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This work is devoted to Markov-type inequalities, which give upper bounds on the norm of the
derivative of an algebraic polynomial in terms of the norm of the polynomial itself. Such an

inequality is
151 < C (@, BlIfll, forall f € Py (1.1)

Here and in the following, #,, denotes the space of algebraic polynomials with complex coeffi-
cients of degree at most n, and || - || is one of the norms

IFIIE = f‘x’ |f ()2t ¥ e dt (Laguerre),

0

1
fIZ = lf (121 ->)Ydr (Gegenbauer),
-1

191 = [ 1rore e emite

(o)

and C,(LV)(a/,,B) is a constant depending on n,v,@, and 8, but not on f. We are interested in
finding the smallest constant such that inequality (1.1) holds for every polynomial f of degree
at most n. Let D” : P, (@) — P, (B) be the operator that sends a polynomial of degree at most
n to its vth derivative, where #, (o) and $, (B) are the spaces £, equipped with the norm



Chapter 1 Introduction

Il - [l and || - ||g, respectively. Every functional analysis course tells us that the operator norm
of this operator is defined as

I1D”llg—p = inf{c 2 0| Vf € Pp(a@) : ID" fllg < cllflla}-

This is exactly what we are looking for. Hence, determining the smallest constant in (1.1) comes
down to determining the operator norm of the differential operator between the appropriate
spaces. We denote this smallest constant with /lﬁlv) (@, B) for the Laguerre norms, with yflv) (a,B)
for the Gegenbauer norms, and with 77,(1") (a, B) for the Hermite norms.

In general, it is not possible to evaluate the exact constants. However, we can ask for the
asymptotic behavior of these. This is the main goal of the present work.

1.1 State of the art

Inequalities of the considered type go back to the chemist Dimitri Ivanovich Mendeleev, best
known for the periodic table of elements. In the 1880s, he studied the specific gravity of a
solution as a function of the percentage of the dissolved substance. He observed that these
functions can be approximated with quadratic polynomials. He raised the question how bad the
transition from one point to another can be when they are in parameter ranges belonging to
different polynomials. After getting some results, he told this to Andrei Andreevich Markov,
who subsequently investigated the corresponding problem for polynomials of degree n [3, 5].

Markov proved that if p(¢) is a real polynomial of degree n with |p(¢)| < 1 on [-1,1], then
Ip’(1)| < n? or equivalently,

IDflleo < P?||flle for all real f € Py,

where D is the differential operator and || - ||cc denotes the maximum norm on [—-1,1]. He also
showed that the constant n? is best-possible. One might come to the conclusion that repeated
utilization of this formula leads to optimal results for higher derivatives. However, these are not
sharp, e. g., this would give ||D? f||e < n%(n — 1)?|| f|lc0, which is not the best possible constant.
Markov’s younger brother, Vladimir Andreevich, showed that

20,2 _
1927l < ™=l forall £ e 2,

and more generally,

2002 — 1)(n% — 22) - -+ (n2 — (v — 1)2
D, < DB E O D forall £ e

These constants are best-possible.
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1.1 State of the art

Erhard Schmidt [22] was the first to consider inequalities of this type with the maximum norm
replaced by a Hilbert space norm. More specifically, he investigated the norms

ILf1I?

f“ |f(t)%e " dt (Laguerre),
0

1
A1 |f(0)|dr (Legendre),
-1

117 = foo If(O)Pe"dr (Hermite),

(o)

i.e., he assumed that @ = 8 = 0. He studied the case v = 1 and proved
2 1
Al(ql)(o,o) ~ ;n, ’y,(fll)(0,0) ~ 7_1'n2’ ]]fql)(o,O) = VZn’

The expression a, ~ b, means that the quotient 7 converges to 1 as n goes to infinity. So,
he could determine the exact value in the Hermite case and find an asymptotic value in the
Laguerre and Legendre cases. He even gave two more terms in the asymptotic expansion.

Later, Pal Turan [27] presented the exact value for /15,1)(0,0), namely

A0(0,0) = (2 sin —~ )_1.
4n + 2

More recently, Andras Kréo [18] also found an exact value for yill) (0,0), which he identified to
be the largest positive solution of the equation

L(n+1)/2J(_1)kx_2k (n+1+2k)! ~ o
22k (2 (n + 1 = 2k)!

k=0
Both, Turan and Kroéo, gave the extremal polynomials for obtaining these constants.

Lawrence F. Shampine [23, 24] later began to investigate second order derivatives for the
Laguerre and Legendre norms. He found

() n’ @ n'
/ln (O’O) ~ T Yn (070) ~ 2
M 4

0

where py ~ 1.8751041 is the smallest positive solution of the equation 1 + cos pcosh p = 0.

Finally, Peter Dorfler [14, 15] bounded /lg,v)(0,0) for larger values of v by

1 4 A92(0,0 A9(0,0 1 2y
— < liminfM < lim sup A 0.0) < —/—. (1.2)
2v! 2v+1 n—oo n¥ n—oo nv 2y! 2v—1

Shampine and Dérfler took a basis of orthonormal polynomials and determined the matrix
representation of the differential operator in this basis. This led to a special Toeplitz matrix,
and the problem then was to determine the spectral norm (which coincides with the operator

11



Chapter 1 Introduction

norm) or to find at least good estimates. In this way, they obtained the results cited above. After
Dorfler’s papers [14, 15], the development paused for almost two decades. In 2008, Dorfler wrote
a letter to Bottcher and asked him whether he had an idea of how to determine the spectral
norm of the Toeplitz matrices in question and thus to make some progress after many years
of stagnation. Bottcher immediately understood that the problem can be solved by having
recourse to an old (and then already forgotten) trick used by Harold Widom in the 1960s in
another context [28, 29]. This trick consists in considering the integral operator K, on L?(0,1)
with the piecewise constant kernel k,, (X, y) = d@|nx|,|ny] for an (n X n)-matrix A,, = (ajk)j’.";lzo.
Then, one has the identity

1A llo = 2l Ky oo

Here and in what follows, we denote by || Al the spectral norm if A is a matrix, and the operator
norm if A is an operator. If, after appropriate scaling, the operators K;, can be shown to converge
uniformly to some operator K (i.e., |17 K, — K|lco = 0 for n — o0), then ||A,|leo ~ || K |lcon® ™.
By employing this trick, Bottcher and Dorfler settled a whole series of problems that had then
been open. In [6], they found in particular asymptotic expressions for 127(0,0) as n — oo in
the case of arbitrary v > 3. To their surprise, they later discovered that Shampine [23, 24] also
made use of the trick consisting in passing from matrices to integral operators. Thus, this trick
was discovered twice, independently by Shampine and Widom, it fell into oblivion for over
more than 40 years, and received a kind of renaissance in the work of Bottcher and Dorfler. We
will exploit this trick later in Chapter 5, too.

The limitation of Shampine’s original approach was that he considered the operator (D")* D",
which gets really complex for higher values of v. But, as shown by Béttcher and Dérfler, one can
go further quite a lot. The first expansion is to substitute the norms by their weighted analogues.
In the case of the Laguerre and Legendre norms, i. e., for the Laguerre and Gegenbauer norms,
Bottcher and Doérfler [8] have shown

A0 (@) ~ | Ly.a.allon”

Y (@,@) ~ |Gy a.allon?

where L, 4.¢ and G, 4., are the integral operators on L?(0,1) given by
1 1
(Ly.aaf)(X) = = f Xy Ry — 27 f(y)dy,
I'(v) Jx

1 1
(Gy,a,a f)(x) = mf xM By tima 2 2yl £ (y)dy.

These results first of all proved the existence of the limits /IE,V)(af,a/)n_V and )/,(,V)(a/,cy)n_2

n — oo. Note that the existence of these limits was previously not even known for a = 0; in
that case one had only the bounds (1.2).

Y as

At first glance, it does not seem that we gained much by replacing the spectral norm of some
matrix with the operator norm of an integral operator. However, this replacement benefits of

12



1.1 State of the art

good two-sided estimates for the norms of the integral operators. (I learned from my advisor
that working with integrals is often easier than working with sums.)

In 2009, Jurgen Prestin drew the attention of Bottcher and Dorfler to the problem of using two
different weights in the inequality. This concerns two different norms, and as changes of norms
may improve error estimates, this case could be useful in approximation theory and numerical
analysis. A particularly simple case is § = @ + v. Then, the matrix representation has a single
diagonal in the Laguerre and Gegenbauer settings. So, we arrive at

!
n. - n"/2

(n—-v)! ’

' T'(n+2a+v+1
y(a,a +v) = I ) .
(n—v)! T(n+2a+1)

A (@, @ +v) =

The first identity has been observed before by Ravi Agarwal, Gradimir Milovanovi¢, and Allal
Guessab in [1, 16]. The second one was established by Guessab and Milovanovi¢; see also
[16].

In [7], Bottcher and Dorfler raised the conjecture
A (@, B) ~ Cy(ar, Hyn T B-0D/2 a5y — o0

with some nonzero constant C, («, §) depending only on v,a, 8. They partially proved this:
if 8 —a > v and B — a is an integer, then this is true with C, (a, 8) = 2727, while for
B —a <v-1/2,itis true with C, (@, ) = ||L; , 5ll..- Again, an integral operator occurs, this
time

I _ 1 Y a2 gl v-Bra-1 d 12

(L g () = mfo @y (xR dy  on L2(0,1),

Actually, the induced operator is given by

1 1
(Loop 0 = s [ 7y =07 (.

but we prefer to work with its adjoint L] , ;. Since the norms of both operators are the same,
this is no problem. In the special case  — @ = v — 1, the chosen operator has a much simpler
structure. Then,

(L ey s /) (0) = f X2y @D £y,
0

Together with a corollary from [8], this implies that its operator norm is 2/(v + 1) times the
inverse of the smallest positive zero of the Bessel function J(4-1)/(v+1). For the very special
values v = —1/2 and v = 1/2, the Bessel functions J,, take the elementary form

2 2
J_o172(x) = w/;cosx, Jip(x) = ‘/Esinx.

13



Chapter 1 Introduction

We repeat some of the examples given in [7], which we obtain from these equalities. We have
2 1
57\ .2 32 ,0) 15

2 1
@D(7 13 5/2 (5) - 3
A, (2 ) 57rn , A4;,°(4,8) 3ﬂn.

Similarly, in [10], Béttcher and Dérfler showed that if 8 — « is an integer, then
vy, B) ~ n” forB—-a—-v=0

and

1 N _ 1
¥ (e, B) ~ WllLv’a,ﬁ|lmnzv+a B forp-a-v< -5
Here, we meet the operator L , 8 from above, again. In the same way, for 8 = @ + v — 1, this
implies that the constant is 1/(v + 1) times the reciprocal of the smallest positive zero of the

Bessel function Jy-1)/(v+1). Further examples given there include

1 1
y,(ll)(0,0) ~ =n?, y,(,l)(2,2) ~ —n?.
b 2

In [19], the author treated the Laguerre case for arbitrary 8 — @ > v. The results are explained
in Chapter 4. Thus, the Laguerre case is almost completely treated. It turns out that the method
of [19] can easily be applied to the Gegenbauer case, as well. However, some more cases still
have to be considered.

The present work shows that Bottcher and Dorfler’s restriction to the integral differences in the
Laguerre and Gegenbauer cases may be dropped. Moreover, we generalize the classical Hermite
norm to a weighted version. This increases the complexity drastically. However, along the line
of treatment for the other two norms, this can be dealt with.

Unfortunately, in each of these problems, there remains an unhandled interval of differences,
namely 8 — @ — v € [-1/2,0) in the Laguerre and Gegenbauer cases and 8 — a € [-1/2,0) in
the Hermite case. The joint paper by Bottcher, Widom, and the author [11] attempts to tackle
this problem for the Laguerre case. Although an overall answer is yet to be given, we provide
some tools for handling the topic. Moreover, the proofs in [11] have some beauty on their own,
so that we do not want to withhold them from the reader.

1.2 Objective of the thesis and main results

The existing results for the constants in the Laguerre and Gegenbauer cases anticipate that the
study of the matrices clearly depends on the number w = 8-« —v. Indeed, if w is a nonnegative
integer, the corresponding matrices are banded and allow a relatively simple treatment. If w is
nonnegative and an arbitrary real number, not equal to an integer, we may use our knowledge

14



1.2 Objective of the thesis and main results
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Figure 1.1: Dependence of the norm in the Laguerre setting on w, scaled by n~*+1©@D/2 for
different values of @ and v, here for n = 1023.

from the integer case to determine bounds for these values. Finally, if w is negative, the methods
from the nonnegative case fail to work, but we can find some integral operator, which in that
case is bounded (contrary to the nonnegative case). Keeping this in mind almost dictates the
structure of the thesis. Figure 1.1 already gives an idea that the worlds left and right from w = 0
are different.

Chapter 2 will deal with the matrix representation of the differential operator in the bases
belonging to the types of the norms under consideration. We introduce the systems of orthonor-
mal polynomials derived from each norm. The Laguerre and Gegenbauer representations are
merely for reference and the proofs are given for the sake of completeness. It seems that the
generalized Hermite case has not been considered before, so this is a new result.

In Chapter 3, we bring back to mind the treatment of the Laguerre and Gegenbauer norms for
w a nonnegative integer. These ideas will also be employed for the Hermite norm. However, in
that case, we have to deal with one more special case, namely 8 = @. The matrix in question is
not banded. We cannot use an interpolation theorem since we are at the end of the parameter
space and an integral operator is not applicable. The good news is that the matrix is “almost
diagonal” In other words, the diagonal elements are significantly bigger than the remaining

15



Chapter 1 Introduction

entries. Because generalized Hermite norms have not been considered before, this part is
entirely new to this thesis.

The next chapter uses the results established in the preceding one and those already known to
derive upper bounds for all parameter differences in between. This is possible due to a very
helpful theorem by Elias Stein [25]. Lower bounds can be derived by the right choice of some
vector, for which the norm of its image under the effect of the matrix can be estimated. This
concludes the investigation for the case w > 0 in the Laguerre and Gegenbauer settings, and
B — a = 0 in the Hermite setting. Apart from the author’s own work [19] this is completely
new and an original result of this thesis.

Chapter 5 is then devoted to the case w < 0 in the Laguerre and Gegenbauer settings, and
B — @ < 0 in the Hermite setting. This chapter almost entirely deals with the associated
integral operators and with how to show that the operators derived from the matrices converge
uniformly to them. A proof for the convergence in the Laguerre setting is given because it
turned out to be not as straightforward as claimed in [7]. However, the method of the proof
also works in the Gegenbauer case, where we drop the necessity of integral differences, and in
the Hermite setting. Therefore, the last two cases are presented the first time. Moreover, we
prove two theorems from [11] that show that the integral operator in the Laguerre setting is a
compact operator and even belongs to some Schatten class for any w < 0.

Finally, Chapter 6 wraps up everything and gives hints on what can be done in the future.

In the following, we present the main results of this thesis. The first three theorems will be
proved step by step according to the aforementioned outline.

First, in the Laguerre setting, we have the following.

Theorem 1.1. Let o, 8 > —1 be real numbers, and let v be a positive integer. Putw = 3 —a — v.
Then,

(@, ) ~ Cyla, pyn®tIen)?

with
w

tw >0,
Ly )

<

Cl/(a’ﬁ) = { 1
,a,ﬁ”oo _5’

where L, 5 is the Volterra integral operator on L?(0,1) given by

1
I'(-w)

(Lj’mﬁf)(x) = f X2yl oml p (4 )dy. (1.3)
0

As remarked before, the case w > 0, w € Z as well as the case w < —1/2 have been disposed of
already in [7].

The next theorem concerns the Gegenbauer setting.

16



1.2 Objective of the thesis and main results

Theorem 1.2. Let @, 8 > —1 be real numbers, and let v be a positive integer. Putw =  —a — v.
Then,

n” Tw >0,
2“’||Lf,

2v—-B+a

7 (@, B) ~ 1
’g,ﬁ”oon tw < —2

where L}, , 5 is the Volterra integral operator on L*(0,1) given by (1.3).
Again, w € Z was known before thanks to [10]. Note that the integral operator coming into
play here is the same as in the Laguerre case.
The following result on the general Hermite setting is completely new.
Theorem 1.3. Let @, 8 > —1/2 be real numbers and let v be a positive integer. Then,
(@, B) ~ Cy(a, pyn Pt
with

2@—(1+v)/2 . ﬁ -« 2 0,
2= max(|H Sllr 1HS) sl = 8= < =1,

v, Vv,

C(a,B) = {

where H‘EO()I B and H" _ are the integral operators on L(0,1) defined by

v,a, 3

1
(H  f)(x) = 2’T([v/21+1) K121 a1 A (L= D2 ) yya-Blvf]-1
Va3 T'(a-B+1/21) Jx

[v/2] [v/2]-¢
Z B\(B-a-¢ X
g £=0 ([)( [v/2] _5) (E) Tndy

and

2"C(Lv/2] +1)
I(a =B+ 1)) Jx

1
KB e 2o 4= 1D I2 () el
/2] Lv/2]-¢
B\(B-—a-¢ X
X dy.
;(f A F(y)dy

Although the operators here look a lot more complex than the operator (1.3), a resemblance
should not be questioned. However, nice formulas as in the Laguerre and Gegenbauer cases
cannot be obtained. The reason for this is that the operator Hl(,ot)y 5 has at least two summands.

(Hy) 5 1)(x) =

Even in the simplest case v = 1, where the norm of the operator Hil()l 5 can be given explicitly
for a few values of @ and 3, the other operator does not play along.

17



Chapter 1 Introduction

To get a better feeling how these operators evolve for higher derivatives, we will present the
explicit formulas for v = 1,2,3.

2 1
B/2+3/4 ,—a/2-1/4 a—-p-1
_ —a)x - X
af—,8+1)fx((ﬁ ) Yy (y —x)

(Hyo 5 1) (x) = I
+ BaP I e 28y @) £(y)dy,

1
(o p)® = 557D _Sﬁ _y f ((B = ayPlEnsltymalinilicy — xye bt

+ BB Gy — )T ) F(y)dy,

48 !
HO _ f (B-a)(B-a-1) | /247/4 ~arj2-1/4(, _ ya-B-1
(Hy 4 5)(X) Ta 572 J. ( A y (y —x)

+ BB = a = PRIyl ay gk
4 BUD Br2/a e 2V a e B £(y)dy,

_2 ' —a a—p—-
(Hra s D0 = 50— [y ey,

1
HasD® =t 55D _4/3 — f ((B = ayaP12esityma 2ttty — ey pt

+ BB 1Ay (= ) ) £(y)dy,

8 1
H(l) — f B/2+5/4  —a/2+1/4 _ a—-B-1
(Hap D)@ = s gy J. (" (y =)

I T x)”_ﬁ)f(y)dy'

Finally, we present two theorems that were obtained in collaboration with Béttcher and Widom
[11]. Since the notion of Schatten classes does not play any role in the rest of the thesis, we
refer to Section 5.4 for the preliminaries. In the following, we will abbreviate L = L] 5
The technically most difficult part is to prove the convergence of N!=+@D/2[; to L in the
operator norm, where Ly is the integral operator with piecewise constant kernel derived from
the matrix representation of the differential operator in the Laguerre setting (see Theorem 5.4).
Fortunately, L can be shown to be a Hilbert-Schmidt operator if w < —1/2, and it can also be
shown that N1-0+lwb/zp o converges to L in the Hilbert-Schmidt norm for w < —1/2. This

has been presented in [7] and will be done, in more detail, in Theorem 5.4 of this work.

If w > —1/2, the operator L is no longer Hilbert-Schmidt. However, in [11] we raised the
conjecture that the restriction in the second part of Theorem 1.1 is merely an effect of the
method rather than being inherent to the problem. This conjecture is given here again as
Conjecture 5.8. One result in that direction, stated below as Theorem 1.5, tells us that L is still a
Schatten class operator for w < 0. This is not of immediate help for proving Conjecture 5.8 but
could be of use for further attempts towards accomplishing that goal. In particular, it follows
that L is compact and therefore Py LPy converges to L in the operator norm whenever { Py }
is a sequence of operators such that Py and the adjoints P}, converge strongly (i. e., pointwise)

18



1.3 Preliminaries

to the identity operator. Our hope is that one can find a fitting sequence { Py} which enables
one to prove

||N1_(v+|a)|)/2LN - PNLPN”oo — 0,

Together with the fact that ||PyLPy — L|lc — 0, this would imply the desired uniform
convergence of N'=+lwD/21  to L.

Theorem 1.4 (Theorem 1.2 in [11]). Let @, B,w be real numbers. Suppose B > —1, w < 0, and
w < (B — @)/2. Then, the operator given by (1.3) is compact.

Theorem 1.5 (Theorem 1.3 in [11]). Let @ > -1, 8 > —1, v > 1 be real numbers and put

w = B—a—v.Ifnis a positive integer and w < —1/2", then the operator (1.3) belongs to the 2" th
Schatten class.

1.3 Preliminaries

In this section, we want to collect some well-known results and notions. Some of them may
seem trivial for the reader while others are not immediately at hand. Since we use them quite
often and without further notice, we present them here.

First, in the whole work the variables n, @, 8,v,w, and N are reserved unless otherwise stated.
The variable n stands for the maximal degree of the polynomials and thus the dimension of
the matrix minus one, while N is a shorthand for n — v + 1. The constant v will then denote
the order of the derivative. Also fixed in their meaning, @ denotes the parameter for the norm
in the area of definition of the differential operator, and f3 is the corresponding parameter in
the image space. Then, w = 8 — @ — v is the abbreviation for the parameter difference in the
Laguerre and Gegenbauer setting. Since we always work with matrices, we have to deal with
their entries. These are denoted by CJ('Z) (@, B), no matter which norm we currently consider.
There is no risk of mixing them up because we treat each case separately.

The matrices we examine will all be upper triangular and their first v diagonals are also zero.
Due to this circumstance, we will just investigate the upper-right block where each row and
column contains at least one nonzero entry. The norm of this block is the same as the norm of
the whole matrix, so this restriction is justified. The original matrices are of order n + 1, the
upper-right block mentioned is of order N =n — v + 1.

To fix notation, let Z denote the set of all integers and N the set of all natural numbers, i.e.,
all positive integers, {1,2,...}. Should the need arise to account for the number 0, we denote
this set by Ny. Moreover, we make an important distinction between the integer parts of a real
number. Namely, | x] denotes the largest integer not greater than x, while [x] stands for the
smallest integer not less than x. In particular, we have for x € R\ Z that [x] = [x] + 1 and for
X in Z, obviously, | x] = [x]. This is especially important in the Hermite setting where we will
also make use of the fact [v/2] + [v/2] = v for v € N.
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Chapter 1 Introduction

Recall that the expression a,, ~ b, means that the quotient a,, /b, converges to 1 as n goes to
infinity. We write f(n) = O(g(n)) if there is a nonnegative constant C so that | f(n)| < Clg(n)|
as n goes to infinity. With this notation, we can for example write

F'n+a+1) o .
Hererd ueivo(3),
We will use this result frequently.
The function I'(x) is defined by

I'(x) ::f t*le7’dt for x > 0,
0

and by analytic continuation for all complex numbers except the nonpositive integers. One
of the most important properties is the identity xI'(x) = I'(x + 1). The Legendre duplication
formula

2m—1
NG

is another important relation (see [2, page 22]). Closely connected to the gamma function is the
beta function

rm)=T(m)T'(m+1/2) (1.4)

F(x)I'(y)

1
— x-1 _ny-1 —
B(x,y) : j(; T =Y dr Tt y) ,

which is well-defined for all x, y > 0 and is also known as the Euler integral of the first kind,
whereas the gamma function is sometimes called Euler integral of the second kind.

A very useful tool we will encounter is the hypergeometric series

F (al, as, ..., ap.x) _ i (ar) (az), - (ap), o
pra bla bz, ey bq’ = (bl)T(bz)T ce (bq)rﬂ ’

The symbol (a),, the rising factorial or Pochhammer symbol, is given by
(a); =ala+1D(a+2)---(a+7-1),

or, if applicable,

I'(a+7)

Here, we will only have to deal with (p,q) = (3,2) and (p,g) = (2,1). In these cases, the
series converges absolutely for all x with |x| < 1 as well as for |x| = 1 if the sum of the lower
parameters is larger than the sum of the upper parameters. If one of the upper parameters is a
negative integer, the series terminates naturally [2, page 62].
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1.3 Preliminaries

In the special case where p = 2, ¢ = 1, x = 1 and one of the upper parameters is a negative
integer, we have the Chu-Vandermonde identity [2, page 67]

,F, (_nc a;1) = % (1.5)

In another form, this is the well-known Vandermonde identity

()= 202 >

=0

with arbitrary complex numbers a and b.

We will use several different norms for an operator 7 : X — Y. Most importantly, we are
interested in the operator norm

IT)lo = inf{c > 0: ||Tx|ly < cl|lx||x forall x € X},

or, equivalently,

17 xlly
Tl = ,
Ixlixzo [1xllx
where || - ||x and || - ||y are the norms in the spaces X and Y, respectively. If X and Y are

separable Hilbert spaces — which they are in our setting - the norm ||7'|| coincides with the
largest singular value, hence it is also called spectral norm.

Next, we will need the Hilbert-Schmidt norm, which in turn is a special type of Schatten norm
(see Section 5.4) and given by

oo 1/2
I, = (Z o—im) ,
=0

where 0 ¢(T) is the £th singular value of T (in nonincreasing order). From this, it is immediately
clear that ||T||; > ||IT|lw. In the special case that T is an integral operator, for the sake of

convenience on L2(0,1), with the kernel p : [0,1]> = R,

1
(Tf)()C)=f0 p(x, y) f(y)dy,

its Hilbert-Schmidt norm can easily be determined as

1 1 1/2
1Tl = ( f f (s, y>|2dydx) .
0 0

The last norm we will make use of is for vectors. Here, we use the usual Euclidean or £, norm.
RN N+l thic e o
For a vector v = (v;);-, € R"™, this is given as

n 1/2

_ 2
lolly ={ > 03

Jj=0
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The problem of finding the best constant C in the inequality
ID” flig < Cliflla forall f P,

comes down to determining the operator norm of the operator of differentiation D" acting
on P,,. Here, P, is the linear space of all algebraic polynomials in one variable with complex
coefficients of degree at most n. The space #, is endowed with an appropriate inner product.
The norm of D is the same as the spectral norm of the matrix representation in a pair of
orthonormal bases with respect to the according norm. We denote by #,,(«) the space P,

equipped with the norm || - ||, where in our setting || - || is one of the following
I£112 = fo ) |f@)* ¥ e~ dt (Laguerre), (2.1)
e = 11 IfFOIP (1 =1*)*de (Gegenbauer), (2.2)
A5 = foo LF@OP 2 e ™ dr (Hermite). (2.3)

These norms are well-defined for @ > —1 in the Laguerre and Gegenbauer cases and for &« > —1/2
in the Hermite case. The operator D” then maps %, (@) to ,, (). The orthonormal bases
we choose are the normalized Laguerre, Gegenbauer, and Hermite polynomials, respectively.
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Chapter 2 Matrix representation of the operators

Except for the generalized Hermite polynomials, a good overview for the various definitions
and normalizations is given in [4].

In the following sections we want to derive the matrix representation of the operators in the
respective bases.

2.1 Laguerre weights

The Laguerre polynomials with respect to some parameter @ > —1 form an orthogonal system
with respect to the norm

FI12 = f FOI e dr
0

The nth Laguerre polynomial for this norm is given by

1 s na —z n+a
Ln(t,a/):mt e dtn Z( 1)( ) . (2.4)

We define the nth normalized Laguerre polynomial by

R r
Ly(t,a) = wu(@)Ly(t,@), wp(a@):= %

The following lemma concerns the matrix representation of the operator of differentiation in a
pair of bases consisting of normalized Laguerre polynomials. It is taken from [7]. The proof
there assumed that 8 — «a is an integer. However, as already stated in [19], we can drop this
assumption and employ the same arguments. For the sake of completeness, we reproduce the
proof here.

Lemma 2.1. Let C, = (c(v)(a ,B))J x—o be the matrix representation for the differential oper-
ator D¥ : Pp(a) — Pn(B) with respect to the orthonormal bases {LO( ),. Ln( a)} and
{Lo( B),. L (-,B)}. Then, C,, satisfies

* _ \B-a-v
17y =gt ) T (000 ))An(a),

where

An(y) = diag(wo(y),. .., w,(y))

andT;_,,  ((1- 2)P=@7) is the adjoint (transposed) of the (n — v + 1) X (n — v + 1) Toeplitz
matrix generated by the Taylor coefficients of (1 — z)P~*¥ at z = 0. Thus,
pyks k(@) wi (@) (/3 a— V)

wj (ﬁ) —-v-=J

for0 < j < k — v and it is zero otherwise.

(@) = (-1
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2.2 Gegenbauer weights

Proof. We have to show that

k—v k—v
vT _ ) T _ jwk(@) (B-—a—-v)+
DLy (t,a) = ;cjk (. B)L; (1. B) = ;(—nk ) (k - _j)LJ-(t,B).

Since Zk (t,a) = wi ()L (t,«) and Zj (t,B) = w;(B)L;(t,p), this is the same as

k—v
v B _(B-—a—-v
D" Li() = ;(—1)" f(k_v_j)w).

The well-known identity L; (#,@) = —Lg-1(@ + 1) can be obtained by differentiation of (2.4).

Repeating this process gives D" Ly (t,&) = (—1)” Ly, (a + v). Inserting this in our statement,
we have

k—v ¢
k
D" Li(t,a) = (-1)" Z(—l)f(k e )t

- —y—cfer
We now compare the coefficients for !, m = 0,. ..,k — v. That is, we have to verify
k—v
Y ml k+a 1 B-—a-v k-t m(f+ B\ 1
—-1)¥ (-1 — = —Dkt(—1 —
=D )(k—v—m)m! é(k—v—f)( a )(f—m m!
g
k—v
k+a B—a-v kev_e[C+ B
= -1
(k—v—m) ;n(k—v—f)( ) (f—m
for each m = 0,...,k — v. Shifting the sum and substituting n = k — v — m, this becomes
n+m+v+a N (B-a-v neeff+m+ B
= -1
()= 5 e ()
B n S (B-a-v\[(-B-m—1
o))
£=0
which is true due to Vandermonde’s identity (1.6) and proves the lemma. O

2.2 Gegenbauer weights

The Gegenbauer (or ultraspherical) polynomials are a special case of the Jacobi polynomials.
They form an orthogonal system with respect to the norm

1
1712 = f FOP-2)dr.
-1
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Chapter 2 Matrix representation of the operators

The nth Gegenbauer polynomial for this norm is given by

ln/2]

1 2 +2n - 26\ [a +n
Gl - _1ftn—2f
n(t,@) 2;( T )( ) )( ),

which can also be represented by a Rodrigues formula as

(=n" 2\—a d" 2\a+n
1- — (1 - .
T A

G,(t,a) =

The nth normalized Gegenbauer polynomial then takes the form

n(2n+2a+ DI (n+2a + 1)
220812 (n+ a + 1)

Gn(t,@) = wy()Gu(t,a),  wp(a) = \/

Lemma 2.2, Let C, = (C;Z)(a’ﬁ));t,k:o be the matrix representation for the differential oper-

ator DY : P, (g) — Pn(B) with respect to the orthonormal bases {50(-,00,. .. ,én(-,(x)} and
{Go(-,B),...,Gn(-,B)}. Then the entries cj(.z)(a/,ﬂ) are given by

we(@) Qa+k+1), (@+v+1),,@B+1);

w;(B) 2 (a+2v+1),_,(B+1);

x J+B+1/2 (a,+v_ﬁ)(k—j—v)/2(a/+v+1/2)(k+j_v)/2
(k+j-w/2+p+1/2  ((k=j=/DUB+1/2)4ijoya

(@ p) =

(2.5)

ifk —v —j > 0 is even, or zero otherwise.

There are several possibilities to prove this. As stated in [10], this reduces to the connection
problem for Gegenbauer polynomials. The result is known and can be found for example in
[2]. However, these polynomials are defined slightly different in [2]. The form we use here
coincides with the Jacobi polynomials P,(,a’a)(t) given in [2]. The connection coefficients for
the Jacobi polynomials are then as in Lemma 7.1.1 of [2]. The proof is a little simpler when not
performed for general Jacobi polynomials but for our Gegenbauer polynomials instead. The
following is inspired by the proof given in [2]. We present it modified to our needs.

Proof. The numbers cj(.};)(cx, f) are determined by the equation

k—-v
Gy wa) = ) i) @ G (B).
j=0

It is easy to show that

d 2+ k+1
aGk(t,(l’) = TGk_l(t’a + 1).
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2.2 Gegenbauer weights

By induction, we conclude that

d” Ca+k+1)
5 Crhae) = ———= “ Gy (ta +v).
Therefore, the above equation can be written as

20+ k +1 =
w (@ A D ) = D@, Byw;(BIG, (. B).

2V
7=0
Since the polynomials w;(8)G/(t, 8) form an orthonormal system with respect to the inner
product (f,9)g = f_ll f(t)m(l — 1?)Bdt, the c(v)(a f) are given by

2 k+1
) (@.p) = wk<a>M 0 (B)(Gry (o + V), G (-, B)) .

We first evaluate the inner product. Employing the Rodrigues formula for the Gegenbauer
polynomials, we get

1G G )4 _ 1G & 2yB+i 4
. k—v(t,a + V)G, B)(1 —1")7dt = i k-v(t,a+V)@(1—t) t.

Using integration by parts, this is the same as

T |f (1- )ﬁﬂ Gk (@ + v)dr

(2a+k+v+1);

1
. 2 1
= 2771 Il Gi-jv(t,a+v+j)d—t YB+ ds.

Inserting the explicit formula for the Gegenbauer polynomial Gi_;_, (f,« + v + j), this becomes

Lk—j-r)/2]
(2a +kk + V'+ 1)] ( 2w + 2k — 2¢ )(01 + k)( 1)gf _J_v—zf(l — 2YBHids.
2+.I—V]! k—]—V—Zf -1

=0
The integral vanishes if k — j — v is an odd number and evaluates to
F((k—j-w/2-¢+1/2)T(B+j+1)
F((k—j—-v)/2-C+B+j+3/2)

whenever k — j — v > 0 is an even number, which we will assume in the following. We now get

Qa+k+v+1), L2 Qat+k+j+v+1) oy (a+k—C+1),

(-1)f

I~ Co—— o

[((k—j-v)/2—C+1/2)T(B+j+1)
T'((k—j—-w)/2-C+B+j+3/2)
Qe+ k+v+1), L(B+j+DI((k—j—-v)/2+1/2)
S 2kl k= j = )IT((k—j = v)/2+ B+ ] +3/2)
CL (k—j—v—20+1),, (~a—k), (k—j-v)/2=C+B+j+3/2),
(2a +2k —20+1),, (! (k—j—-v)/2-€+1/2),

X

=0
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Chapter 2 Matrix representation of the operators

The sum can be transformed to
p (ki =Bt j-v/2=1/2 ) B-a-v—=(k=j=9)/2+1)4_j)2
. —a—k+1/2 a (—a =k +1/2) 6_; )0

by the Chu-Vandermonde identity (1.5). Next, we evaluate wjz. (B)(Gi—y (- a +v), Gj(-,,B))B:

(B+j+1/9L(2B+j+1)
22PT(B+j+1)
Qa+k+v+1), T((k=j=/2+1/2)(@+V=B)s_j-v)2
% 2k+j—V(1)k_j_vl“(ﬁ +(k+j-w/2+3/2)(a+v+(k+j-V)/2+1/2),

—-j-v)/2

After writing the rising factorials in terms of the gamma function, multiplying by the factor
(@+v+1)i_, (2B+1);
Qa+2v+1)i_, (B+1);

and its reciprocal, and canceling of some terms, this transforms to

(@+v+1),_, @B+1);(B+j+1/2)L(2a +2k + )T ((k —j —v)/2+1/2)
Ca+2v+1),, (B+1); 22822 (1/2) (1 j—y 2 (D) (ko) 2
(@+v=PB)pjory L (@+v+(k+j-v)/2+1/2)T(@+v+1)I(2B +1)
X Ta+k+1/2)T(B+(k+j-v)/2+3/2)TQa+2v+ ) (a+k+ 1) (B+1)

Finally, applying the Legendre duplication formula (1.4), a lot more cancels out, and after writing
the gamma functions again as rising factorials, we arrive at

(@+v+1),., @B+1); B+j+1/2
Qa+2v+1), (B+1); B+(k+j—-V)/2+1/2
(¢+v-— ﬁ)(k—j—v)/z (+v+ 1/2)(k+j—v)/2
(1)(k—j—V)/2 (B + 1/2)(k+j—v)/2

Putting this in the original term for C]('Z) (a, B), the claim follows. m|

We can write (2.5) in the slightly shorter and more symmetric form as

Y (@.p) =

1 Fk+1)(k+a+1/2) [T(G+2B8+1)(+B+1/2)
2B-a-v ['(k+2a+1) ry+1)

a+v-B+k—j-v)2-1\T'(a+v+(k+j—Vv)/2+1/2)
( (k=j=v)/2 ) LB+ (k+j-v)/2+3/2)

(2.6)

2.3 Hermite weights

The last weights we want to consider are Hermite weights. For the classical Hermite weights,
the results are already known. Schmidt already called this “trivial” [22]. Indeed, due to the
relation

HY(1,0) = 2" (n— v + 1) H,_,(1,0)
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2.3 Hermite weights

for the classical Hermite polynomials, the matrix representation of the operator of differentiation
is just a diagonal matrix. Therefore, the norm and thus the smallest constant is just the maximal
absolute value on the diagonal. The corresponding entry is

. I'n+1) N /2
\/2 Fn-v+1) (2n)™".

So, in that case, the constant
1% (0,0) ~ (2n)"2

is fully identified. Since we will treat weighted versions of the Laguerre and Legendre (i. e.,
Gegenbauer) weights, it is just natural to look for weighted versions of the Hermite weight. The
generalized Hermite weights that we will use here have been introduced first by Szeg6 [26].
They have been studied in more detail by Chihara [13]. As we will see in the following, the
matrix representation is in general no longer simple.

We now consider orthogonal polynomials for the norm

IfI2 = f FOPIPe " dr. (27)

(o)

The nth generalized Hermite polynomial is given by

H,(t,a) =2"T(ln/2] +1)

2 .
Lij (a +n/2] - 1/2) GV
< j (ln/2]=j+1)
Normalizing this, we arrive at

H,(t,@) = w, (@) Hy (1,)

_ | Taneieny R (a+rn/z1—1/z) Dy
- \NT(n/21+a+1/2) & j T(ln/2)—j+1)

where

-1
wa(@) = (2” JT(Ln/2] + DI ([n/2] + o + 1/2)) .

We get the classical Hermite polynomials for & = 0.

The matrix representation for the differential operator DY : P, (a) — P, () in these bases
can be obtained by first transforming the polynomials to the basis consisting of monomials,
then taking the vth derivative, and transforming this back to a representation in terms of

{He (L B)) <o
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Chapter 2 Matrix representation of the operators

Theorem 2.3. LetC, = (cj(.‘,;) (a, ,8));1’ k=0 e the matrix representation of the differential operator
DY with respect to the orthonormal bases given by the generalized Hermite polynomials with the
corresponding weight. The entries c](.‘,?(a/, ) are given by

<v> v oty T([j/21+B+1/2) T(lk/2]+1)
e (@ B) = 2T (L) + +1)\/ T(j/2l+1) T(k/2] +a+1/2)
y (ru +v)/2] - 1/2)(ﬂ —a -l - vk)
L7/2] + vi (k—j-v)/2
XF( —1/2) =i, (k= j = v)/2, B+Tj/2] +1/2 _1)
A B-a- - —(k—j-w/2+1, [j/21+1/2°

(2.8)

if0 < k — v — j is even, and zero otherwise. Here, vy = 1 if k and v are odd, and vy = 0 ifk orv is
even (i.e, vy = kv mod 2).

Note that the hypergeometric series occurring here is not defined if 8 — @ — [v/2] — v¢ isa
nonnegative integer smaller than (k — j — v)/2. But then, the coefficient before this term is zero,
and therefore, we define the whole term to be zero. In the other cases, the series terminates
naturally before we would come to dividing by zero.

Proof. We have to verify that

k—v
HY () = ) ¢ (e, p)H; (2, B) (2.9)
=0

holds for all k > v. We do this by a comparison of coefficients. For each k > v,

HY (t,a) =

W2 T(lk/2l +1) (@ +Tk/2] = 1/2)\ (-D)™ (k —v —2m + N
F(I'k/2'|+a/+1)( m ) [(Lk/2] —m+1) '

m=0

Let aJ denote the coefficient of #~2¢ in H (t, B). Utilizing the fact that the c(v)(a/ B) are zero
whenever k — j — v is an odd number, we transform the sum in (2.9) to

Lk=v)/2] m

C(V) k —-v— 2m+2€tk v=am .
k-v— 2m+2¢’k
m=0

For a fixed m, we put in the definition of the coefficients and get

T(Lk/2] +1) [a+Tk/2] = 1/2\ (=)™ (k —v —2m +1),
F(I'k/2'|+oz+1)( m ) T(Lk/2] —m+1)
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2.3 Hermite weights

o DT (] + v+ 1) |D([(k=v)/21+E—m+ B +1/2)
_; T(L(k-v)/2] —m+1) T(L(k=v)/2] +C—m+1)

y I'(Lk/2] +1) ([k/Z]—m+€—l/2)(ﬂ—a—|_V/2J—vk)
T(Tk/2]1+a+1/2) [V/2] + vk m—{C
el =vi, C—m, B—m+ €+ [(k—v)/2]+1/2 .1)

X3Fz(,3—a—LV/2J—vk +l-m+1, [(k=v)/2l-m+C+1/2°

y T(Lk=v)/2) —m+€+1) ,8+|'(k—v)/2'|—m+€—1/2)
T(T(k —v)/2] —m+{’+ﬁ+1/2)( ¢ '

When we cancel out the obvious terms, we are left with showing

@+ Tk/21 - 1/2\ (D" (k=v+2m+1), 2 T(1/2) + v +1)
( ) T(lk/2]-m+1)  T(Lk-v)/2] —m+1)
Xi(l’k/z"l—m+€—1/2)(ﬁ—a/—I_V/zJ—vk)(,B+|'(k—v)/2'|—m+€—1/2)
L1v/2] + vk m-—{ l

—e) —vi, E—m, B—m+ €+ [(k—-v)/2]+1/2 ‘1)
B—a—2]-vi+l—-—m+1, [(k=v)/2]-m+{€+1/2°

m
£=0
x (-1)!,F, (

We can now write this sum as

imin{LV/ZJWk,m‘” ([k/z] -m+l—- 1/2) (/5 —a— 2] - Vk)

yan —~ /el +vie—1 m—{—-1
B+[k=v)/2l-m+€—-1/2+71\(C+7T PN
R T e

_ LV’”i“ 3 (rk/z1 cmts—T- 1/2)
T4 4l pplew-r
y (,8 —a— Y] - Vk)(ﬂ +[k=v)/2l—-m+s - 1/2)(8)(_1)5-7
T

m-—s N

. i Win (rkm —mAs—T— 1/2)
s=|v/2]+vy T=0 LV/ZJ VT

§ (,8 —a- V) - Vk)(ﬂ +[(k=v)/2] —m+s - 1/2)(s)(_1)s_7_
T

m-—s N

The inner sums are actually only taken for

([k/Z] -m4+s—-T1-— 1/2) (i)(—l)T

2l +vi =7
_ (—fk/ﬂ +m—s+ V] + v - 1/2)(s)(_1)LV/2J+Vk‘
T

/el +vi —7
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Chapter 2 Matrix representation of the operators

For s < |v/2] + vk, this can be written as

(—l'k/Z] +m—s+ V2] + v — 1/2)(—|'k/2'| +m— 1/2)

/2] + vi — s s—T

(LV/zJ + vk) C(s+1)I([/2] +vi —s+1) [v/2)+vi
X (-1 .
T C([/2] + v +1)

Now we can apply Vandermonde’s identity (1.6) to both inner sums, which then both evaluate
to

(rk/z] -m- 1/2)

Lv/2] + vk

Since this is independent of s, we can combine the two outer sums again and also apply
Vandermonde’s identity. So, we arrive at

(-n™

2V T (/2] + vk + 1) (rkm —m— 1/2)(a + /2] + v + T(k=v)/2] — 1/2)
I'(L(k=v)/2] —-m+1) [Y/2] + vk m )

Using [(k —v)/2] + |V/2] + vk = [k/2] and the equality

2T ([k/2]1 —m+1/2) _ (k—v-2m+1),
I'(Ltk=v)/2] —m+ DT (L(k=v)/2] —m+1/2) B I'(lk/2]-m+1)’

we have shown the theorem. m]

Since the hypergeometric series occurring in (2.8) doesn’t always satisfy our needs, we will
express this in a slightly different form. This is subject of the next corollary.

Corollary 2.4. Under the assumptions of Theorem 2.3,

L([j/21+B+1/2)  T(lk/2]+1)
T(Lj/2)+1) T([k/2] +a +1/2)

(@, ) = 2 T (172l + v +1) \/
B (r(j +v)/2] -1/2 (,B +[j/21+7 - 1/2) B—a- L) - vk)
/2] +wk —7 T (k-v-jj2-7

7=0

ifk —v—jisevenand k —v > j, and zero otherwise.

Proof. The sums occurring in this representation are hypergeometric series. We see this by
determining the quotient of the terms belonging to 7 + 1 and 7 and separating the common
factor by setting 7 = 0 (see also [20, page 16]). The quotient is

(=L2] —w + D) (=(k —v—j)/2+ T)(B + []/2] + T)
(B-a-Ul]-v—(k=v=j/2+1+)([j/21 +1/2+T)(T + 1)
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2.3 Hermite weights

and the term for 7 = 0 is simply
(f(j +v)/2] - 1/2) (,3 —a - 2] - Vk)
/2] + vi (k=v-plz |
Putting all this together, the sum over 7 is the same as
(f(j +v)/2] - 1/2) (,3 —a— V2] - Vk)
Lv/2] + vi (k=v—=7)/2

=l =i, =(k=v=7)/2, B+Tj/21+1/2
B-a-l-v—(k-v=-j/2+1,[j/2]+1/2’

The assumption follows from Theorem 2.3. O

><3F2(

Since the matrix has a chessboard structure above the diagonal and the first v columns are zero,
we are going to consider the odd and even parts separately. These are given by

I'G+B+1/2) T(k+|v/2]+1)
rG+1) T(k+[2+a+1/2)

Cor gy (@ B) = 27T (121 + 1) \/

min{[v/2],k—j}
X (

J+ v/l —1/2)(,3"']"‘7'—1/2)(/3—@— f"/ﬂ)
[v/2]l -7 T k—j-7 )

I'(j+p+3/2) T(k+[v21+1)
F(j+1) T(k+ V2] +a+3/2)

j+ V)2 + 1/2)(/3+j +7+ 1/2)(,8 -a - |_V/2J)

7=0

) (a,B) =2"T([7/2] +1)

2j+1,2k+1+v

X

min{|v/2],k—j}
( [v/2] — 1 T k—j—1

7=0

Although it is not of immediate use in our analysis, it is worth mentioning that these restricted
matrices have some special structure. This is kept in the next corollary.

Corollary 2.5. Let En = (ejk)j.vkzo and Fyy = (fik)ij:o be the matrices with the entries

€k = Cg,)zkw(“’ﬁ), 0<jk<N,
o .
Jik = €541 21 (@ B)s 0<jk=<M

for appropriate choices of N and M and cj(.z)(a/,ﬁ) from above. Then,

N
I'(j 1/2
En = 2T([7/2] + 1) diag(,/%)
J .
N

o ) C(k+[v/2]+1)
xRNT;{,((1+z)B @ rm)dlag(\/ » ) ,
T'(k+[v2]+a+1/2) o
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Chapter 2 Matrix representation of the operators
and
M

M
—
Fap =2"T (/2] + 1) diag( W)
\ j .
T(k + [v/2] + 1) )
j=0

X Ry Ty ((1+ 27707 diag(\/r(k + [V/2) +  + 3/2)

where Ty (1+2)B=P21) and Ty ((1+2)P~2~L721) are Toeplitz matrices generated by the Taylor
coefficients of their corresponding symbol. Ry = (r;k)j'\,/k:o and Ry = (r;k)?:[kzo are banded
matrices of bandwidth [v/2] + 1 and | ¥/2] + 1, respectively, with

e _ (J'+ [v/2] —1/2)(ﬁ+j+k—1/2)

kT -k k
_j+LV/2J+1/2 B+j+k+1/2
A T G

Proof. This follows immediately from the aforementioned representations.
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Best constants for integral differences

Contents
3.1 Integral differences in the Laguerre and Gegenbauer setting . . . . . .. .. 36
3.2 TheHermitecase . . .. ... ... ..., 37

This chapter is devoted to the cases in which the parameter differences are nonnegative integers.
These are relatively simple compared to the more general setting lying ahead of us. The matrix
entries c](.‘,;)(a/, p) for each of the Laguerre, Gegenbauer, and Hermite norms contain a factor

that looks similar to (k_‘}’_v). Now, if w is a nonnegative integer, this binomial coefficient is

zero whenever k — j — v > w. Therefore, all diagonals that are far away enough from the main
diagonal (well, actually the vth diagonal) are zero. This eases things up tremendously. We can
and will employ the very simple estimate || Bllo < 37_, l|Bllw, Where B denotes said block,
and the matrices B, contain the {th diagonal and are zero otherwise. Since we have only a few
nonzero diagonals, say m, the sum is actually independent on n and ends at m — 1. The norms
of the By can be given explicitly. They are just the maximal absolute value among all entries on
the ¢th diagonal.

Moreover, due to the banded structure it is easy to show that the matrices converge to a special
Toeplitz matrix the symbol of which is at hand and turns out to be bounded. One important
result about such matrices (see, e. g., [12, page 10]) is that the spectral norm is determined by
the maximal absolute value of the symbol over the unit circle. While this might also work for
nonintegral differences, it would be harder to show the convergence. On the other hand, for
w < 0 the symbol is not bounded anymore, and this approach fails.

In the next section, we will recap the results for the Laguerre and Gegenbauer cases found in
[7, 10]. After this, we turn to the Hermite case, which is a new result.
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Chapter 3 Best constants for integral differences
3.1 Integral differences in the Laguerre and Gegenbauer setting

In this section, we will only repeat the basic ideas from [7] and [10] to get the direction for the
upcoming treatment of the Hermite case and to have the results available readily.

The matrix entries in the Laguerre setting are particularly simple. Assume S = @ + m with
some integer m > v. Furthermore, let By denote the upper right (N X N)-block of the matrix
representation of the differential operator DV, let N = n — v + 1, and let By, ¢ be the matrix
consisting only of the £th diagonal of By . Then,

(m - v) Wp—j(@)

t wn—v—j—f(a’ + m) '

IBn,cllo = max
0<j<N-¢

The last quotient can be shown to be n*/2(1 + O(1/n)), which is independent of j. Similarly,
the binomial coefficient is independent of j. Summing over all diagonals, we get

m-v

BNl < D 1Byl < (’";V)n’"/z(l +0(1/m) = 2" 0" (1+ 0(1/m)).
=0 =0

To derive a lower bound, we consider the scaled operators n~™/2Bnmy on £2. Here, my is the
projection onto the first N coordinates. Because these operators are uniformly bounded and the
bandwidth is independent of N, it suffices to show that they converge entrywise to the Toeplitz
operator 7*((1 — z)"™), which is given by the semi-infinite matrix consisting of the Taylor
coeflicients of the function (1 — z)™ ™" at z = 0. From the Banach-Steinhaus theorem it follows
that

liminf ||n7?By|leo = |IT*((1 = 2)" ™) ||.o-
n—oo
But

77 (1 = ")l = max 1 — 27 = 277,
z|=1

Putting together the upper and lower bound, Béttcher and Doérfler have indeed shown that

AV (@,@ +m) = ||Bylle ~ 2" n™/? = 2Py Bra)iz,

The matrix representation in the Gegenbauer setting is a little bit more involved. Here we have
a chessboard structure, i. e., the entries of the matrix are zero whenever k — j — v is an odd
number. Therefore, at most the v + 2¢th diagonals, £ € Ny, will contain nonzero entries. Due to
the special case they try to handle, Bottcher and Dorfler [10] first stated that the kth entry of
the 2¢th diagonal behaves like

w” (a)(—l)"(m; V)L +0(1/k) ask — oo,

k+v om-v
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3.2 The Hermite case

where

) k' T(k+2a+v+1)
w, (@) = .
(k=v)! T(k+2a+1)

With this the corresponding norm can be estimated by

1

2m—v

m-—y
1By, elloo < ny( P ) (1+0(1/n)).
Here, By ¢ is the matrix consisting only of the 2{th diagonal of By — the same upper right
block as in the Laguerre case. Therefore, the norm can be estimated by

IBnlleo < 0" (1+0(1/n)).

For the lower bound, exactly the same course of action is taken as in the Laguerre case, this
time with the symbol 2=("=) (1 — z2)™_ Combining the estimates, they have shown that

vy, +m) ~n”.

3.2 The Hermite case

The matrix representation of the operator D” has a chessboard structure above the main
diagonal, again. Since nflv_)l(a,ﬁ) < nﬁly)(a/,ﬁ) < 7751121(“’[3), we assume that N =n —v + 11is

an even number. Then there is some permutation matrix Uy with

En 0

AN:UN(O Fn

)UN,

where En = (e )jl.tlk/igl, Fn = (fjk )_j'\,/k/igl are built from the entries

_ . R(%)
€jk = c2j,2k+v(a’ﬁ)’ fik = c2j+1,2k+v+1(a’ﬁ)'

We confine ourselves to the investigation of the matrix Ey, and we point out that the matrix
Fpn can be treated likewise. In the following, we will consider two distinct cases of integral
differences. First, we will restrict ourselves to § — @ > 0. We can then exploit the much simpler
structure of the matrix. Later, we will handle one more case, namely 8 = @, in order to prepare
the proofs of the general situation.

Assume now that 8 — « is an integer, not smaller than [v/2]. We can see from Theorem 2.3 that
the matrix under investigation is banded. This is due to the term (ﬁ _(‘Z:JLYVZ)J/_ZV") occurring in
the matrix representation. We will employ the same idea that was applied for the Laguerre
case in [7] and the Gegenbauer case in [10]: consider the matrix as a sum of (shifted) diagonal
matrices and use that the norm of the sum is less than the sum of the norms of these diagonals.
To derive a lower estimate, we show that some scaled version of the matrix Ex converges in

the norm to a given Toeplitz operator.
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Chapter 3 Best constants for integral differences

Let m = B — a — [v/2] € Ny, i.e., consider the banded case. Then the entries dj(.[), t=0,...,m,
of the {th diagonal in row j are given by

F(Gj+pB+1/2) T(+C+[v/2]+1)
rG+1) T+C+M2+a+1/2)

min{f”/ﬂf}(j+|'v/2'|—1/2 (ﬁ+j+7_1/2)( m
[v/2] -7 ) T E_T)‘

d = 2T (21 +1) \/

X

7=0
We now take a closer look on the particular terms. First, for the terms under the square root,
the ratio of the term under the square root for j + 1 and j satisfies
j+pB+1/2 JjH€+ /2] +1 _jtm+1/2+a+ V2] jHl+ /2] +1 -
j+1 JHE+ ] +a+1/2  jH+E+1/2+a+ V2] j+1 -

’

since £ < m. Thus, these factors are increasing with respect to j. The same is true for the first
two binomial coefficients in the sum. The ratio for every single summand of the sum is
JHMe1+1/2 B+j+1+1/2 S
JrT+1/2 p+j+1/2

The third binomial coefficient is constant along the diagonal, independently of j. So, the
maximum (and with this the norm of this diagonal matrix) is attained for j = N/2 -1 - {. We
get the following upper estimate for the norm of E:

T(N/2-C+ B—1/2)[(N/2 + |7/2))
T(N/2 - OT(N/2 + [7/2] + a — 1/2)

IENIlo < 2 T(I/21 +1) )
=0

A (N2 04 T =302 (B4 Nj2 = C T =3/2) [ m
[v/2l -7 T (=)

7=0

We ignore the constant factor for the moment and replace the square root terms by the maximum
over 0 < ¢ < m, ignoring its value for the moment, too. The sum now reduces to

imin{rv/zwl (N/2 —C+ V2] - 3/2) (,3 +N2—-C+71— 3/2)( m )
4 4

£=0 =0 v/l -t T o
3 imil‘l{f"/ﬂ’” (N/z + [v/2] - 1/2) (ﬁ + N/2 + [v/2] — 1/2)( m )
S £ i |'v/2'| -7 T {—71
e (N/Z + /2] - 1/2) (ﬁ +N/2+ V2] - 1/2) '"Z (m)
£ [v/2] — T T £=0 t
_ (N/Z +[v/2] - 1/2) (/3 + N/2+ [v)2] - 1/2) i (m)
4 [v/2] -1 T £=0 ¢

(B + N +2[v/2]) m
= 2 .
L(B+ N+ [T ([v/2] + 1)
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3.2 The Hermite case

Applying the standard asymptotic formulas for all terms, we get to the following upper bound
for | EN lloo:
IENlleo < 2 (%)(3_1/2)/2 (%)(_HH/ZHV/ZJ_WW2 2P MPINTE (1 4+ 0(1/N))

_ 2(ﬁ—a+v)/2N(B—a+v)/2(1 + O(1/N)). (3.1)

To derive a lower bound on the norm of Ep, we use an approach analogous to the one in [7].
Let Jy denote the (N X N)-matrix with ones on the counterdiagonal and zeros elsewhere. We
set By = JNEnJn. Obviously, [|[En |l = [[Ey |l = B |leo- It is easily seen that the entry at
position jk of By equals the entry at the position N/2 —1 - j,N/2 — 1 — k from Ex. Now, let
nn be the projection

2 2
N 0= 5 {xo’x19x2a-' } = {xo’xh'- "xN/Z—hO" -'}

and consider the operators Ty = 2B—a=v)[2N(@=B=V)[2B\ n on €2, We will show that these
operators converge strongly to the Toeplitz operator 7% ((1 + z)#~) on ¢? that is given by the
infinite Toeplitz matrix (¢;x );?k:o with ;i = 0for k > j and

ik = (f::) for k < j. (3.2)

First, we infer from (3.1) that || Ty |l < 2579 (1+O(1/N)). Thus, the operators Ty are uniformly
bounded. To prove that Ty — T((1 + z)#~%) strongly, it is therefore enough to show T ey
converges to T((1+z)~%)e; for every k > 0, where e, € 2 has 1 at the kth position and zeros
elsewhere. As all involved operators are banded with bandwidth m + 1 independent of N, it
suffices to verify that the jk entry of Ty converges to the jk entry of the matrix T ((1 + z)#~%).
But, the jk entry of Ty is zero for k > j and for k < j —m,and if k < j < k + m, it equals

2(,3—0+V)/2N(11—ﬁ—v)/2r( v/2] + 1)

X\/F(N/Z—j+/3—1/2)\/ C(V/2 =k + 7))

[(N/2-j) C(N/2—k+ V] +a-1/2)
min{[v/2],j-k} . ol i _ Ty
" Z (N/Z—] + [v/2] 3/2)(,8+N/2 j+T 3/2)(,3 a [/21)

~ [V/2] -1 T j—k—-1
_ Bamizy-B-am2 \/ T(N/2—j+B-1/2) T(N/2 - k +17)2])
T(N/2-)) T(N/2—k + /2] +a - 1/2)

min{[v/2],j-k

y "O(NJ2 =+ 21 = 1/2) T(B+ NJ2— j +7—1/2)

e T(Nj2—j+7-1/2) T(B+N/2—j-1/2)
L([v/2]+1) (,3 -—a- f"/ﬂ)
r(vel-r+)I(r+1)\ j—k-71
—(B-a+v)/2 (B-1/2)/2 (—a=[v/2]+|v/2)+1/2)/2
(%) (%) (%)

2 2

~

min{[v/2],j—k}

pi2l-r T (D21 (B — @ = [V/2]
<oy T (M)

=0
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Chapter 3 Best constants for integral differences

_ (B«
=\ s)
We assumed that the last sum actually runs to j — k in order to use Vandermonde’s identity (1.6).

For j — k < [v/2], this is clear. For j — k > [v/2], this can be justified by the fact that all of the
terms ([VT/ 21) are zero for 7 > [v/2]. Comparing this result with (3.2), we arrive at the conclusion

that Ty converges strongly to 7% ((1 + z)#~%), as asserted. From the Banach-Steinhaus theorem
we therefore deduce

liminfl|2(ﬁ—a—v)/2N(a—B—V)/ZBN”00 > ||T((1 + Z)B—G)HW

N—o0

But, by a well-known result on the norm of Toeplitz operators (see, e.g., [12, page 10]), the latter
is

||T((1 + Z)ﬁ—a)noo - fnﬁx 1+ Z|ﬁ—w — oB-a
zl=1

Thus,

liminf N B2 Ey|le > 2B-00)/2, (3.3)

N — o0

Combining (3.1) and (3.3), we obtain that
IEN lloo ~ (2N) P71,

As above, one can show that
1EN oo ~ (2N)Bmam2,

Note that the latter is even true for 8 —a = |v/2]. However, when v is an odd number, the matrix
C,, has some weird structure, because Fjy is banded and E}y is a full triangular matrix. Since
nﬁlv) (@, B) depends on both, ||En || and || Fiy ||e, this result on || Fiv || alone is not of substantial
value. Anyway, we will later prove the same asymptotics for ||En ||« by more sophisticated
means. It will then be a consequence of the investigation of the nonintegral case.

Since ||Cyllee = max{||Enlloo, | Fnlloo}s We obtain for 8 — @ > [¥/2], B — a an integer, the
following asymptotic behavior for n — co:

(@, B) ~ (2m)F=2,

We will prove one more integer case. If § — @ = 0 the matrix is in general not banded anymore.
The special case @ = 8 = 0 has been disposed of before. Then, the matrix is indeed a diagonal
matrix and it is known that

n(0,0) ~ (2n)"/2.

Assume for the rest of this section that @ = 8 # 0. We will show that the asymptotic expressions
obtained above, with the restriction 8 — a — [v/2] > 0, also hold for 8 = «. Taking a closer look
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3.2 The Hermite case

96.3 g

Figure 3.1: Matrix plot for n = 50, v = 2, @ = § = 1.4 in the Hermite setting. Each bar over a
square corresponds to an entry in a matrix (a; )J’.‘ k—o- The height and color of the

bar at the jth row and kth column are determined by the value a;; of the matrix.

at the matrix, we see that, although the matrix is not banded anymore, it is close to a diagonal
matrix in the sense that the entries along the diagonal are significantly bigger in their absolute
values than the off-diagonal entries. An example is shown in Figure 3.1. Indeed, for 8 = «, the
last entry on the diagonal of the matrix Ep is given by

T(N/2+a—-1/2)[(N/2 + [¥/2]) (N/z + /2] - 3/2)
C(N/2)T(N/2 + [/2] + a = 1/2) [v/2]

_ [(N/2+a —1/2)T(N/2 + |v/2]) T(N/2 + [v/2] = 1/2)
- T(N/2)T(N/2+ [v/2] +a —1/2) T(N/2-1/2)
_ v (N)(0—1/2+LV/ZJ—fV/21—a+1/2)/2+rV/21

enj2-1,N/2-1 = 2"T'([¥/2] + 1) \/

(1+0(1/N))

2

=27 ()" 1+ 0(/N)).

N/2-1 2 .
j=0 ej,N/Z—l 2 €N/2-1,N/2-1> this

already provides a lower bound. An upper bound is harder to show. The approach we used for
the banded matrices does not work here anymore. What we do instead is to use a corollary of
the Gersgorin theorem [17, page 344]. The Gersgorin theorem provides discs in the complex
plane containing the eigenvalues of a matrix. The closer such a matrix is to a diagonal matrix,
the more precise the location can be given. Since we look for the singular values, we could
apply the theorem to EY Ey. Its eigenvalues all are nonnegative real numbers, so the discs

This is exactly what we want. Since ||[Exen/z2-1ll2 = \/Z
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Chapter 3 Best constants for integral differences

are in fact intervals. However, the matrix representation of £}, E is not easy to work with.
The paper [21] uses the ideas of the Gersgorin theorem directly with the matrix Ex to provide
intervals for the location of the singular values. Even more, it also provides a scaled version
of the theorem. Since the eigenvalues do not change if we multiply a matrix by an invertible
matrix from the right and its inverse from the left, we may modify the matrix entries slightly to
get better bounds.

Since we are interested only in the largest singular value of the matrix E, the combination of
Theorem 2 and Theorem 4 of [21] yields

N/2-1 ;. N/2-1

d:
Enllo £ max —Je~~, e R 3.4
IEnllo < | max JZ; Jlels ) e (3.4)

Jj=0

where dy,. ..,dn/2-1 are positive real numbers. We will later see that the maximum is attained
fori = N/2—1. So, assume this is already shown. Then, the first expression, which is associated
to the row sums, contains just the diagonal entry. This term is also a part of the second
expression. Therefore, we only have to investigate this entry.

We set d; = (‘/]J?)E for 0 < j < N/2 -2 and dn2-1 = 1, where € > 0 is a small positive
number. We have already shown that the entry ex/2-1, n/2-1 provides the desired bound, and
that it is of order N¥/2. We will now show that the sum over the remaining terms in the above
maximum is of lower order. Although the theorems from [21] do not immediately yield such
good bounds, they suffice for our asymptotical statements. We have

'(N/2+ |
lej.nje-1l = 2°T(1/2] + 1) \/F(N/2(+ F"/ﬂ EL/;JZ 1/2)

V& /r(j+a+1/2) i+ [v/2] = 1/2\(N/2 = j + [v/2] - 2
. /2 J J 2
X ,Zo (G+1 r(+1) ( [v/2] )( N/2—1-] )

_|—V/2-|,j—N/2+1,a/+j+1/2.
3F2( —[21+j-Nj2+2, j+1/2 ,1)‘. (3.5)

—-&

X

We need to closer investigate the hypergeometric series. For readability we set m = N/2 — 1.
Assume m — j > 1 and @ # 0. We employ the Chu-Vandermonde identity (1.5) for the term

(@+j+1/2), (-7) (—@),
(G +1/2), =2h (J+1/2 ) Z(J+1/2) ol

occurring in the hypergeometric series over the summation variable 7. Therefore,
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3.2 The Hermite case

=Ml -m+j, a+j+1/2
I\l -m+j+1, j+1/2°

B ”’Z (=T721), (=m + ), Z (-1)y (-),
S L (=Pl =m 1), 7 (4 1/2),,0!

—j-o

_ ”’Zf 1 P P PVl T M G
B = (j+1/2) 0 (=[] —m+j+1), (=M l-m+j+o+1).7!

7=0

'"Z‘f (=121 (=m + ) (=) o (D)7 (<1721 + 1) (1
(] + 1/2)(;-0'!(_[‘//2-' -m+j+ 1) [v/2] ‘

o=0

The last identity is again an application of the Chu-Vandermonde identity (1.5). Observe that
the term (—[v/2] + 1) [v/2] -0 vanishes for o = 0. Therefore, the sum starts at o = 1. Since we
assumed m — j > 1, we can now write the sum as

(=[2D)(=m + j)(—a) (=121 + 1) {71 "L (=) + D,(-m+j+1),(1-a),
(.] + 1/2) (—|'v/2'] -—m +j + 1) [v/2] o =0 (.] + 3/2)0'(2)0‘0-'

(el + 1) () T(m-j+1) =Rl +1, -m+j+1, 1—a'.1 (3.6)

(Y2 T(m—j+e) e 2, j+3/2 A
We note that this transformation also holds in the case [v/2] = 1. To confess, we might have

proved this a lot simpler. For [v/2] = 1, we get

P el -m+j,a+j+1/2 | —1,a/+j+1/2'1 -«
2\ -l -m+j 1, j1/20 ) A j+1/2 Cj+1/2

which is just the above term.

We still have to investigate the hypergeometric series from (3.6). Take a closer look at the
term

(-m+j+1), (-m—1/2 . -m-1/2 .
( +3/2), _( 32 )"'(j+r+1/z+ )

This implies that the absolute value of the whole series is at most a constant times a polynomial
in m/j of degree at most [v/2] — 1.

We now go back to the original problem (3.5). First, treat the term for j = 0 separately. It is

L[ e oEy F (121 +1/2) T(N/2 + )21 = 1)
: \/r(N/z+ Pl a-1z) V@YD =07 T(N/2)

F, (—fv/ﬂ, -N/2+1, a+1/2 )'

x vl = NJj2+2.1)2

The hypergeometric series is bounded by a constant. This can be shown by examining the two
factors containing an N. The whole term is at most a constant times

Nv/2—a—1—(a—1/2)/2 — O(Nv/Z—e) .
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Chapter 3 Best constants for integral differences

So, for & > 0, this is of smaller order than the entry ey 2-1, n/2-1-

After applying the above identities, the rest of the sum now is

N~e|[v/2]el

o C(N/2 + |v/2])
C(N/2+ /2] +a —1/2)

Nz F(G+a+1/2)T( + [v/2]1+1/2)
. £/2 .\ [v/2]-1
x ; G+1) \/ TG D TGasp DM,

a term in O (N”/27¢/2) and thus also of smaller order than the entry ex /2-1, n /2-1.

What is left to show is that the maximum is really attained for i = N/2 — 1. What we have
seen so far is that the off-diagonal elements do not really matter in comparison to the diagonal
element. Therefore, the maximum of the sum in (3.4) is determined by the elements on the main
diagonal. It is easy to compare these elements since the sum occurring inside ¢;; is actually just
a single term. It can be seen that the terms are strictly increasing, starting with a small index.
Indeed, we have discussed before that these terms behave like 2” (j/ 2)V/ 2 which is clearly
growing in j.

The same estimate can be done for Fj. In conclusion, we have shown that for @ = 3,
Y (@,@) ~ (2n)"?

gives the asymptotic behavior as n goes to infinity.
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We now switch to the nonintegral case. The main difficulty here is that the involved matrices
are not banded anymore, but they are full upper triangular matrices. All three norms considered
here share the same main idea. To get an upper bound, we employ the results from the integral
case and a theorem by Stein to interpolate between these. For the lower bound, we construct a
special vector and estimate the norm of its image under the effect of the operator. Letting the
dimension of the matrix go to infinity, this lower bound will tend to the upper bound.

Before constraining ourselves to the details of the particular cases, we take a look at some
results that will be used several times.

4.1 General considerations

The following lemma is an application of Stein’s interpolation theorem [25] in the special cases
of the norms considered here. To this end, let u(:,@) denote one of the weight functions

ur(t,a) = (t"e_’)l/2 (Laguerre), (4.1)
ug(t,a) = (1 - tz)a/2 (Gegenbauer), (4.2)
ug (t,a) = (ltlzae_tz)ll2 (Hermite), (4.3)
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Chapter 4 The nonintegral case

(Cl/,fl)
(a, B)

(. Bo)

Figure 4.1: The possible parameter set for o, > -1, f —a > 0.

and Q one of the corresponding domains (0,), (—1,1), (—o0,00). Note that we can now write
the respective norms in terms of the usual unweighted L?-norm || - || L2() as follows:

IIfIIf,=fg|f(t)|2u2(t,a)dt=fglf(t)u(t,a)lzdt:||fu(-,a)lliz(g). (4.4)

Before we go further, we will illustrate the targeted idea of what we want to achieve. We assume
a,B > —1land S—a > 0. The set of possible parameters is illustrated in Figure 4.1. The diagonal
gray lines indicate the pairs (@, 8) that have an integral difference. As can be seen in this
picture, we can find for any valid pair (@, 8) with nonintegral difference two neighboring pairs
(@, Bo) and (e, (1) that satisfy Sy — @ € Z and B; — @ € Z. This is true for any o > —1. Since
we have good upper estimates in these cases, the hope is that we can exploit the knowledge to
get good estimates for the cases in between. The following lemma tells us that this is indeed
possible and also provides information about the constants.

Lemma 4.1. Fix @ and let’y > —1 (ory > —1/2 in the Hermite case) be arbitrary. Let u(-,«) and
Q be as above. Define an operator

T: LA Qu(a)) = L*(Q,u(-,y))
via

Tf=D"f forallfePnla),

Tg =0 for all g € Pn(a/)l’

where DY : P, — P, is the operator that maps a polynomial of degree at most n to its vth
derivative, and P, (@) is the space of all algebraic polynomials of degree at most n equipped with
the norm || f|lo. Then, ||Tllo—y = [|1D” [l for anyy > =1 (y > —1/2). Furthermore, if

ID” flig < C(a, B fle forall f € Py, (4.5)
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4.1 General considerations

forall B =B’ +k, k € Ny with some 3’ satisfying B’ — a € Z, and if the coefficients c(a,B)
satisfy

CY (@, B/(1-0) + (B’ +1)0) = (C(a, ) °(CY(a, 8" +1))°, 6€[0,1],

then (4.5) holds for all B € [’,00).

Proof. First, we observe that

2 2
. IT(f+olly DY f1ly
“Tlla—)'y - Sup —2 - u —2 7
fePn@), gePuta)t Iftalle  fepn@), gern) Iflla + llglla
1D f1I2
sup L= D"IZ,.

" repaia) IFIA

There exists an fy € P, (a) such that ||D” foll, = [|D” |la—y |l follo- Hence,

ITCf +lly T folly _ IID" folly
— lfolla Il foll

”T”a—w = = ”DV”(Z—)’)/'

fePu(a), gePn(a)t ”f + g”a

Consequently, [|T|ly—y = [|D”|lo—, for arbitrary y. We now employ the interpolation theorem
of Stein [25]. Given any 8 > f’, define

bp=B-—a—-|B-ale(0,1), Po=p-0 pi1=pL+(1-0).

Then, fo—a=|B—-a]€Zand B; —a =[P —a] € Z Since B; — 1 = By > B’, (4.5) provides
an upper bound on the norms

1T Fru, Bl = ITfllg, < C (. Bl fle forall f € Py, i =0,1.
Since u(t, 8) = u'=%(t, By) - u®(t, B1), we can apply Theorem 2 of [25], which leads us to

T fllgo1-6)+p.0 = (T PHul-, Bo(1 —6) + B10) |2
< (€Y (. o)) (Y (. )N flla

forall f € P, and all 6§ € [0,1]. As we have 8 = (1 — 0y) By + 6y 81, we conclude that

ITfllg < C (@ Pl flle forall f € P, 0

The next lemma provides us with an inequality which is used in deriving a lower bound in the
Laguerre and Gegenbauer cases. It contains the essence of the proof presented in [19].

Lemma 4.2. Letw € (0,00) \N,n,u e N, n > u > [w],and p; >0,i=0,...,n. Then,

n n—i 2

w U= Twl| a0 :
Zpl( Z (k)) 22{ 2 Jzz .n—pr-?1n<li<npl
=0 -

k=max{0,n—i—pu+1}
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Chapter 4 The nonintegral case

In order to prove this, we first collect some results on general binomial coefficients for reference
in the following lemma. It can also be found as Lemma 1 in [19].

Lemma 4.3. Let w € (0,00) \ N. Then for any k,{,m € N U {0} the following statements are
valid:

(“’) _ )t k< [w] (“9)
sgaf | = (-DF @l k> Tw] + 1, |
[
k

wls2l | [wls2(rm) |
> ()z > (.)22“’, (4.8)
J j

> ’(k(: 1)’ fork > |w], and0 < (fz]) <1, (4.7)

j=0 j=0
[w]+26+1 [w]+2(€+m)+1
> (“’) < ) (“’) <29, (4.9)
=N j=0 J
[w]++1
>0 :|lw]=0 mod?2
> (a,’)(—w L] (4.10)
=R <0 :|lw]=1 mod 2.

Proof. We write the binomial coefficient as

(w) ﬁ w-—j+1

k i1 j

All factors with j < w + 1 are positive, and all factors with j > w + 1 are negative. So, for
k < |w] +1 = [w], the product is only over positive factors and thus also positive. Otherwise,

there are k — [w] factors in the product that are negative, proving (4.6).

To show (4.7), we consider ( k“:l) = % (‘1‘:) If k > w, the absolute value of the first factor

is strictly smaller than 1. For k = [w], we have

(a))_i. w-1  w-fw]l+1
[w]) (o] [w]l-1 1 .

Every factor of this product is positive and smaller than 1. This completes the proof of (4.7).

Now let s; = Z]r‘:(]] *k (‘;’) With (4.6) and (4.7), we conclude that

w + w <0
S2(i+1) — S2i = ,
20D T Ay 420+ 1 [w] +2i +2

and

w + w S
S2(i — Soi41 =
20D T2 A ) + 2 42 [w] +2i +3
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4.1 General considerations

Thus, the sequence {s;};2 is decreasing and the sequence {s2;+1}_ is increasing. But sy is a
partial sum of the power series for (1 + x)*, evaluated at x = 1. This converges absolutely for
w > 0 and has the sum 2¢, implying (4.8) and (4.9).

Again, from (4.6), we conclude that for j > [w] + 1,
w ' ~[w] ' [w]
sgn i -1 | =(-1) (-1 = (=)'

So, for even or odd [w], all summands from [w] + 1 onwards stay positive or negative, re-
spectively. Again, the left-hand side of (4.10) is a partial sum of the power series for (1 + x)*
evaluated at x = —1. At this point, it converges absolutely with sum 0. From this, (4.10)
follows. O

Another important lemma used for proving Lemma 4.2 already appeared as Lemma 2 in [19].

Lemma 4.4. Ifw > 1 and u € N U {0}, then

H [w1

2(20(])) = kZ [(Fw1+2k+1) rw]gkﬂ(w;l)]' (4.11)

Proof. First, we observe that if w € N, then the right-hand side of (4.11) equals 0 since all the
terms (rwﬁ‘:z}{ +1) are 0. On the left-hand side, we sum over squares of real numbers, so this sum
is nonnegative and hence the inequality holds in this case. Thus, we only need to investigate
the case w € (1,00) \ N.

We first assume w > 2. Clearly, ZL‘”J ( o (‘;’)) (ZL‘”J ( ))2 With (4.6) and (4.8), we
obtain

S-S5 ()

Jj=0 Jj=0

So, we have

lw] , m 2
S5 -
m=0"j=0 J

Next, we want to point out that both ([wflu+_2}< +1) and er1+2k (“'j_l) are positive for every
nonnegative integer k. We have

[u rm

,Z [(fw1+2k+1) rw]}f:kﬂ(‘“;l)]

=0
2

_ w-—1 . feod+2k w-—1 w-—1
= ([w'|+2k+1) ]Z ( i )+([w]+2k+1)

=0

=~
Il
(=]
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Chapter 4 The nonintegral case

With (4.7) and (4.9), we get the following upper bound for the right hand side of (4.11):

)

2
4297 4 1) - Z
k=0

From (4.6) and (4.7), we infer

-1
([w] + 2k + 1)'

=2

k=0 ([w]+2k+1) [([w] +2k+1) ([w] +2k)
2[“ z“”J

= (rw1_+2k) : (wrc:12)'

Set § = w — [w] € (0,1). By simple calculation, we can show that

(w—2)<6(5—1)(6—2) 1 1

[w] 6 93 <3

So, for the right-hand side of (4.11), we get

luhu]
[w1+2k+1 w-1
429141y L=2072 4 1
> [(rwuzkﬂ) JZ; ( j )]< R

<207 40Tt = 2. 0072

< zw—l(z . zw—Z) — 22w—2
which completes the proof for w > 2.

Now, assume 1 < w < 2. The left-hand side of (4.11) simplifies to

2 2
(‘”) + (“))+(‘”)] =24 20 + W € (510).
0 o) " \1

For the inner sum of the right-hand side of (4.11), we have

2k+3

Z(w;l)S1+(w_1)+(a)—l)(w—Z)+(w—1)(w—2)(a)—3) <w

= 2 6

From (4.6) and (4.7), we obtain
w-—1 w-—1 w-—1
2 < - .
(zk + 3) (zk + 3) (2k + 2)
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4.1 General considerations

Taking all this into account, we arrive at the upper estimate

lp/2]-2 w—1 2k+3 w—1 lp/2]-2 w—1
4- <2w- 2
Z (2k+3)2( Jj ) Z (2k+3)
k=0 Jj=0 k=0
Lu/2)-2 w—1 w—1 2|p/2]-3 w—1
- - - k+1
(2k+3) (2k+2) Z (k+2)( )

k=0 k=0

(5 o 7)) )

2lp/2]-3 w—1
:Za).(_ Z ( r )(—1)k+2—a))32w(2—w)§2.
k=0

In the third estimate, we made use of (4.10). O

Proof of Lemma 4.2. We partition the sum on the left-hand side into four parts X1,%;,%3,%, as
follows:

« Y; contains all terms whose inner sums have only summands with k < w, i.e.,

2= 5 g

i=n—-[wl+1

« X, contains all terms with n — i > w whose inner sums start at 0 and where the last term
in the inner sum is positive, i. e.,

[u—rgﬂ—lj

w1420 | \\2
Xy = Z Pn—rm—zt( Z (k))

=0

« X5 contains all terms with n — i > w whose inner sums start at 0 and where the last term
in the inner sum is negative, i.e.,

|5 w2641 ) 12
23 = Z Pn—rw]—zf—l( Z (k))

=0 k=0

« X4 is made up of the rest, i. e., the inner sum does not start at 0,

S

=0 k=n—i—pu+1
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Chapter 4 The nonintegral case
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Figure 4.2: Illustration of the partitioning of the sum.

To get a better understanding of the way this partition works, we want to illustrate this by a
small example: Let [w] = 3 and g = 9. Then, the elements of the inner sum may be arranged in
a way that Figure 4.2 suggests (omitting the “+” between the elements, as well as the factors p;).

Here, each line corresponds to a fixed i. The lower orange box of Figure 4.2 is the part for
%;. The parts highlighted C__ ) belong to X,, and the ones highlighted belong to Z;. The
upper block is the part for X4. Everything left from the highlighted area is not considered,
since it is absent in the overall sum.

We will see that X, in fact, exceeds the desired estimate for the lower bound. In contrast to
that, X5 is below the bound we want to show. We will prove that this can be repaired by adding
2, and Xs.

Since all involved summands are nonnegative numbers, we may drop X4 and retain a lower
estimate on the whole sum. Now, we only have to consider the indicesi withn —u+1<i<n
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4.1 General considerations

for the values p; and thus replace all occurrences by the minimum over this set. Then, let EJ’.
denote the sum X; (j = 1,2,3) without the p; part. With (4.8), we arrive at X > l,u—wa]J - 9%,
Our first goal is to show that

T+ > {'u_TMJ .2%9 for w € (0,00) \ N. (4.12)

We rewrite the inner sums of Z; forw > 1as

rmiz:ml o) rw1z+2:£+1 w1, rwi% w1
k) k et k

k=0 k=0 = (4.13)
“”i“l(w—l) ( w-1 )
=2. —
— k [w] +26+1
and 2] as
lw]r m 2
Z[Z (w)] : (4.14)
m=0*% ;=0 J

Putting X] and X back together, we accomplish by (4.13) and (4.14) that

sen- S 5 S )

m=0

_4 w-—1 rw]ff“w—l N w-—1 2
[w] +26+1 — k [w] +26+1

[M*W -1

2 2 J w-1 [w]+26+1 w-1
c 5 ) 2 )
yan [w]+20+1 kZ:;) k

The first inequality follows from (4.8), while the last inequality is a direct consequence of
Lemma 4.2. Thus, estimate (4.12) is proved for w > 1.

2
Now, assume 0 < w < 1. Then, X is just (‘6’) , and we write X; as

,u [a)'\ ﬂ [‘U]
Lors2

IR

(=1 k=0

The desired estimate (4.12) will follow as above, provided we can show the inequality

o SIEEI S5 ]

k=1%j=0
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Chapter 4 The nonintegral case
for M = [” fw1J For the right-hand side of (4.15), we now have
S5 =20 2l 50
112 ()] = 200 22l ) 205
Mook M w M
2 <2¢- > 2
2la) B0 2= 2

o) )

2M+1 2M+1
= 9w Z ( )( 1)"“_2‘“[ ( )(—1)k+1—w]

k=2

2

With analogous arguments as above,

2
w _ _LL)
<2°(1 a))s1_(0),

from which inequality (4.15) follows. Thus, we have shown (4.12) for all w € (0,00) \N. Together
with the estimate for X;, the lemma follows. ]

In the following sections, we will work out the specific details for each of the regarded norms.

4.2 The Laguerre case

This section deals with the Laguerre case when S — @ > v is not an integer. We will apply
Lemma 4.1 of the previous section to derive an upper bound from the results already known
for the integral case. For the lower bound, we construct a special vector in such a way that
Lemma 4.2 can be employed. The proof already appeared in [19].

From [7] (see also Chapter 3), we already know that
AV (@, B) < 2P~V BI2(1 4 0(1/n))
as n goes to infinity in case 8 — @ > v is an integer. Set

O =B—-a-|p—-al, Po:=B-0), p1:=p1+(1-06).
Obviously, 8 = (1 —6y) By + 681 and B; = By + 1. With u(-,a) according to (4.1), Lemma 4.1
now tells us that

AV (@.B) = A7 (@, (1 = 60) Bo + 60 51)

< (A (@, B0)) " (A (@, pr))*
— (zﬁo—a—vn(ﬁo—(t)/2)1—90 (zﬁl—(t—vn(ﬁra)/z)%(l +0(1/n))

— 2(1—90),304'90[31—H—Vn((l—go)ﬁo*'g()ﬁl_“)/z(1 + 0(1/n))

= 2P~ B-™I2(1 4+ 0(1/n)),
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4.2 The Laguerre case

238.0

—185.4

Figure 4.3: Matrix plot for n = 50, 8 = 2.6, @« = —0.2, v = 2 in the Laguerre setting.

which is exactly the constant we wanted to derive.

Now, we go over to showing that the lower bound to the norm has a similar form. The main idea
to prove this is to choose some unit vector v and apply the matrix Ay (N = n — v + 1), which
is just the upper nonzero block of the matrix representation of the operator of differentiation
in the corresponding Laguerre bases (see Section 2.1 and [7]). Next, we estimate the norm of
the image of that vector. We arrange the involved summands in an appropriate way to apply
Lemma 4.2. To anticipate the choice of the vector, look at the matrix plot in Figure 4.3. Here,
we get the image that the main portion of the matrix is concentrated along the diagonal and
elements farther off almost don’t matter. This is indeed the case and can easily be seen by a
closer look on the matrix entries, together with (4.7).

In the following, let w = 8 — @ — v. To get the lower estimate on the norm of the matrix Ay,
we introduce vectors vt = (v;)?:_(;’, v = (vjf);-l:_(;’ e R"™*! for @ > 0 and @ < 0, respectively,

as follows:

n
. k+v
~1)/ — j>n-v-p+1
vt = =1 l_[ a+k+v J K
J k=j+1
0 : otherwise
J
. a+k+v
—1)/ 1/— je2n—-v—-—u+1
V. = ( ) l_[ k+v J H
J k=n-v—-pu+2
0 : otherwise
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Chapter 4 The nonintegral case

0.7 n =50 n =100 n =200

— optimal — optimal — optimal

0.6 — approximated . __ approximated approximated

0.5 ~ 3

0.3

0.2 -~

0 ¥ yi

0 50 100 150 200

Figure 4.4: Comparison of the (normalized) vectors v™ with the optimal, norm-realizing solution,
in the Laguerre case. Pictured are the magnitudes of the oscillating entries for sizes
n =50, 100, and 200, with @ = 1.3, 8 =4.2, v = 2, and u = |logn].

where 0 < j < n — v, with some y = u(n) € N, u < n — v. Figure 4.4 gives an impression
that the major parts of the actual solution are covered. The entries of Ay are given by (see
Section 2.1 and [7])

(An)ij = (=1)/ 7+

wj+v(a') (ﬁ - - V)
w; (B) J—i

for0 <i < j <n-v, where

B I'k+1)
W) =\ T rar D)

The vectors v* and v~ are chosen so that all entries in the last ¢ columns share the factor w;, (@)
or wy—u+1(a) and the modulus of each entry of the vector is smaller than one, depending on
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4.2 The Laguerre case

the sign of a. With this representation, we can now write the jth entry of Ayv* as

(Anv™); = Z bjrvl = Z bjrvl
k=0 k=n-v—pu+1
k>j
n-v ‘ n 7+
= -1 V+k—J( w )M —1)k [T~
k:n;—y+1( : k=j] wi(B) v fgrl at+l+y
k>j
_jwn(a@) n_v w
r 5 12)
( ) wj (’8) k=n-v—-u+1 k_]
k>j
n-v—j
= (- ) (w)
0, (B) |

k=max{0,n—v—pu+1-j

so that a lower estimate for the norm of Ay in the case @ > 0 reads

1 2
w2 n-v—j w
||A ||2 > ”ANU+||§ _ w ((L’) ('B)(Zk =max{0,n—v—pu+1-j} (k)) (4 16)
Nlleo = ol - Z - (v : :
2 k=n-v-p+1 Lle=k+1 a+t+v
Analogously, we derive for a < 0 that
2
_ 2 n —2 n-v—j w
||A ||2 S ”ANU ||§ _ wn—y+1(a)z'= (ﬁ)( k=max{0,n—v—pu+1— J}( )) (4 17)
N - o=l - Z H a+l+v : :
2 k=n-v-u+1 Llé=pn—v—p+2 t+v

We may assume that y is sufficiently large, at least u > [w].

Since wJTz (B) > 0 for all j € Ny, we can apply Lemma 4.2 to the upper sum of both (4.16) and

(4.17). The sequence of the wJTz( f3) is increasing with respect to j for 8 > 0, and decreasing for
B < 0. For v > 1, it follows from 8 — @ — v > 0 that 8 > 0. In this case,

min{wjfz(ﬁ) n—v—-—u+1<j<n-v}= w,ﬁv_ﬂﬂ(ﬁ).

If we would allow v = 0, a negative value of 8 would be possible. In that case, the minimum
would take the value w2, (). We will confine ourselves to v > 1, but note that the proof for
v = 0 requires only small modifications and uses the same arguments.

Since both, v* and v~, have exactly y nonzero entries with an absolute value smaller than one,
the squared norms of both can be estimated from above by u. Putting all this together, we arrive
at

2
o™l 2 Wh_y 41 (B)
-2 2
AN | oyt l u —zrm J 0l (@)

o112 N0
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Chapter 4 The nonintegral case

So, if we let p grow slowly with n (e.g., u(n) = [logn]), sothatn — v — u+1 ~ n and
2 [”_TWJ ~ u, we obtain the asymptotic lower bound 28~ n$=@)/2 for the norm of the
matrix, and thus for the smallest constant. We therefore have shown

(@, By ~ 2P B

for-—a—-v>0.

4.3 The Gegenbauer case

This section is devoted to the details in the Gegenbauer case for 8 — @ > v where § — « is not
an integer. From [10], we know that the constant in the integral case has an asymptotic value
of n”. The methods used here are very similar to the Laguerre case, but differ in some details.
First, we will again employ Stein’s interpolation theorem to derive an upper bound. Then, using
the same idea as above, we construct vectors and determine the norm of their images under the
effect of the matrix.

As in the Laguerre case, set

bp=B-—a—-|B-al, Bo=pB-00 p1:=PLo+(1-0).
For u(-,) as in (4.2), Lemma 4.1 tells us that

¥ (@, B) = ¥\ (@, (1= 60) o + 60 51)
< (Y@, ) " (v (@, 1)’
= " (170000 (1 + O(1/n))
=n"(1+0(1/n)).

As we can see from (2.5), the matrix has a chessboard structure Without loss of generality, we

can assume that N = n — v + 1 is an even number, since )/ (01 B) < y(v)(a,ﬁ) < yfl‘:r)l(a,ﬁ).

Then, there is a permutation matrix U, such that

E, 0
An:Un(O F)Un,
n

where E,, = (eJk)N/2 "and F, = (fj N/2 1w1th

— .
€jk = Czj,zk+v(a’ﬂ)’ Jik = 2]+1 2k +v+1 (@ B)- (4.18)

Clearly, || Ay lleo = max{||Ey |l || Fillo }- Again, we set w = B — a — v. Taking a closer look on

2k +2a+v+1) T2j+1)
F(a/+v+k+]+1/2)
F(,B+l+k+1+1/2)( ) J(k—j)’ (4.19)

2_w\/F(zk+v+ )2k +a+v+1/2) \/F(Zj +2B8+1)(2j+B+1/2)
ejk=
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4.3 The Gegenbauer case

we notice a structure similar to the matrix in the Laguerre case. Since

Fla+v+k+j+1+1/2) a+v+k+j+1/2 Fle+v+k+j+1/2)
C(B+1+k+j+1+1/2) wHl+a+v+k+j+1/2T(B+1+k+j+1/2)

these terms are always decreasing for growing k or j, independently of @ and 3, provided that
B — a > v. Hence, we estimate from below each occurrence by

I'a+v+N-3/2)
(B+1+N-3/2)

Define the vectorsv™ = (vj)j.v:/oz_l

, 0= (uj‘)i.\]:/oz_1 € RN2fora > 1/2and @ < 1/2, respectively,
as follows: ‘

(_1)j\/N+a+v—3/2

2j+a+v+1/2

_ tj=2N/2—-p
v; = le/_z[l 20+ v —1)(2C +v)
=it @2t+2a+v—-1)(20+2a+V)
0 : otherwise

(_1)]-\/N—2y+a/+v+1/2

2j+a+v+1/2

_ f tJ=2N/2—-p

v, = 1—[ \/(2[+20/+v—1)(2€+2a/+v)

X
(=N /2-p+1 @t+v-1)2+V)

0 : otherwise

with some p = u(N) € N, y < N/2 — 1. To get an impression how these vectors look like, we
refer to Figure 4.4, which, up to a permutation, imparts a similar picture. The first factor in vj+
can be written as

N+a+v-3/2 _N/Z_l 20+a+v+1/2
2j+a+v+1/2 2€+a+v-3/2

{=j+1

Joining these products and putting @ = 6§ + 1/2, § > —3/2 into the factors in the entries of v*,
we see that the term under the square root becomes

20+v—1 20 +v 20+v+1
204+v—14+6 20+v+25 20+v+1+26

one for § < 0, i.e., for @ < 1/2. Thus, for the values of @ where these vectors are applied, the
estimates |[v*||2 < g and |lv7||? < p hold true.

Here, each fraction is smaller than one for 6 > 0, i.e., for @ > 1/2, and strictly larger than
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Chapter 4 The nonintegral case

Putting all of the above together and having recourse to Lemma 4.2, for @ > 1/2, we arrive at

VB2 > MEn T
llo* 113
. 2_2wF(N+v—1)(N+a/+v—3/2) I(a+v+N-3/2)
B [(N+2a+v-1) r2(B+1+N-3/2)
« ! Nfl L(2)j+28+1)+p+ 1/2)( N/il‘-' (w))2
=0 F(2j+1) =max{0,N /2-j-p)
>2_2wF(N+v—1)(N+a/+v—3/2) ‘ I(a+v+N-3/2)
- '(N+2a+v-1) Ir2(B+1+N-3/2)
w2 [,u——l'w'lJ min F(2j+2ﬁ+1?(2j+ﬂ+1/2) 20
2 N/2-pu<j<N/2-1 rej+1)
while, for @ < 1/2, we get
VE 2 > MEne T
* o113
>2_2wF(N—2,u+v+1)(N—2/,t+oz+v+1/2)F2(a'+v+N—3/2)
B I'(N-2u+2a+v+1) ?2(B+1+N-3/2)
X! Nfl L(2)+26+1)@j+f+ 1/2)( NI (w))z
=0 F(2j+1) =max{0,N /2—j~p)
>Z_ZwF(N—Z,u+v+1)(N—2,u+a+v+1/2) ‘ (a+v+N-3/2)
B (N -2u+2a+v+1) r2(B+1+N-3/2)
Xﬂ_l.z_[u—rmJ - F2j+2B+ D)@+ A+ 12) o,
2 N/2-u<j<N/2-1 rej+1)
Because of
F2j+28+1)2j+p+1/2) T(2j+2B+1)(2j+B+1/2)
(2j+1) - T@) @)

the term in the minimum is increasing for 8 > —1/2 with respect to j, and because S is positive
due to the assumption 8 — @ — v > 0, the minimum is given by
I'(N-2u+2B+1)(N-2u+pB+1/2)
(N -2u+1) ’

As before, we let u tend to infinity in a lower order than N, in such a way that 2 [”_TWJ ~ U
and N — 2u ~ N. Following this, we derive in both estimates the asymptotic lower bound of
N for the norm of the matrix E,. For F,,, we use the same approach and get the same bound.
Thus, the lower bound of ||An || and with it the lower bound on y,(l") (@, B) is asymptotically

equal to the upper bound shown before. We have, consequently,
yr(lV) (a, IB) ~ nv’

whenever § —a — v > 0 also if S — « is not an integer.
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4.4 The Hermite case

4.4 The Hermite case

In the current section, we will show that the best constant nﬁf) (a, B) in the Hermite case when

B —a—[v/2] = 0and B — @ not an integer, as well as for 0 < 8 —a < [v/2] with arbitrary 8 — «,
has the asymptotic behavior

(@, B) ~ (2n) Fenl?

as n goes to infinity. In order to determine this constant, we want to apply the same ideas as in
the Laguerre and Gegenbauer cases. The estimate for the upper bound works exactly like it was
done there. However, the approach for the lower bound is not that simple anymore. We still
apply the operator to some cut-off vector and estimate the norm of its image, and we partition
the sum after some initial simplifications into parts. Now, the entries are not given in a closed
form but as a sum. Even worse, this sum is alternating in the last column. But, the sums X, and
%3 in the proof of Lemma 4.2 were characterized by the sign of the last entry. With a more direct
approach, we could just provide estimates for 8 — @ > [/2], and it was even more technical
than the proof of Lemma 4.2. But it turns out that a closer examination of the hypergeometric
term leads to the desired results in a relatively simple fashion.

As in the proof of Lemma 4.1, set
bp=B-—a—-|B-al, Bo=pB-06o, PBi1:=Ppo+(1-06).
From Section 3.2, we know that
(@, ) = @m) P21+ 0(1/m))
whenever 8 —a —[v/2] € Ny, a, 8 > —1/2. Then, for u(-, @) as in (4.3), Lemma 4.1 tells us that

1 (@, B) = 0l (@, (1 = 60) Bo + 60B1) (4.20)

< (@, o) ™" (0 (. 1))’
— (zn)(50(1—90)+ﬁ190—a+v)/2(1 +0(1/n))
= (2n)B=2(1 + O(1/n)) (4.21)

holds for all 8 — @ — [v/2] > 0. Even more is true. In Section 3.2, we have moreover shown
that

nd (@,@) < (2n)""2(1 + 0(1/n))

for arbitrary a > —1/2. However, we did not provide statements for f—a €{1,2,...,[v/2]-1}.
Therefore, Lemma 4.1 does not immediately give the necessary bounds. We weaken the as-
sumptions of Lemma 4.1, so that we do not need the statement for all integer differences. Note
that we could even start with an arbitrary (countable) set of differences for which we know
that the bound is valid. However, this generalization is not necessary here. In our case, we set
0o = (B — @)/[7/2] in the proof of Lemma 4.1. With 8y = @ and 3 = « + [¥/2], all necessary
conditions for the interpolation theorem of Stein are fulfilled. Employing this idea in the proof,
we can show the following lemma.
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Chapter 4 The nonintegral case

Lemma 4.5. Under the assumptions of Lemma 4.1, for any y > —1 (y > —1/2), we have
||T”&—>7 = ||DV”(L'—>'y- U‘

ID” flig < C (e, B fle  forall f € Py, (4.22)

is true for some 3 = 3’ satisfying B’ —« € Z, and forall B = B’ + k, k € K C N, K containing
infinitely many numbers, and ifC,(,V)(a,,B) satisfies

G (@, f'(1=0) + (B + 1)0) = (G (@.8) (G (@. 8"+ k)°. 6 €o.1],
forallk € K, then (4.22) holds for all B € [B’,0).
Applying this lemma to the above considerations, we have shown that (4.20) holds whenever
B—a=0.

With the same argumentation as before, we investigate submatrices derived by a permutation
and restrict our inquiry to the matrix Ep (see Section 3.2). However, we will not work with the
matrix directly, but flip it like we did before. Thus, we actually investigate By = Jy En Jy. The
entries b of this matrix then can be written as

I'(N/2-j+B-1/2) L(N/2 -k +[7/2])
T(N/2-)) T(N/2—k+ /2] +a-1/2)
y (N/2 —Jj+ 2] - 3/2)(,3 -—a- Wﬂ)
[v/2] J—k

bjk =2"T([/2] +1) \/

< .F -, k—j, B+N/2—j-1/2
YA\ B-a-Dl+k-j+1, N2—j-1/2
As in the Laguerre and Gegenbauer cases, we define vectors vt = (v;)jy:/oz_l andv™ = (vj_)j.\]:/oz_1

for @ + [v/2] — |¥/2] = 1/2 and @ + [v/2] — |¥/2] < 1/2, respectively, by

! N/2—C+ V2] .
+ 0 jsu-1
Vi =140 N/2—C+ V2l +a+1/2
0 : otherwise,
Jru-1
N/2—C+ V] +a—-3/2
) \/ oLl
0y =1 ¢ [2—€+[v/2] -1
0 : otherwise.

The parameter y is chosen as in the Laguerre and Gegenbauer cases. Up to a permutation, the
overall picture is similar to the one in Figure 4.4. We confine ourselves to the detailed treatment
of ||Byv™||2 and note that the norm || By v~||; can be estimated similarly. As before, we want to
employ Lemma 4.2. Anticipating some of the arguments used in the proof and translating the
lemma to our situation, we have

u

1 j 2
. ﬁ—(l #_l-ﬁ_a’-l 26-2a . )
=0 & (kZ:O ( k )) =2 [ 2 J 2 osrjnsl;r}—l pi>

J
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4.4 The Hermite case

for f—a € (0,00) \N,ue N, u>[g~-al,and p; >0, j=0,...,u— 1. Infact, this is even
true for 8 — a € (0,00) without the restriction not to be an integer. Then, the sums terminate
naturally, and the corresponding lines each add up to 25~?. Now, consider the jth entry of

BNU+,

5y oY T(Ty [(N/2-j+B-1/2) C(N/2+ |v/2] +1)
(Byv™); = 27T (P21 + 1)\/ T(N/2— ) T(N/2+ V2] +a + 1/2)
« (N/2 —Jj+ V2] - 3/2)(,3 -—a- |"’/ﬂ)
[v/2] J—k

<ty ok L )
j+1, N/2—-j—-1/2

We are interested in statements for large N only. Then, the last upper argument and the last
lower argument in the hypergeometric series are almost the same and cancel out. Hence, the
,F, transforms to ,F,, and

F =[], k—j .1) _ (B—a~-[v]+ 1)[v/2]
P B-a-Del+k—j+1 ) (B-a-[l+k—j+1)

Together with the coefficient ('8 T ,EV/ 2]), this turns into (ﬁ:]r:)'
J J
The vectors v* and v~ were chosen in such a way that ||v+||§ < uand ||v_||§ < p is granted for

the values of @ where they will be applied. Therefore, we can estimate the spectral norm of By
with help of the estimate for the hypergeometric series by

T(N/2+ [v/2) +1) AST(N/2-j+ B—-1/2)
C(N/2 + [V/2] + @ + 1/2) L(N/2-j)

1By o*lI3

o113

2v

2
BN lle 2

Jj=0

x [(N/Z—j + [v/2] —3/2)]2 2 (ﬁ‘“) 2.
[v/2] L\j-k

Employing Lemma 4.2 in the aforementioned form, this is not greater than

o T(N/2+|Y/2] +1) P [B—al o2B-2a
T(N/2+ /2] +a+1/2) 2
. {F(N/z —Jj+B-1/2) T2(N/2—j + /2] - 1/2)}
X  min .
0<j<u-1 '(N/2-)) I2(N/2-j—-1/2)

Again, letting p(N) go to infinity controlled by N — 2u ~ N and y — [w] — [¥/2] ~ u, this is
asymptotically equal to

92B-2a+2v (%) L/2]=v/21-a+B+2[v/2] _ (zN)ﬁ—aH/'
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Chapter 4 The nonintegral case

Thus, we get the asymptotic lower bound

+
NEN o = M > (2n)B-ami2
o™l

exactly as we wanted. Similarly, we can prove the estimate
1FN oo > (2m) B2,

and since 1, (@, 8) = max{|| Ex llco. | Fv lloo}, We get 1 (@, B) > (20)P=2*)/2_ Together with
(4.20), we arrive at

(@, B) ~ (2m)#L?

as n goes to infinity, for arbitrary 8 — a > 0.
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We now turn our focus to the “negative case.” The previous chapters heavily depend on the fact
that the symbol of the underlying Toeplitz operator is bounded, either explicitly or implicitly
when interpolating between the integral cases. However, this is not the case anymore if
w=pB-a—-v<0,or B—a < 0in the Hermite case. What we are going to show in the
following sections is that the smallest constants for the Laguerre, Gegenbauer, and Hermite
cases can be expressed in terms of the operator norm of some integral operator. It might seem
strange at first to replace something as simple as a matrix by something as complicated as
an integral operator, but by the means of a very handy result by Widom [28, 29], which was
independently also rediscovered by Shampine [23, 24], this indeed simplifies things.

The result of Widom and Shampine has been used and proved before. Although we only need
the result in the L2(0,1) case afterwards, we will give the more general form for an operator on
L?(0,1), p > 1, which may be of use for tackling similar problems. The proof is very close to the
proofs given in [8] and [9] with the main difference being the operators R, and §,, occurring
inside.

Lemma 5.1 (Widom and Shampine). Let Ay be an (N X N)-matrix and define the simple function
kn(x,y) = (AN)|Nx),INyJ- Let Ky be the integral operator on LP(0,1) (1 < p < oo) that is
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Chapter 5 Integral operators

given by

1
(Kn £)(x) = f kn (x, ) F()dy.
0
Then,
IANlloo = NIIKN loo-

Proof. We define I} as the interval [k kl:}l) and yy as its characteristic function. Furthermore,

let fg := (CN,|| - ||,) denote the vector space of all N-tupels with complex entries equipped
with the £, norm. To keep the notation simple, we will assume in the following p < oo, but we
point out that the same can be done for p = co by just replacing any occurrence of 1/p with a 0.
We define the operators

N-1
Ry : €N — LP(0,1), (idaly = NP " vk,
k=0
N-1
Sp : LP(0,1) — €7, f {NH/P f(t)dt}
Iy k=0
For R,,, we determine the operator norm as
fo INVP 3N Xk)(k(t))pdt NS [ Ixg1Pde
IRp1IZ = su — = sup N
Zk =0 |xk|P Zk:o |xk|P
ZN 1 |x_[ [P
=sup —=—— =1
sy 1xkl?

the supremum over all vectors x = {xk}N lin 5 N with || x|| p # 0. On the other hand, we get
for S, that

SrL N [ fwdd]” NPT SN (S, 1£ ) < 11dr)”
1Sy 1% = sup > < sup
1715 1715
— _ p-1
< oup NP lszzol flk |f(@)IPde - (flk dt) ~ oup NP—1||f||£N1—P _
- 715 1717 ’

the supremum taken over all f € LP(0,1) with || f||, # 0. The first inequality is the triangle
inequality first for the sum and then once more for the integral, while the second one is Holder’s
inequality. Taking f = 1, we see immediately that ||S, |l = 1.

Taking a vector {xi}; ! € £}, we verify that
SpRp(xiJk = Sp (Nl/l’ > kax) = {Nl_l/le/p f > xix (t)dt}
k I % j

I{fojdt} = {xk}k.
Ij i
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That is, S, R), is the identity operator on fg .

Let Ay = (a; j)fyj_:lo and set fy = flk f(t)dt. A simple calculation yields

N-1
(RpANSp ) =N Y anfi  forx € [£.51).
k=0

This is just N(Ky f)(x) for every x. Therefore, R,AnS, = NKy and with S,R, = I, we
conclude Ay = NS,KnR,.

Collecting all of the above, we arrive at

IKnlloo = INT'Rp AN Spllco < N7HIRp llooll AN lloollSp lloo = N ™M AN lloo
= ”N_INSpKNRp“oo < KN oo,

which is what we wanted to show. m]

The integral operator for the Laguerre and Gegenbauer cases is known to be the Volterra integral
operator L;, , 5 on L*(0,1). It is given by

1 X
Ly DD = 5 v fo Xy (x =y PRI (y)dy. (13 revisited)

(

Reducing the study of the smallest constant to determining the norm of such an integral operator
introduces new problems. However, tight estimates for ||L, , gllw are available. Moreover,
when 8 = @ + v — 1, it is known [7, 8] that the norm equals 2/(v + 1) times the inverse of the
smallest positive zero of the Bessel function J(q—1)/(v+1)-

The main difficulty, however, is that the operators have piecewise constant kernels obtained from
the matrix representations of the differential operator in the appropriate bases. Do they converge
in the operator norm to the operator (1.3)? Things get a lot easier when S—a—v < —1/2. Because
the operator then is Hilbert-Schmidt, it suffices to show the convergence in the Hilbert-Schmidt
norm.

Still open is the problem for —-1/2 < 8 — a — v < 0, since then the operator is no longer
Hilbert-Schmidt. Nevertheless, it can be shown that the operator belongs to some Schatten class
and is thus compact. While this is not of immediate use in determining the best constant, it
could be of help in further attempts towards closing the gap —-1/2 < f—a —v < 0.

A similar restriction holds in the Hermite case, where the operator in question is Hilbert-Schmidt
only for 8 — @ < —1/2.

Before we dive deeper into the details of each of these operators, we will embark on two small
lemmas that play an important role in proving the convergence in every case. The results are
more or less folklore. Nevertheless, we restate them here for reference and give a proof for the
sake of completeness.

This first lemma provides an alternate representation for the incomplete beta integral occurring
in some of the proofs.
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Lemma 5.2. Let 0 < z < 1, a,b > 0. Then, for the incomplete beta integral,

z a l_b
B(z;a,b) = a-l(1 — )P4 - F @ ;2.
(z;a,b) fou (1—-u)” du P EPPIRE

Proof. First, we expand (1 — u)?~! by the binomial theorem:

¢ ¢ o (b—1
a-1 1- b—ld — f a-1 ( ) —uw)"du.
fo u " (1-u u . u ngzo " (—u)"du

The sum is absolutely convergent for |u| < 1, and the integrals foz u"*"1dy are bounded for
a >0, n > 0. So, we can exchange the sum and the integral. Furthermore, the identity

(b - 1)(_1)n _ (n - b) _ (1 —'b)n
n n n!
holds. In consequence,
b) nta—t (1-b), " (a),(1-b), 2"
f du Z n+a ! Z (a+1), n!

z“F a,1->b g
=— 5z
a '\ a+1

The next lemma uses the previous one to show that integrals of the occurring kernels are
sufficiently small when taken over a small stripe.

Lemma 5.3. Let «, 8,y be real numbers, 8,y > =1, @ + B + vy > —2. The two integrals
£ 1 X
f P01 -2)dz and f x"f yP(x — y)’dydx
0 & xX—-&
converge to zero when € > 0 tends to zero.

Proof. We estimate the term (1 - z)” from above. For y > 0, clearly (1-2)” < 1. Fory € (-1,0),
wehave (1-2)Y < (1-g)Y <(1-g&)'=1+ 12 Therefore,

& &
B Y B &g _ &£ <
(1 -2)Ydz < 1+ )dz=(1+ % — 0,
f()‘ ( ) j; ( 1—5) ( 1—8)a+1 £—50

since a +1 > 0.

For the second integral, we first substitute z = y/x and then pass from zto 1 — z, i.e.,

1 X 1 1
f xaf yP(x - y)’dydx :f x“+ﬁ+y+1f £ - z)7dzdx
& xX—& & 1-g/x
1 elx
= f x @Byl f 27 (1 - z)Pdzdx.
£ 0
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5.1 The Laguerre case

By virtue of Lemma 5.2, this is the same as

1 y+1
& +1, —
f xa+,8+y+1( /%) JF, (7 ﬁ,f) dx
s y+1 Y +2 X

y+1 1 > +1 _
& f Z (¥ +1).( ﬁ)TSTxa-{-B—de'

v+1 (y+2),7!

For the moment, assume that @ + g is not in {—1,0,1,2,...}. Since the hypergeometric function
converges absolutely for x > ¢ (i.e., for ¢/x < 1; see, e. g., Theorem 2.1.2 of [2]), and the integral
fg ! x¥*B~7dx is bounded, we can exchange the integral and the sum. Now, we can write this as

S GHED (B0 By . g
(a+ﬁ+1>(v+1>;0 2 By & )

vt (7+1,—,3—CY—1,—/3 )
£

]

:(oz+/5’+1)(7+1)32 vy+2, -f-«a
gVtBiy+ y+1, -B—a-1, —,3‘1
(@+B+1)(y+1)%°2 y+2, -B-« ’

The two appearing hypergeometric series converge absolutely. Since both exponents, y + 1 and
a + B+ 7y + 2, are greater than zero, the whole sum goes to zero as ¢ does.

In case @ + B8 € {-1,0,1,2,.. .}, for exactly one value of 7, the above argumentation is not
working anymore. Consider @ + § = m € NU {-1,0}. We may still exchange the sum and the
integral, but then, for 7 = m + 1, we cannot express the integral as above. The sum of the first
m + 1 terms is finite, and the factor £7*! ensures that this goes to zero. A similar result holds
for the absolute convergent sum starting with m + 2. The corresponding term for 7 = m + 1 is

87+1 (y + 1)m+1(_ﬁ)m+1 8m+11
Y+1(y+2),,,(m+1)!

So, this is a constant times

og(1/e).

log(1/¢e)

y+m+2 _
€ log(l/s) - (1/8)(l+,8+)/+2 >

due to our choice of m. Since @ + § + y + 2 > 0 by assumption, this tends to zero as 1/& — oo,

i.e., for € — 0. Thus, the integral vanishes also in that case. m]

5.1 The Laguerre case

In [7], it has already been stated that the integral operator (built from the matrix representation
of the operator of differentiation) with respect to the Laguerre bases converges in the norm to
the operator

(L} o pN)(x) = m‘f; xR yPR(x — yy BT f(y)dy. (1.3 revisited)
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16.5 g

0.0

Figure 5.1: Matrix plot for n = 50, @ = 0.3, 8 = 0.6, v = 2 in the Laguerre setting.

However, the statement is left without a proof and only mentions that this can be made precise.
This is indeed true, but not at all trivial, although elementary. In the following section, we want

to deliver the missing details. Figure 5.1 gives a rough idea of what the matrix in this case may
look like.

As before, we use the abbreviation w = 8 — @ — v and assume w < —1/2. In that case, the
operator L, 5 is Hilbert-Schmidt. By a simple calculation, we end up with

1 TB+DM(~20-1) 1
MPw)  T(f-20) v-o

2 2
1L}, 4 g2 = ILy.apll? =

which holds for w < —1/2, which is the best possible for the Hilbert-Schmidt norm.

To show what we promised above, we follow a path similar to the one in [8]. There, the square
[0,1]? was split into N2 small squares. On each of those the kernel of the operator derived from
the matrix representation is constant. Then, the borders surrounding the area of integration
received special treatment when not both of the kernels vanish. Here is the main difference. In
contrast to just considering the border of width 1, i.e., j = k, we now widen the border slightly
in order to get better estimates for the remaining interior of the integration area.

Theorem 5.4. Letw = B —a — v < —1/2 and let aji denote the entry jk of the upper-right
nonzero matrix block of the matrix representation of the operator D” in the bases mentioned above.
Then, the operator (1.3) is Hilbert-Schmidt and the integral operator N~ =A/2+a/2=D g with
the kernel N~=B/2t@l2"D g || Ny converges in the Hilbert-Schmidt norm, and thus in the

operator norm, to the operator L;, 5
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5.1 The Laguerre case

Proof. We set

kn (x,y) = N~OBIZlZDg o iny s

X, — x—a//z B2 X — —w—l’
p(x,y) o) yre(x = y)
representing the kernels of the integral operators N~ =8/2+@/2=D g\, and L, 5 respectively.
Divide the square [0,1]% into N? small squares with side length 1/N. These squares are denoted
by Qjk, 0 < j,k < N -1, with Qi = [#,]%1) X [%,%) The kernel ky is just a constant on
each of these squares.

First, we note that both, k and p, vanish on Q i, for 0 < j < k < N — 1. So, there is nothing
to prove. We are left with verifying that

N-1 J
Z fog lkn (x,y) = p(x, y)2d(x, y)

j=0 k=0

tends to zero as N goes to infinity. Next, we will separately treat different groups of squares.
This is done to overcome some computational difficulties caused by the kernel p possibly having
poles along the borders of the integration area (namely for w > —1 along the diagonal, for @ < 0
in the origin, and for 8 < 0 along the x axis). Furthermore, we widen the diagonal border to
derive a better estimate in the inner part.

To this end, we introduce the parameter m € N, the width of the border, i. e., the number of
squares side-by-side on a direct line from the actual domain boundary to the non-border area.
This parameter allows a more general consideration of the convergence along these borders
and provides better estimates for the terms resulting in a singularity at the borders, especially
in the case j = k. For the arguments to hold, it is necessary that m = o(N). A lower bound on
m has to be chosen such that N = o(m?). In other words, there should exist constants ¢,C > 0
and some 0 < &,6 < 2/3 with ¢cN'/3*% < m < CN'~% for all N larger than some N, € N.

We denote by 0Q the set of squares alongside said border. This set is further subdivided into
three groups of squares, i.e., 9Q = Q; U Qy U Q3 with

Q1 = Qoo (the corner),
N-1

Q, = U Qjo (the lower border),
j=1
N-1 J

Q; = U Ok (the diagonal part).

Figure 5.2 illustrates these sets.

On 9Q, we utilize

ff |kN<x,y>—p(x,y)|Zd(x,y>ssz |kN<x,y>|2d<x,y>+sz lo(x, ) Pd(x, y).
oQ oQ oQ
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y (%)

o mQ

mQ,
m Qs
p(,1) >0

Figure 5.2: lllustration of the partition of the area of integration (N = 18,m = 4).

We split up both integrals even further and evaluate each on its own. For the integral over ky,
we have

f f e G ) Pd(x, ) =
oQ

fg |kN(x,y>|2d(x,y>+fQ |kN(x,y>|2d(x,y>+fQ e (x, ) Pd (e, ),

and for the integral over p, we get

m+1

[ pemracn < [T [T ok
oQ 0 0
1 + 1 x
o A e R B e ey
mA-}—l 0 mA-}—l x_m[\-}—l

the estimate taking place in the last part by increasing the area of integration (see Figure 5.3 for
details).
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5.1 The Laguerre case

y (%)
B 00
m [ [p
0 0
1w
m [
m+1
N
1 X
[ e
mAJ;lx_mTH
p("')>0
x ()

Figure 5.3: Increased area of integration. Squares are partially taken from the inner part, or
counted twice (N = 18, m = 4).

We now take a closer look on each of these six integrals. First,

1 T(r+1) T(B+1)I*(-w)
M2(—w)T(v+a+1) (1) TI2Q1)

1
fg kv (e, e, y) = 5 N

This is just a constant times N“™”. Since w — v < —v — 1/2 < 0, it converges to zero as N goes
to infinity. Secondly, we have

) o T(j+v+1) T(B+1)TI%(j-w)
fQZVCN(x’y)' d(x,y) =N I2(-w) Z F(j+v+a+1) T(1) TI2(+1)

F(ﬁ+ 1)
I"Z

— Nw—v

Z O (14 0(1/))).

For —a—2w—2 # —1, thisis O (N®™~¥~2v~1) = O(N-A~1), which goes to zero because 8 > —1
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Chapter 5 Integral operators

and therefore — 8 — 1 < 0. On the other hand, for —a@ — 2w — 2 = —1, this is O(N“™ log N),
which goes to zero because of w — v < 0.

The third part needs a little more elaborate analysis. Here, we have

ff e (x, )P, y) = N VZ Z e (4.5

Jj=1 k=max{j-m,1}

wv IS T(k+ €+ v+ 1Dk + B+ DL - w)
Z < T(k+C+v+a+DI(k+DIE(C+1)°

We consider the £ = 0 part separately. It equals

N@™ T?(-w)
I2(-w) T2(1)

Z kP (1+ 0(1/k)).

This is O (N?©*1) for f—a # —1,and O(N“™ log N) for B — a = —1. In both cases, this tends
to zero. The rest of the sum equals

N©—Y m N-1

Z Z(k +O) KB (1 + 0(1/k) + O(1/0)). (5.1)
I2(-w)

=1 k=1

For @ > 0, the inequality (k + €)™ < k™% holds. Therefore, the sum becomes

F2 —w) Z 202 Z K1+ 0@/k) + 0(1/0)).

For B—a # —1, this is O (N ™VHB~atp=20=1) = O((N/m)?***1), and thanks to 2w +1 < 0 and
m = o(N), this goes to zero. If § — @ = —1, the sum is O ((N/m)~?"~!log N), also approaching
zero.

Finally, for -1 < @ < 0, we have (k + €)™ < k=% + £~?. So, we can split (5.1) into two parts,
ignoring the O terms and the leading constant:

m m m N-1
N K—Zw—Z kﬁ—a NeV 5—2(4)—2—(1 kﬁ.

We have just shown that the first sum converges to zero. The distinction between @ > 0 and
a < 0 was not essential in the final argument. Note that, since —2w — 2 > —1 and —a > 0, the
exponent for ¢ is never equal to —1 so we do not have to consider this. Therefore, the second
sum is O ((N/m)***@*1) "and since 2w + 1 < 0 and @ < 0, this goes to zero.

To summarize, we have shown that ffaQ lkn (x,y)|?d(x,y) — 0 as N goes to infinity and m
increases with N.
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5.1 The Laguerre case

We now turn to the integrals over the kernel p. The first integral is particularly easy to evaluate.
Ignoring the constant factor I'"2(—w), we here have

m m+1

1\;rl _ X o |(B+l)|(—2w—l)fN o
@ B _ 2w-2 — y—w-1
jo‘ X j(; y (x y) dydx ( 2 ) . X dx

_ F(ﬂ + l)r(—Za) - 1) (m + 1)1/—0.)
T TB-20)(v-w) \ N

Clearly, v — w > 0, and thus the value of the integral goes to zero as N increases.

Again, ignoring the constant factor I'"?(-w), we get the following for the second integral:

1

1 ¥ 1 Nx
f 1 x“’f yP(x — y) 2 2dydx = f 1 xﬁ_"_z“’_lf P - 7)) 2dzdx
8 0 e 0

N

1 e
< f X dx - f P -7,
m}\-;l 0
1

1
m+
f 0y - f Z'B(l _ Z)—Zw—zdz
0 0

1
1 m+1 _ _
f P -2z,
0

IA

V—w

Clearly, the last integral converges to zero as N (and with that m) goes to infinity. This follows
from Lemma 5.3 with € = 1/(m + 1), together with 8 > —1 and —2w — 2 > —1. Therefore, the
above expression goes to zero.

For the last integral, we have

1 X 1 X
f f lp(x, y)|?dydx = f x_“f yP (x — y) "2 2dydx.

This converges for the same reasons as above, and by Lemma 5.3 it tends to zero with N going
to infinity.

So, we have shown that ffaQ lo(x,y)|?d(x, y) goes to zero as N goes to infinity. Putting all

of the pieces together, it follows that ffag lkn (x,y) — p(x,y)|?d(x,y) — 0. What remains to
show is that the difference in the inner area also becomes arbitrarily small.

By choosing m large enough, for the border along j = k, we have j — k > m and therefore
1/(j — k) < 1/m, for all remaining squares. So,

G-k 1+01/(-k)) =G -k (1+0@1/m)).
Now, both, ajx and N("_“’_Z)/zp(j%f, %) with &,7 € [0,1), are equal to

JTRKPIR(G— k)TN 1+ O(1/)) + O(1/k) + O(1/m)).
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Therefore,

djk 2
'Nv—ﬁ/zm/z -~ pxy)| dx,y)

JTRP G - )77 (0(1/7%) + 0(1/k) + 0(1/m?)).

= Nv—a)
Next, by the above estimate and the restriction w < —1/2, we get
(] - k)—Zw—Z = (] _ k)—Z(u—l(j _ k)—l < j—Zw—lm—l,

since —2w — 1 > 0. Summing up and employing this estimate, we get that the difference is at
most

N-1 j-m-1
Ner 3TN et (0(1/2) + (1K) + 0(1/m?)
Jj=m+2 k=1
N-1N-1
S Na)—v j—(l—zw—lkﬁm—l (0(1/]2) + 0(1/k2) + 0(1/”’[2))'
Jj=1 k=1

We split this into the three parts associated with the O terms. For each part, we have to consider
several corner cases. Keep in mind that @, > —1and v > 1.

The part belonging to O(1/;?) is smaller than a constant times

N-1 N-1
m—le—v Z j—a—2w—3 Z k'B.
j=1 k=1

For 2w + a + 2 # 0, this is O(m™!N~!). Otherwise, this is O (m™'N~!log N). In both cases, the
part goes to zero as N and therefore m increase.

Similarly, we can treat the sum associated with O(1/k?). It is not greater than a constant times

N-1

m—lN(u—v Z —Q—2W— IZ kﬁ 2

j=1

Under the assumption that 8 # 1 and 28 — @ — 2v # 0, this is O(m~!N~1). For both, g = 1 with
2B —a—2v+#0and B # 1 with 28 —a —2v =0,itis O(m 'N~'log N). Finally, for 8 = 1
together with 28 — @ — 2v = 0, it is O (m"'N“~" log® N). In either case, this tends to zero.

Last, we look into the part belonging to O(1/m?). This is at most a constant times

m3N@~ VZ —@—2w— lzkﬁ

j=1
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5.2 The Gegenbauer case

If 28 — a —2v # 0, this term is O(m™>N) and, for 28 — a — 2v = 0, it is O(m™>N log N). This
is the part where we need N = o(m?®). Given that, the sum goes to zero, too, as N, m go to
infinity.

Finally, we have shown that the Hilbert-Schmidt norm of the difference of the scaled operator
Ky and the operator L], | 5 converges to zero as N goes to infinity, thus proving our claim. 0O

5.2 The Gegenbauer case

In this section, we are concerned with the Gegenbauer case. The problem for 8 — a < v has
already been treated in [10], where 8 —« was assumed to be an integer. The restriction simplified
things a lot, since the term (y? — x?)@*~A~1 which plays an important role in the investigation,
is just a polynomial. Then, a result from [8] can be applied immediately. Assuming 8 — « is not
an integer, this is not the case anymore. As mentioned in [10], the result can be extended to
this situation, requiring a more elaborate analysis. In what follows, we will show that this is
indeed true.

As before, since yﬁlv_)l < %(11/) < yil‘:r)l, we may assume that N = n — v + 1 is an even number.

We use the notation from (4.18) and employ (4.19). Then, we look at the four parts separately,
inserting k = [Ny/2] and j = | Nx/2]. Thereafter,

= (Ny) " ™'2(1+ O(1/N))

T (2LNy/2]))(2[Ny/2] + @ + v +1/2)
I'(2LNy/2])

and

= (Nx)P*2(1 + O(1/N)).

['(2[Nx/2] +2B8+1)(2[Nx/2] + B+1/2)
T(2[Nx/2) +1)

For the other two terms, we set |[Ny/2] — |[Nx/2] = N(y — x)/2 + 6y (x,y), with some
[6n(x,y)| <2and |[Ny/2]+ [Nx/2] = N(y +x)/2+ dn(x,y), with some |65 (x,y)| < 2, not
necessarily the same. Then, we obtain

IF'(@a+v+|[Ny/2] +|Nx/2] +1/2) L w1
T(B+1+|Nyj2l+ [Nxj2] +1/2) (lNyJ * lNTJ) (1 +O(N(y1+x)))

= (X +n+ony) T (1+0(4))
= (W) (g et (14 Bty

<(1+0(4))
=(5)" w0 (14 0(3)).

Analogously, we derive

N y/2I-INx/2] w ~ ot 1o
n™ LNy/zj_LNx/ZJ)‘(N/z) (T(~w)) " (y—x)" "L (1+0(1/N)).
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3808.0 g

0.0

Figure 5.4: Matrix plot in the Gegenbauer case for n = 50, @ = 0.2, 8 = 1.6, v = 2, already
modified by a permutation matrix.

Putting all of the above together, we see that, for large N, the entries e|nx/2), | Ny/2] Of Ey
behave like

20.)+2
I'(-w)

-w+v-1

P2 a2y 2 _ =907l 4 O(1/N)).

In slightly different form, this has already been stated in [10]. Defining K,, as the integral
operator on L?(0,1) with kernel e INx/2), N y/2)> this indicates that N ~*1Ky should converge
to the operator Gy o 5 on L?(0,1) given by

2w+

2 1
Granp ) = Frms [ 372y a2 gy, 52

Employing Lemma 5.1, we therefore should have

Enlles ~ 5N M Graplloo = 251Gy apll.
We confine ourselves to 8 —a < v—1/2, for the same reasons as before: the operator in question
then is Hilbert-Schmidt and it suffices to show the convergence in the corresponding, easy
accessible norm, which in turn implies convergence in the operator norm. This will be done in
the following theorem. The matrix plot in Figure 5.4 gives an idea why we have to take special
care when showing convergence close to the diagonal.
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5.2 The Gegenbauer case

Theorem 5.5. Letw = B — a — v < —1/2. Then, the operator (5.2) is Hilbert-Schmidt and
the integral operator N“™*'Kx with the kernel N“™*e|n /2|, |ny/2) converges in the Hilbert-
Schmidt norm and thus in the operator norm to the operator G, o g.

Proof. Instead of the operators given in the statement, we consider the convergence for the
adjoint operators. The kernel ky (x, y) of N“™"*'Ky, is given by

kn(x,y) = NO 27 \/F(ZLNX/2J+V+1)(2LNx/2J+a+v+1/2)
N ,I/ =

I'(-w) ['(2[Nx/2]+2a+v+1)

y \/F(ZLNy/ZJ +2B+1)(2INy/2] + B+1/2)
['(2lNy/2] +1)
IF'(@+v+|Nx/2]+|Ny/2] +1/2) T(-w + [Nx/2] = [ Ny/2])
T(B+1+[Nx/2)+ Ny/2]+1/2) T(INx/2]—|Ny/2]+1)

for |[Nx/2] > | Ny/2], and is zero otherwise. We denote the kernel of G*

v by p(x, y), which
is given by

w+2
T(-w)’

for x > y, and is zero otherwise. First, by a simple calculation,

1 1
”G;a,ﬁnng f lp(x, y)|*dydy

22w+4
Fz _w)f Za/+1f 2ﬁ+1(x y ) —2w— zdydx

280t3 20+1+2B+1-4w—4+1 B —2w-2
-~ x— a+1+26+1-4dw—4+ dxf (1-7)"%724;
I'?(-w) Jo 0

22T (B+ I (2w - 1)
I (~w)(2v - 20)T(B - 2w) =%

,B+1/2x—a/+1/2(x2

p(x,y) = —yhH !

which holds for w < —1/2. Thus, the operator is indeed Hilbert-Schmidt.

We now have to show that

1 1
f f e (x. ) — p(x, )Py dx (53)
0 0

goes to zero as N goes to infinity. The proof is very similar to the proof of Theorem 5.4, where
we have shown this for the Laguerre case.

We divide the area of integration [0,1]? into N/2 X N/2 squares Qjk,0 < j,k < N/2—1 of side
length 2/N, given by

0 = [32452) x [5.2552).
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Since the kernel ky is constant on each of these squares, things are eased up. The double
integral (5.3) then equals

N/2-1

D fo v () = Pl )P, ).

7. k=0
Since both kernels are zero on the squares Q i, for k > j + 1, we do not need to consider these
terms.

As in the Laguerre case, divide the main area of integration Q = {Jo<x <j<n/2-1 Qjk into a
border set dQ2 and an interior set Q, and split dQ even further into the union Q; U Q, U Q3
with Q;,Q;, and Q3 given by

Q; = Qoo,
N/2-1
Qp = U Qjo,
j=1
N/2-1 J

a-U U ow

Jj=1 k=max{j-m,1}

Here, we make use of the parameter m again. As before, m € N is dependent on N in such a
way that it is o(N) and N = o(m?). Recall Figure 5.2 to get an idea of the partition. Indeed, the
partition is done in the same way as in the Laguerre case with the only difference that the side
length of the small squares is 2/N instead of 1/N.

Again, we employ the estimate

ff lkn (x,y) — p(x, y)I?d(x, y) <
oQ

fo |kN(x,y)|zd(x,y)+2ff lp(x, ) Pd(x, y),
o0 o0

as well as the equality

ff lkn (x, y)IPd(x, y) =
oQ
ffg lkn (x, y)1Pd(x, y) + ffg lkn (x, y)1d(x, y) + ffg lkn (x, y)I1?d(x, y)

and the estimate

ff lp(x, y)I2d(x, y) <
oQ
2(m+1)

=~ X 1 ¥
f f lp(x, y)Pdydx + f f lp(x, y)*dydx
0 0 2mi) Jo

X X
2
+ s dydx.
f;(m+l) L_Z(erl) |p(x y)l y X
N N
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5.2 The Gegenbauer case

As one may anticipate from the preparations, the rest of the proof is done in the same way as
for Theorem 5.4. The main difference lies in the details.

First, we have

f lkn (x, )1Pd(x, y) =
Q

2720 T(v+1)(a+v+1/2)TQ2E+1)(B+1/2) T?(a+ v+ 1/2)T?(~w)

N2w—2v
r2(-w) TQa+v+1) (1) I2(8 +3/2)I2(1)

This is a constant times N**~% which goes to zero for N to infinity, because of 2w — 2v < 0.
Secondly, for kn on Q,,

2720 T(2B+1)(B+1/2)I'%(j —w)

f lkn (x, y)|?d(x, y) = N>~
Qp

I2(-w) r2(j+1)
Nflf(2j+v+1)(2j+a+v+1/2)F2(0!+V+j+1/2)
£ [(2j+2a+v+1) 2B +1+j+1/2)
N/2-1
= CN2@-» Z jemte3 (14 0(1/)))

=1

with some constant C not depending on N. For —4w — 2v — 3 # —1, this is O (N~?$72) and, for
—4w - 2a — 3 = -1, it is O(N**~? log N). In both cases, this tends to zero with growing N.

Finally, for kn on Q3, we get

f f e Cr. ) PdCx, ) =
Qs

2—20.)
T2 (=20)
1—‘( zw) Jj=1 k=max{j-m,1}

T2k +28+1)2k+p+1/2)T?(a+v+j—k+1/2) T?(~w + j + k)
% 2k +1) r2(B+1+j—k+1/2) I2(j+k+1)

Ne / rj+v+1)2j+a+v+1/2)

% N2w—2v
I'2j+2a+v+1)

Set £ = j — k. Then, this is the same as

N2w=2v 2720 & N’i”r(zk+2f+v+1)(2k+2£+a+v+1/2)
I*(-w) & — F2k+20+2a+v+1)
FQRk+28+1)2k+B+1/2)T?(a+v+{L+1/2) T?(~w + 2k + ¢)
T2k +1) 2(B+1+€+1/2) T?2Qk+¢+1)

Additionally, we let the inner sum run even further, up to N/2 — 1. By doing so, the sum can be
made only larger.
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We consider the part for £ = 0 separately. This term is just a constant times

N /2-1 N/2-1
N2w-2v Z k—2a+1+2ﬁ+1—2m—2(1 +0(1/k)) — N2w-2v Z kZV(l +0(1/k)).
= k=1

So, this is O(N***1) and because of our assumption w < —1/2, this vanishes as N goes to
infinity.

For the rest, the sum is at most a constant times

m N/2-1
N2@= Z (2k +20)720* 1 (2k)2BH1L720 2 2k + £)72072 (1 + O(1/k) + O(1/0)).
=1 k=1

For —2a + 1 < 0, we employ the estimate (2k + 2£)722*! < (2k)™2@*! and, for 1 > —2a +1 > 0,
the estimate (2k + 2£)72@*1 < (2k)™2@*1 + (2£)72@*!, We apply a similar estimate on the term
(2k +¢€)72®~2 For —2w -2 < 0, we again get (2k +{)~2*~% < (2k)™?“~2, For —2w—2 > 0, we get
2k + 0)7%72 < c(w) ((2k) 72972 4 (~2972) with ¢(w) = 1 for —2w — 2 < 1, and c(w) = 272¢73
otherwise. So, the resulting sum is a constant times

N/2-1
N2w—2v if—Za)—Z Z k213+1 [(k—2(1+1 + {-2(t+1)(k—2w—2 + 5—2&)—2)]
=1 k=1

plus the O terms. Note that the terms £72¢*! and £72“~2 only occur if the above conditions
are satisfied. We could write this more precise, but this would be even more confusing. In
the following, we will show that any of these actually four sums goes to zero, provided said
conditions hold.

In any case, we have the sum

m N/2-1
N2‘“_2"Z€_2‘”_2 Z (B2
£=1 k=1

This is O((N/m)**m™"), which goes to zero. Next, if —2w — 2 > 0, we additionally have the
sum

m N/2-1
N2w=2v Z€—4w—4 Z K 2B-20+2
£=1 k=1

This becomes O ((N/m)*®*3) if 2w + 2v + 2 # —1, and since we assumed —2w — 2 > 0, it follows
4w + 3 < —1. On the other hand, if 2w + 2v + 2 = —1, this is O (N?*®~2 ;~4@3 log N), which
can be written as O((N/m)™*?log N). Therefore, this also goes to zero. Analogously, for
—2a + 1 > 0, we get the sum

m N/2-1
N2w-2v Z [w—2a-1 Z K 2B—2w-1
=1 k=1
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5.2 The Gegenbauer case

This is O ((N/m)***!N?@~1) which obviously tends to zero, too. The last part is only present
if both, —2a + 1 > 0 and —2w — 2 > 0, are fulfilled. Then, the sum

m N/2-1
Nzw—2vzf—4¢u—2a—3 Z K2B+1
£=1 k=1

is O ((N/m)**2a+2) The exponent of N (and m~!) may be written as 4w + 4 + 20 —2 < 0 — 1.
So, the last part also goes to zero. Note that none of the occurring exponents in the single sums
was —1.

Summarizing, we ensured that ffag lkn (x, y)|?d(x, y) goes to zero as N goes to infinity. Next,
we investigate the three parts of ffaﬁ lo(x,y)|?d(x, y). First, we get

2m1) X 2u)+4 2(m+1) N
lp(x, y)|*dydx = - f —2<t+1f B2 — g2y 2o2gy
0 0 I'(-w) 0
20m+1)

= ﬁ xzﬁ—2a—4w—1dxfl ,3(1 — 7)"72y
I*(-w)

_ 2B T(B+)I(-2w-1) f”””“ oty
I'(-w) I'(B-2w)

22020 (B+ DI (—2w — 1) (2(m+1)\* 7
T T2(—w)T(B - 2w) (v — w) N ’
Since 2v — 2w > 2v + 1 > 0 and m = o(N), this clearly converges to zero. Next, we have

2

1 % 92w-+4 1 Z
f f |p(x’ y)lzdydx — x—2(1/+1 f 2ﬂ+l(x yZ)—Z(u—Zdydx
2(%“) 0 ]"2( a)) (m+1) 0

220*3 (2B-20-4w-1 Nix 202
paa—dw (1 -2 2dzdx
" Cw) Jumen :
2w+3 —1
< 2 xz"_z‘”_ldx\[(mﬂ)2 P -7)7%d;
[?(-w) Jamn 0
92w+3 1 ﬁ
g xz"_z‘*’_ldxf( VP - )
I2(~w) Jo 0
22w+2 7(m+1)2
— ¥ —2w—2
= ——————T 7(1-z dZ.
o) —w) (-9

Since the obtained integral is over a nonnegative function and exists for all m, it goes to zero as
m goes to infinity by Lemma 5.3. Last, by the same substitution, we get

1 X
2
«ﬁ(”‘”) L_Mm lp(x, y)I"dydx
N N

22&)-{-3 1

1
2v—2w-1 B 1= —2w—2d dx.
FZ(_w) (m+1) X j(‘l_Z(m+1))2 < ( Z) ax
Nx
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Chapter 5 Integral operators

And with the help of Lemma 5.3, we conclude that this goes to zero.

Again summarizing, we have shown that f fag |o(x, y)|%d(x, y) goes to zero as N and m(N) go
to infinity. Therefore, the convergence in the Hilbert-Schmidt norm along the border Q2 is
confirmed.

It remains to prove the convergence in the interior Q. Here, the inequality 1/(j — k) < 1/m
holds. Therefore, we have
I'-w+j-k)

— (i _ -w-1
TG—ran U asoam).

Furthermore, since Lk <

&.l»—t

Fa+v+j+k+1/2)
F(B+1+j+k+1/2)

=+ )T (1 +01/)).

We get a similar expression for the corresponding terms in p(x, y). Therefore, the resulting
term (j2 — k?)72~2 may be estimated from above by j~*“*~3m~1. So, we arrive at

lkn (x, y) = pCx, )| =

—2w

[ (-w)

NZa)—Zv

jR 02 2B 1 (0(1/72) + 0(1/K%) + O (1/m?))

onQjx C Q. Summing over all Qi C Qand ignoring the constant factor, we obtain the sum

N/2-1j-m-1
NZw 2v —1 Z Z —2a—4w— 2k2ﬁ+1(0(1/J2) +0(1/k )+0(1/m ))
j=m+2
N/2-1N/2-1
< N2w 2v -1 j—2(1—4w—2k2ﬁ+1(0(1/j2) +0(1/k2) +O(1/m2)).

j=1 k=

—_

These are actually three sums. The first, coming from the O(1/,?), is at most a constant times

N/2-1 N/2-1
N2w=2v , —1 Z j—4a)—2af—4 Z KB+
j=1 k=1

Given that —4w — 2a — 4 # —1, this is O(1/mN). Otherwise, it is O(m 'N~'log N). In both
cases, this goes to zero as N goes to infinity. The sum attached to O (1/k?) is not greater than a
constant times

N/2-1 N/2-1
N2w=2v, —1 Z j—4w—2a'—2 Z K2B-1
j=1 k=1
Here, the critical exponents occur for —4w — 2@ — 2 = —1 and 8 = 0. First, if —4w — 2 — 2 # —1

and B # 0, this is O(1/mN). For —4w — 2a — 2 = -1 and B = 0, it is O(m 'N?®"?" log N).
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5.3 The Hermite case

In the other two cases, it is O(m ' N~!log N). The sums always go to zero as N and m go to
infinity.

Again, we get the lower bound on m from the last sum belonging to O (1/m?). This sum is at
most a constant times

N/2-1 N/2-1

N2w=2v =3 Z j74w72072 Z kzﬁﬂ’

j=1 k=1

which, for —4w—2a—2 # —1,is O(m™3N), and for —4w—2a—2 = —1, we obtain O (m™>N log N),
both going to zero as N and m go to infinity.

In conclusion, we know that the Hilbert-Schmidt norm of the difference of the modified operators
N@™*1Ky and GF 5 8oes to zero as N increases. Therefore, we have proved our claim. O

So far, we have verified that the scaled integral operator built from the matrix E, converges
in the Hilbert-Schmidt norm to the operator G, o,g. The same is true if we exchange E,, with
F,.

As already stated in [10], we can define the unitary operator V on L2(0,1) by
(VHG) =222 F () with (VIO =27 P (),

With this, we get

2w+1

1
—1 _ -a/2,,B/2 _ -w-1
(VG gV N = Frs fo X yPR(x - y) T f(y)dy

= 2w+1 (L;k/,(l,ﬁf) (.X)

and conclude
IGy.a.plleo = 2°" Ly, a.pllo-

Putting all of the above together, we have now proved that
Y @, B) ~ 220 FHLY L glleo

for f — a < v —1/2 as n goes to infinity.

5.3 The Hermite case

As in the Laguerre and Gegenbauer cases, we consider 8 — @ < —1/2. Note that we do not have
the direct dependence on v anymore. In the following, we will show that the norm of the matrix
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263591.7

—28841.4 ==

Figure 5.5: Matrix plot for n = 50, @ = 1.3, 8 = 0.6, v = 6 in the Hermite setting, already
permuted and modified by alternating signs.

Ey from above is determined by the operator norm of the integral operator

2T ([v/2] + 1)
[(a - B+[v/2]) Jx

& [v/2]1-¢
B\(B—a- 4 X
§ Z{ (5)( [v/2] —{’) (m) f(y)dy. (5.4)

In contrast to the aforementioned cases, we now have a polynomial in x/(y — x) in the kernel,
which is not necessarily greater than zero in the interesting interval. Figure 5.5 illustrates
this. To get the desired result, it does no longer suffice just to let j and k go to infinity in

C;;,)Zk (@, B), but we have to transform it first a little bit.

1
xﬁ/2—1/4y—@/2+1/4+(L"/2J—f"/21)/2(y _ x)a—ﬁ+f"/21—1

(HY) 5 f)(x) =

Since the sign of the matrix entries changes between two entries, we cannot immediately
work with these. Instead, we consider the matrix Ex = SEn S, where § is the diagonal matrix

S = diag({(—l)j};.v:/(f_l). Because ||SAS|| = ||A|| holds for any matrix A, this does not change

our claim.
Before we can proceed, one more technical lemma is required.
Lemma 5.6. For x,u € C, m,t € Ny, the following identity holds:

i ey B ] P A ]

=0
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5.3 The Hermite case

Proof. We begin by evaluating the sum on the right-hand side and writing the binomial coeffi-
cients in terms of rising factorials. Therefore,

Sl - S

=0

This can be rewritten as

T

(=™ Z(T_f"'l)[(_ﬂ_m)m_g(_x)[_ (u+1), < (=1),(=x),

(m—1)'7! £ S m=DITN A (p1) 0

Applying the Chu-Vandermonde identity, this is the same as

(L+1),, (x+,u+1)T_(/1+m (x+/1+7')
(L+1) (m—1)! 7! B m—T) T ’

which is exactly what we wanted to show. O

We can now go on with deriving asymptotic expressions for the modified entries ¢, given by
€jk = (—1)k7 C;;,)Zk (@ B), of the matrix Ey introduced above, and thus derive an integral
operator in a way similar to the methods used before. For making the following work, we
have to assume that k — j > [v/2]. Ignore the coefficients before the sum in C;;,)z i (@ B) fora
moment. It remains to investigate the sum
min{[v/2],k—j} ,. . _1/2 . . —_1/2 Ty
(=1 Z (J+f/21 /)(ﬁ+J+f/21+T /)(,3 @ f/ﬂ)‘
[v/e] -1 T k—j-t

7=0

First, we note that

(ﬁ’—a—FV/ﬂ) :(,B—a—fV/ﬂ)(B—a—kﬂ') (721 = 7!
k=j-1 k=j=r2)\ -t J ==+ D

Furthermore, by Lemma 5.6 the equality

(J' +[v/2] - 1/2)(/3+J' +7- 1/2) N (f"/ﬂ —f)(j +[v/2] - 1/2)(,3)
V2l -7 T V2] -7 [v/2] = ¢ 4

=0
holds. Hence, the above sum is equal to
el = .
k—j[Ba- f"/ﬂ) (] +[v/2] - 1/2) (ﬂ)
v (k—j—FV/ﬂ Z”Z; mal-¢ J\e

X(FV/ﬂ—f)(,B—a—kH) ([7/2] = )!
r =)\ =1 ) k== PR+ Dy

(5.5)
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Chapter 5 Integral operators

Ignoring the first factor temporarily, exchanging the order of summation, and performing an
index shift, this becomes

] (j + /2] - 1/2) (ﬂ) " (rvm - 5) (/3 —a-k +j) (/21 =€~ 1)!
ve1-¢ e T Pl = =1 ) (k=j =121+ 1) s

£=0 =0

Writing the inner sum in terms of rising factorials, this is the same as

M (v =1+ 1) (B—a—k+j— 21 +C+T+1) s

7! (k=j—=1Tv/21+1) [v/a]—f—T
(@=B+k=J)m-c ( —([V/2] =), j—k+¢ _1)

(k=j =T+ Do T\ B —k+j=[/1+0+1

(@=B+k=J)p-c (B-a—=T121+1) ¢

(k=j=T21+ D) e (B=—a—k+j =121+ 0+ 1)1,

B (B-—a—-[v21+1) [v/2]-€

k= -D D

Therefore, the whole sum just is

7=0

= (-1) [v/21-¢€

= (-1) [v/21-C

“Zm (j + )] - 1/2) (,8) (B—a =1/ + e
v [v/2] = ¢ 4 (k —j—=1[v/2]+ 1)|’v/2'|—f

) [v/2] (ﬁ)(ﬂ_a+£) (j+f+1/2)|',,/2‘|_[
- I\l =€) (k—j—Tv/2]+1) |'V/2‘|—f‘

=0
So, (5.5) can be written as
1yt (,8 —a- [V/z]) fz” (ﬁ)(ﬁ —a- 5) (G +C+1/2) g
k—j - [v2] e\t =€ ) k= =T+ Dy
Finally, we set j = | Nx/2] and k = | Ny/2] and put everything back together. With this, the

entry (—l)k_j_rv/ﬂcg’)zkw (a, B) becomes

=0

207N/ + 1)\ (pmamviomt pro-1/a Y 2= /2 ya=BTvl-
Fa— B+ /2]
erZ’Jm B\(B—a-t\( x \"1*
2\ e\ pr - e J\y=>

Analogously, one can show that the corresponding term for Fy is

1y (ﬁ —a- Lv/zJ) LZ” (B) (,8 —a- 5) G+ E+3/2) e
k=j=17] CNDL =) (k= j = D2l + 1) gy

times an (1 + O(1/N)) term as N goes to infinity.

£=0

88



5.3 The Hermite case

Thus, after setting j and k as above, it is clear that the entry (=1)k=/~1"/2] Cgll oy (@ B) 18

2(,8—a+v)/2+11-‘(|_v/2J + 1)
I(a - B+ [v/2])

N-B-a)/2o1 BI2-1/4 —a 21 4112 2 _ e lvf) -t

y
Lv/z] o Lv/2)-t
<2 (=) )
2i\e)\ - ) \y—x

To show that the operators are Hilbert-Schmidst, first set

times an (1 + O(1/N)) term as N goes to infinity.

—a/2+([/2]-v/21)/2+1/4 ﬁ/2—1/4(x _ y)@—ﬁﬂ"/ﬂ—l

[v/2] [v/2]-¢
vl i [ R
Zi\e)\ 1 -¢)\x—y

for x > y, and zero otherwise. Up to a constant, this is the kernel of the adjoint operator. We
have

p(x,y) =x y

2[v/21 ¢
e e € L YV (x ° y) .
=0
with
o min{¢, [v/21} B B B—a—-[vR+i\(B-—a—-[]+t—i 5.6)
! v/l = i)\l = £+ i (—i :

i=max{0,£—[v/2]}

Hence, ff[o P |p(x,y)|?d(x, y) is a finite sum of terms of the form

1 P
Aff x—cx+(|_V/2J—[V/2])+1/2f y/3+£—1/z(x _ y)2a—zﬁ+2["/2]—2—€dydx
0 0

for £ = 0,...,2[v/2]. The inner integral converges as long as two conditions are fulfilled,
B+L€+1/2>0and2a — 28 + 2[v/2] — € — 1 > 0. The first is true for any £ by our standing
assumption S > —1/2. The second condition holds if 8 — @ — [v/2] < —(£ + 1)/2. Since it has to
be fulfilled for every 0 < £ < 2[v/2], this condition becomes 8 — @ — [v/2] < —[¥/2] — 1/2,i.e,,
B — a < —1/2. This immediately implies 8 — @ — v < 0, which is just the remaining condition
for the convergence of the full integral.

Therefore, the Hilbert-Schmidt norm of the integral operator derived from the matrix Ey is a
finite sum of some constants times convergent integrals and hence finite, when 8 —a < —1/2.

Analogously, we can show that the corresponding integral operator for the matrix Fy is Hilbert-
Schmidt whenever 8 — a < —1/2.
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Theorem 5.7. Let a,8 > —1/2, B —a < —1/2, and v € N. Furthermore, let Ex and Fn be
defined as above. Then,

(a@—B+v)/2 (a—B+v)/2
IEn oo ~ (%) IHS plleos  IFNIlo ~ (5) IH,"),

BHOOv

where H(O) and Hilzl pare the integral operators on L(0,1) given by

1
(HO 1)) = 2T+ 1) (7 pra-tsa aretfon(il-FDiz , _ a-pere-i

['(a - B+1v/21)
[v/2] [v/2]-¢€
B—a-"C X
L G [ AR

and
2”F(Lv/zJ+1) 1 Carf2-1/a+ (-1 vl
H(l) BI2+1/4  —a/2-1/4+([v/21=¥/2)/2(,, _ ya—B+]v/2]-1
Lv/2] Lv/2]-€
M=) G5)
X e dy,
;(6 A Fy)dy
respectively.

Proof. We show the theorem for Ep . The claim for Fjy can be verified analogously. First, let

Ky denote the integral operator on L?(0,1) with the piecewise constant kernel determined by

kn(x,y) =€ Ny),|Nx|> Where € = (—l)k_fejk = (—l)k_jcg,)zkw(a,ﬁ). Furthermore, set

2"T([v/2] + 1) /241 /4+(L/2]=[/21) /2

Bl2-1/4, a-B+[v/2]-1
T(a—f+ 20 (x=9)

p(x,y) =

Yy

[v/2] [v/2]-€
B-—a-0\[ y
XZ( )(rv/z1— )(x—y)

for x > y, and zero otherwise. It is the kernel of the adjoint operator of Hl(,o()y 5 We claim that
the scaled operators (N/ 2)B-a—v)/2Hl g converge in the Hilbert-Schmidt norm (and thus in
the operator norm) to the operator Hf/o()l 5 provided that 8 — @ < —1/2. Note that the operator
Kn corresponds to the transposed matrix Ey instead of the matrix Ey itself.

As we have done before, split the area of integration into squares of length 2/N and consider
the sets on the border of the area in which at least one of the kernels does not vanish. We use
the notation from Theorem 5.4 and utilize the same sets Q;, Q,, Q3, and IQ = Q; U Qy U Q3.
Again, we employ the estimate

f ag|<N/2)<ﬁ—“—V>/2“kN(x, y) — p(x,y)Pd(x, v)

<o [ evracn +2 [[ lpwnracs
o0 0Q
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5.3 The Hermite case
on the border area Q2 and show that both integrals go to zero as N increases.

We have

N2 f oG Pacey) =
1

Nﬁ—a—VZZVr‘Z(l'V/Z-l + 1)r(ﬂ + 1/2)1—~(|',,/(Z|:| izja:’-—l— 1/2) (l_ /ZI:IV/Z]I/ ),

which is just a constant times N#~?". Because of 8 — @ < —1/2 and v > 1, this tends to zero
as N goes to infinity.

We turn our attention to the area Q,. Here, we sum over all j greater than or equal to 1, while
the index k is zero. Therefore,

Nﬁ—ﬂ/—v+2 fg |kN(x,y)|2d(x, y) —
2

J=1

Nz L(j+1v/2] +1)
B-a-vo2vr2(ry,
NB Tl + DT (B +1/2) ) (\/F(j+f”/21+a+1/2)

2
y (f"/ﬂ - 1/2)(ﬂ —a- f"/ﬂ) F ( =Rl =, p+1/2 )
/2] j P\ Boa-DR - 12 ) )
Examining the hypergeometric series, we see that this is actually 1 + O(1/j). Consequently,
the above integral is at most a constant times

N/2-1
Nmam Nl e -2p -2 ) g o1/ )
Jj=1
N/2-1
= N N jesi (g o1y ))).

J=1

We split the sum in the part belonging to the factor 1 and the part belonging to the O(1/j)
term. The first part is O(NA~12) ifa — 28 + v — 1/2 # 0, and O (NS~ log N) otherwise.
Similarly, for @ — 28 + v — 3/2 # 0, the second part is O(N#73/2), and O(NP~* log N) in
the other case. Either way, both parts of the sum go to zero as N goes to infinity.

In order to tackle possible singularities along the diagonal, we use the previously established
idea. We introduce the parameter m = m(N), which grows with N but not faster, and is
restricted by N = o(m?®). First, treat the diagonal j = k on its own. Here, the integral over the
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square of the scaled kernel kp evaluates to

- . . . 2
NP T2 (/2] + 1) Nil(\/F(J +B+1/2)T( + /2l +1) (J + /21 - 1/2))
j=1

LG+ DI+ Vel +a+1/2) [v/2]
N/2-1
= 2 NFT N (14 0(1/))).
=

Again, we investigate the parts belonging to 1 and the O term separately. For §—a +v # —1, the
first part is O (N%#~2¢+1) ‘and it is O (NP~ log N) otherwise. In contrast, with S —a + v # 0,
the second part is O(N?#72%), or O(N~ log N) for § — a + v = 0. Because of v > 1 and
B — a < —1/2, all terms vanish for large N.

For the rest of the area along the diagonal, we set £ = j — k. The entries can then be written as

. T(k+B+1/2)T(k+¢+ vz +1)
2 l—‘(I— /2-| + 1) \/r(k + 1)1"(k + £+ |—V/2-| + a + 1/2)

X(k+[V/z]—l/Z)(,B—a—[V/z]) F( —[2l, -t B+k+1/2
[v/2] ¢ Y \B—a—[l-C+1, k+1/2

By keeping ¢ constant and letting k — oo, the hypergeometric term becomes

—[v/2], =t

2F1(,8—a—[*’/2]—€+1;1) (1+0(1/k)).

Now, we can evaluate this with the Chu-Vandermonde identity and see that the whole series is
simply a constant times 1 + O(1/k) + O(1/{). Together with the other terms, the rest of the
integral over €, is at most a constant times

N/2-1

m —
N,B—a—v Z kﬁ—1/2+2fV/2] (k + [) LV/ZJ—|—V/Z-|—(I+l/2€2(l—2ﬂ—2(1 + O(I/k) + 0(1/5))
=1 k=1

In the event of |v/2] — [v/2] — @ + 1/2 < 0, we can estimate the (k + ) term solely by k. With
this, the above sum does not exceed

m N/2-1
Nmamy N gt N B (14 0(1/K) + 0(1/0)).
=1 k=1

As before, we split the sum into three parts. First, the part belonging to 1 is O ((N/m)?$~2a+1),
given that 8 —a + v + 1 # 0. On the other hand, if 8 — @ + v + 1 = 0 the sum becomes
O((N/m)">!logN).

For the term with O(1/k), with 8 — a + v # 0, this evaluates to O( N/m)*72@*1N~1) and to
O((N/m)"*m 'log N) for B — a + v = 0. Again, both go to zero.
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5.3 The Hermite case

Finally, the last term is O ((N/m)*#=2* ;=) if 2 — 28 -2 # 0and B—a + v +1 # 0. If
2a-28-2 = 0,itbecomes O (N~ logm), and for f—a+v+1 = 0,itis O((N/m) > 'm~'log N).
In any case, the term goes to zero as N goes to infinity.

If, on the other hand, [v/2] = [v/2], i.e., v is an even number, we can only guarantee that
v/2] — [V/2] —a +1/2 < = < 1/2, because of S — a < —1/2. If this expression is negative, we
are done. Assume now 1/2 > —a + 1/2 > 0. Note that then necessarily 8 < 0. Under these
conditions, the term (k + £)"/21=["/21=@+1/2 cap be estimated from above by k=+1/2 4 f=@+1/2,
Consequently, the sum may be estimated by

m N/2-1
N,B—a—v 2520—2,3—2 Z kﬁ_a+v(1 + 0(1/k) + 0(1/5))
=1 k=1
m N/2-1
o NB-a—v Zga—zﬁ—3/2 Z KB =121+ 0(1/k) + 0(1/0)).
=1 k=1

The first sum has already been handled. In the second sum, consider the term belonging to
1. Suppose @ — 28 — 3/2 # —1, and note that always 8 + v — 1/2 > 0. Then, this sum is just
0((N/m)2ﬁ_a+1/2). If, on the contrary, @ — 28 —3/2 = —1, then the sum is O (N?~%*1/2 Jog m),
and because of our assumption, the exponent is strictly smaller than B, and thus negative.
Therefore, the term goes to zero in either case.

Analogously, the term belonging to O(1/k) goes to zero. The exponent in the sum over k is
still strictly greater than —1, and for the sum over ¢ the same distinction as above has to be
made. Keeping that in mind, the term is either O (N~}(N/m)?A~*1/2) or O (N*P~2~1/21og m).
In both cases, there is the additional factor N1, so the arguments from above apply here, too.

Finally, for the O(1/{) term, we have to treat @ — 28 — 5/2 = —1 separately. Given that, the sum
is O(N?P=2*1/21ogm) or O (m~'(N/m)*$~@+1/2) otherwise. Again, this goes to zero.

What we have shown by now is that the integral over the square of the scaled kx vanishes on
0Q. Next, we prove that this is also true for the integral over p in this area. Recall the square of
the kernel p(x, y):

oCe. ) = 22 T2([v/2] + 1)
’ I2(a - B+ [V/21)
2[v/2]

X Z Aspvy—cy
=0

ﬁ—1/2+€x—a+ Lv/2]—[v/21+1/2 (x _ y)20—2/3+2 [V/z]—z—[,

where Aypv/,1-¢ is defined in (5.6).

Here, the integral

2(m+1)
-~ X

lp(x, y)|*dydx
0 0
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is a constant times

2|'v/2] 2(m+1) x

N
Z Azrv/ﬂ—ff ot lv2l=T /z1+1/2f yBUZH (o _ ) 2a-2BH2[/102q g
=0 0 0

Again, from § > -1/2, B —a < —1/2,and € < 2[v/2], we derive that 8+ —1/2 > —1, as well as
2a — 2B+ 2[v/2] — € — 2 > —1. Therefore, the inner integral converges for any € = 0,...,2[v/2]
and we get

2[v/2] 2(m+1)

F(ﬁ + ¢+ 1/2)F(20z - ZB + 2|—V/2-| -{- 1) fN —ﬁ+(l+v—ld
T(2a — B+ 2[v/2] — 1/2) 0o -

Azpvpa1-t
=0

. . 1 2(m+1) |V B+
The last integral is independent of £ and evaluates to ;=== (T) . The rest of the sum

is independent of N, and thus the integral goes to zero.

In the following, we will omit the sum and the factors A, ,1-¢, since the convergence to zero
does not depend on them. We treat the integrals henceforth for a fixed £ = 0,...,2[v/2].

At the lower border, the corresponding integral is

1 2/N
f( ) x—a/+|_V/2J—|'V/z'|+1/2f / y,B+[—1/2(x _ y)Za—25+2|'V/2'|—€—2dydx.
2(m+1 0

Using the substitution z = y/x in the inner integral, its upper bound becomes 2/N x. Because
x is greater than 2(m + 1)/N, the integral does not get smaller if we change the upper bound
to 1/(m + 1). Following this, the inner integral does not depend on x anymore. Therefore, the
double integral is in fact a plain product of two integrals. By reducing the lower bound of the
integral over x to 0, we also do not make this integral smaller, and we can simply evaluate it.
Putting all this together, the integral is

1

1 T g

f P2 gyra-2BaR=t-2g
v-B+aJ

The last integral converges for the same reasons as above, and it goes to zero by Lemma 5.3.

To finish the study of the border, we have to evaluate the integral

1 X
f x—a/+LV/2J—[V/2]+1/2f _ y,8+€—1/2(x _ y)2a—2ﬁ+2|'V/2]—€—2dydx.
x—=5

2(m+1)

The assumptions being fulfilled, Lemma 5.3 again delivers the vanishing property.

We now discuss the inner part. Notice that here j — k > m. Therefore,

2[v/2] 2v 2
J k) _ J Kk 2 _ nB-a-v 29T ([-V/z-l + 1)
‘kN(N’N) 'O(N’N)| N ; AZTV/21—5r2(a_IB+[v/2])

X kﬁ+f—1/2j—a+l_v/zj—|'V/2'|+1/2(j _ k)20—2ﬁ+2|'v/2'|—f—2 (0(1/k2) + 0(1/]2) + 0(1/”’12))
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5.4 Schatten class operators

We write

(j — k)2a—2BH2D[1=L=2 _ (j _ jy2a=2B42D =1 gyl o jRam2fealv/]=C-1,, -1
because 2a — 28 +2[v/2] — € — 1 is guaranteed to be positive. With this, we can give the following
upper bound on the difference in the interior of the area of integration, ignoring a constant
factor:

2[v/2]
Z Agrv/z],[N’B_a_vm_l
£=0
N/2-1 N/2-1
e Z ja—2,8+v—€—1/2 Z kﬁ+f_1/2(0(1/j2)+0(1/k2)+0(1/m2)).
j=1 k=1

As mentioned before, we just investigate the summands for each ¢, avoiding to write the sum
every time. As we already got used to, treat the sum for each O term separately.

First, for 0(1/j%), the sum is O(m !N !) if @ = 28 +v — € # 3/2, and O(m !N 'log N)
otherwise. In any case, it goes to zero.

Next, for O (1/k?), we have to consider four cases. If neither « =28 +v—£€+1/2, nor S+ —3/2
is zero, the sum is O (m~!N71). If one of the two is zero, the sum becomes O (m 'N~!log N),
and if both are zero, it is O (m~' N~ log? N). All vanish for increasing N and m.

Finally, for O (1/m?), we have O(Nm™3) if « =28 +v—£€+1/2 # 0,and O (m > log N) otherwise.
Here, the condition N = o(m?®) comes into play for obtaining convergence to zero. Given that,
this also goes to zero.

In conclusion, we have shown that the scaled-down integral operator derived from the matrix
representation of the operator of differentiation in the Hermite case converges in the Hilbert-
Schmidt norm, and thus in the operator norm, to its analogue with continuous kernel. m]

5.4 Schatten class operators

We are now at the point where we have completely proved Theorems 1.1, 1.2, and 1.3. Thus, the
constants are fully identified for the parameter differences mentioned there. However, in each
case, there is a small gap for which we still do not have a result. One particular case is addressed
by the paper [11], namely the Laguerre case. Since this paper was done in close connection to
the present work, we will bring the main achievements here.

One point that is particularly striking is the method of the proof for showing the convergence
of the operators. It heavily relied on the integral operator being Hilbert-Schmidt. That made
the analysis somewhat easier. However, one might get the idea that this assumption is a little
bit to strong, and we can achieve even more if we drop this or at least replace it with less strict
prerequisites. Hence, one can come up with the following conjecture, presented in [11].
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Chapter 5 Integral operators
Conjecture 5.8 (Conjecture 1.1 in [11]). Let a, 8 > —1 be real numbers, v be a positive integer,
and putw = 3 —a — v. Then,
43 (@, B) ~ Gy (a, Byn® 12
with

2% for w >0,

Gole,p) = { [|L* for w <0,

v plleo

where L), | 5 IS the Volterra integral operator on L*(0,1) given by
1 X
Ly p P = 55 f X yPR (= )T f(y)dy. (13 revisited)
- 0

Here are the necessary notions and notations. Let T be a bounded operator acting on some
separable Hilbert space H, and let {si (T) }xery denote the sequence of singular values of T in
nonincreasing order. The operator T is said to belong to the pth Schatten class if {sx (T) }x en
belongs to £7 (N). We write S, for the set of these operators and define the norm by

ITlls, = {sk(T)}kenller -

In the following, we only consider values of p that are powers of two and therefore just write
ITlls, = ITllz» for p = 2". Clearly, ITllz 2 ITll;2 = ... 2 ITllz» > ... > [IT]lo. All we need is
the equality ||T||z» = ||T*T||%/?, (which holds for all n > 1) and the fact that the Hilbert-Schmidt

Zn—l
norm ||T||; of an integral operator T is equal to the L? norm of the kernel of 7.

In the next subsection we will prove Theorem 1.4 (see Theorem 1.2 in [11]) and in the following
two subsections we will prove Theorem 1.5 (Theorem 1.3 in [11]).

Proof of Theorem 1.4

The factor (I'(—w)) ™" is irrelevant for the compactness of the operator (1.3). Thus, we consider
the operator M defined on L?(0,1) by

(Mf)(x) = f X2y B (e Tl f ().
0

For 0 < r < 1, let M, be the operator on L?(0,1) that is given by

(M, £)(x) = f K2 yBR(x — ) f(y)dy.
0

The squared Hilbert-Schmidt norm of M, is

1 rx 1 r
f f x U yP(x - y) 2 dydx = f f P20y B - ) 202y dx.
0o Jo 0o Jo
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5.4 Schatten class operators

This is finite if 8 > —1 and w < (B — @)/2. Consequently, these two assumptions ensure that
M, is compact. We have

X

(=MD = [y - ey

rx
1

= [ e pra - g G,
,

and since w < (B — a@)/2, it follows that

1
(M = M) ()] < f yP2(1 = ) fxy)ldy.

r

We therefore obtain

1 1/2
M = M) fllLz 1) = (f (M ~ Mr)f)(X)Ide)
0

1/2

1 1 2
s( f ( f yﬁ“(l—yrw-wf(xyndy) dx) ,
0 r

and by virtue of Minkowski’s inequality for integrals, this is not larger than

1 1 1/2
f ( f yﬂu—y)—z‘“—ﬂf(xy)ﬁdx) dy
r 0
1 1 1/2
=f yﬁ/z(l—y)“‘"l(f If(xy)IZdX) dy. (5.7)
r 0

Taking into account that fol If(xy)|?dx = y! foy |£()|2dt < y_1||f||zz(0’1), we see that (5.7)
does not exceed

1
f yPP 2@ = )N fllzo,ndy-
.
In summary, we have shown
1
(M = M) Iz < ( f yPrP (x - y)—w—ldy) 1 lz20,1)- (5.8)
r

The assumption w < 0 guarantees that the integral appearing in (5.8) goes to zero as r — 1.
This implies that |M — M, || — 0 as r — 1, which proves M to be compact. O

Auxiliary results and an example

Let T be an integral operator on L%(0,1) with a real-valued kernel k(-,-) and T* its adjoint.
These are then given by

1

1
(TF)(x) = fo k) f()dy, (T )() = fo Ky ) f(y)dy,
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Chapter 5 Integral operators

and thus,

1 1
(T*T) f)(x) = fo ( fo k(z,x)k(z,y)dZ)f(y)dy-

We recursively define a sequence of kernel functions {k;n },,>¢ that are associated with integral
operators Ky». Set

y~2xBI2(y — x)"@7 1 for x <y,
k] (X, y) =

otherwise.

Clearly, K is just I'(—w) times the operator (1.3). Next, set

1
kon(x,y) = f kon-1(z,x)kyn-1(z, y)dz.
0

It follows that Ky» = K, Kyn-1, and, to prove Theorem 1.5, we are left to show [|Kilan < 0.
This is the same as ||(K;K1)" ||, = ||Kn1]|, < o0. So, we reduce the estimation of the 2"th
Schatten norm of the operator K; to the estimation of the Hilbert-Schmidt norm of the operator
Kyn-1, which is given by

1,1
||K2n71||§ = f f kon-1(x, y)kon-1(x, y)dxdy.
o Jo

To anticipate the arguments that will be used in the proof of the general case, we start with
considering the case n = 2. Thus, suppose —1/2 < w < —1/4. Our aim is to show that K; is a
Hilbert-Schmidt operator. Since k;(x, y) = k2(y,x), we have

1 1
K, I3 = f f ka(x2,x0)ka(x0,x2)dxodx,
o Jo

1 1 1 1
= f f f f ky(x1,x2)k1(x1,%0)k1(x3,%0)k1(x3,x2)dxodx;dxodxs.
o Jo Jo Jo

The indexing of the variables might seem strange at the first glance, but it will turn out to be
perfect when treating the general case. Notice also that all these kernels are nonnegative, which
implies that the integral over the cube is equal to the iterated integrals, and that we can change
the order of integration.

We have to distinguish between the cases x; < x; and x; > x;. To this end, we split the area of
integration, i. e., the cube [0, 1], into 4! disjoint simplices

Q= {(x0,%1,%2,x3) € [0,1]* : Xz(0) < Xr(1) < Xn(2) < Xz(3)}»

where 7 is a permutation of the numbers 0,1,2,3. The integral for || K,||? then splits into 4!
integrals over Q. In all but four cases one of the kernels k; (x;,x;) is zero. These four cases
are the permutations which send (0, 1,2,3) to (1,3,0,2), (1,3,2,0), (3,1,0,2), or (3,1,2,0). We
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5.4 Schatten class operators

are therefore left with showing that each of these four integrals is finite. Let us consider the
integral corresponding to the last permutation, i. e., the simplex given by x5 < x; < x3 < x¢:

1 X0 X2 X1
Iy = f f f f (,D4(X)dX3dX1d)C2dX0
0 0 0 0

with
@a(x) = xgx7 P 6B (oey — x1) 77 (g = x1)77 (33 = x3) ™7 (%0 — x3) ™7,

where, here and in the following, o := w + 1. The inner integration in I, gives

X1
f @4(x)dxs
0

X1
= Xy @27 x (xp = x1) T (xo — x1) f o (x5 = x3)77 (x0 = x3) 7 dxs.
0

Now, a first lemma comes into the game. Recall that 0 < oo =w +1 < 1.

Lemma 5.9. Leta > —1, 7 > 0, 0 > 0 be real numbers, and let k > 0 and £ > 0 be integers.
Suppose (k + €+ 1)T < 1and (1 + 7)o < 1. Assume further that0 < s < y < x. Then,

s
f 14 (x _ t)—(l—kT)O'(y _ t)—(l—f‘r)o'dt < C()C _ y)—(l—(k+€+1)‘r)(rSa—(1+‘r)a'+1
0

with some constant C < oo.

Proof. We write (x — t)"1*D7 = (x — 1)=(-(k+l+)D) ( _ 1)=((+D70 and since

(x — 1)~ A-kr D)D) (1 )= U=(ktlanD)o
(x — t)—(t’+1)‘r(r < (s— t)—(5+1)7'0"

(y _ t)—(l—fT)O' < (S _ t)—(l—fT)O"

we obtain that the integral does not exceed

S
(x _ y)—(l—(k+{+1)‘r)(r f ta(s _ l)_(lﬂ-)o-dl‘.
0
The last integral equals

1
Sa—(1+‘r)0'+1 f la(l _ t)—(1+‘r)0'dt — Sa—(1+‘r)a'+1 . C,
0

where C =T'(a+ DI'Q - +1)o)/T(a+2-(1+71)0) < co. O
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Chapter 5 Integral operators

Now, choose 7 = 1/3. Since 0 =1+ w < 1 —1/4, we have (1 + 7)o < 1. Applying the lemma
with k = € = 0 to the above integral foxl p4(x)dxs, we get

X1
f @4(x)dxs
0

< Cxaaxfxfﬁ_(lﬁ)ml(xz = x1)77 (xo = x1) 77 (x0 = x2)" 7 = g5(x).

Next, we evaluate the inner integration in

1 X0 X2
Iy < f f f @3(x)dxidx,adxg
0o Jo 0

and obtain

f @3(x)dx;
0

X2
= Cxy¥x;% (x0 — xg)_(l_T)‘Tf xf’B_(HT)‘Hl(xz —x1)" % (xo — x1)"“dx;.
0

Again, use Lemma 5.9 with k = £ = 0. The only question is whethera = 28 - (1+ 7)o +1 > —-1.
This problem is disposed of by the following lemma.

Lemma 5.10. Leta > -1, § > —1, v > 1 be real numbers. Put w = § — @ — v and suppose
—-1/2""' < w < =1/2". Ifk and { are integers satisfying 0 < € < k < 2""! and 7 is defined as
T=1/(2" - 1), then

kB—-Ca—-—(k+{-1D)A+T)(w+D)+(k+€-1)>-1.

Proof. Since (1+ 7)(w+1) <1, we have —(k+¢{—-1)(1+ 7)(w + 1) + (k+ ¢ —1) > 0. Hence,

kB—ta—(k+0-1DA+7)(w+1)+(k+6—-1)>kB-La
=k(B-a)+(k-Oa=k(w+Vv)+(k-0a>k(w+1)— (k-0
—kw+€>C0—-k/2" > 0-1. o

In the present case, n = 2 and accordingly 7 = 1/3, as above. Lemma 5.10 with k = 2 and £ = 0
yields that indeed @ = 28— (1+ 7)o +1 > —1. We may therefore use Lemma 5.9 with k = £ = 0
to conclude that

X2
f @3(x)dx; < Cxg@x 2P IDT2 () x)) A0 (g — x0) "7 = gy (),
0

where, here and throughout what follows, C denotes a finite constant, but not necessarily the
same at each occurrence. Thus,

1 X0
14 < f f (pz()C)d)Cde().
0 0
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5.4 Schatten class operators

We have

X0 X0
f p2(x)dxy = Cxg® f xgﬁ_a_Z(HT)O-H(XO — x2) 2% dx,
0 0
1 ~
= xobf t((l _ t)_z(l_T)(rdt = xOh .C
0
with b = 2ﬁ-20_2(1+T)0'+2_2(1—T)O'-I-landc = 2ﬁ—a_2(1+7-)0-+2 Clearly,

21 -1)0 < 2(1-1/3)(1 —1/4) = 1, Lemma 5.10 with k = 2 and £ = 1 gives ¢ > -1, and
finally,

b=2-2a-2(1+1)c+2-2(1-1)0 +1
>2w+1)-20+1D)(w+1)-20-1N(w+1)+3=3-2(w+1) > 1.

This proves that I, < C fol xé’dxo < oo,

Proof of Theorem 1.5

We now turn to the general case. The case n = 1 is a simple computation. So, suppose n > 2
and —1/2"7! < w < —1/2". Put o = 1 + w. We have to show that

1 1
|Kgn-1]l = f f kon-1 (X0, Xon-1)kon-1(Xgn-1, X0 )dXon-1dxg  (Xgn = Xg)
0 0
is finite; notice that kyn-1(xgn-1,X0) = kgn-1(xg, xgn-1) for n > 2. Write
1
kon-1(xi,x;) = f kon-2(xg,xi)kon-2(x¢, xj)dxe,
0

where € = (i + j)/2. Continue this process until only the kernels k1 (,-) remain. For example, if
n = 4, then

1 1
”K8||22:f f ks(xo,x8)ks(xs,x16)dxgdxo (Xx16 = Xo)
o Jo
with
1
ks(xo,xs)=f ka(x4,x0)ks(x4,x5)dx4
0
1 1 1
=f f f ko (x2,x4)ka(x2,x0) k2 (X6, x4) ko (X6, x5)dx2dxedxy
o Jo Jo

1 1
= f f ki(x3,x2)k1(x3,x4)k1(x1,x2)k1(x1,%0)
0 0

X kq(xs5,x6)k1(x5,X4)k1(x7,X6)k1(x7,x8)dx7 - - - dxy
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Chapter 5 Integral operators

and a similar expression for kg(xg,x16). In this way, the integral for ||K;n-1 ||§ becomes an
integral over Q = [0,1]%". We divide Q into (2")! disjoint simplices

Qr = {(x05. - X2n-1) € [0,1]%" : Xr(0) < Xr(1) < - - < Xn(zn-1)}s

labeled by the permutations 7 of the numbers 0,1,...,2""1. The result is

) 1 X (21 -1) Xy (21 —2) Xr(1)
||K2“||2=2f f f f
— Jo Jo 0 0

2n1-1
ﬂ kl(X2j+1,x2j)k1(X2j+1,x2j+2) d)Cn(o) e dxn(Z”—l)-
j=0

We perform the integrations from the inside to the outside and may restrict ourselves to the
permutations 7 for which we never meet a kernel whose first variable is greater than the second.
Thus, take such a permutation and consider

1 Xz (2n-1) X (2l -2) Xr(1)
Izn = f f f s f Qon (x)dx,,(o) oo dx,,(zn_l)
0 0 0 0

2" 1

n kl(ij+1,x2j)k1(X2j+1,xzj+2)
J=0

with

@an (X)

on-1g

1—[ xgjqx'zgjﬂ[(xzj — x2j41) (X2j42 — X2j41)] 7.
J=0

We put 7 = 1/(2" — 1). Then,

! TR B
2"—1)( _2_")_’

The first integral is an integral like in Lemma 5.9 with a = § and k = ¢ = 0. We estimate this
integral from above exactly as in this lemma and obtain a function ¢,»_; (x). Integrating this
function, we get an integral as in Lemma 5.9 with k = 1 and ¢ = 0, and we estimate again to get
a function ¢zn_5(x). In this way, we perform 2" — 2 integrations and estimates. In the end, we
have a function @, (x).

1+71)0 < (1+

In each step, we use Lemma 5.9 with some a, and some k and {. Let us first describe the
evolution of the exponents a. After the first integration, it equals 25 — (1+ 7)o + 1. Each further
integration adds —(1 + 7)o + 1 to the exponent, and from outside the integral we still have to
add the values 8 or —« in dependence on whether the j in the integral foxj is odd or even. Thus,
each time weadd S —(1+ 7)o +1or —a—(1+7)0 +1, and after k + ¢ integrations the exponent
is(k+1)B—-Cta—(k+€)(1+71)+ (k+{). Since we do not meet kernels which are identically
zero, at each place in the sequence 7(0) < -+ < (2" — 1), the number of predecessors with
odd subscript is at least as large as the number of predecessors with even subscript. This implies
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5.4 Schatten class operators

that always k + 1 > £. The first integration is over a variable with odd subscript. It follows that
the number of integrals fox’  with odd j is at most 27! — 1, so that always k + 1 < 271, We
therefore obtain from Lemma 5.10 (with k replaced by k + 1) that the exponent a is greater than
t-12>-1.

Our next objective is the evolution of the numbers k and ¢ occurring in Lemma 5.9. For this
purpose, we associate weighted graphs Gz»,. .., G, with the functions ¢y (x),...,¢2(x). The
graph G,» has 2" vertices, which are labeled from x( to x2n_1, and 2" edges, which join x; and
xj+1 and will be denoted by [x;,x;,1]. Each edge gets the weight 0. This is because in ¢,n (x)
each |x; — x;41| has the exponent —o-, which may be written as —(1 — m7)o with m = 0. The
function ¢yn_1(x) results from ¢,» (x) via an estimate of the form

Xj
— - —(1+1)0+1 (-
f X (i = )™ (Xign = )77 < Cx8TIOT gy = 0T
0

we write the differences in absolute values, since this dispenses us from distinguishing the cases
Xi—1 < xi41 and x;41 < x;-1. Thus, the differences x;_; — x; and x;;; — x; are no longer present
in @on_1(x). Instead, @yn_1(x) contains |x;_; — x;41| with the exponent —(1 — 7)o, which is
—(1 —m7)o with m = 1. Accordingly, G,n_; results from G, by deleting the edges [x;_1,x;]
and [x;,x;+1], and introducing a new edge [x;_1,x;+1] with the weight m = 1. We proceed in
this way. If ¢;,_1(x) is obtained from ¢, (x) by an estimate

xj
f x? (xp _ xi)—(l—k‘r)cr(xq _ xi)—(l—[‘r)o'dxi
0

< ij—(1+r)a+1|xp _ qu—(l—(k+t’+1)‘r)o" (5.9)

then Gy, contained the edge [x,,x;] with the weight k and the edge [x;, x,] with the weight .
We delete these two edges, and replace them by the edge [x,,x,] with the weight k + £ + 1 to
obtain Gy, _1.

The graph G; consists of two edges, both joining x;(n_2) and xzn_1). Let r and s be the
weights of these edges. The sum of all weights in G~ is zero, and in each step the sum of
the weights increases by —k — £ + (k + { + 1) = 1. As we made 2" — 2 steps, it follows that
r+s = 2" — 2. We see in particular that, in (5.9), we always have k + £ < 2" — 2, whence
(k+¢+ 1)1 < (2" -1)/(2" — 1) = 1. This (together with the inequality a > —1 shown before)
justifies the application of Lemma 5.9 in each step.

Figure 5.6 depicts the graphs for the introductory example considered in the preceding subsec-
tion, while Figure 5.7 presents the sequence of graphs for n = 3 and the simplex associated with
the permutation x5 < x; < x3 < X2 < x4 < X7 < X¢ < Xo.

We abbreviate X, (2n_2) and xz@n_1) to x,, and x,. What we are left with is to prove
1 Xq
f f @2(x)dx,dxy < oo
0 Jo

‘pZ(x) = Cx;“x; (xq _ xp)—(l—rT)O' (xq _ xp)_(l_s,r)o_.

with
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Xo X2

X1

1

1

Figure 5.6: The sequence of graphs for n = 2 and x3 < x1 < x5 < Xo.

The exponent a comes from k = 27! — 1 integrals foxj * with odd subscript j and £ = 271 — 1

integrals foxj * with even j. (Notice that p and ¢ are necessarily even.) Hence, the exponent a

equals (k+1)8 —fa — (k+£)(1 + 7)o + (k + {), and from Lemma 5.10 we infer a > —1. It
follows that

Xg Xq
j; @2(x)dxp = Cx;"fo X8 (xg = xp) " FTIDTG
1
= Cagag rmomon f t9(1 - )~ E 07 4r - (5.10)
0

Obviously,

2 -2
2n -1

2—(r+s)r)o=1\2- R
( ( )™ ( 2" —1 2" —1 2n

2" 2" 1
)(1+w)= 1+ w) < (1 ):1,
and hence (5.10) is finite. It remains to consider the integral fol xz dx, with the exponent b
equalto —@ +a—(2— (r + s)T)o + 1. We just proved 1 — (2 — (r + s)7)0 > 0 and also have

—a+a=(k+1)B—-(k+1)a-2k(1+71)0+ 2k
=k+1D)B-(k+Da-Ck+1DA+71)c+2k+1)+(1+1)0 -1
>k+1-1+(1+1)0-1 (Lemma 5.10)
=k-1+(0+no>k-1=2"1-2>0.

This shows that » > 0 and thus that fol xZ dx, < co. The proof of Theorem 1.5 is complete. O
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X2 X2

X7 0 X7 0
1 1
0 0
> 5
X 3 X4 X0 X0

Figure 5.7: The sequence of graphs obtained for n = 3 with one of the most demanding permu-
tations x5 < x; < X3 < X3 < X4 < X7 < Xg < Xo.

105






Chapter

Conclusion and outlook

In the preceding chapters, we gave complete proofs of the Theorems 1.1, 1.2, and 1.3. These
theorems almost completely answer the question on the nature of the best constant in the
Markov-type inequality

1Flls < G (@ Blflle forall f € Py.
We identified them (asymptotically as n — o) as

2B-a-v f-azv

A9 (a, B) ~ n+IB-a=vD/2 { N

1L o gl
in the Laguerre setting,

n” f-—a=v

9]
@, B) ~
Yn ( ﬁ {ZB_Q_VHL:; aﬁ||oon2V—ﬁ+ll . B —a<v- 1/2

in the Gegenbauer setting, and

o (B-a+v)/2 :B—a>0
—a— 0 1
280 ([ plls 1, g} 5 = < =172

@ &

n (@, p) ~ n!e 2 {

in the Hermite setting, where L} 5 Hi?c)l’ 5 and H‘Elzl 5 are certain integral operators on
L%(0,1). It is immediately noticeable that, in every case there is a small gap, always of the same
size 1/2. The conjecture raised in Section 5.4 is that this is due to the techniques used, not
inherent to the problem itself, and that this limitation may be overcome by a more elaborate
analysis. It is shown that, although the operator L} 5 is no longer a Hilbert-Schmidt operator
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for B — @ > v — 1/2, it still belongs to some Schatten class and is thus compact. While this does
not provide an answer right away, it may help in finding the correct result in that case.

Conjecture 5.8 extends Theorem 1.1 to all possible parameter differences. The similarity to the
Gegenbauer and Hermite setting imposes us to formulate related conjectures in these cases.

Conjecture 6.1. Let o, 8 > —1 be real numbers, v be a positive integer, and put w = B — a — v.
Then,

n” tw >0

)
a, ~
Yn (@,B) { 20||L:

gl P w <,

where Lf,’a’ﬁ is the Volterra integral operator on L*(0,1) given by

1
I'(-w)

(Ly o0 p)(x) = fo xRYPR(x — )™ f(y)dy.

Conjecture 6.2. Let o, 8 > —1/2 be real numbers, and let v be a positive integer. Then,
(e, B) ~ Cy(a, BynFa/2
with

9(B-a+v)/2 B-a>0

26022 max{||H"), flloos |H,! :B-a <0,

Cv(asﬂ) = { " V’C)Y’B”OO}

where H\E(,)()y,/a and Hi,lt)r,ﬁ are the integral operators on L?(0,1) defined by

zvr(ry/2]+1) ! - - v —[v/s — v —
(HO), ,f)(x) = B2 a2 4 (U= PN 12 gy

I(a - B+7/21) Jx
[v/2] [v/2]1-€
B\(B-a—-¢ by
Xzfzo(f)(r"/ﬂ—f)(y—x) Tty

and

1) _ 2T (Lv/2) + 1) ! BI2+1/4  —a/2-1/4+([v/21-1V/2)/2(,, _ ya—B+|v/2]-1
PrasDO =0 paren J, Y W=
[v/2] v/2]-€
B\(B—a-¢ X
X;(f)(wﬂ—f)(y—x) Ty

Now that these cases are almost completely handled, what can be done next? First and foremost,
there is always room for more generalizations. For example, we generalized the Legendre case to
the Gegenbauer case. Why stop there and not consider Jacobi norms? As with the Gegenbauer
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polynomials, the so called connection coefficients are known in the Jacobi case, and a similar
result for the derivatives holds (see, e. g. [2, page 357]). More precisely,

Eijmmq)z(n+y+6+1%

(y+v,0+v)
T T SR

Suppose J,(ly’é)(t) = Yo Cnk J]Ea”B)(t). Then, the connection coefficient c,x is given by

C(mty+o+1) (k+y+1),,Ck+a+ B+ DI(k+a+p+1)
Cnk = (n— T2k +a+p+2)
-n+k,n+k+y+6+1L, k+a+1
X 3F, K + ;
vy+1L,2k+a+p5+2

Starting from there, it is no problem to set up the matrix representation. Indeed, the proof for
the matrix representation presented in Section 2.2 was just an adaption of the proof given in [2]
for the Jacobi polynomials. Admittedly, this looks a lot more complex than in the Gegenbauer
case, and it introduces two more parameters to care for.

Another direction would be to consider multivariate polynomials. A first study for the special
case @ = 3 was done by Bottcher and Dorfler [9]. Again, the integral operators already present
in the univariate case reappear. The next step, here, is to consider different parameters.

To come back one more time to the univariate case, one could also ask the question what
happens when the norms not only differ with regards to the parameters used, but also in the
type of norm, say, e. g., relate the Gegenbauer norm of the derivative to the Laguerre norm of
the polynomial itself.

To conclude, there are several directions one can follow from here. The complete answer to the
mentioned conjectures would only be a first step.
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Theses

on the thesis
“Best constants in Markov-type inequalities with mixed weights”

presented by Dipl.-Math. Holger Langenau

1. Markov-type inequalities give upper bounds on the norm of the vth derivative of an
algebraic polynomial in terms of the norm of the polynomial itself. Such an inequality is

1£¥1lg < € (@.BlIfll, forallf € Py, (*)
where P, denotes the space of algebraic polynomials with complex coefficients of degree
at most n. In our context, the norm || - ||, is || f]|2 = fQ |£(®)|2u(t, a)dt, with

Q = (0,00), u(t,a) =t%"! (Laguerre),

Q=(-1,1), u(t,a)=>0-1*)" (Gegenbauer),

Q = (—00,00), u(t,a) = |t]2%e"’ (Hermite).

2. The best constant C,(1V) (@, B) in (%) is determined by the operator norm of the differential
operator mapping from (P, |l - llo) to (Pp, |l - llg). The resulting value can be expressed
as the spectral norm of the matrix representation with respect to orthonormal bases
associated with the chosen norms. While there are only a few special cases in which the
constant can be given explicitly, asymptotically sharp bounds can be found in any of the
considered cases.

3. The norm of the matrix representation heavily depends on the number w = 8 — @ — v in
the Laguerre and Gegenbauer cases and the number 8 — @ in the Hermite case. Depending
on the sign of this number, two really different settings emerge. Therefore, the methods
for determining the best constants vary tremendously.

4. If w > 0 is an integer, the matrices are banded and allow therefore for a simple treatment.
To derive an upper bound on the norm, the matrix is decomposed into a sum of diagonal
matrices. Thus, the norm is bounded by the sum of all diagonal’s maximal absolute values.
For obtaining a lower bound, it is relatively easy to show that the matrices (scaled by
some factor) converge in the norm to a well-understood infinite Toeplitz matrix.
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. If w > 0 is arbitrary, an upper bound on the norm can be given by interpolating between
the constants known from the integral case. This is done with the help of a theorem
by Stein, which requires the finite-dimensional operator to be extended to an infinite-
dimensional operator on L2(Q). This is done by keeping « fixed and setting the operator
to zero on the orthogonal complement of the space associated with a.

. Although the matrix under consideration is not banded anymore for arbitrary w > 0,
large valued entries still concentrate alongside the main diagonal. By choosing a vector
that is close to an optimal, norm-realizing vector, a lower bound can be found in that
case, too. The idea has to be balanced between accounting the norm maximizing matrix
parts and retaining a small norm of the vector itself. The number of nonzero entries of
the vector will be slowly increasing with the dimension. By letting the dimension go to
infinity, the obtained lower bound is asymptotically the same as the upper bound given
before.

. For w < 0, the previous methods fail. However, one can construct an integral operator
with piecewise constant kernel associated with the matrix under investigation. Employing
a result by Widom and Shampine, the norm of the matrix is n times the norm of the
received operator. If even w < —1/2, letting n — oo, the scaled versions of this operator
converge to another integral operator in the Hilbert-Schmidt norm, and therefore in the
operator norm. Thus, the matrix norm is completely determined by the norm of this
integral operator limit. The same limit appears for the Laguerre and the Gegenbauer
cases. The limit of the Gegenbauer case is, up to a constant, unitarily equivalent to the
more accessible Laguerre case operator.

. The classical Hermite problem only considers @ = 8 = 0. It can be generalized as stated
below (x). The methods used for the Laguerre and Gegenbauer cases continue to work
for the extended Hermite case and only differ in the details. But, the distinction is now
made depending on the number 8 — «@. In addition, the case 8 = @ # 0 here has to be
treated separately. Although the matrix is not banded anymore, Gersgorin’s theorem
implies that the bound obtained for the integral cases 8 — @ > [v/2] is still valid. The
integral operators coming into play for 8 — @ < —1/2 are a bit more complex than the
ones of the Laguerre and Gegenbauer cases.

. In the convergence proofs, the restriction w < —1/2 (resp. § —a < —1/2) had to be made.
This is due to the fact that the pointwise defined limit operator is no longer a Hilbert-
Schmidt operator without the assumption. However, in the Laguerre case, the integral
operator in question can be shown to belong to some Schatten class. More precisely, the
operator belongs to the 2" th Schatten class whenever w < —1/2". Therefore, it is compact
for any w < 0. Similar statements for all three cases might be helpful to close the last gap.
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