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Introduction

Contents
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Objective of the thesis and main results . . . . . . . . . . . . . . . . . . . . . 14
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

This work is devoted to Markov-type inequalities, which give upper bounds on the norm of the
derivative of an algebraic polynomial in terms of the norm of the polynomial itself. Such an
inequality is



 f (ν)

β ≤ C (ν)
n (α, β)

 f 

α for all f ∈ Pn . (1.1)

Here and in the following, Pn denotes the space of algebraic polynomials with complex coe�-
cients of degree at most n, and ‖ · ‖α is one of the norms

‖ f ‖2α =
∫ ∞

0
| f (t) |2tαe−tdt (Laguerre),

‖ f ‖2α =
∫ 1

−1
| f (t) |2

(1 − t2)αdt (Gegenbauer),

‖ f ‖2α =
∫ ∞

−∞

| f (t) |2 |t |2αe−t2dt (Hermite),

and C (ν)
n (α, β) is a constant depending on n, ν,α, and β, but not on f . We are interested in

�nding the smallest constant such that inequality (1.1) holds for every polynomial f of degree
at most n. Let Dν : Pn (α) → Pn (β) be the operator that sends a polynomial of degree at most
n to its νth derivative, where Pn (α) and Pn (β) are the spaces Pn equipped with the norm
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Chapter 1 Introduction

‖ · ‖α and ‖ · ‖β , respectively. Every functional analysis course tells us that the operator norm
of this operator is de�ned as

‖Dν ‖α→β B inf {c ≥ 0 | ∀ f ∈ Pn (α) : ‖Dν f ‖β ≤ c‖ f ‖α
}
.

This is exactly what we are looking for. Hence, determining the smallest constant in (1.1) comes
down to determining the operator norm of the di�erential operator between the appropriate
spaces. We denote this smallest constant with λ (ν)

n (α, β) for the Laguerre norms, with γ (ν)
n (α, β)

for the Gegenbauer norms, and with η (ν)
n (α, β) for the Hermite norms.

In general, it is not possible to evaluate the exact constants. However, we can ask for the
asymptotic behavior of these. This is the main goal of the present work.

1.1 State of the art

Inequalities of the considered type go back to the chemist Dimitri Ivanovich Mendeleev, best
known for the periodic table of elements. In the 1880s, he studied the speci�c gravity of a
solution as a function of the percentage of the dissolved substance. He observed that these
functions can be approximated with quadratic polynomials. He raised the question how bad the
transition from one point to another can be when they are in parameter ranges belonging to
di�erent polynomials. After getting some results, he told this to Andrei Andreevich Markov,
who subsequently investigated the corresponding problem for polynomials of degree n [3, 5].

Markov proved that if p(t) is a real polynomial of degree n with |p(t) | ≤ 1 on [−1,1], then
|p′(t) | ≤ n2, or equivalently,

‖D f ‖∞ ≤ n2‖ f ‖∞ for all real f ∈ Pn ,

where D is the di�erential operator and ‖ · ‖∞ denotes the maximum norm on [−1,1]. He also
showed that the constant n2 is best-possible. One might come to the conclusion that repeated
utilization of this formula leads to optimal results for higher derivatives. However, these are not
sharp, e. g., this would give ‖D2 f ‖∞ ≤ n2(n − 1)2‖ f ‖∞, which is not the best possible constant.
Markov’s younger brother, Vladimir Andreevich, showed that



D2 f 

∞ ≤
n2(n2 − 1)

3 ‖ f ‖∞ for all f ∈ Pn ,

and more generally,



Dν f 

∞ ≤
n2(n2 − 1)(n2 − 22) · · · (n2 − (ν − 1)2)

(2ν − 1)!! ‖ f ‖∞ for all f ∈ Pn .

These constants are best-possible.
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1.1 State of the art

Erhard Schmidt [22] was the �rst to consider inequalities of this type with the maximum norm
replaced by a Hilbert space norm. More speci�cally, he investigated the norms

‖ f ‖2 =
∫ ∞

0
| f (t) |2e−tdt (Laguerre),

‖ f ‖2 =
∫ 1

−1
| f (t) |2dt (Legendre),

‖ f ‖2 =
∫ ∞

−∞

| f (t) |2e−t2dt (Hermite),

i. e., he assumed that α = β = 0. He studied the case ν = 1 and proved

λ (1)
n (0,0) ∼

2
π

n, γ(1)
n (0,0) ∼

1
π

n2, η (1)
n (0,0) =

√
2n,

The expression an ∼ bn means that the quotient an

bn
converges to 1 as n goes to in�nity. So,

he could determine the exact value in the Hermite case and �nd an asymptotic value in the
Laguerre and Legendre cases. He even gave two more terms in the asymptotic expansion.

Later, Pál Turán [27] presented the exact value for λ (1)
n (0,0), namely

λ (1)
n (0,0) =

(
2 sin π

4n + 2

)−1
.

More recently, András Króo [18] also found an exact value for γ (1)
n (0,0), which he identi�ed to

be the largest positive solution of the equation

b(n+1)/2c∑
k=0

(−1)k x−2k (n + 1 + 2k)!
22k (2k)!(n + 1 − 2k)!

= 0.

Both, Turán and Króo, gave the extremal polynomials for obtaining these constants.

Lawrence F. Shampine [23, 24] later began to investigate second order derivatives for the
Laguerre and Legendre norms. He found

λ (2)
n (0,0) ∼

n2

µ2
0
, γ(2)

n (0,0) ∼
n4

4µ2
0
,

where µ0 ≈ 1.8751041 is the smallest positive solution of the equation 1 + cos µ cosh µ = 0.

Finally, Peter Dör�er [14, 15] bounded λ (ν)
n (0,0) for larger values of ν by

1
2ν!

√
4

2ν + 1 ≤ lim inf
n→∞

λ (ν)
n (0,0)

nν
≤ lim sup

n→∞

λ (ν)
n (0,0)

nν
≤

1
2ν!

√
2ν

2ν − 1 . (1.2)

Shampine and Dör�er took a basis of orthonormal polynomials and determined the matrix
representation of the di�erential operator in this basis. This led to a special Toeplitz matrix,
and the problem then was to determine the spectral norm (which coincides with the operator
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Chapter 1 Introduction

norm) or to �nd at least good estimates. In this way, they obtained the results cited above. After
Dör�er’s papers [14, 15], the development paused for almost two decades. In 2008, Dör�er wrote
a letter to Böttcher and asked him whether he had an idea of how to determine the spectral
norm of the Toeplitz matrices in question and thus to make some progress after many years
of stagnation. Böttcher immediately understood that the problem can be solved by having
recourse to an old (and then already forgotten) trick used by Harold Widom in the 1960s in
another context [28, 29]. This trick consists in considering the integral operator Kn on L2(0,1)
with the piecewise constant kernel kn (x, y) = a bnx c, bny c for an (n× n)-matrix An = (a jk )n−1

j,k=0.
Then, one has the identity

‖An ‖∞ = n‖Kn ‖∞.

Here and in what follows, we denote by ‖A‖∞ the spectral norm if A is a matrix, and the operator
norm if A is an operator. If, after appropriate scaling, the operators Kn can be shown to converge
uniformly to some operator K (i. e., ‖n−µKn − K ‖∞ → 0 for n → ∞), then ‖An ‖∞ ∼ ‖K ‖∞nµ+1.
By employing this trick, Böttcher and Dör�er settled a whole series of problems that had then
been open. In [6], they found in particular asymptotic expressions for λ (ν)

n (0,0) as n → ∞ in
the case of arbitrary ν ≥ 3. To their surprise, they later discovered that Shampine [23, 24] also
made use of the trick consisting in passing from matrices to integral operators. Thus, this trick
was discovered twice, independently by Shampine and Widom, it fell into oblivion for over
more than 40 years, and received a kind of renaissance in the work of Böttcher and Dör�er. We
will exploit this trick later in Chapter 5, too.

The limitation of Shampine’s original approach was that he considered the operator (Dν )∗Dν ,
which gets really complex for higher values of ν. But, as shown by Böttcher and Dör�er, one can
go further quite a lot. The �rst expansion is to substitute the norms by their weighted analogues.
In the case of the Laguerre and Legendre norms, i. e., for the Laguerre and Gegenbauer norms,
Böttcher and Dör�er [8] have shown

λ (ν)
n (α,α) ∼ ‖Lν,α,α ‖∞nν ,

γ (ν)
n (α,α) ∼ ‖Gν,α,α ‖∞n2ν ,

where Lν,α,α and Gν,α,α are the integral operators on L2(0,1) given by

(Lν,α,α f )(x) =
1
Γ
(
ν
) ∫ 1

x

xα/2 y−α/2(y − x)ν−1 f (y)dy,

(Gν,α,α f )(x) =
1

2ν−1Γ
(
ν
) ∫ 1

x

x1/2+α y1/2−α (y2 − x2)ν−1 f (y)dy.

These results �rst of all proved the existence of the limits λ (ν)
n (α,α)n−ν and γ (ν)

n (α,α)n−2ν as
n → ∞. Note that the existence of these limits was previously not even known for α = 0; in
that case one had only the bounds (1.2).

At �rst glance, it does not seem that we gained much by replacing the spectral norm of some
matrix with the operator norm of an integral operator. However, this replacement bene�ts of
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1.1 State of the art

good two-sided estimates for the norms of the integral operators. (I learned from my advisor
that working with integrals is often easier than working with sums.)

In 2009, Jürgen Prestin drew the attention of Böttcher and Dör�er to the problem of using two
di�erent weights in the inequality. This concerns two di�erent norms, and as changes of norms
may improve error estimates, this case could be useful in approximation theory and numerical
analysis. A particularly simple case is β = α + ν. Then, the matrix representation has a single
diagonal in the Laguerre and Gegenbauer settings. So, we arrive at

λ (ν)
n (α,α + ν) =

√
n!

(n − ν)! ∼ nν/2,

γ (ν)
n (α,α + ν) =

√
n!

(n − ν)!
Γ
(
n + 2α + ν + 1)
Γ
(
n + 2α + 1) ∼ nν .

The �rst identity has been observed before by Ravi Agarwal, Gradimir Milovanović, and Allal
Guessab in [1, 16]. The second one was established by Guessab and Milovanović; see also
[16].

In [7], Böttcher and Dör�er raised the conjecture

λ (ν)
n (α, β) ∼ Cν (α, β)n(ν+ |β−α−ν |)/2 as n → ∞

with some nonzero constant Cν (α, β) depending only on ν,α, β. They partially proved this:
if β − α ≥ ν and β − α is an integer, then this is true with Cν (α, β) = 2β−α−ν , while for
β − α < ν − 1/2, it is true with Cν (α, β) = 

L∗ν,α,β

∞. Again, an integral operator occurs, this
time

(L∗ν,α,β f )(x) =
1

Γ
(
ν − β + α

) ∫ x

0
x−α/2 yβ/2(x − y)ν−β+α−1 f (y)dy on L2(0,1).

Actually, the induced operator is given by

(Lν,α,β f )(x) =
1

Γ
(
ν − β + α

) ∫ 1

x

y−α/2xβ/2(y − x)ν−β+α−1 f (y)dy,

but we prefer to work with its adjoint L∗ν,α,β . Since the norms of both operators are the same,
this is no problem. In the special case β − α = ν − 1, the chosen operator has a much simpler
structure. Then,

(L∗ν,α,α+ν−1 f )(x) =
∫ x

0
x−α/2 y (α+ν−1)/2 f (y)dy.

Together with a corollary from [8], this implies that its operator norm is 2/(ν + 1) times the
inverse of the smallest positive zero of the Bessel function J(α−1)/(ν+1) . For the very special
values υ = −1/2 and υ = 1/2, the Bessel functions Jυ take the elementary form

J−1/2(x) =

√
2
πx

cos x, J1/2(x) =

√
2
πx

sin x.
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Chapter 1 Introduction

We repeat some of the examples given in [7], which we obtain from these equalities. We have

λ (2)
n

(
− 1

2 ,
1
2

)
∼

4
3π n3/2, λ (2)

n

(
5
2 ,

7
2

)
∼

2
3π n3/2, λ (3)

n (3,5) ∼
1

2π n2,

λ (4)
n

(
7
2 ,

13
2

)
∼

2
5π n5/2, λ (5)

n (4,8) ∼
1

3π n3.

Similarly, in [10], Böttcher and Dör�er showed that if β − α is an integer, then

γ (ν)
n (α, β) ∼ nν for β − α − ν ≥ 0

and

γ (ν)
n (α, β) ∼

1
2ν+α−β

‖L∗ν,α,β ‖∞n2ν+α−β for β − α − ν < −1
2 .

Here, we meet the operator L∗ν,α,β from above, again. In the same way, for β = α + ν − 1, this
implies that the constant is 1/(ν + 1) times the reciprocal of the smallest positive zero of the
Bessel function J(α−1)/(ν+1) . Further examples given there include

γ (1)
n (0,0) ∼

1
π

n2, γ(1)
n (2,2) ∼

1
2π n2.

In [19], the author treated the Laguerre case for arbitrary β − α ≥ ν. The results are explained
in Chapter 4. Thus, the Laguerre case is almost completely treated. It turns out that the method
of [19] can easily be applied to the Gegenbauer case, as well. However, some more cases still
have to be considered.

The present work shows that Böttcher and Dör�er’s restriction to the integral di�erences in the
Laguerre and Gegenbauer cases may be dropped. Moreover, we generalize the classical Hermite
norm to a weighted version. This increases the complexity drastically. However, along the line
of treatment for the other two norms, this can be dealt with.

Unfortunately, in each of these problems, there remains an unhandled interval of di�erences,
namely β − α − ν ∈ [−1/2,0) in the Laguerre and Gegenbauer cases and β − α ∈ [−1/2,0) in
the Hermite case. The joint paper by Böttcher, Widom, and the author [11] attempts to tackle
this problem for the Laguerre case. Although an overall answer is yet to be given, we provide
some tools for handling the topic. Moreover, the proofs in [11] have some beauty on their own,
so that we do not want to withhold them from the reader.

1.2 Objective of the thesis and main results

The existing results for the constants in the Laguerre and Gegenbauer cases anticipate that the
study of the matrices clearly depends on the numberω = β−α−ν. Indeed, ifω is a nonnegative
integer, the corresponding matrices are banded and allow a relatively simple treatment. If ω is
nonnegative and an arbitrary real number, not equal to an integer, we may use our knowledge

14



1.2 Objective of the thesis and main results

0

1

2

3

4

5

6

7

8

-2 -1 0 1 2 3

α = 0.4, ν = 1
α = 1.4, ν = 1
α = 2.1, ν = 1
α = 0.4, ν = 2
α = 1.4, ν = 2
α = 1.5, ν = 5

Figure 1.1: Dependence of the norm in the Laguerre setting on ω, scaled by n−(ν+ |ω |)/2, for
di�erent values of α and ν, here for n = 1023.

from the integer case to determine bounds for these values. Finally, ifω is negative, the methods
from the nonnegative case fail to work, but we can �nd some integral operator, which in that
case is bounded (contrary to the nonnegative case). Keeping this in mind almost dictates the
structure of the thesis. Figure 1.1 already gives an idea that the worlds left and right from ω = 0
are di�erent.

Chapter 2 will deal with the matrix representation of the di�erential operator in the bases
belonging to the types of the norms under consideration. We introduce the systems of orthonor-
mal polynomials derived from each norm. The Laguerre and Gegenbauer representations are
merely for reference and the proofs are given for the sake of completeness. It seems that the
generalized Hermite case has not been considered before, so this is a new result.

In Chapter 3, we bring back to mind the treatment of the Laguerre and Gegenbauer norms for
ω a nonnegative integer. These ideas will also be employed for the Hermite norm. However, in
that case, we have to deal with one more special case, namely β = α. The matrix in question is
not banded. We cannot use an interpolation theorem since we are at the end of the parameter
space and an integral operator is not applicable. The good news is that the matrix is “almost
diagonal.” In other words, the diagonal elements are signi�cantly bigger than the remaining

15



Chapter 1 Introduction

entries. Because generalized Hermite norms have not been considered before, this part is
entirely new to this thesis.

The next chapter uses the results established in the preceding one and those already known to
derive upper bounds for all parameter di�erences in between. This is possible due to a very
helpful theorem by Elias Stein [25]. Lower bounds can be derived by the right choice of some
vector, for which the norm of its image under the e�ect of the matrix can be estimated. This
concludes the investigation for the case ω ≥ 0 in the Laguerre and Gegenbauer settings, and
β − α ≥ 0 in the Hermite setting. Apart from the author’s own work [19] this is completely
new and an original result of this thesis.

Chapter 5 is then devoted to the case ω < 0 in the Laguerre and Gegenbauer settings, and
β − α < 0 in the Hermite setting. This chapter almost entirely deals with the associated
integral operators and with how to show that the operators derived from the matrices converge
uniformly to them. A proof for the convergence in the Laguerre setting is given because it
turned out to be not as straightforward as claimed in [7]. However, the method of the proof
also works in the Gegenbauer case, where we drop the necessity of integral di�erences, and in
the Hermite setting. Therefore, the last two cases are presented the �rst time. Moreover, we
prove two theorems from [11] that show that the integral operator in the Laguerre setting is a
compact operator and even belongs to some Schatten class for any ω < 0.

Finally, Chapter 6 wraps up everything and gives hints on what can be done in the future.

In the following, we present the main results of this thesis. The �rst three theorems will be
proved step by step according to the aforementioned outline.

First, in the Laguerre setting, we have the following.

Theorem 1.1. Let α, β > −1 be real numbers, and let ν be a positive integer. Put ω = β − α − ν.
Then,

λ (ν)
n (α, β) ∼ Cν (α, β)n(ν+ |ω |)/2

with

Cν (α, β) =



2ω : ω ≥ 0,


L∗ν,α,β

∞ : ω < − 1

2 ,

where L∗ν,α,β is the Volterra integral operator on L2(0,1) given by

(L∗ν,α,β f )(x) =
1

Γ
(
−ω

) ∫ x

0
x−α/2 yβ/2(x − y)−ω−1 f (y)dy. (1.3)

As remarked before, the case ω ≥ 0, ω ∈ Z as well as the case ω < −1/2 have been disposed of
already in [7].

The next theorem concerns the Gegenbauer setting.
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1.2 Objective of the thesis and main results

Theorem 1.2. Let α, β > −1 be real numbers, and let ν be a positive integer. Put ω = β − α − ν.
Then,

γ (ν)
n (α, β) ∼




nν : ω ≥ 0,
2ω

L∗ν,α,β

∞n2ν−β+α : ω < − 1

2 ,

where L∗ν,α,β is the Volterra integral operator on L2(0,1) given by (1.3).

Again, ω ∈ Z was known before thanks to [10]. Note that the integral operator coming into
play here is the same as in the Laguerre case.

The following result on the general Hermite setting is completely new.

Theorem 1.3. Let α, β > −1/2 be real numbers and let ν be a positive integer. Then,

η (ν)
n (α, β) ∼ Cν (α, β)n( |β−α |+ν)/2

with

Cν (α, β) =



2(β−α+ν)/2 : β − α ≥ 0,
2(β−α−ν)/2 ·max

{

H (0)
ν,α,β



∞, 

H (1)
ν,α,β



∞
}

: β − α < − 1
2 ,

where H (0)
ν,α,β and H (1)

ν,α,β are the integral operators on L2(0,1) de�ned by

(
H (0)
ν,α,β f

)
(x) =

2νΓ(dν/2e + 1)
Γ
(
α − β + dν/2e

) ∫ 1

x

xβ/2−1/4 y−α/2+1/4+( bν/2c−dν/2e)/2(y − x)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
x

y − x

) dν/2e−`

f (y)dy

and

(
H (1)
ν,α,β f

)
(x) =

2νΓ(bν/2c + 1)
Γ
(
α − β + bν/2c

) ∫ 1

x

xβ/2+1/4 y−α/2−1/4+( dν/2e−bν/2c)/2(y − x)α−β+ bν/2c−1

×

bν/2c∑
`=0

(
β

`

) (
β − α − `

bν/2c − `

) (
x

y − x

) bν/2c−`

f (y)dy.

Although the operators here look a lot more complex than the operator (1.3), a resemblance
should not be questioned. However, nice formulas as in the Laguerre and Gegenbauer cases
cannot be obtained. The reason for this is that the operator H (0)

ν,α,β has at least two summands.
Even in the simplest case ν = 1, where the norm of the operator H (1)

ν,α,β can be given explicitly
for a few values of α and β, the other operator does not play along.
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Chapter 1 Introduction

To get a better feeling how these operators evolve for higher derivatives, we will present the
explicit formulas for ν = 1,2,3.

(
H (0)

1,α,β f
)
(x) =

2
Γ
(
α − β + 1)

∫ 1

x

(
(β − α)xβ/2+3/4 y−α/2−1/4(y − x)α−β−1

+ βxβ/2−1/4 y−α/2−1/4(y − x)α−β
)

f (y)dy,(
H (0)

2,α,β f
)
(x) =

8
Γ
(
α − β + 1)

∫ 1

x

(
(β − α)xβ/2+3/4 y−α/2+1/4(y − x)α−β−1

+ βxβ/2−1/4 y−α/2+1/4(y − x)α−β
)

f (y)dy,(
H (0)

3,α,β f
)
(x) =

48
Γ
(
α − β + 2)

∫ 1

x

( (β−α)(β−α−1)
2 xβ/2+7/4 y−α/2−1/4(y − x)α−β−1

+ β(β − α − 1)xβ/2+3/4 y−α/2−1/4(y − x)α−β

+
β (β−1)

2 xβ/2−1/4 y−α/2−1/4(y − x)α−β+1
)

f (y)dy,(
H (1)

1,α,β f
)
(x) =

2
Γ
(
α − β

) ∫ 1

x

xβ/2+1/4 y−α/2+1/4(y − x)α−β−1 f (y)dy,

(
H (1)

2,α,β f
)
(x) =

4
Γ
(
α − β + 1)

∫ 1

x

(
(β − α)xβ/2+5/4 y−α/2−1/4(y − x)α−β−1

+ βxβ/2+1/4 y−α/2−1/4(y − x)α−β
)

f (y)dy,(
H (1)

3,α,β f
)
(x) =

8
Γ
(
α − β + 1)

∫ 1

x

(
xβ/2+5/4 y−α/2+1/4(y − x)α−β−1

+ xβ/2+1/4 y−α/2+1/4(y − x)α−β
)

f (y)dy.

Finally, we present two theorems that were obtained in collaboration with Böttcher and Widom
[11]. Since the notion of Schatten classes does not play any role in the rest of the thesis, we
refer to Section 5.4 for the preliminaries. In the following, we will abbreviate L = L∗ν,α,β .
The technically most di�cult part is to prove the convergence of N1−(ν+ |ω |)/2LN to L in the
operator norm, where LN is the integral operator with piecewise constant kernel derived from
the matrix representation of the di�erential operator in the Laguerre setting (see Theorem 5.4).
Fortunately, L can be shown to be a Hilbert-Schmidt operator if ω < −1/2, and it can also be
shown that N1−(ν+ |ω |)/2LN converges to L in the Hilbert-Schmidt norm for ω < −1/2. This
has been presented in [7] and will be done, in more detail, in Theorem 5.4 of this work.

If ω ≥ −1/2, the operator L is no longer Hilbert-Schmidt. However, in [11] we raised the
conjecture that the restriction in the second part of Theorem 1.1 is merely an e�ect of the
method rather than being inherent to the problem. This conjecture is given here again as
Conjecture 5.8. One result in that direction, stated below as Theorem 1.5, tells us that L is still a
Schatten class operator for ω < 0. This is not of immediate help for proving Conjecture 5.8 but
could be of use for further attempts towards accomplishing that goal. In particular, it follows
that L is compact and therefore PN LPN converges to L in the operator norm whenever {PN }

is a sequence of operators such that PN and the adjoints P∗N converge strongly (i. e., pointwise)
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1.3 Preliminaries

to the identity operator. Our hope is that one can �nd a �tting sequence {PN } which enables
one to prove



N1−(ν+ |ω |)/2LN − PN LPN


∞ → 0,

Together with the fact that ‖PN LPN − L‖∞ → 0, this would imply the desired uniform
convergence of N1−(ν+ |ω |)/2LN to L.

Theorem 1.4 (Theorem 1.2 in [11]). Let α, β,ω be real numbers. Suppose β > −1, ω < 0, and
ω < (β − α)/2. Then, the operator given by (1.3) is compact.

Theorem 1.5 (Theorem 1.3 in [11]). Let α > −1, β > −1, ν ≥ 1 be real numbers and put
ω = β − α − ν. If n is a positive integer and ω < −1/2n , then the operator (1.3) belongs to the 2nth
Schatten class.

1.3 Preliminaries

In this section, we want to collect some well-known results and notions. Some of them may
seem trivial for the reader while others are not immediately at hand. Since we use them quite
often and without further notice, we present them here.

First, in the whole work the variables n,α, β, ν,ω, and N are reserved unless otherwise stated.
The variable n stands for the maximal degree of the polynomials and thus the dimension of
the matrix minus one, while N is a shorthand for n − ν + 1. The constant ν will then denote
the order of the derivative. Also �xed in their meaning, α denotes the parameter for the norm
in the area of de�nition of the di�erential operator, and β is the corresponding parameter in
the image space. Then, ω = β − α − ν is the abbreviation for the parameter di�erence in the
Laguerre and Gegenbauer setting. Since we always work with matrices, we have to deal with
their entries. These are denoted by c(ν)

jk
(α, β), no matter which norm we currently consider.

There is no risk of mixing them up because we treat each case separately.

The matrices we examine will all be upper triangular and their �rst ν diagonals are also zero.
Due to this circumstance, we will just investigate the upper-right block where each row and
column contains at least one nonzero entry. The norm of this block is the same as the norm of
the whole matrix, so this restriction is justi�ed. The original matrices are of order n + 1, the
upper-right block mentioned is of order N = n − ν + 1.

To �x notation, let Z denote the set of all integers and N the set of all natural numbers, i. e.,
all positive integers, {1,2, . . .}. Should the need arise to account for the number 0, we denote
this set by N0. Moreover, we make an important distinction between the integer parts of a real
number. Namely, bxc denotes the largest integer not greater than x, while dxe stands for the
smallest integer not less than x. In particular, we have for x ∈ R \ Z that dxe = bxc + 1 and for
x in Z, obviously, bxc = dxe. This is especially important in the Hermite setting where we will
also make use of the fact dν/2e + bν/2c = ν for ν ∈ N.
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Chapter 1 Introduction

Recall that the expression an ∼ bn means that the quotient an/bn converges to 1 as n goes to
in�nity. We write f (n) = O(g(n)) if there is a nonnegative constant C so that | f (n) | ≤ C |g(n) |
as n goes to in�nity. With this notation, we can for example write

Γ
(
n + α + 1)
Γ
(
n + 1) = nα

(
1 +O

(
1
n

))
.

We will use this result frequently.

The function Γ(x
) is de�ned by

Γ
(
x
)
B

∫ ∞

0
tx−1e−tdt for x > 0,

and by analytic continuation for all complex numbers except the nonpositive integers. One
of the most important properties is the identity xΓ

(
x
)
= Γ

(
x + 1) . The Legendre duplication

formula

Γ
(2m

)
= Γ

(
m

)
Γ
(
m + 1/2) 22m−1

√
π

(1.4)

is another important relation (see [2, page 22]). Closely connected to the gamma function is the
beta function

B(x, y) B
∫ 1

0
tx−1(1 − t)y−1dt =

Γ
(
x
)
Γ
(
y
)

Γ
(
x + y

) ,
which is well-de�ned for all x, y > 0 and is also known as the Euler integral of the �rst kind,
whereas the gamma function is sometimes called Euler integral of the second kind.

A very useful tool we will encounter is the hypergeometric series

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq
; x

)
B

∞∑
τ=0

(
a1

)
τ

(
a2

)
τ · · ·

(
ap

)
τ(

b1
)
τ

(
b2

)
τ · · ·

(
bq

)
ττ!

xτ .

The symbol (
a
)
τ , the rising factorial or Pochhammer symbol, is given by(

a
)
τ = a(a + 1)(a + 2) · · · (a + τ − 1),

or, if applicable,

(
a
)
τ =
Γ
(
a + τ

)
Γ
(
a
) .

Here, we will only have to deal with (p,q) = (3,2) and (p,q) = (2,1). In these cases, the
series converges absolutely for all x with |x | < 1 as well as for |x | = 1 if the sum of the lower
parameters is larger than the sum of the upper parameters. If one of the upper parameters is a
negative integer, the series terminates naturally [2, page 62].
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1.3 Preliminaries

In the special case where p = 2, q = 1, x = 1 and one of the upper parameters is a negative
integer, we have the Chu-Vandermonde identity [2, page 67]

2F1

(
−n, a

c
; 1

)
=

(
c − a

)
n(

c
)
n

. (1.5)

In another form, this is the well-known Vandermonde identity(
a + b

n

)
=

n∑
k=0

(
a
k

) (
b

n − k

)
(1.6)

with arbitrary complex numbers a and b.

We will use several di�erent norms for an operator T : X → Y . Most importantly, we are
interested in the operator norm

‖T ‖∞ = inf {c ≥ 0 : ‖T x‖Y ≤ c‖x‖X for all x ∈ X
}
,

or, equivalently,

‖T ‖∞ = sup
‖x ‖X,0

‖T x‖Y
‖x‖X

,

where ‖ · ‖X and ‖ · ‖Y are the norms in the spaces X and Y , respectively. If X and Y are
separable Hilbert spaces – which they are in our setting – the norm ‖T ‖∞ coincides with the
largest singular value, hence it is also called spectral norm.

Next, we will need the Hilbert-Schmidt norm, which in turn is a special type of Schatten norm
(see Section 5.4) and given by

‖T ‖2 = *
,

∞∑
`=0

σ2
` (T )+

-

1/2

,

where σ` (T ) is the `th singular value of T (in nonincreasing order). From this, it is immediately
clear that ‖T ‖2 ≥ ‖T ‖∞. In the special case that T is an integral operator, for the sake of
convenience on L2(0,1), with the kernel ρ : [0,1]2 → R,

(T f )(x) =
∫ 1

0
ρ(x, y) f (y)dy,

its Hilbert-Schmidt norm can easily be determined as

‖T ‖2 =
(∫ 1

0

∫ 1

0
|ρ(x, y) |2dydx

)1/2
.

The last norm we will make use of is for vectors. Here, we use the usual Euclidean or `2 norm.
For a vector v = (

v j
)n
j=0 ∈ R

n+1, this is given as

‖v ‖2 =
*.
,

n∑
j=0

v2
j
+/
-

1/2

.
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The problem of �nding the best constant C in the inequality

‖Dν f ‖β ≤ C‖ f ‖α for all f ∈ Pn

comes down to determining the operator norm of the operator of di�erentiation Dν acting
on Pn . Here, Pn is the linear space of all algebraic polynomials in one variable with complex
coe�cients of degree at most n. The space Pn is endowed with an appropriate inner product.
The norm of Dν is the same as the spectral norm of the matrix representation in a pair of
orthonormal bases with respect to the according norm. We denote by Pn (α) the space Pn

equipped with the norm ‖ · ‖α , where in our setting ‖ · ‖α is one of the following

‖ f ‖2α =
∫ ∞

0
| f (t) |2tαe−tdt (Laguerre), (2.1)

‖ f ‖2α =
∫ 1

−1
| f (t) |2(1 − t2)αdt (Gegenbauer), (2.2)

‖ f ‖2α =
∫ ∞

−∞

| f (t) |2 |t |2αe−t2dt (Hermite). (2.3)

These norms are well-de�ned for α > −1 in the Laguerre and Gegenbauer cases and for α > −1/2
in the Hermite case. The operator Dν then maps Pn (α) to Pn (β). The orthonormal bases
we choose are the normalized Laguerre, Gegenbauer, and Hermite polynomials, respectively.
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Chapter 2 Matrix representation of the operators

Except for the generalized Hermite polynomials, a good overview for the various de�nitions
and normalizations is given in [4].

In the following sections we want to derive the matrix representation of the operators in the
respective bases.

2.1 Laguerre weights

The Laguerre polynomials with respect to some parameter α > −1 form an orthogonal system
with respect to the norm

‖ f ‖2α =
∫ ∞

0
| f (t) |2tαe−tdt .

The nth Laguerre polynomial for this norm is given by

Ln (t,α) =
1

Γ(n + 1)
t−αet dn

dtn
(
tn+αe−t

)
=

n∑
`=0

(−1)`
(
n + α
n − `

)
t`

`! . (2.4)

We de�ne the nth normalized Laguerre polynomial by

L̂n (t,α) = wn (α)Ln (t,α), wn (α) B

√
Γ(n + 1)
Γ(n + α + 1)

.

The following lemma concerns the matrix representation of the operator of di�erentiation in a
pair of bases consisting of normalized Laguerre polynomials. It is taken from [7]. The proof
there assumed that β − α is an integer. However, as already stated in [19], we can drop this
assumption and employ the same arguments. For the sake of completeness, we reproduce the
proof here.

Lemma 2.1. Let Cn =
(
c(ν)
jk

(α, β)
)n
j,k=0 be the matrix representation for the di�erential oper-

ator Dν : Pn (α) → Pn (β) with respect to the orthonormal bases
{
L̂0(·,α), . . . , L̂n (·,α)

}
and{

L̂0(·, β), . . . , L̂n (·, β)
}
. Then, Cn satis�es

(−1)νCn = ∆
−1
n (β)

(
0 T∗n−ν+1

(
(1 − z)β−α−ν

)
0 0

)
∆n (α),

where

∆n (γ) = diag(w0(γ), . . . , wn (γ))

and T∗n−ν+1
(
(1 − z)β−α−ν

)
is the adjoint (transposed) of the (n − ν + 1) × (n − ν + 1) Toeplitz

matrix generated by the Taylor coe�cients of (1 − z)β−α−ν at z = 0. Thus,

c(ν)
jk

(α, β) = (−1)k− j
wk (α)
w j (β)

(
β − α − ν

k − ν − j

)
for 0 ≤ j ≤ k − ν and it is zero otherwise.
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2.2 Gegenbauer weights

Proof. We have to show that

Dν L̂k (t,α) =
k−ν∑
j=0

c(ν)
jk

(α, β) L̂ j (t, β) =
k−ν∑
j=0

(−1)k− j
wk (α)
w j (β)

(
β − α − ν

k − ν − j

)
L̂ j (t, β).

Since L̂k (t,α) = wk (α)Lk (t,α) and L̂ j (t, β) = w j (β)L j (t, β), this is the same as

DνLk (α) =
k−ν∑
j=0

(−1)k− j
(
β − α − ν

k − ν − j

)
L j (β).

The well-known identity L′
k

(t,α) = −Lk−1(α + 1) can be obtained by di�erentiation of (2.4).
Repeating this process gives DνLk (t,α) = (−1)νLk−ν (α + ν). Inserting this in our statement,
we have

DνLk (t,α) = (−1)ν
k−ν∑
`

(−1)`
(

k + α
k − ν − `

)
t`

`! .

We now compare the coe�cients for tm , m = 0, . . . , k − ν. That is, we have to verify

(−1)ν (−1)m
(

k + α
k − ν − m

)
1

m! =
k−ν∑
`=m

(
β − α − ν

k − ν − `

)
(−1)k−` (−1)m

(
` + β

` − m

)
1

m!

m(
k + α

k − ν − m

)
=

k−ν∑
`=m

(
β − α − ν

k − ν − `

)
(−1)k−ν−`

(
` + β

` − m

)
for each m = 0, . . . , k − ν. Shifting the sum and substituting n = k − ν − m, this becomes(

n + m + ν + α
n

)
=

n∑
`=0

(
β − α − ν

n − `

)
(−1)n−`

(
` + m + β

`

)

= (−1)n
n∑
`=0

(
β − α − ν

n − `

) (
−β − m − 1

`

)
,

which is true due to Vandermonde’s identity (1.6) and proves the lemma. �

2.2 Gegenbauer weights

The Gegenbauer (or ultraspherical) polynomials are a special case of the Jacobi polynomials.
They form an orthogonal system with respect to the norm

‖ f ‖2α =
∫ 1

−1
| f (t) |2

(1 − t2)αdt .
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Chapter 2 Matrix representation of the operators

The nth Gegenbauer polynomial for this norm is given by

Gn (t,α) =
1

2n
bn/2c∑
`=0

(
2α + 2n − 2`

n − 2`

) (
α + n
`

)
(−1)`tn−2`,

which can also be represented by a Rodrigues formula as

Gn (t,α) =
(−1)n

2nn! (1 − t2)−α
dn

dtn
(1 − t2)α+n .

The nth normalized Gegenbauer polynomial then takes the form

Ĝn (t,α) = wn (α)Gn (t,α), wn (α) B

√
n!(2n + 2α + 1)Γ

(
n + 2α + 1)

22α+1Γ2 (n + α + 1) .

Lemma 2.2. Let Cn =
(
c(ν)
jk

(α, β)
)n
j,k=0 be the matrix representation for the di�erential oper-

ator Dν : Pn (α) → Pn (β) with respect to the orthonormal bases
{
Ĝ0(·,α), . . . ,Ĝn (·,α)

}
and{

Ĝ0(·, β), . . . ,Ĝn (·, β)
}
. Then the entries c(ν)

jk
(α, β) are given by

c(ν)
jk

(α, β) =
wk (α)
w j (β)

(2α + k + 1)ν
2ν

(
α + ν + 1)k−ν (2β + 1) j(2α + 2ν + 1)k−ν (β + 1) j

×
j + β + 1/2

(k + j − ν)/2 + β + 1/2

(
α + ν − β

)
(k− j−ν)/2

(
α + ν + 1/2) (k+ j−ν)/2

((k − j − ν)/2)!(β + 1/2) (k+ j−ν)/2
(2.5)

if k − ν − j ≥ 0 is even, or zero otherwise.

There are several possibilities to prove this. As stated in [10], this reduces to the connection
problem for Gegenbauer polynomials. The result is known and can be found for example in
[2]. However, these polynomials are de�ned slightly di�erent in [2]. The form we use here
coincides with the Jacobi polynomials P(α,α)

n (t) given in [2]. The connection coe�cients for
the Jacobi polynomials are then as in Lemma 7.1.1 of [2]. The proof is a little simpler when not
performed for general Jacobi polynomials but for our Gegenbauer polynomials instead. The
following is inspired by the proof given in [2]. We present it modi�ed to our needs.

Proof. The numbers c(ν)
jk

(α, β) are determined by the equation

Ĝ(ν)
k

(t,α) =
k−ν∑
j=0

c(ν)
jk

(α, β)Ĝ j (β).

It is easy to show that

d
dt

Gk (t,α) =
2α + k + 1

2 Gk−1(t,α + 1).
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By induction, we conclude that
dν

dtν
Gk (t,α) =

(2α + k + 1)ν
2ν Gk−ν (t,α + ν).

Therefore, the above equation can be written as

wk (α)
(2α + k + 1)ν

2ν Gk−ν (t,α + ν) =
k−ν∑
j=0

c(ν)
jk

(α, β)w j (β)G j (t, β).

Since the polynomials w j (β)G j (t, β) form an orthonormal system with respect to the inner
product ( f , g)β B

∫ 1
−1 f (t)g(t)(1 − t2)βdt, the c(ν)

jk
(α, β) are given by

c(ν)
jk

(α, β) = wk (α)
(2α + k + 1)ν

2ν w j (β)
(
Gk−ν (·,α + ν),G j (·, β)

)
β .

We �rst evaluate the inner product. Employing the Rodrigues formula for the Gegenbauer
polynomials, we get∫ 1

−1
Gk−ν (t,α + ν)G j (t, β)(1 − t2)βdt =

(−1) j

2 j j!

∫ 1

−1
Gk−ν (t,α + ν)

d j

dt j
(1 − t2)β+ jdt .

Using integration by parts, this is the same as

1
2 j j!

∫ 1

−1
(1 − t2)β+ j

d j

dt j
Gk−ν (α + ν)dt

=

(2α + k + ν + 1) j
22 j j!

∫ 1

−1
Gk− j−ν (t,α + ν + j)(1 − t2)β+ jdt .

Inserting the explicit formula for the Gegenbauer polynomial Gk− j−ν (t,α + ν + j), this becomes(2α + k + ν + 1) j
2k+ j−ν j!

b(k− j−ν)/2c∑
`=0

(
2α + 2k − 2`
k − j − ν − 2`

) (
α + k
`

)
(−1)`

∫ 1

−1
tk− j−ν−2` (1 − t2)β+ jdt .

The integral vanishes if k − j − ν is an odd number and evaluates to
Γ
(
(k − j − ν)/2 − ` + 1/2)Γ(β + j + 1)
Γ
(
(k − j − ν)/2 − ` + β + j + 3/2)

whenever k − j − ν ≥ 0 is an even number, which we will assume in the following. We now get(2α + k + ν + 1) j
2k+ j−ν j!

(k− j−ν)/2∑
`=0

(2α + k + j + ν + 1)k− j−ν−2`(1)k− j−ν−2`

(
α + k − ` + 1)`

`! (−1)`

×
Γ
(
(k − j − ν)/2 − ` + 1/2)Γ(β + j + 1)
Γ
(
(k − j − ν)/2 − ` + β + j + 3/2)

=

(2α + k + ν + 1)k−νΓ(β + j + 1)Γ((k − j − ν)/2 + 1/2)
2k+ j−ν j!(k − j − ν)!Γ((k − j − ν)/2 + β + j + 3/2)
×

(k− j−ν)/2∑
`=0

(
k − j − ν − 2` + 1)2`(2α + 2k − 2` + 1)2`

(
−α − k

)
`

`!

(
(k − j − ν)/2 − ` + β + j + 3/2)`(

(k − j − ν)/2 − ` + 1/2)` .
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The sum can be transformed to

2F1

(
−(k − j − ν)/2, −β − (k + j − ν)/2 − 1/2

−α − k + 1/2 ; 1
)
=

(
β − α − ν − (k − j − ν)/2 + 1) (k− j−ν)/2(

−α − k + 1/2) (k− j−ν)/2

by the Chu-Vandermonde identity (1.5). Next, we evaluate w2
j (β)

(
Gk−ν (·,α + ν),G j (·, β)

)
β :

(β + j + 1/2)Γ
(2β + j + 1)

22βΓ
(
β + j + 1)

×

(2α + k + ν + 1)k−νΓ((k − j − ν)/2 + 1/2) (α + ν − β) (k− j−ν)/2

2k+ j−ν (1)k− j−νΓ(β + (k + j − ν)/2 + 3/2) (α + ν + (k + j − ν)/2 + 1/2) (k− j−ν)/2
.

After writing the rising factorials in terms of the gamma function, multiplying by the factor
(α+ν+1)k−ν

(2α+2ν+1)k−ν
(2β+1) j
(β+1) j

and its reciprocal, and canceling of some terms, this transforms to(
α + ν + 1)k−ν(2α + 2ν + 1)k−ν

(2β + 1) j(
β + 1) j (β + j + 1/2)Γ

(2α + 2k + 1)Γ((k − j − ν)/2 + 1/2)
22β+2k−2ν (1/2) (k− j−ν)/2

(1) (k− j−ν)/2

×

(
α + ν − β

)
(k− j−ν)/2Γ

(
α + ν + (k + j − ν)/2 + 1/2)Γ(α + ν + 1)Γ(2β + 1)

Γ
(
α + k + 1/2)Γ(β + (k + j − ν)/2 + 3/2)Γ(2α + 2ν + 1)Γ(α + k + 1)Γ(β + 1) .

Finally, applying the Legendre duplication formula (1.4), a lot more cancels out, and after writing
the gamma functions again as rising factorials, we arrive at(

α + ν + 1)k−ν(2α + 2ν + 1)k−ν
(2β + 1) j(
β + 1) j β + j + 1/2

β + (k + j − ν)/2 + 1/2

×

(
α + ν − β

)
(k− j−ν)/2(1) (k− j−ν)/2

(
α + ν + 1/2) (k+ j−ν)/2(
β + 1/2) (k+ j−ν)/2

.

Putting this in the original term for c(ν)
jk

(α, β), the claim follows. �

We can write (2.5) in the slightly shorter and more symmetric form as

c(ν)
jk

(α, β) =
1

2β−α−ν

√
Γ
(
k + 1) (k + α + 1/2)
Γ
(
k + 2α + 1)

√
Γ
(
j + 2β + 1) ( j + β + 1/2)

Γ
(
j + 1)

×

(
α + ν − β + (k − j − ν)/2 − 1

(k − j − ν)/2

)
Γ
(
α + ν + (k + j − ν)/2 + 1/2)
Γ
(
β + (k + j − ν)/2 + 3/2) . (2.6)

2.3 Hermite weights

The last weights we want to consider are Hermite weights. For the classical Hermite weights,
the results are already known. Schmidt already called this “trivial” [22]. Indeed, due to the
relation

H (ν)
n (t,0) = 2ν (n − ν + 1)νHn−ν (t,0)
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2.3 Hermite weights

for the classical Hermite polynomials, the matrix representation of the operator of di�erentiation
is just a diagonal matrix. Therefore, the norm and thus the smallest constant is just the maximal
absolute value on the diagonal. The corresponding entry is√

2ν
Γ
(
n + 1)

Γ
(
n − ν + 1) ∼ (2n)ν/2.

So, in that case, the constant

η (ν)
n (0,0) ∼ (2n)ν/2

is fully identi�ed. Since we will treat weighted versions of the Laguerre and Legendre (i. e.,
Gegenbauer) weights, it is just natural to look for weighted versions of the Hermite weight. The
generalized Hermite weights that we will use here have been introduced �rst by Szegő [26].
They have been studied in more detail by Chihara [13]. As we will see in the following, the
matrix representation is in general no longer simple.

We now consider orthogonal polynomials for the norm

‖ f ‖2α =
∫ ∞

−∞

| f (t) |2 |t |2αe−t2dt . (2.7)

The nth generalized Hermite polynomial is given by

Hn (t,α) = 2n Γ(bn/2c + 1) bn/2c∑
j=0

(
α + dn/2e − 1/2

j

)
(−1) j

Γ
(
bn/2c − j + 1) tn−2 j .

Normalizing this, we arrive at

Ĥn (t,α) = wn (α)Hn (t,α)

=

√
Γ
(
bn/2c + 1)

Γ
(
dn/2e + α + 1/2)

bn/2c∑
j=0

(
α + dn/2e − 1/2

j

)
(−1) j

Γ
(
bn/2c − j + 1) tn−2 j ,

where

wn (α) =
(
2n

√
Γ
(
bn/2c + 1)Γ(dn/2e + α + 1/2))−1

.

We get the classical Hermite polynomials for α = 0.

The matrix representation for the di�erential operator Dν : Pn (α) → Pn (β) in these bases
can be obtained by �rst transforming the polynomials to the basis consisting of monomials,
then taking the νth derivative, and transforming this back to a representation in terms of{
Ĥk (·, β)

}n
k=0.
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Chapter 2 Matrix representation of the operators

Theorem 2.3. Let Cn =
(
c(ν)
jk

(α, β)
)n
j,k=0 be the matrix representation of the di�erential operator

Dν with respect to the orthonormal bases given by the generalized Hermite polynomials with the
corresponding weight. The entries c(ν)

jk
(α, β) are given by

c(ν)
jk

(α, β) = 2ν Γ(bν/2c + νk + 1) √
Γ
(
d j/2e + β + 1/2)
Γ
(
b j/2c + 1) Γ

(
bk/2c + 1)

Γ
(
dk/2e + α + 1/2)

×

(
d( j + ν)/2e − 1/2
bν/2c + νk

) (
β − α − bν/2c − νk

(k − j − ν)/2

)
× 3F2

(
−bν/2c − νk , −(k − j − ν)/2, β + d j/2e + 1/2

β − α − bν/2c − νk − (k − j − ν)/2 + 1, d j/2e + 1/2 ; 1
) (2.8)

if 0 ≤ k − ν − j is even, and zero otherwise. Here, νk = 1 if k and ν are odd, and νk = 0 if k or ν is
even (i. e., νk = kν mod 2).

Note that the hypergeometric series occurring here is not de�ned if β − α − bν/2c − νk is a
nonnegative integer smaller than (k − j − ν)/2. But then, the coe�cient before this term is zero,
and therefore, we de�ne the whole term to be zero. In the other cases, the series terminates
naturally before we would come to dividing by zero.

Proof. We have to verify that

Ĥ (ν)
k

(t,α) =
k−ν∑
j=0

c(ν)
jk

(α, β)Ĥ j (t, β) (2.9)

holds for all k ≥ ν. We do this by a comparison of coe�cients. For each k ≥ ν,

Ĥ (ν)
k

(t,α) =
b(k−ν)/2c∑

m=0

√
Γ
(
bk/2c + 1)

Γ
(
dk/2e + α + 1)

(
α + dk/2e − 1/2

m

)
(−1)m

(
k − ν − 2m + 1)ν

Γ
(
bk/2c − m + 1) tk−ν−2m .

Let a j
`

denote the coe�cient of t j−2` in Ĥ j (t, β). Utilizing the fact that the c(ν)
jk

(α, β) are zero
whenever k − j − ν is an odd number, we transform the sum in (2.9) to

b(k−ν)/2c∑
m=0

m∑
`=0

c(ν)
k−ν−2m+2`,kak−ν−2m+2`

` tk−ν−2m .

For a �xed m, we put in the de�nition of the coe�cients and get√
Γ
(
bk/2c + 1)

Γ
(
dk/2e + α + 1)

(
α + dk/2e − 1/2

m

)
(−1)m

(
k − ν − 2m + 1)ν

Γ
(
bk/2c − m + 1)
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2.3 Hermite weights

=

m∑
`=0

(−1)`2ν Γ(bν/2c + νk + 1)
Γ
(
b(k − ν)/2c − m + 1)

√
Γ
(
d(k − ν)/2e + ` − m + β + 1/2)
Γ
(
b(k − ν)/2c + ` − m + 1)

×

√
Γ
(
bk/2c + 1)

Γ
(
dk/2e + α + 1/2)

(
dk/2e − m + ` − 1/2

bν/2c + νk

) (
β − α − bν/2c − νk

m − `

)
× 3F2

(
−bν/2c − νk , ` − m, β − m + ` + d(k − ν)/2e + 1/2

β − α − bν/2c − νk + ` − m + 1, d(k − ν)/2e − m + ` + 1/2 ; 1
)

×

√
Γ
(
b(k − ν)/2c − m + ` + 1)

Γ
(
d(k − ν)/2e − m + ` + β + 1/2)

(
β + d(k − ν)/2e − m + ` − 1/2

`

)
.

When we cancel out the obvious terms, we are left with showing(
α + dk/2e − 1/2

m

)
(−1)m

(
k − ν + 2m + 1)ν

Γ
(
bk/2c − m + 1) =

2ν Γ(bν/2c + νk + 1)
Γ
(
b(k − ν)/2c − m + 1)

×

m∑
`=0

(
dk/2e − m + ` − 1/2
bbν/2c + νk

) (
β − α − bν/2c − νk

m − `

) (
β + d(k − ν)/2e − m + ` − 1/2

`

)
× (−1)` 3F2

(
−bν/2c − νk , ` − m, β − m + ` + d(k − ν)/2e + 1/2

β − α − bν/2c − νk + ` − m + 1, d(k − ν)/2e − m + ` + 1/2 ; 1
)
.

We can now write this sum as
m∑
`=0

min{ bν/2c+νk ,m−` }∑
τ=0

(
dk/2e − m + ` − 1/2
bν/2c + νk − τ

) (
β − α − bν/2c − νk

m − ` − τ

)
×

(
β + d(k − ν)/2e − m + ` − 1/2 + τ

` + τ

) (
` + τ

`

)
(−1)`

=

bν/2c+νk−1∑
s=0

s∑
τ=0

(
dk/2e − m + s − τ − 1/2

bν/2c + νk − τ

)
×

(
β − α − bν/2c − νk

m − s

) (
β + d(k − ν)/2e − m + s − 1/2

s

) (
s
τ

)
(−1)s−τ

+

m∑
s= bν/2c+νk

bν/2c+νk∑
τ=0

(
dk/2e − m + s − τ − 1/2

bν/2c + νk − τ

)

×

(
β − α − bν/2c − νk

m − s

) (
β + d(k − ν)/2e − m + s − 1/2

s

) (
s
τ

)
(−1)s−τ .

The inner sums are actually only taken for(
dk/2e − m + s − τ − 1/2

bν/2c + νk − τ

) (
s
τ

)
(−1)τ

=

(
−dk/2e + m − s + bν/2c + νk − 1/2

bν/2c + νk − τ

) (
s
τ

)
(−1) bν/2c+νk .
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Chapter 2 Matrix representation of the operators

For s < bν/2c + νk , this can be written as(
−dk/2e + m − s + bν/2c + νk − 1/2

bν/2c + νk − s

) (
−dk/2e + m − 1/2

s − τ

)
×

(
bν/2c + νk

τ

)
Γ
(
s + 1)Γ(bν/2c + νk − s + 1)
Γ
(
bν/2c + νk + 1) (−1) bν/2c+νk .

Now we can apply Vandermonde’s identity (1.6) to both inner sums, which then both evaluate
to (

dk/2e − m − 1/2
bν/2c + νk

)
.

Since this is independent of s, we can combine the two outer sums again and also apply
Vandermonde’s identity. So, we arrive at

(−1)m
2ν Γ(bν/2c + νk + 1)
Γ
(
b(k − ν)/2c − m + 1)

(
dk/2e − m − 1/2
bν/2c + νk

) (
α + bν/2c + νk + d(k − ν)/2e − 1/2

m

)
.

Using d(k − ν)/2e + bν/2c + νk = dk/2e and the equality

2ν Γ(dk/2e − m + 1/2)
Γ
(
b(k − ν)/2c − m + 1)Γ(b(k − ν)/2c − m + 1/2) =

(
k − ν − 2m + 1)ν
Γ
(
bk/2c − m + 1) ,

we have shown the theorem. �

Since the hypergeometric series occurring in (2.8) doesn’t always satisfy our needs, we will
express this in a slightly di�erent form. This is subject of the next corollary.

Corollary 2.4. Under the assumptions of Theorem 2.3,

c(ν)
jk

(α, β) = 2ν Γ(bν/2c + νk + 1) √
Γ
(
d j/2e + β + 1/2)
Γ
(
b j/2c + 1) Γ

(
bk/2c + 1)

Γ
(
dk/2e + α + 1/2)

×

min{ bν/2c+νk , (k−ν− j )/2}∑
τ=0

(
d( j + ν)/2e − 1/2
bν/2c + νk − τ

) (
β + d j/2e + τ − 1/2

τ

) (
β − α − bν/2c − νk
(k − ν − j)/2 − τ

)
if k − ν − j is even and k − ν ≥ j , and zero otherwise.

Proof. The sums occurring in this representation are hypergeometric series. We see this by
determining the quotient of the terms belonging to τ + 1 and τ and separating the common
factor by setting τ = 0 (see also [20, page 16]). The quotient is

(−bν/2c − νk + τ)(−(k − ν − j)/2 + τ)(β + d j/2e + τ)
(β − α − bν/2c − νk − (k − ν − j)/2 + 1 + τ)(d j/2e + 1/2 + τ)(τ + 1)

,
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2.3 Hermite weights

and the term for τ = 0 is simply(
d( j + ν)/2e − 1/2
bν/2c + νk

) (
β − α − bν/2c − νk

(k − ν − j)/2

)
.

Putting all this together, the sum over τ is the same as(
d( j + ν)/2e − 1/2
bν/2c + νk

) (
β − α − bν/2c − νk

(k − ν − j)/2

)
× 3F2

(
−bν/2c − νk , −(k − ν − j)/2, β + d j/2e + 1/2

β − α − bν/2c − νk − (k − ν − j)/2 + 1, d j/2e + 1/2 ; 1
)
.

The assumption follows from Theorem 2.3. �

Since the matrix has a chessboard structure above the diagonal and the �rst ν columns are zero,
we are going to consider the odd and even parts separately. These are given by

c(ν)
2 j,2k+ν (α, β) = 2ν Γ(dν/2e + 1) √

Γ
(
j + β + 1/2)
Γ
(
j + 1) Γ

(
k + bν/2c + 1)

Γ
(
k + dν/2e + α + 1/2)

×

min{ dν/2e,k− j }∑
τ=0

(
j + dν/2e − 1/2
dν/2e − τ

) (
β + j + τ − 1/2

τ

) (
β − α − dν/2e

k − j − τ

)
,

c(ν)
2 j+1,2k+1+ν (α, β) = 2ν Γ(bν/2c + 1) √

Γ
(
j + β + 3/2)
Γ
(
j + 1) Γ

(
k + dν/2e + 1)

Γ
(
k + bν/2c + α + 3/2)

×

min{ bν/2c,k− j }∑
τ=0

(
j + bν/2c + 1/2
bν/2c − τ

) (
β + j + τ + 1/2

τ

) (
β − α − bν/2c

k − j − τ

)
.

Although it is not of immediate use in our analysis, it is worth mentioning that these restricted
matrices have some special structure. This is kept in the next corollary.

Corollary 2.5. Let EN = (e jk )N
j,k=0 and FM = ( f jk )M

j,k=0 be the matrices with the entries

e jk = c(ν)
2 j,2k+ν (α, β), 0 ≤ j, k ≤ N,

f jk = c(ν)
2 j+1,2k+ν+1(α, β), 0 ≤ j, k ≤ M

for appropriate choices of N and M and c(ν)
jk

(α, β) from above. Then,

EN = 2νΓ(dν/2e + 1) diag *.
,

√
Γ
(
j + β + 1/2)
Γ
(
j + 1) +/

-

N

j=0

× RNT∗N
(
(1 + z)β−α−dν/2e ) diag *.

,

√
Γ
(
k + bν/2c + 1)

Γ
(
k + dν/2e + α + 1/2) +/

-

N

j=0

,

33



Chapter 2 Matrix representation of the operators

and

FM = 2νΓ(bν/2c + 1) diag *.
,

√
Γ
(
j + β + 3/2)
Γ
(
j + 1) +/

-

M

j=0

× RMT∗M
(
(1 + z)β−α−bν/2c ) diag *.

,

√
Γ
(
k + dν/2e + 1)

Γ
(
k + bν/2c + α + 3/2) +/

-

M

j=0

,

whereTN
(
(1+ z)β−α−dν/2e ) andTN

(
(1+ z)β−α−bν/2c ) are Toeplitz matrices generated by the Taylor

coe�cients of their corresponding symbol. RN =
(
re
jk

)N
j,k=0 and RM =

(
r f
jk

)M
j,k=0 are banded

matrices of bandwidth dν/2e + 1 and bν/2c + 1, respectively, with

rejk =
(

j + dν/2e − 1/2
dν/2e − k

) (
β + j + k − 1/2

k

)
,

r f
jk
=

(
j + bν/2c + 1/2
bν/2c − k

) (
β + j + k + 1/2

k

)
.

Proof. This follows immediately from the aforementioned representations. �
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This chapter is devoted to the cases in which the parameter di�erences are nonnegative integers.
These are relatively simple compared to the more general setting lying ahead of us. The matrix
entries c(ν)

jk
(α, β) for each of the Laguerre, Gegenbauer, and Hermite norms contain a factor

that looks similar to
(

ω
k− j−ν

)
. Now, if ω is a nonnegative integer, this binomial coe�cient is

zero whenever k − j − ν > ω. Therefore, all diagonals that are far away enough from the main
diagonal (well, actually the νth diagonal) are zero. This eases things up tremendously. We can
and will employ the very simple estimate ‖B‖∞ ≤

∑n
`=0 ‖B` ‖∞, where B denotes said block,

and the matrices B` contain the `th diagonal and are zero otherwise. Since we have only a few
nonzero diagonals, say m, the sum is actually independent on n and ends at m − 1. The norms
of the B` can be given explicitly. They are just the maximal absolute value among all entries on
the `th diagonal.

Moreover, due to the banded structure it is easy to show that the matrices converge to a special
Toeplitz matrix the symbol of which is at hand and turns out to be bounded. One important
result about such matrices (see, e. g., [12, page 10]) is that the spectral norm is determined by
the maximal absolute value of the symbol over the unit circle. While this might also work for
nonintegral di�erences, it would be harder to show the convergence. On the other hand, for
ω < 0 the symbol is not bounded anymore, and this approach fails.

In the next section, we will recap the results for the Laguerre and Gegenbauer cases found in
[7, 10]. After this, we turn to the Hermite case, which is a new result.
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Chapter 3 Best constants for integral di�erences

3.1 Integral di�erences in the Laguerre and Gegenbauer setting

In this section, we will only repeat the basic ideas from [7] and [10] to get the direction for the
upcoming treatment of the Hermite case and to have the results available readily.

The matrix entries in the Laguerre setting are particularly simple. Assume β = α + m with
some integer m ≥ ν. Furthermore, let BN denote the upper right (N × N )-block of the matrix
representation of the di�erential operator Dν , let N = n − ν + 1, and let BN,` be the matrix
consisting only of the `th diagonal of BN . Then,

‖BN,` ‖∞ = max
0≤ j≤N−`

(
m − ν
`

)
wn− j (α)

wn−ν− j−` (α + m)
.

The last quotient can be shown to be nm/2 (1 +O(1/n)
) , which is independent of j . Similarly,

the binomial coe�cient is independent of j . Summing over all diagonals, we get

‖BN ‖∞ ≤

m−ν∑
`=0
‖BN,` ‖∞ ≤

m−ν∑
`=0

(
m − ν
`

)
nm/2 (1 +O(1/n)

)
= 2m−νnm/2 (1 +O(1/n)

)
.

To derive a lower bound, we consider the scaled operators n−m/2BN πN on `2. Here, πN is the
projection onto the �rst N coordinates. Because these operators are uniformly bounded and the
bandwidth is independent of N , it su�ces to show that they converge entrywise to the Toeplitz
operator T∗

(
(1 − z)m−ν

) , which is given by the semi-in�nite matrix consisting of the Taylor
coe�cients of the function (1 − z)m−ν at z = 0. From the Banach-Steinhaus theorem it follows
that

lim inf
n→∞

‖n−m/2BN ‖∞ ≥ 

T∗
(
(1 − z)m−ν

)

∞.

But



T∗
(
(1 − z)m−ν

)

∞ = max
|z |=1
|1 − z |m−ν = 2m−ν .

Putting together the upper and lower bound, Böttcher and Dör�er have indeed shown that

λ (ν)
n (α,α + m) = ‖BN ‖∞ ∼ 2m−νnm/2 = 2β−α−νn(β−α)/2.

The matrix representation in the Gegenbauer setting is a little bit more involved. Here we have
a chessboard structure, i. e., the entries of the matrix are zero whenever k − j − ν is an odd
number. Therefore, at most the ν + 2`th diagonals, ` ∈ N0, will contain nonzero entries. Due to
the special case they try to handle, Böttcher and Dör�er [10] �rst stated that the kth entry of
the 2`th diagonal behaves like

ω(ν)
k+ν

(α)(−1)`
(
m − ν
`

)
1

2m−ν +O(1/k) as k → ∞,
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where

ω(ν)
k

(α) =

√
k!

(k − ν)!
Γ
(
k + 2α + ν + 1)
Γ
(
k + 2α + 1) .

With this the corresponding norm can be estimated by

‖BN,` ‖∞ ≤ nν
(
m − ν
`

)
1

2m−ν
(1 +O(1/n)

)
.

Here, BN,` is the matrix consisting only of the 2`th diagonal of BN – the same upper right
block as in the Laguerre case. Therefore, the norm can be estimated by

‖BN ‖∞ ≤ nν
(1 +O(1/n)

)
.

For the lower bound, exactly the same course of action is taken as in the Laguerre case, this
time with the symbol 2−(m−ν) (1 − z2)m−ν . Combining the estimates, they have shown that

γ (ν)
n (α,α + m) ∼ nν .

3.2 The Hermite case

The matrix representation of the operator Dν has a chessboard structure above the main
diagonal, again. Since η (ν)

n−1(α, β) ≤ η (ν)
n (α, β) ≤ η (ν)

n+1(α, β), we assume that N = n − ν + 1 is
an even number. Then there is some permutation matrix UN with

AN = UN

(
EN 0
0 FN

)
UN ,

where EN = (e jk )N/2−1
j,k=0 , FN = ( f jk )N/2−1

j,k=0 are built from the entries

e jk = c(ν)
2 j,2k+ν (α, β), f jk = c(ν)

2 j+1,2k+ν+1(α, β).

We con�ne ourselves to the investigation of the matrix EN , and we point out that the matrix
FN can be treated likewise. In the following, we will consider two distinct cases of integral
di�erences. First, we will restrict ourselves to β − α ≥ 0. We can then exploit the much simpler
structure of the matrix. Later, we will handle one more case, namely β = α, in order to prepare
the proofs of the general situation.

Assume now that β − α is an integer, not smaller than dν/2e. We can see from Theorem 2.3 that
the matrix under investigation is banded. This is due to the term

(
β−α−bν/2c−νk

(k− j−ν)/2

)
occurring in

the matrix representation. We will employ the same idea that was applied for the Laguerre
case in [7] and the Gegenbauer case in [10]: consider the matrix as a sum of (shifted) diagonal
matrices and use that the norm of the sum is less than the sum of the norms of these diagonals.
To derive a lower estimate, we show that some scaled version of the matrix EN converges in
the norm to a given Toeplitz operator.
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Chapter 3 Best constants for integral di�erences

Let m = β − α − dν/2e ∈ N0, i. e., consider the banded case. Then the entries d (`)
j , ` = 0, . . . ,m,

of the `th diagonal in row j are given by

d (`)
j = 2νΓ(dν/2e + 1) √

Γ
(
j + β + 1/2)
Γ
(
j + 1) Γ

(
j + ` + bν/2c + 1)

Γ
(
j + ` + dν/2e + α + 1/2)

×

min{ dν/2e,` }∑
τ=0

(
j + dν/2e − 1/2
dν/2e − τ

) (
β + j + τ − 1/2

τ

) (
m

` − τ

)
.

We now take a closer look on the particular terms. First, for the terms under the square root,
the ratio of the term under the square root for j + 1 and j satis�es

j + β + 1/2
j + 1 ·

j + ` + bν/2c + 1
j + ` + dν/2e + α + 1/2 =

j + m + 1/2 + α + dν/2e
j + ` + 1/2 + α + dν/2e ·

j + ` + bν/2c + 1
j + 1 ≥ 1,

since ` ≤ m. Thus, these factors are increasing with respect to j . The same is true for the �rst
two binomial coe�cients in the sum. The ratio for every single summand of the sum is

j + dν/2e + 1/2
j + τ + 1/2 ·

β + j + τ + 1/2
β + j + 1/2 ≥ 1.

The third binomial coe�cient is constant along the diagonal, independently of j . So, the
maximum (and with this the norm of this diagonal matrix) is attained for j = N/2 − 1 − `. We
get the following upper estimate for the norm of EN :

‖EN ‖∞ ≤ 2ν Γ(dν/2e + 1) m∑
`=0

√
Γ
(
N/2 − ` + β − 1/2)Γ(N/2 + bν/2c)

Γ
(
N/2 − `)Γ(N/2 + dν/2e + α − 1/2)

×

min{ dν/2e,` }∑
τ=0

(
N/2 − ` + dν/2e − 3/2

dν/2e − τ

) (
β + N/2 − ` + τ − 3/2

τ

) (
m

` − τ

)
.

We ignore the constant factor for the moment and replace the square root terms by the maximum
over 0 ≤ ` ≤ m, ignoring its value for the moment, too. The sum now reduces to

m∑
`=0

min{ dν/2e,` }∑
τ=0

(
N/2 − ` + dν/2e − 3/2

dν/2e − τ

) (
β + N/2 − ` + τ − 3/2

τ

) (
m

` − τ

)

≤

m∑
`=0

min{ dν/2e,` }∑
τ=0

(
N/2 + dν/2e − 1/2
dν/2e − τ

) (
β + N/2 + dν/2e − 1/2

τ

) (
m

` − τ

)

=

dν/2e∑
τ=0

(
N/2 + dν/2e − 1/2
dν/2e − τ

) (
β + N/2 + dν/2e − 1/2

τ

) m−τ∑
`=0

(
m
`

)

≤

dν/2e∑
τ=0

(
N/2 + dν/2e − 1/2
dν/2e − τ

) (
β + N/2 + dν/2e − 1/2

τ

) m∑
`=0

(
m
`

)
=

Γ
(
β + N + 2dν/2e)

Γ
(
β + N + dν/2e

)
Γ
(
dν/2e + 1) 2m .
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3.2 The Hermite case

Applying the standard asymptotic formulas for all terms, we get to the following upper bound
for ‖EN ‖∞:

‖EN ‖∞ ≤ 2ν
(
N
2

) (β−1/2)/2 (
N
2

) (−α+1/2+ bν/2c−dν/2e)/2
· 2β−α−dν/2eN dν/2e (1 +O(1/N )

)
= 2(β−α+ν)/2N (β−α+ν)/2 (1 +O(1/N )

)
. (3.1)

To derive a lower bound on the norm of EN , we use an approach analogous to the one in [7].
Let JN denote the (N × N )-matrix with ones on the counterdiagonal and zeros elsewhere. We
set BN = JN EN JN . Obviously, ‖EN ‖∞ = ‖E∗N ‖∞ = ‖BN ‖∞. It is easily seen that the entry at
position j k of BN equals the entry at the position N/2 − 1 − j,N/2 − 1 − k from EN . Now, let
πN be the projection

πN : `2 → `2, {x0, x1, x2, . . .} 7→ {x0, x1, . . . , xN/2−1,0, . . .}

and consider the operators TN = 2(β−α−ν)/2N (α−β−ν)/2BN πN on `2. We will show that these
operators converge strongly to the Toeplitz operator T∗

(
(1 + z)β−α

) on `2 that is given by the
in�nite Toeplitz matrix (ϕ jk )∞

j,k=0 with ϕ jk = 0 for k > j and

ϕ jk =

(
β − α

j − k

)
for k ≤ j. (3.2)

First, we infer from (3.1) that ‖TN ‖∞ ≤ 2β−α (1+O(1/N )
) . Thus, the operators TN are uniformly

bounded. To prove that TN → T
(
(1 + z)β−α

) strongly, it is therefore enough to show TN ek
converges to T

(
(1+ z)β−α

)
ek for every k ≥ 0, where ek ∈ `2 has 1 at the kth position and zeros

elsewhere. As all involved operators are banded with bandwidth m + 1 independent of N , it
su�ces to verify that the j k entry of TN converges to the j k entry of the matrix T

(
(1 + z)β−α

) .
But, the j k entry of TN is zero for k > j and for k < j − m, and if k ≤ j ≤ k + m, it equals

2(β−α+ν)/2N (α−β−ν)/2
Γ
(
dν/2e + 1)

×

√
Γ
(
N/2 − j + β − 1/2)
Γ
(
N/2 − j

) √
Γ
(
N/2 − k + bν/2c

)
Γ
(
N/2 − k + dν/2e + α − 1/2)

×

min{ dν/2e, j−k }∑
τ=0

(
N/2 − j + dν/2e − 3/2

dν/2e − τ

) (
β + N/2 − j + τ − 3/2

τ

) (
β − α − dν/2e

j − k − τ

)

= 2(β−α+ν)/2N−(β−α+ν)/2

√
Γ
(
N/2 − j + β − 1/2)
Γ
(
N/2 − j

) √
Γ
(
N/2 − k + bν/2c

)
Γ
(
N/2 − k + dν/2e + α − 1/2)

×

min{ dν/2e, j−k }∑
τ=0

Γ
(
N/2 − j + dν/2e − 1/2)
Γ
(
N/2 − j + τ − 1/2) Γ

(
β + N/2 − j + τ − 1/2)
Γ
(
β + N/2 − j − 1/2)

×
Γ
(
dν/2e + 1)

Γ
(
dν/2e − τ + 1)Γ(τ + 1)

(
β − α − dν/2e

j − k − τ

)
∼

(
N
2

)−(β−α+ν)/2 (
N
2

) (β−1/2)/2 (
N
2

) (−α−dν/2e+ bν/2c+1/2)/2

×

min{ dν/2e, j−k }∑
τ=0

(
N
2

) dν/2e−τ (
N
2

)τ (
dν/2e

τ

) (
β − α − dν/2e

j − k − τ

)
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Chapter 3 Best constants for integral di�erences

=

(
β − α

j − k

)
.

We assumed that the last sum actually runs to j − k in order to use Vandermonde’s identity (1.6).
For j − k ≤ dν/2e, this is clear. For j − k > dν/2e, this can be justi�ed by the fact that all of the
terms

(
dν/2e
τ

)
are zero for τ > dν/2e. Comparing this result with (3.2), we arrive at the conclusion

that TN converges strongly to T∗
(
(1+ z)β−α

) , as asserted. From the Banach-Steinhaus theorem
we therefore deduce

lim inf
N→∞



2(β−α−ν)/2N (α−β−ν)/2BN


∞ ≥ 

T

(
(1 + z)β−α

)

∞.

But, by a well-known result on the norm of Toeplitz operators (see, e.g., [12, page 10]), the latter
is



T
(
(1 + z)β−α

)

∞ = max
|z |=1
|1 + z |β−α = 2β−α .

Thus,

lim inf
N→∞

N (α−β−ν)/2‖EN ‖∞ ≥ 2(β−α+ν)/2. (3.3)

Combining (3.1) and (3.3), we obtain that

‖EN ‖∞ ∼ (2N )(β−α+ν)/2.

As above, one can show that

‖FN ‖∞ ∼ (2N )(β−α+ν)/2.

Note that the latter is even true for β−α = bν/2c. However, when ν is an odd number, the matrix
Cn has some weird structure, because FN is banded and EN is a full triangular matrix. Since
η (ν)
n (α, β) depends on both, ‖EN ‖∞ and ‖FN ‖∞, this result on ‖FN ‖∞ alone is not of substantial

value. Anyway, we will later prove the same asymptotics for ‖EN ‖∞ by more sophisticated
means. It will then be a consequence of the investigation of the nonintegral case.

Since ‖Cn ‖∞ = max{‖EN ‖∞, ‖FN ‖∞}, we obtain for β − α ≥ dν/2e, β − α an integer, the
following asymptotic behavior for n → ∞:

η (ν)
n (α, β) ∼ (2n)(β−α+ν)/2.

We will prove one more integer case. If β − α = 0 the matrix is in general not banded anymore.
The special case α = β = 0 has been disposed of before. Then, the matrix is indeed a diagonal
matrix and it is known that

η (ν)
n (0,0) ∼ (2n)ν/2.

Assume for the rest of this section that α = β , 0. We will show that the asymptotic expressions
obtained above, with the restriction β − α − dν/2e ≥ 0, also hold for β = α. Taking a closer look
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−5.3

96.3

k

j

Figure 3.1: Matrix plot for n = 50, ν = 2, α = β = 1.4 in the Hermite setting. Each bar over a
square corresponds to an entry in a matrix (a jk )n

j,k=0. The height and color of the
bar at the jth row and kth column are determined by the value a jk of the matrix.

at the matrix, we see that, although the matrix is not banded anymore, it is close to a diagonal
matrix in the sense that the entries along the diagonal are signi�cantly bigger in their absolute
values than the o�-diagonal entries. An example is shown in Figure 3.1. Indeed, for β = α, the
last entry on the diagonal of the matrix EN is given by

eN/2−1,N/2−1 = 2νΓ(dν/2e + 1) √
Γ
(
N/2 + α − 1/2)Γ(N/2 + bν/2c)

Γ
(
N/2)Γ(N/2 + dν/2e + α − 1/2)

(
N/2 + dν/2e − 3/2

dν/2e

)

= 2ν
√
Γ
(
N/2 + α − 1/2)Γ(N/2 + bν/2c)

Γ
(
N/2)Γ(N/2 + dν/2e + α − 1/2) Γ

(
N/2 + dν/2e − 1/2)
Γ
(
N/2 − 1/2)

= 2ν
(
N
2

) (α−1/2+ bν/2c−dν/2e−α+1/2)/2+ dν/2e (1 +O(1/N ))

= 2ν
(
N
2

)ν/2 (1 +O(1/N )
)
.

This is exactly what we want. Since ‖EN eN/2−1‖2 =
√∑N/2−1

j=0 e2
j,N/2−1 ≥ eN/2−1,N/2−1, this

already provides a lower bound. An upper bound is harder to show. The approach we used for
the banded matrices does not work here anymore. What we do instead is to use a corollary of
the Geršgorin theorem [17, page 344]. The Geršgorin theorem provides discs in the complex
plane containing the eigenvalues of a matrix. The closer such a matrix is to a diagonal matrix,
the more precise the location can be given. Since we look for the singular values, we could
apply the theorem to E∗N EN . Its eigenvalues all are nonnegative real numbers, so the discs
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Chapter 3 Best constants for integral di�erences

are in fact intervals. However, the matrix representation of E∗N EN is not easy to work with.
The paper [21] uses the ideas of the Geršgorin theorem directly with the matrix EN to provide
intervals for the location of the singular values. Even more, it also provides a scaled version
of the theorem. Since the eigenvalues do not change if we multiply a matrix by an invertible
matrix from the right and its inverse from the left, we may modify the matrix entries slightly to
get better bounds.

Since we are interested only in the largest singular value of the matrix EN , the combination of
Theorem 2 and Theorem 4 of [21] yields

‖EN ‖∞ ≤ max
0≤i≤N/2−1




N/2−1∑
j=0

d j

di
|ei j |,

N/2−1∑
j=0

d j

di
|e j i |



, (3.4)

where d0, . . . ,dN/2−1 are positive real numbers. We will later see that the maximum is attained
for i = N/2− 1. So, assume this is already shown. Then, the �rst expression, which is associated
to the row sums, contains just the diagonal entry. This term is also a part of the second
expression. Therefore, we only have to investigate this entry.

We set d j =
( √

j+1
N

)ε
for 0 ≤ j ≤ N/2 − 2 and dN/2−1 = 1, where ε > 0 is a small positive

number. We have already shown that the entry eN/2−1,N/2−1 provides the desired bound, and
that it is of order Nν/2. We will now show that the sum over the remaining terms in the above
maximum is of lower order. Although the theorems from [21] do not immediately yield such
good bounds, they su�ce for our asymptotical statements. We have

N/2−2∑
j=0

d j

dN/2−1
|e j,N/2−1 | = 2νΓ(dν/2e + 1) √

Γ
(
N/2 + bν/2c)

Γ
(
N/2 + dν/2e + α − 1/2) N−ε

×

N/2−2∑
j=0

( j + 1)ε/2
√
Γ
(
j + α + 1/2)
Γ
(
j + 1)

(
j + dν/2e − 1/2

dν/2e

) (
N/2 − j + dν/2e − 2

N/2 − 1 − j

)

×
�����3

F2

(
−dν/2e, j − N/2 + 1, α + j + 1/2
−dν/2e + j − N/2 + 2, j + 1/2 ; 1

) �����
. (3.5)

We need to closer investigate the hypergeometric series. For readability we set m = N/2 − 1.
Assume m − j ≥ 1 and α , 0. We employ the Chu-Vandermonde identity (1.5) for the term

(
α + j + 1/2)τ(

j + 1/2)τ = 2F1

(
−τ, −α

j + 1/2 ; 1
)
=

τ∑
σ=0

(
−τ

)
σ

(
−α

)
σ(

j + 1/2)σσ!

occurring in the hypergeometric series over the summation variable τ. Therefore,
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3F2

(
−dν/2e, −m + j, α + j + 1/2
−dν/2e − m + j + 1, j + 1/2 ; 1

)
=

m− j∑
τ=0

(
−dν/2e

)
τ

(
−m + j

)
τ(

−dν/2e − m + j + 1)ττ!

τ∑
σ=0

(
−τ

)
σ

(
−α

)
σ(

j + 1/2)σσ!

=

m− j∑
σ=0

(
−dν/2e

)
σ

(
−m + j

)
σ

(
−α

)
σ (−1)σ(

j + 1/2)σσ!(−dν/2e − m + j + 1)σ
m− j−σ∑
τ=0

(
−dν/2e + σ

)
τ

(
−m + j + σ

)
τ(

−dν/2e − m + j + σ + 1)ττ!

=

m− j∑
σ=0

(
−dν/2e

)
σ

(
−m + j

)
σ

(
−α

)
σ (−1)σ

(
−dν/2e + 1) dν/2e−σ(

j + 1/2)σσ!(−dν/2e − m + j + 1) dν/2e

.

The last identity is again an application of the Chu-Vandermonde identity (1.5). Observe that
the term (

−dν/2e + 1) dν/2e−σ vanishes for σ = 0. Therefore, the sum starts at σ = 1. Since we
assumed m − j ≥ 1, we can now write the sum as

−
(−dν/2e)(−m + j)(−α)

(
−dν/2e + 1) dν/2e−1

( j + 1/2)
(
−dν/2e − m + j + 1) dν/2e

m− j−1∑
σ=0

(
−dν/2e + 1)σ (

−m + j + 1)σ (1 − α)
σ(

j + 3/2)σ (2)σσ!

=
Γ
(
dν/2e + 1) (−α)

( j + 1/2)
Γ
(
m − j + 1)

Γ
(
m − j + dν/2e

) 3F2

(
−dν/2e + 1, −m + j + 1, 1 − α

2, j + 3/2 ; 1
)
. (3.6)

We note that this transformation also holds in the case dν/2e = 1. To confess, we might have
proved this a lot simpler. For dν/2e = 1, we get

3F2

(
−dν/2e, −m + j, α + j + 1/2
−dν/2e − m + j + 1, j + 1/2 ; 1

)
= 2F1

(
−1, α + j + 1/2

j + 1/2 ; 1
)
=
−α

j + 1/2 ,

which is just the above term.

We still have to investigate the hypergeometric series from (3.6). Take a closer look at the
term (

−m + j + 1)τ(
j + 3/2)τ =

(
−m − 1/2

j + 3/2 + 1
)
· · ·

(
−m − 1/2
j + τ + 1/2 + 1

)
.

This implies that the absolute value of the whole series is at most a constant times a polynomial
in m/ j of degree at most dν/2e − 1.

We now go back to the original problem (3.5). First, treat the term for j = 0 separately. It is

2ν
√

Γ
(
N/2 + bν/2c)

Γ
(
N/2 + dν/2e + α − 1/2) N−ε

√
Γ
(
α + 1/2) Γ(dν/2e + 1/2)

Γ
(1/2) Γ

(
N/2 + dν/2e − 1)
Γ
(
N/2)

×
�����3

F2

(
−dν/2e, −N/2 + 1, α + 1/2
−dν/2e − N/2 + 2, 1/2 ; 1

) �����
.

The hypergeometric series is bounded by a constant. This can be shown by examining the two
factors containing an N . The whole term is at most a constant times

Nν/2−ε−1−(α−1/2)/2 = O
(
Nν/2−ε ) .
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So, for ε > 0, this is of smaller order than the entry eN/2−1,N/2−1.

After applying the above identities, the rest of the sum now is

2ν
√

Γ
(
N/2 + bν/2c)

Γ
(
N/2 + dν/2e + α − 1/2) N−ε | dν/2eα |

×

N/2−2∑
j=1

( j + 1)ε/2
√
Γ
(
j + α + 1/2)
Γ
(
j + 1) Γ

(
j + dν/2e + 1/2)
Γ
(
j + 3/2) O

(
(N/ j) dν/2e−1) ,

a term in O
(
Nν/2−ε/2) and thus also of smaller order than the entry eN/2−1,N/2−1.

What is left to show is that the maximum is really attained for i = N/2 − 1. What we have
seen so far is that the o�-diagonal elements do not really matter in comparison to the diagonal
element. Therefore, the maximum of the sum in (3.4) is determined by the elements on the main
diagonal. It is easy to compare these elements since the sum occurring inside e j j is actually just
a single term. It can be seen that the terms are strictly increasing, starting with a small index.
Indeed, we have discussed before that these terms behave like 2ν ( j/2)ν/2, which is clearly
growing in j .

The same estimate can be done for FN . In conclusion, we have shown that for α = β,

η (ν)
n (α,α) ∼ (2n)ν/2

gives the asymptotic behavior as n goes to in�nity.
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We now switch to the nonintegral case. The main di�culty here is that the involved matrices
are not banded anymore, but they are full upper triangular matrices. All three norms considered
here share the same main idea. To get an upper bound, we employ the results from the integral
case and a theorem by Stein to interpolate between these. For the lower bound, we construct a
special vector and estimate the norm of its image under the e�ect of the operator. Letting the
dimension of the matrix go to in�nity, this lower bound will tend to the upper bound.

Before constraining ourselves to the details of the particular cases, we take a look at some
results that will be used several times.

4.1 General considerations

The following lemma is an application of Stein’s interpolation theorem [25] in the special cases
of the norms considered here. To this end, let u(·,α) denote one of the weight functions

uL (t,α) =
(
tαe−t )1/2 (Laguerre), (4.1)

uG (t,α) =
(1 − t2)α/2 (Gegenbauer), (4.2)

uH (t,α) =
(
|t |2αe−t2 )1/2

(Hermite), (4.3)
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α

β

θ0

(α, β)

(α, β0)

(α, β1)

Figure 4.1: The possible parameter set for α, β > −1, β − α ≥ 0.

and Ω one of the corresponding domains (0,∞), (−1,1), (−∞,∞). Note that we can now write
the respective norms in terms of the usual unweighted L2-norm ‖ · ‖L2 (Ω) as follows:

‖ f ‖2α =
∫
Ω

| f (t) |2u2(t,α)dt =
∫
Ω

| f (t)u(t,α) |2dt = ‖ f u(·,α)‖2
L2 (Ω) . (4.4)

Before we go further, we will illustrate the targeted idea of what we want to achieve. We assume
α, β > −1 and β−α ≥ 0. The set of possible parameters is illustrated in Figure 4.1. The diagonal
gray lines indicate the pairs (α, β) that have an integral di�erence. As can be seen in this
picture, we can �nd for any valid pair (α, β) with nonintegral di�erence two neighboring pairs
(α, β0) and (α, β1) that satisfy β0 − α ∈ Z and β1 − α ∈ Z. This is true for any α > −1. Since
we have good upper estimates in these cases, the hope is that we can exploit the knowledge to
get good estimates for the cases in between. The following lemma tells us that this is indeed
possible and also provides information about the constants.

Lemma 4.1. Fix α and let γ > −1 (or γ > −1/2 in the Hermite case) be arbitrary. Let u(·,α) and
Ω be as above. De�ne an operator

T : L2(Ω,u(·,α)) → L2(Ω,u(·, γ))

via

T f = Dν f for all f ∈ Pn (α),

Tg = 0 for all g ∈ Pn (α)⊥,

where Dν : Pn → Pn is the operator that maps a polynomial of degree at most n to its νth
derivative, and Pn (α) is the space of all algebraic polynomials of degree at most n equipped with
the norm ‖ f ‖α . Then, ‖T ‖α→γ = ‖Dν ‖α→γ for any γ > −1 (γ > −1/2). Furthermore, if

‖Dν f ‖β ≤ C (ν)
n (α, β)‖ f ‖α for all f ∈ Pn , (4.5)
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4.1 General considerations

for all β = β′ + k, k ∈ N0 with some β′ satisfying β′ − α ∈ Z, and if the coe�cients C (ν)
n (α, β)

satisfy

C (ν)
n (α, β′(1 − θ) + (β′ + 1)θ) =

(
C (ν)
n (α, β′)

)1−θ (C (ν)
n (α, β′ + 1)

)θ , θ ∈ [0,1],

then (4.5) holds for all β ∈ [β′,∞).

Proof. First, we observe that

‖T ‖2α→γ = sup
f ∈Pn (α), g∈Pn (α)⊥

‖T ( f + g)‖2γ
‖ f + g‖2α

= sup
f ∈Pn (α), g∈Pn (α)⊥

‖Dν f ‖2γ
‖ f ‖2α + ‖g‖2α

≤ sup
f ∈Pn (α)

‖Dν f ‖2γ
‖ f ‖2α

= ‖Dν ‖2α→γ .

There exists an f0 ∈ Pn (α) such that ‖Dν f0‖γ = ‖Dν ‖α→γ ‖ f0‖α . Hence,

‖T ‖α→γ = sup
f ∈Pn (α), g∈Pn (α)⊥

‖T ( f + g)‖γ
‖ f + g‖α

≥
‖T f0‖γ

‖ f0‖α
=
‖Dν f0‖γ

‖ f0‖α
= ‖Dν ‖α→γ .

Consequently, ‖T ‖α→γ = ‖Dν ‖α→γ for arbitrary γ. We now employ the interpolation theorem
of Stein [25]. Given any β ≥ β′, de�ne

θ0 B β − α − b β − αc ∈ (0,1), β0 B β − θ0, β1 B β + (1 − θ0).

Then, β0 − α = b β − αc ∈ Z and β1 − α = dβ − αe ∈ Z. Since β1 − 1 = β0 ≥ β′, (4.5) provides
an upper bound on the norms

‖(T f )u(·, βi )‖2 = ‖T f ‖βi ≤ C (ν)
n (α, βi )‖ f ‖α for all f ∈ Pn , i = 0,1.

Since u(t, β) = u1−θ0 (t, β0) · uθ0 (t, β1), we can apply Theorem 2 of [25], which leads us to

‖T f ‖β0 (1−θ)+β1θ = ‖(T f )u(·, β0(1 − θ) + β1θ)‖2

≤
(
C (ν)
n (α, β0)

)1−θ (C (ν)
n (α, β1)

)θ
‖ f ‖α

for all f ∈ Pn and all θ ∈ [0,1]. As we have β = (1 − θ0) β0 + θ0 β1, we conclude that

‖T f ‖β ≤ C (ν)
n (α, β)‖ f ‖α for all f ∈ Pn . �

The next lemma provides us with an inequality which is used in deriving a lower bound in the
Laguerre and Gegenbauer cases. It contains the essence of the proof presented in [19].

Lemma 4.2. Let ω ∈ (0,∞) \ N, n, µ ∈ N, n ≥ µ > dωe, and ρi > 0, i = 0, . . . ,n. Then,

n∑
i=0

ρi ·

( n−i∑
k=max{0,n−i−µ+1}

(
ω

k

))2
≥ 2

⌊
µ − dωe

2

⌋
22ω · min

n−µ+1≤i≤n
ρi .
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Chapter 4 The nonintegral case

In order to prove this, we �rst collect some results on general binomial coe�cients for reference
in the following lemma. It can also be found as Lemma 1 in [19].

Lemma 4.3. Let ω ∈ (0,∞) \ N. Then for any k, `,m ∈ N ∪ {0} the following statements are
valid:

sgn
(
ω

k

)
=




+1 : k ≤ dωe
(−1)k−dω e : k ≥ dωe + 1,

(4.6)

�����

(
ω

k

) �����
>

�����

(
ω

k + 1

) �����
for k ≥ bωc, and 0 <

(
ω

dωe

)
< 1, (4.7)

dω e+2`∑
j=0

(
ω

j

)
≥

dω e+2(`+m)∑
j=0

(
ω

j

)
≥ 2ω , (4.8)

dω e+2`+1∑
j=0

(
ω

j

)
≤

dω e+2(`+m)+1∑
j=0

(
ω

j

)
≤ 2ω , (4.9)

dω e+`+1∑
j=0

(
ω

j

)
(−1) j




≥ 0 : bωc ≡ 0 mod 2
≤ 0 : bωc ≡ 1 mod 2.

(4.10)

Proof. We write the binomial coe�cient as(
ω

k

)
=

k∏
j=1

ω − j + 1
j

.

All factors with j < ω + 1 are positive, and all factors with j > ω + 1 are negative. So, for
k ≤ bωc + 1 = dωe, the product is only over positive factors and thus also positive. Otherwise,
there are k − dωe factors in the product that are negative, proving (4.6).

To show (4.7), we consider
(
ω
k+1

)
=

ω−(k+1)+1
k+1

(
ω
k

)
. If k > ω, the absolute value of the �rst factor

is strictly smaller than 1. For k = dωe, we have(
ω

dωe

)
=

ω

dωe
·
ω − 1
dωe − 1 · · ·

ω − dωe + 1
1 .

Every factor of this product is positive and smaller than 1. This completes the proof of (4.7).

Now let sk =
∑ dω e+k

j=0

(
ω
j

)
. With (4.6) and (4.7), we conclude that

s2(i+1) − s2i =

(
ω

dωe + 2i + 1

)
+

(
ω

dωe + 2i + 2

)
< 0,

and

s2(i+1)+1 − s2i+1 =

(
ω

dωe + 2i + 2

)
+

(
ω

dωe + 2i + 3

)
> 0.
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4.1 General considerations

Thus, the sequence {s2i }
∞
i=0 is decreasing and the sequence {s2i+1}

∞
i=0 is increasing. But sk is a

partial sum of the power series for (1 + x)ω , evaluated at x = 1. This converges absolutely for
ω > 0 and has the sum 2ω , implying (4.8) and (4.9).

Again, from (4.6), we conclude that for j ≥ dωe + 1,

sgn
((
ω

j

)
(−1) j

)
= (−1) j−dω e (−1) j = (−1) dω e .

So, for even or odd dωe, all summands from dωe + 1 onwards stay positive or negative, re-
spectively. Again, the left-hand side of (4.10) is a partial sum of the power series for (1 + x)ω

evaluated at x = −1. At this point, it converges absolutely with sum 0. From this, (4.10)
follows. �

Another important lemma used for proving Lemma 4.2 already appeared as Lemma 2 in [19].

Lemma 4.4. If ω ≥ 1 and µ ∈ N ∪ {0}, then

bω c∑
m=0

( m∑
j=0

(
ω

j

))2
≥ 4 ·

⌊
µ−dωe

2
⌋
−1∑

k=0

[(
ω − 1

dωe + 2k + 1

)
·

dω e+2k+1∑
j=0

(
ω − 1

j

)]
. (4.11)

Proof. First, we observe that if ω ∈ N, then the right-hand side of (4.11) equals 0 since all the
terms

(
ω−1

dω e+2k+1

)
are 0. On the left-hand side, we sum over squares of real numbers, so this sum

is nonnegative and hence the inequality holds in this case. Thus, we only need to investigate
the case ω ∈ (1,∞) \ N.

We �rst assume ω > 2. Clearly, ∑ bω cm=0
(∑m

j=0
(
ω
j

))2
≥

(∑ bω c
j=0

(
ω
j

))2
. With (4.6) and (4.8), we

obtain
bω c∑
j=0

(
ω

j

)
=

bω c∑
j=0

[(
ω − 1

j

)
+

(
ω − 1
j − 1

)]
≥

bω c∑
j=0

(
ω − 1

j

)
≥ 2ω−1.

So, we have
bω c∑
m=0

( m∑
j=0

(
ω

j

))2
≥ 22ω−2.

Next, we want to point out that both
(

ω−1
dω e+2k+1

)
and ∑ dω e+2k

j=0

(
ω−1
j

)
are positive for every

nonnegative integer k . We have
⌊
µ−dωe

2
⌋
−1∑

k=0

[(
ω − 1

dωe + 2k + 1

)
·

dω e+2k+1∑
j=0

(
ω − 1

j

)]

=

⌊
µ−dωe

2
⌋
−1∑

k=0



(
ω − 1

dωe + 2k + 1

)
·

[ dω e+2k∑
j=0

(
ω − 1

j

)
+

(
ω − 1

dωe + 2k + 1

)]
.
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Chapter 4 The nonintegral case

With (4.7) and (4.9), we get the following upper bound for the right hand side of (4.11):

4(2ω−1 + 1) ·

⌊
µ−dωe

2
⌋
−1∑

k=0

(
ω − 1

dωe + 2k + 1

)
.

From (4.6) and (4.7), we infer
⌊
µ−dωe

2
⌋
−1∑

k=0

(
ω − 1

dωe + 2k + 1

)
=

⌊
µ−dωe

2
⌋
−1∑

k=0

[(
ω − 2

dωe + 2k + 1

)
+

(
ω − 2
dωe + 2k

)]

=

2
⌊
µ−dωe

2
⌋
−1∑

k=0

(
ω − 2
dωe + k

)
≤

(
ω − 2
dωe

)
.

Set δ = ω − bωc ∈ (0,1). By simple calculation, we can show that(
ω − 2
dωe

)
≤
δ(δ − 1)(δ − 2)

6 ≤
1

9
√

3
<

1
8 .

So, for the right-hand side of (4.11), we get

4 ·

⌊
µ−dωe

2
⌋
−1∑

k=0

[(
ω − 1

dωe + 2k + 1

)
·

dω e+2k+1∑
j=0

(
ω − 1

j

)]
< 4(2ω−1 + 1) · 1

8 = 2ω−2 + 1
2

< 2ω−2 + 2ω−2 = 2 · 2ω−2

< 2ω−1(2 · 2ω−2) = 22ω−2,

which completes the proof for ω > 2.

Now, assume 1 < ω < 2. The left-hand side of (4.11) simpli�es to(
ω

0

)2
+

[(
ω

0

)
+

(
ω

1

)]2
= 2 + 2ω + ω2 ∈ (5,10).

For the inner sum of the right-hand side of (4.11), we have

2k+3∑
j=0

(
ω − 1

j

)
≤ 1 + (ω − 1) +

(ω − 1)(ω − 2)
2 +

(ω − 1)(ω − 2)(ω − 3)
6 ≤ ω.

From (4.6) and (4.7), we obtain

2
(
ω − 1
2k + 3

)
≤

(
ω − 1
2k + 3

)
−

(
ω − 1
2k + 2

)
.
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Taking all this into account, we arrive at the upper estimate

4 ·
bµ/2c−2∑
k=0

(
ω − 1
2k + 3

) 2k+3∑
j=0

(
ω − 1

j

)
≤ 2ω ·

bµ/2c−2∑
k=0

2
(
ω − 1
2k + 3

)

≤ 2ω ·
bµ/2c−2∑
k=0

[(
ω − 1
2k + 3

)
−

(
ω − 1
2k + 2

)]
= 2ω ·

2 bµ/2c−3∑
k=0

(
ω − 1
k + 2

)
(−1)k+1

= 2ω ·
(2 bµ/2c−3∑

k=0

(
ω − 1
k + 2

)
(−1)k+1 +

(
ω − 1

1

)
−

(
ω − 1

0

)
+

(
ω − 1

0

)
−

(
ω − 1

1

))

= 2ω ·
(
−

2 bµ/2c−3∑
k=0

(
ω − 1

k

)
(−1)k + 2 − ω

)
≤ 2ω(2 − ω) ≤ 2.

In the third estimate, we made use of (4.10). �

Proof of Lemma 4.2. We partition the sum on the left-hand side into four parts Σ1,Σ2,Σ3,Σ4 as
follows:

• Σ1 contains all terms whose inner sums have only summands with k < ω, i. e.,

Σ1 =
n∑

i=n−dω e+1
ρi

(n−i∑
k=0

(
ω

k

))2
.

• Σ2 contains all terms with n − i > ω whose inner sums start at 0 and where the last term
in the inner sum is positive, i. e.,

Σ2 =

⌊
µ−dωe−1

2
⌋∑

`=0
ρn−dω e−2`

( dω e+2`∑
k=0

(
ω

k

))2
.

• Σ3 contains all terms with n − i > ω whose inner sums start at 0 and where the last term
in the inner sum is negative, i. e.,

Σ3 =

⌊
µ−dωe−2

2
⌋∑

`=0
ρn−dω e−2`−1

( dω e+2`+1∑
k=0

(
ω

k

))2
.

• Σ4 is made up of the rest, i. e., the inner sum does not start at 0,

Σ4 =

n−µ∑
i=0

ρi

( n−i∑
k=n−i−µ+1

(
ω

k

))2
.
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Figure 4.2: Illustration of the partitioning of the sum.

To get a better understanding of the way this partition works, we want to illustrate this by a
small example: Let dωe = 3 and µ = 9. Then, the elements of the inner sum may be arranged in
a way that Figure 4.2 suggests (omitting the “+” between the elements, as well as the factors ρi ).

Here, each line corresponds to a �xed i. The lower orange box of Figure 4.2 is the part for
Σ1. The parts highlighted belong to Σ2, and the ones highlighted belong to Σ3. The
upper block is the part for Σ4. Everything left from the highlighted area is not considered,
since it is absent in the overall sum.

We will see that Σ2, in fact, exceeds the desired estimate for the lower bound. In contrast to
that, Σ3 is below the bound we want to show. We will prove that this can be repaired by adding
Σ1 and Σ3.

Since all involved summands are nonnegative numbers, we may drop Σ4 and retain a lower
estimate on the whole sum. Now, we only have to consider the indices i with n − µ + 1 ≤ i ≤ n
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4.1 General considerations

for the values ρi and thus replace all occurrences by the minimum over this set. Then, let Σ′j
denote the sum Σ j ( j = 1,2,3) without the ρi part. With (4.8), we arrive at Σ′2 ≥

⌊
µ−dω e

2

⌋
· 22ω .

Our �rst goal is to show that

Σ
′
1 + Σ

′
3 ≥

⌊
µ − dωe

2

⌋
· 22ω for ω ∈ (0,∞) \ N. (4.12)

We rewrite the inner sums of Σ′3 for ω > 1 as
dω e+2`+1∑

k=0

(
ω

k

)
=

dω e+2`+1∑
k=0

(
ω − 1

k

)
+

dω e+2`∑
k=0

(
ω − 1

k

)

= 2 ·
dω e+2`+1∑

k=0

(
ω − 1

k

)
−

(
ω − 1

dωe + 2` + 1

) (4.13)

and Σ′1 as
bω c∑
m=0

[ m∑
j=0

(
ω

j

)]2
. (4.14)

Putting Σ′1 and Σ′3 back together, we accomplish by (4.13) and (4.14) that

Σ
′
1 + Σ

′
3 =

bω c∑
m=0

[ m∑
j=0

(
ω

j

)]2
+

⌊
µ−dωe

2
⌋
−1∑

`=0

[(
2 ·
dω e+2`+1∑

k=0

(
ω − 1

k

))

− 4
(

ω − 1
dωe + 2` + 1

) dω e+2`+1∑
k=0

(
ω − 1

k

)
+

(
ω − 1

dωe + 2` + 1

)2]

≥

bω c∑
m=0

[ m∑
j=0

(
ω

j

)]2
+

⌊
µ−dωe

2
⌋
−1∑

`=0

[
22ω − 4

(
ω − 1

dωe + 2` + 1

) dω e+2`+1∑
k=0

(
ω − 1

k

)]

≥

⌊
µ − dωe

2

⌋
· 22ω .

The �rst inequality follows from (4.8), while the last inequality is a direct consequence of
Lemma 4.2. Thus, estimate (4.12) is proved for ω > 1.

Now, assume 0 < ω < 1. Then, Σ′1 is just
(
ω
0

)2
, and we write Σ′3 as

⌊
µ−dωe

2
⌋
−1∑

`=0

2`+2∑
k=0

(
ω

k

)
=

⌊
µ−dωe

2
⌋∑

`=1

2∑̀
k=0

(
ω

k

)
.

The desired estimate (4.12) will follow as above, provided we can show the inequality(
ω

0

)2
+

M∑
k=1

[ 2k∑
j=0

(
ω

j

)]2
≥

M∑
k=1



2k+1∑
j=0

(
ω

j

)

2

(4.15)
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for M =
⌊
µ−dω e

2

⌋
. For the right-hand side of (4.15), we now have

M∑
k=1

[2k+1∑
j=0

(
ω

j

)]2
≤

M∑
k=1

[ 2k∑
j=0

(
ω

j

)]2
+ 2

M∑
k=1

[(
ω

2k + 1

) 2k+1∑
j=0

(
ω

j

)]
.

With analogous arguments as above,

2
M∑
k=1

(
ω

2k + 1

) 2k+1∑
j=0

(
ω

j

)
≤ 2ω ·

M∑
k=1

2
(

ω

2k + 1

)
≤ 2ω ·

M∑
k=1

[(
ω

2k + 1

)
−

(
ω

2k

)]

= 2ω ·
2M+1∑
k=2

(
ω

k

)
(−1)k+1 = 2ω

[
−

2M+1∑
k=0

(
ω

k

)
(−1)k + 1 − ω

]

≤ 2ω (1 − ω) ≤ 1 =
(
ω

0

)2
,

from which inequality (4.15) follows. Thus, we have shown (4.12) for allω ∈ (0,∞)\N. Together
with the estimate for Σ′2, the lemma follows. �

In the following sections, we will work out the speci�c details for each of the regarded norms.

4.2 The Laguerre case

This section deals with the Laguerre case when β − α ≥ ν is not an integer. We will apply
Lemma 4.1 of the previous section to derive an upper bound from the results already known
for the integral case. For the lower bound, we construct a special vector in such a way that
Lemma 4.2 can be employed. The proof already appeared in [19].

From [7] (see also Chapter 3), we already know that

λ (ν)
n (α, β) ≤ 2β−α−νn(β−α)/2(1 +O(1/n))

as n goes to in�nity in case β − α ≥ ν is an integer. Set

θ0 B β − α − b β − αc, β0 B β − θ0, β1 B β1 + (1 − θ0).

Obviously, β = (1 − θ0) β0 + θ β1 and β1 = β0 + 1. With u(·,α) according to (4.1), Lemma 4.1
now tells us that

λ (ν)
n (α, β) = λ (ν)

n (α, (1 − θ0) β0 + θ0 β1)

≤
(
λ (ν)
n (α, β0)

)1−θ0 (λ (ν)
n (α, β1)

)θ0

=
(2β0−α−νn(β0−α)/2)1−θ0 (2β1−α−νn(β1−α)/2)θ0 (1 +O(1/n))

= 2(1−θ0)β0+θ0β1−α−νn((1−θ0)β0+θ0β1−α)/2(1 +O(1/n))

= 2β−α−νn(β−α)/2(1 +O(1/n)),
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−185.4

238.0

k

j

Figure 4.3: Matrix plot for n = 50, β = 2.6, α = −0.2, ν = 2 in the Laguerre setting.

which is exactly the constant we wanted to derive.

Now, we go over to showing that the lower bound to the norm has a similar form. The main idea
to prove this is to choose some unit vector v and apply the matrix AN (N = n − ν + 1), which
is just the upper nonzero block of the matrix representation of the operator of di�erentiation
in the corresponding Laguerre bases (see Section 2.1 and [7]). Next, we estimate the norm of
the image of that vector. We arrange the involved summands in an appropriate way to apply
Lemma 4.2. To anticipate the choice of the vector, look at the matrix plot in Figure 4.3. Here,
we get the image that the main portion of the matrix is concentrated along the diagonal and
elements farther o� almost don’t matter. This is indeed the case and can easily be seen by a
closer look on the matrix entries, together with (4.7).

In the following, let ω = β − α − ν. To get the lower estimate on the norm of the matrix AN ,
we introduce vectors v+ = (

v+j
)n−ν
j=0 , v

− =
(
v−j

)n−ν
j=0 ∈ R

n−ν+1 for α ≥ 0 and α < 0, respectively,
as follows:

v+j =




(−1) j
n∏

k= j+1

√
k + ν

α + k + ν
: j ≥ n − ν − µ + 1

0 : otherwise

v−j =




(−1) j
j∏

k=n−ν−µ+2

√
α + k + ν

k + ν
: j ≥ n − ν − µ + 1

0 : otherwise
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Figure 4.4: Comparison of the (normalized) vectors v+ with the optimal, norm-realizing solution,
in the Laguerre case. Pictured are the magnitudes of the oscillating entries for sizes
n = 50, 100, and 200, with α = 1.3, β = 4.2, ν = 2, and µ = blog nc.

where 0 ≤ j ≤ n − ν, with some µ B µ(n) ∈ N, µ � n − ν. Figure 4.4 gives an impression
that the major parts of the actual solution are covered. The entries of AN are given by (see
Section 2.1 and [7])

(AN )i j = (−1) j−i+ν
w j+ν (α)
wi (β)

(
β − α − ν

j − i

)

for 0 ≤ i ≤ j ≤ n − ν, where

wk (α) =

√
Γ(k + 1)
Γ(k + α + 1)

.

The vectors v+ and v− are chosen so that all entries in the last µ columns share the factor wn (α)
or wn−µ+1(α) and the modulus of each entry of the vector is smaller than one, depending on
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4.2 The Laguerre case

the sign of α. With this representation, we can now write the jth entry of AN v
+ as

(
AN v

+)
j =

n−ν∑
k=0

bjk v
+
k =

n−ν∑
k=n−ν−µ+1

k≥ j

bjk v
+
k

=

n−ν∑
k=n−ν−µ+1

k≥ j

(−1)ν+k− j
(
ω

k − j

)
wk+ν (α)
w j (β)

· (−1)k
n∏

`=k+1

√
` + ν

α + ` + ν

= (−1)ν− j
wn (α)
w j (β)

n−ν∑
k=n−ν−µ+1

k≥ j

(
ω

k − j

)

= (−1)ν− j
wn (α)
w j (β)

n−ν− j∑
k=max{0,n−ν−µ+1− j }

(
ω

k

)
,

so that a lower estimate for the norm of AN in the case α ≥ 0 reads

‖AN ‖
2
∞ ≥

‖AN v
+‖22

‖v+‖22
=
w2
n (α)

∑n−ν
j=0 w

−2
j (β)

(∑n−ν− j
k=max{0,n−ν−µ+1− j }

(
ω
k

))2∑n−ν
k=n−ν−µ+1

∏n
`=k+1

`+ν
α+`+ν

. (4.16)

Analogously, we derive for α < 0 that

‖AN ‖
2
∞ ≥

‖AN v
−‖22

‖v−‖22
=
w2
n−µ+1(α)

∑n−ν
j=0 w

−2
j (β)

(∑n−ν− j
k=max{0,n−ν−µ+1− j }

(
ω
k

))2

∑n−ν
k=n−ν−µ+1

∏k
`=n−ν−µ+2

α+`+ν
`+ν

. (4.17)

We may assume that µ is su�ciently large, at least µ > dωe.

Since w−2
j (β) > 0 for all j ∈ N0, we can apply Lemma 4.2 to the upper sum of both (4.16) and

(4.17). The sequence of the w−2
j (β) is increasing with respect to j for β ≥ 0, and decreasing for

β < 0. For ν ≥ 1, it follows from β − α − ν > 0 that β > 0. In this case,

min{
w−2
j (β) : n − ν − µ + 1 ≤ j ≤ n − ν

}
= w−2

n−ν−µ+1(β).

If we would allow ν = 0, a negative value of β would be possible. In that case, the minimum
would take the value w−2

n−ν (β). We will con�ne ourselves to ν ≥ 1, but note that the proof for
ν = 0 requires only small modi�cations and uses the same arguments.

Since both, v+ and v−, have exactly µ nonzero entries with an absolute value smaller than one,
the squared norms of both can be estimated from above by µ. Putting all this together, we arrive
at

‖AN v
+‖22

‖v+‖22
≥ 22ω · 2µ−1 ·

⌊
µ − dωe

2

⌋
·

w2
n (α)

w2
n−ν−µ+1(β)

,

‖AN v
−‖22

‖v−‖22
≥ 22ω · 2µ−1 ·

⌊
µ − dωe

2

⌋
·
w2
n−µ+1(α)

w2
n−ν−µ+1(β)

.
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So, if we let µ grow slowly with n (e. g., µ(n) = blog nc), so that n − ν − µ + 1 ∼ n and
2

⌊
µ−dω e

2

⌋
∼ µ, we obtain the asymptotic lower bound 2β−α−νn(β−α)/2 for the norm of the

matrix, and thus for the smallest constant. We therefore have shown

λ (ν)
n (α, β) ∼ 2β−α−νn(β−α)/2

for β − α − ν ≥ 0.

4.3 The Gegenbauer case

This section is devoted to the details in the Gegenbauer case for β − α ≥ ν where β − α is not
an integer. From [10], we know that the constant in the integral case has an asymptotic value
of nν . The methods used here are very similar to the Laguerre case, but di�er in some details.
First, we will again employ Stein’s interpolation theorem to derive an upper bound. Then, using
the same idea as above, we construct vectors and determine the norm of their images under the
e�ect of the matrix.

As in the Laguerre case, set

θ0 B β − α − b β − αc, β0 B β − θ0, β1 B β0 + (1 − θ0).

For u(·,α) as in (4.2), Lemma 4.1 tells us that

γ (ν)
n (α, β) = γ (ν)

n (α, (1 − θ0) β0 + θ0 β1)

≤
(
γ (ν)
n (α, β0)

)1−θ0 (γ (ν)
n (α, β1)

)θ
= nν ((1−θ0)+θ0) (1 +O(1/n))

= nν (1 +O(1/n)).

As we can see from (2.5), the matrix has a chessboard structure. Without loss of generality, we
can assume that N = n − ν + 1 is an even number, since γ (ν)

n−1(α, β) ≤ γ (ν)
n (α, β) ≤ γ (ν)

n+1(α, β).
Then, there is a permutation matrix Un such that

An = Un

(
En 0
0 Fn

)
Un ,

where En =
(
e jk

)N/2−1
j,k=0 and Fn =

(
f jk

)N/2−1
j,k=0 with

e jk = c(ν)
2 j,2k+ν (α, β), f jk = c(ν)

2 j+1,2k+ν+1(α, β). (4.18)

Clearly, ‖An ‖∞ = max{‖En ‖∞, ‖Fn ‖∞
}. Again, we set ω = β − α − ν. Taking a closer look on

e jk = 2−ω
√
Γ
(2k + ν + 1) (2k + α + ν + 1/2)

Γ
(2k + 2α + ν + 1)

√
Γ
(2 j + 2β + 1) (2 j + β + 1/2)

Γ
(2 j + 1)

×
Γ
(
α + ν + k + j + 1/2)

Γ
(
β + 1 + k + j + 1/2) (−1)k− j

(
ω

k − j

)
, (4.19)
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4.3 The Gegenbauer case

we notice a structure similar to the matrix in the Laguerre case. Since

Γ
(
α + ν + k + j + 1 + 1/2)

Γ
(
β + 1 + k + j + 1 + 1/2) = α + ν + k + j + 1/2

ω + 1 + α + ν + k + j + 1/2
Γ
(
α + ν + k + j + 1/2)

Γ
(
β + 1 + k + j + 1/2) ,

these terms are always decreasing for growing k or j , independently of α and β, provided that
β − α ≥ ν. Hence, we estimate from below each occurrence by

Γ
(
α + ν + N − 3/2)

Γ
(
β + 1 + N − 3/2) .

De�ne the vectors v+= (
v+j

)N/2−1
j=0 , v−=

(
v−j

)N/2−1
j=0 ∈ RN/2 for α ≥ 1/2 and α < 1/2, respectively,

as follows:

v+j =




(−1) j
√

N + α + ν − 3/2
2 j + α + ν + 1/2

×

N/2−1∏
`= j+1

√
(2` + ν − 1)(2` + ν)

(2` + 2α + ν − 1)(2` + 2α + ν)

: j ≥ N/2 − µ

0 : otherwise

v−j =




(−1) j
√

N − 2µ + α + ν + 1/2
2 j + α + ν + 1/2

×

j∏
`=N/2−µ+1

√
(2` + 2α + ν − 1)(2` + 2α + ν)

(2` + ν − 1)(2` + ν)

: j ≥ N/2 − µ

0 : otherwise

with some µ B µ(N ) ∈ N, µ � N/2 − 1. To get an impression how these vectors look like, we
refer to Figure 4.4, which, up to a permutation, imparts a similar picture. The �rst factor in v+j
can be written as√

N + α + ν − 3/2
2 j + α + ν + 1/2 =

N/2−1∏
`= j+1

√
2` + α + ν + 1/2
2` + α + ν − 3/2 .

Joining these products and putting α = δ + 1/2, δ > −3/2 into the factors in the entries of v+,
we see that the term under the square root becomes

2` + ν − 1
2` + ν − 1 + δ ·

2` + ν
2` + ν + 2δ ·

2` + ν + 1
2` + ν + 1 + 2δ .

Here, each fraction is smaller than one for δ ≥ 0, i. e., for α ≥ 1/2, and strictly larger than
one for δ < 0, i. e., for α < 1/2. Thus, for the values of α where these vectors are applied, the
estimates ‖v+‖22 ≤ µ and ‖v−‖22 ≤ µ hold true.
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Putting all of the above together and having recourse to Lemma 4.2, for α ≥ 1/2, we arrive at

‖En ‖
2
∞ ≥

‖Env
+‖22

‖v+‖22

≥ 2−2ω Γ
(
N + ν − 1) (N + α + ν − 3/2)
Γ
(
N + 2α + ν − 1) Γ2 (α + ν + N − 3/2)

Γ2 (β + 1 + N − 3/2)
× µ−1

N/2−1∑
j=0

Γ
(2 j + 2β + 1) (2 j + β + 1/2)

Γ
(2 j + 1)

( N/2−1− j∑
`=max{0,N/2− j−µ }

(
ω

`

))2

≥ 2−2ω Γ
(
N + ν − 1) (N + α + ν − 3/2)
Γ
(
N + 2α + ν − 1) ·

Γ2 (α + ν + N − 3/2)
Γ2 (β + 1 + N − 3/2)

× µ−1 · 2 ·
⌊
µ− dωe

2

⌋
min

N/2−µ≤ j≤N/2−1

Γ
(2 j + 2β + 1) (2 j + β + 1/2)

Γ
(2 j + 1) · 22ω

while, for α < 1/2, we get

‖En ‖
2
∞ ≥

‖Env
−‖22

‖v−‖22

≥ 2−2ω Γ
(
N − 2µ + ν + 1) (N − 2µ + α + ν + 1/2)

Γ
(
N − 2µ + 2α + ν + 1) Γ2 (α + ν + N − 3/2)

Γ2 (β + 1 + N − 3/2)
× µ−1

N/2−1∑
j=0

Γ
(2 j + 2β + 1) (2 j + β + 1/2)

Γ
(2 j + 1)

( N/2−1− j∑
`=max{0,N/2− j−µ }

(
ω

`

))2

≥ 2−2ω Γ
(
N − 2µ + ν + 1) (N − 2µ + α + ν + 1/2)

Γ
(
N − 2µ + 2α + ν + 1) ·

Γ2 (α + ν + N − 3/2)
Γ2 (β + 1 + N − 3/2)

× µ−1 · 2 ·
⌊
µ− dωe

2

⌋
min

N/2−µ≤ j≤N/2−1

Γ
(2 j + 2β + 1) (2 j + β + 1/2)

Γ
(2 j + 1) · 22ω .

Because of
Γ
(2 j + 2β + 1) (2 j + β + 1/2)

Γ
(2 j + 1) =

Γ
(2 j + 2β + 1)
Γ
(2 j

) (2 j + β + 1/2)
(2 j)

,

the term in the minimum is increasing for β > −1/2 with respect to j , and because β is positive
due to the assumption β − α − ν ≥ 0, the minimum is given by

Γ
(
N − 2µ + 2β + 1) (N − 2µ + β + 1/2)

Γ
(
N − 2µ + 1) .

As before, we let µ tend to in�nity in a lower order than N , in such a way that 2
⌊
µ−dω e

2

⌋
∼ µ

and N − 2µ ∼ N . Following this, we derive in both estimates the asymptotic lower bound of
Nν for the norm of the matrix En . For Fn , we use the same approach and get the same bound.
Thus, the lower bound of ‖AN ‖∞ and with it the lower bound on γ (ν)

n (α, β) is asymptotically
equal to the upper bound shown before. We have, consequently,

γ (ν)
n (α, β) ∼ nν ,

whenever β − α − ν ≥ 0 also if β − α is not an integer.
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4.4 The Hermite case

In the current section, we will show that the best constant η (ν)
n (α, β) in the Hermite case when

β −α − dν/2e ≥ 0 and β −α not an integer, as well as for 0 < β −α < dν/2e with arbitrary β −α,
has the asymptotic behavior

η (ν)
n (α, β) ∼ (2n)(β−α+ν)/2

as n goes to in�nity. In order to determine this constant, we want to apply the same ideas as in
the Laguerre and Gegenbauer cases. The estimate for the upper bound works exactly like it was
done there. However, the approach for the lower bound is not that simple anymore. We still
apply the operator to some cut-o� vector and estimate the norm of its image, and we partition
the sum after some initial simpli�cations into parts. Now, the entries are not given in a closed
form but as a sum. Even worse, this sum is alternating in the last column. But, the sums Σ2 and
Σ3 in the proof of Lemma 4.2 were characterized by the sign of the last entry. With a more direct
approach, we could just provide estimates for β − α ≥ dν/2e, and it was even more technical
than the proof of Lemma 4.2. But it turns out that a closer examination of the hypergeometric
term leads to the desired results in a relatively simple fashion.

As in the proof of Lemma 4.1, set

θ0 B β − α − b β − αc, β0 B β − θ0, β1 B β0 + (1 − θ0).

From Section 3.2, we know that

η (ν)
n (α, β) = (2n)(β−α+ν)/2(1 +O(1/n))

whenever β−α− dν/2e ∈ N0, α, β > −1/2. Then, for u(·,α) as in (4.3), Lemma 4.1 tells us that

η (ν)
n (α, β) = η (ν)

n (α, (1 − θ0) β0 + θ0 β1) (4.20)
≤

(
η (ν)
n (α, β0)

)1−θ0 (η (ν)
n (α, β1)

)θ
= (2n)(β0 (1−θ0)+β1θ0−α+ν)/2(1 +O(1/n))

= (2n)(β−α+ν)/2(1 +O(1/n)) (4.21)

holds for all β − α − dν/2e ≥ 0. Even more is true. In Section 3.2, we have moreover shown
that

η (ν)
n (α,α) ≤ (2n)ν/2(1 +O(1/n))

for arbitrary α>−1/2. However, we did not provide statements for β−α ∈ {1,2, . . . , dν/2e−1}.
Therefore, Lemma 4.1 does not immediately give the necessary bounds. We weaken the as-
sumptions of Lemma 4.1, so that we do not need the statement for all integer di�erences. Note
that we could even start with an arbitrary (countable) set of di�erences for which we know
that the bound is valid. However, this generalization is not necessary here. In our case, we set
θ0 = (β − α)/dν/2e in the proof of Lemma 4.1. With β0 = α and β1 = α + dν/2e, all necessary
conditions for the interpolation theorem of Stein are ful�lled. Employing this idea in the proof,
we can show the following lemma.
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Lemma 4.5. Under the assumptions of Lemma 4.1, for any γ > −1 (γ > −1/2), we have
‖T ‖α→γ = ‖Dν ‖α→γ . If

‖Dν f ‖β ≤ C (ν)
n (α, β)‖ f ‖α for all f ∈ Pn (4.22)

is true for some β = β′ satisfying β′ − α ∈ Z, and for all β = β′ + k, k ∈ K ⊆ N, K containing
in�nitely many numbers, and if C (ν)

n (α, β) satis�es

C (ν)
n (α, β′(1 − θ) + (β′ + 1)θ) =

(
C (ν)
n (α, β′)

)1−θ (C (ν)
n (α, β′ + k)

)θ , θ ∈ [0,1],

for all k ∈ K , then (4.22) holds for all β ∈ [β′,∞).

Applying this lemma to the above considerations, we have shown that (4.20) holds whenever
β − α ≥ 0.

With the same argumentation as before, we investigate submatrices derived by a permutation
and restrict our inquiry to the matrix EN (see Section 3.2). However, we will not work with the
matrix directly, but �ip it like we did before. Thus, we actually investigate BN = JN EN JN . The
entries bjk of this matrix then can be written as

bjk = 2νΓ(dν/2e + 1) √
Γ
(
N/2 − j + β − 1/2)
Γ
(
N/2 − j

) √
Γ
(
N/2 − k + bν/2c

)
Γ
(
N/2 − k + dν/2e + α − 1/2)

×

(
N/2 − j + dν/2e − 3/2

dν/2e

) (
β − α − dν/2e

j − k

)
× 3F2

(
−dν/2e, k − j, β + N/2 − j − 1/2

β − α − dν/2e + k − j + 1, N/2 − j − 1/2 ; 1
)
.

As in the Laguerre and Gegenbauer cases, we de�ne vectors v+ = (
v+j

)N/2−1
j=0 and v− = (

v−j
)N/2−1
j=0

for α + dν/2e − bν/2c ≥ 1/2 and α + dν/2e − bν/2c < 1/2, respectively, by

v+j =




j∏
`=1

√
N/2 − ` + bν/2c

N/2 − ` + dν/2e + α + 1/2 : 0 ≤ j ≤ µ − 1

0 : otherwise,

v−j =




j+µ−1∏
`= j

√
N/2 − ` + dν/2e + α − 3/2

N/2 − ` + dν/2e − 1 : 0 ≤ j ≤ µ − 1

0 : otherwise.

The parameter µ is chosen as in the Laguerre and Gegenbauer cases. Up to a permutation, the
overall picture is similar to the one in Figure 4.4. We con�ne ourselves to the detailed treatment
of ‖BN v

+‖2 and note that the norm ‖BN v
−‖2 can be estimated similarly. As before, we want to

employ Lemma 4.2. Anticipating some of the arguments used in the proof and translating the
lemma to our situation, we have

µ−1∑
j=0

ρ j
*.
,

j∑
k=0

(
β − α

k

)
+/
-

2

≥ 2
⌊
µ − dβ − αe

2

⌋
22β−2α · min

0≤ j≤µ−1
ρ j ,
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for β − α ∈ (0,∞) \ N, µ ∈ N, µ > dβ − αe, and ρ j > 0, j = 0, . . . , µ − 1. In fact, this is even
true for β − α ∈ (0,∞) without the restriction not to be an integer. Then, the sums terminate
naturally, and the corresponding lines each add up to 2β−α . Now, consider the jth entry of
BN v

+,

(BN v
+) j = 2νΓ(dν/2e + 1) √

Γ
(
N/2 − j + β − 1/2)
Γ
(
N/2 − j

) √
Γ
(
N/2 + bν/2c + 1)

Γ
(
N/2 + dν/2e + α + 1/2)

×

(
N/2 − j + dν/2e − 3/2

dν/2e

) (
β − α − dν/2e

j − k

)
× 3F2

(
−dν/2e, k − j, β + N/2 − j − 1/2

β − α − dν/2e + k − j + 1, N/2 − j − 1/2 ; 1
)
.

We are interested in statements for large N only. Then, the last upper argument and the last
lower argument in the hypergeometric series are almost the same and cancel out. Hence, the
3F2 transforms to 2F1, and

2F1

(
−dν/2e, k − j

β − α − dν/2e + k − j + 1 ; 1
)
=

(
β − α − dν/2e + 1) dν/2e(

β − α − dν/2e + k − j + 1) dν/2e

.

Together with the coe�cient
(
β−α−dν/2e

j−k

)
, this turns into

(
β−α
j−k

)
.

The vectors v+ and v− were chosen in such a way that ‖v+‖22 ≤ µ and ‖v−‖22 ≤ µ is granted for
the values of α where they will be applied. Therefore, we can estimate the spectral norm of BN

with help of the estimate for the hypergeometric series by

‖BN ‖
2
∞ ≥

‖BN v
+‖22

‖v+‖22
≥ 22ν Γ

(
N/2 + bν/2c + 1)

Γ
(
N/2 + dν/2e + α + 1/2)

µ−1∑
j=0

Γ
(
N/2 − j + β − 1/2)
Γ
(
N/2 − j

)
×

[(
N/2 − j + dν/2e − 3/2

dν/2e

)]2 *.
,

j∑
k=0

(
β − α

j − k

)
+/
-

2

.

Employing Lemma 4.2 in the aforementioned form, this is not greater than

22ν Γ
(
N/2 + bν/2c + 1)

Γ
(
N/2 + dν/2e + α + 1/2) · µ−1 · 2

⌊
µ − dβ − αe

2

⌋
22β−2α

× min
0≤ j≤µ−1

{
Γ
(
N/2 − j + β − 1/2)
Γ
(
N/2 − j

) Γ2 (N/2 − j + dν/2e − 1/2)
Γ2 (N/2 − j − 1/2)

}
.

Again, letting µ(N ) go to in�nity controlled by N − 2µ ∼ N and µ − dωe − dν/2e ∼ µ, this is
asymptotically equal to

22β−2α+2ν
(
N
2

) bν/2c−dν/2e−α+β+2 dν/2e
= (2N )β−α+ν .
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Chapter 4 The nonintegral case

Thus, we get the asymptotic lower bound

‖EN ‖∞ ≥
‖EN v

+‖2
‖v+‖2

≥ (2n)(β−α+ν)/2,

exactly as we wanted. Similarly, we can prove the estimate

‖FN ‖∞ ≥ (2n)(β−α+ν)/2,

and since η (ν)
n (α, β) = max{‖EN ‖∞, ‖FN ‖∞}, we get η (ν)

n (α, β) ≥ (2n)(β−α+ν)/2. Together with
(4.20), we arrive at

η (ν)
n (α, β) ∼ (2n)(β−α+ν)/2

as n goes to in�nity, for arbitrary β − α ≥ 0.
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We now turn our focus to the “negative case.” The previous chapters heavily depend on the fact
that the symbol of the underlying Toeplitz operator is bounded, either explicitly or implicitly
when interpolating between the integral cases. However, this is not the case anymore if
ω = β − α − ν < 0, or β − α < 0 in the Hermite case. What we are going to show in the
following sections is that the smallest constants for the Laguerre, Gegenbauer, and Hermite
cases can be expressed in terms of the operator norm of some integral operator. It might seem
strange at �rst to replace something as simple as a matrix by something as complicated as
an integral operator, but by the means of a very handy result by Widom [28, 29], which was
independently also rediscovered by Shampine [23, 24], this indeed simpli�es things.

The result of Widom and Shampine has been used and proved before. Although we only need
the result in the L2(0,1) case afterwards, we will give the more general form for an operator on
Lp (0,1), p ≥ 1, which may be of use for tackling similar problems. The proof is very close to the
proofs given in [8] and [9] with the main di�erence being the operators Rp and Sp occurring
inside.

Lemma 5.1 (Widom and Shampine). Let AN be an (N×N )-matrix and de�ne the simple function
kN (x, y) = (AN ) bNx c, bN y c . Let KN be the integral operator on Lp (0,1) (1 ≤ p ≤ ∞) that is
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Chapter 5 Integral operators

given by

(KN f )(x) =
∫ 1

0
kN (x, y) f (y)dy.

Then,

‖AN ‖∞ = N ‖KN ‖∞.

Proof. We de�ne Ik as the interval
[
k
N ,

k+1
N

)
and χk as its characteristic function. Furthermore,

let `Np B
(
CN , ‖ · ‖p

) denote the vector space of all N-tupels with complex entries equipped
with the `p norm. To keep the notation simple, we will assume in the following p < ∞, but we
point out that the same can be done for p = ∞ by just replacing any occurrence of 1/p with a 0.
We de�ne the operators

Rp : `Np → Lp (0,1), {xk }N−1
k=0 7→ N1/p

N−1∑
k=0

xk χk ,

Sp : Lp (0,1) → `Np , f 7→
{

N1−1/p
∫
Ik

f (t)dt
}N−1

k=0
.

For Rp , we determine the operator norm as

‖Rp ‖
p
∞ = sup

∫ 1
0

���N
1/p ∑N−1

k=0 xk χk (t)���
p

dt∑N−1
k=0 |xk |

p
= sup

N
∑N−1

j=0
∫
I j
|x j |

pdt∑N−1
k=0 |xk |

p

= sup
N

∑N−1
j=0

|x j |
p

N∑N−1
k=0 |xk |

p
= 1,

the supremum over all vectors x = {xk }N−1
k=0 in `Np with ‖x‖p , 0. On the other hand, we get

for Sp that

‖Sp ‖
p
∞ = sup

∑N−1
k=0

���N
1−1/p

∫
Ik

f (t)dt���
p

‖ f ‖pp
≤ sup

N p−1 ∑N−1
k=0

(∫
Ik
| f (t) · 1|dt

) p
‖ f ‖pp

≤ sup
N p−1 ∑N−1

k=0
∫
Ik
| f (t) |pdt ·

(∫
Ik

dt
) p−1

‖ f ‖pp
= sup

N p−1‖ f ‖pp N1−p

‖ f ‖pp
= 1,

the supremum taken over all f ∈ Lp (0,1) with ‖ f ‖p , 0. The �rst inequality is the triangle
inequality �rst for the sum and then once more for the integral, while the second one is Hölder’s
inequality. Taking f ≡ 1, we see immediately that ‖Sp ‖∞ = 1.

Taking a vector {xk }N−1
k=0 ∈ `

N
p , we verify that

SpRp {xk }k = Sp
*
,

N1/p
∑
k

xk χx
+
-
=




N1−1/pN1/p
∫
I j

∑
k

xk χk (t)dt

 j

=



N
∫
I j

x jdt

 j

= {xk }k .
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That is, SpRp is the identity operator on `Np .

Let AN =
(
ai j

)N−1
i, j=0 and set fk B

∫
Ik

f (t)dt. A simple calculation yields

(Rp AN Sp f )(x) = N
N−1∑
k=0

a jk fk for x ∈
[
k
N ,

k+1
N

)
.

This is just N (KN f )(x) for every x. Therefore, Rp AN Sp = NKN and with SpRp = I , we
conclude AN = N SpKN Rp .

Collecting all of the above, we arrive at

‖KN ‖∞ = ‖N−1Rp AN Sp ‖∞ ≤ N−1‖Rp ‖∞‖AN ‖∞‖Sp ‖∞ = N−1‖AN ‖∞

= ‖N−1N SpKN Rp ‖∞ ≤ ‖KN ‖∞,

which is what we wanted to show. �

The integral operator for the Laguerre and Gegenbauer cases is known to be the Volterra integral
operator L∗ν,α,β on L2(0,1). It is given by

(L∗ν,α,β f )(x) =
1

Γ
(
ν − β + α

) ∫ x

0
x−α/2 yβ/2(x − y)ν−β+α−1 f (y)dy. (1.3 revisited)

Reducing the study of the smallest constant to determining the norm of such an integral operator
introduces new problems. However, tight estimates for ‖Lν,α,β ‖∞ are available. Moreover,
when β = α + ν − 1, it is known [7, 8] that the norm equals 2/(ν + 1) times the inverse of the
smallest positive zero of the Bessel function J(α−1)/(ν+1) .

The main di�culty, however, is that the operators have piecewise constant kernels obtained from
the matrix representations of the di�erential operator in the appropriate bases. Do they converge
in the operator norm to the operator (1.3)? Things get a lot easier when β−α−ν < −1/2. Because
the operator then is Hilbert-Schmidt, it su�ces to show the convergence in the Hilbert-Schmidt
norm.

Still open is the problem for −1/2 ≤ β − α − ν < 0, since then the operator is no longer
Hilbert-Schmidt. Nevertheless, it can be shown that the operator belongs to some Schatten class
and is thus compact. While this is not of immediate use in determining the best constant, it
could be of help in further attempts towards closing the gap −1/2 ≤ β − α − ν < 0.

A similar restriction holds in the Hermite case, where the operator in question is Hilbert-Schmidt
only for β − α < −1/2.

Before we dive deeper into the details of each of these operators, we will embark on two small
lemmas that play an important role in proving the convergence in every case. The results are
more or less folklore. Nevertheless, we restate them here for reference and give a proof for the
sake of completeness.

This �rst lemma provides an alternate representation for the incomplete beta integral occurring
in some of the proofs.
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Chapter 5 Integral operators

Lemma 5.2. Let 0 < z < 1, a,b > 0. Then, for the incomplete beta integral,

B(z; a,b) B
∫ z

0
ua−1(1 − u)b−1du =

za

a 2F1

(
a, 1 − b

a + 1 ; z
)
.

Proof. First, we expand (1 − u)b−1 by the binomial theorem:∫ z

0
ua−1(1 − u)b−1du =

∫ z

0
ua−1

∞∑
n=0

(
b − 1

n

)
(−u)ndu.

The sum is absolutely convergent for |u| < 1, and the integrals
∫ z

0 un+a−1du are bounded for
a > 0, n ≥ 0. So, we can exchange the sum and the integral. Furthermore, the identity(

b − 1
n

)
(−1)n =

(
n − b

n

)
=

(1 − b
)
n

n!

holds. In consequence,
∞∑
n=0

(1 − b
)
n

n!

∫ z

0
un+a−1du =

∞∑
n=0

(1 − b
)
n

n + a
zn+a

n! =
za

a

∞∑
n=0

(
a
)
n

(1 − b
)
n(

a + 1)n zn

n!

=
za

a 2F1

(
a, 1 − b

a + 1 ; z
)
. �

The next lemma uses the previous one to show that integrals of the occurring kernels are
su�ciently small when taken over a small stripe.

Lemma 5.3. Let α, β,γ be real numbers, β,γ > −1, α + β + γ > −2. The two integrals∫ ε

0
zβ (1 − z)γdz and

∫ 1

ε
xα

∫ x

x−ε
yβ (x − y)γdydx

converge to zero when ε > 0 tends to zero.

Proof. We estimate the term (1− z)γ from above. For γ ≥ 0, clearly (1− z)γ ≤ 1. For γ ∈ (−1,0),
we have (1 − z)γ ≤ (1 − ε)γ ≤ (1 − ε)−1 = 1 + ε

1−ε . Therefore,∫ ε

0
zβ (1 − z)γdz ≤

∫ ε

0
zβ

(
1 + ε

1−ε

)
dz =

(
1 + ε

1−ε

) εα+1

α + 1 −−−→ε→0
0,

since α + 1 > 0.

For the second integral, we �rst substitute z = y/x and then pass from z to 1 − z, i. e.,∫ 1

ε
xα

∫ x

x−ε
yβ (x − y)γdydx =

∫ 1

ε
xα+β+γ+1

∫ 1

1−ε/x
zβ (1 − z)γdzdx

=

∫ 1

ε
xα+β+γ+1

∫ ε/x

0
zγ (1 − z)βdzdx.
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5.1 The Laguerre case

By virtue of Lemma 5.2, this is the same as∫ 1

ε
xα+β+γ+1

(
ε/x

)γ+1

γ + 1 2F1

(
γ + 1, −β
γ + 2 ; ε

x

)
dx

=
εγ+1

γ + 1

∫ 1

ε

∞∑
τ=0

(
γ + 1)τ (−β)τ(
γ + 2)ττ!

ετ xα+β−τdx.

For the moment, assume that α + β is not in {−1,0,1,2, . . .}. Since the hypergeometric function
converges absolutely for x ≥ ε (i. e., for ε/x ≤ 1; see, e. g., Theorem 2.1.2 of [2]), and the integral∫ 1
ε

xα+β−τdx is bounded, we can exchange the integral and the sum. Now, we can write this as

εγ+1

(α + β + 1)(γ + 1)

∞∑
τ=0

(
γ + 1)τ (−β − α − 1)τ (−β)τ(

γ + 2)τ (−β − α)
ττ!

(
ετ − εα+β+1)

=
εγ+1

(α + β + 1)(γ + 1) 3F2

(
γ + 1, −β − α − 1, −β

γ + 2, −β − α ; ε
)

−
εα+β+γ+2

(α + β + 1)(γ + 1) 3F2

(
γ + 1, −β − α − 1, −β

γ + 2, −β − α ; 1
)
.

The two appearing hypergeometric series converge absolutely. Since both exponents, γ + 1 and
α + β + γ + 2, are greater than zero, the whole sum goes to zero as ε does.

In case α + β ∈ {−1,0,1,2, . . .}, for exactly one value of τ, the above argumentation is not
working anymore. Consider α + β = m ∈ N ∪ {−1,0}. We may still exchange the sum and the
integral, but then, for τ = m + 1, we cannot express the integral as above. The sum of the �rst
m + 1 terms is �nite, and the factor εγ+1 ensures that this goes to zero. A similar result holds
for the absolute convergent sum starting with m + 2. The corresponding term for τ = m + 1 is

εγ+1

γ + 1

(
γ + 1)m+1

(
−β

)
m+1(

γ + 2)m+2(m + 1)!
εm+1 log(1/ε).

So, this is a constant times

εγ+m+2 log(1/ε) =
log(1/ε)

(1/ε)α+β+γ+2 ,

due to our choice of m. Since α + β + γ + 2 > 0 by assumption, this tends to zero as 1/ε → ∞,
i. e., for ε → 0. Thus, the integral vanishes also in that case. �

5.1 The Laguerre case

In [7], it has already been stated that the integral operator (built from the matrix representation
of the operator of di�erentiation) with respect to the Laguerre bases converges in the norm to
the operator

(L∗ν,α,β f )(x) =
1

Γ
(
ν − β + α

) ∫ x

0
x−α/2 yβ/2(x − y)ν−β+α−1 f (y)dy. (1.3 revisited)
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0.0

16.5

j

k

Figure 5.1: Matrix plot for n = 50, α = 0.3, β = 0.6, ν = 2 in the Laguerre setting.

However, the statement is left without a proof and only mentions that this can be made precise.
This is indeed true, but not at all trivial, although elementary. In the following section, we want
to deliver the missing details. Figure 5.1 gives a rough idea of what the matrix in this case may
look like.

As before, we use the abbreviation ω = β − α − ν and assume ω < −1/2. In that case, the
operator L∗ν,α,β is Hilbert-Schmidt. By a simple calculation, we end up with

‖L∗ν,α,β ‖
2
2 = ‖Lν,α,β ‖

2
2 =

1
Γ2 (−ω) · Γ(β + 1)Γ(−2ω − 1)

Γ
(
β − 2ω) ·

1
ν − ω

< ∞,

which holds for ω < −1/2, which is the best possible for the Hilbert-Schmidt norm.

To show what we promised above, we follow a path similar to the one in [8]. There, the square
[0,1]2 was split into N2 small squares. On each of those the kernel of the operator derived from
the matrix representation is constant. Then, the borders surrounding the area of integration
received special treatment when not both of the kernels vanish. Here is the main di�erence. In
contrast to just considering the border of width 1, i. e., j = k , we now widen the border slightly
in order to get better estimates for the remaining interior of the integration area.

Theorem 5.4. Let ω = β − α − ν < −1/2 and let a jk denote the entry j k of the upper-right
nonzero matrix block of the matrix representation of the operator Dν in the bases mentioned above.
Then, the operator (1.3) is Hilbert-Schmidt and the integral operator N−(ν−β/2+α/2−1)KN with
the kernel N−(ν−β/2+α/2−1)a bNx c, bN y c converges in the Hilbert-Schmidt norm, and thus in the
operator norm, to the operator L∗ν,α,β .
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5.1 The Laguerre case

Proof. We set

kN (x, y) = N−(ν−β/2+α/2−1)a bNx c, bN y c ,

ρ(x, y) =
1

Γ
(
−ω

) x−α/2 yβ/2(x − y)−ω−1,

representing the kernels of the integral operators N−(ν−β/2+α/2−1)KN and L∗ν,α,β , respectively.
Divide the square [0,1]2 into N2 small squares with side length 1/N . These squares are denoted
by Q jk , 0 ≤ j, k ≤ N − 1, with Q jk =

[
j
N ,

j+1
N

)
×

[
k
N ,

k+1
N

)
. The kernel kN is just a constant on

each of these squares.

First, we note that both, kN and ρ, vanish on Q jk , for 0 ≤ j < k ≤ N − 1. So, there is nothing
to prove. We are left with verifying that

N−1∑
j=0

j∑
k=0

"
Q jk

|kN (x, y) − ρ(x, y) |2d(x, y)

tends to zero as N goes to in�nity. Next, we will separately treat di�erent groups of squares.
This is done to overcome some computational di�culties caused by the kernel ρ possibly having
poles along the borders of the integration area (namely for ω > −1 along the diagonal, for α < 0
in the origin, and for β < 0 along the x axis). Furthermore, we widen the diagonal border to
derive a better estimate in the inner part.

To this end, we introduce the parameter m ∈ N, the width of the border, i. e., the number of
squares side-by-side on a direct line from the actual domain boundary to the non-border area.
This parameter allows a more general consideration of the convergence along these borders
and provides better estimates for the terms resulting in a singularity at the borders, especially
in the case j = k . For the arguments to hold, it is necessary that m = o(N ). A lower bound on
m has to be chosen such that N = o

(
m3) . In other words, there should exist constants c,C > 0

and some 0 < ε,δ < 2/3 with cN1/3+δ ≤ m ≤ CN1−ε for all N larger than some N0 ∈ N.

We denote by ∂Ω the set of squares alongside said border. This set is further subdivided into
three groups of squares, i. e., ∂Ω = Ω1 ∪Ω2 ∪Ω3 with

Ω1 = Q00 (the corner),

Ω2 =
N−1⋃
j=1

Q j0 (the lower border),

Ω3 =
N−1⋃
j=1

j⋃
k=max{ j−m,1}

Q jk (the diagonal part).

Figure 5.2 illustrates these sets.

On ∂Ω, we utilize"
∂Ω
|kN (x, y)− ρ(x, y) |2d(x, y) ≤ 2

"
∂Ω
|kN (x, y) |2d(x, y)+ 2

"
∂Ω
|ρ(x, y) |2d(x, y).
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y
( k
N

)

x
( j
N

)0

1

11
N

Ω1
Ω2
Ω3
ρ(·, ·) > 0

Figure 5.2: Illustration of the partition of the area of integration (N = 18,m = 4).

We split up both integrals even further and evaluate each on its own. For the integral over kN ,
we have"

∂Ω
|kN (x, y) |2d(x, y) ="

Ω1

|kN (x, y) |2d(x, y) +
"
Ω2

|kN (x, y) |2d(x, y) +
"
Ω3

|kN (x, y) |2d(x, y),

and for the integral over ρ, we get"
∂Ω
|ρ(x, y) |2d(x, y) ≤

∫ m+1
N

0

∫ x

0
|ρ(x, y) |2d(x, y)

+

∫ 1

m+1
N

∫ 1
N

0
|ρ(x, y) |2d(x, y) +

∫ 1

m+1
N

∫ x

x−m+1
N

|ρ(x, y) |2d(x, y),

the estimate taking place in the last part by increasing the area of integration (see Figure 5.3 for
details).
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y
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m+1
N∫
0

x∫
0
ρ

1∫
m+1
N

1
N∫
0
ρ

1∫
m+1
N

x∫
x−m+1

N

ρ

ρ(·, ·) > 0

Figure 5.3: Increased area of integration. Squares are partially taken from the inner part, or
counted twice (N = 18, m = 4).

We now take a closer look on each of these six integrals. First,"
Ω1

|kN (x, y) |2d(x, y) =
1

N2 Nω−ν+2 1
Γ2 (−ω) Γ

(
ν + 1)

Γ
(
ν + α + 1) Γ

(
β + 1)
Γ
(1) Γ2 (−ω)

Γ2 (1) .

This is just a constant times Nω−ν . Since ω − ν < −ν − 1/2 < 0, it converges to zero as N goes
to in�nity. Secondly, we have"

Ω2

|kN (x, y) |2d(x, y) = Nω−ν 1
Γ2 (−ω) N−1∑

j=1

Γ
(
j + ν + 1)

Γ
(
j + ν + α + 1) Γ

(
β + 1)
Γ
(1) Γ2 ( j − ω

)
Γ2 ( j + 1)

= Nω−ν Γ
(
β + 1)
Γ2 (−ω) N−1∑

j=1
j−α−2ω−2 (1 +O(1/ j)

)
.

For −α−2ω−2 , −1, this is O
(
Nω−ν−α−2ω−1) = O

(
N−β−1) , which goes to zero because β > −1
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and therefore −β − 1 < 0. On the other hand, for −α − 2ω − 2 = −1, this is O
(
Nω−ν log N

) ,
which goes to zero because of ω − ν < 0.

The third part needs a little more elaborate analysis. Here, we have"
Ω3

|kN (x, y) |2d(x, y) = Nω−ν
N−1∑
j=1

j∑
k=max{ j−m,1}

���kN

(
j
N ,

k
N

) ���
2

= Nω−ν
m∑
`=0

N−1−`∑
k=1

���kN

(
k+`
N , kN

) ���
2

≤
Nω−ν

Γ2 (−ω) m∑
`=0

N−1∑
k=1

Γ
(
k + ` + ν + 1)Γ(k + β + 1)Γ2 (` − ω)
Γ
(
k + ` + ν + α + 1)Γ(k + 1)Γ2 (` + 1) .

We consider the ` = 0 part separately. It equals

Nω−ν

Γ2 (−ω) Γ2 (−ω)
Γ2 (1)

N−1∑
k=1

kβ−α
(1 +O(1/k)

)
.

This is O
(
N2ω+1) for β − α , −1, and O

(
Nω−ν log N

) for β − α = −1. In both cases, this tends
to zero. The rest of the sum equals

Nω−ν

Γ2 (−ω) m∑
`=1

N−1∑
k=1

(k + `)−αkβ`−2ω−2 (1 +O(1/k) +O(1/`)
)
. (5.1)

For α ≥ 0, the inequality (k + `)−α ≤ k−α holds. Therefore, the sum becomes

Nω−ν

Γ2 (−ω) m∑
`=1

`−2ω−2
N−1∑
k=1

kβ−α
(1 +O(1/k) +O(1/`)

)
.

For β−α , −1, this is O
(
Nω−ν+β−α+1m−2ω−1) = O

(
(N/m)2ω+1) , and thanks to 2ω+1 < 0 and

m = o(N ), this goes to zero. If β − α = −1, the sum is O
(
(N/m)−2ν−1 log N

) , also approaching
zero.

Finally, for −1 < α < 0, we have (k + `)−α ≤ k−α + `−α . So, we can split (5.1) into two parts,
ignoring the O terms and the leading constant:

Nω−ν
m∑
`=1

`−2ω−2
m∑
k=1

kβ−α + Nω−ν
m∑
`=1

`−2ω−2−α
N−1∑
k=1

kβ .

We have just shown that the �rst sum converges to zero. The distinction between α > 0 and
α < 0 was not essential in the �nal argument. Note that, since −2ω − 2 > −1 and −α > 0, the
exponent for ` is never equal to −1 so we do not have to consider this. Therefore, the second
sum is O

(
(N/m)2ω+α+1) , and since 2ω + 1 < 0 and α < 0, this goes to zero.

To summarize, we have shown that
!
∂Ω
|kN (x, y) |2d(x, y) → 0 as N goes to in�nity and m

increases with N .
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We now turn to the integrals over the kernel ρ. The �rst integral is particularly easy to evaluate.
Ignoring the constant factor Γ−2 (−ω) , we here have∫ m+1

N

0
x−α

∫ x

0
yβ (x − y)−2ω−2dydx =

Γ
(
β + 1)Γ(−2ω − 1)
Γ
(
β − 2ω) ∫ m+1

N

0
xν−ω−1dx

=
Γ
(
β + 1)Γ(−2ω − 1)
Γ
(
β − 2ω)

(ν − ω)

(m + 1
N

)ν−ω
.

Clearly, ν − ω > 0, and thus the value of the integral goes to zero as N increases.

Again, ignoring the constant factor Γ−2 (−ω) , we get the following for the second integral:∫ 1

m+1
N

x−α
∫ 1

N

0
yβ (x − y)−2ω−2dydx =

∫ 1

m+1
N

xβ−α−2ω−1
∫ 1

Nx

0
zβ (1 − z)−2ω−2dzdx

≤

∫ 1

m+1
N

xν−ω−1dx ·
∫ 1

m+1

0
zβ (1 − z)−2ω−2dz

≤

∫ 1

0
xν−ω−1dx ·

∫ 1
m+1

0
zβ (1 − z)−2ω−2dz

=
1

ν − ω

∫ 1
m+1

0
zβ (1 − z)−2ω−2dz.

Clearly, the last integral converges to zero as N (and with that m) goes to in�nity. This follows
from Lemma 5.3 with ε = 1/(m + 1), together with β > −1 and −2ω − 2 > −1. Therefore, the
above expression goes to zero.

For the last integral, we have∫ 1

m+1
N

∫ x

x−m+1
N

|ρ(x, y) |2dydx =
∫ 1

m+1
N

x−α
∫ x

x−m+1
N

yβ (x − y)−2ω−2dydx.

This converges for the same reasons as above, and by Lemma 5.3 it tends to zero with N going
to in�nity.

So, we have shown that
!
∂Ω
|ρ(x, y) |2d(x, y) goes to zero as N goes to in�nity. Putting all

of the pieces together, it follows that
!
∂Ω
|kN (x, y) − ρ(x, y) |2d(x, y) → 0. What remains to

show is that the di�erence in the inner area also becomes arbitrarily small.

By choosing m large enough, for the border along j = k , we have j − k ≥ m and therefore
1/( j − k) ≤ 1/m, for all remaining squares. So,

( j − k)−ω−1 (1 +O(1/( j − k))
)
= ( j − k)−ω−1 (1 +O(1/m)

)
.

Now, both, a jk and N (ν−ω−2)/2ρ
(
j+ξ
N ,

k+η
N

)
with ξ,η ∈ [0,1), are equal to

j−α/2kβ/2( j − k)−ω−1 (1 +O(1/ j) +O(1/k) +O(1/m)
)
.
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Therefore,"
Q jk

����
a jk

Nν−β/2+α/2−1 − ρ(x, y)
����
2

d(x, y)

=
1

Nν−ω
j−αkβ ( j − k)−2ω−2 (O (1/ j2) + O

(1/k2) + O
(1/m2)) .

Next, by the above estimate and the restriction ω < −1/2, we get

( j − k)−2ω−2 = ( j − k)−2ω−1( j − k)−1 ≤ j−2ω−1m−1,

since −2ω − 1 > 0. Summing up and employing this estimate, we get that the di�erence is at
most

Nω−ν
N−1∑

j=m+2

j−m−1∑
k=1

j−α−2ω−1kβm−1 (O (1/ j2) +O
(1/k2) +O

(1/m2))
≤ Nω−ν

N−1∑
j=1

N−1∑
k=1

j−α−2ω−1kβm−1 (O (1/ j2) + O
(1/k2) + O

(1/m2)) .
We split this into the three parts associated with the O terms. For each part, we have to consider
several corner cases. Keep in mind that α, β > −1 and ν ≥ 1.

The part belonging to O
(1/ j2) is smaller than a constant times

m−1Nω−ν
N−1∑
j=1

j−α−2ω−3
N−1∑
k=1

kβ .

For 2ω + α + 2 , 0, this is O
(
m−1N−1) . Otherwise, this is O

(
m−1N−1 log N

) . In both cases, the
part goes to zero as N and therefore m increase.

Similarly, we can treat the sum associated with O
(1/k2) . It is not greater than a constant times

m−1Nω−ν
N−1∑
j=1

j−α−2ω−1
N−1∑
k=1

kβ−2.

Under the assumption that β , 1 and 2β − α − 2ν , 0, this is O
(
m−1N−1) . For both, β = 1 with

2β − α − 2ν , 0 and β , 1 with 2β − α − 2ν = 0, it is O
(
m−1N−1 log N

) . Finally, for β = 1
together with 2β − α − 2ν = 0, it is O

(
m−1Nω−ν log2 N

) . In either case, this tends to zero.

Last, we look into the part belonging to O
(1/m2) . This is at most a constant times

m−3Nω−ν
N−1∑
j=1

j−α−2ω−1
N−1∑
k=1

kβ .

76



5.2 The Gegenbauer case

If 2β − α − 2ν , 0, this term is O
(
m−3N

) and, for 2β − α − 2ν = 0, it is O
(
m−3N log N

) . This
is the part where we need N = o

(
m3) . Given that, the sum goes to zero, too, as N , m go to

in�nity.

Finally, we have shown that the Hilbert-Schmidt norm of the di�erence of the scaled operator
KN and the operator L∗ν,α,β converges to zero as N goes to in�nity, thus proving our claim. �

5.2 The Gegenbauer case

In this section, we are concerned with the Gegenbauer case. The problem for β − α < ν has
already been treated in [10], where β−α was assumed to be an integer. The restriction simpli�ed
things a lot, since the term (y2 − x2)α+ν−β−1, which plays an important role in the investigation,
is just a polynomial. Then, a result from [8] can be applied immediately. Assuming β − α is not
an integer, this is not the case anymore. As mentioned in [10], the result can be extended to
this situation, requiring a more elaborate analysis. In what follows, we will show that this is
indeed true.

As before, since γ (ν)
n−1 ≤ γ (ν)

n ≤ γ (ν)
n+1, we may assume that N = n − ν + 1 is an even number.

We use the notation from (4.18) and employ (4.19). Then, we look at the four parts separately,
inserting k = bN y/2c and j = bN x/2c. Thereafter,√

Γ
(2bN y/2c) (2bN y/2c + α + ν + 1/2)

Γ
(2bN y/2c) = (N y)−α+1/2(1 +O(1/N ))

and √
Γ
(2bN x/2c + 2β + 1) (2bN x/2c + β + 1/2)

Γ
(2bN x/2c + 1) = (N x)β+1/2(1 +O(1/N )).

For the other two terms, we set bN y/2c − bN x/2c = N (y − x)/2 + δN (x, y), with some
|δN (x, y) | ≤ 2 and bN y/2c + bN x/2c = N (y + x)/2+ δN (x, y), with some |δN (x, y) | ≤ 2, not
necessarily the same. Then, we obtain

Γ
(
α + ν + bN y/2c + bN x/2c + 1/2)

Γ
(
β + 1 + bN y/2c + bN x/2c + 1/2) = (⌊

N y
2

⌋
+

⌊
Nx
2

⌋ )−ω−1 (
1 +O

(
1

N (y+x)

))
=

(
N
2 (y + x) + δN (x, y)

)−ω−1 (
1 +O

(
1
N

))
=

(
N
2

)−ω−1
(y + x)−ω−1

(
1 + 2δN (x, y)

N (y+x)

)−ω−1

×
(
1 +O

(
1
N

))
=

(
N
2

)−ω−1
(y + x)−ω−1

(
1 +O

(
1
N

))
.

Analogously, we derive

(−1) bN y/2c−bNx/2c
(

ω

bN y/2c − bN x/2c

)
= (N/2)−ω−1 (

Γ
(
−ω

))−1(y − x)−ω−1 (1+O(1/N )
)
.
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0.0

3808.0

k

j

Figure 5.4: Matrix plot in the Gegenbauer case for n = 50, α = 0.2, β = 1.6, ν = 2, already
modi�ed by a permutation matrix.

Putting all of the above together, we see that, for large N , the entries e bNx/2c, bN y/2c of En

behave like

N−ω+ν−1 2ω+2

Γ
(
−ω

) xβ+1/2 y−α+1/2(y2 − x2)−ω−1(1 +O(1/N )).

In slightly di�erent form, this has already been stated in [10]. De�ning Kn as the integral
operator on L2(0,1) with kernel e bNx/2c, bN y/2c , this indicates that Nω−ν+1KN should converge
to the operator Gν,α,β on L2(0,1) given by

(Gν,α,β f )(x) =
2ω+2

Γ
(
−ω

) ∫ 1

x

xβ+1/2 y−α+1/2(y2 − x2)−ω−1 f (y)dy. (5.2)

Employing Lemma 5.1, we therefore should have

‖En ‖∞ ∼
N
2 N−ω+ν−1‖Gν,α,β ‖∞ =

N−ω+ν

2 ‖Gν,α,β ‖∞.

We con�ne ourselves to β−α < ν−1/2, for the same reasons as before: the operator in question
then is Hilbert-Schmidt and it su�ces to show the convergence in the corresponding, easy
accessible norm, which in turn implies convergence in the operator norm. This will be done in
the following theorem. The matrix plot in Figure 5.4 gives an idea why we have to take special
care when showing convergence close to the diagonal.
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5.2 The Gegenbauer case

Theorem 5.5. Let ω = β − α − ν < −1/2. Then, the operator (5.2) is Hilbert-Schmidt and
the integral operator Nω−ν+1KN with the kernel Nω−ν+1e bNx/2c, bN y/2c converges in the Hilbert-
Schmidt norm and thus in the operator norm to the operator Gν,α,β .

Proof. Instead of the operators given in the statement, we consider the convergence for the
adjoint operators. The kernel kN (x, y) of Nω−ν+1K∗N is given by

kN (x, y) = Nω−ν+1 2−ω

Γ
(
−ω

) √
Γ
(2bN x/2c + ν + 1) (2bN x/2c + α + ν + 1/2)

Γ
(2bN x/2c + 2α + ν + 1)

×

√
Γ
(2bN y/2c + 2β + 1) (2bN y/2c + β + 1/2)

Γ
(2bN y/2c + 1)

×
Γ
(
α + ν + bN x/2c + bN y/2c + 1/2)

Γ
(
β + 1 + bN x/2c + bN y/2c + 1/2) Γ

(
−ω + bN x/2c − bN y/2c)
Γ
(
bN x/2c − bN y/2c + 1) ,

for bN x/2c ≥ bN y/2c, and is zero otherwise. We denote the kernel of G∗ν,α,β by ρ(x, y), which
is given by

ρ(x, y) =
2ω+2

Γ
(
−ω

) yβ+1/2x−α+1/2(x2 − y2)−ω−1

for x > y , and is zero otherwise. First, by a simple calculation,

‖G∗ν,α,β ‖
2
2 =

∫ 1

0

∫ 1

0
|ρ(x, y) |2dydy

=
22ω+4

Γ2 (−ω) ∫ 1

0
x−2α+1

∫ x

0
y2β+1(x2 − y2)−2ω−2dydx

=
22ω+3

Γ2 (−ω) ∫ 1

0
x−2α+1+2β+1−4ω−4+1dx

∫ 1

0
zβ (1 − z)−2ω−2dz

=
22ω+3Γ

(
β + 1)Γ(−2ω − 1)

Γ2 (−ω)
(2ν − 2ω)Γ

(
β − 2ω) < ∞,

which holds for ω < −1/2. Thus, the operator is indeed Hilbert-Schmidt.

We now have to show that∫ 1

0

∫ 1

0
|kN (x, y) − ρ(x, y) |2dydx (5.3)

goes to zero as N goes to in�nity. The proof is very similar to the proof of Theorem 5.4, where
we have shown this for the Laguerre case.

We divide the area of integration [0,1]2 into N/2 × N/2 squares Q jk , 0 ≤ j, k ≤ N/2 − 1 of side
length 2/N , given by

Q jk =
[ 2 j
N ,

2( j+1)
N

)
×

[
2k
N ,

2(k+1)
N

)
.
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Since the kernel kN is constant on each of these squares, things are eased up. The double
integral (5.3) then equals

N/2−1∑
j,k=0

"
Q jk

|kN (x, y) − ρ(x, y) |2d(x, y).

Since both kernels are zero on the squares Q jk , for k ≥ j + 1, we do not need to consider these
terms.

As in the Laguerre case, divide the main area of integration Ω = ⋃
0≤k≤ j≤N/2−1 Q jk into a

border set ∂Ω and an interior set Ω̊, and split ∂Ω even further into the union Ω1 ∪ Ω2 ∪ Ω3
with Ω1,Ω2, and Ω3 given by

Ω1 = Q00,

Ω2 =
N/2−1⋃
j=1

Q j0,

Ω3 =
N/2−1⋃
j=1

j⋃
k=max{ j−m,1}

Q jk .

Here, we make use of the parameter m again. As before, m ∈ N is dependent on N in such a
way that it is o(N ) and N = o(m3). Recall Figure 5.2 to get an idea of the partition. Indeed, the
partition is done in the same way as in the Laguerre case with the only di�erence that the side
length of the small squares is 2/N instead of 1/N .

Again, we employ the estimate"
∂Ω
|kN (x, y) − ρ(x, y) |2d(x, y) ≤

2
"

∂Ω
|kN (x, y) |2d(x, y) + 2

"
∂Ω
|ρ(x, y) |2d(x, y),

as well as the equality"
∂Ω
|kN (x, y) |2d(x, y) ="

Ω1

|kN (x, y) |2d(x, y) +
"
Ω2

|kN (x, y) |2d(x, y) +
"
Ω3

|kN (x, y) |2d(x, y)

and the estimate"
∂Ω
|ρ(x, y) |2d(x, y) ≤∫ 2(m+1)

N

0

∫ x

0
|ρ(x, y) |2dydx +

∫ 1

2(m+1)
N

∫ 2
N

0
|ρ(x, y) |2dydx

+

∫ x

2(m+1)
N

∫ x

x− 2(m+1)
N

|ρ(x, y) |2dydx.
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5.2 The Gegenbauer case

As one may anticipate from the preparations, the rest of the proof is done in the same way as
for Theorem 5.4. The main di�erence lies in the details.

First, we have"
Ω1

|kN (x, y) |2d(x, y) =

N2ω−2ν 2−2ω

Γ2 (−ω) Γ(ν + 1) (α + ν + 1/2)
Γ
(2α + ν + 1) Γ

(2β + 1) (β + 1/2)
Γ
(1) Γ2 (α + ν + 1/2)Γ2 (−ω)

Γ2 (β + 3/2)Γ2 (1) .

This is a constant times N2ω−2ν , which goes to zero for N to in�nity, because of 2ω − 2ν < 0.
Secondly, for kN on Ω2,"

Ω2

|kN (x, y) |2d(x, y) = N2ω−2ν 2−2ω

Γ2 (−ω) Γ(2β + 1) (β + 1/2)Γ2 ( j − ω
)

Γ2 ( j + 1)
×

N/2−1∑
j=1

Γ
(2 j + ν + 1) (2 j + α + ν + 1/2)
Γ
(2 j + 2α + ν + 1) Γ2 (α + ν + j + 1/2)

Γ2 (β + 1 + j + 1/2)
= CN2ω−2ν

N/2−1∑
j=1

j−4ω−2α−3 (1 +O(1/ j)
)

with some constant C not depending on N . For −4ω − 2ν − 3 , −1, this is O
(
N−2β−2) and, for

−4ω − 2α − 3 = −1, it is O
(
N2ω−2ν log N

) . In both cases, this tends to zero with growing N .

Finally, for kN on Ω3, we get"
Ω3

|kN (x, y) |2d(x, y) =

× N2ω−2ν 2−2ω

Γ2 (−2ω) N/2−1∑
j=1

j∑
k=max{ j−m,1}

Γ
(2 j + ν + 1) (2 j + α + ν + 1/2)
Γ
(2 j + 2α + ν + 1)

×
Γ
(2k + 2β + 1) (2k + β + 1/2)

Γ
(2k + 1) Γ2 (α + ν + j − k + 1/2)

Γ2 (β + 1 + j − k + 1/2) Γ2 (−ω + j + k
)

Γ2 ( j + k + 1) .

Set ` = j − k . Then, this is the same as

N2ω−2ν 2−2ω

Γ2 (−ω) m∑
`=0

N/2−1−`∑
k=1

Γ
(2k + 2` + ν + 1) (2k + 2` + α + ν + 1/2)

Γ
(2k + 2` + 2α + ν + 1)

×
Γ
(2k + 2β + 1) (2k + β + 1/2)

Γ
(2k + 1) Γ2 (α + ν + ` + 1/2)

Γ2 (β + 1 + ` + 1/2) Γ2 (−ω + 2k + `
)

Γ2 (2k + ` + 1) .

Additionally, we let the inner sum run even further, up to N/2 − 1. By doing so, the sum can be
made only larger.
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We consider the part for ` = 0 separately. This term is just a constant times

N2ω−2ν
N/2−1∑
k=1

k−2α+1+2β+1−2ω−2 (1 +O(1/k)
)
= N2ω−2ν

N/2−1∑
k=1

k2ν (1 +O(1/k)
)
.

So, this is O
(
N2ω+1) and because of our assumption ω < −1/2, this vanishes as N goes to

in�nity.

For the rest, the sum is at most a constant times

N2ω−2ν
m∑
`=1

N/2−1∑
k=1

(2k + 2`)−2α+1(2k)2β+1`−2ω−2(2k + `)−2ω−2 (1 +O(1/k) +O(1/`)
)
.

For −2α + 1 < 0, we employ the estimate (2k + 2`)−2α+1 ≤ (2k)−2α+1 and, for 1 > −2α + 1 ≥ 0,
the estimate (2k + 2`)−2α+1 ≤ (2k)−2α+1 + (2`)−2α+1. We apply a similar estimate on the term
(2k+`)−2ω−2. For −2ω−2 < 0, we again get (2k+`)−2ω−2 ≤ (2k)−2ω−2. For −2ω−2 ≥ 0, we get
(2k + `)−2ω−2 ≤ c(ω)

(
(2k)−2ω−2 + `−2ω−2) with c(ω) = 1 for −2ω − 2 < 1, and c(ω) = 2−2ω−3

otherwise. So, the resulting sum is a constant times

N2ω−2ν
m∑
`=1

`−2ω−2
N/2−1∑
k=1

k2β+1 [(k−2α+1 + `−2α+1) (k−2ω−2 + `−2ω−2)]
plus the O terms. Note that the terms `−2α+1 and `−2ω−2 only occur if the above conditions
are satis�ed. We could write this more precise, but this would be even more confusing. In
the following, we will show that any of these actually four sums goes to zero, provided said
conditions hold.

In any case, we have the sum

N2ω−2ν
m∑
`=1

`−2ω−2
N/2−1∑
k=1

k2β−2α−2ω .

This is O
(
(N/m)2ωm−1) , which goes to zero. Next, if −2ω − 2 ≥ 0, we additionally have the

sum

N2ω−2ν
m∑
`=1

`−4ω−4
N/2−1∑
k=1

k2β−2α+2.

This becomes O
(
(N/m)4ω+3) if 2ω+ 2ν + 2 , −1, and since we assumed −2ω− 2 ≥ 0, it follows

4ω + 3 ≤ −1. On the other hand, if 2ω + 2ν + 2 = −1, this is O
(
N2ω−2νm−4ω−3 log N

) , which
can be written as O

(
(N/m)−4ν−3 log N

) . Therefore, this also goes to zero. Analogously, for
−2α + 1 ≥ 0, we get the sum

N2ω−2ν
m∑
`=1

`−2ω−2α−1
N/2−1∑
k=1

k2β−2ω−1.
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This is O
(
(N/m)2ω+1N2α−1) , which obviously tends to zero, too. The last part is only present

if both, −2α + 1 ≥ 0 and −2ω − 2 ≥ 0, are ful�lled. Then, the sum

N2ω−2ν
m∑
`=1

`−4ω−2α−3
N/2−1∑
k=1

k2β+1

is O
(
(N/m)4ω+2α+2) . The exponent of N (and m−1) may be written as 4ω + 4 + 2α − 2 ≤ 0 − 1.

So, the last part also goes to zero. Note that none of the occurring exponents in the single sums
was −1.

Summarizing, we ensured that
!
∂Ω
|kN (x, y) |2d(x, y) goes to zero as N goes to in�nity. Next,

we investigate the three parts of
!
∂Ω
|ρ(x, y) |2d(x, y). First, we get∫ 2(m+1)

N

0

∫ x

0
|ρ(x, y) |2dydx =

22ω+4

Γ2 (−ω) ∫ 2(m+1)
N

0
x−2α+1

∫ x

0
y2β+1(x2 − y2)−2ω−2dy

=
22ω+3

Γ2 (−ω) ∫ 2(m+1)
N

0
x2β−2α−4ω−1dx

∫ 1

0
zβ (1 − z)−2ω−2dz

=
22ω+3

Γ2 (−ω) Γ(β + 1)Γ(−2ω − 1)
Γ
(
β − 2ω) ∫ 2(m+1)

N

0
x2ν−2ω−1dx

=
22ω+2Γ

(
β + 1)Γ(−2ω − 1)

Γ2 (−ω)
Γ
(
β − 2ω)

(ν − ω)

(
2(m + 1)

N

)2ν−2ω
.

Since 2ν − 2ω > 2ν + 1 > 0 and m = o(N ), this clearly converges to zero. Next, we have∫ 1

2(m+1)
N

∫ 2
N

0
|ρ(x, y) |2dydx =

22ω+4

Γ2 (−ω) ∫ 1

2(m+1)
N

x−2α+1
∫ 2

N

0
y2β+1(x2 − y2)−2ω−2dydx

=
22ω+3

Γ2 (−ω) ∫
2(m+1)

N

x2β−2α−4ω−1
∫ 4

N2x2

0
zβ (1 − z)−2ω−2dzdx

≤
22ω+3

Γ2 (−ω) ∫
2(m+1)

N

x2ν−2ω−1dx
∫ 1

(m+1)2

0
zβ (1 − z)−2ω−2dz

≤
22ω+3

Γ2 (−ω) ∫ 1

0
x2ν−2ω−1dx

∫ 1
(m+1)2

0
zβ (1 − z)−2ω−2dz

=
22ω+2

Γ2 (−ω)
(ν − ω)

∫ 1
(m+1)2

0
zβ (1 − z)−2ω−2dz.

Since the obtained integral is over a nonnegative function and exists for all m, it goes to zero as
m goes to in�nity by Lemma 5.3. Last, by the same substitution, we get∫ 1

2(m+1)
N

∫ x

x− 2(m+1)
N

|ρ(x, y) |2dydx

=
22ω+3

Γ2 (−ω) ∫ 1

2(m+1)
N

x2ν−2ω−1
∫ 1(

1− 2(m+1)
Nx

)2
zβ (1 − z)−2ω−2dzdx.
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And with the help of Lemma 5.3, we conclude that this goes to zero.

Again summarizing, we have shown that
!
∂Ω
|ρ(x, y) |2d(x, y) goes to zero as N and m(N ) go

to in�nity. Therefore, the convergence in the Hilbert-Schmidt norm along the border ∂Ω is
con�rmed.

It remains to prove the convergence in the interior Ω̊. Here, the inequality 1/( j − k) ≤ 1/m
holds. Therefore, we have

Γ
(
−ω + j − k

)
Γ
(
j − k + 1) = ( j − k)−ω−1 (1 +O(1/m)

)
.

Furthermore, since 1
j+k ≤

1
j ,

Γ
(
α + ν + j + k + 1/2)

Γ
(
β + 1 + j + k + 1/2) = ( j + k)−ω−1 (1 +O(1/ j)

)
.

We get a similar expression for the corresponding terms in ρ(x, y). Therefore, the resulting
term ( j2 − k2)−2ω−2 may be estimated from above by j−4ω−3m−1. So, we arrive at

��kN (x, y) − ρ(x, y)��2 =

N2ω−2ν 2−2ω

Γ2 (−ω) j−2α−4ω−2k2β+1m−1 (O (1/ j2) + O
(1/k2) + O

(1/m2))
on Q jk ⊂ Ω̊. Summing over all Q jk ⊂ Ω̊ and ignoring the constant factor, we obtain the sum

N2ω−2νm−1
N/2−1∑
j=m+2

j−m−1∑
k=1

j−2α−4ω−2k2β+1 (O (1/ j2) +O
(1/k2) +O

(1/m2))
≤ N2ω−2νm−1

N/2−1∑
j=1

N/2−1∑
k=1

j−2α−4ω−2k2β+1 (O (1/ j2) +O
(1/k2) +O

(1/m2)) .
These are actually three sums. The �rst, coming from the O(1/ j2), is at most a constant times

N2ω−2νm−1
N/2−1∑
j=1

j−4ω−2α−4
N/2−1∑
k=1

k2β+1.

Given that −4ω − 2α − 4 , −1, this is O(1/mN ). Otherwise, it is O
(
m−1N−1 log N

) . In both
cases, this goes to zero as N goes to in�nity. The sum attached to O

(1/k2) is not greater than a
constant times

N2ω−2νm−1
N/2−1∑
j=1

j−4ω−2α−2
N/2−1∑
k=1

k2β−1.

Here, the critical exponents occur for −4ω − 2α − 2 = −1 and β = 0. First, if −4ω − 2α − 2 , −1
and β , 0, this is O(1/mN ). For −4ω − 2α − 2 = −1 and β = 0, it is O

(
m−1N2ω−2ν log N

) .
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5.3 The Hermite case

In the other two cases, it is O
(
m−1N−1 log N

) . The sums always go to zero as N and m go to
in�nity.

Again, we get the lower bound on m from the last sum belonging to O
(1/m2) . This sum is at

most a constant times

N2ω−2νm−3
N/2−1∑
j=1

j−4ω−2α−2
N/2−1∑
k=1

k2β+1,

which, for−4ω−2α−2 , −1, is O
(
m−3N

) , and for−4ω−2α−2 = −1, we obtain O
(
m−3N log N

) ,
both going to zero as N and m go to in�nity.

In conclusion, we know that the Hilbert-Schmidt norm of the di�erence of the modi�ed operators
Nω−ν+1K∗N and G∗ν,α,β goes to zero as N increases. Therefore, we have proved our claim. �

So far, we have veri�ed that the scaled integral operator built from the matrix En converges
in the Hilbert-Schmidt norm to the operator Gν,α,β . The same is true if we exchange En with
Fn .

As already stated in [10], we can de�ne the unitary operator V on L2(0,1) by

(V f )(x) = 21/2x1/2 f (x2) with (V−1 f )(x) = 2−1/2x−1/4 f (x1/2).

With this, we get

(V−1G∗ν,α,βV f )(x) =
2ω+1

Γ
(
−ω

) ∫ 1

0
x−α/2 yβ/2(x − y)−ω−1 f (y)dy

= 2ω+1 (L∗ν,α,β f
)
(x)

and conclude

‖Gν,α,β ‖∞ = 2ω+1‖Lν,α,β ‖∞.

Putting all of the above together, we have now proved that

γ (ν)
n (α, β) ∼ 2ωn2ν−β+α ‖L∗ν,α,β ‖∞

for β − α < ν − 1/2 as n goes to in�nity.

5.3 The Hermite case

As in the Laguerre and Gegenbauer cases, we consider β − α < −1/2. Note that we do not have
the direct dependence on ν anymore. In the following, we will show that the norm of the matrix
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−28841.4

263591.7

k

j

Figure 5.5: Matrix plot for n = 50, α = 1.3, β = 0.6, ν = 6 in the Hermite setting, already
permuted and modi�ed by alternating signs.

EN from above is determined by the operator norm of the integral operator

(H (0)
ν,α,β f )(x) =

2νΓ(dν/2e + 1)
Γ
(
α − β + dν/2e

) ∫ 1

x

xβ/2−1/4 y−α/2+1/4+( bν/2c−dν/2e)/2(y − x)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
x

y − x

) dν/2e−`

f (y)dy. (5.4)

In contrast to the aforementioned cases, we now have a polynomial in x/(y − x) in the kernel,
which is not necessarily greater than zero in the interesting interval. Figure 5.5 illustrates
this. To get the desired result, it does no longer su�ce just to let j and k go to in�nity in
c(ν)

2 j,2k+ν (α, β), but we have to transform it �rst a little bit.

Since the sign of the matrix entries changes between two entries, we cannot immediately
work with these. Instead, we consider the matrix ẼN = SEN S, where S is the diagonal matrix
S = diag

({
(−1) j

}N/2−1
j=0

)
. Because ‖SAS‖ = ‖A‖ holds for any matrix A, this does not change

our claim.

Before we can proceed, one more technical lemma is required.

Lemma 5.6. For x, µ ∈ C, m, τ ∈ N0, the following identity holds:(
µ + m
m − τ

) (
x + µ + τ

τ

)
=

τ∑
`=0

(
m − `
m − τ

) (
µ + m
m − `

) (
x
`

)
.
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Proof. We begin by evaluating the sum on the right-hand side and writing the binomial coe�-
cients in terms of rising factorials. Therefore,

τ∑
`=0

(
m − `
m − τ

) (
µ + m
m − `

) (
x
`

)
=

τ∑
`=0

(
µ + ` + 1)m−` (x − ` + 1)`

(m − τ)!(1)τ−``! .

This can be rewritten as

(−1)m

(m − τ)!τ!

τ∑
`=0

(
τ − ` + 1)` (−µ − m

)
m−`

(
−x

)
`

`! =

(
µ + 1)m

(m − τ)!τ!

τ∑
`=0

(
−τ

)
`

(
−x

)
`(

µ + 1)``! .
Applying the Chu-Vandermonde identity, this is the same as(

µ + 1)m(
µ + 1)τ (m − τ)!

(
x + µ + 1)τ

τ! =

(
µ + m
m − τ

) (
x + µ + τ

τ

)
,

which is exactly what we wanted to show. �

We can now go on with deriving asymptotic expressions for the modi�ed entries ẽ jk , given by
ẽ jk = (−1)k− jc(ν)

2 j,2k+ν (α, β), of the matrix ẼN introduced above, and thus derive an integral
operator in a way similar to the methods used before. For making the following work, we
have to assume that k − j ≥ dν/2e. Ignore the coe�cients before the sum in c(ν)

2 j,2k+ν (α, β) for a
moment. It remains to investigate the sum

(−1)k− j
min{ dν/2e,k− j }∑

τ=0

(
j + dν/2e − 1/2
dν/2e − τ

) (
β + j + dν/2e + τ − 1/2

τ

) (
β − α − dν/2e

k − j − τ

)
.

First, we note that(
β − α − dν/2e

k − j − τ

)
=

(
β − α − dν/2e

k − j − dν/2e

) (
β − α − k + j
dν/2e − τ

)
(dν/2e − τ)!(

k − j − dν/2e + 1) dν/2e−τ

.

Furthermore, by Lemma 5.6 the equality(
j + dν/2e − 1/2
dν/2e − τ

) (
β + j + τ − 1/2

τ

)
=

τ∑
`=0

(
dν/2e − `

dν/2e − τ

) (
j + dν/2e − 1/2
dν/2e − `

) (
β

`

)
holds. Hence, the above sum is equal to

(−1)k− j
(
β − α − dν/2e

k − j − dν/2e

) dν/2e∑
τ=0

τ∑
`=0

(
j + dν/2e − 1/2
dν/2e − `

) (
β

`

)
×

(
dν/2e − `

dν/2e − τ

) (
β − α − k + j
dν/2e − τ

)
(dν/2e − τ)!(

k − j − dν/2e + 1) dν/2e−τ

. (5.5)
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Ignoring the �rst factor temporarily, exchanging the order of summation, and performing an
index shift, this becomes

dν/2e∑
`=0

(
j + dν/2e − 1/2
dν/2e − `

) (
β

`

) dν/2e−`∑
τ=0

(
dν/2e − `

τ

) (
β − α − k + j
dν/2e − ` − τ

)
(dν/2e − ` − τ)!(

k − j − dν/2e + 1) dν/2e−`−τ

.

Writing the inner sum in terms of rising factorials, this is the same as
dν/2e−`∑
τ=0

(
dν/2e − ` − τ + 1)τ

τ!

(
β − α − k + j − dν/2e + ` + τ + 1) dν/2e−`−τ(

k − j − dν/2e + 1) dν/2e−`−τ

= (−1) dν/2e−`

(
α − β + k − j

)
dν/2e−`(

k − j − dν/2e + 1) dν/2e−`
2F1

(
−(dν/2e − `), j − k + `

β − α − k + j − dν/2e + ` + 1 ; 1
)

= (−1) dν/2e−`

(
α − β + k − j

)
dν/2e−`(

k − j − dν/2e + 1) dν/2e−`

(
β − α − dν/2e + 1) dν/2e−`(

β − α − k + j − dν/2e + ` + 1) dν/2e−`

=

(
β − α − dν/2e + 1) dν/2e−`(
k − j − dν/2e + 1) dν/2e−`

.

Therefore, the whole sum just is

dν/2e∑
`=0

(
j + dν/2e − 1/2
dν/2e − `

) (
β

`

) (
β − α − dν/2e + 1) dν/2e−`(
k − j − dν/2e + 1) dν/2e−`

=

dν/2e∑
`=0

(
β

`

) (
β − α + `

dν/2e − `

) (
j + ` + 1/2) dν/2e−`(

k − j − dν/2e + 1) dν/2e−`

.

So, (5.5) can be written as

(−1)k− j
(
β − α − dν/2e

k − j − dν/2e

) dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
j + ` + 1/2) dν/2e−`(

k − j − dν/2e + 1) dν/2e−`

.

Finally, we set j = bN x/2c and k = bN y/2c and put everything back together. With this, the
entry (−1)k− j−dν/2ec(ν)

2 j,2k+ν (α, β) becomes

2(β−α+ν)/2+1Γ
(
dν/2e + 1)

Γ
(
α − β + dν/2e

) N−(β−α−ν)/2−1xβ/2−1/4 y−α/2+1/4+( bν/2c−dν/2e)/2(y− x)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
x

y − x

) dν/2e−`

times an (1 +O(1/N )) term as N goes to in�nity.

Analogously, one can show that the corresponding term for F̃N is

(−1)k− j
(
β − α − bν/2c

k − j − bν/2c

) bν/2c∑
`=0

(
β

`

) (
β − α − `

bν/2c − `

) (
j + ` + 3/2) bν/2c−`(

k − j − bν/2c + 1) bν/2c−`

.
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Thus, after setting j and k as above, it is clear that the entry (−1)k− j−bν/2cc(ν)
2 j+1,2k+ν+1(α, β) is

2(β−α+ν)/2+1Γ
(
bν/2c + 1)

Γ
(
α − β + bν/2c

) N−(β−α−ν)/2−1xβ/2−1/4 y−α/2+1/4+( dν/2e−bν/2c)/2(y− x)α−β+ bν/2c−1

×

bν/2c∑
`=0

(
β

`

) (
β − α − `

bν/2c − `

) (
x

y − x

) bν/2c−`

times an (1 +O(1/N )) term as N goes to in�nity.

To show that the operators are Hilbert-Schmidt, �rst set

ρ(x, y) = x−α/2+( bν/2c−dν/2e)/2+1/4 yβ/2−1/4(x − y)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
y

x − y

) dν/2e−`

,

for x > y , and zero otherwise. Up to a constant, this is the kernel of the adjoint operator. We
have

|ρ(x, y) |2 = x−α+( bν/2c−dν/2e)+1/2 yβ−1/2(x − y)2α−2β+2 dν/2e−2
2 dν/2e∑
`=0

A`

(
y

x − y

)`
.

with

A` =
min{`, dν/2e }∑

i=max{0,`−dν/2e }

(
β

dν/2e − i

) (
β

dν/2e − ` + i

) (
β − α − dν/2e + i

i

) (
β − α − dν/2e + ` − i

` − i

)
(5.6)

Hence,
!

[0,1]2 |ρ(x, y) |2d(x, y) is a �nite sum of terms of the form

A`

∫ 1

0
x−α+( bν/2c−dν/2e)+1/2

∫ x

0
yβ+`−1/2(x − y)2α−2β+2 dν/2e−2−`dydx

for ` = 0, . . . ,2dν/2e. The inner integral converges as long as two conditions are ful�lled,
β + ` + 1/2 > 0 and 2α − 2β + 2dν/2e − ` − 1 > 0. The �rst is true for any ` by our standing
assumption β > −1/2. The second condition holds if β − α − dν/2e < −(` + 1)/2. Since it has to
be ful�lled for every 0 ≤ ` ≤ 2dν/2e, this condition becomes β − α − dν/2e < −dν/2e − 1/2, i. e.,
β − α < −1/2. This immediately implies β − α − ν < 0, which is just the remaining condition
for the convergence of the full integral.

Therefore, the Hilbert-Schmidt norm of the integral operator derived from the matrix ẼN is a
�nite sum of some constants times convergent integrals and hence �nite, when β −α < −1/2.

Analogously, we can show that the corresponding integral operator for the matrix F̃N is Hilbert-
Schmidt whenever β − α < −1/2.
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Theorem 5.7. Let α, β > −1/2, β − α < −1/2, and ν ∈ N. Furthermore, let EN and FN be
de�ned as above. Then,

‖EN ‖∞ ∼
(
N
2

) (α−β+ν)/2
‖H (0)

ν,α,β ‖∞, ‖FN ‖∞ ∼
(
N
2

) (α−β+ν)/2
‖H (1)

ν,α,β ‖∞,

where H (0)
ν,α,β and H (1)

ν,α,β are the integral operators on L2(0,1) given by

(
H (0)
ν,α,β f

)
(x) =

2νΓ(dν/2e + 1)
Γ
(
α − β + dν/2e

) ∫ 1

x

xβ/2−1/4 y−α/2+1/4+( bν/2c−dν/2e)/2(y − x)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
x

y − x

) dν/2e−`

f (y)dy,

and

(
H (1)
ν,α,β f

)
(x) =

2νΓ(bν/2c + 1)
Γ
(
α − β + bν/2c

) ∫ 1

x

xβ/2+1/4 y−α/2−1/4+( dν/2e−bν/2c)/2(y − x)α−β+ bν/2c−1

×

bν/2c∑
`=0

(
β

`

) (
β − α − `

bν/2c − `

) (
x

y − x

) bν/2c−`

f (y)dy,

respectively.

Proof. We show the theorem for EN . The claim for FN can be veri�ed analogously. First, let
KN denote the integral operator on L2(0,1) with the piecewise constant kernel determined by
kN (x, y) = ẽ bN y c, bNx c , where ẽ jk = (−1)k− je jk = (−1)k− jc(ν)

2 j,2k+ν (α, β). Furthermore, set

ρ(x, y) =
2νΓ(dν/2e + 1)
Γ
(
α − β + dν/2e

) x−α/2+1/4+( bν/2c−dν/2e)/2 yβ/2−1/4(x − y)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
y

x − y

) dν/2e−`

for x > y , and zero otherwise. It is the kernel of the adjoint operator of H (0)
ν,α,β . We claim that

the scaled operators (N/2)(β−α−ν)/2+1KN converge in the Hilbert-Schmidt norm (and thus in
the operator norm) to the operator H (0)

ν,α,β , provided that β − α < −1/2. Note that the operator
KN corresponds to the transposed matrix EN instead of the matrix EN itself.

As we have done before, split the area of integration into squares of length 2/N and consider
the sets on the border of the area in which at least one of the kernels does not vanish. We use
the notation from Theorem 5.4 and utilize the same sets Ω1, Ω2, Ω3, and ∂Ω = Ω1 ∪Ω2 ∪Ω3.
Again, we employ the estimate"

∂Ω

��(N/2)(β−α−ν)/2+1kN (x, y) − ρ(x, y)��2d(x, y)

≤ 2
(
N
2

)β−α−ν+2
"

∂Ω
|kN (x, y) |2d(x, y) + 2

"
∂Ω
|ρ(x, y) |2d(x, y)

90



5.3 The Hermite case

on the border area ∂Ω and show that both integrals go to zero as N increases.

We have

N β−α−ν+2
"
Ω1

|kN (x, y) |2d(x, y) =

N β−α−ν22ν
Γ

2 (dν/2e + 1)Γ(β + 1/2) Γ
(
bν/2c + 1)

Γ
(
dν/2e + α + 1/2)

(
dν/2e − 1/2
dν/2e

)
,

which is just a constant times N β−α−ν . Because of β − α < −1/2 and ν ≥ 1, this tends to zero
as N goes to in�nity.

We turn our attention to the area Ω2. Here, we sum over all j greater than or equal to 1, while
the index k is zero. Therefore,

N β−α−ν+2
"
Ω2

|kN (x, y) |2d(x, y) =

N β−α−ν22ν
Γ

2 (dν/2e + 1)Γ(β + 1/2) N/2−1∑
j=1

*.
,

√
Γ
(
j + bν/2c + 1)

Γ
(
j + dν/2e + α + 1/2)

×

(
dν/2e − 1/2
dν/2e

) (
β − α − dν/2e

j

)
3F2

(
−dν/2e, − j, β + 1/2

β − α − dν/2e − j + 1, 1/2 ; 1
)

+/
-

2

.

Examining the hypergeometric series, we see that this is actually 1 +O
(1/ j

) . Consequently,
the above integral is at most a constant times

N β−α−ν
N/2−1∑
j=1

j bν/2c−dν/2e−α+1/2+2α−2β+2 dν/2e−2 (1 +O(1/ j)
)

= N β−α−ν
N/2−1∑
j=1

jα−2β+ν−3/2 (1 + O(1/ j)
)
.

We split the sum in the part belonging to the factor 1 and the part belonging to the O(1/ j)
term. The �rst part is O

(
N−β−1/2) if α − 2β + ν − 1/2 , 0, and O

(
N β−α−ν log N

) otherwise.
Similarly, for α − 2β + ν − 3/2 , 0, the second part is O

(
N−β−3/2) , and O

(
N β−α−ν log N

) in
the other case. Either way, both parts of the sum go to zero as N goes to in�nity.

In order to tackle possible singularities along the diagonal, we use the previously established
idea. We introduce the parameter m = m(N ), which grows with N but not faster, and is
restricted by N = o(m3). First, treat the diagonal j = k on its own. Here, the integral over the
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square of the scaled kernel kN evaluates to

N β−α−ν22ν
Γ

2 (dν/2e + 1) N/2−1∑
j=1

*.
,

√
Γ
(
j + β + 1/2)Γ( j + bν/2c + 1)

Γ
(
j + 1)Γ( j + dν/2e + α + 1/2)

(
j + dν/2e − 1/2

dν/2e

)
+/
-

2

= 22νN β−α−ν
N/2−1∑
j=1

jβ−α+ν
(1 + O(1/ j)

)
.

Again, we investigate the parts belonging to 1 and the O term separately. For β−α+ ν , −1, the
�rst part is O

(
N2β−2α+1) , and it is O

(
N β−α−ν log N

) otherwise. In contrast, with β − α + ν , 0,
the second part is O

(
N2β−2α ) , or O

(
N−2ν log N

) for β − α + ν = 0. Because of ν ≥ 1 and
β − α < −1/2, all terms vanish for large N .

For the rest of the area along the diagonal, we set ` = j − k . The entries can then be written as

2νΓ(dν/2e + 1) √
Γ
(
k + β + 1/2)Γ(k + ` + bν/2c + 1)

Γ
(
k + 1)Γ(k + ` + dν/2e + α + 1/2)

×

(
k + dν/2e − 1/2

dν/2e

) (
β − α − dν/2e

`

)
3F2

(
−dν/2e, −`, β + k + 1/2

β − α − dν/2e − ` + 1, k + 1/2 ; 1
)
.

By keeping ` constant and letting k → ∞, the hypergeometric term becomes

2F1

(
−dν/2e, −`

β − α − dν/2e − ` + 1 ; 1
) (1 +O(1/k)

)
.

Now, we can evaluate this with the Chu-Vandermonde identity and see that the whole series is
simply a constant times 1 + O(1/k) + O(1/`). Together with the other terms, the rest of the
integral over Ω2 is at most a constant times

N β−α−ν
m∑
`=1

N/2−1∑
k=1

kβ−1/2+2 dν/2e (k + `) bν/2c−dν/2e−α+1/2`2α−2β−2 (1 +O(1/k) +O(1/`)
)
.

In the event of bν/2c − dν/2e − α + 1/2 < 0, we can estimate the (k + `) term solely by k . With
this, the above sum does not exceed

N β−α−ν
m∑
`=1

`2α−2β−2
N/2−1∑
k=1

kβ−α+ν
(1 +O(1/k) +O(1/`)

)
.

As before, we split the sum into three parts. First, the part belonging to 1 is O
(
(N/m)2β−2α+1) ,

given that β − α + ν + 1 , 0. On the other hand, if β − α + ν + 1 = 0 the sum becomes
O

(
(N/m)−2ν−1 log N

) .

For the term with O(1/k), with β − α + ν , 0, this evaluates to O
(

N/m)2β−2α+1N−1) , and to
O

(
(N/m)−2νm−1 log N

) for β − α + ν = 0. Again, both go to zero.
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Finally, the last term is O
(
(N/m)2β−2α+1m−1) if 2α − 2β − 2 , 0 and β − α + ν + 1 , 0. If

2α−2β−2 = 0, it becomes O
(
N−1 log m

) , and for β−α+ν+1 = 0, it is O
(
(N/m)−2ν−1m−1 log N

) .
In any case, the term goes to zero as N goes to in�nity.

If, on the other hand, dν/2e = bν/2c, i. e., ν is an even number, we can only guarantee that
bν/2c − dν/2e − α + 1/2 < −β < 1/2, because of β − α < −1/2. If this expression is negative, we
are done. Assume now 1/2 > −α + 1/2 > 0. Note that then necessarily β < 0. Under these
conditions, the term (k + `) bν/2c−dν/2e−α+1/2 can be estimated from above by k−α+1/2 + `−α+1/2.
Consequently, the sum may be estimated by

N β−α−ν
m∑
`=1

`2α−2β−2
N/2−1∑
k=1

kβ−α+ν
(1 +O(1/k) +O(1/`)

)
+ N β−α−ν

m∑
`=1

`α−2β−3/2
N/2−1∑
k=1

kβ+ν−1/2 (1 + O(1/k) + O(1/`)
)
.

The �rst sum has already been handled. In the second sum, consider the term belonging to
1. Suppose α − 2β − 3/2 , −1, and note that always β + ν − 1/2 > 0. Then, this sum is just
O

((
N/m

)2β−α+1/2) . If, on the contrary, α−2β−3/2 = −1, then the sum is O
(
N2β−α+1/2 log m

) ,
and because of our assumption, the exponent is strictly smaller than β, and thus negative.
Therefore, the term goes to zero in either case.

Analogously, the term belonging to O(1/k) goes to zero. The exponent in the sum over k is
still strictly greater than −1, and for the sum over ` the same distinction as above has to be
made. Keeping that in mind, the term is either O

(
N−1(N/m)2β−α−1/2) or O

(
N2β−α−1/2 log m

) .
In both cases, there is the additional factor N−1, so the arguments from above apply here, too.

Finally, for the O(1/`) term, we have to treat α − 2β − 5/2 = −1 separately. Given that, the sum
is O

(
N2β−α+1/2 log m

) or O
(
m−1(N/m)2β−α+1/2) otherwise. Again, this goes to zero.

What we have shown by now is that the integral over the square of the scaled kN vanishes on
∂Ω. Next, we prove that this is also true for the integral over ρ in this area. Recall the square of
the kernel ρ(x, y):

|ρ(x, y) |2 =
22νΓ2 (dν/2e + 1)
Γ2 (α − β + dν/2e)

×

2 dν/2e∑
`=0

A2 dν/2e−` y
β−1/2+`x−α+ bν/2c−dν/2e+1/2(x − y)2α−2β+2 dν/2e−2−`,

where A2 dν/2e−` is de�ned in (5.6).

Here, the integral∫ 2(m+1)
N

0

∫ x

0
|ρ(x, y) |2dydx
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is a constant times
2 dν/2e∑
`=0

A2 dν/2e−`

∫ 2(m+1)
N

0
x−α+ bν/2c−dν/2e+1/2

∫ x

0
yβ−1/2+` (x − y)2α−2β+2 dν/2e−`−2dydx.

Again, from β > −1/2, β −α < −1/2, and ` ≤ 2dν/2e, we derive that β + `− 1/2 > −1, as well as
2α − 2β + 2dν/2e − ` − 2 > −1. Therefore, the inner integral converges for any ` = 0, . . . ,2dν/2e
and we get

2 dν/2e∑
`=0

A2 dν/2e−`
Γ
(
β + ` + 1/2)Γ(2α − 2β + 2dν/2e − ` − 1)

Γ
(2α − β + 2dν/2e − 1/2)

∫ 2(m+1)
N

0
x−β+α+ν−1dx.

The last integral is independent of ` and evaluates to 1
ν−β+α

( 2(m+1)
N

)ν−β+α
. The rest of the sum

is independent of N , and thus the integral goes to zero.

In the following, we will omit the sum and the factors A2 dν/2e−` , since the convergence to zero
does not depend on them. We treat the integrals henceforth for a �xed ` = 0, . . . ,2dν/2e.

At the lower border, the corresponding integral is∫ 1

2(m+1)
N

x−α+ bν/2c−dν/2e+1/2
∫ 2/N

0
yβ+`−1/2(x − y)2α−2β+2 dν/2e−`−2dydx.

Using the substitution z = y/x in the inner integral, its upper bound becomes 2/N x. Because
x is greater than 2(m + 1)/N , the integral does not get smaller if we change the upper bound
to 1/(m + 1). Following this, the inner integral does not depend on x anymore. Therefore, the
double integral is in fact a plain product of two integrals. By reducing the lower bound of the
integral over x to 0, we also do not make this integral smaller, and we can simply evaluate it.
Putting all this together, the integral is

1
ν − β + α

∫ 1
m+1

0
zβ+`−1/2(1 − z)2α−2β+2 dν/2e−`−2dz.

The last integral converges for the same reasons as above, and it goes to zero by Lemma 5.3.

To �nish the study of the border, we have to evaluate the integral∫ 1

2(m+1)
N

x−α+ bν/2c−dν/2e+1/2
∫ x

x− 2(m+1)
N

yβ+`−1/2(x − y)2α−2β+2 dν/2e−`−2dydx.

The assumptions being ful�lled, Lemma 5.3 again delivers the vanishing property.

We now discuss the inner part. Notice that here j − k ≥ m. Therefore,

���kN

(
j
N ,

k
N

)
− ρ

(
j
N ,

k
N

) ���
2
= N β−α−ν

2 dν/2e∑
`=0

A2 dν/2e−`
22νΓ2 (dν/2e + 1)
Γ2 (α − β + dν/2e)

× kβ+`−1/2 j−α+ bν/2c−dν/2e+1/2( j − k)2α−2β+2 dν/2e−`−2 (O (1/k2) +O
(1/ j2) +O

(1/m2)) .
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We write

( j − k)2α−2β+2 dν/2e−`−2 = ( j − k)2α−2β+2 dν/2e−`−1( j − k)−1 ≤ j2α−2β+2 dν/2e−`−1m−1,

because 2α−2β+2dν/2e −`−1 is guaranteed to be positive. With this, we can give the following
upper bound on the di�erence in the interior of the area of integration, ignoring a constant
factor:

2 dν/2e∑
`=0

A2 dν/2e−`N β−α−νm−1

×

N/2−1∑
j=1

jα−2β+ν−`−1/2
N/2−1∑
k=1

kβ+`−1/2 (O (1/ j2) + O
(1/k2) + O

(1/m2)) .
As mentioned before, we just investigate the summands for each `, avoiding to write the sum
every time. As we already got used to, treat the sum for each O term separately.

First, for O
(1/ j2) , the sum is O

(
m−1N−1) if α − 2β + ν − ` , 3/2, and O

(
m−1N−1 log N

)
otherwise. In any case, it goes to zero.

Next, for O
(1/k2), we have to consider four cases. If neither α− 2β+ ν− `+ 1/2, nor β+ `− 3/2

is zero, the sum is O
(
m−1N−1) . If one of the two is zero, the sum becomes O

(
m−1N−1 log N

) ,
and if both are zero, it is O

(
m−1N−1 log2 N

) . All vanish for increasing N and m.

Finally, for O
(1/m2), we have O

(
Nm−3) if α−2β+ ν−`+1/2 , 0, and O

(
m−3 log N

) otherwise.
Here, the condition N = o(m3) comes into play for obtaining convergence to zero. Given that,
this also goes to zero.

In conclusion, we have shown that the scaled-down integral operator derived from the matrix
representation of the operator of di�erentiation in the Hermite case converges in the Hilbert-
Schmidt norm, and thus in the operator norm, to its analogue with continuous kernel. �

5.4 Schatten class operators

We are now at the point where we have completely proved Theorems 1.1, 1.2, and 1.3. Thus, the
constants are fully identi�ed for the parameter di�erences mentioned there. However, in each
case, there is a small gap for which we still do not have a result. One particular case is addressed
by the paper [11], namely the Laguerre case. Since this paper was done in close connection to
the present work, we will bring the main achievements here.

One point that is particularly striking is the method of the proof for showing the convergence
of the operators. It heavily relied on the integral operator being Hilbert-Schmidt. That made
the analysis somewhat easier. However, one might get the idea that this assumption is a little
bit to strong, and we can achieve even more if we drop this or at least replace it with less strict
prerequisites. Hence, one can come up with the following conjecture, presented in [11].
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Conjecture 5.8 (Conjecture 1.1 in [11]). Let α, β > −1 be real numbers, ν be a positive integer,
and put ω = β − α − ν. Then,

λ (ν)
n (α, β) ∼ Cν (α, β)n(ν+ |ω |)/2

with

Cν (α, β) =
{

2ω for ω ≥ 0,
‖L∗ν,α,β ‖∞ for ω < 0,

where L∗ν,α,β is the Volterra integral operator on L2(0,1) given by

(L∗ν,α,β f )(x) =
1

Γ(−ω)

∫ x

0
x−α/2 yβ/2(x − y)−ω−1 f (y)dy. (1.3 revisited)

Here are the necessary notions and notations. Let T be a bounded operator acting on some
separable Hilbert space H , and let {sk (T )}k ∈N denote the sequence of singular values of T in
nonincreasing order. The operator T is said to belong to the pth Schatten class if {sk (T )}k ∈N
belongs to `p (N). We write Sp for the set of these operators and de�ne the norm by

‖T ‖Sp
= ‖{sk (T )}k ∈N‖`p .

In the following, we only consider values of p that are powers of two and therefore just write
‖T ‖Sp

= ‖T ‖2n for p = 2n . Clearly, ‖T ‖2 ≥ ‖T ‖22 ≥ . . . ≥ ‖T ‖2n ≥ . . . ≥ ‖T ‖∞. All we need is
the equality ‖T ‖2n = ‖T∗T ‖1/22n−1 (which holds for all n ≥ 1) and the fact that the Hilbert-Schmidt
norm ‖T ‖2 of an integral operator T is equal to the L2 norm of the kernel of T .

In the next subsection we will prove Theorem 1.4 (see Theorem 1.2 in [11]) and in the following
two subsections we will prove Theorem 1.5 (Theorem 1.3 in [11]).

Proof of Theorem 1.4

The factor (
Γ
(
−ω

))−1 is irrelevant for the compactness of the operator (1.3). Thus, we consider
the operator M de�ned on L2(0,1) by

(M f )(x) =
∫ x

0
x−α/2 yβ/2(x − y)−ω−1 f (y)dy.

For 0 < r < 1, let Mr be the operator on L2(0,1) that is given by

(Mr f )(x) =
∫ r x

0
x−α/2 yβ/2(x − y)−ω−1 f (y)dy.

The squared Hilbert-Schmidt norm of Mr is∫ 1

0

∫ r x

0
x−α yβ (x − y)−2ω−2dydx =

∫ 1

0

∫ r

0
xβ−α−2ω−1 yβ (1 − y)−2ω−2dydx.
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This is �nite if β > −1 and ω < (β − α)/2. Consequently, these two assumptions ensure that
Mr is compact. We have

((M − Mr ) f )(x) =
∫ x

r x

x−α/2 yβ/2(x − y)−ω−1dy

=

∫ 1

r

x (β−α)/2−ω yβ/2(1 − y)−ω−1 f (x y)dy,

and since ω < (β − α)/2, it follows that

|((M − Mr ) f )(x) | ≤
∫ 1

r

yβ/2(1 − y)−ω−1 | f (x y) |dy.

We therefore obtain

‖(M − Mr ) f ‖L2 (0,1) =

(∫ 1

0
|((M − Mr ) f )(x) |2dx

)1/2

≤ *
,

∫ 1

0

(∫ 1

r

yβ/2(1 − y)−ω−1 | f (x y) |dy
)2

dx+
-

1/2

,

and by virtue of Minkowski’s inequality for integrals, this is not larger than∫ 1

r

(∫ 1

0
yβ (1 − y)−2ω−2 | f (x y) |2dx

)1/2
dy

=

∫ 1

r

yβ/2(1 − y)−ω−1
(∫ 1

0
| f (x y) |2dx

)1/2
dy. (5.7)

Taking into account that
∫ 1

0 | f (x y) |2dx = y−1
∫ y

0 | f (t) |2dt ≤ y−1‖ f ‖2
L2 (0,1) , we see that (5.7)

does not exceed∫ 1

r

yβ/2−1/2(1 − y)−ω−1‖ f ‖L2 (0,1)dy.

In summary, we have shown

‖(M − Mr ) f ‖L2 (0,1) ≤

(∫ 1

r

yβ/2−1/2(x − y)−ω−1dy
)
‖ f ‖L2 (0,1) . (5.8)

The assumption ω < 0 guarantees that the integral appearing in (5.8) goes to zero as r → 1.
This implies that ‖M − Mr ‖∞ → 0 as r → 1, which proves M to be compact. �

Auxiliary results and an example

Let T be an integral operator on L2(0,1) with a real-valued kernel k (·, ·) and T∗ its adjoint.
These are then given by

(T f )(x) =
∫ 1

0
k (x, y) f (y)dy, (T∗ f )(x) =

∫ 1

0
k (y, x) f (y)dy,
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and thus,

((T∗T ) f )(x) =
∫ 1

0

(∫ 1

0
k (z, x)k (z, y)dz

)
f (y)dy.

We recursively de�ne a sequence of kernel functions {k2n }n≥0 that are associated with integral
operators K2n . Set

k1(x, y) =



y−α/2xβ/2(y − x)−ω−1 for x < y,

0 otherwise.

Clearly, K1 is just Γ(−ω) times the operator (1.3). Next, set

k2n (x, y) =
∫ 1

0
k2n−1 (z, x)k2n−1 (z, y)dz.

It follows that K2n = K∗2n−1 K2n−1 , and, to prove Theorem 1.5, we are left to show ‖K1‖2n < ∞.
This is the same as 

(K∗1 K1)n−1

2 =



K2n−1 

2 < ∞. So, we reduce the estimation of the 2nth
Schatten norm of the operator K1 to the estimation of the Hilbert-Schmidt norm of the operator
K2n−1 , which is given by



K2n−1 

2
2 =

∫ 1

0

∫ 1

0
k2n−1 (x, y)k2n−1 (x, y)dxdy.

To anticipate the arguments that will be used in the proof of the general case, we start with
considering the case n = 2. Thus, suppose −1/2 ≤ ω < −1/4. Our aim is to show that K2 is a
Hilbert-Schmidt operator. Since k2(x, y) = k2(y, x), we have

‖K2‖
2
2 =

∫ 1

0

∫ 1

0
k2(x2, x0)k2(x0, x2)dx0dx2

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
k1(x1, x2)k1(x1, x0)k1(x3, x0)k1(x3, x2)dx0dx1dx2dx3.

The indexing of the variables might seem strange at the �rst glance, but it will turn out to be
perfect when treating the general case. Notice also that all these kernels are nonnegative, which
implies that the integral over the cube is equal to the iterated integrals, and that we can change
the order of integration.

We have to distinguish between the cases xi < x j and xi > x j . To this end, we split the area of
integration, i. e., the cube [0,1]4, into 4! disjoint simplices

Ωπ =
{
(x0, x1, x2, x3) ∈ [0,1]4 : xπ (0) < xπ(1) < xπ (2) < xπ (3)

}
,

where π is a permutation of the numbers 0,1,2,3. The integral for ‖K2‖
2
2 then splits into 4!

integrals over Ωπ . In all but four cases one of the kernels k1(xi , x j ) is zero. These four cases
are the permutations which send (0,1,2,3) to (1,3,0,2), (1,3,2,0), (3,1,0,2), or (3,1,2,0). We
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are therefore left with showing that each of these four integrals is �nite. Let us consider the
integral corresponding to the last permutation, i. e., the simplex given by x3 < x1 < x2 < x0:

I4 B

∫ 1

0

∫ x0

0

∫ x2

0

∫ x1

0
ϕ4(x)dx3dx1dx2dx0

with

ϕ4(x) = x−α0 x−α2 xβ1 xβ3 (x2 − x1)−σ (x0 − x1)−σ (x2 − x3)−σ (x0 − x3)−σ ,

where, here and in the following, σ B ω + 1. The inner integration in I4 gives∫ x1

0
ϕ4(x)dx3

= x−α0 x−α2 xβ1 (x2 − x1)−σ (x0 − x1)−σ
∫ x1

0
xβ3 (x2 − x3)−σ (x0 − x3)−σdx3.

Now, a �rst lemma comes into the game. Recall that 0 < σ = ω + 1 < 1.

Lemma 5.9. Let a > −1, τ > 0, σ > 0 be real numbers, and let k ≥ 0 and ` ≥ 0 be integers.
Suppose (k + ` + 1)τ < 1 and (1 + τ)σ < 1. Assume further that 0 < s ≤ y < x. Then,∫ s

0
ta (x − t)−(1−kτ)σ (y − t)−(1−`τ)σdt ≤ C(x − y)−(1−(k+`+1)τ)σ sa−(1+τ)σ+1

with some constant C < ∞.

Proof. We write (x − t)−(1−kτ)σ = (x − t)−(1−(k+`+1)τ)σ (x − t)−(`+1)τσ , and since

(x − t)−(1−(k+`+1)τ)σ ≤ (x − y)−(1−(k+`+1)τ)σ ,

(x − t)−(`+1)τσ ≤ (s − t)−(`+1)τσ ,

(y − t)−(1−`τ)σ ≤ (s − t)−(1−`τ)σ ,

we obtain that the integral does not exceed

(x − y)−(1−(k+`+1)τ)σ
∫ s

0
ta (s − t)−(1+τ)σdt .

The last integral equals

sa−(1+τ)σ+1
∫ 1

0
ta (1 − t)−(1+τ)σdt = sa−(1+τ)σ+1 · C,

where C B Γ(a + 1)Γ(1 − (1 + τ)σ)/Γ(a + 2 − (1 + τ)σ) < ∞. �
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Now, choose τ = 1/3. Since σ = 1 + ω < 1 − 1/4, we have (1 + τ)σ < 1. Applying the lemma
with k = ` = 0 to the above integral

∫ x1
0 ϕ4(x)dx3, we get∫ x1

0
ϕ4(x)dx3

≤ Cx−α0 x−α2 x2β−(1+τ)σ+1
1 (x2 − x1)−σ (x0 − x1)−σ (x0 − x2)−(1−τ)σ C ϕ3(x).

Next, we evaluate the inner integration in

I4 ≤

∫ 1

0

∫ x0

0

∫ x2

0
ϕ3(x)dx1dx2dx0

and obtain∫ x2

0
ϕ3(x)dx1

= Cx−α0 x−α2 (x0 − x2)−(1−τ)σ
∫ x2

0
x2β−(1+τ)σ+1

1 (x2 − x1)−σ (x0 − x1)−σdx1.

Again, use Lemma 5.9 with k = ` = 0. The only question is whether a = 2β − (1+ τ)σ+ 1 > −1.
This problem is disposed of by the following lemma.

Lemma 5.10. Let α > −1, β > −1, ν ≥ 1 be real numbers. Put ω = β − α − ν and suppose
−1/2n−1 ≤ ω < −1/2n . If k and ` are integers satisfying 0 ≤ ` ≤ k ≤ 2n−1 and τ is de�ned as
τ = 1/(2n − 1), then

k β − `α − (k + ` − 1)(1 + τ)(ω + 1) + (k + ` − 1) > ` − 1.

Proof. Since (1 + τ)(ω + 1) < 1, we have −(k + ` − 1)(1 + τ)(ω + 1) + (k + ` − 1) > 0. Hence,

k β − `α − (k + ` − 1)(1 + τ)(ω + 1) + (k + ` − 1) > k β − `α

= k (β − α) + (k − `)α = k (ω + ν) + (k − `)α > k (ω + 1) − (k − `)

= kω + ` ≥ ` − k/2n−1 ≥ ` − 1. �

In the present case, n = 2 and accordingly τ = 1/3, as above. Lemma 5.10 with k = 2 and ` = 0
yields that indeed a = 2β − (1+ τ)σ + 1 > −1. We may therefore use Lemma 5.9 with k = ` = 0
to conclude that∫ x2

0
ϕ3(x)dx1 ≤ Cx−α0 x2β−α−2(1+τ)σ+2

2 (x0 − x2)−(1−τ)σ (x0 − x2)−(1−τ)σ C ϕ2(x),

where, here and throughout what follows, C denotes a �nite constant, but not necessarily the
same at each occurrence. Thus,

I4 ≤

∫ 1

0

∫ x0

0
ϕ2(x)dx2dx0.
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5.4 Schatten class operators

We have∫ x0

0
ϕ2(x)dx2 = Cx−α0

∫ x0

0
x2β−α−2(1+τ)σ+2

2 (x0 − x2)−2(1−τ)σdx2

= xb0

∫ 1

0
tc (1 − t)−2(1−τ)σdt C xb0 · C̃

with b = 2β − 2α − 2(1 + τ)σ + 2 − 2(1 − τ)σ + 1 and c = 2β − α − 2(1 + τ)σ + 2. Clearly,
2(1 − τ)σ < 2(1 − 1/3)(1 − 1/4) = 1, Lemma 5.10 with k = 2 and ` = 1 gives c > −1, and
�nally,

b = 2β − 2α − 2(1 + τ)σ + 2 − 2(1 − τ)σ + 1
≥ 2(ω + 1) − 2(1 + τ)(ω + 1) − 2(1 − τ)(ω + 1) + 3 = 3 − 2(ω + 1) > 1.

This proves that I4 ≤ C̃
∫ 1

0 xb0 dx0 < ∞.

Proof of Theorem 1.5

We now turn to the general case. The case n = 1 is a simple computation. So, suppose n ≥ 2
and −1/2n−1 ≤ ω < −1/2n . Put σ = 1 + ω. We have to show that

‖K2n−1 ‖22 =

∫ 1

0

∫ 1

0
k2n−1 (x0, x2n−1 )k2n−1 (x2n−1 , x2n )dx2n−1dx0 (x2n B x0)

is �nite; notice that k2n−1 (x2n−1 , x0) = k2n−1 (x0, x2n−1 ) for n ≥ 2. Write

k2n−1 (xi , x j ) =
∫ 1

0
k2n−2 (x`, xi )k2n−2 (x`, x j )dx`,

where ` = (i + j)/2. Continue this process until only the kernels k1(·, ·) remain. For example, if
n = 4, then

‖K8‖
2
2 =

∫ 1

0

∫ 1

0
k8(x0, x8)k8(x8, x16)dx8dx0 (x16 B x0)

with

k8(x0, x8) =
∫ 1

0
k4(x4, x0)k4(x4, x8)dx4

=

∫ 1

0

∫ 1

0

∫ 1

0
k2(x2, x4)k2(x2, x0)k2(x6, x4)k2(x6, x8)dx2dx6dx4

=

∫ 1

0
· · ·

∫ 1

0
k1(x3, x2)k1(x3, x4)k1(x1, x2)k1(x1, x0)

× k1(x5, x6)k1(x5, x4)k1(x7, x6)k1(x7, x8)dx1 · · · dx7
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and a similar expression for k8(x8, x16). In this way, the integral for ‖K2n−1 ‖22 becomes an
integral over Ω = [0,1]2n . We divide Ω into (2n )! disjoint simplices

Ωπ = {(x0, . . . , x2n−1) ∈ [0,1]2n : xπ (0) < xπ(1) < . . . < xπ(2n−1) },

labeled by the permutations π of the numbers 0,1, . . . ,2n−1. The result is

‖K2n−1 ‖22 =
∑
π

∫ 1

0

∫ xπ (2n−1)

0

∫ xπ (2n−2)

0
· · ·

∫ xπ (1)

0

*.
,

2n−1−1∏
j=0

k1(x2 j+1, x2 j )k1(x2 j+1, x2 j+2)+/
-

dxπ(0) . . . dxπ(2n−1) .

We perform the integrations from the inside to the outside and may restrict ourselves to the
permutations π for which we never meet a kernel whose �rst variable is greater than the second.
Thus, take such a permutation and consider

I2n =

∫ 1

0

∫ xπ (2n−1)

0

∫ xπ (2n−2)

0
· · ·

∫ xπ (1)

0
ϕ2n (x)dxπ(0) . . . dxπ(2n−1)

with

ϕ2n (x) =
2n−1−1∏
j=0

k1(x2 j+1, x2 j )k1(x2 j+1, x2 j+2)

=

2n−1−1∏
j=0

x−α2 j xβ2 j+1[(x2 j − x2 j+1)(x2 j+2 − x2 j+1)]−σ .

We put τ = 1/(2n − 1). Then,

(1 + τ)σ <
(
1 + 1

2n − 1

) (
1 − 1

2n
)
= 1.

The �rst integral is an integral like in Lemma 5.9 with a = β and k = ` = 0. We estimate this
integral from above exactly as in this lemma and obtain a function ϕ2n−1(x). Integrating this
function, we get an integral as in Lemma 5.9 with k = 1 and ` = 0, and we estimate again to get
a function ϕ2n−2(x). In this way, we perform 2n − 2 integrations and estimates. In the end, we
have a function ϕ2(x).

In each step, we use Lemma 5.9 with some a, and some k and `. Let us �rst describe the
evolution of the exponents a. After the �rst integration, it equals 2β− (1+ τ)σ+1. Each further
integration adds −(1 + τ)σ + 1 to the exponent, and from outside the integral we still have to
add the values β or −α in dependence on whether the j in the integral

∫ x j

0 is odd or even. Thus,
each time we add β− (1+ τ)σ+1 or −α− (1+ τ)σ+1, and after k + ` integrations the exponent
is (k + 1) β − `α − (k + `)(1 + τ) + (k + `). Since we do not meet kernels which are identically
zero, at each place in the sequence π(0) < · · · < π(2n − 1), the number of predecessors with
odd subscript is at least as large as the number of predecessors with even subscript. This implies
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that always k + 1 ≥ `. The �rst integration is over a variable with odd subscript. It follows that
the number of integrals

∫ x j

0 ∗ with odd j is at most 2n−1 − 1, so that always k + 1 ≤ 2n−1. We
therefore obtain from Lemma 5.10 (with k replaced by k + 1) that the exponent a is greater than
` − 1 ≥ −1.

Our next objective is the evolution of the numbers k and ` occurring in Lemma 5.9. For this
purpose, we associate weighted graphs G2n , . . . ,G2 with the functions ϕ2n (x), . . . , ϕ2(x). The
graph G2n has 2n vertices, which are labeled from x0 to x2n−1, and 2n edges, which join x j and
x j+1 and will be denoted by [x j , x j+1]. Each edge gets the weight 0. This is because in ϕ2n (x)
each |x j − x j+1 | has the exponent −σ, which may be written as −(1 − mτ)σ with m = 0. The
function ϕ2n−1(x) results from ϕ2n (x) via an estimate of the form∫ x j

0
xai (xi−1 − xi )−σ (xi+1 − xi )−σdxi ≤ Cxa−(1+τ)σ+1

j |xi−1 − xi+1 |
−(1−τ)σ ;

we write the di�erences in absolute values, since this dispenses us from distinguishing the cases
xi−1 < xi+1 and xi+1 < xi−1. Thus, the di�erences xi−1 − xi and xi+1 − xi are no longer present
in ϕ2n−1(x). Instead, ϕ2n−1(x) contains |xi−1 − xi+1 | with the exponent −(1 − τ)σ, which is
−(1 − mτ)σ with m = 1. Accordingly, G2n−1 results from G2n by deleting the edges [xi−1, xi]
and [xi , xi+1], and introducing a new edge [xi−1, xi+1] with the weight m = 1. We proceed in
this way. If ϕh−1(x) is obtained from ϕh (x) by an estimate∫ x j

0
xai (xp − xi )−(1−kτ)σ (xq − xi )−(1−`τ)σdxi

≤ Cxa−(1+τ)σ+1
j |xp − xq |−(1−(k+`+1)τ)σ , (5.9)

then Gh contained the edge [xp , xi] with the weight k and the edge [xi , xq] with the weight `.
We delete these two edges, and replace them by the edge [xp , xq] with the weight k + ` + 1 to
obtain Gh−1.

The graph G2 consists of two edges, both joining xπ(2n−2) and xπ (2n−1) . Let r and s be the
weights of these edges. The sum of all weights in G2n is zero, and in each step the sum of
the weights increases by −k − ` + (k + ` + 1) = 1. As we made 2n − 2 steps, it follows that
r + s = 2n − 2. We see in particular that, in (5.9), we always have k + ` < 2n − 2, whence
(k + ` + 1)τ < (2n − 1)/(2n − 1) = 1. This (together with the inequality a > −1 shown before)
justi�es the application of Lemma 5.9 in each step.

Figure 5.6 depicts the graphs for the introductory example considered in the preceding subsec-
tion, while Figure 5.7 presents the sequence of graphs for n = 3 and the simplex associated with
the permutation x5 < x1 < x3 < x2 < x4 < x7 < x6 < x0.

We abbreviate xπ (2n−2) and xπ (2n−1) to xp and xq . What we are left with is to prove∫ 1

0

∫ xq

0
ϕ2(x)dxpdxq < ∞

with

ϕ2(x) = Cx−αq xap (xq − xp )−(1−rτ)σ (xq − xp )−(1−sτ)σ .
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Figure 5.6: The sequence of graphs for n = 2 and x3 < x1 < x2 < x0.

The exponent a comes from k = 2n−1 − 1 integrals
∫ x j

0 ∗ with odd subscript j and ` = 2n−1 − 1
integrals

∫ x j

0 ∗ with even j . (Notice that p and q are necessarily even.) Hence, the exponent a
equals (k + 1) β − `α − (k + `)(1 + τ)σ + (k + `), and from Lemma 5.10 we infer a > −1. It
follows that∫ xq

0
ϕ2(x)dxp = Cx−αq

∫ xq

0
xap (xq − xp )−(2−(r+s)τ)σdxp

= Cx−αq xa−(2−(r+s)τ)σ+1
q

∫ 1

0
ta (1 − t)−(2−(r+s)τ)σdt . (5.10)

Obviously,

(2 − (r + s)τ)σ =
(
2 − 2n − 2

2n − 1

)
(1 + ω) =

2n
2n − 1 (1 + ω) <

2n
2n − 1

(
1 − 1

2n
)
= 1,

and hence (5.10) is �nite. It remains to consider the integral
∫ 1

0 xbqdxq with the exponent b
equal to −α + a − (2 − (r + s)τ)σ + 1. We just proved 1 − (2 − (r + s)τ)σ > 0 and also have

−α + a = (k + 1) β − (k + 1)α − 2k (1 + τ)σ + 2k

= (k + 1) β − (k + 1)α − (2k + 1)(1 + τ)σ + (2k + 1) + (1 + τ)σ − 1
> k + 1 − 1 + (1 + τ)σ − 1 (Lemma 5.10)

= k − 1 + (1 + τ)σ > k − 1 = 2n−1 − 2 ≥ 0.

This shows that b > 0 and thus that
∫ 1

0 xbqdxq < ∞. The proof of Theorem 1.5 is complete. �
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Figure 5.7: The sequence of graphs obtained for n = 3 with one of the most demanding permu-
tations x5 < x1 < x3 < x2 < x4 < x7 < x6 < x0.
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Conclusion and outlook

In the preceding chapters, we gave complete proofs of the Theorems 1.1, 1.2, and 1.3. These
theorems almost completely answer the question on the nature of the best constant in the
Markov-type inequality

‖ f (ν) ‖β ≤ C (ν)
n (α, β)‖ f ‖α for all f ∈ Pn .

We identi�ed them (asymptotically as n → ∞) as

λ (ν)
n (α, β) ∼ n(ν+ |β−α−ν |)/2




2β−α−ν : β − α ≥ ν


L∗ν,α,β

∞ : β − α < ν − 1/2

in the Laguerre setting,

γ (ν)
n (α, β) ∼




nν : β − α ≥ ν
2β−α−ν ‖L∗ν,α,β ‖∞n2ν−β+α : β − α < ν − 1/2

in the Gegenbauer setting, and

η (ν)
n (α, β) ∼ n( |β−α |+ν)/2




2(β−α+ν)/2 : β − α ≥ 0
2(β−α−ν)/2 ·max

{

H (0)
ν,α,β



∞, 

H (1)
ν,α,β



∞
}

: β − α < −1/2

in the Hermite setting, where L∗ν,α,β , H (0)
ν,α,β , and H (1)

ν,α,β are certain integral operators on
L2(0,1). It is immediately noticeable that, in every case there is a small gap, always of the same
size 1/2. The conjecture raised in Section 5.4 is that this is due to the techniques used, not
inherent to the problem itself, and that this limitation may be overcome by a more elaborate
analysis. It is shown that, although the operator L∗ν,α,β is no longer a Hilbert-Schmidt operator
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for β − α ≥ ν − 1/2, it still belongs to some Schatten class and is thus compact. While this does
not provide an answer right away, it may help in �nding the correct result in that case.

Conjecture 5.8 extends Theorem 1.1 to all possible parameter di�erences. The similarity to the
Gegenbauer and Hermite setting imposes us to formulate related conjectures in these cases.

Conjecture 6.1. Let α, β > −1 be real numbers, ν be a positive integer, and put ω = β − α − ν.
Then,

γ (ν)
n (α, β) ∼




nν : ω ≥ 0
2ω

L∗ν,α,β

∞n2ν−β+α : ω < 0,

where L∗ν,α,β is the Volterra integral operator on L2(0,1) given by

(L∗ν,α,β f )(x) =
1

Γ
(
−ω

) ∫ x

0
x−α/2 yβ/2(x − y)−ω−1 f (y)dy.

Conjecture 6.2. Let α, β > −1/2 be real numbers, and let ν be a positive integer. Then,

η (ν)
n (α, β) ∼ Cν (α, β)n( |β−α |+ν)/2

with

Cν (α, β) =



2(β−α+ν)/2 : β − α ≥ 0
2(β−α−ν)/2 ·max

{

H (0)
ν,α,β



∞, 

H (1)
ν,α,β



∞
}

: β − α < 0,

where H (0)
ν,α,β and H (1)

ν,α,β are the integral operators on L2(0,1) de�ned by

(
H (0)
ν,α,β f

)
(x) =

2νΓ(dν/2e + 1)
Γ
(
α − β + dν/2e

) ∫ 1

x

xβ/2−1/4 y−α/2+1/4+( bν/2c−dν/2e)/2(y − x)α−β+ dν/2e−1

×

dν/2e∑
`=0

(
β

`

) (
β − α − `

dν/2e − `

) (
x

y − x

) dν/2e−`

f (y)dy,

and

(
H (1)
ν,α,β f

)
(x) =

2νΓ(bν/2c + 1)
Γ
(
α − β + bν/2c

) ∫ 1

x

xβ/2+1/4 y−α/2−1/4+( dν/2e−bν/2c)/2(y − x)α−β+ bν/2c−1

×

bν/2c∑
`=0

(
β

`

) (
β − α − `

bν/2c − `

) (
x

y − x

) bν/2c−`

f (y)dy.

Now that these cases are almost completely handled, what can be done next? First and foremost,
there is always room for more generalizations. For example, we generalized the Legendre case to
the Gegenbauer case. Why stop there and not consider Jacobi norms? As with the Gegenbauer
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polynomials, the so called connection coe�cients are known in the Jacobi case, and a similar
result for the derivatives holds (see, e. g. [2, page 357]). More precisely,

dν

dxν
J (γ,δ)
n (t) =

(
n + γ + δ + 1)ν

2ν J (γ+ν,δ+ν)
n−ν (t).

Suppose J (γ,δ)
n (t) =

∑n
k=0 cnk J (α,β)

k
(t). Then, the connection coe�cient cnk is given by

cnk =
(
n + γ + δ + 1)k (k + γ + 1)n−k (2k + α + β + 1)Γ

(
k + α + β + 1)

(n − k)!Γ(2k + α + β + 2)
× 3F2

(
−n + k, n + k + γ + δ + 1, k + α + 1

k + γ + 1, 2k + α + β + 2 ; 1
)
.

Starting from there, it is no problem to set up the matrix representation. Indeed, the proof for
the matrix representation presented in Section 2.2 was just an adaption of the proof given in [2]
for the Jacobi polynomials. Admittedly, this looks a lot more complex than in the Gegenbauer
case, and it introduces two more parameters to care for.

Another direction would be to consider multivariate polynomials. A �rst study for the special
case α = β was done by Böttcher and Dör�er [9]. Again, the integral operators already present
in the univariate case reappear. The next step, here, is to consider di�erent parameters.

To come back one more time to the univariate case, one could also ask the question what
happens when the norms not only di�er with regards to the parameters used, but also in the
type of norm, say, e. g., relate the Gegenbauer norm of the derivative to the Laguerre norm of
the polynomial itself.

To conclude, there are several directions one can follow from here. The complete answer to the
mentioned conjectures would only be a �rst step.
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Theses

on the thesis

“Best constants in Markov-type inequalities with mixed weights”

presented by Dipl.-Math. Holger Langenau

1. Markov-type inequalities give upper bounds on the norm of the νth derivative of an
algebraic polynomial in terms of the norm of the polynomial itself. Such an inequality is



 f (ν)

β ≤ C (ν)
n (α, β)

 f 

α for all f ∈ Pn , (?)

where Pn denotes the space of algebraic polynomials with complex coe�cients of degree
at most n. In our context, the norm ‖ · ‖α is ‖ f ‖2α =

∫
Ω
| f (t) |2u(t,α)dt, with

Ω = (0,∞), u(t,α) = tαe−t (Laguerre),
Ω = (−1,1), u(t,α) =

(1 − t2)α (Gegenbauer),

Ω = (−∞,∞), u(t,α) = |t |2αe−t2 (Hermite).

2. The best constant C (ν)
n (α, β) in (?) is determined by the operator norm of the di�erential

operator mapping from (Pn , ‖ · ‖α ) to (Pn , ‖ · ‖β ). The resulting value can be expressed
as the spectral norm of the matrix representation with respect to orthonormal bases
associated with the chosen norms. While there are only a few special cases in which the
constant can be given explicitly, asymptotically sharp bounds can be found in any of the
considered cases.

3. The norm of the matrix representation heavily depends on the number ω = β − α − ν in
the Laguerre and Gegenbauer cases and the number β−α in the Hermite case. Depending
on the sign of this number, two really di�erent settings emerge. Therefore, the methods
for determining the best constants vary tremendously.

4. If ω ≥ 0 is an integer, the matrices are banded and allow therefore for a simple treatment.
To derive an upper bound on the norm, the matrix is decomposed into a sum of diagonal
matrices. Thus, the norm is bounded by the sum of all diagonal’s maximal absolute values.
For obtaining a lower bound, it is relatively easy to show that the matrices (scaled by
some factor) converge in the norm to a well-understood in�nite Toeplitz matrix.
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5. If ω > 0 is arbitrary, an upper bound on the norm can be given by interpolating between
the constants known from the integral case. This is done with the help of a theorem
by Stein, which requires the �nite-dimensional operator to be extended to an in�nite-
dimensional operator on L2(Ω). This is done by keeping α �xed and setting the operator
to zero on the orthogonal complement of the space associated with α.

6. Although the matrix under consideration is not banded anymore for arbitrary ω > 0,
large valued entries still concentrate alongside the main diagonal. By choosing a vector
that is close to an optimal, norm-realizing vector, a lower bound can be found in that
case, too. The idea has to be balanced between accounting the norm maximizing matrix
parts and retaining a small norm of the vector itself. The number of nonzero entries of
the vector will be slowly increasing with the dimension. By letting the dimension go to
in�nity, the obtained lower bound is asymptotically the same as the upper bound given
before.

7. For ω < 0, the previous methods fail. However, one can construct an integral operator
with piecewise constant kernel associated with the matrix under investigation. Employing
a result by Widom and Shampine, the norm of the matrix is n times the norm of the
received operator. If even ω < −1/2, letting n → ∞, the scaled versions of this operator
converge to another integral operator in the Hilbert-Schmidt norm, and therefore in the
operator norm. Thus, the matrix norm is completely determined by the norm of this
integral operator limit. The same limit appears for the Laguerre and the Gegenbauer
cases. The limit of the Gegenbauer case is, up to a constant, unitarily equivalent to the
more accessible Laguerre case operator.

8. The classical Hermite problem only considers α = β = 0. It can be generalized as stated
below (?). The methods used for the Laguerre and Gegenbauer cases continue to work
for the extended Hermite case and only di�er in the details. But, the distinction is now
made depending on the number β − α. In addition, the case β = α , 0 here has to be
treated separately. Although the matrix is not banded anymore, Geršgorin’s theorem
implies that the bound obtained for the integral cases β − α ≥ dν/2e is still valid. The
integral operators coming into play for β − α < −1/2 are a bit more complex than the
ones of the Laguerre and Gegenbauer cases.

9. In the convergence proofs, the restriction ω < −1/2 (resp. β − α < −1/2) had to be made.
This is due to the fact that the pointwise de�ned limit operator is no longer a Hilbert-
Schmidt operator without the assumption. However, in the Laguerre case, the integral
operator in question can be shown to belong to some Schatten class. More precisely, the
operator belongs to the 2nth Schatten class wheneverω < −1/2n . Therefore, it is compact
for any ω < 0. Similar statements for all three cases might be helpful to close the last gap.
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