
that comprise the corresponding pixels of the local region patch. If a pixel is contained
in many superpixels that overflow the local region boundaries, the resulting weight is
smaller than for pixels that belong to superpixels that are in accordance with the local
region.
These weights can later be used to adapt the importance of descriptor dimensions -

the part of the descriptor that describes the foreground should be weighted higher than
the parts that describe the background. As a reminder, the feature vector obtained
from the used network layer is a tensor with a spatial structure. Each dimension of
the descriptor has a receptive field in the described image patch. The theoretical size
of the receptive field can be computed from the network parameters. However, Zhou
et al. [2014] found the practically relevant receptive fields to be much smaller. For a
(k × k) spatial layer of the tensor representing the input patch, we assume each of the
values to represent the corresponding area of a non-overlapping (k× k) grid tessellation
of the input patch. This tessellation is shown as black grid in Fig. 7.9. Given this
mapping of superpixel-based weights to dimensions of each layer of the CNN tensor and
the particular interesting case of comparing CNN based descriptors using the cosine
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distance (which is basically a scalar product), these weights can simply be multiplied
element-wise with the corresponding dimensions of the CNN descriptor. An evaluation
of this approach will be topic of section 7.7.3.

7.4.4. Object proposals

The generation of object proposals (or object candidates) is an established application
of superpixel segmentations. As already mentioned in the introduction to superpixel
segmentations in section 2, object proposals recently replaced the exhaustive search
based on the sliding window approach in many successful object detection pipelines. For
example the winning and second place object detection entries of the ImageNet Large
Scale Visual Recognition Challenge 2013 (ILSVRC13) [Russakovsky et al., 2015] both
build on object proposals [van de Sande et al., 2014; Wang et al., 2013], as well as
the 2014 winning entry, Region-based Convolutional Network (R-CNN) [Girshick et al.,
2014].
Many of the available object proposal algorithms build directly on superpixel seg-

mentations or use related techniques. Although they were not designed for usage as
landmarks for place recognition, they can somehow be seen as the next higher level
above superpixels in the hierarchy from raw pixels to objects. Therefore, we included
them in the set of promising local region detectors for place recognition in changing
environments in [Neubert and Protzel, 2015b]. Very recently, [Sünderhauf et al., 2015b]
also used an object proposal algorithm, EdgeBoxes [Zitnick and Dollar, 2014], for place
recognition in changing environments. The following object proposal algorithms are
included in the set of potential landmarks related to superpixel segmentations:

1. Randomized Prim’s (RP) [Manen et al., 2013] uses a greedy algorithm for com-
puting sets of FH superpixels that are likely to occur together.

2. Objectness [Alexe et al., 2012] is one of the earliest approaches and samples and
ranks a large number of windows per image according to their likelihood of con-
taining an object. This likelihood is based on multiple cues derived from saliency,
edges, superpixels, colour and location.

3. EdgeBoxes [Zitnick and Dollar, 2014] use the set of edges also used for super-
pixel computation based on [Dollár and Zitnick, 2013] to compute a simple box
objectness score. Edges are grouped into contours and the objectness score is the
difference between edges on contours completely inside a box and those crossing
the box boundary.

4. Multiscale combinatorial grouping (MCG) Arbelaez et al. [2014] uses a fast imple-
mentation of normalized cuts superpixels and computes a bottom-up hierarchical
image segmentation to obtain object proposals. Similar to EdgeBoxes, MCG also
incorporates the fast edge computation presented in [Dollár and Zitnick, 2013].

Object proposal algorithms were designed as preprocessing steps for object detection
to reduce the number of sliding windows that are classified to a much smaller set of
promising candidates. However, the number of typically used object proposals is in the
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Algorithm Parameters Implementation

Objectness n=50 http://groups.inf.ed.ac.uk/calvin/objectness/

RP q=200 https://github.com/smanenfr/rp#rp

EdgeBoxes BSDS model https://github.com/pdollar/edges

MCG “fast” version, maxOverlap=0.9 https://github.com/jponttuset/mcg

Table 7.3.: Source of the used implementations and parameters that are different from defaults
for the object proposal algorithms. All websites last accessed 2015-08-15.

Fig. 7.10.: Example MCG regions for images from Nordland spring, GardensPoint day, Alderley
day and the same place at Alderley night (subset of 20 regions per image shown).
Each region is a combination of a set of superpixels.

order of several hundreds or thousands. For the application as local landmarks in the
proposed place recognition system, a smaller number of about 50 regions is used. Either
by using the object proposals with the highest score of the proposal approach or, if there
is no such score available, we greedily select regions with low pairwise overlap. The used
implementations and the parameters are listed in table 7.3. Example regions for MCG
and EdgeBoxes object proposals can be seen in Fig. 7.10 and 7.11. Sections 7.6 and 7.7
will present results on region repeatability and place recognition performance.

Contribution 7.3 This section proposed the SP-Soup, SP-Grid and superpixel based
reweighting as novel approaches to incorporate superpixel segmentations in local region
detection. As an additional approach, related to superpixel segmentations, it further
proposed the application of readily available object proposal algorithms for landmark de-
tection.
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Fig. 7.11.: Example EdgeBoxes regions for images from Nordland spring, GardensPoint day,
Alderley day and the same place at Alderley night (subset of 20 regions per image
shown). Although obtained from edge cues, the EdgeBoxes are rectangular regions
- hence the name.

7.5. How to measure the repeatability of local region detectors

The detection of local regions is the first step in the processing chain illustrated in
the initial Fig. 7.1 of this chapter. If this step fails, subsequent processing steps can-
not be expected to remedy the resulting problems in this simple feed forward pipeline.
Therefore, region detectors that can repeatedly detect well localized image features are
necessary. For the particular application of place recognition, the following criteria are
supposed to be crucial:

1. location repeatability and accuracy

2. selection of salient regions in the context of the dataset

3. a distribution in the image that supports place recognition

4. reasonable size for the subsequent descriptor computation

Before evaluation of the proposed superpixel based local region detectors in place
recognition experiments, I want to evaluate them independently of any descriptor or
matching step. The idea is to evaluate an upper bound of the place recognition per-
formance that could be achieved with a particular detector - if it would be combined
with a perfect descriptor and matching scheme. However, from the above enumeration
of requirements on the local region detectors for application on place recognition, the
selection of salient regions and the suitable distribution of regions in the image are rather
hard to evaluate independently of a particular place recognition task. For the first cri-
terion, the localization repeatability and accuracy, Mikolajczyk et al. [2005] provide a
suitable and established metric. In [Neubert and Protzel, 2015b], we propose a novel
criterion that builds upon this metric but further allows for incorporation of the size of
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the detected regions. These two metrics will be presented in the following two sections.2

7.5.1. Size-normalized IoU

In their influential work, Mikolajczyk et al. [2005] provide a methodology for evaluating
the repeatability of feature detectors in terms of the localization accuracy. In principle,
their approach is the following: Given two images IA, IB of the same scene and the
transformation TAB between these images (i.e. the ground truth optical flow), they
detect features in both images and evaluate their overlap. Given the sets of pixels
PA, PB constituting the spatial image support of two features f i

A from IA and f j
B from

IB, the overlap is computed as the intersection over union (IoU):

IoU(f i
A, f

j
B) =

|TAB(P
i
A) ∩ P j

B|
|TAB(P i

A) ∪ P j
B|

(7.4)

For example, f i
A, f

j
B may be SIFT features, P i

A, P
j
B are all pixels of the corresponding

ellipses, and TAB(P
i
A) are the pixels of the SIFT ellipse of f i

A transformed to the image
space of IB.

An important step in their evaluation is a normalization with respect to the features’
sizes. They show that the performance of a region detector in their measure can be im-
proved by simply increasing the size of the detected regions. Therefore, they compute for
each feature comparison IoU(f i

A, f
j
B) a rescaling factor that normalizes the size of f i

A to
a given diameter and applies this rescaling to both features. This makes different region
detectors comparable. However, the authors clearly point out that such a normalization
should not be applied for real applications of these feature detectors.

7.5.2. Size-sensitive IoU

Our experiments with image features for place recognition in changing environments
support the hypothesis of a real dependency between the features’ sizes and the resulting
place recognition performance. For example, typical seasonal changes induce severe
appearance differences at small scales: leaves change their shape and colour, snow and ice
cover meadows, rain modifies the reflective properties of surfaces and so on. In contrast,
the appearance of coarser structures is supposed to be more persistent: mountains,
buildings, streets and trees change their detailed appearance but are likely to remain at
the same global configuration.
To evaluate the fourth criterion of the above listing, the size of the provided local

regions, we present a modified criterion in [Neubert and Protzel, 2015b]. There, we
propose to use the same IoU criterion as Mikolajczyk et al. [2005], but in combination
with another normalization procedure. The objective is to measure the feature matching
performance that can be achieved with a given feature detector incorporating the size of
the regions. Given two sets of detections FA = {f1

A, f
2
A, ...), FB = {f1

B, f
2
B, ...), from two

images with known optical flow TAB, we transfer all features to the same image space

2Sections 7.5.1 and 7.5.2 are published in very similar form in [Neubert and Protzel, 2015b].
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and assign to each feature of FA the maximum IoU between this feature and a feature
from FB:

IoUmax(f
i
A, FB) = max

f
j
B
∈FB

IoU(f i
A, f

j
B) (7.5)

These pairs are the combinations with the highest rate of common pixels and thus
(approximately) the highest rate of common world points. This is supposed to represent
an upper bound for what could be found by matching based on real image descriptors.
If there are no feature pairs with sufficient overlap detected, the best feature descriptor
will fail to match the images.
As a measure for the repeatability, we can then simply count for a set of image pairs

the average rate of features whose IoUmax exceeds a threshold t. More formally the
average of:

Rt(IA, IB) =
1

|FA|
· |{f i

A ∈ FA : IoUmax(f
i
A, FB) > t}| (7.6)

To evaluate the repeatability of a feature detector, we compute a curve showing the
average rate of detections Rt for a set of thresholds t.
Since we do not apply the normalization of [Mikolajczyk et al., 2005] on the feature size,

there is a bias towards large regions in the IoU. On the one hand, this effect is intended
to obtain features whose appearance is less affected by the environmental changes, on
the other hand we need to prevent that feature detectors gain significant performance
just due to the region size. Therefore, we evaluate the amount of overlap of features
between corresponding scenes relative to the average overlap when comparing random
pairs of scenes. The resulting curves presented in the results section show the average
rate of detections per corresponding image exceeding the expected rate of ”detections“
in random images. Thus, artificial enhancement of the pure overlap performance that
is not related to real image features also enhances the overlap on random scene pairs
and does not affect the measure. And in contrast, if larger regions really increase the
rate on common world points compared to random image pairs, then this results in an
improved performance measure. For this normalization, all regions have to be described
in normalized image coordinates if the images have different dimensions.

Contribution 7.4 This section presented a novel, size sensitive measure for the eval-
uation of local region detectors.

7.5.3. Benefit of the novel metric - Evaluating the scale of SIFT-DoG

I want to clearly point out, that the second proposed metric is not intended to replace
the measure by Mikolajczyk et al. [2005]. The localization accuracy, as measured by
Mikolajczyk et al. [2005], can be regarded as a necessary property of a local region
detector. Although localization accuracy alone is not a sufficient condition (e.g. think
of the discriminative power of the regions), we can not expect a local region detector to
perform well in a place recognition task without detecting repetitive regions.
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Good performance on the proposed criterion is not a necessary property of a region
detector - in particular, since it measures the repeatability of regions from correspond-
ing images compared to random images. All region detectors that use fixedly arranged
patches will not exceed a value of zero in this measure due to this normalization. How-
ever, the proposed adapted measure is intended to provide additional insights on the
influence of the size of the regions on the overlap of the detected regions that are hidden
by the normalized size in the original metric.
I want to illustrate the difference of the IoU metric of Mikolajczyk et al. [2005] and the

novel size-sensitive variant on results of differently rescaled versions of the SIFT-DoG
local region detector.
Why are there differently scaled versions? For the typically used combination of the

SIFT DoG-based detector and the SIFT descriptor, the size of the image patch that is
used for the descriptor has to be determined. The DoG based scale space extrema de-
tector provides a radius r that is obtained from the standard deviation of the smaller (or
inner) Gaussian. In the here presented experiments, the resulting region with this radius
r is called SIFT-DoG-1. In [Lowe, 2004], the spatial support for the SIFT descriptor is
rescaled by factor 6, in particular it is the rectangular patch with edge length 2 · r · 6.
In the here used naming scheme, this ”original“ local region detector used in SIFT is
called SIFT-DoG-6. Based on the assumption, that place recognition in changing en-
vironments in combination with sophisticated CNN descriptors may benefit from larger
regions, SIFT-DoG-12 and SIFT-DoG-15 are interesting candidates for a comparison.
In this experiment, I use a 100 image subset of the Nordland spring-winter training

dataset of section 5.1.1 as a basis for the landmark repeatability evaluation. To deal
with the remaining synchronization problems (illustrated in the appendix Fig. A.12),
the image pairs are manually synchronized by sampling the video at full framerate and
selecting the best matching frame by manual, visual inspection of the overlayed edge
images. The original dataset consists of image pairs showing the same scene, from the
same viewpoint at different seasons. To prevent, in particular, superpixel segmentation
algorithms from exploiting the image alignment, the first image is cropped on the left
side and the second image on the right side. This is equivalent to a shift of about 12.5
% of the image width.
Fig. 7.12 illustrates the difference of the IoU metric of Mikolajczyk et al. [2005] and the

novel size-sensitive variant. Since the two IoU based metrics differ in the normalization
procedure, the non-normalized IoU rate of equation 7.6 is also included.
The left column shows the detection rate without normalization. There is a strong

preference of larger regions for the whole spectrum - although we can not expect larger
regions to be better in general. This is in accordance with the observations of Mikola-
jczyk et al. [2005]. Therefore, they propose the size-normalized metric whose results are
shown in the middle of the figure. There, all SIFT-DoG variants perform identically,
independently of the rescaling factor. However, there is of course an influence of the
size of the region on the performance of the local region detector in combination with
a descriptor. The results of the proposed size-sensitive measure of the previous section
7.5.2 can be seen in the right part of the figure. The proposed metric can identify the
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Fig. 7.12.: Results of SIFT-DoG using three overlap criteria. The overlap criterion without
normalization prefers large segments. The normalized criterion presented by Miko-
lajczyk et al. [2005] solves this problem but hides the real existing amount of overlap.
The proposed measure in the right column evaluates the real overlap that exceeds
random by normalization with random image pair comparisons.

influence of the scale of the regions on different amounts of overlap. As a reminder, it
provides for each overlap threshold the detection rate that is not caused by random but
by the repeated selection of image regions. For the small SIFT-DoG-1 regions, there
are almost no regions with high overlap. The default SIFT-DoG-6 provides the broad-
est range of overlaps for which high detection rates are provided. However, the further
enlarged DoG regions, i.e. SIFT-DoG-12, provide even higher detection rates for large
overlaps - at the cost of detections with low and mid amounts of overlap.
Simply rescaling regions is expected to result in decreased robustness to viewpoint

changes - an issue that can be approached using the superpixel-based reweighting pro-
posed in section 7.4.3. There is no dataset at hand providing seasonal changes, severe
viewpoint changes and ground truth optical flow for evaluation including viewpoint
changes based on these metrics. To evaluate these combined influences section 7.7.3 will
evaluate the place recognition performance of these different SIFT-DoG variants

Result 7.2 The proposed IoU-metric can provide insights on local region detectors at
different scales.

Result 7.3 SIFT-DoG-12 is a promising alternative to the default SIFT-DoG-6 for
the later experiments on place recognition in changing environments.

7.6. Experimental results on the repeatability of local region

detectors in changing environments

In this section I want to evaluate the presented local region detectors independently
of a particular place recognition experiment. This is based on the size-normalized and
size-sensitive overlap metrics presented in the previous section 7.5. In particular, the
detectors are evaluated independently from a descriptor - purely based on the overlap
of detected regions. The overall questions will be: What are good region detectors for
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Fig. 7.13.: Results of the comparison using the two overlap criteria. (left) The size-normalized
criterion by Mikolajczyk et al. [2005]. (right) The proposed size-sensitive measure.

changing environments? In particular, are the superpixel based approaches of section
7.4 competitive? The comparison includes the following local region detectors:

• the two keypoint based detectors SIFT-DoG-6 and MSER

• the plain superpixel algorithms FH, EAMS, and QS, and the superpixel soup
SP-Soup

• the fixedly arranged Grid and the superpixel grid SP-Grid

• the object proposal algorithms RP, Objectness, EdgeBoxes and MCG

As a reminder, all algorithms are configured to create about 50 regions per image using
the settings and parameters provided in section 7.4, i.e. tables 7.1, 7.2 and 7.3

Comparison of different local region detectors

Again, the used dataset are the shifted Spring-Winter images (the same that were already
used in the first experiments using these measures in section 7.5). The resulting curves
for the compared region detectors can be seen in Fig. 7.13. SIFT-DoG-6 is a region
detector known to perform well in non changing environments. The place recognition
results on the Nordland Spring-Winter dataset presented in the previous section 7.7.1 in
combination with the CNN descriptor showed a reasonable performance of this detector
for this kind of appearance change. Thus, SIFT-DoG-6 can be used as an indicator for
a reasonable performance. For example, for this type of environmental change, MSER
keypoints showed to be much less repetitive in this experiment.
From the plain superpixel segmentation based approaches, FH performs best and is

thus a reasonable choice for inclusion in the segment soup - which is the combination
of three FH segmentations as described in section 7.4.1. The SP-Soup provides more
regions with high overlap than the plain superpixel segmentations. In particular, the
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size-sensitive measure shows the benefit of the segment soup over single segmentations
(to be clear, both have the same number of regions, the regions in the single segmentation
are simply smaller).
From the comparison of the object proposal algorithms, EdgeBoxes and MCG perform

comparable to SIFT-DoG-6 at the necessary size-normalized criterion. For Objectness
we use the 50 features with the highest objectness-score. For RP we force the regions
to be as different as possible to obtain the 50 features. This may prevent them from
providing better repeatable features. EdgeBoxes clearly outperforms all other detectors
at the size-sensitive measure. Presumably, this is to some extent due to the distribution
of the EdgeBoxes in the image. They tend to group around a few salient image parts
which results in high overlap for corresponding image pairs and low overlap for random
image pairs where these few salient image parts may be located very differently. The
influence on the resulting place recognition performance will be topic of section 7.7.4.
The Grid curve shows a characteristic shape. The uniform plateaus and sharp declines

are due to the fixedly arranged boxes (at multiple scales) that provide the regions.
Dependent on the shift between the compared images, this shape is expected to look
quite different. In the absence of any shift, the grid creates perfect overlapping regions.
However, this is not what is expected for real world application, including viewpoint
changes. Dependent on the amount of shift, potentially, there will be no regions with
high overlap as is shown in the experiment with 12.5 % shift.
The proposed adaptation of the fixed grid with a superpixel segmentation, SP-Grid,

described in section 7.4.2 significantly smooths the curve of Grid - in particular we can
hope for regions with high overlap for all reasonable amounts of shift. The resulting
benefit for place recognition of using the SP-Grid instead of the fixed Grid will be
evaluated in section 7.7.2. Before comparing Grid and SP-Grid, I want to evaluate
the set of promising region detectors from this comparison on datasets with different
amounts and types of environmental change.

Result 7.4 From this comparison, SIFT-DoG-6, SP-Soup, SP-Grid, EdgeBoxes and
MCG are promising candidates for local region detectors in changing environments.

The influence of changing environments

The reasonable performance of the SIFT-DoG-6 detector in combination with a CNN
descriptor shown in Fig. 7.17 illustrated that this detector can be used even in the pres-
ence of changing environments (as a reminder, the combination with the SIFT descriptor
failed). However, this is supposed to depend on the severity of the appearance changes.
In this section, I want to approach an answer to the question, how the performance of
local region detectors depends on the type or severity of the environmental change.
The evaluation is based on datasets with varying amount of environmental change

obtained from stationary webcams. A number of webcams from all over the world
provides their imagery online. They observe and record the visual appearance of a
variety of outdoor scenes over long periods of time. The used datasets are created from
the Webcam Clip Art dataset presented in [Lalonde et al., 2009]. The data available
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Fig. 7.14.: Example image pairs of the webcam dataset. The rows from top to bottom: Sunny-
Cloudy, Day-Nightfall, Day-Night and Non changing environment datasets.

online3 is a subset of the data used in the paper. It provides images from 54 webcams,
on average captured about every 30 minutes over the course of more than six months,
resulting in about 10,000 images per webcam.
To get image pairs that show the same place with a certain environmental change, we4

selected example images according to the labels sunny, cloudy, nightfall and night. Since
the IoU based evaluation requires information about the ground truth optical flow in the
images, we can only use static webcams and apply synthetic image modification for which
the resulting ground truth pixel wise associations are known. Thus, images for which
the webcam moved from its initial position are removed (what happens occasionally over
the course of several months). The evaluation is based on five datasets:

1. Sunny-Cloudy contains 50 places, each in sunny and cloudy weather conditions.

2. Day-Nightfall contains 50 places using the sunny condition and imagery from
dusk or dawn.

3. Day-Night contains the 39 places for which there are night images. This dataset
is smaller since some webcams are switched off at night or provide more or less
useless black images during night.

4. Spring-Winter is the same Nordland validation data subset used above.

5. Non changing environment contains 50 places shown in consecutive images
from the database. On average, the time delay between the images is 30 min-
utes. However, while each pair is taken from similar environmental conditions, the

3http://graphics.cs.cmu.edu/projects/webcamdataset/ [Last accessed: 2015-08-14]
4Thanks to the two interns Max Becker and Lukas Voigtländer for their help on collecting the data.
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conditions between different pairs vary.

Fig. 7.14 shows example image pairs of the webcam datasets. While the shown
image pairs share the same viewpoints, for the conducted experiments the viewpoints
are synthetically modified in the same way as the Norland images before (shifting the
images horizontally followed by cropping). It can be seen, that the Day-Nightfall and
Day-Night datasets share some characteristics. The Non changing environment contains
image pairs with varying amounts of appearance change - for each place the change that
happened in the 30 minutes between the two images were captured. While the position
of the webcams is static, there are still some moving objects that are not regarded in the
used ground truth. The amount of moving objects depends on the type of scene. Since
many webcams show landscapes, there are only few dynamic objects of relevant size in
the datasets.
Fig. 7.15 shows the performance of the set of promising local regions detectors on dif-

ferent datasets with increasing severity of the environmental change. It is obvious that
there is a large influence of the type of environmental change on the performance of the
local region detectors. In general, the performance of the evaluated detectors decreases
from non changing environments over Sunny-Cloudy and Spring-Winter to Day-Nightfall
and Day-Night. Fig. 7.16 shows the comparison of the results for all detectors on the sim-
plest (Non changing environment) and the hardest (Day-Night) environmental change.
It can be seen, that SIFT-DoG-6 performs superior in the non changing environment
but it is strongly affected by the severe appearance changes occurring during day-night
cycles. The regions detected by SP-Grid have a strong prior on their location and size in
the image. Thus, they are much less affected by environmental changes. While SP-Grid
is supposed to perform inferior for non changing environments, for place recognition in
changing environments with reasonable assumptions about camera motion, it seems to
be a promising alternative.

Result 7.5 SIFT-DoG-6 is a reasonable detector for non changing environments.
With increasing severity of the changes, its performance drops. For severe appearance
changes, in particular the regions generated by the proposed SP-Grid are a promising
alternative.
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Fig. 7.15.: Detection rates for promising local region detectors and different types of environ-
mental changes.
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Fig. 7.16.: Comparison of different detectors on the same dataset. These are the same curves
as in Fig. 7.15 but grouped with respect to the datasets.

7.7. Experimental results on place recognition in changing
environments

The experimental results presented in the following are intended to answer the following
questions:

Section 7.7.1 Is there a benefit of the proposed place recognition scheme based
on local region detectors, CNN based descriptors and the Star-
Hough image matching scheme?

Section 7.7.2 Is there a benefit from using the proposed superpixel grid over the
fixed grid?

Section 7.7.3 What is the influence of the proposed superpixel based importance
weighting of regions obtained from scale space extrema?

Section 7.7.4 What is the overall place recognition performance of the proposed
system on different datasets showing changing environments?

The evaluation of place recognition experiments is based on precision-recall curves sim-
ilar to the SP-ACP evaluation from the previous chapter 6. Details on the computation
of the precision-recall curves can be found in section 5.3. However, there are some no-
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Fig. 7.17.: The place recognition performance improvements achieved by using two of the con-
tributions of this chapter: The local region detector+CNN based landmarks and
the proposed Star-Hough matching scheme. The local region detector for the land-
marks is SIFT-DoG-6, the same as for SIFT. (A) original, aligned images, (S) images
shifted by 10 % of the image width.

table details on the evaluation based on these curves and the comparability of results that
will be mentioned in form of additional remarks in this section (i.e. notes 7.1 and 7.2).

7.7.1. Influence of the proposed landmark matching scheme

In the first set of place recognition experiments, I want to demonstrate the benefit from
two rather general contributions presented in this chapter: the local region detector +
CNN based landmarks and the Star-Hough image matching scheme. Fig. 7.17 shows
results on the Nordland Spring-Winter test dataset. Similar to the final results of SP-
ACP on the full Nordland journey presented in the previous chapter 6, a novel, unique
place is expected each 10 frames of the test sequence - this way, matching of more
nearby frames, that may be found by scale invariant region detectors, is not penalised.
The influence of this parameter will later be seen in experiments in section 7.7.2. Further,
frames where the train stopped or passed through a tunnel were removed.
The solid black curve in Fig. 7.17 shows the performance of image matching based

on SIFT keypoints - the combination of SIFT-DoG-6 regions and SIFT descriptors. As
repeatedly reported in the literature, this approach has severe problems with changing
environments. The solid blue curve shows the performance of a single holistic CNN
descriptor as described in [Sünderhauf et al., 2015a] - the performance is clearly superior
to the SIFT keypoint matching. However, the performance of the holistic approach
drops significantly in the presence of viewpoint changes. The dashed curves show the
performance on shifted images of the Norldand dataset. Shifting and cropping each
image by 10 % of the image width creates an artificial viewpoint change (more exactly

190



7.7. Experimental results on place recognition in changing environments

a rotation). This viewpoint change causes the holistic CNN descriptor to fail.
Therefore, I proposed to use local region detectors together with CNN-based descrip-

tors to create local landmarks in this chapter. This idea is also presented in [Neubert and
Protzel, 2015b] and has congruently and independently been developed by Sünderhauf
et al. [2015b]. The red curves show the performance of an established local region de-
tector (SIFT-DoG-6) with the CNN descriptor using equation 7.1 to compute image
similarities from descriptor distances without using the landmarks spatial arrangement
(i.e. without Star-Hough). It can clearly be seen, that this approach is much more
robust towards the artificial viewpoint change compared to the holistic approach.

Result 7.6 The proposed combination of a local region detector and CNN based de-
scriptors provides reasonable results in the presence of severe appearance changes and
(artificial) viewpoint changes.

The computation of the image similarity from the novel landmarks used for the red
curves is very similar to what is done in Sünderhauf et al. [2015b]. Additionally incor-
poration of the proposed Star-Hough image matching scheme presented in section 7.3
yields a further significant performance increase shown in the green curves.

Result 7.7 The proposed Star-Hough image matching scheme can further significantly
increase the performance.

Since the green (CNN descriptor) and the black (SIFT descriptor) curves are computed
based on the same local regions (SIFT-DoG-6) and the same matching scheme, the
comparison shows that place recognition between spring and winter based on SIFT
keypoints (detector and descriptor) fails at the description step. Before we proceed
with further place recognition experiments in section 7.7.2, the following section will
evaluate the robustness of the detection step of SIFT (SIFT-DoG-6) and other local
region detectors (i.e. the superpixel based) towards environmental changes.

7.7.2. Is the superpixel grid better than a fixed grid?

Section 7.4 presented and motivated the superpixel grid (SP-Grid) as a novel local region
detector that creates regularly arranged regions that are aligned with image gradients.
Here, I want to investigate whether the superpixel grid provides a real existent benefit
compared to the default uniform grid (named Grid in the experiments).

From a more general (or theoretical) point of view: The first part of this thesis evalu-
ated superpixel segmentation algorithms and their properties. In particular, the bench-
mark of chapter 3 also included the regular BOX segmentation which is related to the
fixedly arranged Grid of this chapter. Superpixels showed to be better aligned with
object contours than the regular grid BOX segmentation in the quality benchmark in
section 3.4. In terms of repeatability (or stability) in the presence of image changes, the
performance showed to be dependent on the type of changes in section 3.5. For example,
superpixel segmentations are much more stable in the presence of image shifts, rotation
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Fig. 7.18.: Comparison of Grid and SP-Grid on the Gardens Point datasets, DayLeft-
NightRight and DayRight-NightRight. The solid lines show the result of the pro-
posed SP-Grid and the dashed lines the results of the fixed Grid. The different
colours indicate how restrictively image matchings are accepted, the maximum im-
age distance is: blue=̂1, red=̂3, and green=̂10. Please see text for details.

or shearing while the regular grid BOX segmentation is for example unaffected by image
noise. In terms of complex combinations of image changes, as they are measured by the
proposed MUSE metric in combinations with datasets with ground truth optical flow,
the performance of BOX depends on the amount of motion. For example for the KITTI
images obtained from a driving car, BOX segmentations are more affected than for the
Sintel data, with a more static camera and fewer moving objects. However, for the small
motion between consecutive video frames, as they are used in KITTI, and small segment
numbers, BOX can compete with some of the compact superpixel segmentation algo-
rithms. So the question is, whether the theoretical advantage of a compact superpixel
segmentation is large enough to result in a considerable benefit for place recognition.
I want to clearly point out that the intention of these experiments is not to evaluate the

chosen grid arrangement - it is considered sufficient to know that the choice is reasonable
(cf. section 7.4.2). To evaluate whether there is a benefit when using the SP-Grid instead
of the fixed Grid, Fig. 7.18 shows the results of both algorithms on place recognition
on the GardensPoint datasets presented in section 5.1.2. This dataset provides images
from the same scene at day time and during night with an optional lateral shift. An
example image triple showing the appearance change and the lateral shift can be seen on
the right part of Fig. 7.18. The resulting curves for the DayLeft-NightRight comparison
show a clear benefit from the usage of a SP-Grid.
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Fig. 7.19.: Comparison of the robustness of Grid and SP-Grid towards different amounts of
horizontal shifts in corresponding images. For shifts> 0% SP-Grid performs superior
to Grid in this place recognition experiment.

Marginal note 7.1 (Comparability of place recognition results I) The differ-
ent colours in Fig. 7.18 indicate the maximum distance of matched frames in the se-
quence that are accepted as showing the same place. GardensPoint and the other used
datasets comprise image sequences, not images of disjunct places. An example sequence
can e.g. be seen in Fig. 5.6. Typically this is handled by subsampling a set of disjunct
places or by allowing matching images up to a certain distance in the original sequence -
the effect of this distance can be seen by the differently coloured curves in Fig. 7.18. Such
variations in the evaluation hamper the comparability of results from different papers -
similar to the different results shown for the NC superpixel algorithm in Fig. 3.1.

For this comparison of Grid and SP-Grid, the overall place recognition performance
(of course) increases with less restrictive distances. However, SP-Grid always outper-
forms Grid in the presence of viewpoint changes. The right plot shows the results on the
GardensPoint dataset without viewpoint change - there, the fixedly arranged Grid per-
forms somehow better. To more precisely evaluate the influence of viewpoint changes, we
can use the aligned Nordland images in combination with artificial viewpoint changes.
Therefore, a second set of experiments is conducted using 186 uniformly sampled places
from the Nordland Spring Winter validation dataset. The place recognition results for
different amounts of horizontal shift can be seen in Fig. 7.19. It is obvious that the
SP-Grid clearly outperforms the fixed Grid for all non zero amounts of shift. For the
chosen (and presumably not optimal) choice of the initial grid arrangement described
in section 7.4.2, a shift of 5 % of the image width seems to constitute a critical case.
The regions of the fixedly arranged Grid show only small overlap for this shift, while for
larger shifts, the overlap increases since regions now overlap with the regions correspond-
ing to their neighbours in the grid. This is a somehow periodic behaviour with different
frequency for each layer of the grid. The evaluation of the region overlap in Fig. 7.13
showed that the SP-Grid smooths the average overlap compared to the fixed Grid since
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the superpixels adapt the initial grid to the image content. While this may decrease the
performance for perfectly aligned images, place recognition based on the SP-Grid shows
to be more robust against viewpoint changes - in particular for the critical shifts.
The following section 7.7.4 will include a comparison of the performance of SP-Grid

with the other local region detectors. It will, in particular, refer to these critical shifts
using data from the full Nordland journey.

Result 7.8 The proposed SP-Grid showed to be less sensitive to viewpoint changes
than the fixed Grid. In particular, critical shifts that badly correspond to the region
distribution in the fixed Grid can be better handled by the adaptive regions of SP-Grid.

7.7.3. Is there a benefit from superpixel based reweighting of scale space
extrema?

In this section, I want to show results on the importance weighting of regions obtained
from scale space extrema based on a segment soup. This approach was proposed in
section 7.4.3. The evaluation of different scales of SIFT-DoG regions based on the
proposed size-sensitive measure in section 7.5 showed that larger regions than SIFT-
DoG-6, i.e. the regions with twice the radius SIFT-DoG-12, may provide higher detection
rates of features with very high overlap (cf. Fig. 7.12). In particular in combination with
powerful CNN descriptors and the assumption that many appearance changes occur at
small scales (e.g. a tree may loose its leaves but its overall shape is supposed to be
more stable) an evaluation of the potential benefit of the larger SIFT-DoG-12 regions is
interesting.
Larger regions are supposed to be more sensitive to viewpoint changes and partial

occlusions - exactly the issue that is in the focus of the proposed superpixel based
reweighting of descriptor dimensions proposed in section 7.4.3. As a reminder, the
idea is to assign high importance to those parts of the region, that are associated with
superpixels that have high overlap with the region. In contrast, parts of the regions that
are assigned only to superpixels that strongly overflow the region boundaries (e.g. 90 %
of their area is outside the region) are considered to be more likely to belong to the less
important background. Example region weights were illustrated in Fig. 7.9.
Fig. 7.20 shows results for the Alderley, GardensPoint and Nordland datasets. The

comparison comprises the default SIFT-DoG-6, the regions located at the same positions
but with twice the diameter SIFT-DoG-12, and the results of additional incorporation of
the superpixel-based reweighting SP-SIFT-DoG-6 and SP-SIFT-DoG-12. On the origi-
nal and shifted version of the Nordland Spring-Winter dataset, all SIFT-DoG variants
perform similar. In particular, the simple artificial viewpoint change on the shifted
datasets does not cause partial occlusions or other effects of real viewpoint changes that
could hamper the enlarged regions. However, it can be seen, that the superpixel-based
reweighting does not negatively affect the place recognition performance.
The evaluation of the repeatability of local region detectors in changing environments

presented in section 7.6 revealed problems of SIFT-DoG in the presence of severe ap-
pearance changes. This can also be seen by the overall performance on place recognition
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Fig. 7.20.: Results for different SIFT-DoG variants: Scale factors 6 and 12, with and without
superpixel based importance weighting (SP-SIFT-DoG).

on the Alderley and GardensPoint day-night datasets in Fig. 7.20. The comparison of
the performance to other local region detectors and in particular the other superpixel
related approaches is topic of the following section 7.7.4.
However, in terms of the here compared SIFT-DoG variants and the severe appearance

changes of the Alderley dataset (sunny day and rainy night), there is a clear benefit from
using larger regions and a smaller additional benefit from the reweighting. The results
on the GardensPoint dataset are similar. The presence of an additional viewpoint change
(GardensPoint DayLeft-NightRight) causes a performance decrease at high recall for the
larger regions - this decrease can be compensated by the superpixel-based reweighting.
However, the GardensPoint dataset is a quite small and later experiments will reveal
that results on this dataset vary considerably (cf. Fig. 7.25). Thus, these results are
considered preliminary and more work will be necessary to investigate the influence of
the resizing and the superpixel-based reweighting on the robustness towards viewpoint
changes. However, a promising observation is:
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Fig. 7.21.: Results on Nordland Spring-Winter. To allow a comparison with results from the
literature (in particular [Sünderhauf et al., 2015b]), the plot in the middle shows the
same results with a different method to compute the precision recall curves, see note
7.2 for details. Nordland image credits: NRKbeta.no, cf. section 5.1.1.

Result 7.9 The combination of the larger DoG regions with the superpixel-based
reweighting (SP-SIFT-DoG-12) improves place recognition in the presence of severe ap-
pearance changes (e.g. the Alderley dataset) and showed to always perform at least on
par with the default SIFT-DoG-6 in all other experiments. However, more evaluation
on robustness to viewpoint changes is necessary.

7.7.4. Comparison of local region detectors for place recognition in
changing environments

So far, we know from the previous sections:

1. The proposed local region+CNN based landmarks and the novel Star-Hough image
matching scheme perform superior to existing approaches (cf. section 7.7.1).

2. SIFT-DoG-6, SP-Grid, SP-Soup, EdgeBoxes and MCG are promising candidates
to provide repetitive local regions for place recognition in changing environments
(cf. local region detector comparison in section 7.6).

In this section, I want to compare these local region detectors in combination with the
CNN based descriptor and the Star-Hough matching scheme by means of place recog-
nition experiments. Although the insights obtained from visual inspection of individual
image matchings are somehow limited, example landmark matchings based on the dif-
ferent regions detectors can be seen in Fig. 7.23, 7.27 and 7.28.
Fig. 7.21 shows the resulting curves for comparison on the aligned Nordland Spring-

Winter test dataset (the same setup as in section 7.7.1). The right part of the figure
shows example images from this sequence. The curves in the left plot show a large
benefit from using the proposed SP-Grid regions compared to the established SIFT-
DoG-6. These two approaches perform superior to the compared methods, in particular
EdgeBoxes reveals problems.
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Marginal note 7.2 (Comparability of place recognition results II) The left
plot in Fig. 7.21 shows precision-recall curves of a place recognition experiment. It
can be seen that the image similarities provided by EdgeBoxes (the yellow curve) should
not be used on this dataset. The plot in the middle of this figure shows another pre-
cision recall curve using the same image similarities - however, this curve indicates a
reasonable performance. This second curve is generated with the evaluation method used
in [Sünderhauf et al., 2015b] and similar to the there presented results of EdgeBoxes on
this dataset. The difference between the two methods is not in the computation of image
similarities - but how true and false matchings obtained from the image similarities are
counted.

In the left plot, the procedure described in section 5.3 is used: Given the similarities
between all possible image matchings, they are divided into matchings and non-matchings
based on a threshold t. All matchings that correspond to a ground truth matching are
counted as true positives, all matchings that do not correspond to a ground truth matching
are false positives, false negatives are all image pairings from the ground truth that are
not in the set of matchings. From these three values, a point on the precision-recall curve
is computed, the threshold t is varied to obtain a curve.

In contrast, Sünderhauf et al. [2015b] allow only a single matching for each place and
evaluate the ratio of the similarity between the best and the second best matching for each
place. While none of the two evaluation methods is in general better than the other, they
measure different properties and result in significantly different curves. The here used
evaluation method penalises algorithms that match single places to multiple false places.
This can not happen in the evaluation of [Sünderhauf et al., 2015b] since they allow only
matchings to a single previously seen place - however, in practical scenarios multiple
revisits of the same place are realistic. For comparison, I also included the Holistic
CNN and the proposed SP-Grid in the single-matching plot. Both clearly outperform
EdgeBoxes in this measure as well.

However, this example confirms the implication of Fig. 3.1 in chapter 3: it is not
possible to use a published curve directly for comparison to the own results.

Fig. 7.22 demonstrates the influence of an artificial viewpoint change by shifting the
images 5 % of the image width - this showed to be the most critical case for SP-Grid in
the previous experiments shown in Fig. 7.19. The performance of SP-Grid clearly drops.
However, it shows to be significantly more stable than the holistic approach even in this
particular challenging configuration for SP-Grid. The performance of the other region
detectors drops slightly while keeping the order from the aligned setup. SIFT-DoG-6 is
almost not affected by this shift and performs superior to SP-Grid in this setup.

So far, all place recognition experiments have been done on the Nordland spring-winter
dataset. The evaluation of the sensitivity of local region detectors to appearance changes
in section 7.6 showed that there are more challenging scenarios, e.g. day-night cycles.
From the possible seasonal combinations of the Nordland sequences, fall-winter showed
to be the most challenging and summer-fall the easiest in our previous evaluation in
[Sünderhauf et al., 2013]. Fig. 7.24 shows the results on these two seasonal combinations
using the original, aligned images. In accordance to the previous results [Sünderhauf
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Fig. 7.22.: Results on the Nordland Spring-Winter dataset with artificial viewpoint changes.
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However, this showed to be the most challenging case for the SP-Grid in the previous
experiments and is sufficient to significantly decrease the performance of the holistic
approach. Nordland image credits: NRKbeta.no, cf. section 5.1.1
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Fig. 7.23.: Example landmark matchings on Nordland Spring-Winter. The left image pairs
show the (up to) ten most similar left-right matchings for two images of the same
place, the right images show two different places.
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Fig. 7.24.: Results on the Nordland fall-winter and summer-fall combinations. The images
on the right show two example places at different seasons. From top to bottom:
summer, fall, winter. Nordland image credits: NRKbeta.no, cf. section 5.1.1
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Fig. 7.25.: Results on GardensPoint day-night datasets. GardensPoint image credits: Arren
Glover, cf. section 5.1.2

et al., 2013] and the results of SeqSLAM and SP-ACP presented in section 6.5, summer-
fall is the much easier case than fall-winter. However, it can be seen that SP-Grid not
only shows the best performance but the benefit for using the SP-Grid further increases
for the more challenging dataset.

The next level of changing environments are day-night cycles. The left side of Fig. 7.25
shows the place recognition results on the GardensPoint DayRight-NightRight dataset
(with traversals on the same side of the path, image matchings are allowed up to distance
three in the sequence). For this type of appearance change, the SIFT-DoG-6 revealed
problems in the region repeatability evaluation in section 7.7.1. In accordance with
this observation, the severe appearance changes between the day and night images of
the GardensPoint dataset results in inferior performance of SIFT-DoG-6. The SP-Grid
shows reasonable performance but is clearly outperformed by EdgeBoxes.
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Fig. 7.26.: Results on Alderley - the most challenging place recognition experiment. Alderley
image credits: [Milford and Wyeth, 2012], cf. section 5.1.3

However, the same experiment with an additional viewpoint change induced by travers-
ing the path on the other side, reveals a somehow surprising performance drop of
EdgeBoxes. This can be seen in the middle part of Fig. 7.25 showing results of the
GardensPoint DayLeft-NightRight dataset. In contrast, the performance of the second
object proposal algorithm MCG considerably increases. The object proposal algorithms
are intended to find regions that are likely to contain an object in an image, they are not
designed to find repetitive landmarks. The example image triple shown on the right side
of Fig. 7.25 shows that due to the viewpoint change, salient objects like the bench and
the table on the very right can disappear - however, this can not explain why the perfor-
mance of MCG improves. Presumably, further visual inspection of individual matchings,
as they are shown in Fig. 7.27, could help to find an explanation. However, the route of
the GardensPoint dataset is rather small compared to the other datasets, which makes
it more sensitive to individual effects on few images.

A significantly larger track is provided by the Alderley dataset presented in section
5.1.3. This dataset comprises two drives through a suburb, one at a sunny day and the
other during a rainy night with low visibility. Example images of these severe appearance
changes can be seen in the right part of Fig. 7.26, example landmark matchings can be
seen in Fig. 7.28. The resulting curves shown in Fig. 7.26 reveal two insights: (1) This is
by far the most challenging dataset in this evaluation. (2) The benefit from using the SP-
Grid regions increases. For these low visibility conditions, the SP-Grid regions converge
to a regular grid in the absence of considerable image gradients due to the compactness
constraints of the used superpixel algorithms - this constitutes a reasonable default set
of regions. In particular, this is in contrast to the SP-Soup that adapts to even very
small image gradients due to the absence of compactness constraints.
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Fig. 7.27.: Example landmark matchings on the GardensPoint DayLeft-NightRight dataset.
Again, the left image pairs show the (up to) ten most similar left-right matchings
for two images of the same place, the right images show two different places.
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Fig. 7.28.: Example landmark matchings on the Alderley dataset. Again, the left image pairs
show the (up to) ten most similar left-right matchings for two images of the same
place, the right images show two different places.
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Result 7.10

1. For low amounts of appearance change but considerable viewpoint changes, SIFT-
DoG-6 is a reasonable region detector for combination with a CNN based descriptor.

2. The performance of the object proposal algorithms and the SP-Soup vary consid-
erably dependent on the dataset.

3. SP-Grid is the best choice for well aligned images. In presence of viewpoint changes
it showed to be more stable than the fixedly arranged Grid but more sensitive than
e.g. SIFT-DoG-6.

4. For severe appearance changes, as they occur e.g. in Nordland Fall-Winter or in
the Alderley dataset, the proposed SP-Grid is the best choice.

7.8. Summary of achieved results and directions for future work

Topic of this chapter was place recognition in changing environments based on local
image features. Before the concluding chapter 8 of this thesis will discuss the achieved
results of this chapter in the overall context of place recognition in changing environments
and in particular their relation to the holistic SP-ACP approach of the previous chapter
6, I want to summarize the results obtained in this chapter.
This chapter presented the novel ideas of CNN based landmarks and the Star-Hough

image matching scheme. It further described a set of novel approaches to incorporate
superpixel segmentations in landmark detection: using stable segmentations directly in
form of a segment soup (SP-Soup), using compact segmentations to create a set of adap-
tive and overlapping regions from an initial grid tessellation (SP-Grid), an importance
weighting based on a superpixel soup (SP-SIFT-DoG) and the usage of object proposal
methods.
The combination of local region detectors + CNN based descriptors + Star-Hough

showed promising place recognition performance. In particular, it enables to use estab-
lished region detectors like SIFT-DoG-6 for a wide range of appearance changes where
they could not be used before (cf. the black curves in Fig. 7.17).
From the set of superpixel related approaches, the novel superpixel grid approach SP-

Grid presented in section 7.4.2 provided a significant improvement in many experiments,
in particular for severe appearance changes. The key idea was to adapt a regular grid
with a superpixel segmentation to increase robustness against viewpoint changes. This
benefit, compared to a fixed grid, has been shown in section 7.7.2.
This approach has some similarities with the patch verification step proposed by Mil-

ford et al. [2013]. However, they use a holistic approach to select candidates and subse-
quently validate the candidates based on comparison of rectangular patches. Although
the patches are tested for small position deviations, the holistic candidate selection step
is supposed to be sensitive for viewpoint changes. However, this method is one of the
very few for which reasonable results were presented for single image similarity on the
Alderley dataset. Unfortunately, to the best of my knowledge, there is no implementa-
tion available and, as has e.g. been shown in Fig. 7.22, the plain curves from different
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experimental setups cannot be compared.
In the here presented experiments including critical viewpoint changes, i.e. the shifted

Nordland dataset, local regions provided by SIFT-DoG-6 perform superior to the SP-
Grid - this is supposed to happen for other datasets with severe viewpoint changes and
only moderate appearance changes as well. However, the chosen initial grid arrangement
for the superpixel grid is reasonable, but no special efforts have been made on optimiza-
tion - in particular not for the test datasets. For example, if we expect considerable
lateral shift but only small longitudinal offset, a higher horizontal than vertical resolu-
tion of the grid and accordingly higher region overlap may be preferable (while retaining
the total number of landmarks). Also, the number and distance of the different scales in
the grid may be improved. If additional rotations in the image plane are expected, an
orientation could be assigned to each grid region similar to the method used for SIFT
descriptors.
Regarding the usage of SIFT-DoG regions for place recognition in changing environ-

ments, the presented experiments indicate a benefit in case of larger scaling factors than
are typically used (i.e. by the originator of SIFT [Lowe, 2004]). This result was obtained
based on the novel size-sensitive measure for the repeatability of local region detectors
presented in section 7.5 and validated on place recognition experiments in section 7.7.3.
In particular, the combination with the proposed superpixel-based reweighting of sec-
tion 7.4.3 showed promising results. However, the results in combination with viewpoint
changes are somehow preliminary and should be subject to future research.

The other superpixel related approaches showed reasonable performance, however,
with considerable variations. None of these approaches, neither the segment soup nor the
object proposal algorithms, was designed for creation of repetitive landmarks. However,
in particular the available object proposal algorithms may be a promising foundation for
”landmark proposal“ algorithms (a term coined by Niko Sünderhauf). Regarding the
superpixel segment soup, a saliency measure could be used to select distinctive regions
from the soup.
A lot of parameters of the system were kept fixed to reduce the complexity of the

evaluation, e.g. the number of landmarks. With respect to the remarks on the compu-
tational efforts of CNN features in section 7.2, also higher number of landmarks can be
used and may further improve the performance. For all presented approaches to incorpo-
rating superpixel segmentations in local region detection, reasonable but presumably not
optimal parameter settings were used. A more detailed investigation of the approaches
and their parameters is expected to yield further improvements. This also holds for the
proposed usage of CNN descriptors and the novel Star-Hough image matching scheme.
Regarding the fact that the used CNN has been trained for a completely different task
(image classification), a considerable improvement can be anticipated from a network
particularly trained for recognizing landmarks across severe appearance changes.
So far, the place recognitions are obtained from single image comparisons. In partic-

ular for severe appearance changes (e.g. the sunny day and rainy night on Alderely),
exploiting even short sequences of images may considerably reduce the number of false
positive matchings. The similarities obtained from the proposed system can directly by
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fed into a sequence matching approach, e.g. the SeqSLAM back-end.
Moreover, SP-Grid showed the best performance in the presence of severe appearance

changes, SIFT-DoG-6 showed the best robustness to viewpoint changes - there is no
reason that prevents the usage of a combination of both types of landmarks in the
proposed system. However, the best approach how to combine these different landmarks
is a interesting direction for future work.
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And it’s not just a list of hog wash

That we’ve done in the past

It’s a chronicling of our rise to power

Tenacious D, from the song “History”, 2006

8
Conclusions

This final chapter summarizes the achieved insights and discusses open questions of
both parts of this thesis. A special focus will be on practical considerations on place
recognition in changing environments. In particular, I want to compare the achievements
obtained from the two novel place recognition approaches presented in chapters 6 and
7 - to show the relation between both and to summarize the improvements towards
existing methods. This will demonstrate how close we are to a solution for some types
of environmental changes and what are open problems.

8.1. What has been achieved - Summary of the main

contributions

At first glance, the topics of the two parts of this thesis, superpixel segmentations and
place recognition in changing environments, appear quite unrelated. However, the novel
ideas presented in the second part revealed a benefit from using the tool superpixel
segmentation for a solution to the problem place recognition in changing environments.
From a rather abstract point of view, the nature of contributions to the two related fields
also show some commonalities - in both parts there are contributions on four levels:

1. Algorithmic approaches to solve a particular problem

In the first part of this thesis, chapter 4 presented two novel superpixel segmentation
algorithms: Preemptive SLIC and Compact Watershed. Preemptive SLIC uses a local
preemption criterion and code optimization to speed up the computations and save about
80 % of the runtime compared to the original SLIC algorithm (a speed up of factor
5). The second algorithm, Compact Watershed uses compactness constraints to turn
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seeded Watershed segmentation from an oversegmentation algorithm into a compact
superpixel approach while remaining the fast runtime - the proposed novel algorithm
showed to be the fastest compact superpixel algorithm available (∼ 100 Hz on images of
size 481 × 321) and can, for example, be used in the SP-Grid of chapter 7.

In the second part, chapter 6 presented the novel concept of appearance change predic-
tion for place recognition in changing environments and an algorithmic implementation
based on superpixels, SP-ACP. The image is split into superpixels which can be asso-
ciated to words of a learned vocabulary. Using training data of image pairs showing
the same scenes at different environmental conditions and pixel level associations be-
tween the images, a dictionary can be learned. The dictionary is used to translate words
between superpixel vocabularies. From these translations, a predicted image can be
generated. The incorporation of this additional prediction step showed to improve the
place recognition performance in changing environments in combination with existing
holistic place recognition approaches (BRIEF-Gist and SeqSLAM).
In terms of using local features for this particular place recognition task, chapter 7

introduced the novel combination of local region detectors with powerful CNN based
descriptors. Moreover, the proposed Star-Hough image matching scheme can compute
image similarities based on landmarks with low spatial position precision and high num-
ber of outlier matchings. It showed to further significantly improve place recognition
performance. This novel place recognition system (CNN and Star-Hough) can be used
with established region detectors, e.g. the detector used in SIFT keypoints. This com-
bination shows reasonable performance for moderate appearance changes and provides
the highest robustness to viewpoint changes. Finally, a set of novel, superpixel based
local region detectors has been proposed - most notable a multiscale superpixel grid,
SP-Grid; but also a segment soup, superpixel based importance weighting and the us-
age of object proposals for landmark detection. Particularly in the presence of severe
appearance changes, using SP-Grid in the novel place recognition system, outperforms
all other compared methods.

2. Novel metrics to evaluate properties of algorithms

Besides novel algorithms, this thesis also worked on the evaluation of the properties of
these algorithms and how these properties can be measured. The first part of this thesis
showed the need for a standardized benchmark for superpixel segmentation algorithms.
To overcome this issue, in a first step, a set of important properties of these algo-
rithms has been identified: segmentation quality, runtime, stability and compactness.
In particular for detailed analysis of the latter two properties, there were no evaluation
methodologies available. Therefore, chapter 3 presented novel metrics to measure these
properties, most notably the motion undersegmentation error MUSE and the motion
discontinuity error MDE. These measures exploit datasets with known ground truth
optical flow to evaluate stability and compactness of superpixels. Other proposed mea-
sures for the segmentation stability were metrics for the robustness towards affine image
transformations and image noise. In terms of compactness, it is further proposed to use
the weighted isodiametric quotient and the standard deviation of the superpixels’ size.
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In terms of metrics, the second part of this thesis used the established evaluation
of place recognition experiments based on precision-recall curves. However, chapter 6
presented novel evaluation methodologies to obtain insights on the properties of super-
pixel descriptors and vocabularies for their usage in the proposed SP-ACP approach. In
particular, section 6.3 proposed a method to evaluate the amount of semantic meaning
provided by a superpixel word based on conditional entropy. This was used to justify the
assumptions made in the proposed appearance change prediction approach. In terms of
local image features, the novel size-sensitive region overlap measure, derived from the
established method by Mikolajczyk et al. [2005] and presented in section 7.5, revealed
novel insights on the influence of the scale factor in local region detectors - i.e. it in-
dicated a potential benefit from using larger scale factors in SIFT-DoG for changing
environments.

3. Experimental comparison

According to Richard P. Feynman, “[t]he principle of science, the definition, almost, is
the following: The test of all knowledge is experiment. Experiment is the sole judge of
scientific truth.“ [Feynman et al., 1963, p. 1] Both parts of this thesis provided exten-
sive experimental evaluation. The superpixel benchmark in the first part of this thesis
compared the segmentation quality, stability, compactness and runtime of 14 implemen-
tations of existing and novel superpixel algorithms - using existing and novel metrics.
This is intended to be a useful source of information for users to select a superpixel al-
gorithm for the task at hand and for researches to compare new algorithms to the state
of the art.

In terms of place recognition in changing environments, of course, a lot of place recog-
nition experiments using novel and existing methods have been conducted. Moreover,
chapter 6 also included experimental comparisons of superpixel descriptors and vocabu-
laries. Further, chapter 7 provided an experimental evaluations of the robustness of local
region detectors towards appearance changes, independently of a particular descriptor
or place recognition experiment. For place recognition in changing environments, only
a few ready to use solutions are available. To the best of my knowledge these are
SeqSLAM, FAB-MAP and holistic CNN descriptors. The results sections of the chap-
ters 6 and 7 provided extensive experimental evaluation of the proposed novel algorithms
and included a comparison to these available methods. The section 8.3 will summarize
the achievements by bringing the results of the two novel approaches and the existing
methods in a joint picture.

4. Sustainability - Open source implementations

An additional important insight is the fact that results from different papers often cannot
be compared directly - even if they seem to use the same dataset and metric. This became
obvious in both parts of the thesis:

• The curves from different papers showing the performance of the NC superpixel
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segmentation algorithm, using the BSDS dataset and the boundary recall metric
in Fig. 3.1.

• The evaluation of EdgeBoxes landmarks on the Nordland dataset based on preci-
sion recall curves in Fig. 7.21.

One way to approach this problem is to provide all the necessary details to reproduce
the same results - for example in form of an available implementation of the own work.
In particular, I provide open source Matlab toolboxes for the superpixel benchmarks.
They include implementations of the used metrics and additional functions to run the
benchmarks on new algorithms. Newly presented algorithms can be compared to the
existing superpixel methods using these implementations - download the toolbox and
the datasets, configure a YAML file to incorporate the new algorithm and wait for the
resulting curves to appear amongst those of the existing algorithms.
Further, I provide an open source implementation of the novel place recognition sys-

tem including the CNN based descriptors, the Star-Hough image matching and the
most promising local region detectors. This is intended to serve as novel indicator of
the state-of-the-art performance on place recognition in changing environments and as
baseline method for comparison of novel approaches. Moreover, higher level routines
that require a module for computation of image similarities in the presence of severe
appearance changes can integrate this implementation. Details on the availability of the
implementations can be found in section 1.3.

8.2. What are open problems in terms of superpixel

segmentations?

The standardized superpixel benchmark, presented in the first part of this thesis, ad-
dressed the problem of contradicting results on superpixel comparison in the literature. It
was used to compare available implementations of algorithms. Although the presented
comparison included various superpixel algorithm implementation, the comparison is
not exhaustive. Most importantly, this is due to the limitation to the comparison of
fast algorithms (and NC due to its historical relevance) with an available implementa-
tion. However, there are other algorithms that might be interesting candidates for a
further extension of this comparison - they can be integrated easily using the available
implementation of the benchmark.
The experimental comparison conducted in chapter 3 was used to identify two direc-

tions for improvements: a faster version of SLIC and compact segments from the very
fast Watershed - novel algorithms for both were proposed in chapter 4. In terms of the
development of further novel superpixel algorithms, an interesting observation is that
most existing algorithms are optimized for segmentation quality and/or runtime. Al-
though new algorithms that achieve even higher boundary recall at lower runtime will
still be valuable, in my opinion, novel algorithms should better address the more diverse
requirements of the particular applications, e.g. segmentation stability and compactness.
Pushing superpixel algorithms towards these properties is supposed to impair other
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properties like segmentation quality - a question of finding the best trade-off. Chapter 3
showed a trade-off between segmentation stability and compactness for the available al-
gorithms. Stable algorithms like FH are less compact and segmentations from compact
algorithms like SLIC are less stable. The application of superpixels for landmark de-
tection in chapter 7 revealed a somehow surprising benefit of using compact instead of
stable segmentation algorithms. This is an example of an application that is supposed to
benefit from new algorithms with a better adjusted trade-off to be considered compact
and stable - a possible direction for future work. For example: What about a superpixel
algorithm particularly designed for creation of a SP-Grid, e.g. a compact-FH?

From a rather abstract point of view, I see three general issues of superpixel algorithms:

1. They still make hard decisions about possible object boundaries.

2. Superpixels are created purely bottom-up.

3. The algorithms are almost always purely hand engineered.

As stated in the introduction to segmentation in section 2.1, segmenting the single
foreground object from an image is an ill-posed problem. This is in particular due to
the fact that the correct solution depends on higher-level knowledge about the task.
Superpixel segmentations deal with this problem by providing an intermediate level
image representation that can be used to create many different segmentations - however,
these are not all possible segmentations that could be generated from the input image.
The number and size of the superpixels somehow define a minimum scale at which details
of the image are represented and at which objects can be distinguished in later processing
steps. This is both, benefit and drawback of superpixels - it reduces the complexity for
subsequent processing steps, but makes hard decisions prematurely. Dealing with this
trade-off is a major challenge, in particular for those who just want to use superpixels
for a certain task and have to chose an algorithm and its parameters.
For this and other reasons, a better interaction between the superpixel segmentation

process and the higher level task seems valuable. Superpixels are typically created purely
bottom up. The incorporation of top-down information in the segmentation process may
help to create better superpixels for the particular task. Object proposal algorithms are
an example for a processing step that uses superpixels, but may also feed useful infor-
mation back to the superpixel creation process, e.g. about the expected size or shape
of the expected objects. However, this requires novel superpixel algorithms that can
incorporate such high level information. Currently, almost all superpixel segmentation
algorithms are purely hand engineered. In particular the incorporation of such top down
information could be approached by learning mechanisms - e.g. similar to the very re-
cently presented end-to-end learning of semantic segmentation using fully convolutional
neural networks [Long et al., 2015].
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Fig. 8.1.: This figure summarizes the achievements with respect to place recognition in changing
environments. The two proposed approaches perform superior to the state-of-the-art
methods. Moreover, in contrast to the proposed landmark based approach, the holistic
CNN and SeqSLAM are known to fail in the additional presence of viewpoint changes.
This was, for example, shown in Fig. 7.22 and Fig. 7.25 - there, the proposed local
landmark based approach showed to be much more robust to viewpoint changes.

8.3. Place recognition in changing environments - Where are
we at the question where are we?

Finally, I want to compare the tow novel approaches to place recognition in changing
environments, discuss open questions and directions for future work.

8.3.1. How do the two novel approaches compete?

The chapters 6 and 7 presented two novel approaches to the same problem. An obvious
question is: How do the two approaches compete to each other and to the state-of-the-art
methods? Fig. 8.1 shows the result of this comparison. From chapter 6 the combination
of the proposed appearance change prediction system SP-ACP with SeqSLAM and from
chapter 7 the SP-Grid showed the best performances. For the comparison of these two
approaches, one has to keep in mind that SeqSLAM matches sequences of images - its
performance on the Nordland dataset improves with increasing sequence length. For this
comparison a reasonable sequence length of ds=5 is used. Further, the SeqSLAM imple-
mentation already selects a single best matching for each image. To allow comparable
results, all approaches have been run on the full Nordland Spring-Winter test dataset
and the same single image matching scheme has been applied to all methods - hence,
the curve for the SP-Grid shows better precision-recall than in chapter 7 (for details,
please refer to the description of precision-recall curves in section 5.3). For speedup, the
CNN descriptor used for SP-Grid is approximated based on binary hash functions as
described in section 7.2. This will be further discussed in section 8.3.2.
The results presented in Fig. 8.1 show that FAB-MAP cannot handle the appearance
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changes induced by the different seasons. SeqSLAM and the holistic CNN are avail-
able methods that provide reasonable performance on this datasets - however, both are
holistic approaches and known to fail in the presence of additional viewpoint changes
(cf. Fig. 7.22 and 7.25). In accordance to the results presented in section 6.5, the ad-
ditional appearance change prediction step using the proposed SP-ACP implementation
improves the performance of SeqSLAM. The novel landmark based approach using the
SP-Grid regions of chapter 7 performs superior to all other methods. Moreover, this
local landmark based approach showed to be robust against viewpoint changes.
Regarding the practical applicability, the two presented approaches are quite different.

The proposed idea of appearance change prediction of chapter 6 is a rather abstract or
theoretical approach. Although the presented superpixel based implementation showed
to improve the performance of existing place recognition approaches, the strong require-
ments on the training data and the unclear generalization capabilities prevent a direct
practical application. Moreover, the artefacts introduced during creation of the predicted
images prevent the combination with local region detectors and can even decrease place
recognition performance in case of non changing environments. The final section of
chapter 6 discussed possible approaches to overcome these limitations.
In contrast, the novel landmark based system presented in chapter 7 is a ready-to-use

approach. It showed very promising results on various datasets, showed to be robust
to viewpoint changes and provided reasonable results even in case of severe viewpoint
changes. It outperformed the available methods and thus improved the state of the art in
this field. Moreover, the final section of chapter 7 presented several promising directions
for further improvement based on the proposed ideas.

8.3.2. Is the problem of place recognition in changing environments solved?

No - however, in terms of computing image similarities, we got really far. The pro-
posed landmark based system showed very promising place recognition performance in
the experiments. Moreover, chapter 7 provided directions for future work including par-
ticularly trained CNN descriptors, exploiting image sequences and the combination of
contrasting local region detectors. This may further improve the presented precision
recall curves.
However, this is just the basis for a practical solution to the problem of place recogni-

tion in changing environments. One has to keep in mind that place recognition is more
than the computation of image similarities. And long term navigation is more than
recognizing places despite severe appearance changes.

From image similarities to place recognition

Fig. 8.2 shows examples for places that could be successfully matched despite severe ap-
pearance changes and also failure cases. On the Nordland dataset, the missed matchings
in the third row also provides a high similarity - however the images of the false matching
of the second row are even more similar. For the really severe appearance changes of the
Alderley dataset, the overall image similarities are smaller. There, it is not surprising
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Nordland: Spring and Winter

Alderley: Sunny Day and Rainy Night

Fig. 8.2.: If we would define a place matching as the single most similar image from the
database, these would be examples of good and bad place recognitions. For both
datasets, the top row shows true positive matchings and the second row false positive
matchings. The third row illustrates the true matching that should have been found
instead of the false matching in the second row.

to miss image matchings. However, to create a high similarity between images that are
not true matchings, individual false matchings of landmarks and a corresponding spatial
arrangement of these landmarks have to happen in combinations. If this higher image
similarity results in a false place recognition, depends on the subsequent processing steps.
The evaluation based on precision-recall curves enables a statistically profound com-

parison of the performance of place recognition algorithms. However, one has to keep
in mind what exactly is measured. This was demonstrated in Fig. 7.21, showing two
different precision-recall measures (cf. note 7.2). Moreover, both measures show a
precision-recall curve. To obtain the curve, a threshold is varied. This threshold decides
whether two images show the same place or not based on their similarity. In practice,
it may be hard to actually select this threshold - or in other words: to decide whether
two images show the same place or not. Presumably, a simple, fixed threshold will not
be enough in changing environments.
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8.3. Achievements and open questions regarding place recognition

For instance, think of the image similarity of two different Nordland places in summer,
and the similarity of two images of the same place, one from summer and the other from
winter. Recognizing a place based on a simple threshold poses a lower bound on the
image similarities - all images with a higher similarity are considered to show the same
place. However, the two summer images of different places might be much more similar
than the images of the same place taken in summer and winter. Therefore, the image
similarity should be evaluated in higher computational levels together with higher level
knowledge. In particular, information about the expected appearance changes and the
overall visual ambiguity in the database of priorly seen places (or at least the available
part). This is related to one of the presumably most challenging questions for place
recognition in changing environments: Is this a new place or an priorly seen place with
a changed appearance? Related work in these directions can, for example, be found in
[Cummins and Newman, 2011] and [Churchill and Newman, 2012]. However, there is
plenty of space for future work.

From place recognition to long term localization

A motivation for place recognition in changing environments is long term localization
and this can be expected to imply large datasets. With respect to practical applications,
a low runtime always sounds valuable. However, in contrast to, for example, tracking of
a keypoint across an image sequence, relocalization based on place recognition can be
expected to happen at a much lower frequency. To keep the computational efforts for
the overall place recognition chain feasible, the required time for an image comparison is
typically more important than that of the computation of the image features. For exam-
ple, given two image sequences, each with n images, the number of image comparisons
is n2 for an exhaustive comparison of all images.
This can be approached on two levels: We can speed up the individual comparison or

we can reduce the number of comparisons. Section 7.2 discussed the feasibility of using
CNN-based descriptors for practical application by presenting an approach from the
literature to speed up the comparisons based on binary hash functions. The resulting
slight decrease in place recognition performance can be seen in the right part of Fig.
A.13 in the Appendix. This procedure has also been used for the landmark descriptors
in the final comparison in Fig. 8.1. However, in preliminary experiments, these binary
hash functions showed to best approximate the distance of very distant CNN features.
For points located closer in the high dimensional space, the quality of the approximation
decreases. Since the binary hash functions are chosen randomly, an interesting question
might be whether they can be better selected to improve the approximation of very
similar CNN descriptors - and thus better distinguish very similar landmarks.
In terms of the overall runtime of the landmark based system, one could say that the

current Matlab implementation allows for a relocalization on the Nordland test dataset
in realtime - each 10 h journey was sampled at 0.1 Hz and the proposed landmark
based approach requires about 10 seconds to match an image to the whole 10 h dataset.
However, for application on larger datasets, this exhaustive comparison of all possible
image pairings becomes infeasible.
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Chapter 8. Conclusions

Approaches to this problem can be inspired by techniques used in information retrieval,
e.g. the visual vocabularies and inverted index used in FAB-MAP [Cummins and New-
man, 2011]. However, there might be other approaches that incorporate the particular
properties of changing environments. In very recent work presented in [Neubert et al.,
2015a], we propose an approach that is particularly suited to reduce the number of
comparisons for place recognition in these changing environments by exploiting intra
database similarities. Typically the database images are not affected by environmental
changes - the appearance changes happen between database and query images. We pro-
pose to split the place recognition in an offline phase (we already know the database
images) and a online phase (we revisit the area where the database images have been
captured and want to relocalize using a current query image). In the offline phase,
the database images are preprocessed to prepare the selection of matching candidates
in the subsequent online phase. This approach showed to save in many configurations
about 90 % of the comparisons at the online stage without considerable place recognition
performance loss.

Using higher level features and semantic information

Segmentation based landmarks can somehow be regarded as higher level features com-
pared to a simple corner point or scale space extrema. Although the best performing
approach, the SP-Grid, also deviates the most from this statement, it is reasonable at
least for object proposals and also segment soups. The caption of Fig. 7.2 asked: Isn’t
it an appealing idea to have segmentation based landmarks? In my opinion, a main
benefit of segmentation based landmarks is the potential semantic meaning that they
provide. The evaluation in section 6.3 showed that superpixel words provide information
about class labels. Object proposal showed to be a useful preprocessing step for object
detection. Incorporating and exploiting this semantic meaning is presumably one of the
most useful, interesting and challenging directions for future work.

In a nutshell, what is the recommended approach to compute image similarities in
changing environments?

Use the CNN based landmarks and the Star-Hough approach. For local region de-
tection: If there are only moderate appearance changes and severe viewpoint changes
SIFT-DoG-6 is a reasonable choice. In all other cases (i.e. severe viewpoint changes)
use SP-Grid. If runtime plays a role, use the binary hash functions (cf. section 7.2)
and Compact Watershed for the SP-Grid. The influence of both choices on the place
recognition quality can be seen in Fig. A.13 in the Appendix.

”This is the end. My only friend, the end.“
Jim Morrison, 1967

”Every new beginning comes from some other beginning’s end.“
Seneca
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A.1. Additional results Preemptive SLIC
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Fig. A.1.: Results of Watershed and Compact Watershed with varying compactness weights on
variation of segment sizes and compactness from isodiametric quotient.
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Fig. A.2.: Results of Preemptive SLIC on compactness from isoperimetric quotient. The left
figure is for the original label images and the right figure for the smoothing with a
morphological open of radius 5 as described in section 3.6.
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Fig. A.3.: Results of Preemptive SLIC on motion discontinuity error MDE.
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Fig. A.5.: Preemptive SLIC robustness to noise.
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Fig. A.6.: Preemptive SLIC results on motion undersegmentation error.
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A.2. Additional results Compact Watershed
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Fig. A.8.: Compact Watershed runtime and undersegmentation error. The runtime for WS does
not include the time for computation of the seeds - including the detection of the
local gradient minima that are used as seeds it runs even slower than the proposed
CWS.
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Fig. A.9.: Compact Watershed robustness to noise.
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Fig. A.10.: Compact Watershed results on motion undersegmentation error.
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Fig. A.11.: Robustness of Compact Watershed towards shifting, rotation, scaling and shearing.
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A.3. Additional details on the Nordland dataset

To extract the training and validation subset, we used the following avconv command
on the Linux command line:

avconv -i nordlandsbanen.winter.sync.1920x1080.h264.nrk.mp4

-vsync vfr -r 2 -t 1800 -ss 02:02:00 -s 854x480 image-%05d.png

For testing we subsampled the 10 h videos at 0.1 frames per second using the following
avconv command:

avconv -i nordlandsbanen.winter.sync.1920x1080.h264.nrk.mp4

-r 0.1 -vsync vfr -s 854x480 image-%05d.png

The quality of the image alignment is illustrated in Fig. A.12. While the alignment
for distant objects is quit good, for objects close to the rails, there are some deviations.

Fig. A.12.: Synchronization of Nordland images. The left and right images are the images from
the spring and winter sequences. The overlayed edge maps in the middle illustrate
the quality of the image alignment.

A.4. Using Compact Watershed for SP-Grid

Although the experimental results of the SP-Grid in chapter 7 have been obtained using
SLIC, the Compact Watershed segmentation can also be used to create SP-Grid regions.
The left part of Fig. A.13 compares the place recognition results when using SLIC or
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A.5. Using binary hash functions in combination with the proposed local landmarks
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Fig. A.13.: (left) Influence of using SLIC or CWS for SP-Grid. (right) Influence of using binary
hash functions (BHF) for approximation of the CNN based descriptor.

CWS. The superpixel benchmark of the first part of this thesis showed that SLIC creates
segments that are better aligned with objects and that are more stable than those of
CWS. This is in accordance with the place recognition results shown in Fig. A.13.
Although, CWS provides a very similar overall performance, in particular at the high
precision range of the Nordland curves, SLIC performs superior. Nevertheless, CWS is
a reasonable choice and can be used if runtime is important.

A.5. Using binary hash functions in combination with the

proposed local landmarks

CWS ca be used speedup the lcoal region detection of the SP-Grid. However, the detec-
tion of the regions is only done once per image and the descriptor distance computation
is done for each image comparison. Typically, the number of image comparisons is much
larger than the number of images, e.g. given two image sequences, each with n images,
n2 image comparisons are necessary for an exhaustive comparison. Moreover, in case
of 50 landmarks per image, each image comparison includes 2,500 descriptor compar-
isons. Therefore, a speedup of the image comparison has a larger effect than of the
region detection. Section 7.2 presented an approach from the literature to speed up
the comparisons based on binary hash functions. The resulting slight decrease in place
recognition performance can be seen in the right part of Fig. A.13.
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Theses

1. Superpixels are an established and useful intermediate level image representation
to deal with the ill-posed formulation of the image segmentation problem.

2. There are various approaches to generate superpixels, each with individual proper-
ties and different segmentation results. Important properties of superpixel segmen-
tation algorithms are segmentation quality, runtime, stability and compactness.

3. For some of these properties, there are established evaluation methodologies avail-
able. In particular, for segmentation stability and compactness this is not the
case. Datasets with known ground truth-optical flow can be used to evaluate the
stability and compactness of superpixel segmentation algorithms.

4. There is a lack of standardized benchmarks for this class of algorithms. In partic-
ular, there are contradicting results in the literature. The presented existing and
novel metrics can be used for profound evaluation of available algorithms.

5. The SLIC superpixel algorithm is based on a local k-means clustering with a holistic
preemption criterion. The runtime can be significantly decreased by the incorpo-
ration of a local preemption criterion.

6. The seeded watershed superpixel algorithm is a very fast oversegmentation algo-
rithm. It creates superpixel with strongly varying shape and size. The incorpo-
ration of compactness constraints in the watershed computation can be used to
create regularly shaped, compact superpixels at the same high speed.

7. Vision is an established source of information for mobile robot navigation. Op-
erating robots over the course of days, weeks or months based on visual naviga-
tion requires repeated recognition of places - despite severe appearance changes
as they are for example induced by illumination changes, day-night cycles, chang-
ing weather or seasons. Existing visual place recognition methods show severe
problems in the presence of such changes.

8. Place recognition in changing environments can benefit from learning systematic
appearance changes between different environmental conditions. In particular from
the novel idea of prediction of appearance changes.

9. The combination of superpixel segmentations and descriptors can be used to learn
superpixel vocabularies. The words of these superpixel vocabularies provide valu-
able amounts of semantic meaning. It is possible to learn systematic appearance
changes based on superpixel vocabularies and to predict images from one environ-
mental condition to another.

10. For a wide range of configurations of the superpixel vocabularies and the appear-
ance change prediction approach, existing holistic place recognition approaches can
benefit from an additional prediction step. A limitation of the approach are strong
requirements on the training data.

11. Holistic approaches to place recognition fail in presence of viewpoint changes. Us-
ing local image features is an alternative. This is commonly known and accepted
in the literature.
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12. The established interest point approach SIFT comprises a detection and a descrip-
tion step. With increasing severity of the appearance changes, the description step
fails before the detection step. For severe appearance changes, the detection step
is strongly affected as well.

13. Descriptors obtained from the lower levels of convolutional neural networks, that
are known to be beneficial for holistic image description in changing environments,
can also be used in combination with local region detectors. The computational
effort for using these descriptors is feasible for practical applications.

14. The proposed combination of star graph models and Hough voting can be used
to incorporate the spatial arrangement of local image features in the computation
of the image similarity. This approach is particularly suited for features with low
spatial position precision and high outlier rates as they are expected in the presence
of appearance changes. Incorporation of this approach improves the performance
of local region based approaches to place recognition in changing environments.

15. The superpixel segment soup, the multiscale superpixel grid, superpixel based im-
portance reweigthing of scale space extrema, and the usage of object proposals are
novel superpixel-related approaches to local region detection for place recognition
in changing environments.

16. The proposed superpixel grid is more robust to viewpoint changes than a fixed
grid.

17. The established approach to measure the repeatability of local region detectors
incorporates a normalization of the region size. Replacing this normalization with
a novel normalization based on the detections due to chance, reveals a dependency
of the detector performance on the scale of the region.

18. This measure indicates a benefit from larger region sizes than those of the typi-
cally used regions obtained from difference of Gaussian based scale space extrema.
The combination of these larger regions with superpixel based reweighting shows
promising results.

19. The proposed combination of local region detectors, descriptors based on convolu-
tional neural networks, and the star graph model and Hough voting based image
matching performs superior to available approaches to place recognition in chang-
ing environments.

20. The choice of the used local region detectors depends on the expected amounts
of environmental and viewpoint changes: Difference of Gaussian based scale space
extrema are a reasonable choice for minor appearance changes and severe view-
point changes. For any type of appearance change and somewhat aligned images,
the multiscale superpixel grid is preferable. For severe appearance changes, e.g.
between day and night, independent of the amount of viewpoint changes, the mul-
tiscale superpixel grid performs superior.
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1.2 Publikationen und Zusammenarbeit 16
1.3 Open Source Software Veröffentlichungen 17
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3 Über den Vergleich von Superpixel Verfahren 45
3.1 Einleitung 46
3.2 Beschreibung des Experimentalaufbaus 49
3.3 Laufzeit 58
3.4 Qualität 59
3.5 Stabilität 64
3.6 Kompaktheit 71
3.7 Zusammenfassung 78

4 Zwei neue Superixel Algorithmen: Preemptive SLIC und Compact
Watershed

81

4.1 Trade-offs in Superpixel Algorithmen 81
4.2 Preemptive SLIC: Beschleunigung eines hoch qualitativen Algorithmus 84
4.3 Ergebnisse von Preemptive SLIC 87
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Kurzzusammenfassung (Übersetzung)

Superpixel sind das Ergebnis einer Übersegmentierung von Bildern. Sie sind eine
bewährte Bildrepräsentation und werden beispielsweise für Objekterkennung, 3d Rekon-
struktion und semantische Segmentierung eingesetzt. Es existieren vielfältige Ansätze
solche Segmentierungen zu erzeugen, allerdings fehlen Erkenntnisse über deren Eigen-
schaften. Insbesondere sind in der Literatur widersprüchliche Ergebnisse zu finden. In
dieser Arbeit werden Qualität, Stabilität, Kompaktheit und Laufzeit als wichtige Eigen-
schaften identifiziert. Während für manche dieser Eigenschaften bewährte Methoden zur
Auswertung existieren, ist das für Stabilität und Kompaktheit nicht der Fall. In dieser
Arbeit werden zwei neue Metriken vorgestellt, die die beiden genannten Eigenschaften
basierend auf Informationen über den Optischen Fluss auswerten. Diese und andere neue
und existierende Maße werden verwendet, um einen standardisierten Benchmark für Su-
perpixel Algorithmen bereit zu stellen. Die Ergebnisse eines umfangreichen Vergleiches
existierender Algorithmen mit diesem Benchmark motivieren zwei neue Algorithmen, die
die Eigenschaften existierender Algorithmen besser ausbalancieren: Preemptive SLIC er-
weitert den existierenden SLIC Algorithmus mit einem lokalen Abbruchkriterium und
ermöglicht damit eine Beschleunigung um Faktor 5. Compact Watershed kombiniert
Seeded Watershed mit Kompaktheitsbedingungen, um regelmäßige, kompakte Super-
pixel Segmentierungen mit der gleichen hohen Geschwindigkeit des nativen Watershed
Algorithmus zu erzeugen.
Der Betrieb von autonomen Systemen mit visueller Navigation über die Dauer von Tagen,
Wochen oder Monaten erfordert die Wiedererkennung von Orten trotz schwerwiegender
Veränderungen durch wechselnde Beleuchtung, Tag-Nacht Zyklen, Wettereinflüsse oder
verschiedene Jahreszeiten. Der zweite Teil dieser Arbeit stellt zwei neue Verfahren vor,
um Superpixel für die Wiederkennung von Orten unter sich verändernden Bedingun-
gen zu nutzen. Der erste Ansatz ist das Lernen von systematischen Veränderungen.
Statt beispielsweise die Bilder aus Sommer und Winter direkt zu vergleichen, wird ein
zusätzlicher Vorhersageschritt vorgeschlagen. Basierend auf Superpixel Vokabularen wird
ein vorhergesagtes Bild erzeugt, wie die Sommerszene im Winter aussehen könnte oder
umgekehrt. Die erzielten Ergebnisse zeigen, dass unter bestimmten Anforderungen an
die Veränderungen und die Trainingsdaten, existierende holistische Vergleichsverfahren
von dem zusätzlichen Vorhersageschritt profitieren können.
Es ist bekannt, dass holistische Vergleichsverfahren im Falle von Blickwinkeländerungen
scheitern. Daher wird in dieser Arbeit ein weiteres Verfahren basierend auf lokalen Bild-
merkmalen und Star-Hough vorgeschlagen. Star-Hough ist ein neuartiger Ansatz, die
Anordnung der Landmarken im Bild in die Berechnung der Ähnlichkeit zwischen Bildern
einzubeziehen. Er basiert auf Star Graph Models und Hough Voting und ist besonders
geeignet für unpräzise lokalisierte Merkmale und hohe Ausreißerraten. Die neuartigen
Landmarken basieren auf der Kombination von lokalen Merkmalsdetektoren und Deskrip-
toren aus Convolutional Neural Networks. In dieser Arbeit werden verschiedene Ansätze
vorgestellt und ausgewertet, um Superpixel in die Merkmalsdetektion einzubeziehen. Das
vorgeschlagene Verfahren kann mit verschiedenen Merkmalsdetektoren verwendet werden.
Insbesondere die Kombination mit Merkmalen basierend auf einem Multiscale Superpixel
Grid liefert bessere Ergebnisse als die existierenden Methoden und erscheint als vielver-
sprechende Ausgangsbasis für praktische Anwendungen.
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