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Report

The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the
conjugate duality by proposing a new duality concept, which can be understood as an umbrella
for different meaningful perturbation methods. On the other hand, this thesis aims to investigate
minimax location problems by means of the duality concept introduced in the first part of this
work, followed by a numerical approach using epigraphical splitting methods.

After summarizing some elements of the convex analysis as well as introducing important results
needed later, we consider an optimization problem with geometric and cone constraints, whose
objective function is a composition of n + 1 functions. For this problem we propose a conjugate
dual problem, where the functions involved in the objective function of the primal problem are
decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong
duality and give necessary and sufficient optimality conditions. As applications of this approach
we determine the formulae of the conjugate as well as the biconjugate of the objective function of
the primal problem and analyze an optimization problem having as objective function the sum of
reciprocals of concave functions.

In the second part of this thesis we discuss in the sense of the introduced duality concept three
classes of minimax location problems. The first one consists of nonlinear and linear single minimax
location problems with geometric constraints, where the maximum of nonlinear or linear functions
composed with gauges between pairs of a new and existing points will be minimized. The version
of the nonlinear location problem is additionally considered with set-up costs. The second class
of minimax location problems deals with multifacility location problems as suggested by Drezner
(1991), where for each given point the sum of weighted distances to all facilities plus set-up costs
is determined and the maximal value of these sums is to be minimized. As the last and third
class the classical multifacility location problem with geometrical constraints is considered in a
generalized form where the maximum of gauges between pairs of new facilities and the maximum
of gauges between pairs of new and existing facilities will be minimized. To each of these location
problems associated dual problems will be formulated as well as corresponding duality statements
and necessary and sufficient optimality conditions. To illustrate the results of the duality approach
and to give a more detailed characterization of the relations between the location problems and
their corresponding duals, we consider examples in the Euclidean space.

This thesis ends with a numerical approach for solving minimax location problems by epi-
graphical splitting methods. In this framework, we give formulae for the projections onto the
epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto
the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the
discussed location problems.
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Chapter 1

Introduction

Conjugate duality is a powerful instrument to analyze optimization problems and has for that
reason a wide range of applications. Over the last couple of years, an important field of applications
arises in areas such as vector variational inequalities [1], facility location theory [75], machine
learning [13], image restoration [15], portfolio optimization [19] and monotone operator theory
[48], to mention only a few of them. In many cases, the objective function of an optimization
problem occurring in the mentioned research areas may be written as a composition of two or
more functions. This presentation makes not only the derivation of duality assertions easier, but
also the handling of optimization problems from the numerical point of view.

But until now there is no duality approach for the more general situation, namely, where
the optimization problem is considered as the minimization of an objective function that is a
composition of more than two functions. The advantage of this consideration is that the objective
function of a certain optimization problem can be split into a certain number of functions to refine
and improve some theoretical and numerical aspects.

Therefore, the goal of this thesis is to consider an optimization problem with geometric and
cone constraints, whose objective function is a composition of n + 1 functions and to deliver a
detailed duality approach for this type of problems. For short, we call such problems multi-
composed optimization problems. In fact, this study is more general than in [7, 8, 17, 20, 23, 55]
and can furthermore be understood as a combination of all kinds of meaningful perturbation
methods. To be more precise, we extended the already existing duality schemes to derive a more
detailed characterization of the set of optimal solutions and to give a unified framework with a
corresponding conjugate dual problem, regularity conditions as well as strong duality statements.
As applications we present the formulae of the conjugate and the biconjugate of a multi-composed
function, i.e. a function that is a composition of n + 1 functions. Moreover, we discuss an
optimization problem having as objective function the sum of reciprocals of concave functions.

The results presented in the first part of this thesis open a new approach to investigating
facility location problems. Such kind of optimization problems are known for their numerous
applications in areas like computer science, telecommunications, transportation and emergency
facilities programming. In the framework of continuous optimization where the distances are
measured by gauges, two kinds of location problems are particularly significant. The first one
consists of the so-called minisum location problems and has the objective to determine a new
point such that the sum of distances between the new and given points is minimal (see [20, 23,
36,50,60,63,66,68]). The second type contains the so-called minimax location problems, where a
new point is sought such that the maximum of distances between the new and given points will
be minimized (see [38, 40, 45, 58, 62, 74]). In this work we study more general problems where the
gauges may additionally be composed with a nonlinear function, i.e. we consider besides linear
also nonlinear minimax location problems (see [33] and [44]).

The second class of location problems we consider was proposed in 1991 by Drezner in [35] and
describes the following emergency scenario. A certain number of emergency calls arise and ask for
an ambulance. To each of these demand points an ambulance is sent to load and transport the
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10 CHAPTER 1. INTRODUCTION

patient to a hospital. The location of the ambulance-station and the hospital must not be necessary
on the same site. This assumption may shorten the response time for the patients, especially for
the farthest one, in the situation when for example a hospital is completely overcrowded or short
of medical supplies. The aim is now to determine the location of the ambulance-station and the
hospital such that the maximum time required before the farthest patient arrives at the hospital
will be minimized. In this case the maximum time is naturally defined as the sum of the travel time
of the ambulance from the ambulance-station to the patient and the travel time to the hospital
plus some set-up costs. Set-up costs like the loading time at the emergency and the unloading
time at the hospital of the patient are few examples to cite.

While Drezner suggested a model for the case of the Euclidean norm, Michelot and Plastria [67]
work in a higher dimensional space where the distances are measured by a norm. In this thesis we
generalize this location model to the situation where the distances are measured by mixed gauges
defined on a Fréchet space. The goal is then to describe these type of location problems in the
framework of the introduced duality concept.

Apart from these two classes of location problems, we also consider a more general and complex
problem, namely, the so-called multifacility minimax location problem (see [39, 67]), which has
attracted less attention in the literature compared to the multifacility minisum location problems
(see [43,56,61,78]). The objective of the multifacility minimax location problems is to determine
several new points such that either the maximum of distances between pairs of new points or the
maximum of distances between new and existing points is minimal.

The last part of this work focuses on solving methods for minimax location problems. In this
context we first present formulae for projectors onto the epigraphs of several sums of powers of
weighted norms as well as onto the epigraphs of gauges. These formulae allow to combine the
epigraphical projection method, developed in [28] for constrained convex optimization problems,
with a parallel splitting algorithm (see [2] and [29]) minimizing a finite sum of functions. To show
the usefulness of the presented formulae we compare our solving method with the one presented
in [30] by Cornejo and Michelot.

Next we give a description of the contents, emphasizing the most important points.

In Chapter 2 we first collect some elements from the field of convex analysis and present
important statements that are used in this thesis. While in Section 2.1 notations and preliminary
results are listed on convex sets, Section 2.2 is dedicated to convex scalar and vector functions.

After introducing the basics, we consider in Chapter 3 a multi-composed optimization problem
with geometric and cone constraints. We give an equivalent formulation of this problem and use
the reformulated optimization problem to construct a corresponding conjugate dual problem to
the main problem, followed by a weak duality theorem. The convenience of this approach is
that the functions involved in the composed objective function of the original problem can be
decomposed in the formulation of the conjugate dual problem or, to formulate it more precisely,
their conjugates.

Section 3.2 is devoted to generalized interior point regularity conditions guaranteeing strong
duality. Moreover, by using the strong duality theorem we formulate some optimality conditions
for the original problem and its corresponding conjugate dual problem. Besides of this approach,
we discover in Section 3.3 the formula of the conjugate of a multi-composed function. We find
also a formula of its biconjugate function and close this section with a theorem which characterizes
some topological properties of this function.

In Section 3.4, as a further application of our approach, we consider a convex optimization
problem having as objective function the sum of reciprocals of concave functions. For this problem
we formulate a conjugate dual problem and state a strong duality theorem from which we derive
necessary and sufficient optimality conditions. The approach done in this chapter is based on our
paper [79].

In Chapter 4, which is related to our articles [80, 81] and [82], we analyze three classes of
location problems starting with some properties of gauge functions in Section 4.1. Then, we
consider single minimax location problems in Section 4.2. In Subsection 4.2.1, we apply the
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approach done in Chapter 3 to nonlinear single minimax location problems with set-up costs in a
Fréchet space and give necessary and sufficient optimality conditions. Further, in Subsection 4.2.2
we consider linear single minimax location problems without set-up costs in a Hilbert space. After
presenting associated duality statements, we describe the relation between the optimal solutions
of the primal problem and its dual. In Subsection 4.2.3 as well as in Subsection 4.2.4 the location
problems will be studied in a Fréchet space followed by a characterization to a Hilbert space
endowed with a norm. Here we formulate a second dual problem reducing the number of constraints
and dual variables compared with the first formulated dual problem in the previous sections.

In Section 4.3 we study extended multifacility location problems introduced by Drezner in [35].
In Subsection 4.3.1 we construct corresponding conjugate dual problems and prove strong duality
from which we derive some optimality conditions. Afterwards, we consider a special case of these
location problems where the weights have a multiplicative structure like treated by Michelot and
Plastria in [67] and describe the relation to their conjugate dual problems with norms as distance
measures. In Subsection 4.3.2, we also deal with location problems without set-up costs. Besides
of strong duality assertions and optimality conditions we give geometrical characterizations of the
set of optimal solutions of the conjugate dual problem as well as illustrating examples.

The analysis of classic multifacility minimax location problems in Section 4.4 provides duality
statements in the sense of Chapter 3. In concrete terms, this means that we formulate an as-
sociated conjugate dual problem as well as derive necessary and sufficient optimality conditions
in Subsection 4.4.1. Further, we introduce another dual problem reducing the number of dual
variables compared to the first formulated dual problem. Continuing in this vein, we also employ
a duality approach including statements of strong duality and optimality conditions. As the most
location problems are considered in Euclidean spaces, we particularize in Subsection 4.4.2 the lat-
ter case in this context and show that we have a full symmetry between the location problem, its
dual problem and the Lagrange dual problem of the dual problem, which means that the Lagrange
dual is identical to the location problem. Finally, we close this paper with an example showing on
the one hand how an optimal solution of the location problem can be recovered from an optimal
solution of the associated conjugate dual problem and on the other hand how we can geometrically
interpret an optimal dual solution.

Along with a theoretical consideration, we are interested in Chapter 5 in a numerical method
for solving minimax location problems. For this purpose, we present in Section 5.2 some formulae of
projections onto the epigraphs of several sums of powers of weighted norms and onto the epigraphs
of gauges. In Section 5.3 we first bring the extended multifacility minimax location problem in a
form of an unconstrained optimization problem where its objective function is a sum of functions.
This reformulation allows us then to use the parallel splitting algorithm (see [2,28,29]) combined
with the formulae from the Section 5.2 to solve minimax location problems. In addition, we solve
the numerical examples by the method proposed by Cornejo and Michelot in [30], where the sum
of powers of weighted norms is split such that the formulae of the projectors onto the epigraphs of
the powers of weighted norms are relevant. This splitting scheme makes it necessary to introduce
additional variables, which in turn goes at the expense of the numerical performance. It is shown
that the parallel splitting algorithm combined with the presented projection formulae performs
very well on these kind of location problems and outperforms the method given in [30].
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Chapter 2

Notations and preliminary results

This chapter serves as an introduction and aims to make this thesis as self-contained as possible.
We introduce here basic notions from the convex analysis and give important statements on
convex sets, convex scalar and vector functions. For readers interested in convex analysis we refer
to [7, 24,37,57,70,83,84].

2.1 Convex sets

Let X be a Hausdorff locally convex space and X∗ its topological dual space endowed with the
weak* topology w(X∗, X). For x ∈ X and x∗ ∈ X∗, let 〈x∗, x〉 := x∗(x) be the value of the linear
continuous functional x∗ at x.

A set K ⊆ X is called convex if it holds λx+ (1− λ)y ∈ K for all x, y ∈ K and λ ∈ [0, 1] and
if K additionally satisfies the condition λK ⊆ K for all λ ≥ 0, then K is said to be a convex cone.

Given a set S ⊆ X and x ∈ X, then the normal cone to S at x, defined by

NS(x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀ y ∈ S},

is a convex cone.
Consider a convex cone K ⊆ X, which induces on X a partial ordering relation “5K”, defined

by 5K := {(x, y) ∈ X × X : y − x ∈ K}, i.e. for x, y ∈ X it holds x 5K y ⇔ y − x ∈ K. Note
that we assume that all cones we consider contain the origin, which we denote by 0X . Further, we
attach to X a greatest element with respect to “5K”, denoted by +∞K , which does not belong
to X and denote X = X ∪ {+∞K}. Then it holds x 5K +∞K for all x ∈ X. We write x ≤K y if
and only if x 5K y and x 6= y. Further, we write 5R+

=:≤ and ≤R+
=:<.

On X we consider the following operations and conventions: x+(+∞K) = (+∞K)+x := +∞K

for all x ∈ X ∪ {+∞K} and λ · (+∞K) := +∞K for all λ ∈ [0,+∞]. Further, K∗ := {x∗ ∈
X∗ : 〈x∗, x〉 ≥ 0 for all x ∈ K} is the dual cone of K and we take by convention 〈x∗,+∞K〉 := +∞
for all x∗ ∈ K∗. By a slight abuse of notation we denote the extended real space R = R ∪ {±∞}
and consider on it the following operations and conventions: λ + (+∞) = (+∞) + λ := +∞ for
all λ ∈ [−∞,+∞], λ+ (−∞) = (−∞) + λ := −∞ for all λ ∈ [−∞,+∞), λ · (+∞) := +∞ for all
λ ∈ [0,+∞], λ·(+∞) := −∞ for all λ ∈ [−∞, 0), λ·(−∞) := −∞ for all λ ∈ (0,+∞], λ·(−∞) :=
+∞ for all λ ∈ [−∞, 0) and 0(−∞) := 0.

For a set S ⊆ X the conic hull is defined by cone(S) := {λx : x ∈ S, λ ≥ 0}. Further, the
prefix int we use to denote the interior of a set S ⊆ X, while the prefixes cl, ri, core and sqri
are used to denote the closure, relative interior, algebraic interior and the strong quasi relative
interior, respectively, where in the case of having a convex set S ⊆ X it holds (see [31])

core(S) = {x ∈ S : cone(S − x) = X},
sqri(S) = {x ∈ S : cone(S − x) is a closed linear subspace}.

13



14 CHAPTER 2. NOTATIONS AND PRELIMINARY RESULTS

Note that if cone(S − x) is a linear subspace, then x ∈ S.
The next statement was given in [5] for the quasi relative interior, qri(S) = {x ∈ S :

cl (cone(S − x)) is a linear subspace}, we show the validity for the strong quasi relative interior.

Lemma 2.1. Let A ⊆ X and B ⊆ Z be non-empty convex subsets. Then, it holds

0X×Z ∈ sqri(A×B)⇔ 0X ∈ sqri(A) and 0Z ∈ sqri(B).

Proof. First, let us recall that if A and B are convex and 0X ∈ A and 0Z ∈ B, then

cone(A×B) = cone(A)× cone(B).

Now, let us assume that 0X×Z ∈ sqri(A × B), then cone(A × B) is a closed linear subspace of
X × Z, which implies that 0X×Z = (0X , 0Z) ∈ A × B. But this means that cone(A × B) =
cone(A)× cone(B) and hence, cone(A) and cone(B) are closed linear subspaces, i.e. 0X ∈ sqri(A)
and 0Z ∈ sqri(B).

On the other hand, let 0X ∈ sqri(A) and 0Z ∈ sqri(B), then cone(A) and cone(B) are closed
linear subspaces and so, 0X ∈ A and 0Z ∈ B. From here follows that cone(A × B) = cone(A) ×
cone(B) and thus, cone(A×B) is a closed linear subspace, i.e. 0X×Z ∈ sqri(A×B).

2.2 Convex functions

2.2.1 Scalar functions

For a given function f : X → R we consider its effective domain dom f := {x ∈ X : f(x) <
+∞} and call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X. The epigraph of f is
epi f = {(x, r) ∈ X × R : f(x) ≤ r}. Recall that a function f : X → R is called convex if
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and all λ ∈ [0, 1]. For a subset A ⊆ X, its
indicator function δA : X → R is

δA(x) :=

{
0, if x ∈ A,
+∞, otherwise,

and its support function σA : X∗ → R is σA(x∗) = supx∈A〈x∗, x〉.
The conjugate function of f with respect to the non-empty subset S ⊆ X is defined by

f∗S : X∗ → R, f∗S(x∗) = sup
x∈S
{〈x∗, x〉 − f(x)}.

In the case S = X, f∗S turns into the classical Fenchel-Moreau conjugate function of f denoted by
f∗.

A function f : X → R is called lower semicontinuous at x ∈ X if lim infx→x f(x) ≥ f(x) and
when this function is lower semicontinuous at all x ∈ X, then we call it lower semicontinuous
(l.s.c. for short).

Let W ⊆ X be a non-empty set, then a function f : X → R is called K-increasing on W , if
from x 5K y follows f(x) ≤ f(y) for all x, y ∈ W . When W = X, then we call the function f
K-increasing.

We also use the notion of subdifferentiability to formulate optimality conditions. If we take an
arbitrary x ∈ X such that f(x) ∈ R, then we call the set

∂f(x) := {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}

the (convex) subdifferential of f at x, where the elements are called the subgradients of f at x.
Moreover, if ∂f(x) 6= ∅, then we say that f is subdifferentiable at x and if f(x) /∈ R, then we
make the convention that ∂f(x) := ∅. Note, that the subgradients can be characterized by the
conjugate function, especially this means

x∗ ∈ ∂f(x)⇔ f(x) + f∗(x∗) = 〈x∗, x〉 ∀x ∈ X, x∗ ∈ X∗, (2. 1)
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i.e. the Young-Fenchel inequality is fulfilled with equality.
Furthermore, let H be a real Hilbert space equipped with the scalar product 〈·, ·〉H, where the

associated norm ‖ · ‖H is defined by ‖y‖H :=
√
〈y, y〉H for all y ∈ H. Some important results in

Hilbert spaces can be found in Chapter 5.

2.2.2 Vector functions

Let Z be another Hausdorff locally convex space partially ordered by the convex cone Q ⊆ Z and
Z∗ its topological dual space endowed with the weak* topology w(Z∗, Z). The domain of a vector
function F : X → Z = Z ∪ {+∞Q} is domF := {x ∈ X : F (x) 6= +∞Q}. F is called proper if
domF 6= ∅.

When F (λx + (1 − λ)y) 5Q λF (x) + (1 − λ)F (y) holds for all x, y ∈ X and all λ ∈ [0, 1] the
function F is said to be Q-convex.

The Q-epigraph of a vector function F is epiQ F = {(x, z) ∈ X × Z : F (x) 5Q z} and when Q
is closed we say that F is Q-epi closed if epiQ F is a closed set.

For a z∗ ∈ Q∗ we define the function (z∗F ) : X → R by (z∗F )(x) := 〈z∗, F (x)〉. Then
dom(z∗F ) = domF . Moreover, it is easy to see that if F is Q-convex, then (z∗F ) is convex for all
z∗ ∈ Q∗. Let us point out that by the operations we defined on a Hausdorff locally convex space
attached with a maximal element and on the extended real space, there holds 0f = δdom f and
(0Z∗F ) = δdomF .

The vector function F is called positively Q-lower semicontinuous at x ∈ X if (z∗F ) is lower
semicontinuous at x for all z∗ ∈ Q∗. The function F is called positively Q-lower semicontinuous
if it is positively Q-lower semicontinuous at every x ∈ X. Note that if F is positively Q-lower
semicontinuous, then it is also Q-epi closed, while the inverse statement is not true in general
(see: [7, Proposition 2.2.19]). Let us mention that in the case Z = R and Q = R+, the notion of
Q-epi closedness falls into the classical notion of lower semicontinuity.

F : X → Z is called (K,Q)-increasing on W , if from x 5K y follows F (x) 5Q F (y) for all
x, y ∈W . When W = X, we call this function (K,Q)-increasing.

We give now some statements that will be useful later, beginning with one whose proof is
straightforward.

Lemma 2.2. Let V be a Hausdorff locally convex space partially ordered by the convex cone U ,
F : X → Z be a proper and Q-convex function and G : Z → V be an U -convex and (Q,U)-
increasing function on F (domF ) ⊆ domG with the convention G(+∞Q) = +∞U . Then the
function (G ◦ F ) : X → V is U -convex.

Lemma 2.3. (cf. [49]) Let Y be a Hausdorff locally convex space, Q also closed, h : X × Y → Z
and F : X → Z proper vector functions and G : Y → Z a continuous vector functions, where h is
defined by h(x, y) := F (x) +G(y). Then F is Q-epi closed if and only if h is Q-epi closed.

Proof.“⇒”: Let (xα, yα, zα)α ⊆ epiQ h be a net such that (xα, yα, zα) → (x, y, z). Then
F (xα)+G(yα) ≤ zα for any α, followed by (xα, zα−G(yα))α ⊆ epiQ F and (yα, G(yα))α ⊆ epiQG.
Because G is continuous and yα → y, it follows that G(yα) → G(y). Then (xα, zα − G(yα)) →
(x, z −G(y)) ∈ epiQ F , because this set is closed. One has then F (x) 5Q z −G(y), i.e. (x, y, z) ∈
epiQ h. As the convergent nets (xα)α, (yα)α and (zα)α were arbitrarily chosen, it follows that
epiQ h is closed, i.e. h is Q-epi closed.

“⇐”: Let (xα, zα)α ⊆ epiQ F such that (xα, zα) → (x, z). Take also (yα)α ⊆ Y such that
yα → y. Because G is continuous, one has G(yα) → G(y). Then (xα, yα, zα + G(yα))α ⊆ epiQ h,
which is closed, consequently (x, y, z + G(y)) ∈ epiQ h, i.e. F (x) + G(y) 5Q z + G(y). Therefore
F (x) 5Q z, i.e. (x, z) ∈ epiQ F . As the convergent nets (xα)α and (zα)α were arbitrarily chosen,
it follows that epiQ F is closed, i.e. F is Q-epi closed.

Remark 2.1. Note that a continuous proper vector function G : Y → Z, where Y is a Hausdorff
locally convex space, has a full domain, thus one can directly take G : Y → Z in this situation.
The question whether the equivalence in Lemma 2.3 remains valid if one considers a proper vector
function G : Y → Z that is not necessarily continuous is still open.
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Remark 2.2. If we set Y = Z and G(y) = −y for all y ∈ Y , then Lemma 2.3 says that F is
Q-epi closed if and only if the vector function defined by (x, y) ∈ X × Y 7→ F (x) − y is Q-epi
closed. For this special case a similar statement can be found in [79, Lemma 2.1], but under the
additional hypothesis intQ 6= ∅.



Chapter 3

Lagrange duality for
multi-composed optimization
problems

The goal of this chapter is to consider an optimization problem with geometric and cone con-
straints, whose objective function is a composition of n+ 1 functions and to deliver a full duality
approach for this type of problems.

By considering such a multi-composed optimization problem there are several ways to formulate
a corresponding conjugate dual problem where the composed functions involved in the objective
function of the primal problem, or, to be more precise, their conjugates, are separated and to give
associated duality statements.

The first method is the direct applying of the perturbation theory (see [7,37,52,53,64,70]). A
second approach is presented in this chapter and starts in Section 3.1 by reformulating the primal
problem as an optimization problem with set and cone constraints and continues by using the
Lagrange duality concept. The question is now, which of these two methods is more suitable? It is
shown in Section 3.2 that the second method asks for weaker hypotheses on the involved functions
of the primal problem for guaranteeing strong duality. As applications, we present the formulae
of the conjugate and the biconjugate of a multi-composed function in Section 3.3, i.e. a function
that is a composition of n+ 1 functions. Moreover, we discuss in the Section 3.4 an optimization
problem having as objective function the sum of reciprocals of concave functions.

3.1 The multi-composed optimization problem and its con-
jugate dual

As already mentioned, our aim is to formulate a conjugate dual problem to an optimization
problem with geometric and cone constraints having as objective function the composition of
n+ 1 functions. In other words, we consider the following problem

(PC) inf
x∈A

(f ◦ F 1 ◦ ... ◦ Fn)(x),

A = {x ∈ S : g(x) ∈ −Q},

where Z is a Hausdorff locally convex space partially ordered by the convex cone Q ⊆ Z and Xi

is a Hausdorff locally convex space partially ordered by the convex cone Ki ⊆ Xi, i = 0, ..., n− 1.
Moreover,

� S is a non-empty subset of the Hausdorff locally convex space Xn,

� f : X0 → R is proper and K0-increasing on F 1(domF 1) +K0 ⊆ dom f ,

17
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� F i : Xi → Xi−1 = Xi−1 ∪ {+∞Ki−1} is proper and (Ki,Ki−1)-increasing on
F i+1(domF i+1) +Ki ⊆ domF i for i = 1, ..., n− 2,

� Fn−1 : Xn−1 → Xn−2 = Xn−2 ∪ {+∞Kn−2} is proper and (Kn−1,Kn−2)-increasing on
Fn(domFn ∩ A) +Kn−1 ⊆ domFn−1,

� Fn : Xn → Xn−1 = Xn−1 ∪ {+∞Kn−1
} is a proper function and

� g : Xn → Z is a proper function fulfilling S ∩ g−1(−Q)∩ ((Fn)−1 ◦ ... ◦ (F 1)−1)(dom f) 6= ∅.

Additionally, we make the convention that f(+∞K0
) = +∞ and F i(+∞Ki) = +∞Ki−1

, i.e.

f : X0 → R and F i : Xi → Xi−1, i = 1, ..., n− 1.

Remark 3.1. For the rest of this paper it is preferable to make the following arrangement. In the
situation when n = 1 we set {1, ..., n−1} = {1, ..., n−2} = ∅ and when n = 2, {1, ..., n−2} = ∅. In
particular, this means for the case n = 1 that F 1 : X1 → X0 is a proper function and for the case
n = 2 that F 1 : X1 → X0 is a proper and (K1,K0)-increasing function on F 2(domF 2∩A)+K1 ⊆
domF 1 and F 2 : X2 → X1 a proper function.

Let us now consider the following problem

(P̃C) inf
(y0,...,yn)∈Ã

f̃(y0, ..., yn),

where

Ã = {(y0, ..., yn−1, yn) ∈ X0 × ...×Xn−1 × S :

g(yn) ∈ −Q, hi(yi, yi−1) ∈ −Ki−1, i = 1, ..., n}.

The functions f̃ : X0 × ...×Xn → R and hi : Xi ×Xi−1 → Xi−1 are defined as

f̃(y0, ..., yn) = f(y0) and hi(yi, yi−1) = F i(yi)− yi−1 for i = 1, ..., n.

Lemma 3.1. Let (y0, ..., yn) be feasible to (P̃C), then it holds f((F 1 ◦ ... ◦ Fn)(yn)) ≤ f(y0).

Proof. Let (y0, ..., yn) be feasible to (P̃C), then we have

Fn(yn) 5Kn−1
yn−1, ..., F 1(y1) 5K0

y0.

Moreover, since Fn−1 is (Kn−1,Kn−2)-increasing on Fn(domFn∩A)+Kn−1 and F i is (Ki,Ki−1)-
increasing on F i+1(domF i+1) +Ki for i = 1, ..., n− 2, it follows
(Fn−1 ◦Fn)(yn) 5Kn−2

Fn−1(yn−1) 5Kn−2
yn−2 and so on (F 1 ◦ ...◦Fn)(yn) 5K0

F 1(y1) 5K0
y0.

Since f is K0-increasing on F 1(domF 1)+K0 we get the desired inequality f((F 1 ◦ ...◦Fn)(yn)) ≤
f(y0).

Remark 3.2. If Fn is an affine function, then it can be useful to set Kn−1 = {0Xn−1
}, because

in this case Fn−1 does not need to be monotone to ensure the inequality of the previous lemma.

If we denote by v(PC) and v(P̃C) the optimal objective values of the problems (PC) and (P̃C),
respectively, then the following relation between the optimal objective values is always true.

Theorem 3.1. It holds v(PC) = v(P̃C).

Proof. Let x be a feasible element to (PC) and set yn = x, yn−1 = Fn(yn), yn−2 =
Fn−1(yn−1), ..., y0 = F 1(y1). If there exists an i ∈ {2, ..., n} such that F i(yi) /∈ domF i−1

or F 1(y1) /∈ dom f or there exists an i ∈ {1, ..., n} such that F i(yi) = +∞Ki−1 , then it obviously

holds f((F 1 ◦ ... ◦ Fn)(yn)) = +∞ ≥ v(P̃C). Otherwise it holds F i(yi) − yi−1 = 0 ∈ −Ki−1 for
i = 1, ..., n. Moreover, by the feasibility of yn it holds g(yn) ∈ −Q, which implies the feasibility

of (y0, ..., yn) to the problem (P̃C) and f((F 1 ◦ ... ◦ Fn)(yn)) = f(y0) = f̃(y0, ..., yn) ≥ v(P̃C).
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Hence it holds f((F 1 ◦ ... ◦ Fn)(yn)) ≥ v(P̃C) for all yn feasible to (PC), which means that

v(PC) ≥ v(P̃C).

Let now (y0, ..., yn) be feasible to (P̃C). If y0 /∈ dom f , then obviously we have v(PC) ≤
f((F 1◦...◦Fn)(yn)) ≤ f(y0) = f̃(y0, ..., yn) = +∞. On the other hand, since (y0, ..., yn) is feasible

to (P̃C) it holds hi(yi, yi−1) ∈ −Ki−1 for i = 1, ..., n (i.e. F i(yi)− yi−1 ∈ −Ki−1 for i = 1, ..., n)

and g(yn) ∈ −Q. By Lemma 3.1 we have v(PC) ≤ f((F 1 ◦ ... ◦ Fn)(yn)) ≤ f(y0) = f̃(y0, ..., yn)

and by taking the infimum over (y0, ..., yn) on the right-hand side we get v(PC) ≤ v(P̃C).

Summarizing, we get the desired result v(PC) = v(P̃C).

Remark 3.3. The assumption that f is K0-increasing on F 1(domF 1)+K0 ⊆ dom f was made to
allow functions which are not necessarily monotone on their whole effective domain. But in some
situations the inclusion F 1(domF 1) + K0 ⊆ dom f may not be fulfilled. As an example consider
the convex optimization problem (PG) in Section 3.4.

To overcome these circumstances one can alternatively assume that f is K0-increasing on
dom f and F 1(domF 1) ⊆ dom f . For the functions F 1, ..., Fn−1 one can formulate in the same
way alternative assumptions. To be more precise, we can alternatively ask that F i is (Ki,Ki−1)-
increasing on domF i and F i+1(domF i+1) ⊆ domF i, i = 1, ..., n−2, and Fn−1 is (Kn−1,Kn−2)-
increasing on domFn−1 and Fn(domFn ∩ A) ⊆ domFn−1. One can observe that under these
alternative assumptions Lemma 3.1 and especially Theorem 3.1 still hold.

As we have seen by Theorem 3.1, the problem (PC) can be associated to the problem (P̃C). In
the next step we want to determine the corresponding conjugate dual problems to the problems
(PC) and (P̃C).

As we take a careful look at the optimization problem (P̃C), we can see that this problem can
be rewritten in the form

(P̃C) inf
ỹ∈S̃,

h̃(ỹ)∈−K̃

f̃(ỹ), (3. 1)

where ỹ := (y0, ..., yn) ∈ X̃ := X0 × ... × Xn, Z̃ := X0 × ... × Xn−1 × Z ordered by K̃ :=

K0 × ...×Kn−1 ×Q, S̃ := X0 × ...×Xn−1 × S and h̃ : X̃ → Z̃ = Z̃ ∪ {+∞K̃} is defined as

h̃(ỹ) :=


(h1(y1, y0), ..., hn(yn, yn−1), g(yn)), if (yi, yi−1) ∈ domhi, i = 1, ..., n,

yn ∈ dom g,

+∞K̃ otherwise.

Note that by the definition of hi we have

domhi = domF i ×Xi−1, i = 1, ..., n,

which yields
dom h̃ = X0 × domF 1 × ...× (domFn ∩ dom g). (3. 2)

At this point, let us additionally remark that the assumption from the beginning, S ∩ g−1(−Q)∩
((Fn)−1 ◦ ... ◦ (F 1)−1)(dom f) 6= ∅, implies also that dom f̃ ∩ S̃ ∩ h̃−1(−K̃) 6= ∅, but the inverse is
not true. This means

S ∩ g−1(−Q) ∩ ((Fn)−1 ◦ ... ◦ (F 1)−1)(dom f) 6= ∅
⇔∃(y0, y1, ..., yn−1, yn) ∈ dom f ×X1 × ...×Xn−1 × S such that

F 1(y1)− y0 = 0 ∈ −K0, ..., F
n(yn)− yn−1 = 0 ∈ −Kn−1 and g(yn) ∈ −Q

⇒∃ỹ ∈ S̃ ∩ dom f̃ such that h̃(ỹ) ∈ −K̃

⇔dom f̃ ∩ S̃ ∩ h̃−1(−K̃) 6= ∅.
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The corresponding Lagrange dual problem (D̃C) with z̃∗ := (z0∗, ..., z(n−1)∗, zn∗) ∈ K̃∗ := K∗0 ×
...×K∗n−1 ×Q∗ as the dual variable to the problem (P̃C) is

(D̃C) sup
z̃∗∈K̃∗

inf
ỹ∈S̃
{f̃(ỹ) + 〈z̃∗, h̃(ỹ)〉},

which can equivalently be written as

(D̃C) sup
zn∗∈Q∗, zi∗∈K∗

i
i=0,...,n−1

inf
yn∈S, yi∈Xi
i=0,...,n−1

{
f̃(y0, ..., yn) +

n∑
i=1

〈z(i−1)∗, hi(yi, yi−1)〉+ 〈zn∗, g(yn)〉

}
.

Through the definitions we made above for f̃ and hi and since we set x = yn, we can deduce the
conjugate dual problem (DC) to problem (PC)

(DC) sup
zn∗∈Q∗, zi∗∈K∗

i
i=0,...,n−1

inf
x∈S, yi∈Xi
i=0,...,n−1

{
f(y0) + 〈z(n−1)∗, Fn(x)− yn−1〉+ 〈zn∗, g(x)〉+

n−1∑
i=1

〈z(i−1)∗, F i(yi)− yi−1〉

}

= sup
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

{
inf
x∈S
{〈z(n−1)∗, Fn(x)〉+ 〈zn∗, g(x)〉} − sup

y0∈X0

{〈z0∗, y0〉 − f(y0)}−

n−1∑
i=1

sup
yi∈Xi

{〈zi∗, yi〉 − 〈z(i−1)∗, F i(yi)〉}

}
.

Hence, the conjugate dual problem (DC) to problem (PC) has the following form

(DC) sup
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

{
inf
x∈S
{〈z(n−1)∗, Fn(x)〉+ 〈zn∗, g(x)〉} − f∗(z0∗)

−
n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
. (3. 3)

The optimal objective values of the problems (D̃C) and (DC) are of course equal, i.e. v(D̃C) =
v(DC). The next result arises from the definition of the dual problem and is always fulfilled.

Theorem 3.2 (weak duality). Between the primal problem (PC) and its conjugate dual problem
weak duality always holds, i.e. v(PC) ≥ v(DC).

Proof. By Theorem 3.1.1 in [7] it holds v(P̃C) ≥ v(D̃C). Moreover, by Theorem 3.1 and since

v(D̃C) = v(DC) we have v(PC) = v(P̃C) ≥ v(D̃C) = v(DC).

Remark 3.4. Let Zi be a locally convex Hausdorff space partially ordered by the non-empty convex
cone Qi, i = 0, ..., n − 1. Then the introduced concept covers also optimization problems of the
form

(PCC) inf
x∈L

ϕ(x),

with

L := {x ∈ S : (G1 ◦ ... ◦Gn)(x) ∈ −Q0},
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where ϕ : Xn → R is proper, Gi : Zi → Zi−1 is proper and (Qi, Qi−1)-increasing on Gi+1(domGi+1)+
Qi ⊆ domGi, i = 1, ..., n−1, and Gn : Xn → Zn−1 is proper. The problem (PCC) can equivalently
be rewritten as

(PCC) inf
x∈Xn

{ϕ(x) + δS(x) + (δ−Q0
◦G1 ◦ ... ◦Gn)(x)}

and by setting X0 := R× Z0, K0 := R+ ×Q0, Xi := R× Zi, Ki := R+ ×Qi, i = 1, ..., n− 1 and
by defining the following functions

� f : X0 × R, f(y0) := y01 + δ−Q0
(y02) with y0 = (y01 , y

0
2) ∈ X0,

� F i : Xi → Xi−1, F
i(yi1, y

i
2) := (yi1, G

i(yi2)), i = 1, ..., n− 1 with yi = (yi1, y
i
2) ∈ Xi,

� Fn : Xn → Xn−1, F
n(x) := (ϕ(x) + δS(x), Gn(x)),

the problem (PCC) turns into a special case of the problem (PC)

(PCC) inf
x∈Xn

(f ◦ F 1 ◦ ... ◦ Fn)(x)

with A ≡ Xn.

3.2 Regularity conditions, strong duality and optimality
conditions

In this section we want to characterize strong duality through the so-called generalized interior
point regularity conditions. Besides we provide some optimality conditions for the primal problem
and its corresponding conjugate dual problem. For this purpose we additionally assume for the rest
of this chapter that S ⊆ Xn is a convex set, f is a convex function, F i is a Ki−1-convex function
for i = 1, ..., n and g is a Q-convex function. Hence, as can be easily seen, (f ◦ F 1 ◦ ... ◦ Fn) is a

convex function and (PC) is a convex optimization problem. Moreover, the problem (P̃C) is also
convex.

Remark 3.5. Let us point out that for the convexity of (f ◦F 1 ◦ ... ◦Fn) we ask that the function
f is convex and K0-increasing on F 1(domF 1) + K0 and the function F i is Ki−1-convex and
fulfills also the property of monotonicity for i = 1, ..., n − 1, while the function Fn need just be
Kn−1-convex (see Theorem 2.2). This means that if Fn is an affine function, we do not need the
monotonicity of Fn−1, since the composition of an affine function and a function, which fulfills
the property of convexity, fulfills also the property of convexity. In this context let us pay also
attention to Remark 3.2, i.e. one can choose Kn−1 = {0Xn−1

}.

To derive regularity conditions which secure strong duality for the pair (PC)-(DC), we first

consider regularity conditions for strong duality between the problems (P̃C) and (D̃C), which were
presented in [7]. The first one is the well-known Slater constraint qualification

(R̃C
C

1 ) ∃ỹ′ ∈ dom f̃ ∩ S̃ such that h̃(ỹ′) ∈ − int K̃.

Using the definitions of f̃ and h̃ as well as S̃ and K̃ we get

dom f̃ ∩ S̃ = (dom f ×X1 × ...×Xn) ∩ (X0 ×X1 × ...×Xn−1 × S)

= dom f ×X1 × ...×Xn−1 × S (3. 4)

and
int K̃ = int(K0 × ...×Kn−1 ×Q) = intK0 × ...× intKn−1 × intQ.

Therefore the condition (R̃C
C

1 ) can in the context of the primal-dual pair (PC)-(DC) be rewritten
as follows
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(RCC1 ) ∃(y0′ , y1′ , ..., y(n−1)′ , yn′) ∈ dom f ×X1 × ...×Xn−1 × S such that

F i(yi
′
)− y(i−1)′ ∈ − intKi−1, i = 1, ..., n, and g(yn

′
) ∈ − intQ.

The condition (RCC1 ) can also equivalently be formulated as

(RCC1′ ) ∃x′ ∈ S such that g(x′) ∈ −intQ and Fn(x′) ∈ (Fn−1)−1((Fn−2)−1(...
(F 1)−1(dom f − intK0)− intK1...)− intKn−2)− intKn−1.

This can be seen as follows: The assumption that there exists x′ ∈ S such that

Fn(x′) ∈ (Fn−1)−1((Fn−2)−1(...(F 1)−1(dom f − intK0)− intK1...)− intKn−2)− intKn−1

implies that there exists (y0
′
, ..., y(n−1)

′
) ∈ X0 × ...×Xn−1 such that

y(n−1)
′
∈ (Fn−1)−1((Fn−2)−1(...(F 1)−1(dom f − intK0)− intK1...)− intKn−2)

y(n−2)
′
∈ (Fn−2)−1((Fn−3)−1(...(F 1)−1(dom f − intK0)− intK1...)− intKn−3)

...

y1
′
∈ (F 1)−1(dom f − intK0)

y0
′
∈ dom f.

Therefore, by setting x′ = yn
′

the elements (y0
′
, ..., yn

′
) ∈ dom f × X1 × ... × Xn−1 × S fulfill

Fn(yn
′
)−y(n−1)′ ∈ − intKn−1, ..., F 1(y1

′
)−y0′ ∈ − intK0 and from here we can now affirm that

the condition (RCC1 ) is fulfilled.
On the other hand, if there exists (y0

′
, ..., yn

′
) ∈ dom f × X1 × ... × Xn−1 × S such that

g(yn
′
) ∈ − intQ and F i(yi

′
)− y(i−1)′ ∈ − intKi−1 for i = 1, ..., n, then we set yn

′
= x′ and get

Fn(x′)− y(n−1)
′
∈ − intKn−1 ⇒ Fn(x′) ∈ y(n−1)

′
− intKn−1. (3. 5)

Further, we have

Fn−1(y(n−1)
′
)− y(n−2)

′
∈ − intKn−2 ⇒ Fn−1(y(n−1)

′
) ∈ y(n−2)

′
− intKn−2

⇒ y(n−1)
′
∈ (Fn−1)−1(y(n−2)

′
− intKn−2). (3. 6)

From (3. 5) and (3. 6) follows

Fn(x′) ∈ (Fn−1)−1(y(n−2)
′
− intKn−2)− intKn−1. (3. 7)

Since

Fn−2(y(n−2)
′
)− y(n−3)

′
∈ − intKn−3 ⇒ Fn−2(y(n−2)

′
) ∈ y(n−3)

′
− intKn−3

⇒ y(n−2)
′
∈ (Fn−2)−1(y(n−3)

′
− intKn−3)

we get for (3. 7)

Fn(x′) ∈ (Fn−1)−1((Fn−2)−1(y(n−3)
′
− intKn−3)− intKn−2)− intKn−1.

If we continue in this manner until y0
′ ∈ dom f we get finally

Fn(x′) ∈ (Fn−1)−1((Fn−2)−1(...(F 1)−1(dom f − intK0)− intK1...)− intKn−2)− intKn−1.

This means that (RCC1′ ) is equivalent to (RCC1 ). Additionally, we consider a class of regularity
conditions which assume that the underlying spaces are Fréchet spaces:

(R̃C
C

2 ) X̃ and Z̃ are Fréchet spaces, S̃ is closed, f̃ is lower semicontinuous,

h̃ is K̃-epi closed and 0Z̃ ∈ sqri(h̃(dom f̃ ∩ S̃ ∩ dom h̃) + K̃).
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If we exchange sqri for core or int we get stronger versions of this regularity condition:

(R̃C
C

2′) X̃ and Z̃ are Fréchet spaces, S̃ is closed, f̃ is lower semicontinuous,

h̃ is K̃-epi closed and 0Z̃ ∈ core(h̃(dom f̃ ∩ S̃ ∩ dom h̃) + K̃),

(R̃C
C

2′′) X̃ and Z̃ are Fréchet spaces, S̃ is closed, f̃ is lower semicontinuous,

h̃ is K̃-epi closed and 0Z̃ ∈ int(h̃(dom f̃ ∩ S̃ ∩ dom h̃) + K̃),

where the last two conditions are equivalent (see [7]). If we work in finite dimensional spaces the

regularity condition (R̃C
C

2 ) can be written in the following way (see [7])

(R̃C
C

3 ) dim(lin(h̃(dom f̃ ∩ S̃ ∩ dom h̃) + K̃)) < +∞ and

0Z̃ ∈ ri(h̃(dom f̃ ∩ S̃ ∩ dom h̃) + K̃).

To derive corresponding regularity conditions for the primal-dual pair (PC)-(DC) formulated with
the involved functions we first consider the formulae (3.2) and (3.4), which imply that

h̃(dom f̃ ∩ S̃ ∩ dom h̃)

= h̃(dom f × domF 1 × ...× domFn−1 × (domFn ∩ dom g ∩ S))

= h1(domF 1 × dom f)× h2(domF 2 × domF 1)× ...×
hn−1(domFn−1 × domFn−2)×
hn((domFn ∩ dom g ∩ S)× domFn−1)× g(domFn ∩ dom g ∩ S)

= (F 1(domF 1)− dom f)× (F 2(domF 2)− domF 1)× ...×
(Fn−1(domFn−1)− domFn−2)×
(Fn(domFn ∩ dom g ∩ S)− domFn−1)× g(domFn ∩ dom g ∩ S)

and from here we get by Lemma 2.1 that

0Z̃ ∈ sqri

(
(F 1(domF 1)− dom f +K0)× ...

×(Fn−1(domFn−1)− domFn−2 +Kn−2)

×(Fn(domFn ∩ dom g ∩ S)− domFn−1 +Kn−1)

×(g(domFn ∩ dom g ∩ S) +Q)

)
is equivalent to

0X0 ∈ sqri(F 1(domF 1)− dom f +K0),

0Xi ∈ sqri(F i(domF i)− domF i−1 +Ki−1), i = 2, ..., n− 1,

0Xn ∈ sqri(Fn(domFn ∩ dom g ∩ S)− domFn−1 +Kn−1) and

0Z ∈ sqri(g(domFn ∩ dom g ∩ S) +Q).

Now, let % : X0 × ... × Xn × X0 × ... × Xn−1 × Z → X2
0 × ... × X2

n−1 × Xn × Z be defined by
%(y0, ..., yn, v0, ..., vn) := (y0, v0, ..., yn, vn). Further, let us define the functions %nXi : Xi ×Xi−1 ×
Xi−1 → Xi−1 × Xi−1 × Xi by %nXi(y

i, yi−1, vi−1) := (yi−1, vi−1, yi), i = 1, ..., n. Obviously, the
defined functions are homeomorphisms and map open sets into open sets and closed sets into
closed sets. More precisely, this means that %(epiK̃ h̃) is closed if and only if epiK̃ h̃ is a closed set
and %nXi(epiKi−1

hi) is closed if and only if epiKi−1
hi is a closed set, i = 1, ..., n. Furthermore, we

have



24 CHAPTER 3. LAGRANGE DUALITY FOR COMPOSED PROBLEMS

epiK̃ h̃ = {(y0, ..., yn, v0, ..., vn) ∈ X0 × ...×Xn ×X0 × ...×Xn−1 × Z :

(y1, y0, v0) ∈ epiK0
h1,

...

(yn, yn−1, vn−1) ∈ epiKn−1
hn,

(yn, vn) ∈ epiQ g}
= {(y0, ..., yn, v0, ..., vn) ∈ X0 × ...×Xn ×X0 × ...×Xn−1 × Z :

(y0, v0, y1) ∈ %nX1
(epiK0

h1),

...

(yn−1, vn−1, yn) ∈ %nXn(epiKn−1
hn),

(yn, vn) ∈ epiQ g}

=

{
(y0, ..., yn, v0, ..., vn) ∈ X0 × ...×Xn ×X0 × ...×Xn−1 × Z :

(y0, v0, y1, v1, y2, v2, ..., yn−1, vn−1, yn, vn) ∈(
%nX1

(epiK0
h1)
)
×X1 ×X2

2 × ...×X2
n−1 ×Xn × Z,

...

(y0, v0, y1, v1, ..., yn−2, vn−2, yn−1, vn−1, yn, vn) ∈

X2
0 ×X2

1 × ...×X2
n−2 ×

(
%nXn(epiKn−1

hn)
)
× Z,

(y0, v0, ..., yn−1, vn−1, yn, vn) ∈ X2
0 × ...×X2

n−1 × epiQ g

}
=

{
(y0, ..., yn, v0, ..., vn) ∈ X0 × ...×Xn ×X0 × ...×Xn−1 × Z :

(y0, v0, ..., yi−2, vi−2, yi−1, vi−1, yi, vi, yi+1, vi+1, ..., yn, vn) ∈

X2
0 × ...×X2

i−2 ×
(
%nXi(epiKi−1

hi)
)
×Xi ×X2

i+1 × ...×Xn × Z, i = 1, ..., n,

(y0, v0, ..., yn−1, vn−1, yn, vn) ∈ X2
0 × ...×X2

n−1 × epiQ g

}
,

so we can write

%(epiK̃ h̃) =

(
n⋂
i=1

(
X2

0 × ...×X2
i−2 ×

(
%nXi(epiKi−1

hi)
)
×Xi ×X2

i+1 × ...×Xn × Z
))

⋂(
X2

0 × ...×X2
n−1 × epiQ g

)
and get as a consequence that epiK̃ h̃ is closed if epiKi−1

hi, i = 1, ..., n, and epiQ g are closed sets.

Vice versa, let epiK̃ h̃ be closed, i.e. %(epiK̃ h̃) is closed, and

(y1α, y
0
α, v

0
α)α ⊆ epiK0

h1, ..., (ynα, y
n−1
α , vn−1α )α ⊆ epiKn−1

hn and (ynα, v
n
α)α ⊆ epiQ g,

i.e. (y0α, ..., y
n
α, v

0
α, ..., v

n
α)α ⊆ epiK̃ h̃. As epiK̃ h̃ is closed, we have that (y0α, ..., y

n
α, v

0
α, ..., v

n
α)α →

(y0, ..., yn, v0, ..., vn) ∈ epiK̃ h̃, but this means that

(y1, y0, v0) ∈ epiK0
h1, ..., (yn, yn−1, vn−1) ∈ epiKn−1

hn and (yn, vn) ∈ epiQ g,

which implies the closedness of epiK0
h1, ..., epiKn−1

hn and epiQ g.
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Besides, we know by Lemma 2.3 that for a non-empty closed convex cone Ki−1 it holds that
epiKi−1

hi is closed if and only if epiKi−1
F i is closed, i = 1, ..., n. Bringing now the last facts

together implies that for non-empty closed convex cones Ki−1, i = 1, ..., n, it holds that epiK̃ h̃ is
closed if and only if epiQ g and epiKi−1

F i are closed sets, i = 1, ..., n.

Moreover, since S̃ is closed if and only if S is closed and f̃ is lower semicontinuous if and only
if f is lower semicontinuous (follows from the fact that epi f is closed if and only if epi f̃ is closed),
we get the following regularity condition for the primal-dual pair (PC)-(DC) (note that if Xi is a

Fréchet space, i = 0, ..., n, then X̃ = X0 × ...×Xn is a Fréchet space, too)

(RCC2 ) X0, ..., Xn and Z are Fréchet spaces, f is l.s.c., S is closed, g is Q-epi,
closed, Ki−1 is closed, F i is Ki−1-epi closed, i = 1, ..., n,
0X0
∈ sqri(F 1(domF 1)− dom f +K0),

0Xi−1
∈ sqri(F i(domF i)− domF i−1 +Ki−1), i = 2, ..., n− 1,

0Xn−1
∈ sqri(Fn(domFn ∩ dom g ∩ S)− domFn−1 +Kn−1) and

0Z ∈ sqri(g(domFn ∩ dom g ∩ S) +Q).

In the same way we get equivalent formulations of the regularity conditions (RCC2′ ) and (RCC2′′)
using core and int, respectively, instead sqri. The same holds also for the condition (RCC3 ).

As we have seen, the condition (RCCi ) is equivalent to (R̃C
C

i ), i ∈ {1, 2, 2′, 2′′, 3}. Moreover,
since on the one hand Theorem 3.1 is always fulfilled and on the other hand the optimal objective
values between (D̃C) and (DC) are equal, it holds the following theorem (see Theorem 3.2.9 and
3.2.10 in [7]).

Theorem 3.3 (strong duality). If one of the conditions (RCCi ), i ∈ {1, 1′, 2, 2′, 2′′, 3}, is fulfilled,
then between (PC) and (DC) strong duality holds, i.e. v(PC) = v(DC) and the conjugate dual
problem has an optimal solution.

Remark 3.6. If for some i ∈ {1, ..., n} the function F i is positively Ki−1-lower semicontin-
uous, then we can omit asking that F i is Ki−1-epi closed in the regularity conditions (RCCi ),
i ∈ {2, 2′, 2′′}, because the positive Ki−1-lower semicontinuity of F i implies the positive Ki−1-
lower semicontinuity of hi, which then implies the Ki−1-epi closedness of hi.

Remark 3.7. Besides the used regularity conditions there are also the so-called closedness type
conditions guaranteeing strong duality. Such regularity conditions were studied in different con-
texts, like strong duality, subdifferential calculus etc. (see [22]). These types of regularity conditions
were also studied in [42] and [41], to cite only few of them.

We have also extensively studied closedness type conditions in the context of multi-composed
optimization problems with the focus on stable strong duality and ε-optimality conditions in our
article [49]. As applications we considered problems from fractional programming and entropy
optimization (see also [3, 4, 6, 25, 32, 46, 73]).

We come now to the point where we can give necessary and sufficient optimality conditions for
the primal-dual pair v(PC)-v(DC).

Theorem 3.4 (optimality conditions). (a) Suppose that one of the regularity conditions (RCCi ),
i ∈ {1, 1′, 2, 2′, 2′′, 3}, is fulfilled and let x ∈ A be an optimal solution of the problem (PC). Then
there exists (z0∗, ..., z(n−1)∗, zn∗) ∈ K∗0 × ...×K∗n−1 ×Q∗, an optimal solution to (DC), such that

(i) f((F 1 ◦ ... ◦ Fn)(x)) + f∗(z0∗) = 〈z0∗, (F 1 ◦ ... ◦ Fn)(x)〉,

(ii) (z(i−1)∗F i)((F i+1◦...◦Fn)(x))+(z(i−1)∗F i)∗(zi∗) = 〈zi∗, (F i+1◦...◦Fn)(x)〉, i = 1, ..., n−1,

(iii) (z(n−1)∗Fn)(x) + (zn∗g)(x) + ((z(n−1)∗Fn) + (zn∗g))∗S(0X∗n) = 0,

(iv) 〈zn∗, g(x)〉 = 0.
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(b) If there exists x ∈ A such that for some (z0∗, ..., z(n−1)∗, zn∗) ∈ K∗0 × ... × K∗n−1 × Q∗ the
conditions (i)-(iv) are fulfilled, then x is an optimal solution of (PC), (z0∗, ..., zn∗) is an optimal
solution for (DC) and v(PC) = v(DC).

Proof. First, we consider part (a). By Theorem 3.3, strong duality holds for the primal-dual
pair (PC)-(DC), which means that there exists (z0∗, ..., z(n−1)∗, zn∗) ∈ K∗0 × ...×K∗n−1 ×Q∗, an
optimal solution to (DC), such that the following equality holds

(f ◦ F 1 ◦ ... ◦ Fn)(x)

= inf
x∈S
{〈z(n−1)∗, Fn(x)〉+ 〈zn∗, g(x)〉} − f∗(z0∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗).

Furthermore, since by definition it holds

n∑
i=1

(z(i−1)∗F i)((F i+1 ◦ ... ◦ Fn)(x))

=〈z0∗, (F 1 ◦ ... ◦ Fn)(x)〉+

n−1∑
i=1

〈zi∗, (F i+1 ◦ ... ◦ Fn)(x)〉,

the assertions (i)-(iv) can be deduced immediately by the following consideration

(f ◦ F 1 ◦ ... ◦ Fn)(x) + f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)+

((z(n−1)∗Fn) + (zn∗g))∗S(0X∗n) = 0

⇔(f ◦ F 1 ◦ ... ◦ Fn)(x) + f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

+ ((z(n−1)∗Fn) + (zn∗g))∗S(0X∗n) + (zn∗g)(x)− 〈zn∗, g(x)〉

+

n∑
i=1

(z(i−1)∗F i)((F i+1 ◦ ... ◦ Fn)(x))

− 〈z0∗, (F 1 ◦ ... ◦ Fn)(x)〉 −
n−1∑
i=1

〈zi∗, (F i+1 ◦ ... ◦ Fn)(x)〉 = 0

⇔[(f ◦ F 1 ◦ ... ◦ Fn)(x) + f∗(z0∗)− 〈z0∗, (F 1 ◦ ... ◦ Fn)(x)〉]+
n−1∑
i=1

[(z(i−1)∗F i)((F i+1 ◦ ... ◦ Fn)(x)) + (z(i−1)∗F i)∗(zi∗)− 〈zi∗, (F i+1 ◦ ... ◦ Fn)(x)〉]

+ [(z(n−1)∗Fn)(x) + (zn∗g)(x) + ((z(n−1)∗Fn) + (zn∗g))∗S(0X∗n)]

+ [−〈zn∗, g(x)〉] = 0.

By the Young-Fenchel inequality and the constraints of the primal and dual problem, all the terms
within the brackets are non-negative and consequently must be equal to zero.
Concerning the proof of part (b) we observe that all considerations and calculations within the
proof of part (a) can be done in the reverse direction.

Remark 3.8. The conditions (i)-(iv) can equivalently be expressed as

(i) z0∗ ∈ ∂f((F 1 ◦ ... ◦ Fn)(x)),

(ii) zi∗ ∈ ∂(z(i−1)∗F i)((F i+1 ◦ ... ◦ Fn)(x)), i = 1, ..., n− 1,

(iii) 0X∗n ∈ ∂((z(n−1)∗Fn) + (zn∗g) + δS)(x),
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(iv) 〈zn∗, g(x)〉 = 0.

Remark 3.9. In fact, we can write every optimization problem in the form of a multi-composed
problem by splitting the objective function into n+ 1 composed functions. Allowing n to be greater
than one, as considered until now in the literature, is very fruitful for dealing with a big variety of
optimization problems because many such problems cannot be described with an objective function
composed by only two functions (case n = 1, cf. the optimization problem presented in Section 3.4).
The problems and results in several papers (cf. [7,8,17,20,21,23,55]) turn out to be special cases of
our approach for the situation when only two functions are composed in the objective function, i.e.
n = 1. For this reason our analysis sums up the approaches and the results in the mentioned papers
into one unified theory. Similarly to the difficulties of the usual perturbation theory, where every
perturbation is accompanied by additional conditions, like monotonicity and convexity, needed for
strong duality, we derive situations in our approach, where for each additional splitting function
involved in the multi-composed objective function, also additional properties must be fulfilled to
ensure strong duality.

But viewed from the other side, one can derive a conjugate dual problem, where the associated
objective function is easier to handle due to the fact that the conjugate functions of the functions
involved in the objective function of the primal problem are split. Furthermore, one can derive
by the corresponding optimality conditions listed above a more detailed characterization of the
set of optimal solutions of the dual and the primal problems as well as their relationship to each
other. Such information can be used on the one hand to give a geometrical interpretation of the
dual problem and on the other hand to improve the approach of optimization problems from the
numerical point of view. In Chapter 4 we consider in this context minimax location problems as
an application of the presented theory.

3.3 The conjugate function of a multi-composed function

Before we continue with our further approach we want to calculate the conjugate of the function
(f ◦ F 1 ◦ ... ◦ Fn), or, to be more precise, we determine to the function

γ(x) = (f ◦ F 1 ◦ ... ◦ Fn)(x), x ∈ Xn,

its conjugate function

γ∗(x∗) = sup
x∈Xn

{〈x∗, x〉 − (f ◦ F 1 ◦ ... ◦ Fn)(x)}, x∗ ∈ X∗n.

With this in mind, we consider for fixed x∗ ∈ X∗n the problem

(PK) inf
x∈Xn

{(f ◦ F 1 ◦ ... ◦ Fn)(x)− 〈x∗, x〉}

and the equivalent primal problem

(P̃K) inf
(y0,...,yn)∈X0×...×Xn,

Fi(yi)−yi−1∈−Ki−1, i=1,...,n

{f̃(y0, y1, ..., yn)− 〈x∗, yn〉}.

In the same way like in the proof of Theorem 3.1 one can show that it holds v(PK) = v(P̃K)

(where v(PK) and v(P̃K) denote the optimal objective values of the problems (PK) and (P̃K),

respectively). The corresponding Lagrange dual problem to problem (P̃K) looks like

(D̃K) sup
zi∗∈K∗

i
,

i=0,...,n−1

inf
yi∈Xi,
i=0,...,n

{
f̃(y0, y1, ..., yn) +

n∑
i=1

〈z(i−1)∗, F i(yi)− yi−1〉 − 〈x∗, yn〉

}



28 CHAPTER 3. LAGRANGE DUALITY FOR COMPOSED PROBLEMS

= sup
zi∗∈K∗

i
,

i=0,...,n−1

{
− sup
y0∈X0

{〈z0∗, y0〉 − f(y0)} −

sup
yn∈S, yi∈Xi,
i=1,...,n−1

{
n−1∑
i=1

〈zi∗, yi〉+ 〈x∗, yn〉 −
n∑
i=1

〈z(i−1)∗, F i(yi)〉

}}

= sup
zi∗∈K∗

i
,

i=0,...,n−1

{
− f∗(z0∗)− (z(n−1)∗Fn)∗(x∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
.

Hence, we define the conjugate dual problem corresponding to the primal problem (PK) as

(DK) sup
zi∗∈K∗

i
,

i=0,...,n−1

{
− f∗(z0∗)− (z(n−1)∗Fn)∗(x∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
.

Let us notice that for all x∗ ∈ X∗n one has dom f̃ = dom(f̃ + 〈x∗, ·〉). To guarantee strong duality
between the problem (PK) and its conjugate dual problem (DK), we use the regularity conditions
we introduced above. Therefore, we set Z = X ordered by the trivial cone Q = X and define the
function g : X → X by g(x) := x such that g is Q-epi closed and

0X ∈ sqri(g(X) +Q) = sqri(X +Q) = X.

Hence, we get for the pair (PK)-(DK) the following regularity conditions. The first one looks like

(RCK1 ) ∃(y0′ , y1′ , ..., yn′) ∈ dom f ×X1 × ...×Xn such that

F i(yi
′
)− y(i−1)′ ∈ − intKi−1, i = 1, ..., n

and can also be written as

(RCK1′ ) ∃x′ ∈ Xn such that Fn(x′) ∈ (Fn−1)−1((Fn−2)−1(...
(F 1)−1(dom f − intK0)− intKn−1...)− intKn−2)− intKn−1.

For the interior point regularity condition we get

(RCK2 ) X0, ..., Xn are Fréchet spaces, f is l.s.c.,
Ki−1 is closed, F i is Ki−1-epi closed, i = 1, ..., n,
0X0
∈ sqri(F 1(domF 1)− dom f +K0) and

0Xi−1
∈ sqri(F i(domF i)− domF i−1 +Ki−1), i = 2, ..., n.

In the same way we get representations for (RCKi ), i = 2′, 2′′, 3.
By Theorem 3.3 we can state the following one:

Theorem 3.5 (strong duality). Let f : X0 → R be proper, convex and K0-increasing on
F 1(domF 1) +K0, F i : Xi → Xi−1, be proper, Ki−1-convex and (Ki,Ki−1)-increasing on
F i+1(domF i+1) + Ki, i = 1, ..., n − 1 and Fn : Xn → Xn−1 be proper and Kn−1-convex. If one
of the conditions (RCKi ), i ∈ {1, 1′, 2, 2′, 2′′, 3}, is fulfilled, then between (PK) and (DK) strong
duality holds, i.e. v(PK) = v(DK) and the conjugate dual problem has an optimal solution.

Furthermore, it holds the following theorem.

Theorem 3.6. Let f : X0 → R be proper, convex and K0-increasing on F 1(domF 1) + K0,
F i : Xi → Xi−1, be proper, Ki−1-convex and (Ki,Ki−1)-increasing on F i+1(domF i+1) + Ki,
i = 1, ..., n − 1 and Fn : Xn → Xn−1 be proper and Kn−1-convex. If one of the regularity
conditions (RCKi ), i ∈ {1, 1′, 2, 2′, 2′′, 3}, is fulfilled, then the conjugate function of γ is given by

γ∗(x∗) = min
zi∗∈K∗

i
,

i=0,...,n−1

{
f∗(z0∗) + (z(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
(3. 8)

for all x∗ ∈ X∗n.
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Proof. By using Theorem 3.5 it follows that

γ∗(x∗) = sup
x∈X
{〈x∗, x〉 − (f ◦ F 1 ◦ ... ◦ Fn)(x)}

= min
yi∗∈K∗

i
,

i=0,...,n−1

{
f∗(y0∗) + (y(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(y(i−1)∗F i)∗(yi∗)

}
∀x∗ ∈ X∗n.

Remark 3.10. The advantage of the introduced concept is that a “complicated” function γ can
be split into n + 1 “simple” functions such that the calculation of the conjugate can be simplified
by calculating just the conjugates of the n+ 1 “simple” functions.

Example 3.1. Let us consider the following generalized signomial function γ : Rn × Rn → R
defined by

γ(x, y) =

{
max

{
1

x
p1
1 y

q1
1

, ..., 1
xpnn yqnn

}
, if (x, y) ∈ intRn+ × intRn+

+∞, otherwise,

with pi, qi ≥ 0 for all i = 1, ..., n, and x = (x1, ..., xn)T ∈ Rn, y = (y1, ..., yn)T ∈ Rn. Then, we
split the function γ into the functions

� f : Rn → R defined by

f(y0) :=

{
max{y01 , ..., y0n}, if y0 = (y01 , ..., y

0
n)T ∈ Rn+,

+∞, otherwise,

� F 1 : Rn → Rn, defined by

F 1(y1) :=

{
(ey

1
1 , ..., ey

1
n)T , if y1 = (y11 , ..., y

1
n)T ∈ Rn

+∞Rn+ , otherwise,

and

� F 2 : Rn × Rn → Rn, defined by

F 2(x, y) :=

{
(−p1 lnx1 − q1 ln y1, ...,−pn lnxn − qn ln yn)T , if x, y ∈ intRn+,
+∞Rn+ , otherwise,

such that γ is writeable as

γ(x, y) = (f ◦ F 1 ◦ F 2)(x, y) (3. 9)

and set K0 = K1 = Rn+. Without much effort one can observe that f is proper, convex and
Rn+-increasing on F 1(domF 1) + Rn+ = intRn+ + Rn+ = intRn+ ⊆ Rn+, F 1 is proper, Rn+-convex and
(Rn+,Rn+)-increasing on F 2(domF 2) +Rn+ = Rn and F 2 is proper and Rn+-convex. Moreover, it is
easy to verify that the regularity condition (RCK1′ ) looks in this special case like

(RCKe1′ ) ∃(x′, y′) ∈ Rn × Rn such that −pi lnx′i − qi ln y′i ∈ R, i = 1, ..., n,

which, of course, is always fulfilled. Thus, we can apply the formula (3. 8) of Theorem 3.6 for the
determination of the conjugate function of γ:

γ∗(x∗, y∗) = min
z0∗,z1∗∈Rn+

{
f∗(z0∗) + (z0∗F 1)∗(z1∗) + (z1∗F 2)∗(x∗, y∗)

}
∀(x∗, y∗) ∈ Rn × Rn.(3. 10)
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Now, we have to calculate the conjugate functions involved in the formula (3. 10). We have for
z0∗ = (z0∗1 , ..., z0∗n )T ∈ Rn+:

f∗(z0∗) = sup
(y01 ,...,y

0
n)
T∈Rn

{
n∑
i=1

z0∗i y
0
i − f(y0)

}
= sup

(y01 ,...,y
0
n)
T∈Rn+

{
n∑
i=1

z0∗i y
0
i −max{y01 , ..., y0n}

}

= sup
(y01 ,...,y

0
n)
T∈Rn+


n∑
i=1

z0∗i y
0
i − inf

t∈R+, y0i≤t,
i=1,...,n

t

 = sup
y0
i
∈R+, t∈R+, y0i≤t,

i=1,...,n

{
n∑
i=1

z0∗i y
0
i − t

}
.

As one may see, f∗ can be expressed as a supremum of a linear function and thus, by elementary
calculations, we have that

f∗(z0∗) =

 0, if
n∑
i=1

z0∗i ≤ 1, (z0∗1 , ..., z0∗n )T ∈ Rn+,

+∞, otherwise.
(3. 11)

From (3. 10) and (3. 11) follows for the conjugate function of γ

γ∗(x∗, y∗) = min
z0∗
i
, z1∗

i
∈R+, i=1,...,n,

n∑
i=1

z0∗
i
≤1

{
(z0∗F 1)∗(z1∗) + (z1∗F 2)∗(x∗, y∗)

}
. (3. 12)

Furthermore, we have for z0∗i ≥ 0, i = 1, ..., n,

(z0∗F 1)∗(z1∗) = sup
y1i∈R, i=1,...,n

{
n∑
i=1

z1∗i y
1
i −

n∑
i=1

z0∗i e
y1i

}

=

n∑
i=1

sup
y1i∈R
{z1∗i y1i − z0∗i ey

1
i }

with (see [7] or also [24])

sup
y1i∈R
{z1∗i y1i − z0∗i ey

1
i } =


z1∗i

(
ln

z1∗i
z0∗i
− 1
)
, if z0∗i , z

1∗
i > 0,

0, if z1∗i = 0, z0∗i ≥ 0,
+∞, otherwise,

(3. 13)

for i = 1, ..., n and for z1∗i ≥ 0, i = 1, ..., n, it holds

(z1∗F 2)∗(x∗, y∗) = sup
xi,yi>0, i=1,...,n

{
n∑
i=1

x∗i xi +

n∑
i=1

y∗i yi +

n∑
i=1

z1∗i pi lnxi +

n∑
i=1

z1∗i qi ln yi

}

=

n∑
i=1

(
sup
xi>0
{x∗i xi + z1∗i pi lnxi}+ sup

yi>0
{y∗i yi + z1∗i qi ln yi}

)
for all x∗ = (x∗1, ..., x

∗
n)T , y∗ = (y∗1 , ..., y

∗
n)T ∈ Rn, where (see [24])

sup
xi>0
{x∗i xi + z1∗i pi lnxi} =


−z1∗i pi

(
1 + ln

(
− x∗i
z1∗i pi

))
, if x∗i < 0, z1∗i , pi > 0,

0, if x∗i ≤ 0 and z1∗i = 0 or x∗i ≤ 0 and pi = 0,
+∞, otherwise,

(3. 14)

and likewise

sup
yi>0
{y∗i yi + z1∗i qi ln yi} =


−z1∗i qi

(
1 + ln

(
− y∗i
z1∗i qi

))
, if y∗i < 0, z1∗i , qi > 0,

0, if y∗i ≤ 0 and z1∗i = 0 or y∗i ≤ 0 and qi = 0,
+∞, otherwise,

(3. 15)
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for i = 1, ..., n. Finally, we define the function ξ : R→ {0, 1} by

ξ(x) =

{
1, if x > 0,
0, otherwise,

(3. 16)

which leads, by using (3. 12), (3. 13), (3. 14), (3. 15) and (3. 16), to the following formula of
the conjugate function of γ

γ∗(x∗, y∗) = min
n∑
n=1

z0∗
i
≤1, z0∗

i
≥0,

z1∗
i
≥0, i=1,...,n

{
n∑
i=1

z1∗i [
(
ln z1∗i − ln z0∗i − 1

)
ξ(z0∗i )

−pi
(
1 + lnx∗i − ln z1∗i pi

)
− qi

(
1 + ln y∗i − ln z1∗i qi

)
]

}

for all x∗i , y
∗
i ≥ 0, i = 1, ..., n, with the convention 0 ln 0 = 0.

Next, we give an alternative representation for γ. But, first pay attention to the following
function

β(x∗) := inf
zi∗∈X∗

i
,

i=0,...,n−1

{
f∗(z0∗) + (z(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
∀x∗ ∈ X∗n.

If f : X0 → R is a K0-increasing function on {F 1(domF 1)+K0}−K0, it follows by [7, Proposition
2.3.11] that

f∗(z0∗) = +∞ ∀z0∗ /∈ K∗0 , i.e. dom f∗ ⊆ K∗0 ,

and thus it holds

β(x∗) = inf
z0∗∈K∗0 , z

i∗∈X∗
i
,

i=1,...,n−1

{
f∗(z0∗) + (z(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

for all x∗ ∈ X∗n. Moreover, if F 1 : X1 → X0 is (K1,K0)-increasing on {F 2(domF 2) +K1} −K1,
then (z0∗F 1) : X1 → R is K1-increasing on {F 2(domF 2) + K1} − K1 for z0∗ ∈ K∗0 . By using
again [7, Proposition 2.3.11] one gets for z0∗ ∈ K∗0

(z0∗F 1)∗(z1∗) = +∞ ∀z1∗ /∈ K∗1 , i.e. dom(z0∗F 1) ⊆ K∗1

and we can write

β(x∗) = inf
z0∗∈K∗0 , z

1∗∈K∗1 ,
zi∗∈X∗

i
, i=2,...,n−1

{
f∗(z0∗) + (z(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

for all x∗ ∈ X∗n. If we proceed in this way, it follows that

(z(i−1)∗F i)∗(zi∗) = +∞ ∀zi∗ /∈ K∗i , i.e. dom(z(i−1)∗F i)∗ ⊆ K∗i , i = 2, ..., n− 1,

and therefore, it holds

β(x∗) = inf
zi∗∈K∗

i
,

i=0,...,n−1

{
f∗(z0∗) + (z(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
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for all x∗ ∈ X∗n. For the conjugate function of β one has

β∗(x) = sup
x∗∈X∗n

{〈x∗, x〉 − β(x∗)}

= sup
x∗∈X∗n

{
〈x∗, x〉 − inf

zi∗∈X∗
i
,

i=0,...,n−1

{
f∗(z0∗) + (z(n−1)∗Fn)∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}}

= sup
x∗∈X∗n, z

i∗∈X∗
i
,

i=0,...,n−1

{
〈x∗, x〉 − f∗(z0∗)− (z(n−1)∗Fn)∗(x∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

= sup
zi∗∈X∗

i
,

i=0,...,n−1

{
sup
x∗∈X∗n

{〈x∗, x〉 − (z(n−1)∗Fn)∗(x∗)} − f∗(z0∗)−
n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

= sup
zi∗∈X∗

i
,

i=0,...,n−1

{
(z(n−1)∗Fn)∗∗(x)} − f∗(z0∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
(3. 17)

for all x ∈ Xn. Since Fn is proper and Kn−1-convex and if we ask that Fn is also positively
Kn−1-lower semicontinuous, (3. 17) can by using the Fenchel-Moreau Theorem be written as

β∗(x) = sup
zi∗∈X∗

i
,

i=0,...,n−1

{
(z(n−1)∗Fn)(x)− f∗(z0∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
(3. 18)

for all x ∈ Xn. If we additionally ask that the function F i is positively Ki−1-lower semicontinuous,
i = 1, ..., n−1, and if we assume that f is lower semicontinuous, then one gets for (3. 18) by using
again the Fenchel-Moreau Theorem

β∗(x) = sup
zi∗∈X∗

i
,

i=0,...,n−2

{
sup

z(n−1)∗∈X∗n−1

{〈z(n−1)∗, Fn(x)〉 − (z(n−2)∗F (n−1))∗(z(n−1)∗)}−

f∗(z0∗)−
n−2∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

= sup
zi∗∈X∗

i
,

i=0,...,n−2

{
(z(n−2)∗Fn−1)∗∗(Fn(x))− f∗(z0∗)−

n−2∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

= sup
zi∗∈X∗

i
,

i=0,...,n−2

{
(z(n−2)∗Fn−1)(Fn(x))− f∗(z0∗)−

n−2∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

= sup
zi∗∈X∗

i
,

i=0,...,n−3

{
sup

z(n−2)∗∈X∗n−2

{〈z(n−2)∗, Fn−1(Fn(x))〉 − (z(n−3)∗F (n−2))∗(z(n−2)∗)}

− f∗(z0∗)−
n−3∑
i=1

(z(i−1)∗F i)∗(zi∗)

}

= sup
zi∗∈X∗

i
,

i=0,...,n−3

{
(z(n−3)∗Fn−2)(Fn−1(Fn(x)))− f∗(z0∗)−

n−3∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
...

= sup
z0∗∈X∗0

{〈z0∗, (F 1 ◦ ... ◦ Fn)(x)〉 − f∗(z0∗)} = f∗∗((F 1 ◦ ... ◦ Fn)(x))

=(f ◦ F 1 ◦ ... ◦ Fn)(x) = γ(x) ∀x ∈ Xn.
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Since the weak duality always holds, i.e. v(PK) ≥ v(DK), we have γ∗(x∗) ≤ β(x∗) for all x∗ ∈ X∗n.
Moreover, it holds γ(x) ≥ γ∗∗(x) for all x ∈ Xn and from here it follows that γ(x) ≥ γ∗∗(x) ≥
β∗(x) = γ(x), x ∈ Xn, i.e. γ(x) = γ∗∗(x) for all x ∈ Xn. The latter means that γ is proper,
convex and lower semicontinuous. Summarizing, we get the following theorem:

Theorem 3.7. Let f : X0 → R be a proper, convex, K0-increasing on {F 1(domF 1) + K0} −
K0 and lower semicontinuous function, F i : Xi → Xi−1 be a proper, Ki−1-convex, (Ki,Ki−1)-
increasing on {F i+1(domF i+1) + Ki} − Ki and positively Ki−1-lower semicontinuous function,
i = 1, ..., n − 1, and Fn : Xn → Xn−1 be a proper, Kn−1-convex and positively Kn−1-lower
semicontinuous function. Then the function γ = f ◦ F 1 ◦ ... ◦ Fn : Xn → R is proper, convex and
lower semicontinuous and can alternatively be written as

(f ◦ F 1 ◦ ... ◦ Fn)(x) = sup
zi∗∈X∗

i
,

i=0,...,n−1

{
(z(n−1)∗Fn)(x)− f∗(z0∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
∀x ∈ Xn.

Remark 3.11. Besides the introduced duality concept there is a second way to construct a cor-
responding conjugate dual problem to (PC) and to formulate associated duality statements, where
the conjugates of the functions involved in the objective function of the original problem are split.
This dual approach is characterized by the direct applying of the perturbation theory by defining
an associated perturbation function of the following form

Φ(x, y0, ..., yn+1) :=

{
f(F 1(...Fn−1(Fn(x+ yn) + yn−1)...) + y0), if g(x) ∈ yn+1 −Q,
+∞, otherwise,

where (y0, ..., yn, yn+1) ∈ X0 × ...×Xn × Z are the dual variables.
If we use this method in the context of the generalized interior point regularity conditions, then

we have to impose for strong duality that the perturbation function Φ is lower semicontinuous
(see [7]). But this means, as shown in Theorem 3.7, that we have to ensure that the functions
F i are all positively Ki−1-lower semicontinuous, respectively. In contrast, to employ the proposed
method in this chapter, we only need to secure that each of these functions is Ki−1-epi closed,
respectively. It is well known that if a function F i is positively Ki−1-lower semicontinuous, then it
is also Ki−1-epi closed, while the inverse statement is not true in general (see Proposition 2.2.19
and Example 2.2.6. in [7]). In this sense the method introduced in this thesis asks for weaker
hypothesis on the involved functions for guaranteeing strong duality.

Finally, let us turn to the question why we did not apply the Fenchel-Lagrange duality theory
to the reformulated primal problem (P̃C) with set and cone constraints. The reason is that even
though that the functions Fn and g can not be split directly, one derives more complicated and
stronger regularity conditions compared to the ones proposed in this work.

3.4 An optimization problem having as objective function
the sum of reciprocals of concave functions

Let Ei be a non-empty convex subset of X, i = 1, ..., n, where X is a locally convex Hausdorff
space partially ordered by the closed and convex cone K. Then, we consider a convex optimization
problem having as objective function the sum of reciprocals of concave functions hi : Ei → R with
strict positive values, i = 1, .., n, and geometric and cone constraints, i.e., the optimization problem
that we discuss in this section (cf. the definitions from Section 3.1) is given by

(PG) inf
x∈S,

g(x)∈−Q

{
n∑
i=1

1

hi(x)

}
.

Optimization problems of this type arise, for instance, in the study of power functions by setting
hi : R+ → R, hi(x) = cix

pi with cipi(pi − 1) ≤ 0, i = 1, ..., n, (see [72]) and have a wide range of
applications in economics, engineering and finance.
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To apply the results from the previous section to (PG), i.e. to characterize strong duality and to
derive optimality conditions, we assume that the function −hi is K-increasing on Ei, i = 1, ..., n,
and set X0 = Rn, K0 = Rn+, X1 = Xn, K1 = Kn and X2 = X. Additionally, we define the
following functions

� f : Rn → R,

f(y0) =

−
n∑
i=1

1
y0i
, if y0i < 0, i = 1, ..., n,

+∞, otherwise,

� F 1 : Xn → Rn,

F 1(y1) =

{
(−h1(y11), ...,−hn(y1n))T , if y1i ∈ Ei, i = 1, ..., n,

+∞Rn+ , otherwise

and

� F 2 : X → Xn, F 2(x) := (x, ..., x) ∈ Xn

and we assume that F 2(S ∩ dom g) ⊆ E1 × ... × En (cf. Remark 3.3). From here, it follows that
the problem (PG) can equivalently be written as

(PG) inf
x∈S,

g(x)∈−Q

{
(f ◦ F 1 ◦ F 2)(x)

}
and by using the formula from Section 3.1 its corresponding conjugate dual problem (DG) turns
into

(DG) sup
z0∗∈Rn

+
, z1∗∈(K∗)n,

z2∗∈Q∗

{
inf
x∈S

{〈
n∑
i=1

z1∗i , x

〉
+ 〈z2∗, g(x)〉

}
− f∗(z0∗)− (z0∗F 1)∗(z1∗)

}
.

Furthermore, one has (see [8], [51] or [54]):

f∗(z0∗) =

n∑
i=1

sup
yi<0

{
z0∗i y

0
i +

1

y0i

}
= −2

n∑
i=1

√
z0∗i

for all z0∗i ≥ 0, i = 1, ..., n, and since

(z0∗F 1)∗(z1∗) =

n∑
i=1

sup
y1i∈Ei

{
〈z1∗i , y1i 〉+ z0∗i hi(y

1
i )
}

=

n∑
i=1

(−z0∗i hi)∗Ei(z
1∗
i )

holds, one gets for the conjugate dual problem

(DG) sup
z0∗∈Rn

+
, z1∗∈(K∗)n,

z2∗∈−Q∗

{
−(z2∗g)∗S

(
−

n∑
i=1

z1∗i

)
+

n∑
i=1

(
2
√
z0∗i − (−z0∗i hi)∗Ei(z

1∗
i )

)}
.

It is easy to observe that f is proper, Rn+-increasing on dom f = − int(Rn+), convex and lower
semicontinuous, F 1 is proper, (Kn,Rn+)-increasing on domF 1 = E1 × ... × En and Rn+-convex
and that F 1(domF 1) ⊆ int(−Rn+) = dom f (in this context pay attention on Remark 3.3). For
that reason we can now attach the regularity condition (RCC1 ), specialized for the optimization
problem (PG),
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(RCG1 ) ∃(y0′ , y1′ , y2′) ∈ (−∞, 0)n ×Xn × S such that hi(y
1′

i ) + y0
′

i > 0,

y2
′ − y1′i ∈ − intK, i = 1, ..., n, and g(y2

′
) ∈ − intQ.

As hi is a concave function with strict positive values on Ei, there exist y0∗i < 0 and y1∗i ∈ Ei such

that hi(y
1′

i ) + y0
′

i > 0, i = 1, ..., n, and hence (RCG1 ) reduces to

(RCG1 ) ∃(y1′ , y2′) ∈ Xn × S such that y2
′ − y1′i ∈ − intK, i = 1, ..., n,

and g(y2
′
) ∈ − intQ.

or, equivalently, in the light of (RCC1′ ),

(RCG1′ ) ∃x′ ∈ S such that x′ ∈ Ei − intK, i = 1, ..., n, and g(x′) ∈ − intQ.

The generalized interior point regularity conditions (RCC2 ), specialized for (PG), looks like

(RCG2 ) X and Z are Fréchet spaces, S is closed, g is Q-epi closed,
−hi is lower semicontinuous, 0X ∈ sqri(dom g ∩ S − Ei +K),
i = 1, ..., n, and 0Z ∈ sqri(g(dom g ∩ S) +Q).

In the same way one can formulate a specialized regularity condition (RCGi ) in respect to the
condition (RCCi ) for i ∈ {2′, 2′′, 3}.

Remark 3.12. Recall, that in respect to Remarks 3.2 and 3.5 the function F 1 does not need to
be monotone, because F 2 is a linear function. In this case we set, like mentioned in Remark 3.2,
K1 = {0Xn} = {0X}n. But pay attention to the circumstance that the regularity conditions (RCG1 )
and (RCG1′ ) are no more applicable in this framework, as int{0X} = ∅.

By Theorems 3.3 and 3.4 the strong duality statement and the optimality conditions follows
immediately.

Theorem 3.8 (strong duality). If one of the conditions (RCGi ), i ∈ {1, 1′, 2, 2′, 2′′, 3}, is fulfilled,
then between (PG) and (DG) strong duality holds, i.e. v(PG) = v(DG) and the conjugate dual
problem has an optimal solution.

Theorem 3.9 (optimality conditions). (a) Suppose that one of the regularity conditions (RCGi ),
i ∈ {1, 1′, 2, 2′, 2′′, 3}, is fulfilled and let x ∈ S be an optimal solution of the problem (PG). Then
there exists (z0∗, z1∗, z2∗) ∈ Rn+ × (K∗)n ×Q∗, an optimal solution to (DG), such that

(i)
n∑
i=1

1
hi(x)

− 2
n∑
i=1

√
z0∗i = −

n∑
i=1

z0∗i hi(x),

(ii)
n∑
i=1

(−z0∗i hi)∗Ei(z
1∗
i )−

n∑
i=1

z0∗i hi(x) =

〈
n∑
i=1

z1∗i , x

〉
,

(iii) 〈z2∗, g(x)〉+ (z2∗g)∗S

(
−

n∑
i=1

z1∗i

)
=

〈
−

n∑
i=1

z1∗i , x

〉
,

(iv) 〈z2∗, g(x)〉 = 0.

(b) If there exists x ∈ S such that for some (z0∗, z1∗, z2∗) ∈ Rn+ × (K∗)n × Q∗ the conditions
(i)-(iv) are fulfilled, then x is an optimal solution of (PG), (z0∗, z1∗, z2∗) is an optimal solution
for (DG) and v(PG) = v(DG).

Remark 3.13. In view of the Young-Fenchel inequality, we can refine the conditions (i) and (ii)
of Theorem 3.9 like follows

(i) z0∗i hi(x) = 2
√
z0∗i − 1

hi(x)
, i = 1, ..., n,

(ii) (−z0∗i hi)∗Ei(z
1∗
i )− z0∗i hi(x) = 〈z1∗i , x〉, i = 1, ..., n.
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In the end of this section we give, for completeness, alternative representations of the optimality
conditions presented in Theorem 3.9 and refined in the previous remark.

Remark 3.14. In accordance with Remarks 3.8 and 3.13 the optimality conditions (i)-(iv) of
Theorem 3.9 can equivalently be rewritten as

(i) z0∗i ∈ ∂
(
− 1
·
)

(−hi(x)), i = 1, ..., n,

(ii) z1∗i ∈ ∂(−z0∗i hi)(x), i = 1, ..., n,

(iii) −
n∑
i=1

z1∗i ∈ ∂((z2∗g) + δS)(x),

(iv) 〈z2∗, g(x)〉 = 0.

Remark 3.15. One may see that the function F 2 has been introduced in order to split the functions
hi, i = 1, ..., n, and g or, more precisely, to decompose their conjugate functions in the formulation
of the dual problem (DG). As a further advantage one gets a detailed characterization of the set
of optimality conditions presented in Theorem 3.9, Remark 3.13 and Remark 3.14. Other duality
schemes may be employed for approaching this kind of optimization problems, too, however, the
separation of the conjugates of the involved functions in the corresponding dual problems may fail
to happen. This also underlines the benefit of the introduced multi-composed duality concept.



Chapter 4

Duality results for minimax
location problems

In the recent years, location problems attracted enormous attention in the scientific community and
a large number of papers studying minisum and minimax location problems have been published
(see [20,23,33–36,38,40,44,45,50,58,60–62,67,68,74,74,75]). This is due to the fact that location
problems cover many practical situations occurring for example in urban area models, computer
science, telecommunication and also in emergency facilities location programming.

In this chapter, which is mainly based on our articles [80, 81] and [82], minimax location
problems form the focal point of our approach. In particular, we are interested to give a duality
approach for nonlinear and linear minimax location problems with geometric constraints, where
the version of the nonlinear location problem is additionally equipped with set-up costs. For
this purpose, we apply the duality theory developed in the previous chapter, which allows us to
formulate more detailed dual problems as well as associated duality statements as in the mentioned
papers. To be more exact, we study three classes of location problems, namely, single, extended
multifacility and classical multifacility minimax location problems and to each of them, we consider
different settings to specialize the associated duality results.

But first, some properties of gauges will be listed in the next section. Gauge functions are a
generalization of norms and can be understood as infimal distances to sets. The use of these func-
tions allows to consider more general location models, especially, in situations when asymmetric
distance measures are of interest.

4.1 Some properties of the gauge function

Let us start this section by proving the following statements that we also shall use in the sequel.

Lemma 4.1. Let ai ∈ R+ be a given point and hi : R → R with hi(x) ∈ R+, if x ∈ R+, and
hi(x) = +∞, otherwise, be a proper, lower semicontinuous and convex function, i = 1, ..., n. Then
the conjugate of the function g : Rn → R defined by

g(x1, ..., xn) :=

{
max{h1(x1) + a1, ..., hn(xn) + an}, if xi ∈ R+, i = 1, ..., n,

+∞, otherwise,

is given by g∗ : Rn → R,

g∗(x∗1, ..., x
∗
n) = min

n∑
i=1

z0∗
i
≤1, z0∗

i
≥0,

i=1,...,n

{
n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai]

}
.

37
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Proof. We set X0 = X1 = Rn and K0 = Rn+. Further, we define the function f : Rn → R by

f(y01 , ..., y
0
n) :=

{
max{y01 + a1, ..., y

0
n + an}, if y0i ∈ R+, i = 1, ..., n,

+∞, otherwise,

and the function F 1 : Rn → Rn by

F 1(x1, ..., xn) :=

{
(h1(x1), ..., hn(xn))T , if xi ∈ R+, i = 1, ..., n,

+∞Rn+ , otherwise.

Hence, the function g can be written as

g(x1, ..., xn) = (f ◦ F 1)(x1, ..., xn).

It can easy be verified that the function f is proper, convex, lower semicontinuous and Rn+-
increasing on F 1(domF 1) + K0 ⊆ Rn+ (as f is the pointwise supremum of proper, convex and
lower semicontinuous functions) and the function F 1 is proper, Rn+-epi closed and Rn+-convex.
Therefore, it follows by Theorem 3.6 (note also that 0Rn ∈ sqri(F 1(domF 1) − dom f + K0) =
sqri(F 1(domF 1)− Rn+ + Rn+) = Rn) that

g∗(x∗1, ..., x
∗
n) = min

y0∗
i
∈R+,

i=1,...,n

{f∗(y0∗1 , ..., y0∗n ) + ((y0∗1 , ..., y
0∗
n )TF 1)∗(x∗1, ..., x

∗
n)}.

For the conjugate of the function f we have

f∗(y0∗) = sup
y0i∈R, i=1,...,n

{
n∑
i=1

y0∗i y
0
i − f(y01 , ..., y

0
n)

}

= sup
y0i∈R+, i=1,...,n

{
n∑
i=1

y0∗i y
0
i − max

1≤i≤n
{y0i + ai}

}

= sup
y0i∈R+, i=1,...,n


n∑
i=1

y0∗i y
0
i − min

t∈R+,y0i+ai≤t,
i=1,...,n

t


= sup

t∈R+, y0i∈R+,
y0
i
+ai≤t, i=1,...,n

{
n∑
i=1

y0∗i y
0
i − t

}
. (4. 1)

Now, let us consider for any y0∗ ∈ Rn+ the following primal optimization problem

(Pmax) inf
t∈R+, y0i∈R+,

y0
i
+ai≤t, i=1,...,n

{
t−

n∑
i=1

y0∗i y
0
i

}
. (4. 2)

and its corresponding Lagrange dual problem

(Dmax) sup
λi≥0, i=1,...,n

inf
t∈R+, y0i∈R+,
i=1,...,n

{
t−

n∑
i=1

y0∗i y
0
i +

n∑
i=1

λi(y
0
i + ai − t)

}

= sup
λi≥0,
i=1,...,n

{
− sup
t∈R+

{(
n∑
i=1

λi − 1

)
t

}
−

sup
y0
i
∈R+,

i=1,...,n

{ n∑
i=1

(y0∗i − λi)y0i
}

+

n∑
i=1

λiai

}
= sup

n∑
i=1

λi≤1, λi≥0,

y0∗
i
≤λi, i=1,...,n

{
n∑
i=1

λiai

}
.
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As the Slater constraint qualification is fulfilled, it holds v(Pmax) = v(Dmax) and the dual has an
optimal solution, thus one gets for the conjugate function of f

f∗(y0∗) = min
n∑
i=1

λi≤1, λi≥0,

y0∗
i
≤λi, i=1,...,n

{
−

n∑
i=1

λiai

}
. (4. 3)

Furthermore, one has

((y0∗1 , ..., y
0∗
n )TF 1)∗(x∗1, ..., x

∗
n)

= sup
xi∈R, i=1,...,n

{
n∑
i=1

x∗i xi − (y0∗1 , ..., y
0∗
n )TF 1(x1, ..., xn)

}

= sup
xi∈R+, i=1,...,n

{
n∑
i=1

x∗i xi −
n∑
i=1

y0∗i hi(xi)

}

=

n∑
i=1

sup
xi∈R+

{x∗i xi − y0∗i hi(xi)} =

n∑
i=1

(y0∗i hi)
∗(x∗i ), (4. 4)

and so, the conjugate function of g turns into

g∗(x∗1, ..., x
∗
n) = min

y0∗
i
≥0,

i=1,...,n

 min
n∑
i=1

λi≤1, λi≥0,

y0∗
i
≤λi, i=1,...,n

{
−

n∑
i=1

λiai

}
+

n∑
i=1

(y0∗i hi)
∗(x∗i )


= min

n∑
i=1

λi≤1, λi≥0,

0≤y0∗
i
≤λi, i=1,...,n

{
n∑
i=1

[(y0∗i hi)
∗(x∗i )− λiai]

}
. (4. 5)

We fix x∗i ∈ Rn, i = 1, ..., n, and emphasize that the problem

(P g) min
n∑
i=1

λi≤1, λi≥0,

0≤y0∗
i
≤λi, i=1,...,n

{
n∑
i=1

[(y0∗i hi)
∗(x∗i )− λiai]

}
(4. 6)

is equivalent to

(P̃ g) min
n∑
i=1

z0∗
i
≤1, z0∗

i
≥0,

i=1,...,n

{
n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai]

}
(4. 7)

in the sense that v(P g) = v(P̃ g) (where v(P g) and v(P̃ g) denote the optimal objective values of

the problems (P g) and (P̃ g), respectively).
To see this, take first a feasible element (λ1, ..., λn, y

0∗
1 , ..., y

0∗
n ) ∈ Rn+×Rn+ of the problem (P g)

and set z0∗i = λi, i = 1, ..., n, then it follows from
∑n
i=1 λi ≤ 1, λi, y

0∗
i ≥ 0, y0∗i ≤ λi, i = 1, ..., n,

that
∑n
i=1 z

0∗
i ≤ 1, z0∗i ≥ 0, i = 1, ..., n, i.e. (z0∗1 , ..., z0∗n ) is feasible to the problem (P̃ g). From

y0∗i ≤ z0∗i , we have that y0∗i hi(xi) ≤ z0∗i hi(xi) and by [7, Proposition 2.3.2.(c)] follows that
(y0∗i hi)

∗(x∗i ) ≥ (z0∗i hi)
∗(x∗i ). Hence it holds

n∑
i=1

[(y0∗i hi)
∗(x∗i )− λiai] ≥

n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai] ≥ v(P̃ g) (4. 8)

for all (λ1, ..., λn, y
0∗
1 , ..., y

0∗
n ) feasible to (P g), i.e. v(P g) ≥ v(P̃ g).
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Now, take a feasible element (z0∗1 , ..., z0∗n ) ∈ Rn+ of the problem (P̃ g) and set y0∗i = λi = z0∗i
for all i = 1, ..., n, then we have from

∑n
i=1 z

0∗
i ≤ 1, z0∗i ≥ 0, i = 1, ..., n, that

∑n
i=1 λi ≤ 1,

λi, y
0∗
i ≥ 0, y0∗i = λi, i = 1, ..., n, which means that (λ1, ..., λn, y

0∗
1 , ..., y

0∗
n ) is a feasible element of

(P g) and it holds

n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai] =

n∑
i=1

[(y0∗i hi)
∗(x∗i )− λiai] ≥ v(P g) (4. 9)

for all (z0∗1 , ..., z0∗n ) feasible to v(P̃ g), which implies v(P g) ≤ v(P̃ g). Finally, it follows that

v(P g) = v(P̃ g) and thus, the conjugate function of g is given by

g∗(x∗1, ..., x
∗
n) = min

n∑
i=1

z0∗
i
≤1, z0∗

i
≥0,

i=1,...,n

{
n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai]

}
(4. 10)

and takes only finite values. �

Lemma 4.2. Let ai ∈ R+ be a given point and hi : R → R with hi(x) ∈ R+, if x ∈ R+, and
hi(x) = +∞, otherwise, be a proper, lower semicontinuous and convex function, i = 1, ..., n. Then
the function g : Rn → R,

g(x1, ..., xn) =

{
max{h1(x1) + a1, ..., hn(xn) + an}, if xi ∈ R+, i = 1, ..., n,

+∞, otherwise,

can equivalently be expressed as

g(x1, ..., xn) = max
n∑
i=1

z0∗
i
≤1, z0∗

i
≥0,

i=1,...,n

{
n∑
i=1

z0∗i [hi(xi) + ai]

}
∀xi ∈ R, i = 1, ..., n.

Proof. By Lemma 4.1 and the definition of the conjugate function we have for the biconjugate
function of g

g∗∗(x1, ..., xn) = sup
x∗
i
∈R,

i=1,...,n


n∑
i=1

x∗i xi − min
n∑
i=1

z0∗
i
≤1,

z0∗
i
≥0,i=1,...,n

{
n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai]

}
= sup

x∗
i
∈R, z0∗

i
≥0,

i=1,...,n,
n∑
i=1

z0∗
i
≤1

{
n∑
i=1

x∗i xi −
n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai]

}

= sup
z0∗
i
≥0, i=1,...,n,

n∑
i=1

z0∗
i
≤1

{
n∑
i=1

[
sup
x∗i∈R
{x∗i xi − (z0∗i hi)

∗(x∗i )}+ z0∗i ai

]}

= sup
z0∗
i
≥0, i=1,...,n,

n∑
i=1

z0∗
i
≤1

{
n∑
i=1

[(z0∗i hi)
∗∗(xi) + z0∗i ai]

}
∀xi ∈ R, i = 1, ..., n. (4. 11)

As hi, i = 1, ..., n, are proper, convex and lower semicontinuous functions it follows by the Fenchel-
Moreau Theorem that

g∗∗(x1, ..., xn) = sup
z0∗
i
≥0, i=1,...,n,

n∑
i=1

z0∗
i
≤1

{
n∑
i=1

[z0∗i hi(xi) + z0∗i ai]

}
(4. 12)
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for all xi ∈ R, i = 1, ..., n, and moreover, as g is also a proper, convex and lower semicontinuous
function it follows by using again the Fenchel-Moreau Theorem that g = g∗∗, i.e.

g(x1, ..., xn) = max
z0∗
i
≥0, i=1,...,n,

n∑
i=1

z0∗
i
≤1

{
n∑
i=1

[z0∗i hi(xi) + z0∗i ai]

}
(4. 13)

for all xi ∈ R, i = 1, ..., n.

Remark 4.1. Note that the statement in Lemma 4.2 can also be proved in a simpler way, as the
maximum of finitely many real numbers is the maximum over the convex hull of finitely many real
numbers.

Remark 4.2. If we consider the situation when the given points ai, i = 1, ..., n, are arbitrary, i.e.
ai ∈ R, then it can easily be verified that the conjugate function of f in (4. 1) looks like

f∗(y0∗) = sup
y0
i
∈R+, t∈R,

y0
i
+ai≤t, i=1,...,n

{
n∑
i=1

y0∗i y
0
i − t

}
(4. 14)

(notice that here t ∈ R instead of t ∈ R+).
If we now construct to the conjugate function in (4. 14) a primal problem in the sense of (Pmax)
in (4. 2), then the corresponding Lagrange dual problem (Dmax) has the form

(Dmax) sup
n∑
i=1

λi=1, λi≥0,

y0∗
i
≤λi, i=1,...,n

{
n∑
i=1

λiai

}
.

Analogously to the calculations done above in (4. 3) - (4. 13) one derives for the conjugate
function of g,

g∗(x∗1, ..., x
∗
n) = min

n∑
i=1

z0∗
i

=1, z0∗
i
≥0,

i=1,...,n

{
n∑
i=1

[(z0∗i hi)
∗(x∗i )− z0∗i ai]

}
,

while its biconjugate is then given by

g∗∗(x1, ..., xn) = g(x1, ..., xn) = max
n∑
i=1

z0∗
i

=1, z0∗
i
≥0,

i=1,...,n

{
n∑
i=1

z0∗i [hi(xi) + ai]

}

for all xi ∈ R, i = 1, ..., n.

In the following, let X be a Hausdorff locally convex space partially ordered by the convex cone
K ⊆ X and X∗ its topological dual space endowed with the weak* topology w(X∗, X). Further,
let Yi be another Hausdorff locally convex space partially ordered by the convex cone Qi ⊆ Yi and
Y ∗i its topological dual space endowed with the weak* topology w(Y ∗i , Yi). Now, we collect some
properties of the gauge function (a.k.a. Minkowski functional) of the subset C ⊆ X, γC : X → R
defined by

γC(x) :=

{
inf{λ > 0 : x ∈ λC}, if {λ > 0 : x ∈ λC} 6= ∅,
+∞, otherwise.

When in the literature the question of continuity of the gauge function arises, then it is often
assumed that 0X ∈ intC (see [2, 7, 24, 47, 57, 83, 84]). We start with a statement where this
assumption is weakened to 0X ∈ C.
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Theorem 4.1. Let C ⊆ X be a convex and closed set with 0X ∈ C, then the gauge function γC
is proper, convex and lower semicontinuous.

Proof. Let us define the function g : X∗ → R by

g(x∗) :=

{
0, if σC(x∗) ≤ 1,

+∞, otherwise.

It is obvious that g is proper, convex and lower semicontinuous. For the corresponding conjugate
function of g one has

g∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − g(x∗)} = sup
x∗∈X∗,
σC (x∗)≤1

〈x∗, x〉.

There is g∗(x) = supx∗∈X∗{〈x∗, x〉 − g(x∗)} ≥ 〈0X∗ , x〉 − g(0X∗) = 0 since g(0X∗) = 0 for all
x ∈ X, and g∗(0X) = supx∗∈X∗{−g(x∗)} = 0, i.e. g∗ is proper. At this point it is important to
say that from 0X ∈ C follows that γC(0X) = 0, i.e. g∗(0X) = γC(0X).

Let us now assume that x 6= 0X and consider for fixed x ∈ X the following convex optimization
problem

(P γ) inf
x∗∈X∗,
σC (x∗)≤1

〈−x∗, x〉.

As σC(0X∗) = 0 < 1, the Slater condition is fulfilled and hence, it holds strong duality between
the problem (P γ) and its corresponding Lagrange dual problem

(Dγ
L) sup

λ≥0
inf

x∗∈X∗
{〈−x∗, x〉+ λ(σC(x∗)− 1)}.

Therefore, the conjugate function of g can be represented for x 6= 0X as

g∗(x) = sup
x∗∈X∗,
σC (x∗)≤1

〈x∗, x〉 = −max
λ≥0

inf
x∗∈X∗

{〈−x∗, x〉+ λ(σC(x∗)− 1)}

= min
λ≥0

{
λ+ sup

x∗∈X∗
{〈x∗, x〉 − λσC(x∗)}

}
. (4. 15)

For λ = 0 we verify two conceivable cases.
(a) If σC(x∗) < +∞, then 0 · σC(x∗) = 0 and therefore,

sup
x∗∈X∗

{〈x∗, x〉 − 0 · σC(x∗)} = sup
x∗∈X∗

〈x∗, x〉 =

{
0, if x = 0X ,

+∞, if x 6= 0X .

As by assumption x 6= 0X , we have supx∗∈X∗〈x∗, x〉 = +∞, but this has no effect on the minimum
in 4. 15.
(b) If σC(x∗) = +∞, then one has by convention that λ · σC(x∗) = 0 · (+∞) = +∞ and hence,

〈x∗, x〉 − λσC(x∗) = 〈x∗, x〉 −∞ = −∞,

which has no effect on supx∗∈X∗{〈x∗, x〉 − λσC(x∗)}, since σC is proper.
Hence, as the cases (a) and (b) are not relevant for g∗, we can omit the situation when λ = 0 and
can write

g∗(x) = inf
λ>0

{
λ+ λ sup

x∗∈X∗

{〈
x∗,

1

λ
x

〉
− σC(x∗)

}}
.

Moreover, as C is a non-empty, closed and convex subset of X, the conjugate of the support
function σC is the indicator function δC , i.e.

g∗(x) = inf
λ>0

{
λ+ λδC

(
1

λ
x

)}
= inf
λ>0, 1

λx∈C
λ = inf{λ > 0 : x ∈ λC}.
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Taking the situations where x = 0X and x 6= 0X together implies that g∗(x) = γC(x) for all x ∈ X.
Hence, γC is the conjugate function of g and by the definition of the conjugate function it follows
that γC is convex and lower semicontinuous. This completes the proof.

Lemma 4.3. Let C ⊆ X be a convex and closed set with 0X ∈ C, then the conjugate of the gauge
function γC is given by

γ∗C(x∗) :=

{
0, if σC(x∗) ≤ 1,

+∞, otherwise.

Proof. In the proof of Theorem 4.1 we have shown that γC is the conjugate function of g, i.e.
γC = g∗, and as g is proper, convex and lower semicontinuous we have g = g∗∗. As g∗∗ is also the
conjugate function of γC , it holds γ∗C = g.

Remark 4.3. (see [47, 57]) Let C be convex and 0X ∈ intC, then the gauge function γC is not
only convex but also sublinear and the following properties holds

γC(x) ≥ 0 ∀x ∈ X,
γC(0X) = 0,

γC(µx) = µγC(x) ∀µ ≥ 0, ∀x ∈ X,
γC(x1 + x2) ≤ γC(x1) + γC(x2) ∀x1, x2 ∈ X.

Moreover, γC is well-defined, which means that dom γC = X, as well as continuous and

intC = {x ∈ X : γC(x) < 1}, cl(C) = {x ∈ X : γC(x) ≤ 1}

(see [47]).

Remark 4.4. Let Ci ⊆ Yi be a closed and convex set with 0Yi ∈ intCi and γCi : Yi → R be a gauge
function of the set Ci, i = 1, ..., n. Then γCi is continuous, i = 1, ..., n, and moreover, it is an easy
exercise to check that the function γC : Y1× ...×Yn → R defined by γC(x1, ..., xn) :=

∑n
i=1 γCi(xi),

is a gauge function fulfilling the properties listed in Remark 4.3. Especially, it holds that γC is
continuous such that C := {(x1, ..., xn) ∈ Y1 × ...× Yn : γC(x1, ..., xn) ≤ 1}.

Definition 4.1. Let C ⊆ X. The polar set of C is defined by

C0 :=

{
x∗ ∈ X∗ : sup

x∈C
〈x∗, x〉 ≤ 1

}
= {x∗ ∈ X∗ : σC(x∗) ≤ 1}

and by means of the polar set the dual gauge is defined by

γC0(x∗) := sup
x∈C
〈x∗, x〉 = σC(x∗).

Remark 4.5. Note that C0 is a convex and closed set containing the origin and by the definition
of the dual gauge follows that the conjugate function of γC can equivalently be expressed by

γ∗C(x∗) :=

{
0, if γC0(x∗) ≤ 1,

+∞, otherwise.
=

{
0, if x∗ ∈ C0,

+∞, otherwise.

Furthermore, if C is a convex cone, then C0 = {x∗ ∈ X∗ : σC(x∗) ≤ 0}, i.e. −C0 is the dual cone
of C.

Lemma 4.4. Let γCi : Yi → R be a gauge of the closed and convex set Ci ⊆ Yi with 0Yi ∈ intCi,
i = 1, ..., n. If the gauge γC : Y1 × ...× Yn → R is defined by

γC(x) :=

n∑
i=1

γCi(xi), x = (x1, ..., xn) ∈ Y1 × ...× Yn,

then its associated dual gauge γC0 : Y ∗1 × ...× Y ∗n → R is given by

γC0(x∗) = max
1≤i≤n

{
γC0

i
(x∗i )

}
, x∗ = (x∗1, ..., x

∗
n) ∈ Y ∗1 × ...× Y ∗n . (4. 16)
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Proof. As Ci is closed, convex and 0Yi ∈ intCi, the gauge γCi is continuous, convex and
well-defined, i = 1, ..., n, and thus, the gauge γC is also continuous, convex and well-defined. In
the following, let X̃∗ = Y ∗1 × ...× Y ∗n be the topological dual space of X̃ := Y1× ...× Yn where for

x = (x1, ..., xn) ∈ X̃ and x∗ = (x∗1, ..., x
∗
n) ∈ X̃∗ we define 〈x∗, x〉 :=

∑n
i=1〈x∗i , xi〉. Hence, for the

associated dual gauge of γC holds

γC0(x∗) = sup
x∈C
〈x∗, x〉.

Now, we fix x∗ ∈ X̃∗ and consider the problem

(P γ
0

) inf
x∈C
〈−x∗, x〉 = inf

x∈X̃, γC(x)≤1
〈−x∗, x〉,

where its associated Lagrange dual problem is

(Dγ0

L ) sup
λ≥0

inf
x∈X̃
{〈−x∗, x〉+ λ(γC(x)− 1)} = sup

λ≥0

{
−λ+ inf

x∈X̃
{〈−x∗, x〉+ λγC(x)}

}
= sup

λ≥0

{
−λ− sup

x∈X̃
{〈x∗, x〉 − λγC(x)}

}
= sup

λ≥0
{−λ− (λγC)∗(x∗)} . (4. 17)

For λ > 0 it holds (see Lemma 4.3 and Remark 4.5)

(λγC)∗(x∗) = sup
x∈X̃
{〈x∗, x〉 − λγC(x)} = sup

xi∈Yi,
i=1,...,n

{
n∑
i=1

〈x∗i , xi〉 − λ
n∑
i=1

γCi(xi)

}

=

n∑
i=1

sup
xi∈Yi

{〈x∗i , xi〉 − λγCi(xi)}

=

n∑
i=1

λγ∗Ci

(
1

λ
x∗i

)
=

{
0, if σCi(x

∗
i ) ≤ λ ∀i = 1, ..., n,

+∞, otherwise

=

{
0, if γC0

i
(x∗i ) ≤ λ ∀i = 1, ..., n,

+∞, otherwise
(4. 18)

and for λ = 0 we have

(0 · γC)∗(x∗) = sup
x∈X̃
{〈x∗, x〉} =

{
0, if x∗i = 0Y ∗i ∀i = 1, ..., n,
+∞, otherwise.

(4. 19)

As γC0
i
(0Y ∗i ) = supxi∈Ci〈0Y ∗i , xi〉 = 0, one gets by (4. 18) and (4. 19) for the Lagrange dual

problem (Dγ0

L ) that

(Dγ0

L ) sup
λ≥0
{−λ− (λγC)∗(x∗)} = sup

λ≥0

{
−λ : γC0

i
(x∗i ) ≤ λ ∀i = 1, ..., n

}
and since for the primal-dual pair (P γ

0

)-(Dγ0

L ) the Slater constraint qualification is fulfilled, it
holds strong duality. From the last statement we derive an alternative formula for the dual gauge
γC0 ,

γC0(x∗) = sup
x∈C
〈x∗, x〉 = min

λ≥0

{
λ : γC0

i
(x∗i ) ≤ λ ∀i = 1, ..., n

}
= max

1≤i≤n

{
γC0

i
(x∗i )

}
.

Now, it is natural to ask, whether the dual gauge of max1≤i≤n{γCi(·)} is
∑n
i=1 γC0

i
(·). The

next lemma gives a positive answer.



CHAPTER 4. DUALITY RESULTS FOR MINIMAX LOCATION PROBLEMS 45

Lemma 4.5. Let γCi : Yi → R be a gauge of the closed and convex set Ci ⊆ Yi with 0Yi ∈ intCi,
i = 1, ..., n. If the gauge γC : Y1 × ...× Yn → R is defined by

γC(x) := max
1≤i≤n

{γCi(xi)} , x = (x1, ..., xn) ∈ Y1 × ...× Yn,

then its associated dual gauge γC0 : Y ∗1 × ...× Y ∗n → R is given by

γC0(x∗) =

n∑
i=1

γC0
i
(x∗i ), x

∗ = (x∗1, ..., x
∗
n) ∈ Y ∗1 × ...× Y ∗n . (4. 20)

Proof. The main ideas here are similar to the ones in the proof of Lemma 4.4. As γC is
the pointwise maximum of n continuous, convex and well-defined gauges, it is clear that γC is
continuous, convex and well-defined and for the corresponding dual gauge of γC holds γC0(x∗) =
supx∈C{〈x∗, x〉}.

For fixed x∗ := (x∗1, ..., x
∗
n) ∈ X̃∗ = Y ∗1 × ...× Y ∗n we consider the problem

(P̃ γ
0

) inf
x∈C
〈−x∗, x〉 = inf

x∈X̃, γC(x)≤1
〈−x∗, x〉,

with its Lagrange dual problem (see (4. 17))

(D̃γ0

L ) sup
λ≥0
{−λ− (λγC)∗(x∗)} .

For λ ≥ 0 one has

(λγC)∗(x∗) = sup
x∈X̃
{〈x∗, x〉 − λγC(x)} = sup

xi∈Yi,
i=1,...,n

{
n∑
i=1

〈x∗i , xi〉 − λ max
1≤i≤n

{γCi(xi)}

}
.

Now, let X0 := Rn, K0 = Rn+, X1 = X̃, the function f : Rn → R be defined by

f(y01 , ..., y
0
n) :=

{
max{y01 , ..., y0n}, if y0i ∈ R+, i = 1, ..., n,

+∞, otherwise,

and the function F 1 : X1 → Rn by

F 1(x1, ..., xn) := (γC1(x1), ..., γCn(xn))T

Hence, the gauge γC can be written as

γC(x1, ..., xn) = (f ◦ F 1)(x1, ..., xn).

Obviously, f is proper, convex, lower semicontinuous and Rn+-increasing on F 1(domF 1) + K0 ⊆
Rn+, the function F 1 is proper, Rn+-epi closed and Rn+-convex as well as 0Rn ∈ ri(F 1(domF 1) −
dom f +K0) = Rn and thus, it follows by Theorem 3.6 that

γ∗C(x∗1, ..., x
∗
n) = min

y0∗
i
∈R+,

i=1,...,n

{f∗(y0∗1 , ..., y0∗n ) + ((y0∗1 , ..., y
0∗
n )TF 1)∗(x∗1, ..., x

∗
n)}.

From (4. 3) we have for ai = 0, i = 1, ..., n, that

f∗(y0∗1 , ..., y
0∗
n ) =

0, if
n∑
i=1

λi ≤ 1, λi ≥ 0, y0∗i ≤ λi, i = 1, ..., n,

+∞, otherwise,

=

0, if
n∑
i=1

y0∗i ≤ 1, y0∗i ≥ 0, i = 1, ..., n,

+∞, otherwise.
(4. 21)
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In addition, it holds

((y0∗1 , ..., y
0∗
n )TF 1)∗(x∗1, ..., x

∗
n) =

n∑
i=1

sup
xi∈Yi

{〈x∗i , xi〉 − y0∗i γCi(xi)} =

n∑
i=1

(y0∗i γCi)
∗(x∗i ).

For y0∗i > 0 holds

(y0∗i γCi)
∗(x∗i ) =

{
0, if γC0

i
(x∗i ) ≤ y0∗i ,

+∞, otherwise,

and if y0∗i = 0, then

(0 · γCi)∗(x∗i ) = sup
xi∈Yi

{〈x∗i , xi〉} =

{
0, if x∗i = 0Y ∗i ,

+∞, otherwise.

This implies that

((y0∗1 , ..., y
0∗
n )TF 1)∗(x∗1, ..., x

∗
n) =

n∑
i=1

(y0∗i γCi)
∗(x∗i )

=

{
0, if γC0

i
(x∗i ) ≤ y0∗i , i = 1, ..., n,

+∞, otherwise,
(4. 22)

and hence, one has by (4. 21) and (4. 22)

γ∗C(x∗) =

0, if
n∑
i=1

y0∗i ≤ 1, y0∗i ≥ 0, γC0
i
(x∗i ) ≤ y0∗i , i = 1, ..., n,

+∞, otherwise.

=

0, if
n∑
i=1

γC0
i
(x∗i ) ≤ 1,

+∞, otherwise.

For λ > 0 it follows

(λγC)∗(x∗) = λγ∗C

(
1

λ
x∗
)

=

0, if
n∑
i=1

γC0
i
(x∗i ) ≤ λ,

+∞, otherwise.
(4. 23)

Moreover, by (4. 19) follows for λ = 0

(0 · γC)∗(x∗) =

n∑
i=1

sup
xi∈Yi

{〈x∗i , xi〉} =

{
0, if x∗i = 0Y ∗i ∀i = 1, ..., n,
+∞, otherwise.

(4. 24)

and as
∑n
i=1 γC0

i
(0Y ∗i ) =

∑n
i=1 sup{〈0Y ∗i , xi〉} = 0, we have by (4. 23) and (4. 24) for the Lagrange

dual problem

(D̃γ0

L ) sup
λ≥0
{−λ− (λγC)∗(x∗)} = sup

λ≥0

{
−λ :

n∑
i=1

γC0
i
(x∗i ) ≤ λ

}
.

It is obvious that the Slater constraint qualification for the primal-dual problem (P̃ γ
0

)− (D̃γ0

L ) is
fulfilled and thus, strong duality holds, i.e.,

γC0(x∗) = sup
x∈C
{〈x∗, x〉} = min

λ≥0

{
λ :

n∑
i=1

γC0
i
(x∗i ) ≤ λ

}
=

n∑
i=1

γC0
i
(x∗i ).
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4.2 Single minimax location problems

4.2.1 Constrained location problems with set-up costs in Fréchet spaces

Let us now focus our discussion on problems with given non-negative set-up costs ai ∈ R+ and
distinct points pi, i = 1, ..., n (where n ≥ 2). Consider the following geometrically constrained
minimax location problem

(PSh,a) inf
x∈S

max
1≤i≤n

{hi(γCi(x− pi)) + ai},

where

� S is a non-empty, closed and convex subset of the Fréchet space X,

� Ci is a closed and convex subset of X such that 0X ∈ intCi and

� hi : R → R with hi(x) ∈ R+, if x ∈ R+, and hi(x) = +∞, otherwise, is a proper, convex,
lower semicontinuous and increasing function on R+, i = 1, ..., n.

Hence, it is clear that the defined gauges are continuous and convex functions, which implies
that the problem (PSh,a) is a convex optimization problem. The case where the set-up costs are
arbitrary, i.e. ai ∈ R, will be discussed in Remark 4.9.

For applying the duality concept developed in Chapter 3 for multi-composed optimization
problems, we set X0 = Rn ordered by K0 = Rn+, X1 = Xn ordered by the trivial cone K1 = {0Xn}
and X2 = X and introduce the following functions:

� f : Rn → R defined by

f(y0) :=

{
max
1≤i≤n

{hi(y0i ) + ai}, if y0 = (y01 , ..., y
0
n)T ∈ Rn+, i = 1, ..., n,

+∞, otherwise,

� F 1 : Xn → Rn defined by F 1(y1) := (γC1
(y11), ..., γCn(y1n))T with y1 = (y11 , ..., y

1
n) ∈ Xn and

� F 2 : X → Xn defined by F 2(x) := (x− p1, ..., x− pn).

These definitions yield the following equivalent representation for the considered problem

(PSh,a) inf
x∈S

(f ◦ F 1 ◦ F 2)(x).

The function f is proper, convex, Rn+-increasing on F 1(domF 1) + K0 = dom f = Rn+ and lower
semicontinous. Additionally, one can verify that the function F 1 is proper, Rn+-convex and Rn+-epi
closed. Furthermore, since the function F 2 is affine, it follows that the function F 1 does not need
to be monotone (see Remark 3.5).

By setting Z = X ordered by the trivial cone Q = X and defining the function g : X → X
by g(x) := x, we have that Q∗ = {0X∗}, i.e. z2∗ = 0X∗ , and thus, the conjugate dual problem
corresponding to (PSh,a), in accordance with the concept from the previous chapter, looks like

(DS
h,a) sup

z0∗
i
∈R+, z1∗i ∈X

∗,
i=1,...,n

{
inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉

}
− f∗(z0∗)− (z0∗F 1)∗(z1∗)

}
,

where z0∗ = (z0∗1 , ..., z0∗n )T ∈ Rn+ and z1∗ = (z1∗1 , ..., z1∗n ) ∈ (X∗)n. It remains to determine the
conjugate functions of f and (z0∗F 1). For the conjugate function of f one gets by Lemma 4.1

f∗(z0∗1 , ..., z0∗n ) = min
n∑
i=1

λi≤1, λi≥0,

i=1,...,n

{
n∑
i=1

[(λihi)
∗(z0∗i )− λiai]

}
,
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while for the conjugate function of (z0∗F 1) we have

(z0∗F 1)∗(z1∗) = sup
z1i∈X, i=1,...,n

{
n∑
i=1

〈z1∗i , z1i 〉 −
n∑
i=1

z0∗i γCi(z
1
i )

}

=

n∑
i=1

sup
z1i∈X

{
〈z1∗i , z1i 〉 − z0∗i γCi(z1i )

}
=

n∑
i=1

(z0∗i γCi)
∗(z1∗i ). (4. 25)

Therefore, the conjugate dual problem (DS
h,a) turns into

(DS
h,a) sup

n∑
i=1

λi≤1, λi,z
0∗
i
≥0,

z1∗
i
∈X∗, i=1,...,n

{
inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉

}
−

n∑
i=1

[(λihi)
∗(z0∗i )− λiai]−

n∑
i=1

(z0∗i γCi)
∗(z1∗i )

}
.

By separating the sum
∑n
i=1(λihi)

∗ into the terms with λi > 0 and the terms with λi = 0 as well
as
∑n
i=1(z0∗i γCi)

∗ into the terms with z0∗i > 0 and the terms with z0∗i = 0 in (DS
h,a), the dual

problem turns into

(DS
h,a) sup

λi,z
0∗
i ≥0, z1∗i ∈X

∗, i=1,...,n,

R={r∈{1,...,n}:λr>0},I={i∈{1,...,n}:z0∗i >0},∑
r∈R

λr≤1

{
inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉
}
−
∑
r/∈R

(0 · hr)∗(z0∗r )

−
∑
r∈R

[(λrhr)
∗(z0∗r )− λrar]−

∑
i/∈I

(0 · γCi)∗(z1∗i )−
∑
i∈I

(z0∗i γCi)
∗(z1∗i )

}
.

If i ∈ I, then we have (see Lemma 4.3 and Remark 4.5)

(z0∗i γCi)
∗(z1∗i ) = z0∗i γ

∗
Ci

(
z1∗i
z0∗i

)
=

{
0, if σCi

(
z1∗i
z0∗i

)
≤ 1,

+∞, otherwise,

=

{
0, if σCi(z

1∗
i ) ≤ z0∗i ,

+∞, otherwise,
=

{
0, if γC0

i
(z1∗i ) ≤ z0∗i ,

+∞, otherwise,
(4. 26)

and if i /∈ I, then it holds

(0 · γCi)∗(z1∗i ) = sup
y1i∈X

{〈z1∗i , y1i 〉} =

{
0, if z1∗i = 0X∗ ,
+∞, otherwise.

(4. 27)

Further, let us consider the case r /∈ R, i.e. λr = 0, then one has for z0∗r ≥ 0,

(0 · hr)∗(z0∗r ) = sup
y0r≥0
{z0∗r y0r} =

{
0, if z0∗r = 0,
+∞, otherwise.

(4. 28)

For r ∈ R, i.e. λr > 0, follows

(λrhr)
∗(z0∗r ) = λrh

∗
r

(
z0∗r
λr

)
. (4. 29)

Hence, the equation in (4. 28) implies that if r /∈ R, then z0∗r = 0, which means that I ⊆ R. In
summary, the conjugate dual problem (DS

h,a) becomes to

sup
λi, z

0∗
i ≥0, z1∗i ∈X

∗, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
γ
C0
i
(z1∗i )≤z0∗i ,i∈I, z1∗j =0X∗ , j /∈I,

∑
r∈R

λr≤1

{
inf
x∈S

{∑
i∈I
〈z1∗i , x− pi〉

}
−
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]}
.

(4. 30)
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Remark 4.6. If hi : R→ R is defined by

hi(x) :=

{
x, if x ∈ R+,

+∞, otherwise,

then the conjugate function of hi is

h∗i (x
∗) =

{
0, if x∗ ≤ 1,

+∞, otherwise,
, i = 1, ..., n,

and the conjugate dual problem (DS
h,a) transforms to

(DS
h,a) sup

λi, z
0∗
i ≥0, z1∗i ∈X

∗, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
z0∗r ≤λr, r∈R, γC0

i
(z1∗i )≤z0∗i ,i∈I, z1∗j =0X∗ , j /∈I,

∑
r∈R

λr≤1

{
inf
x∈S

{∑
i∈I
〈z1∗i , x− pi〉

}
+
∑
r∈R

λrar

}
.

This dual problem can be reduced to the following equivalent problem

(D̃S
h,a) sup

y0∗
i
≥0,y1∗

i
∈X∗,i=1,...,n,Ĩ={i∈{1,...,n}:y0∗

i
>0},

y1∗
j

=0X∗ ,j /∈Ĩ,γC0
i
(y1∗
i

)≤y0∗
i
,i∈Ĩ,

∑
i∈Ĩ

y0∗
i
≤1

 inf
x∈S

∑
i∈Ĩ

〈y1∗i , x− pi〉

+
∑
i∈Ĩ

y0∗i ai

 . (4. 31)

To see the equivalence between (DS
h,a) and (D̃S

h,a), take first a feasible element (λ, z0∗, z1∗) =

(λ1, ..., λn, z
0∗
1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) ∈ Rn+ × Rn+ × (X∗)n of the problem (DS

h,a) and set Ĩ = R,

y0∗i = λi, i ∈ Ĩ , y0∗j = 0, j /∈ Ĩ and y1∗i = z1∗i , i ∈ I ⊆ Ĩ , y1∗j = 0X∗ , j /∈ I (i.e. y1∗i ∈ X∗, i ∈
Ĩ and y1∗j = 0X∗ , j /∈ Ĩ), then it follows from the feasibility of (λ, z0∗, z1∗) that

∑n
i∈Ĩ y

0∗
i ≤

1, y0∗i > 0, y1∗i ∈ X∗, γC0
i
(y1∗i ) ≤ y0∗i , i ∈ Ĩ and y0∗j = 0, y1∗j = 0X∗ , j /∈ Ĩ, i.e. (y0∗, y1∗) =

(y0∗1 , ..., y
0∗
n , y

1∗
1 , ..., y

1∗
n ) ∈ Rn+ × (X∗)n is feasible to the problem (D̃S

h,a). Hence, it holds

inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉

}
+

n∑
i=1

λiai = inf
x∈S

{
n∑
i=1

〈y1∗i , x− pi〉

}
+

n∑
i=1

y0∗i ai ≤ v(D̃S
h,a)

for all (λ, z0∗, z1∗) feasible to (DS
h,a), i.e. v(DS

h,a) ≤ v(D̃S
h,a) (where v(DS

h,a) and v(D̃S
h,a) denote

the optimal objective values of the dual problems (DS
h,a) and (D̃S

h,a), respectively).

Now, take a feasible element (y0∗, y1∗) of the problem (D̃S
h,a) and set Ĩ = I = R, z0∗i = λi = y0∗i

and z1∗i = y1∗i for i ∈ I = R and z0∗j = λj = 0 for j /∈ I = R, then we have from the feasibility

of (y0∗, y1∗) that
∑
r∈R λr ≤ 1, z0∗k = λk > 0, k ∈ R, λl = 0, l /∈ R and γC0

i
(z1∗i ) ≤ z0∗i , i ∈ I,

which means that (λ, z0∗, z1∗) is a feasible element of (DS
h,a) and it holds

inf
x∈S

{
n∑
i=1

〈y1∗i , x− pi〉

}
+

n∑
i=1

y0∗i ai = inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉

}
+

n∑
i=1

λiai ≤ v(DS
h,a)

for all (y0∗, y1∗) feasible to (D̃S
h,a), which implies v(D̃S

h,a) ≤ v(DS
h,a). Finally, it follows that

v(D̃S
h,a) = v(DS

h,a).

Remark 4.7. The index sets I and R of the dual problem (DS
h,a) in (4. 30) give a detailed

characterization of the set of feasible solutions and are very useful in the further approach. But
from the numerical aspect, these index sets make the dual in (4. 30) very hard to solve, as they
transform it into a discrete optimization problem.
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For this reason we prefer to use for theoretical approaches the dual (DS
h,a) in the form of (4.

30) and for numerical studies its equivalent dual problem (D̂S
h,a):

(D̂S
h,a) sup

λi, z
0∗
i
≥0, z1∗

i
∈X∗, γ

C0
i
(z1∗
i

)≤z0∗
i
,

i=1,...,n,
n∑
i=1

λi≤1

{
inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉

}
−

n∑
i=1

[
(λihi)

∗ (z0∗i )− λiai]
}
.(4. 32)

The equivalence of the dual problems (DS
h,a) and (D̂S

h,a) can easily be proven as follows.

Let (λ1, ..., λn, z
0∗
1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) be a feasible solution of (D̂S

h,a), then it follows from r /∈
R = {r ∈ {1, ..., n} : λr > 0} by (4. 28) that z0∗r = 0, i.e. I =

{
i ∈ {1, ..., n} : z0∗i > 0

}
⊆ R,

and for i /∈ I we have (see Remark 4.5) 0 ≤ γC0
i
(z1∗i ) ≤ 0 ⇔ z1∗i = 0X∗ . This means that

(λ1, ..., λn, z
0∗
1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) is also feasible to (DS

h,a) and by (4. 28) and (4. 29) follows

immediately that v(D̂S
h,a) = v(DS

h,a).

Conversely, by the previous considerations it is clear that any feasible solution of (DS
h,a) is also

a feasible solution of (D̂S
h,a) such that v(DS

h,a) = v(D̂S
h,a).

In this context, the dual of (D̃S
h,a) in (4. 31) looks like

(D̃S
h,a) sup

z0∗
i
≥0 ,z1∗

i
∈X∗, γ

C0
i
(y1∗
i

)≤y0∗
i
,

i=1,...,n,
n∑
i=1

z0∗
i
≤1

{
inf
x∈S

{
n∑
i=1

〈z1∗i , x− pi〉

}
+

n∑
i=1

z0∗i ai

}
.

The weak duality between the primal-dual pair (PSh,a)-(DS
h,a) always holds, i.e. v(PSh,a) ≥

v(DS
h,a).
Our aim is now to verify whether strong duality holds. For this purpose, we verify the fulfillment

of the the generalized interior point regularity condition (RCC2 ), which was imposed in the Section
3.2. Let us recall that f is lower semicontinuous, K0 = Rn+ is closed, S is closed and F 1 is Rn+-epi
closed.

As the function g : X → X is defined by g(x) := x, it follows that g is continuous, thus also
Q-epi closed and

0X ∈ sqri(g(X ∩ S) +Q) = sqri(S +X) = X.

Moreover, it holds

0Rn ∈ sqri(F 1(domF 1)− dom f +K0) = sqri(F 1(domF 1)− Rn+ + Rn+) = Rn

and

0Xn ∈ sqri(F 2(domF 2 ∩ dom g ∩ S)− domF 1 +K1) = sqri(F 2(S)−Xn + {0Xn}) = Xn.

Finally, as F 2 is {0Xn}-epi closed, the regularity condition is obviously fulfilled and we can state
the following theorem as a consequence of Theorem 3.3.

Theorem 4.2. (strong duality) Between (PSh,a) and (DS
h,a) strong duality holds, i.e. v(PSh,a) =

v(DS
h,a) and the conjugate dual problem has an optimal solution.

The following necessary and sufficient optimality conditions are a consequence of the previous
theorem.

Theorem 4.3. (optimality conditions) (a) Let x ∈ S be an optimal solution of the problem
(PSh,a). Then there exist (λ1, ..., λn, z

0∗
1 , ..., z

0∗
n , z

1∗
1 , ..., z

1∗
n ) ∈ Rn+ × Rn+ × (X∗)n and index sets

I ⊆ R ⊆ {1, ..., n} as an optimal solution to (DS
h,a) such that
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(i) max
1≤j≤n

{hj(γCj (x− pj)) + aj} =
∑
i∈I

z0∗i γCi(x− pi)−
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]
=
∑
r∈R

λr[hr(γCr (x− pr)) + ar],

(ii) λrh
∗
r

(
z0∗r
λr

)
+ λrhr(γCr (x− pr)) = z0∗r γCr (x− pr) ∀r ∈ R,

(iii) z0∗i γCi(x− pi) = 〈z1∗i , x− pi〉 ∀i ∈ I,

(iv)
∑
i∈I
〈z1∗i , x〉 = −σS

(
−
∑
i∈I

z1∗i

)
,

(v) max
1≤j≤n

{hj(γCj (x− pj)) + aj} = hr(γCr (x− pr)) + ar ∀r ∈ R,

(vi)
∑
r∈R

λr = 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z0∗i > 0, i ∈ I, and z0∗j = 0, j /∈ I,

(vii) γC0
i
(z1∗i ) = z0∗i , z

1∗
i ∈ X∗ \ {0X∗}, i ∈ I and z1∗j = 0X∗ , j /∈ I.

(b) If there exists x ∈ S such that for some (λ1, ..., λn, z
0∗
1 , ..., z

0∗
n , z

1∗
1 , ..., z

1∗
n ) ∈ Rn+×Rn+× (X∗)n

and the index sets I ⊆ R ⊆ {1, ..., n} the conditions (i)-(vii) are fulfilled, then x is an optimal
solution of (PSh,a), (λ1, ..., λn, z

0∗
1 , ..., z

0∗
n , z

1∗
1 , ..., z

1∗
n , I, R) is an optimal solution for (DS

h,a) and

v(PSh,a) = v(DS
h,a).

Proof. (a) By using Theorem 3.4 we derive the following necessary and sufficient optimality
conditions

(i) max
1≤j≤n

{hj(γCj (x− pj)) + aj}+
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]
=
∑
i∈I

z0∗i γCi(x− pi),

(ii)
∑
i∈I

z0∗i γCi(x− pi) =
∑
i∈I
〈z1∗i , x− pi〉,

(iii)
∑
i∈I
〈z1∗i , x〉+ σS

(
−
∑
i∈I

z1∗i

)
= 0,

(iv)
∑
r∈R

λr ≤ 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z0∗i > 0, i ∈ I, and z0∗j = 0, j /∈ I,

(v) γC0
i
(z1∗i ) ≤ z0∗i , z1∗i ∈ X∗, i ∈ I and z1∗j = 0X∗ , j /∈ I,

where case (iii) arises from condition (iii) of Theorem 3.4 by the following observation (note that
z2∗ = 0X∗)

∑
i∈I

〈z1∗i , x− pi〉+ (z2∗g)(x) + sup
x∈S

−∑
i∈I

〈z1∗i , x− pi〉 − 〈z2∗, g(x)〉

 = 0

⇔
∑
i∈I

〈z1∗i , x〉 −
∑
i∈I

〈z1∗i , pi〉+ sup
x∈S

−∑
i∈I

〈z1∗i , x〉

+
∑
i∈I

〈z1∗i , pi〉 = 0

⇔
∑
i∈I

〈z1∗i , x〉+ sup
x∈S

−∑
i∈I

〈z1∗i , x〉

 = 0.
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Additionally, one has by Theorem 4.2 that v(PSh,a) = v(DS
h,a), i.e.

max
1≤j≤n

{hj(γCj (x− pj)) + aj} = inf
x∈S

∑
i∈I

〈z1∗i , x− pi〉

−∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]

⇔ max
1≤j≤n

{hj(γCj (x− pj)) + aj}+ σS

−∑
i∈I

z1∗i

+
∑
i∈I

〈z1∗i , pi〉

+
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]
= 0

⇔ max
1≤j≤n

{hj(γCj (x− pj)) + aj}+ σS

−∑
i∈I

z1∗i

+
∑
i∈I

〈z1∗i , pi〉+
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]
+
∑
r∈R

λrhr(γCr (x− pr))−
∑
r∈R

λrhr(γCr (x− pr))

+
∑
i∈I

z0∗i γCi(x− pi)−
∑
i∈I

z0∗i γCi(x− pi) +
∑
i∈I

〈z1∗i , x〉 −
∑
i∈I

〈z1∗i , x〉 = 0

⇔

 max
1≤j≤n

{hj(γCj (x− pj)) + aj} −
∑
r∈R

(λrhr(γCr (x− pr)) + λrar)


+
∑
i∈I

[z0∗i γCi(x− pi)− 〈z1∗i , x− pi〉] +

σS
−∑

i∈I

z1∗i

+
∑
i∈I

〈z1∗i , x〉


+
∑
i∈I

[
λih
∗
i

(
z0∗i
λi

)
+ λihi(γCi(x− pi))− z0∗i γCi(x− pi)

]
+
∑
r∈R\I

[
λrh

∗
r (0) + λrhr(γCr (x− pr))− 0 · γCr (x− pr)

]
= 0,

where the last two sums arise from the fact that I ⊆ R. By Lemma 4.2 holds that the term
within the first bracket is non-negative. Moreover, by the Young-Fenchel inequality we have that
the terms within the other brackets are also non-negative and hence, it follows that all the terms
within the brackets must be equal to zero. Combining the last statement with the optimality
conditions (i)-(v) yields

(i) max
1≤j≤n

{hj(γCj (x− pj)) + aj} =
∑
i∈I

z0∗i γCi(x− pi)−
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]
=
∑
r∈R

λr[hr(γCr (x− pr)) + ar],

(ii) λrh
∗
r

(
z0∗r
λr

)
+ λrhr(γCr (x− pr)) = z0∗r γCr (x− pr) ∀r ∈ R,

(iii) z0∗i γCi(x− pi) = 〈z1∗i , x− pi〉 ∀i ∈ I,

(iv)
∑
i∈I
〈z1∗i , x〉 = −σS

(
−
∑
i∈I

z1∗i

)
,

(v)
∑
r∈R

λr ≤ 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z0∗i > 0, i ∈ I, and z0∗j = 0, j /∈ I,

(vi) γC0
i
(z1∗i ) ≤ z0∗i , z1∗i ∈ X∗, i ∈ I, and z1∗j = 0X∗ , j /∈ I.
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From conditions (i) and (v) we obtain that

max
1≤j≤n

{hj(γCj (x− pj)) + aj} =
∑
r∈R

(λrhr(γCr (x− pr)) + λrar)

≤
∑
r∈R

λr max
1≤j≤n

{hj(γCj (x− pj)) + aj}

≤ max
1≤j≤n

{hj(γCj (x− pj)) + aj},

which means on the one hand that∑
r∈R

λr max
1≤j≤n

{hj(γCj (x− pj)) + aj} = max
1≤j≤n

{hj(γCj (x− pj)) + aj},

i.e. condition (v) can be written as∑
r∈R

λr = 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z0∗i > 0, i ∈ I, and z0∗j = 0, j /∈ I, (4. 33)

and on the other hand that∑
r∈R

(λrhr(γCr (x− pr)) + λrar) =
∑
r∈R

λr max
1≤j≤n

{hj(γCj (x− pj)) + aj} (4. 34)

or, equivalently,∑
r∈R

λr

[
max
1≤j≤n

{hj(γCj (x− pj)) + aj} − (hr(γCr (x− pr)) + ar)

]
= 0. (4. 35)

As the brackets in the sum of (4. 35) are non-negative and λr > 0 for r ∈ R, it follows that the
terms inside the brackets must be equal to zero, more precisely,

max
1≤j≤n

{hj(γCj (x− pj)) + aj} = hr(γCr (x− pr)) + ar ∀r ∈ R. (4. 36)

Further, if for i ∈ I holds γCi(x−pi) = 0, then we have by the condition (iii) that 〈z1∗i , x−pi〉 = 0,
from which follows that

γCi(x− pi)γC0
i
(z1∗i ) = 〈z1∗i , x− pi〉 = 0. (4. 37)

If for i ∈ I holds γCi(x− pi) > 0, then we obtain by the Young-Fenchel inequality that

γCi(x− pi)γC0
i
(z1∗i ) + (γCi(x− pi)γC0

i
)∗(x) ≥ 〈z1∗i , x〉 ∀x ∈ X, (4. 38)

where

(γCi(x− pi)γC0
i
)∗(x) = γCi(x− pi)γ∗C0

i

(
1

γCi(x− pi)
x

)
= γCi(x− pi)δ(C0

i )
0

(
1

γCi(x− pi)
x

)
.

As by [83, Theorem 1.1.9] it holds that C00
i := (C0

i )0 = Ci, i = 1, ..., n, one gets that (see Remark
4.3 and 4.5)

(γCi(x− pi)γC0
i
)∗(x) = γCi(x− pi)δCi

(
1

γCi(x− pi)
x

)
=

{
0, if γCi(x) ≤ γCi(x− pi),
+∞, otherwise,

(4. 39)

for all x ∈ X, which implies that

γCi(x− pi)γC0
i
(z1∗i ) ≥ 〈z1∗i , x− pi〉. (4. 40)
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Combining now (4. 37) and (4. 40) with the conditions (iii) and (vi) yields

z0∗i γCi(x− pi) = 〈z1∗i , x− pi〉 ≤ γC0
i
(z1∗i )γCi(x− pi) ≤ z0∗i γCi(x− pi),

which means that condition (vi) can be expressed as

γC0
i
(z1∗i ) = z0∗i , z

1∗
i ∈ X∗ \ {0X∗}, i ∈ I, and z1∗j = 0X∗ , j /∈ I. (4. 41)

Taking now the optimality conditions (i)-(vi), (4. 33), (4. 36) and (4. 41) together delivers the
desired statement.

(b) All the calculations done in (a), can also be made in the reverse order. �

Remark 4.8. The optimality conditions (i)-(iv) of the previous theorem can also be expressed by
using subdifferentials. As

f(y0) =

{
max
1≤i≤n

{hi(y0i ) + ai}, if y0 = (y01 , ..., y
0
n)T ∈ Rn+, i = 1, ..., n,

+∞Rn+ , otherwise,

and

f∗(z0∗1 , ..., z0∗n ) = min
n∑
i=1

λi≤1, λi≥0,

i=1,...,n

{
n∑
i=1

[(λihi)
∗(z0∗i )− λiai]

}
,

we have by the optimal condition (i) of Theorem 4.3 that

f(γC1
(x− p1), ..., γCn(x− pn)) + f∗(z0∗1 , ..., z0∗n ) =

∑
i∈I

z0∗i γCi(x− pi).

By (2. 1) the last equality is equivalent to

(z0∗1 , ..., z0∗n ) ∈ ∂f(γC1(x− p1), ..., γCn(x− pn)).

Therefore, the condition (i) of Theorem 4.3 can equivalently be written as

(i) (z0∗1 , ..., z
0∗
n ) ∈ ∂

(
max
1≤j≤n

{hj(·) + aj}
)

(γC1
(x− p1), ..., γCn(x− pn)) ,

In the same way, we can rewrite the conditions (ii)-(iv)

(ii) z0∗r ∈ ∂(λrhr)(γCr (x− pr)), r ∈ R,

(iii) z1∗i ∈ ∂(z0∗i γCi)(x− pi), i ∈ I,

(iv) −
∑
i∈I

z1∗i ∈ ∂δS(x) = NS(x).

Bringing the optimality conditions (i) and (ii) together yields

(z0∗1 , ..., z
0∗
n ) ∈ ∂

(
max
1≤j≤n

{hj(·) + aj}
)

(γC1
(x− p1), ..., γCn(x− pn))

∩
(
∂(λ1h1)(γC1(x− p1))× ...× ∂(λnhn)(γCn(x− pn))

)
.

Moreover, summarizing the optimality conditions (iii) and (iv) reveals that∑
i∈I

z1∗i ∈
∑
i∈I

∂(z0∗i γCi)(x− pi) ∩ (−NS(x)).

Finally, take also note that the optimality conditions (iii) and (vii) of Theorem 4.3 give a detailed
characterization of the subdifferential of z0∗i γCi at x− pi, i = 1, ..., n. More precisely,

∂(z0∗i γCi)(x− pi) =
{
z1∗i ∈ X∗ : z0∗i γCi(x− pi) = 〈z1∗i , x− pi〉 and γC0

i
(z1∗i ) = z0∗i

}
, i ∈ I.
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Remark 4.9. If we consider the situation when the set-up costs are arbitrary, i.e. ai can also be
negative, i = 1, ..., n, then the conjugate function of f looks like (see Remark 4.2)

f∗(z0∗1 , ..., z0∗n ) = min
n∑
i=1

λi=1, λi≥0,

i=1,...,n

{
n∑
i=1

[(λihi)
∗(z0∗i )− λiai]

}
.

As a consequence, we derive the following corresponding dual problem

(DS
h,a) sup

λi, z
0∗
i ≥0, z1∗i ∈X

∗, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
γ
C0
i
(z1∗i )≤z0∗i ,i∈I, z1∗j =0X∗ , j /∈I,

∑
r∈R

λr=1

{
inf
x∈S

{∑
i∈I

〈z1∗i , x− pi〉

}
−
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]}
.

Therefore, all the statements given in this subsection are also true in the case of arbitrary set-up
costs with the difference that

∑
r∈R λr = 1 in the constraint set.

Minimax location problems with arbitrary set-up costs were considered for example in [35]
and [67]. For readers who are also interested in minimax location problems with nonlinear set-up
costs, we refer to [33] and [44].

4.2.2 Unconstrained location problems with set-up costs in Hilbert spaces

This subsection is devoted to the case where S = X = H, where H is a Hilbert space, ai ≥ 0 and
γCi : H → R is defined by γCi(x) := ‖x‖H, i = 1, ..., n, such that the minimax location problem
(PSh,a) turns into

(PS,Nh,a ) inf
x∈H

max
1≤i≤n

{hi(‖x− pi‖H) + ai} .

Its corresponding dual problem (DS,N
h,a ) transforms by (4. 30) to

sup
λi, z

0∗
i ≥0, z1∗i ∈H, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
‖z1∗i ‖H≤z

0∗
i ,i∈I,

∑
r∈R

λr≤1

{
inf
x∈H

{∑
i∈I
〈z1∗i , x− pi〉H

}
−
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]}

= sup
λi, z

0∗
i ≥0, z1∗i ∈H, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
‖z1∗i ‖H≤z

0∗
i ,i∈I,

∑
r∈R

λr≤1

{
− sup
x∈H

{〈
−
∑
i∈I

z1∗i , x

〉
H

}

−
∑
i∈I
〈z1∗i , pi〉H −

∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]}

= sup
λi, z

0∗
i ≥0, z1∗i ∈H, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
‖z1∗i ‖H≤z

0∗
i ,i∈I,

∑
i∈I

z1∗i =0H,
∑
r∈R

λr≤1

{
−
∑
i∈I
〈z1∗i , pi〉H −

∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]}
.

The following duality statements are direct consequences of Theorem 4.2 and 4.3.

Theorem 4.4. (strong duality) Between (PS,Nh,a ) and (DS,N
h,a ) holds strong duality, i.e. v(PS,Nh,a ) =

v(DS,N
h,a ) and the dual problem has an optimal solution.

Theorem 4.5. (optimality conditions) (a) Let x ∈ H be an optimal solution of the problem

(PS,Nh,a ). Then there exist (λ1, ..., λn, z
0∗, z1∗) ∈ Rn+ × Rn+ ×Hn and index sets I ⊆ R ⊆ {1, ..., n}

as an optimal solution to (DS,N
h,a ) such that
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(i) max
1≤j≤n

{hj(‖x− pj‖H) + aj} =
∑
i∈I

z0∗i ‖x− pi‖H −
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]
=
∑
r∈R

λr[hr(‖x− pr‖H) + ar],

(ii) λrh
∗
r

(
z0∗r
λr

)
+ λrhr(‖x− pr‖H) = z0∗r ‖x− pr‖H ∀r ∈ R,

(iii) z0∗i ‖x− pi‖H = 〈z1∗i , x− pi〉H ∀i ∈ I,

(iv)
∑
i∈I

z1∗i = 0H,

(v) max
1≤j≤n

{hj(‖x− pj‖H) + aj} = hr(‖x− pr‖H) + ar ∀r ∈ R,

(vi)
∑
r∈R

λr = 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z0∗i > 0, i ∈ I, and z0∗j = 0, j /∈ I,

(vii) ‖z1∗i ‖H = z0∗i , z
1∗
i ∈ H \ {0H}, i ∈ I and z1∗j = 0H, j /∈ I.

(b) If there exists x ∈ H such that for some (λ1, ..., λn, z
0∗, z1∗) ∈ Rn+ × Rn+ × Hn and the in-

dex sets I ⊆ R the conditions (i)-(vii) are fulfilled, then x is an optimal solution of (PS,Nh,a ),

(λ1, ..., λn, z
0∗, z1∗, I, R) is an optimal solution for (DS,N

h,a ) and v(PS,Nh,a ) = v(DS,N
h,a ).

Regarding the relation between the optimal solutions of the primal and the dual problem the
following corollary can be given under the additional assumption that the function hi is continuous
and strictly increasing for all i = 1, ..., n.

Corollary 4.1. Let the function

hi : R→ R, hi(x) :=

{
hi(x) ∈ R+, if x ∈ R+,

+∞, otherwise,

be convex, continuous and strictly increasing for all i = 1, ..., n, and x ∈ H an optimal solution of
the problem (PS,Nh,a ). If (λ1, ..., λn, z

0∗, z1∗) ∈ Rn+ × Rn+ ×Hn and I ⊆ R ⊆ {1, ..., n} are optimal

solutions of the dual problem (DS,N
h,a ), then it holds

x =
1∑

i∈I

‖z1∗i ‖H
h−1
i (v(DS,Nh,a )−ai)

∑
i∈I

‖z1∗i ‖H
h−1i

(
v(DS,N

h,a )− ai
)pi.

Proof. The optimality conditions (iii) and (vii) of Theorem 4.5 imply that

‖z1∗i ‖H‖x− pi‖H = 〈z1∗i , x− pi〉H, i ∈ I,

By [2, Fact 2.10] there exists αi > 0 such that

z1∗i = αi (x− pi) , i ∈ I, (4. 42)

and so, ‖z1∗i ‖H = αi‖x − pi‖H, i ∈ I. Therefore, it follows from the optimality condition (v) of
Theorem 4.5 that (note that I ⊆ R)

max
1≤j≤n

{hj(‖x− pj‖H) + aj} = hi

(
1

αi
‖z1∗i ‖H

)
+ ai

⇔ h−1i

(
max
1≤j≤n

{hj(‖x− pj‖H) + aj} − ai
)

=
1

αi
‖z1∗i ‖H

⇔ αi =
‖z1∗i ‖H

h−1i

(
max
1≤j≤n

{hj(‖x− pj‖H) + aj} − ai
) =

‖z1∗i ‖H
h−1i

(
v(DS,N

h,a )− ai
) , i ∈ I.(4. 43)
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Now, we take in (4. 42) the sum over all i ∈ I, which yields by condition (iv) of Theorem 4.5

0H =
∑
i∈I

z1∗i =
∑
i∈I

αi (x− pi)⇔ x =
1∑

i∈I
αi

∑
i∈I

αipi. (4. 44)

Finally, bringing (4. 43) and (4. 44) together implies

x =
1∑

i∈I

‖z1∗i ‖H
h−1
i (v(DS,Nh,a )−ai)

∑
i∈I

‖z1∗i ‖H
h−1i

(
v(DS,N

h,a )− ai
)pi.

Example 4.1. (a) Let αis, βis ≥ 0, s = 1, ..., v, and hi : R→ R be defined by

hi(x) :=

{
max
1≤s≤v

{αisx+ βis}, if x ∈ R+,

+∞, otherwise,

i = 1, ..., n, then the corresponding location problem looks like

(PS,Nh,a ) inf
x∈H

max
1≤i≤n

{
max
1≤s≤v

{αis‖x− pi‖H + βis}+ ai

}
= inf
x∈H

max
1≤i≤n,
1≤s≤v

{αis‖x− pi‖H + βis + ai} .

Moreover, we define the function

fs : R→ R, fs(x) :=

{
αisx+ βis, if x ∈ R+,

+∞, otherwise,

then we derive by [71, Theorem 3.2]

h∗i (x
∗) =

(
max
1≤s≤v

{fs(·)}
)∗

(x∗) = inf
v∑
s=1

x∗s=x
∗,

v∑
s=1

τs=1,

τs≥0, s=1,...,v

{
v∑
s=1

(τsfs)
∗(x∗s)

}
.

As the conjugate of the function τsfs is

(τsfs)
∗(x∗s) = sup

x∈R
{x∗sx− τsfs(x)} = sup

x≥0
{x∗sx− τsαisx− τsβis}

= −τsβis + sup
x≥0
{(x∗s − τsαis)x} =

{
−τsβis, if x∗s ≤ τsαis,
+∞, otherwise,

s = 1, ..., v, we have

h∗i (x
∗) = inf

v∑
s=1

x∗s=x
∗,

v∑
s=1

τs=1,

τs≥0, xs≤τsαis, s=1,...,v

{
−

n∑
s=1

τsαis

}
, i = 1, ..., n,

and hence, the dual problem is given by

(DS,N
h,a ) sup

λi, z
0∗
i ≥0, z1∗i ∈H, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
‖z1∗i ‖H≤z

0∗
i ,i∈I,

∑
i∈I

z1∗i =0H,
∑
r∈R

λr≤1

v∑
s=1

x∗s=
z0∗r
λr

,
v∑
s=1

τs=1, τs≥0, xs≤τsαrs, s=1,...,v

{
−
∑
i∈I
〈z1∗i , pi〉H +

∑
r∈R

λr

[
n∑
s=1

τsαrs − ar

]}
.
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Furthermore, h−1i (y) = min1≤s≤v

{
1
αis

(y − βis)
}

for all i = 1, ..., n, and thus, we have by Corollary

4.1

x =
1∑

i∈I

‖z1∗i ‖H
min

1≤s≤v

{
1
αis

(v(DS,Nh,a )−ai−βis)
}
∑
i∈I

‖z1∗i ‖H
min

1≤s≤v

{
1
αis

(v(DS,N
h,a )− ai − βis)

}pi.
(b) Let hi : R→ R be defined by

hi(x) :=

{
wix

βi , if x ∈ R+,

+∞, otherwise,

with wi > 0, βi > 1, i = 1, ..., n, then

(PS,Nh,a ) inf
x∈H

max
1≤i≤n

{
wi‖x− pi‖βiH + ai

}
and since the conjugate function of hi is given by (see [2, Example 13.2 (i)])

h∗i (x
∗) = wi

βi − 1

βi

(
1

wi
x∗
) βi
βi−1

=
βi − 1

βiw
1

βi−1

i

(x∗)
βi
βi−1 , i = 1, ..., n,

the associated dual problem (DS,N
h,a ) is

sup
λi, z

0∗
i ≥0, z1∗i ∈H, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
‖z1∗i ‖H≤z

0∗
i ,i∈I,

∑
i∈I

z1∗i =0H,
∑
r∈R

λr≤1

{
−
∑
i∈I
〈z1∗i , pi〉H−

∑
r∈R

λr

[
βr − 1

βr(λrwr)
1

βr−1

(z0∗r )
βr
βr−1 − ar

]}
.

In addition, as h−1i (y) = (y/wi)
1
βi for all i = 1, ..., n, it holds

x =
1∑

i∈I

w
1
βi
i ‖z1∗i ‖H

(v(DS,Nh,a )−ai)
1
βi

∑
i∈I

w
1
βi
i ‖z1∗i ‖H(

v(DS,N
h,a )− ai

) 1
βi

pi.

(c) Let hi : R→ R be defined by

hi(x) :=

{
wix, if x ∈ R+,

+∞, otherwise,

where wi > 0, then h−1i (y) = 1
wi
y for all i = 1, ..., n, and hence,

x =
1∑

i∈I

wi‖z1∗i ‖H
v(DS,Nh,a )−ai

∑
i∈I

wi‖z1∗i ‖H
v(DS,N

h,a )− ai
pi. (4. 45)

If ai = 0, i = 1, ..., n, then formula in (4. 45) reduces to

x =
1∑

i∈I
wi‖z1∗i ‖H

∑
i∈I

wi‖z1∗i ‖Hpi. (4. 46)

Remark 4.10. Let us note that all the results in this section hold also for negative set-up costs.
Like already mentioned in Remark 4.9, we have in this case in the constraint set of the dual problem∑
r∈R λr = 1.
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4.2.3 Constrained location problems without set-up costs in Fréchet
spaces

In this section we discuss single minimax location problems without set-up costs (i.e. ai = 0, i =
1, ..., n), where X is a Fréchet space, S ⊆ X and hi : R→ R is defined by

hi(x) :=

{
x, if x ∈ R+,

+∞, otherwise.

Hence, the location problem (PSh,a) turns into

(PS) inf
x∈S

max
1≤i≤n

{γCi(x− pi)}

and by (4. 31) we can write the corresponding dual (DS) as

(DS) sup
y0∗
i
≥0,y1∗

i
∈X∗,i=1,...,n, I={i∈{1,...,n}:y0∗i >0},

y1∗
j

=0X∗ ,j /∈I,γC0
i
(y1∗
i

)≤y0∗
i
,i∈I,

∑
i∈I

y0∗
i
≤1

{
inf
x∈S

{∑
i∈I
〈z1∗i , x− pi〉

}}
.

Let us now introduce the following optimization problem

(D̃S) sup
z∗
i
∈X∗, i=1,...,n, I=

{
i∈{1,...,n}:γ

C0
i
(z∗
i
)>0

}
,

z∗
j
=0X∗ , j /∈I,

∑
i∈I

γ
C0
i
(z∗
i
)≤1

{
inf
x∈S

{∑
i∈I
〈z∗i , x− pi〉

}}
, (4. 47)

then the following theorem can be formulated.

Theorem 4.6. It holds v(DS) = v(D̃S).

Proof. Let z∗i , i = 1, ..., n, be a feasible element to (D̃S) and set z1∗i = z∗i , z0∗i = γC0
i
(z∗i ) for

i ∈ I and z0∗i = 0, z1∗i = 0X∗ for i /∈ I. Then, it is obvious that z0∗i and z1∗i , i = 1, ..., n, are
feasible elements to (DS) and it holds

inf
x∈S

{∑
i∈I
〈z∗i , x− pi〉

}
= inf
x∈S

{∑
i∈I
〈z1∗i , x− pi〉

}
≤ v(DS) (4. 48)

for all z∗i , i = 1, ..., n, feasible to (D̃S), which implies v(D̃S) ≤ v(DS).
Vice versa, let z0∗i and z1∗i be feasible elements to (DS) for i = 1, ..., n, then we have γC0

i
(z1∗i ) ≤

z0∗i for i ∈ I,
∑
i∈I z

0∗
i ≤ 1 and z0∗i = 0, z1∗i = 0X∗ for i /∈ I, from which follows by setting z∗i = z1∗i

for i ∈ I and z∗i = 0X∗i for i /∈ I that ∑
i∈I

γC0
i
(z∗i ) ≤ 1,

in other words z∗i is a feasible solution to (D̃S) for all i = 1, ..., n. Furthermore, we have that

inf
x∈S

{∑
i∈I
〈z1∗i , x− pi〉

}
= inf
x∈S

{∑
i∈I
〈z∗i , x− pi〉

}
≤ v(D̃S) (4. 49)

for all z0∗i and z1∗i , i = 1, ..., n, feasible to (DS), which implies that v(DS) ≤ v(D̃S). Bringing the

statements (4. 48) and (4. 49) together reveals that it must hold v(D̃S) = v(DS).
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Remark 4.11. As mentioned in Remark 4.5, we have that γC0(z∗i ) = 0⇔ z∗i = 0X∗ and therefore,

the index set I of the dual (D̃S) contains all indices such that z∗i 6= 0X∗ .

Motivated by Theorem 4.6 it follows immediately the following one.

Theorem 4.7. (strong duality) Between (PS) and (D̃S) holds strong duality, i.e. v(PS) = v(D̃S)

and the dual problem v(D̃S) has an optimal solution.

Now, it is possible to formulate the following optimality conditions for the primal-dual pair
(PS)-(D̃S) (note that ai = 0, i = 1, ..., n).

Theorem 4.8. (optimality conditions) (a) Let x ∈ S be an optimal solution of the problem (PS).

Then there exist z∗ ∈ (X∗)n and an index set I ⊆ {1, ..., n} as an optimal solution to (D̃S) such
that

(i) max
1≤j≤n

{γCj (x− pj)} =
∑
i∈I

γC0
i
(z∗i )γCi(x− pi),

(ii)
∑
i∈I
〈z∗i , x〉 = −σS

(
−
∑
i∈I

z∗i

)
,

(iii) γC0
i
(z∗i )γCi(x− pi) = 〈z∗i , x− pi〉, i ∈ I,

(iv)
∑
j∈I

γC0
j
(z∗j ) = 1, z∗i ∈ X∗ \ {0X∗}, i ∈ I, and z∗i = 0X∗ , i /∈ I,

(v) γCi(x− pi) = max
1≤j≤n

{γCj (x− pj)}, i ∈ I.

(b) If there exists x ∈ S such that for some z∗ ∈ (X∗)n and an index set I the conditions (i)-(v)

are fulfilled, then x is an optimal solution of (PS), (z∗, I) is an optimal solution for (D̃S) and

v(PS) = v(D̃S).

Proof. Let x ∈ S be an optimal solution of (PS), then by Theorem 4.7 there exists z∗ ∈ (X∗)n

and an index set I ⊆ {1, ..., n} such that v(PS) = v(D̃S), i.e.

max
1≤j≤n

{γCj (x− pj)} = inf
x∈S

∑
i∈I

〈z∗i , x− pi〉


⇔ max

1≤j≤n
{γCj (x− pj)}+ σS

−∑
i∈I

z∗i

+
∑
i∈I

〈z∗i , pi〉 = 0

⇔ max
1≤j≤n

{γCj (x− pj)}+ σS

−∑
i∈I

z∗i

+
∑
i∈I

〈z∗i , pi〉

+
∑
i∈I

γC0
i
(z∗i )γCi(x− pi)−

∑
i∈I

γC0
i
(z∗i )γCi(x− pi) +

∑
i∈I

〈z∗i , x〉 −
∑
i∈I

〈z∗i , x〉 = 0

⇔

 max
1≤j≤n

{γCj (x− pj)} −
∑
i∈I

γC0
i
(z∗i )γCi(x− pi)


+

δS(x) + σS

−∑
i∈I

z∗i

+

〈∑
i∈I

z∗i , x

〉+
∑
i∈I

[γC0
i
(z∗i )γCi(x− pi) + 〈z∗i , pi − x〉] = 0.
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By Lemma 4.2 holds that the term within the first bracket is non-negative and by the Young-
Fenchel inequality we derive that the term within the second bracket is non-negative. Further,
from γC0

i
(z∗i ) > 0 for i ∈ I, it follows by the Young-Fenchel inequality that

γC0
i
(z∗i )γCi(x− pi) + (γC0

i
(z∗i )γCi)

∗(x∗) ≥ 〈x∗, x− pi〉 ∀x∗ ∈ X∗, (4. 50)

and since (see Remark 4.5)

(γC0
i
(z∗i )γCi)

∗(x∗) = γC0
i
(z∗i )γ

∗
Ci

(
1

γC0
i
(z∗i )

x∗

)
=

{
0, if γC0

i
(x∗) ≤ γC0

i
(z∗i ),

+∞, otherwise,
(4. 51)

one has that γC0
i
(z∗i )γCi(x− pi) ≥ 〈z∗i , x− pi〉 for all i ∈ I. This means that the terms within the

other brackets are also non-negative and therefore, all the terms inside the brackets must be equal
to zero. This implies the cases (i)-(iii). Further, we obtain by the first bracket

max
1≤j≤n

{γCj (x− pj)} =
∑
i∈I

γC0
i
(z∗i )γCi(x− pi)

≤
∑
i∈I

γC0
i
(z∗i ) max

1≤j≤n
{γCj (x− pj)} ≤ max

1≤j≤n
{γCj (x− pj)}

and from here follows that
∑
i∈I γC0

i
(z∗i ) = 1, which yields condition (iv), as well as∑

i∈I

γC0
i
(z∗i ) max

1≤j≤n
{γCj (x− pj)} =

∑
i∈I

γC0
i
(z∗i )γCi(x− pi)

⇔
∑
i∈I

γC0
i
(z∗i )

[
max
1≤j≤n

{γCj (x− pj)} − γCi(x− pi)
]

= 0. (4. 52)

As the brackets in (4. 52) are non-negative and γC0
i
(z∗i ) > 0, i ∈ I, we get that

max
1≤j≤n

{γCj (x− pj)} = γCi(x− pi), i ∈ I.

which yields the condition (v) and completes the proof.

4.2.4 Unconstrained location problems without set-up costs in the Eu-
clidean space

Now, we turn our attention to the case where S = X = Rd and wi > 0, i = 1, ..., n. Furthermore,
we use as the gauge functions the Euclidean norm, i.e. γCi(·) = wi‖ · ‖, i = 1, ..., n. By these
settings, the minimax location problem (PS) transforms into the following one

(PSN ) inf
x∈Rd

max
1≤i≤n

{wi‖x− pi‖}.

By using (4. 47) we obtain the following dual problem corresponding to (PSN ),

(D̃S
N ) sup

z∗
i
∈Rd, i=1,...,n, I={i∈{1,...,n}:‖z∗i ‖>0},

z∗
j
=0Rd , j /∈I,

∑
i∈I

1
wi
‖z∗
i
‖≤1

inf
x∈Rd

{∑
i∈I
〈z∗i , x− pi〉

}

= sup
z∗
i
∈Rd, i=1,...,n, I={i∈{1,...,n}:‖z∗i ‖>0},

z∗
j
=0Rd , j /∈I,

∑
i∈I

1
wi
‖z∗
i
‖≤1

{
−σRd

(
−
∑
i∈I

z∗i

)
−
∑
i∈I
〈z∗i , pi〉

}

= sup
z∗
i
∈Rd, i=1,...,n, I={i∈{1,...,n}:‖z∗i ‖>0},

z∗
j
=0Rd , j /∈I,

∑
i∈I

1
wi
‖z∗
i
‖≤1,

∑
i∈I

z∗
i
=0Rd

{
−
∑
i∈I
〈z∗i , pi〉

}
. (4. 53)
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Remark 4.12. Note that for simplicity it is also possible to substitute z∗i = −z∗i for all i = 1, ..., n,
whence it follows

(D̃S
N ) sup

z∗
i
∈Rd, i=1,...,n, I={i∈{1,...,n}:‖z∗i ‖>0},

z∗
j
=0Rd , j /∈I,

∑
i∈I

1
wi
‖z∗
i
‖≤1,

∑
i∈I

z∗
i
=0Rd

{∑
i∈I
〈z∗i , pi〉

}
. (4. 54)

Theorem 4.9. (strong duality) Between (PSN ) and (D̃S
N ) holds strong duality, i.e. v(PSN ) = v(D̃S

N )
and the dual problem has an optimal solution.

By Theorem 4.8 and 4.9 we derive the following necessary and sufficient optimality conditions.

Theorem 4.10. (optimality conditions) (a) Let x ∈ Rd be an optimal solution of the problem

(PSN ). Then there exist z∗i ∈ Rd, i = 1, ..., n, and an index set I as an optimal solution to (D̃S
N )

such that

(i) max
1≤j≤n

{wj‖x− pj‖} =
∑
i∈I
‖z∗i ‖‖x− pi‖,

(ii)
∑
i∈I

z∗i = 0Rd ,

(iii) ‖z∗i ‖‖x− pi‖ = 〈z∗i , x− pi〉, i ∈ I,

(iv)
∑
j∈I

1
wj
‖z∗j‖ = 1, z∗i ∈ Rd \ {0Rd} for i ∈ I and z∗i = 0Rd for i /∈ I,

(v) wi‖x− pi‖ = max
1≤j≤n

{wj‖x− pj‖}, i ∈ I.

(b) If there exists x ∈ Rd such that for some z∗i ∈ Rd, i = 1, ..., n, and an index set I the conditions

(i)-(v) are fulfilled, then x is an optimal solution of (PSN ), (z∗, I) is an optimal solution for (D̃S
N )

and v(PSN ) = v(D̃S
N ).

For the length of the vectors z∗i , i ∈ I, feasible to (D̃S
N ) the following estimation from above

can be made.

Corollary 4.2. Let ws := max1≤i≤n{wi} and z∗i ∈ Rd, i = 1, ..., n, and I ⊆ {1, ..., n} be a feasible

solution to (D̃S
N ), then it holds

‖z∗i ‖ ≤
wswi
ws + wi

, i ∈ I.

Proof. Assume that z∗i ∈ Rd, i = 1, ..., n and I ⊆ {1, ..., n} are feasible elements of the dual

problem (D̃S
N ), then one has for j ∈ I,∑

i∈I
z∗i = 0Rd ⇔ z∗j = −

∑
i∈I
i6=j

z∗i

and hence,

‖z∗j ‖ = ‖
∑
i∈I
i6=j

z∗i ‖ ≤
∑
i∈I
i6=j

‖z∗i ‖, j ∈ I. (4. 55)

Moreover, from the feasibility of z∗i , i ∈ I, to (D̃S
N ) and by (4. 55), we have

1 ≥
∑
i∈I

1

wi
‖z∗i ‖ =

1

wj
‖z∗j ‖+

∑
i∈I
i6=j

1

wi
‖z∗i ‖

≥ 1

wj
‖z∗j ‖+

1

ws

∑
i∈I
i6=j

‖z∗i ‖ ≥
1

wj
‖z∗j ‖+

1

ws
‖z∗j ‖ =

ws + wj
wswj

‖z∗j ‖, j ∈ I,
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and so,

‖z∗j ‖ ≤
wswj
ws + wj

, j ∈ I.

By the next remark we point out the relation between the minimax and minisum problems.

Remark 4.13. The optimal solution x of the problem (PSN ) is also a solution of the following
generalized Fermat-Torricelli problem

(PFTN ) min
x∈Rd

∑
i∈I

w̃i‖x− pi‖,

where w̃i = ‖z∗i ‖, i ∈ I.
This can be seen like follows: It is well known that x is an optimal solution of the problem

(PFTN ) with x 6= pi, i ∈ I, if and only if the resultant force R at x, defined by

R(x) :=
∑
i∈I

w̃i
x− pi
‖x− pi‖

,

is zero (see [63]). As x is an optimal solution of (PSN ), we have by (4. 42) that∑
i∈I

w̃i
x− pi
‖x− pi‖

=
∑
i∈I

‖z∗i ‖
x− pi
‖x− pi‖

=
∑
i∈I

αi(x− pi) =
∑
i∈I

z∗i = 0Rd ,

which implies that x is also an optimal solution of the problem (PFTN ). In this context, pay attention
also to the fact that for the optimal solution x of the problem (PSN ) it holds x 6= pi, i ∈ I. Because
if there exists j ∈ I such that x = pj, then x = pi for all i ∈ I, which contradicts the assumption
that the given points are distinct.

Geometrical interpretation.
For simplicity let us suppose that w1 = ... = wn = 1, then it is well-known that the problem
(PNS ) can be interpreted as the finding of a ball with center x and minimal radius such that all
given points pi, i = 1, ..., n are covered by this ball. This problem is also known as the minimum
covering ball problem.

Our plan is now to give a geometrical interpretation of the set of optimal solutions of the dual
problem (D̃S

N ) by using Theorem 4.10. By condition (iii) we see that for i ∈ I the dual problem
can geometrically be understood as the finding of vectors z∗i , which are parallel to the vectors
x − pi and directed to x fulfilling

∑
i∈I z

∗
i = 0Rd and

∑
i∈I ‖z

∗
i ‖ = 1. Especially, conditions (iv)

and (v) are telling us that for i ∈ I, i.e. z∗i 6= 0Rd , the corresponding point pi is lying on the
border of the minimal covering ball and for i /∈ I, i.e. z1∗i = 0Rd , the corresponding point pi is
lying inside the mentioned ball. Therefore, for i ∈ I the elements z∗i can be interpreted as force
vectors, which pull the points pi lying on the border of the minimum covering ball inside of this
ball in direction to the center, the gravity point x, where the resultant force of the sum of these
force vectors is zero. For illustration see Example 4.2 and Figure 4.1.

Another well-known geometrical characterization of the location problem (PNS ) is to find the
minimum radius of balls centered at the points pi, i = 1, ..., n, such that their intersection is
non-empty. In this situation, the set of optimal solutions of the dual problem can be described as
force vectors fulfilling the optimality conditions of Theorem 4.10 and increasing these balls until
their intersection is non-empty and the radius of the largest ball is minimal. From the conditions
(iv) and (v) we obtain that a force vector z∗i is equal to the zero vector if x is an element of the
interior of the ball centered at point pi with radius v(PSN ), which is exactly the case when i /∈ I. If
i ∈ I, which is exactly the case when x is lying on the border of the ball centered at point pi with
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radius v(PSN ), then the corresponding force vector z∗i is unequal to the zero vector and moreover,
by the optimality condition (iii) follows that z∗i is parallel to the vector x− pi and has the same
direction.

To demonstrate the statements we made above, let us discuss the following example.

Example 4.2. Consider the unconstrained single minimax location problem in R2 defined by the
given points:

p1 = (−5,−2.5)T ; p2 = (−2, 1)T ; p3 = (2.5, 3)T ; p4 = (3.5,−2)T and p5 = (0,−3)T .

The primal problem looks in this case like follows

(P
S

N ) inf
x∈R2

max
1≤i≤5

{‖x− pi‖}

and by using the Matlab Optimization Toolbox we get the solution x = (−0.866,−0.273)T with the
objective function value max1≤i≤5{‖x− pi‖} = 4.695.

For the dual problem we have the formulation (see Remark 4.7)

(D̃S
N ) sup

z∗
i
∈R2, i=1,...,5,

5∑
i=1
‖z∗
i
‖≤1,

5∑
i=1

z∗
i
=0R2

{
−

5∑
i=1

〈z∗i , pi〉

}
. (4. 56)

with the solution

z∗1 = (0.412, 0.222)T ; z∗2 = (0, 0)T ; z∗3 = (−0.281,−0.273)T ;

z∗4 = (−0.131, 0.052)T ; z∗5 = (0, 0)T .

The dual problem was also solved by using the Matlab Optimization Toolbox. In fact, it holds
I = {1, 3, 4}, 〈z∗1, p1〉 + 〈z∗3, p3〉 + 〈z∗4, p4〉 = 4.695, x = ‖z∗1‖p1 + ‖z∗3‖p3 + ‖z∗4‖p4 = 0.468 ·
(−5,−2.5)T + 0.392 · (2.5, 3)T + 0.14 · (3.5,−2)T = (−0.866,−0.273)T (see (4. 46)) and the points
p1, p3 and p4 are lying on the border of the minimum covering circle as Figure 4.1 verifies.

Remark 4.14. Let wi = 1, i=1,...,n. Then, for the case n = 2 it follows immediately by condition
(iv) of Theorem 4.10 and Corollary 4.2 the well-known fact that x = (1/2)(p1 + p2).

Remark 4.15. Let wi = 1, i=1,...,n. If we consider the case d = 1, we can write the dual problem
(D̃S

N ) as

(D̃S
N ) sup

z∗
i
∈R, i=1,...,n, I={i∈{1,...,n}:|z∗i |>0},
z∗
j
=0, j /∈I,

∑
i∈I
|z∗
i
|≤1,

∑
i∈I

z∗
i
=0

{
−
∑
i∈I

z∗i pi

}
= sup

z∗∈Rn, 〈z∗,1〉=0,
‖z∗‖1≤1

{−〈z∗, p〉},

where z∗ = (z∗1 , ..., z
∗
n)T ∈ Rn, p = (p1, ..., pn)T ∈ Rn, 1 = (1, ..., 1)T ∈ Rn and ‖ · ‖1 is the

Manhattan norm. From the second formulation of the problem (D̃S
N ) it is clear that the set of the

feasible elements is the intersection of a hyperplane orthogonal to the vector 1 and a cross-polytope
(or hyperoctahedron), i.e. a convex polytope. Further, it is clear that the optimal solution of this
problem can get immediately by the following consideration. Let us assume that p1 < ... < pn,
then it holds p1 < x < pn and by condition (v) of Theorem 4.10 one gets

max
1≤j≤n

{|x− pj |} = |x− p1| = |x− pn|,

i.e. I = {1, n}. By Remark 4.14 this means x = (1/2)(p1 + pn). Moreover, by Corollary 4.2 we
have that |z∗1| = |z∗n| = 0.5 and by condition (iii) of Theorem 4.10 finally follows that z∗1 = 0.5
and z∗n = −0.5. A more detailed analysis of location problems using rectilinear distances was given
in [34].
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Figure 4.1: Geometrical illustration of the Example 4.2

By the next remark, we discover that the Lagrange multiplier associated with the linear equa-
tion constraint of the dual problem (D̃S

N ) is the optimal solution of the primal problem (PSN ) and

moreover, the Lagrange multiplier associated with the inequality constraint of the dual (D̃S
N ) is

the optimal objective value. A similar result was shown in [61] for minisum location problems.

Remark 4.16. First, let us notice that the dual problem (D̃S
N ) can be written as (see Remark 4.7)

(D̃S
N ) sup

z∗
i
∈Rd, i=1,...,n,

n∑
i=1

1
wi
‖z∗
i
‖≤1,

n∑
i=1

z∗
i
=0Rd

{
−

n∑
i=1

〈z∗i , pi〉

}
,

then the Lagrange dual of the dual (D̃S
N ) looks like

(DD̃S
N ) inf

λ≥0, x∈Rd
sup

z∗i ∈Rd, i=1,...,n

{
−

n∑
i=1

〈z∗i , pi〉+

〈
x,

n∑
i=1

z∗i

〉
− λ

(
n∑
i=1

1

wi
‖z∗i ‖ − 1

)}

= inf
λ≥0, x∈Rd

{
λ+

n∑
i=1

sup
z∗i ∈Rd

{
〈x− pi, z∗i 〉 −

λ

wi
‖z∗i ‖

}}
. (4. 57)

If λ = 0, then we get

sup
z∗i ∈Rd

〈x− pi, z∗i 〉 =

{
0, if x = pi,
+∞, otherwise,

i = 1, ..., n, which contradicts the assumption from the beginning that the given points pi, i = 1, ..., n
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are distinct. Therefore, we can write for (4. 57)

(DD̃S
N ) inf

λ>0, x∈Rd

{
λ+ λ

n∑
i=1

1

wi
sup
z∗i ∈Rd

{〈wi
λ

(x− pi), z∗i
〉
− ‖z∗i ‖

}}
= inf

λ>0, x∈Rd,
wi‖x−pi‖≤λ, i=1,...,n

λ = inf
x∈Rd

max
1≤i≤n

{wi‖x− pi‖}.

We conclude, on the one hand, that the Lagrange dual of the dual problem (D̃S
N ) (i.e. the bidual of

the primal location problem (PS)) is the problem (PS). On the other hand, we see that the Lagrange

multipliers of the dual (DD̃S
N ) characterize the optimal solution and the optimal objective value

of the primal problem (PS). Therefore, we have a complete symmetry between the primal problem

(PSN ), the dual problem (D̃S
N ) and its Lagrange dual problem (DD̃S

N ).

4.3 Extended multifacility minimax location problems

4.3.1 Unconstraint location problems with set-up costs in Fréchet spaces

The location problem, which we investigate in a more general setting as suggested by Drezner
in [35] and studied by Michelot and Plastria in [30,67], is

(EPMa ) inf
(x1,...,xm)∈Xm

max
1≤i≤n


m∑
j=1

γCij (xj − pi) + ai

 ,

where X is a Fréchet space, ai ∈ R+ are non-negative set-up costs, pi ∈ X are distinct points and
γCij : X → R are gauges defined by closed and convex subsets Cij of X such that 0X ∈ intCij ,
i = 1, ..., n, j = 1, ...,m.

Now, set X̃ = Xm, x = (x1, ..., xm) ∈ X̃, p̃i = (pi, ..., pi) ∈ X̃ and define the gauge γCi : X̃ → R
by

γCi(x) :=

m∑
j=1

γCij (xj), x = (x1, ..., xm) ∈ X̃,

where Ci = {x ∈ X̃ : γCi(x) ≤ 1}, i = 1, ..., n. Note that, as defined in the proof of Lemma 4.4,

〈x∗, x〉 =
∑m
j=1〈x∗j , xj〉 for x ∈ X̃ and x∗ ∈ X̃∗. Then, it is obvious that the location problem

(EPMa ) can also be written in a slightly different form, namely, as a single minimax location
problem

(EPMa ) inf
x∈X̃

max
1≤i≤n

{γCi(x− p̃i) + ai}.

We use (4. 16) of Lemma 4.4 and (4. 31) and get for the dual problem corresponding to
(EPMa )

(EDM
a ) sup

z0∗
i
≥0, z1∗

ij
∈X∗, i=1,...,n, j=1,...,m, I={i∈{1,...,n}:z0∗i >0},

z1∗
kj

=0X∗ , k/∈I, γC0
ij

(z1∗
ij

)≤z0∗
i
, i∈I, j=1,...,m,

∑
i∈I

z0∗
i
≤1

{
inf
x∈X̃

{∑
i∈I
〈z1∗i , x− p̃i〉

}
+
∑
i∈I

z0∗i ai

}
.

Because

inf
x∈X̃

{∑
i∈I
〈z1∗i , x− p̃i〉

}
= inf

xl∈X,
l=1,...,m

∑
i∈I

m∑
j=1

〈z1∗ij , xj − pi〉


=

m∑
j=1

inf
xj∈X

{∑
i∈I
〈z1∗ij , xj〉

}
−
∑
i∈I

m∑
j=1

〈z1∗ij , pi〉,
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we obtain finally for the conjugate dual problem of (EPMa )

(EDM
a ) sup

(z0∗1 ,...,z0∗n ,z1∗1 ,...,z1∗n )∈C

−∑
i∈I

〈 m∑
j=1

z1∗ij , pi

〉
− z0∗i ai

 ,

where

C =

{
(z0∗1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) ∈ Rn+ × (X∗)m × ...× (X∗)m : I =

{
i ∈ {1, ..., n} : z0∗i > 0

}
z1∗kj = 0X∗ , k /∈ I, γC0

ij
(z1∗ij ) ≤ z0∗i , i ∈ I,

∑
i∈I

z1∗ij = 0X∗ , j = 1, ...,m,
∑
i∈I

z0∗i ≤ 1

}
.

Remark 4.17. A similar dual problem was formulated by Michelot and Cornejo in [30] in the
situation where X is the Euclidean space, m = 2 and the gauges are a norm. The authors construct
in their paper a Fenchel duality scheme to solve extended minimax location problems by a proximal
algorithm.

Remark 4.18. In the sense of Remark 4.7 the dual problem (EDM
a ) is equivalent to

(ÊD
M

a ) sup
(z0∗1 ,...,z0∗n ,z1∗1 ,...,z1∗n )∈Ĉ

−
n∑
i=1

〈 m∑
j=1

z1∗ij , pi

〉
− z0∗i ai

 ,

where

Ĉ =

{
(z0∗1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) ∈ Rn+ × (X∗)m × ...× (X∗)m : γC0

kj
(z1∗kj ) ≤ z0∗k ,

n∑
i=1

z1∗ij = 0X∗ , k = 1, ..., n, j = 1, ...,m,
n∑
i=1

z0∗i ≤ 1

}
.

Let v(EPMa ) be the optimal objective value of the location problem (EPMa ) and v(EDM
a ) be

the optimal objective value of the dual problem (EDM
a ), then we obtain the following duality

statement as a direct consequence of Theorem 4.2.

Theorem 4.11. (strong duality) Between (EPMa ) and (EDM
a ) holds strong duality, i.e. v(EPMa ) =

v(EDM
a ) and the conjugate dual problem has an optimal solution.

The following necessary and sufficient optimality conditions are a consequence of the previous
theorem.

Theorem 4.12. (optimality conditions) (a) Let (x1, ..., xm) ∈ Xm be an optimal solution of the
problem (EPMa ). Then there exist (z0∗1 , ..., z

0∗
n , z

1∗
1 , ..., z

1∗
n ) ∈ Rn+ × (X∗)m × ... × (X∗)m and an

index set I ⊆ {1, ..., n} as an an optimal solution to (EDM
a ) such that

(i) max
1≤u≤n

{
m∑
j=1

γCuj (xj − pu) + au

}
=
∑
i∈I

z0∗i

(
m∑
j=1

γCij (xj − pi) + ai

)
,

(ii) z0∗i γCij (xj − pi) = 〈z1∗ij , xj − pi〉, i ∈ I, j = 1, ...,m,

(iii)
∑
i∈I

z1∗ij = 0X∗ , j = 1, ...,m,

(iv)
∑
j∈I

z0∗j = 1, z0∗i > 0, i ∈ I, and z0∗k = 0, k /∈ I,
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(v)
m∑
j=1

γCij (xj − pi) + ai = max
1≤u≤n

{
m∑
j=1

γCuj (xj − pu) + au

}
, i ∈ I,

(vi) max
1≤l≤m

{
γC0

il
(z1∗il )

}
= z0∗i , (z1∗i1 , ..., z

1∗
im) ∈ X∗ × ...×X∗ \ {(0X∗ , ..., 0X∗)}, i ∈ I, and z1∗kj =

0X∗ , k /∈ I, j = 1, ...,m.

(b) If there exists (x1, ..., xm) ∈ Xm such that for some (z0∗1 , ..., z
0∗
n , z

1∗
1 , ..., z

1∗
n ) ∈ Rn+ × (X∗)m ×

...× (X∗)m and an index set I ⊆ {1, ..., n} the conditions (i)-(vi) are fulfilled, then (x1, ..., xm) is
an optimal solution of (EPMa ), (z0∗1 , ..., z

0∗
n , z

1∗
1 , ..., z

1∗
n , I) is an optimal solution for (EDM

a ) and
v(EPMa ) = v(EDM

a ).

Proof. From Theorem 4.11 we have v(EPMa ) = v(EDM
a ), i.e. for (x1, ..., xm) ∈ Xm and

(z0∗1 , ..., z
0∗
n , z

1∗
1 , ..., z

1∗
n ) ∈ Rn+ × (X∗)m × ...× (X∗)m and an index set I ⊆ {1, ..., n} it holds

max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au

 = −
∑
i∈I

〈 m∑
j=1

z1∗ij , pi

〉
− z0∗i ai


⇔ max

1≤u≤n


m∑
j=1

γCuj (xj − pu) + au

+
∑
i∈I

〈 m∑
j=1

z1∗ij , pi

〉
− z0∗i ai

 = 0

⇔ max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au

+
∑
i∈I

〈 m∑
j=1

z1∗ij , pi

〉
− z0∗i ai


+
∑
i∈I

m∑
j=1

z0∗i γCij (xj − pi)−
∑
i∈I

m∑
j=1

z0∗i γCij (xj − pi)

+

〈∑
i∈I

m∑
j=1

z1∗ij , xj

〉
−

〈∑
i∈I

m∑
j=1

z1∗ij , xj

〉
= 0

⇔

 max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au

−∑
i∈I

m∑
j=1

z0∗i γCij (xj − pi)−
∑
i∈I

z0∗i ai


+
∑
i∈I

m∑
j=1

[z0∗i γCij (xj − pi)− 〈z1∗ij , xj − pi〉] +

m∑
j=1

〈∑
i∈I

z1∗ij , xj

〉
= 0. (4. 58)

If we define the function hi : R→ R by

hi(y) :=

{
y, if y ∈ R+,

+∞, otherwise,
(4. 59)

then it follows by Lemma 4.2 that

g

 m∑
j=1

γC1j
(xj − p1), ...,

m∑
j=1

γCnj (xj − pn)

 = max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au


≥

∑
i∈I

z0∗i

 m∑
j=1

γCij (xj − pi) + ai

 ,
which means that the term in the first bracket of (4. 58) is equal to zero. Moreover, by the
Young-Fenchel inequality as well as by the fact that

∑
i∈I z

1∗
ij = 0X∗ , j = 1, ...,m, we get that
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the terms in the other brackets are also equal to zero. Hence, we derive the optimality conditions
(i)-(iii).

By the feasibility condition,
∑
i∈I z

0∗
i ≤ 1, and the equality in the first bracket of (4. 58) it

holds

max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au

 =
∑
i∈I

z0∗i

 m∑
j=1

γCij (xj − pi) + ai


≤

∑
i∈I

z0∗i max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au


≤ max

1≤u≤n


m∑
j=1

γCuj (xj − pu) + au


and from here follows on the one hand that∑

i∈I

z0∗i = 1, (4. 60)

and on the other hand that

m∑
j=1

γCij (xj − pi) + ai = max
1≤u≤n


m∑
j=1

γCuj (xj − pu) + au

 , i ∈ I. (4. 61)

Moreover, as z0∗i γCij (xj − pi) = 〈z1∗ij , xj − pi〉, i ∈ I, j = 1, ...,m, one gets by the feasibility
condition,

γC0
ij

(z1∗ij ) ≤ z0∗i ∀j = 1, ...,m, i ∈ I,⇔ max
1≤l≤m

{
γC0

ij
(z1∗ij )

}
≤ z0∗i , i ∈ I. (4. 62)

Recall that γCi(x − p̃i) =
∑m
j=1 γCij (xj − pi) and that by Lemma 4.4 we have γC0

i
(z1∗i ) =

max1≤j≤m{γC0
ij

(z1∗ij )}, where p̃i = (pi, ..., pi) ∈ Xm and z1∗i = (z1∗i1 , ..., z
1∗
im) ∈ (X∗)m, i ∈ I.

Then one can show similarly to (4. 40) that

γC0
i
(z1∗i )γCi(x− p̃i) ≥ 〈z1∗i , x− p̃i〉, (4. 63)

i.e.

max
1≤l≤m

{
γC0

ij
(z1∗ij )

} m∑
j=1

γCij (xj − pi) ≥
m∑
j=1

〈z1∗ij , xj − pi〉, i ∈ I. (4. 64)

From here follows that

z0∗i γCi(x− p̃i) = z0∗i

m∑
j=1

γCij (xj − pi) =

m∑
j=1

〈z1∗ij , xj − pi〉 = 〈z1∗i , x− p̃i〉

≤ γC0
i
(z1∗i )γCi(x− p̃i) = max

1≤l≤m

{
γC0

ij
(z1∗ij )

} m∑
j=1

γCij (xj − pi)

≤ z0∗i
m∑
j=1

γCij (xj − pi), i ∈ I,

and thus, the inequality in (4. 62) holds as equality. Taking now (4. 60), (4. 61) and (4. 62) as
equality together yields the optimality conditions (iv)-(vi) and completes the proof.
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Remark 4.19. Let hi : R→ R be defined by

hi(xi) :=

{
xi, if xi ∈ R+,

+∞, otherwise,

then the conjugate function of λihi, λi ≥ 0, is

(λihi)
∗(x∗i ) =

{
0, if x∗i ≤ λi,
+∞, otherwise,

, i = 1, ..., n.

In addition, we consider the function f : R→ R,

f(y0) =

{
max
1≤i≤n

{y0i + ai}, if y0 = (y01 , ..., y
0
n)T ∈ Rn+, i = 1, ..., n,

+∞, otherwise,

and get by Lemma 4.1 that

f∗(z0∗1 , ..., z0∗n ) = min
n∑
i=1

λi≤1, λi≥0, z0∗
i
≤λi,

i=1,...,n

{
−

n∑
i=1

λiai

}
≤ −

n∑
i=1

z0∗i ai

for all z0∗i ≤ λi with λi ≥ 0, i = 1, ..., n,
∑n
i=1 λi ≤ 1. Hence, we have by the Young-Fenchel

inequality and the optimal condition (i) of Theorem 4.12 that

∑
i∈I

z0∗i

m∑
j=1

γCij (xj − pi) ≤ f

 m∑
j=1

γC1j
(xj − p1), ...,

m∑
j=1

γCnj (xj − pn))

+ f∗(z0∗1 , ..., z
0∗
n )

≤ f

 m∑
j=1

γC1j (xj − p1), ...,

m∑
j=1

γCnj (xj − pn))

− n∑
i=1

z0∗i ai =
∑
i∈I

z0∗i

m∑
j=1

γCij (xj − pi),

i.e.

f

 m∑
j=1

γC1j
(xj − p1), ...,

m∑
j=1

γCnj (xj − pn))

+ f∗(z0∗1 , ..., z
0∗
n ) =

∑
i∈I

z0∗i

m∑
j=1

γCij (xj − pi)

and by (2. 1) this equality is equivalent to

(z0∗1 , ..., z0∗n ) ∈ ∂f

 m∑
j=1

γC1j
(xj − p1), ...,

m∑
j=1

γCnj (xj − pn))

 .

In other words, the condition (i) of Theorem 4.12 can be written by means of the subdifferential,
i.e.,

(i) (z0∗1 , ..., z
0∗
n ) ∈ ∂

(
max
1≤j≤n

{·+ aj}
)(

m∑
j=1

γC1j
(xj − p1), ...,

m∑
j=1

γCnj (xj − pn))

)
.

Similarly, we can rewrite the condition (ii) of Theorem 4.12 as follows

(ii) z1∗ij ∈ ∂(z0∗i γCij )(xj − pi), i ∈ I, j = 1, ...,m.

Moreover, combining this condition with the optimality condition (iii) of Theorem 4.12 yields that

0X∗ ∈
∑
i∈I

∂(z0∗i γCij )(xj − pi), j = 1, ...,m.
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Notice also that the optimality conditions (ii) and (vi) of Theorem 4.12 give a detailed character-
ization of the subdifferential of z0∗i γCij at xj − pi such that

∂(z0∗i γCij )(xj − pi) =

{
z1∗ij ∈ X∗ : z0∗i γCij (xj − pi) = 〈z1∗ij , xj − pi〉, max

1≤l≤m

{
γC0

il
(z1∗il )

}
= z0∗i

}
for all i ∈ I, j = 1, ...,m.

Let us now consider the extended location problem (EPMa ) in the following framework. We
set X = H, where H is a real Hilbert space and γCij : H → R, γCij (x) := wij‖x‖H, where wij > 0
for j = 1, ...,m, i = 1, ..., n. Hence, the location problem looks like

(EPMN,a) inf
(x1,...,xm)∈H×...×H

max
1≤i≤n


m∑
j=1

wij‖xj − pi‖H + ai

 .

For this situation, where the gauges are all identical and the distances are measured by a round
norm, Michelot and Plastria examined in [67] under which conditions an optimal solution of
coincidence type exists. The authors showed that if the weights have a multiplicative structure,
i.e. wij = λiµj with λi, µj > 0, i = 1, ..., n, j = 1, ...,m, and

∑m
j=1 µj = 1, then there exists

an optimal solution of (EPMN,a) such that all new facilities coincide. Moreover, they described
when the optimal solution of coincidence type is unique and presented a full characterization of
the set of optimal solutions for extended multifacility location problems where the weights have a
multiplicative structure.

The next statement is based on the idea of weights with a multiplicative structure and illustrates
in this situation the relation between the extended location problem (EPMN,a) and its corresponding
conjugate dual problem.

Theorem 4.13. Let X = H, γCij : H → R be defined by γCij (x) := wij‖x‖H, i = 1, ..., n, j =
1, ...,m, and wij = λiµj with λi, µj > 0, i = 1, ..., n, j = 1, ...,m, and

∑m
j=1 µj = 1. Assume that

∆x = (x, ..., x) ∈ H × ...×H︸ ︷︷ ︸
m−times

is an optimal solution of coincidence type of

(EPMN,a) inf
(x1,...,xm)∈H×...×H

max
1≤i≤n


m∑
j=1

wij‖xj − pi‖H + ai

 .

and (z0∗1 , ..., z
0∗
n , z

1∗
1 , ..., z

1∗
n , I) and I ⊆ {1, ..., n} is an optimal solution of the corresponding con-

jugate dual problem

(EDM
N,a) sup

(z0∗1 ,...,z0∗n ,z1∗1 ,...,z1∗n )∈C

−∑
i∈I

〈 m∑
j=1

z1∗ij , pi

〉
H

− z0∗i ai

 ,

where

C =

{
(z0∗1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) ∈ Rn+ ×Hm × ...×Hm︸ ︷︷ ︸

n−times

: I =
{
i ∈ {1, ..., n} : z0∗i > 0

}
z1∗kj = 0H, k /∈ I, ‖z1∗ij ‖H ≤ z0∗i wij , i ∈ I,

∑
i∈I

z1∗ij = 0H, j = 1, ...,m,
∑
i∈I

z0∗i ≤ 1

}
.

Then, it holds

x =
1∑

i∈I

λi‖z1∗ij ‖H
v(EDMN,a)−ai

∑
i∈I

λi‖z1∗ij ‖H
v(EDM

N,a)− ai
pi ∀j ∈ J,
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where

J :=

{
j ∈ {1, ...,m} :

1

wij
‖z1∗ij ‖H = max

1≤l≤m

{
1

wil
‖z1∗il ‖H

}}
, i ∈ I.

Proof. First, let us remark that the dual norm of the weighted norm γCij = wij‖ · ‖H is given
by γC0

ij
= (1/wij)‖ · ‖H.

Now, let ∆x = (x, ..., x) be an optimal solution of coincidence type, then the optimality condi-
tions (ii), (iii), (v) and (vi) of Theorem 4.12 can be written as

(ii) z0∗i wij‖x− pi‖H = 〈z1∗ij , x− pi〉H, i ∈ I, j = 1, ...,m,

(iii)
∑
i∈I

z1∗ij = 0H, j = 1, ...,m,

(v)
m∑
j=1

wij‖x− pi‖H + ai = max
1≤u≤n

{
m∑
j=1

wuj‖x− pu‖H + au

}
, i ∈ I,

(vi) max
1≤l≤m

{
1
wil
‖z1∗il ‖H

}
= z0∗i , (z1∗i1 , ..., z

1∗
im) ∈ H × ... × H \ {(0H, ..., 0H)}, i ∈ I and z1∗kj =

0H, k /∈ I, j = 1, ...,m.

By combining the conditions (ii) and (vi), we get

‖z1∗ij ‖H‖x− pi‖H = 〈z1∗ij , x− pi〉H, i ∈ I, j ∈ J. (4. 65)

Moreover, by Fact 2.10 in [2] there exists αij > 0 such that

z1∗ij = αij (x− pi) (4. 66)

and from here one gets that

‖z1∗ij ‖H = αij‖x− pi‖H, (4. 67)

i ∈ I, j ∈ J . By condition (v) follows

m∑
j=1

wij‖x− pi‖H + ai = max
1≤u≤n


m∑
j=1

wuj‖x− pu‖H + au


⇔ λi

m∑
j=1

µj‖x− pi‖H + ai = max
1≤u≤n

λu
m∑
j=1

µj‖x− pu‖H + au


⇔ λi‖x− pi‖H + ai = max

1≤u≤n
{λu‖x− pu‖H + au} , i ∈ I. (4. 68)

Bringing (4.67) and (4.68) together yields

λi
αij
‖z1∗ij ‖H + ai = max

1≤u≤n
{λu‖x− pu‖H + au}

⇔ αij =
λi

max
1≤u≤n

{λu‖x− pu‖H + au} − ai
‖z1∗ij ‖H, i ∈ I, j ∈ J. (4. 69)

Taking the sum overall i ∈ I in (4. 69) gives

∑
i∈I

αij =
∑
i∈I

λi‖z1∗ij ‖H
max

1≤u≤n
{λu‖x− pu‖H + au} − ai

, j ∈ J. (4. 70)
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Now, consider condition (iii), by (4. 66) follows

0H =
∑
i∈I

z1∗ij =
∑
i∈I

αij (x− pi)⇔ x =
1∑

i∈I
αij

∑
i∈I

αijpi, j ∈ J. (4. 71)

Putting (4. 69), (4. 70) and (4. 71) together reveals

x =
1∑

i∈I

λi‖z1∗ij ‖H
max

1≤u≤n
{λu‖x−pu‖H+au}−ai

∑
i∈I

λi‖z1∗ij ‖H
max

1≤u≤n
{λu‖x− pu‖H + au} − ai

pi

=
1∑

i∈I

λi‖z1∗ij ‖H
v(EDMN,a)−ai

∑
i∈I

λi‖z1∗ij ‖H
v(EDM

N,a)− ai
pi, j ∈ J,

and the proof is finished.

Remark 4.20. In the context of Theorem 4.13, it holds that x−pi and z1∗ij are parallel and so the

vectors (1/wij)z
1∗
ij , j ∈ J , are all parallel to each other. In other words, the vectors (1/wij)z

1∗
ij ,

j ∈ J , are identical. In this sense, one can understand the optimal solution of the conjugate dual
problem also as a solution of coincidence type.

The next statement holds for any weights, not necessary of multiplicative structure.

Lemma 4.6. Let wsj := max1≤u≤n{wuj}, X = H, γCij : H → R be defined by γCij (x) :=
wij‖x‖H, i = 1, ..., n, j = 1, ...,m, and (z0∗1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) a feasible solution of the conjugate

dual problem (EDM
N,a), then it holds

‖z1∗ij ‖H ≤
wsjwij
wsj + wij

, i ∈ I, j = 1, ...,m.

Proof. Let

(z0∗1 , ..., z0∗n , z
1∗
1 , ..., z1∗n ) ∈ Rn ×H× ...×H︸ ︷︷ ︸

m−times

×...×H× ...×H︸ ︷︷ ︸
m−times

be a feasible solution of the conjugate dual problem (EDM
N,a), then we have

(i)
∑
i∈I

z0∗i ≤ 1,

(ii) ‖z1∗ij ‖H ≤ z0∗i wij , j = 1, ...,m, i ∈ I,

(iii)
∑
i∈I

z1∗ij = 0H.

The inequalities (i) and (ii) imply the inequality∑
i∈I

1

wij
‖z1∗ij ‖H ≤ 1, j = 1, ...,m. (4. 72)

Furthermore, by (iii) we have∑
i∈I

z1∗ij = 0H ⇔ z1∗kj = −
∑
i∈I
i6=k

z1∗ij , k ∈ I, j = 1, ...,m, (4. 73)

and hence,

‖z1∗kj‖H = ‖
∑
i∈I
i6=k

z1∗ij ‖H ≤
∑
i∈I
i6=k

‖z1∗ij ‖H, k ∈ I, j = 1, ...,m. (4. 74)
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By (4. 74) we get in (4. 72)

1 ≥ 1

wkj
‖z1∗kj‖H +

∑
i∈I
i6=k

1

wij
‖z1∗ij ‖H ≥

1

wkj
‖z1∗kj‖H +

1

wsj

∑
i∈I
i6=k

‖z1∗ij ‖H

≥ 1

wkj
‖z1∗kj‖H +

1

wsj
‖z1∗kj‖H =

wsj + wkj
wkjwij

‖z1∗kj‖H, j = 1, ...,m,

and finally,

‖z1∗kj‖H ≤
wsjwkj
wsj + wkj

, k ∈ I, j = 1, ...,m.

Remark 4.21. If we allow also negative set-up costs, then we have in the constraint set, as stated
in Remark 4.9,

∑
i∈I z

0∗
i = 1 instead

∑
i∈I z

0∗
i ≤ 1. One can easy verify that the results we

presented above also holds in this case.

4.3.2 Unconstrained location problems without set-up costs in Fréchet
spaces

In the next, we study the case where X is a Fréchet space and ai = 0 for all i = 1, ..., n. With this
assumption the extended multifacility location problem (EPMa ) can be stated as

(EPM ) inf
(x1,...,xm)∈Xm

max
1≤i≤n


m∑
j=1

γCij (xj − pi)

 .

In this situation its corresponding conjugated dual problem (EDM
a ) transforms into

(EDM ) sup
(z0∗1 ,...,z0∗n ,z1∗1 ,...,z1∗n )∈C

−∑
i∈I

〈
m∑
j=1

z1∗ij , pi

〉 .

Additionally, let us consider the following dual problem

(ED̃M ) sup
(z∗1 ,...,z

∗
n)∈C̃

−∑
i∈I

〈
m∑
j=1

z∗ij , pi

〉
where

C̃ =

{
(z∗1 , ..., z

∗
n) ∈ (X∗)m × ...× (X∗)m : I =

{
i ∈ {1, ..., n} : max

1≤j≤m

{
γC0

ij
(z∗ij)

}
> 0

}

z∗kj = 0X∗ , k /∈ I,
∑
i∈I

z∗ij = 0X∗ , j = 1, ...,m,
∑
i∈I

max
1≤l≤m

{
γC0

il
(z∗il)

}
≤ 1

}
.

Let us denote by v(EDM
a ) and v(ED̃M ) the optimal objective values of the dual problems (EDM

a )

and (ED̃M ), respectively, then we can state.

Theorem 4.14. It holds v(EDM ) = v(ED̃M ).

Proof. The statement follows immediately by Theorem 4.6 and (4. 16). �

The next duality statements follow as direct consequences of Theorem 4.11 and Theorem 4.14.

Theorem 4.15. (strong duality) Between (EPM ) and (ED̃M ) strong duality holds, i.e. v(EPM ) =

v(ED̃M ) and the dual problem v(ED̃M ) has an optimal solution.
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We define

Jγ :=
{
j ∈ {1, ...,m} : γC0

ij
(z∗ij) > 0

}
, i ∈ I,

and obtain as a result of Theorem 4.12 (especially by using the optimality condition (vi)), Theorem
4.14 and 4.15 the following optimality conditions.

Theorem 4.16. (optimality conditions) (a) Let (x1, ..., xm) ∈ Xm be an optimal solution of the
problem (EPM ). Then there exist (z∗1, ..., z

∗
n) ∈ (X∗)m×...×(X∗)m and an index set I ⊆ {1, ..., n}

as an optimal solution to (ED̃M ) such that

(i) max
1≤u≤n

{
m∑
j=1

γCuj (xj − pu)

}
=
∑
i∈I

m∑
j=1

γC0
ij

(z∗ij)γCij (xj − pi),

(ii)
∑
i∈I

z∗ij = 0X∗ , j = 1, ...,m,

(iii) γC0
ij

(z∗ij)γCij (xj − pi) = 〈z∗ij , xj − pi〉, i ∈ I, j = 1, ...,m,

(iv)
∑
i∈I

max
1≤l≤m

{
γC0

il
(z∗il)

}
= 1,

(v) max
1≤u≤n

{
m∑
j=1

γCuj (xj − pu)

}
=

m∑
j=1

γCij (xj − pi), i ∈ I,

(vi) max
1≤l≤m

{
γC0

il
(z∗il)

}
= γC0

ij
(z∗ij) > 0, j ∈ Jγ , (z1∗i1 , ..., z

1∗
im) ∈ X∗×...×X∗\{(0X∗ , ..., 0X∗)}, i ∈

I, and z∗ks = 0X∗ , k /∈ I, s = 1, ...,m.

(b) If there exists (x1, ..., xm) ∈ Xm such that for some (z∗1, ..., z
∗
n) ∈ (X∗)m × ...× (X∗)m and an

index set I the conditions (i)-(vi) are fulfilled, then (x1, ..., xm) is an optimal solution of (EPM ),

(z∗1, ..., z
∗
n, I) is an optimal solution for (ED̃M ) and v(EPM ) = v(ED̃M ).

Now, our aim is to investigate the location problem (EPM ) from the geometrical point of view.
For this purpose let X = Rd and the distances are measured by the Euclidean norm. Then, the
problem (EPM ) turns into

(EPMN ) inf
(x1,...,xm)∈Rd×...×Rd

max
1≤i≤n


m∑
j=1

wij‖xj − pi‖

 ,

while its conjugate dual problem transforms into

(ED̃M
N ) sup

(z∗1 ,...,z
∗
n)∈C̃

−∑
i∈I

〈
m∑
j=1

z∗ij , pi

〉
with

C̃ =

{
(z∗1 , ..., z

∗
n) ∈ (Rd)m × ...× (Rd)m : I =

{
i ∈ {1, ..., n} : max

1≤j≤m

{
1
wij
‖z∗ij‖

}
> 0

}

z∗kj = 0Rd , k /∈ I,
∑
i∈I

z∗ij = 0Rd , j = 1, ...,m,
∑
i∈I

max
1≤l≤m

{
1
wil
‖z∗il‖

}
≤ 1

}
.

Via Theorem 4.15 and 4.16 the following statements follows immediately.
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Theorem 4.17. (strong duality) Between (EPMN ) and (ED̃M
N ) holds strong duality, i.e. v(EPMN ) =

v(ED̃M
N ) and the dual problem has an optimal solution.

Theorem 4.18. (optimality conditions) (a) Let (x1, ..., xm) ∈ Rd× ...×Rd be an optimal solution
of the problem (EPMN ). Then there exist

(z∗1, ..., z
∗
n) ∈ Rd × ...× Rd︸ ︷︷ ︸

m−times

×...× Rd × ...× Rd︸ ︷︷ ︸
m−times

and an index set I as an optimal solution to (ED̃M
N ) such that

(i) max
1≤u≤n

{
m∑
j=1

wuj‖xj − pu‖

}
=
∑
i∈I

m∑
j=1

‖z∗ij‖‖xj − pi‖,

(ii)
∑
i∈I

z∗ij = 0Rd , j = 1, ...,m,

(iii) ‖z∗ij‖‖xj − pi‖ = 〈z∗ij , xj − pi〉, i ∈ I, j = 1, ...,m,

(iv)
∑
i∈I

max
1≤l≤m

{
1
wil
‖z∗il‖

}
= 1,

(v) max
1≤u≤n

{
m∑
j=1

wuj‖xj − pu‖

}
=

m∑
j=1

wij‖xj − pi‖, i ∈ I,

(vi) max
1≤l≤m

{
1
wil
‖z∗il‖

}
= 1

wij
‖z∗ij‖, j ∈ Jγ =

{
j ∈ {1, ...,m} : ‖z∗ij‖ > 0

}
, (z1∗i1 , ..., z

1∗
im) ∈ Rd ×

...× Rd \ {(0Rd , ..., 0Rd)}, i ∈ I, and z∗kj = 0Rd , k /∈ I, j = 1, ...,m.

(b) If there exists (x1, ..., xm) ∈ Rd × ...× Rd such that for some

(z∗1, ..., z
∗
n) ∈ Rd × ...× Rd︸ ︷︷ ︸

m−times

×...× Rd × ...× Rd︸ ︷︷ ︸
m−times

and an index set I the conditions (i)-(vi) are fulfilled, then (x1, ..., xm) is an optimal solution of

(EPMN ), (z∗1, ..., z
∗
n, I) is an optimal solution for (ED̃M

N ) and v(EPMN ) = v(ED̃M
N ).

Geometrical interpretation.
We want now, in the concluding part of this section, to illustrate the results we presented above
and describe the set of optimal solutions of the conjugate dual problem. For that end, let us first
take a closer look at the optimality conditions stated in Theorem 4.18.

By the condition (iii) follows that the vectors z∗ij and xj − pi are parallel and moreover, these

vectors have the same direction, i ∈ I, j = 1, ...,m. From the optimality condition (vi) we
additionally deduce that the vectors z∗ij , j = 1, ...,m, are all unequal to the zero vector if i ∈ I,
which is the situation when the sum of the weighted distances in condition (v) is equal to the
optimal objective value. In the reverse case, when i /∈ I, i.e. the sum of the weighted distances in
condition (v) is less than the optimal objective value, the vectors z∗ij , j = 1, ...,m, are all equal to
the zero vector.

Therefore, it is appropriate to interpret for i ∈ I the vectors z∗ij fulfilling
∑
i∈I z

∗
ij = 0X∗

and
∑
i∈I max1≤l≤m

{
1
wil
‖z∗il‖

}
= 1 as force vectors pulling the given point pi in direction to the

associated gravity points xj , j = 1, ...,m. As an illustration of the nature of the optimal solutions
of the conjugate dual problem, let us consider the following example in the plane and especially,
Figure 4.2.
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Example 4.3. Let us consider the points p1 = (0, 0)T , p2 = (8, 0)T and p3 = (5, 6)T in the plane
(d = 2). For the given weights w11 = 2, w12 = 3, w21 = 3, w22 = 3, w31 = 2 and w32 = 2 we
want to determine m = 2 new points minimizing the objective function of the location problem

(EPMN ) inf
(x1,x2)∈R2×R2

max{2‖x1 − p1‖+ 3‖x2 − p1‖, 3‖x1 − p2‖+ 3‖x2 − p2‖,

2‖x1 − p3‖+ 2‖x2 − p3‖}.

To solve this problem, we used the Matlab Optimization Toolbox and obtained as optimal solution
x1 = (6.062, 0.858)T , x2 = (2.997, 0.837)T and as optimal objective value (EPMN ) = 21.578.

The corresponding conjugate dual problem becomes to (see also Remark 4.18)

(ED̃M
N ) sup

(z∗1 ,z
∗
2 ,z
∗
3 )∈C̃
{−〈z∗11 + z∗12, p1〉 − 〈z∗21 + z∗22, p2〉 − 〈z∗31 + z∗32, p3〉} ,

where

C̃ =
{

(z∗1 , z
∗
2 , z
∗
3) ∈ (R2 × R2)× (R2 × R2)× (R2 × R2) :

z∗11 + z∗21 + z∗31 = 0R2 , z∗12 + z∗22 + z∗32 = 0R2 ,

max
{

1
2‖z
∗
11‖, 13‖z

∗
12‖
}

+ max
{

1
3‖z
∗
21‖, 13‖z

∗
22‖
}

+ max
{

1
2‖z
∗
31‖, 12‖z

∗
32‖
}
≤ 1
}
.

The dual problem (ED̃M
N ) was also solved with the Matlab Optimization Toolbox. The optimal

solution was

z∗11 = (0.803, 0.114)T , z∗12 = (1.171, 0.327)T ,

z∗21 = (−0.909, 0.402)T , z∗22 = (−0.98, 0.164)T ,

z∗31 = (0.106,−0.516)T , z∗32 = (−0.191,−0.491)T

and the optimal objective function value v(ED̃M
N ) = 21.578 = v(EPMN ). See Figure 4.2 for an

illustration of the relation between the optimal solutions of the primal and the conjugate dual
problem.

Figure 4.2: Illustration of the Example 4.3.
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An alternative geometrical interpretation of the set of optimal solutions of the conjugate dual
problem is based on the fact that the extended multifacility location problem (EPM ) can be
reduced to a single minimax location problem as seen in the beginning of Section 4.3.1. This
means precisely that the sum of distances in the objective function of the location problem (EPMN )
can be understood as the finding the minimum value for n norms di defined by the weighted sum
of Euclidean norms, i.e. di(y1, ..., ym) :=

∑m
j=1 wij‖yj‖ with yj ∈ Rd, wij > 0, j = 1, ...,m, such

that the associated norm balls centered at the points p̃i = (pi, ..., pi) with pi ∈ Rd, i = 1, ..., n,
have a non-empty intersection. In this case, it is possible to interpret the optimal solution of
the corresponding conjugate dual problem as force vectors fulfilling the conditions in point (a) of
Theorem 4.18 and increasing the norm balls until their intersection is non-empty. Notice that the
optimality conditions (v) and (vi) imply that the vectors z∗ij , j = 1, ...,m, are equal to the zero

vector if i /∈ I, which is exactly the case when x is an element of the interior of the ball associated
to the norm di. But this also means that the vectors z∗ij , j = 1, ...,m, are all unequal to the zero

vector if i ∈ I, which exactly holds if x is lying on the border of the ball associated to the norm
di.

For a better geometrical illustration of this interpretation, let us consider an example, where
d = 1. In this case the Euclidean norm reduces to the absolute value.

Figure 4.3: Illustration of the Example 4.4.

Example 4.4. For the given points p̃1 = (p1, p1) = (2, 2)T , p̃2 = (p2, p2) = (−4,−4)T , p̃3 =
(p3, p3) = (5, 5)T , p̃4 = (p4, p4) = (8, 8)T and the weights w11 = 2, w12 = 3, w21 = 2, w22 =
3, w31 = 2, w32 = 2, w41 = 3, w42 = 2 we want to locate an optimal solution x = (x1, x2)T ∈ R2
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of the problem

(EPM ) inf
(x1,x2)T∈R2

max{2|x1 − 2|+ 3|x2 − 2|, 2|x1 + 4|+ 3|x2 + 4|,

2|x1 − 5|+ 2|x2 − 5|, 3|x1 − 8|+ 2|x2 − 8|}.

We solved the problem (EPM ) with the Matlab Optimization Toolbox and obtain as optimal solution
x = (x1, x2)T = (7,−3)T and as optimal objective value v(EPM ) = 25.

For the corresponding conjugate dual problem (see also Remark 4.18)

(ED̃M ) sup
(z∗1 ,z

∗
2 ,z
∗
3 ,z
∗
4 )∈C̃
{−2(z∗11 + z∗12) + 4(z∗21 + z∗22)− 5(z∗31 + z∗32)− 8(z∗41 + z∗42)} ,

where

C̃ =
{

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4) ∈ R2 × R2 × R2 × R2 :

z∗11 + z∗21 + z∗31 + z∗41 = 0, z∗12 + z∗22 + z∗32 + z∗42 = 0,

max
{

1
2 |z
∗
11|, 13 |z

∗
12|
}

+ max
{

1
2 |z
∗
21|, 13 |z

∗
22|
}

+ max
{

1
2 |z
∗
31|, 12 |z

∗
32|
}

+ max
{

1
3 |z
∗
41|, 12 |z

∗
42|
}
≤ 1
}
,

we obtain by using again the Matlab Optimization Toolbox the associated optimal solution

z∗1 = (z∗11, z
∗
12)T = (0.333,−0.5)T , z∗2 = (z∗21, z

∗
22)T = (0.867, 1.3)T ,

z∗3 = (z∗31, z
∗
32)T = (0, 0)T , z∗4 = (z∗41, z

∗
42)T = (−1.2,−0.8)T

and the optimal objective value v(ED̃M ) = 25 = v(EPM ). The numerical results are illustrated
in Figure 4.3. Take note that x is lying inside the norm ball centered at the point p̃3 and that for
this reason z∗3 is equal to the zero vector.

4.4 Classical multifacility minimax location problems

4.4.1 Constrained location problems in Fréchet spaces

In this section we use the results of our previous approach to develop a conjugate dual problem of
the multifacility minimax location problem with mixed gauges and geometric constraints. Further-
more, we show the validity of strong duality and derive optimality conditions for the corresponding
primal-dual pair.

Let X be a Fréchet space, Cjk ⊆ X with 0X ∈ intCjk for jk ∈ J := {jk : 1 ≤ j ≤ m, 1 ≤ k ≤
m, j 6= k}, and C̃ji ⊆ X with 0X ∈ int C̃ji for ji ∈ J̃ := {1 ≤ j ≤ m, 1 ≤ i ≤ t}, be closed and
convex as well as S ⊆ Xm non-empty, closed and convex. Moreover, let wjk ≥ 0, jk ∈ J , w̃ji ≥ 0,

ji ∈ J̃ as well as γCjk : X → R, jk ∈ J , and γC̃ji : X → R, ji ∈ J̃ , be gauges. Obviously, these

gauges are convex, continuous and well-defined.
For given distinct points pi ∈ X, 1 ≤ i ≤ t, the multifacility minimax location problem

minimizes the maximum of gauges between pairs of m new facilities x1, ..., xm and between pairs
of m new and t existing facilities, concretely this means that

(PM ) inf
x=(x1,...,xm)∈S

max
{
wjkγCjk(xj − xk), jk ∈ J, w̃jiγC̃ji(xj − pi), ji ∈ J̃

}
.

We introduce the index sets V := {jk ∈ J : wjk > 0} and Ṽ := {ji ∈ J̃ : w̃ji > 0}, which allows
us to write the problem (PM ) as

(PM ) inf
(x1,...,xm)∈S

max
{
wjkγCjk(xj − xk), jk ∈ V, w̃jiγC̃ji(xj − pi), ji ∈ Ṽ

}
.

Take note that |V | ≤ m(m − 1) and |Ṽ | ≤ mt. Now, we set X0 = R|V | × R|Ṽ | ordered by K0 =

R|V |+ ×R|Ṽ |+ , X1 = X |V | ×X |Ṽ | ordered by the trivial cone K1 = {0X1
} and X2 = Xm, where the
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corresponding dual spaces and dual variables are (z0∗, z̃0∗) =
(

(z0∗jk)jk∈V , (z̃
0∗
ji )ji∈Ṽ

)
∈ R|V |×R|Ṽ |

and (z1∗, z̃1∗) =
(

(z1∗jk)jk∈V , (z̃
1∗
ji )ji∈Ṽ

)
∈ (X∗)|V | × (X∗)|Ṽ |.

We continue with the decomposition of the objective function of the problem (PM ) into the
following functions:

� f : R|V | × R|Ṽ | → R defined by f(y0, ỹ0) = max
{
wjky

0
jk, jk ∈ V, w̃jiỹ0ji, ji ∈ Ṽ

}
if y0 = (y0jk)jk∈V ∈ R|V |+ and ỹ0 = (ỹ0ji)ji∈Ṽ ∈ R|Ṽ |+ , otherwise f(y0, ỹ0) = +∞,

� F 1 : X |V |×X |Ṽ | → R|V |×R|Ṽ | defined by F 1(y1, ỹ1) =
(

(γCjk(y1jk))jk∈V , (γC̃ji(ỹ
1
ji))ji∈Ṽ

)
,

where y1 = (y1jk)jk∈V ∈ X |V | and ỹ1 = (ỹ1ji)ji∈Ṽ ∈ X
|Ṽ |,

� F 2 : Xm → X |V | ×X |Ṽ | defined by F 2(x) =
(

(Ajkx)jk∈V , (Bjix− pi)ji∈Ṽ
)

, where

Ajk = (
1
0, ...,0,

j

Id,0, ...,
k

− Id,0, ...,
m
0), jk ∈ V, Bji = (

1
0, ...,0,

j

Id,0, ...,
m
0), ji ∈ Ṽ , 0 is the

zero mapping and Id is the identity mapping, i.e. 0xi = 0X and Idxi = xi for all xi ∈ X,
i = 1, ...,m. In particular, Ajk : Xm → X is defined as the mapping

x = (x1, ..., xm) 7→
0x1 + ...+ 0xj−1 + Idxj + 0xj+1 + ...+ 0xk−1 − Idxk + 0xk+1 + ...+ 0xm,

i.e. (x1, ..., xm) 7→ xj − xk, jk ∈ V , and Bji : Xm → X is defined as the mapping

(x1, ..., xm) 7→ 0x1 + ...+ 0xj−1 + Idxj + 0xj+1 + ...+ 0xm = xj , ji ∈ Ṽ .

Thus, it is easy to see that the problem (PM ) can be represented in the form

(PM ) inf
x∈S

(f ◦ F 1 ◦ F 2)(x).

Like mentioned in Remark 3.5, we do not need the monotonicity assumption for the function
F 1, because F 2 is an affine function. Furthermore, it is clear that (PM ) is a convex optimization

problem. Besides, it can easily be verified that f is proper, convex, R|V |+ × R|V |+ -increasing on

F 1(domF 1) + K0 = dom f = R|V |+ × R|Ṽ |+ and lower semicontinuous and that F 1 is proper and

R|V |+ × R|Ṽ |+ -convex as well as R|V |+ × R|Ṽ |+ -epi closed.
To use the formula from Chapter 3 for the dual problem of (PM ), we set Z = Xm ordered by

the trivial cone Q = Xm and define the function g : Xm → Xm by g(x1, ..., xm) := (x1, ..., xm).
As Q∗ = {0(X∗)m}, which means that z2∗ = 0(X∗)m , we derive for the dual problem (see 3. 3)

(DM ) sup
(z0∗,z̃0∗)∈R|V |+

×R|Ṽ |
+

,

(z1∗,z̃1∗)∈(X∗)|V |×(X∗)|Ṽ |

{
inf
x∈S

{ ∑
jk∈V
〈z1∗jk , Ajkx〉+

∑
ji∈Ṽ
〈z̃1∗ji , Bjix− pi〉

}

−f∗(z0∗, z̃0∗)− ((z0∗, z̃0∗)F 1)∗(z1∗, z̃1∗)

}
,

and hence, we need to calculate the conjugate functions f∗ and ((z0∗, z̃0∗)F 1)∗. By Lemma 4.1
and Remark 4.19 we get for f∗,

f∗(z0∗, z̃0∗) =


0, if z0∗jk ≤ wjkλjk, z̃0∗ji ≤ w̃jiλ̃ji,

∑
jk∈V

λjk +
∑
ji∈Ṽ

λ̃ji ≤ 1

(λjk)jk∈V ∈ R|V |+ and (λji)ji∈Ṽ ∈ R|Ṽ |+ ,

+∞, otherwise,

=

 0, if
∑
jk∈V

1
wjk

z0∗jk +
∑
ji∈Ṽ

1
w̃ji

z̃0∗ji ≤ 1, z0∗ ∈ R|V |+ , z̃0∗ ∈ R|Ṽ |+ ,

+∞, otherwise,
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while for ((z0∗, z̃0∗)F 1)∗ we obtain by using the definition of the conjugate function

((z0∗, z̃0∗)F 1)∗(z1∗, z̃1∗) = sup
y1∈X|V |, ỹ1∈X|Ṽ |

{ ∑
jk∈V

〈z1∗jk , y1jk〉+

∑
ji∈Ṽ

〈z̃1∗ji , ỹ1ji〉 −
∑
jk∈V

z0∗jkγCjk(y1jk)−
∑
ji∈Ṽ

z̃0∗ji γC̃ji(ỹ
1
ji)

}

=
∑
jk∈V

sup
y1jk∈X

{
〈z1∗jk , y1jk〉 − z0∗jkγCjk(y1jk)

}
+
∑
ji∈Ṽ

sup
ỹ1ji∈X

{
〈z̃1∗ji , ỹ1ji〉 − z̃0∗ji γC̃ji(ỹ

1
ji)
}

=
∑
jk∈V

(z0∗jkγCjk)∗(z1∗jk) +
∑
ji∈Ṽ

(z̃0∗ji γC̃ji)
∗(z̃1∗ji )

for all (z0∗, z̃0∗) ∈ R|V |+ × R|Ṽ |+ and z1∗ = (z1∗jk)jk∈V ∈ X |V | and z̃1∗ = (z1∗ji )ji∈Ṽ ∈ X
|Ṽ |. Hence,

the dual problem may be written as

(DM ) sup
(z0∗,z̃0∗,z1∗,z̃1∗)∈R|V |+

×R|Ṽ |
+
×X|V |×X|Ṽ |∑

jk∈V
1
wjk

z0∗
jk

+
∑

ji∈Ṽ

1
w̃ji

z̃0∗
ji
≤1

inf
x∈S

Φ(z0∗, z̃0∗, z1∗, z̃1∗),

where

Φ(z0∗, z̃0∗, z1∗, z̃1∗) = inf
x∈S

∑
jk∈V

〈z1∗jk , Ajkx〉+
∑
ji∈Ṽ

〈z̃1∗ji , Bjix− pi〉


−
∑
jk∈V

(z0∗jkγCjk)∗(z1∗jk)−
∑
ji∈Ṽ

(z̃0∗ji γC̃ji)
∗(z̃1∗ji ).

Let I := {jk : z0∗jk > 0} and Ĩ := {ji : z̃0∗ji > 0}, then we separate in the objective function Φ the

sum into the terms with z0∗jk , z̃
0∗
ji > 0 and the terms with z0∗jk , z̃

0∗
ji = 0:

Φ(z0∗, z̃0∗, z1∗, z̃1∗) = inf
x∈S

∑
jk∈V

〈z1∗jk , Ajkx〉+
∑
ji∈Ṽ

〈z̃1∗ji , Bjix− pi〉


−
∑
jk∈I

(z0∗jkγCjk)∗(z1∗jk)−
∑
ji∈Ĩ

(z̃0∗ji γC̃ji)
∗(z̃1∗ji )

−
∑
jk/∈I

(0 · γCjk)∗(z1∗jk)−
∑
ji/∈Ĩ

(0 · γC̃ji)
∗(z̃1∗ji ).

Now, it holds for jk ∈ I that (see 4. 26)

(z0∗jkγCjk)∗(z1∗jk) =

{
0, if γC0

jk
(z1∗jk) ≤ z0∗jk ,

+∞, otherwise,
(4. 75)

and analogously, it follows for ji ∈ Ĩ that

(z̃0∗ji γC̃ji)
∗(z̃1∗ji ) =

{
0, if γC̃0

ji
(z̃1∗ji ) ≤ z̃0∗ji ,

+∞, otherwise.
(4. 76)

For jk /∈ I it holds (see 4. 27)

(0 · γCjk)∗(z1∗jk) =

{
0, if z1∗jk = 0X∗ ,

+∞, otherwise,
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and analogously, we get for ji /∈ I,

(0 · γC̃ji)
∗(z̃1∗ji ) =

{
0, if z̃1∗ji = 0X∗ ,
+∞, otherwise,

,

which implies that if jk /∈ I, then z1∗jk = 0X∗ and if ji /∈ I, then z̃1∗ji = 0X∗ . Therefore, we obtain

for the dual problem of the location problem (PM ):

(DM ) sup
(z0∗,z̃0∗,z1∗,z̃1∗)∈B

inf
x∈S

{ ∑
jk∈I
〈z1∗jk , Ajkx〉+

∑
ji∈Ĩ
〈z̃1∗ji , Bjix− pi〉

}
,

where

B =

{
(z0∗, z̃0∗, z1∗, z̃1∗) ∈ R|V |+ × R|Ṽ |+ × (X∗)|V | × (X∗)|Ṽ | : I =

{
jk ∈ V : z0∗jk > 0

}
,

Ĩ =
{
ji ∈ Ṽ : z̃0∗ji > 0

}
, z1∗ef = 0X∗ , ef /∈ I, γC0

jk
(z1∗jk) ≤ z0∗jk , jk ∈ I,

z̃1∗ed = 0X∗ , ed /∈ Ĩ , γC̃0
ji

(z̃1∗ji ) ≤ z̃0∗ji , ji ∈ Ĩ ,
∑
jk∈I

1
wjk

z0∗jk +
∑
ji∈Ĩ

1
w̃ji

z̃0∗ji ≤ 1

}
.

Since, the objective function of the conjugate dual problem (DM ) can also be written as

inf
x∈S

{∑
jk∈I

〈z1∗jk , Ajkx〉+
∑
ji∈Ĩ

〈z̃1∗ji , Bjix− pi〉

}

= inf
x∈S

{〈∑
jk∈I

A∗jkz
1∗
jk +

∑
ji∈Ĩ

B∗jiz̃
1∗
ji , x

〉}
−
∑
ji∈I
〈z̃1∗ji , pi〉,

where

〈A∗jkz1∗jk , x〉 = 〈(
1

0X∗ , ...., 0X∗ ,
j

z1∗jk , 0X∗ , ..., 0X∗ ,−
k

z1∗jk , 0X∗ , ...,
m

0X∗), (x1, ..., xm)〉 = 〈z1∗jk , xj − xk〉

and

〈B∗jiz̃1∗ji , x〉 = 〈(
1

0X∗ , ...., 0X∗ ,
j

z̃1∗ji , 0X∗ , ...,
m

0X∗), (x1, ..., xm)〉 = 〈z̃1∗ji , xj〉,

we can express (DM ) as

(DM ) sup
(z0∗,z̃0∗,z1∗,z̃1∗)∈B

{
− σS

(
−
∑
jk∈I

A∗jkz
1∗
jk −

∑
ji∈Ĩ

B∗jiz̃
1∗
ji

)
−
∑
ji∈Ĩ
〈z̃1∗ji , pi〉

}
.

Remark 4.22. Take note that the problem (DM ) is equivalent to the following one

(D̂M ) sup
(z0∗,z̃0∗,z1∗,z̃1∗)∈B

{
− σS

(
−
∑
jk∈V

A∗jkz
1∗
jk −

∑
ji∈Ṽ

B∗jiz̃
1∗
ji

)
−
∑
ji∈Ṽ
〈z̃1∗ji , pi〉

}
,

where

B̂ =

{
(z0∗, z̃0∗, z1∗, z̃1∗) ∈ R|V |+ × R|Ṽ |+ × (X∗)|V | × (X∗)|Ṽ | : γC0

jk
(z1∗jk) ≤ z0∗jk , jk ∈ V,

γC̃0
ji

(z̃1∗ji ) ≤ z̃0∗ji , ji ∈ Ṽ ,
∑
jk∈V

1
wjk

z0∗jk +
∑
ji∈Ṽ

1
w̃ji

z̃0∗ji ≤ 1

}
,
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which can be proven as follows.
Let (z0∗, z̃0∗, z1∗, z̃1∗) ∈ B̂ be a feasible solution of (D̂M ), then it holds for jk /∈ I and ji /∈ Ĩ,

0 ≤ γC0
jk

(z1∗jk) = sup
x∈Cjk

〈z1∗jk , x〉 ≤ 0⇔ 〈z1∗jk , x〉 = 0 ∀x ∈ Cjk ⇔ z1∗jk = 0X∗

as well as

0 ≤ γC̃0
ji

(z̃1∗ji ) = sup
x∈C̃ji

〈z̃1∗ji , x〉 ≤ 0⇔ 〈z̃1∗ji , x〉 = 0 ∀x ∈ C̃ji ⇔ z̃1∗ji = 0X∗ .

The latter implies that from jk /∈ I, i.e. z0∗jk = 0, follows z1∗jk = 0X∗ and from ji /∈ Ĩ, i.e. z̃0∗ji = 0,

z̃1∗ji = 0X∗ . This relation means that B̂ = B, i.e. that (z0∗, z̃0∗, z1∗, z̃1∗) is also a feasible solution

of (DM ) and as

σS

− ∑
jk∈V

A∗jkz
1∗
jk −

∑
ji∈Ṽ

B∗jiz̃
1∗
ji

+
∑
ji∈Ṽ

〈z̃1∗ji , pi〉

= σS

−∑
jk∈I

A∗jkz
1∗
jk −

∑
ji∈Ĩ

B∗jiz̃
1∗
ji

+
∑
ji∈Ĩ

〈z̃1∗ji , pi〉,

one has immediately that v(DM ) = v(D̂M ).
Vice versa, if we take a feasible solution (z0∗, z̃0∗, z1∗, z̃1∗) of the problem (DM ), then it is

obvious that we have then also a feasible solution of (D̂M ), which again implies that v(DM ) =

v(D̂M ).
From the theoretical aspect a dual problem of the form (DM ) is very useful, as one has a

more detailed characterization of the set of feasible solutions. But from the numerical viewpoint
it is complicate to solve, as the index sets I and Ĩ bring an undesirable discretization in the dual
problem. For this reason it is preferable to use the dual problem (D̂M ) for numerical and (DM )
for theoretical studies.

We know that the weak duality between the problem (PM ) and its corresponding dual problem
(DM ) always holds. Now, we are interested to know whether we also can guarantee strong duality.
For this purpose we use the results from Section 3.2. As Z = Xm ordered by the trivial cone
Q = Xm and g : Xm → Xm is defined by g(x1, ..., xm) = (x1, ..., xm), it is obvious that g is Q-epi
closed and 0Xm ∈ sqri(g(x) + Q) = sqri(Xm + Q) = Xm. More than that, recall that f is lower

semicontinous, K0 = R|V |+ × R|Ṽ |+ is closed, S is closed and F 1 is R|V |+ × R|Ṽ |+ -epi closed. As

0
R|V |+ ×R|Ṽ |+

∈ sqri(F 1(domF 1)− dom f +K0)

= sqri(F 1(domF 1)− R|V |+ × R|Ṽ |+ + R|V |+ × R|Ṽ |+ )

= R|V | × R|Ṽ |,

0X|V |×X|Ṽ | ∈ sqri(F 2(domF 2)− domF 1 +K1)

= sqri(X |V | ×X |Ṽ | − domF 1 +K1) = X |V | ×X |Ṽ |

and F 2 is {0X|V |×X|Ṽ |}-epi closed, the generalized interior point regularity condition (RCC2 ) is

fulfilled and it follows by Theorem 3.3 the following statement (note that we denote by v(PM )
and v(DM ) the optimal objective values of the problems (PM ) and (DM ), respectively).

Theorem 4.19. (strong duality) Between (PM ) and (DM ) holds strong duality, i.e. v(PM ) =
v(DM ) and the conjugate dual problem has an optimal solution.



84 4.4 CLASSICAL MULTIFACILITY LOCATION PROBLEMS

The previous theorem implies the following necessary and sufficient optimality conditions for
the primal-dual pair (PM )-(DM ).

Theorem 4.20. (optimality conditions) (a) Let x ∈ S be an optimal solution of the problem

(PM ). Then there exist (z0∗, z̃
0∗
, z1∗, z̃

1∗
) ∈ R|V |+ ×R|Ṽ |+ × (X∗)|V |× (X∗)|Ṽ | and index sets I and

Ĩ as an optimal solution to (DM ) such that

(i) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
=
∑
jk∈I

z0∗jkγCjk(xj − xk) +
∑
ji∈Ĩ

z̃
0∗
ji γC̃ji(xj − pi),

(ii)

〈 ∑
jk∈I

A∗jkz
1∗
jk +

∑
ji∈Ĩ

B∗jiz̃
1∗
ji , x

〉
= inf
x∈S


〈 ∑
jk∈I

A∗jkz
1∗
jk +

∑
ji∈Ĩ

B∗jiz̃
1∗
ji , x

〉 ,

(iii)
∑
jk∈I

1
wjk

z0∗jk +
∑
ji∈Ĩ

1
w̃ji

z̃
0∗
ji = 1, z0∗jk > 0, jk ∈ I, z̃

0∗
ji > 0, ji ∈ Ĩ and z0∗ef = 0, ef /∈ I,

z̃
0∗
ed = 0, ed /∈ Ĩ,

(iv) z0∗jkγCjk(xj − xk) = 〈z1∗jk, xj − xk〉, jk ∈ I,

(v) z̃
0∗
ji γC̃ji(xj − pi) = 〈z̃1∗ji , xj − pi〉, ji ∈ Ĩ ,

(vi) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= wjkγCjk(xj − xk), jk ∈ I,

(vii) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= w̃jiγC̃ji(xj − pi), ji ∈ Ĩ ,

(viii) γC0
jk

(z1∗jk) = z0∗jk, z
1∗
jk ∈ X∗ \ {0X∗}, jk ∈ I and z1∗ef = 0X∗ , ef /∈ I,

(ix) γC̃0
ji

(z̃
1∗
ji ) = z̃

0∗
ji , z̃

1∗
ji ∈ X∗ \ {0X∗}, ji ∈ Ĩ and z̃

1∗
ed = 0X∗ , ed /∈ Ĩ .

(b) If there exists x ∈ S such that for some (z0∗, z̃
0∗
, z1∗, z̃

1∗
, I, Ĩ) the conditions (i)-(ix) are

fulfilled, then x is an optimal solution of (PC), (z0∗, z̃
0∗
, z1∗, z̃

1∗
, I, Ĩ) is an optimal solution of

(DM ) and v(PM ) = v(DM ).

Proof. (a) From Theorem 3.4 one gets

(i) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
=
∑
jk∈I

z0∗jkγCjk(xj − xk) +
∑
ji∈Ĩ

z̃
0∗
ji γC̃ji(xj − pi),

(ii)
∑
jk∈I

z0∗jkγCjk(xj − xk) +
∑
ji∈Ĩ

z̃
0∗
ji γC̃ji(xj − pi) =

∑
jk∈I
〈z1∗jk, xj − xk〉+

∑
ji∈Ĩ

〈z̃1∗ji , xj − pi〉,

(iii)

〈 ∑
jk∈I

A∗jkz
1∗
jk +

∑
ji∈Ĩ

B∗jiz̃
1∗
ji , x

〉
= −σS

− ∑
jk∈I

A∗jkz
1∗
jk −

∑
ji∈Ĩ

B∗jiz̃
1∗
ji

 ,

(iv)
∑
jk∈I

1
wjk

z0∗jk + 1
w̃ji

∑
ji∈Ĩ

z̃
0∗
ji ≤ 1, z0∗jk > 0, jk ∈ I, z̃

0∗
ji > 0, ji ∈ Ĩ and z0∗ef = 0, ef /∈ I,

z̃
0∗
ed = 0, ed /∈ Ĩ,

(v) γC0
jk

(z1∗jk) ≤ z0∗jk, z1∗jk ∈ X∗, jk ∈ I and z1∗ef = 0X∗ , ef /∈ I,
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(vi) γC̃0
ji

(z̃
1∗
ji ) ≤ z̃0∗ji , z̃

1∗
ji ∈ X∗, ji ∈ Ĩ and z̃

1∗
ed = 0X∗ , ed /∈ Ĩ .

Condition (ii) yields∑
jk∈I

[z0∗jkγCjk(xj − xk)− 〈z1∗jk, xj − xk〉] +
∑
ji∈Ĩ

[z̃
0∗
ji γC̃ji(xj − pi)− 〈z̃

1∗
ji , xj − pi〉] = 0 (4. 77)

and by (4. 75), (4. 76) and the Young-Fenchel inequality it follows that the brackets in (4. 77)
are non-negative and must be equal to zero, i.e.

z0∗jkγCjk(xj − xk) = 〈z1∗jk, xj − xk〉, jk ∈ I and z̃
0∗
ji γC̃ji(xj − pi) = 〈z̃1∗ji , xj − pi〉, ji ∈ Ĩ . (4. 78)

Similarly to the considerations done in (4. 37) and (4. 40) one derives that

γC0
jk

(z1∗jk)γCjk(xj − xk) ≥ 〈z1∗jk, xj − xk〉, jk ∈ I, (4. 79)

Combining the condition (v) with (4. 78) and (4. 79) reveals that

z0∗jkγCjk(xj − xk) = 〈z1∗jk, xj − xk〉 ≤ γC0
jk

(z1∗jk)γCjk(xj − xk) ≤ z0∗jkγCjk(xj − xk), jk ∈ I,

which means that

γC0
jk

(z1∗jk) = z0∗jk, jk ∈ I. (4. 80)

In the same way we get

γC̃0
ji

(z̃
1∗
ji ) = z̃

0∗
ji , ji ∈ Ĩ . (4. 81)

Moreover, by conditions (i) and (iv) we have

max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
(4. 82)

=
∑
jk∈I

z0∗jkγCjk(xj − xk) +
∑
ji∈Ĩ

z̃
0∗
ji γC̃ji(xj − pi)

=
∑
jk∈I

1

wjk
z0∗jkwjkγCjk(xj − xk) +

∑
ji∈Ĩ

1

w̃ji
z̃
0∗
ji w̃jiγC̃ji(xj − pi)

≤
∑
jk∈I

1

wjk
z0∗jk max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
+
∑
ji∈Ĩ

1

w̃ji
z̃
0∗
ji max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
≤ max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
, (4. 83)

which implies that∑
jk∈I

1

wjk
z0∗jk

[
max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
− wjkγCjk(xj − xk)

]

+
∑
ji∈Ĩ

1

w̃ji
z̃
0∗
ji

[
max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
− w̃jiγC̃ji(xj − pi)

]
= 0
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and as wjk, z
0∗
jk > 0, jk ∈ I, and w̃ji, z̃

0∗
ji > 0, ji ∈ Ĩ, it follows that

max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= wjkγCjk(xj − xk), ik ∈ I (4. 84)

and

max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= w̃jiγC̃ji(xj − pi), ji ∈ Ĩ . (4. 85)

Furthermore, we get by (4. 83) that∑
jk∈I

1

wjk
z0∗jk max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
+
∑
ji∈Ĩ

1

w̃ji
z̃
0∗
ji max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= max

{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
,

from which follows that ∑
jk∈I

1

wjk
z0∗jk +

∑
ji∈Ĩ

1

w̃ji
z̃
0∗
ji = 1. (4. 86)

Combining now the conditions (i)-(vi) with (4. 78), (4. 80), (4. 81), (4. 84), (4. 85) and (4. 86)
provides us the desired conclusion.

(b) The calculations made in (a) can also be done in the reverse direction, which completes
the proof. �

Remark 4.23. We want to point out that the optimality condition (i) of the previous theorem can
be expressed by means of the subdifferential. We have

f(y0, ỹ0) =

{
max

{
wjky

0
jk, jk ∈ V, w̃jiỹ0ji, ji ∈ Ṽ

}
, if (y0, ỹ0) ∈ R|V |+ × R|Ṽ |+ ,

+∞, otherwise,

and

f∗(z0∗, z̃0∗) =

 0, if
∑
jk∈V

1
wjk

z0∗jk +
∑
ji∈Ṽ

1
w̃ji

z̃0∗ji ≤ 1, z0∗ ∈ R|V |+ , z̃0∗ ∈ R|Ṽ |+ ,

+∞, otherwise,

and by the optimality condition (i) of the previous theorem, it holds

f
(

(γCef (xe − xf ))ef∈V , (γC̃ed(xe − pd))ed∈Ṽ
)

+ f∗(z0∗, z̃
0∗

)

=
∑
jk∈I

z0∗jkγCjk(xj − xk) +
∑
ji∈Ĩ

z̃
0∗
ji γC̃ji(xj − pi),

in other words, the optimality condition (i) can be rewritten as

(i) (z0∗, z̃
0∗

) ∈ ∂f
(

(γCef (xe − xf ))ef∈V , (γC̃ed(xe − pd))ed∈Ṽ
)
.

More than that, for the optimality conditions (ii), (iv) and (v) one gets by the same considerations

(ii) −
∑
jk∈I

A∗jkz
1∗
jk −

∑
ji∈Ĩ

B∗jiz̃
1∗
ji ∈ ∂δS(x) = NS(x),
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(iv) z1∗jk ∈ ∂(z0∗jkγCjk)(xj−xk) = ∂(z0∗jkγCjk)(A∗jkx)⇔ A∗jkz
1∗
jk ∈ A∗jk∂((z0∗jkγCjk)◦Ajk)(x), jk ∈ I,

(v) z̃
1∗
ji ∈ ∂(z̃

0∗
ji γC̃ji)(xj − pi) = ∂(z̃

0∗
ji γC̃ji)(B

∗
jix− pi)

⇔ B∗jiz̃
1∗
ji ∈ B∗ji∂

(
((z̃

0∗
ji γC̃ji) ◦Bji)(· − pi)

)
(x), ji ∈ Ĩ.

Taking (ii), (iv) and (v) together implies that∑
jk∈I

A∗jkz
1∗
jk +

∑
ji∈Ĩ

B∗jiz̃
1∗
ji ∈ ∑

jk∈I
A∗jk∂((z0∗jkγCjk) ◦Ajk)(x) +

∑
ji∈Ĩ

B∗ji∂
(

((z̃
0∗
ji γC̃ji) ◦Bji)(· − pi)

)
(x)

⋂ (−NS(x)) .

Finally, notice that the optimality conditions (iv), (v), (viii) and (ix) of the previous theorem give
a detailed characterization of the subdifferentials of the associated gauges.

Now, we show that the dual problem (DM ) is equivalent to the problem

(D̃M ) sup
(z∗,z̃∗)∈B̃

{
− σS

(
−
∑
jk∈I

A∗jkz
∗
jk −

∑
ji∈Ĩ

B∗jiz̃
∗
ji

)
−
∑
ji∈Ĩ
〈z̃∗ji, pi〉

}
, (4. 87)

where (z∗, z̃∗) =
(

(z∗jk)jk∈V , (z̃
∗
ji)ji∈Ṽ )

)
and

B̃ =

{(
(z∗jk)jk∈V , (z̃

∗
ji)ji∈Ṽ

)
∈ (X∗)|V | × (X∗)|Ṽ | : I =

{
jk ∈ V : γC0

jk
(z∗jk) > 0

}
,

Ĩ =
{
ji ∈ Ṽ : γC̃0

ji
(z̃∗ji) > 0

}
, z∗ef = 0X∗ , ef /∈ I, z̃∗ed = 0X∗ , ed /∈ Ĩ

∑
jk∈I

1
wjk

γC0
jk

(z∗jk) +
∑
ji∈Ĩ

1
w̃ji

γC̃0
ji

(z̃∗ji) ≤ 1

}
,

in the sense of the next theorem, where v(D̃M ) denotes the optimal objective value of the problem

(D̃M ).

Theorem 4.21. It holds v(DM ) = v(D̃M ).

Proof. Let (z∗, z̃∗) be a feasible element to (D̃M ) and set

z1∗jk = z∗jk, z
0∗
jk = γC0

jk
(z∗jk) for jk ∈ I, z1∗ef = 0X∗ , z

0∗
ef = 0 for ef /∈ I,

and

z̃1∗ji = z̃∗ji, z̃
0∗
ji = γC̃0

ji
(z̃∗ji) for ji ∈ Ĩ , z̃1∗ed = 0X∗ , z̃

0∗
ed = 0 for ed /∈ Ĩ .

Then, it is clear that (z0∗, z̃0∗, z1∗, z̃1∗) is a feasible element to (DM ). Furthermore, it holds

−σS

(
−
∑
jk∈I

A∗jkz
∗
jk −

∑
ji∈Ĩ

B∗jiz̃
∗
ji

)
−
∑
ji∈Ĩ
〈z̃∗ji, pi〉 =

−σS

(
−
∑
jk∈I

A∗jkz
1∗
jk −

∑
ji∈Ĩ

B∗jiz̃
1∗
ji

)
−
∑
ji∈Ĩ
〈z̃1∗ji , pi〉 ≤ v(DM )

for all (z∗, z̃∗) feasible to (D̃M ), from which follows that v(D̃M ) ≤ v(DM ).
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Now, let (z0∗, z̃0∗, z1∗, z̃1∗) be feasible element to (DM ). By a careful look at the constraint set

B we get by setting z∗jk = z1∗jk for jk ∈ I, z̃∗ji = z̃1∗ji for ji ∈ Ĩ and z∗ef = 0X∗ for ef /∈ I, z̃∗ed = 0X∗

for ed /∈ Ĩ that ∑
jk∈I

1

wjk
γC0

jk
(z∗jk) +

∑
ji∈Ĩ

1

w̃ji
γC̃0

ji
(z̃∗ji) ≤ 1.

Therefore, (z∗, z̃∗) is feasible to (D̃M ) and we have

−σS

(
−
∑
jk∈I

A∗jkz
1∗
jk −

∑
ji∈Ĩ

B∗jiz̃
1∗
ji

)
−
∑
ji∈Ĩ
〈z̃1∗ji , pi〉 =

−σS

(
−
∑
jk∈I

A∗jkz
∗
jk −

∑
ji∈Ĩ

B∗jiz̃
∗
ji

)
−
∑
ji∈Ĩ
〈z̃∗ji, pi〉 ≤ v(D̃M )

for all (z0∗, z̃0∗, z1∗, z̃1∗) feasible to (DM ), i.e. v(DM ) ≤ v(D̃M ), which completes the proof. �

The next theorem is direct consequence of Theorem 4.21.

Theorem 4.22. (strong duality) Between (PM ) and (D̃M ) holds strong duality, i.e. v(PM ) =

v(D̃M ) and the dual problem has an optimal solution.

We close this subsection by the following statement, which is a result of Theorem 4.20 (espe-
cially by using the optimality conditions (viii) and (ix)), Theorem 4.21 and 4.22.

Theorem 4.23. (optimality conditions) (a) Let x ∈ S be an optimal solution of the problem

(PM ). Then there exist (z∗, z̃
∗
) ∈ (X∗)|V |× (X∗)|Ṽ | and index sets I and Ĩ as an optimal solution

to (D̃M ) such that

(i) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
=
∑
jk∈I

γC0
jk

(z∗jk)γCjk(xj − xk) +
∑
ji∈Ĩ

γC̃0
ji

(z̃
∗
ji)γC̃ji(xj − pi),

(ii)

〈 ∑
jk∈I

A∗jkz
∗
jk +

∑
ji∈Ĩ

B∗jiz̃
∗
ji, x

〉
= −σS

 ∑
jk∈I

A∗jkz
∗
jk +

∑
ji∈Ĩ

B∗jiz̃
∗
ji

 ,

(iii) γC0
jk

(z∗jk)γCjk(xj − xk) = 〈z∗jk, xj − xk〉, jk ∈ I,

(iv) γC̃0
ji

(z̃
∗
ji)γC̃ji(xj − pi) = 〈z̃∗ji, xj − pi〉, ji ∈ Ĩ ,

(v) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= wjkγCjk(xj − xk), jk ∈ I,

(vi) max
{
wefγCef (xe − xf ), ef ∈ V, w̃edγC̃ed(xe − pd), ed ∈ Ṽ

}
= w̃jiγC̃ji(xj − pi), ji ∈ Ĩ ,

(vii)
∑
jk∈I

1
wjk

γC0
jk

(z∗jk)+
∑
ji∈Ĩ

1
w̃ji

γC̃0
ji

(z̃
∗
ji) = 1, z∗jk ∈ X∗\{0X∗}, jk ∈ I, z̃

∗
ji ∈ X∗\{0X∗}, ji ∈ Ĩ ,

and z∗ef = 0X∗ , ef /∈ I, z̃∗ed = 0X∗ , ed /∈ Ĩ .

(b) If there exists x ∈ S such that for some (z∗, z̃
∗
, I, Ĩ) the conditions (i)-(vii) are fulfilled, then x

is an optimal solution of (PM ), (z∗, z̃
∗
, I, Ĩ) is an optimal solution for (D̃M ) and v(PM ) = v(D̃M ).
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4.4.2 Unconstrained multifacility minimax location problem in the Eu-
clidean space

In this section we are interested in a detailed analysis of the situation when S = Xm and X = Rd
and the gauges are defined by the Euclidean norm. In addition, we set wjk = 0 for 1 ≤ k ≤ j ≤ m
such that the index set V can be represented as V = {jk : 1 ≤ j < k ≤ m, wjk > 0}, i.e.
|V | ≤ (m/2)(m− 1). In other words, we explore in the following the location problem

(PMN ) inf
xi∈Rd, i=1,...,m

max
{
wjk‖xj − xk‖, jk ∈ V, w̃ji‖xj − pi‖, ji ∈ Ṽ

}
. (4. 88)

For the dual of the location problem (PMN ) we get by (4. 87)

(D̃M
N ) sup

(z∗,z̃∗)∈B̃N

{
−
∑
ji∈Ĩ
〈z̃∗ji, pi〉

}
, (4. 89)

where

B̃N =

{
(z∗, z̃∗) =

(
(z∗jk)jk∈V , (z̃

∗
ji)ji∈Ṽ )

)
∈ (Rd)|V | × (Rd)|Ṽ | : I =

{
jk ∈ V : ‖z∗jk‖ > 0

}
,

Ĩ =
{
ji ∈ Ṽ : ‖z̃∗ji‖ > 0

}
, z∗ef = 0Rd , ef /∈ I, z̃∗ed = 0Rd , ed /∈ Ĩ ,∑

jk∈I

1
wjk
‖z∗jk‖+

∑
ji∈Ĩ

1
w̃ji
‖z̃∗ji‖ ≤ 1,

∑
jk∈I

A∗jkz
∗
jk +

∑
ji∈Ĩ

B∗jiz̃
∗
ji = 0Rd × ...× Rd︸ ︷︷ ︸

m−times

}
.

The next theorems are direct consequences of the results of the previous section.

Theorem 4.24. (strong duality) Between (PMN ) and (D̃M
N ) strong duality holds, i.e. v(PMN ) =

v(D̃M
N ) and the dual problem has an optimal solution.

Theorem 4.25. (optimality conditions) (a) Let (x1, ..., xm) be an optimal solution of the problem

(PMN ). Then there exist (z∗, z̃
∗
) and index sets I and Ĩ as an optimal solution to (D̃M

N ) such that

(i) max
{
wef‖xe − xf‖, ef ∈ V, w̃ed‖xe − pd‖, ed ∈ Ṽ

}
=
∑
jk∈I
‖z∗jk‖‖xj − xk‖+

∑
ji∈Ĩ

‖z̃∗ji‖‖xj − pi‖,

(ii)
∑
jk∈I

A∗jkz
∗
jk +

∑
ji∈Ĩ

B∗jiz̃
∗
ji = 0Rd×...×Rd ,

(iii) ‖z∗jk‖‖xj − xk‖ = 〈z∗jk, xj − xk〉, jk ∈ I,

(iv) ‖z̃∗ji‖‖xj − pi‖ = 〈z̃∗ji, xj − pi〉, ji ∈ Ĩ ,

(v) max
{
wef‖xe − xf‖, ef ∈ V, w̃ed‖xe − pd‖, ed ∈ Ṽ

}
= wjk‖xj − xk‖, jk ∈ I,

(vi) max
{
wef‖xe − xf‖, ef ∈ V, w̃ed‖xe − pd‖, ed ∈ Ṽ

}
= w̃ji‖xj − pi‖, ji ∈ Ĩ ,

(vii)
∑
jk∈I

1
wjk
‖z∗jk‖ +

∑
ji∈Ĩ

1
w̃ji
‖z̃∗ji‖ = 1, z∗jk ∈ Rd \ {0Rd} for jk ∈ I, z̃

∗
ji ∈ Rd \ {0Rd} for ji ∈ Ĩ

and z∗jk = 0Rd for jk /∈ I, z̃
∗
ji = 0Rd for ji /∈ Ĩ .

(b) If there exists (x1, ..., xm) such that for some (z∗, z̃
∗
, I, Ĩ) the conditions (i)-(vii) are fulfilled,

then x is an optimal solution of (PMN ), (z∗, z̃
∗
, I, Ĩ) is an optimal solution for (D̃M

N ) and v(PMN ) =

v(D̃M
N ).
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Remark 4.24. The dual problem (D̃M
N ) can equivalently be written in the form (see Remark 4.22)

(D̃M
N ) sup

(z∗,z̃∗)∈B̃N

{
−
∑
ji∈Ṽ
〈z̃∗ji, pi〉

}
,

where

B̃N =

{
(z∗, z̃∗) =

(
(z∗jk)jk∈V , (z̃

∗
ji)ji∈Ṽ

)
∈ (Rd)|V | × (Rd)|Ṽ | :

∑
jk∈V

1
wjk
‖z∗jk‖+

∑
ji∈Ṽ

1
w̃ji
‖z̃∗ji‖ ≤ 1,

∑
jk∈V

A∗jkz
∗
jk +

∑
ji∈Ṽ

B∗jiz̃
∗
ji = 0Rd × ...× Rd︸ ︷︷ ︸

m−times

}
.

For its corresponding Lagrange dual problem we obtain

(DD̃M
N ) inf

λ≥0,

x=(x1,...,xm)∈Rd×...×Rd

sup
(z∗,z̃∗)∈B̃N

{
−
∑
ji∈Ṽ
〈z̃∗ji, pi〉+〈

x,
∑
jk∈V

ATjkz
∗
jk +

∑
ji∈Ṽ

BTjiz̃
∗
ji

〉
− λ

( ∑
jk∈V

1
wjk
‖z∗jk‖+

∑
ji∈Ṽ

1
w̃ji
‖z̃∗ji‖ − 1

)}

= inf
λ≥0,

xi∈Rd, i=1,...,m

{
λ+ sup

(z∗,z̃∗)∈B̃N

{
−
∑
ji∈Ṽ
〈z̃∗ji, pi〉

+
∑
jk∈V
〈x,ATjkz∗jk〉+

∑
ji∈Ṽ
〈x,BTjiz̃∗ji〉 −

∑
jk∈V

λ
wjk
‖z∗jk‖ −

∑
ji∈Ṽ

λ
w̃ji
‖z̃∗ji‖

}}

= inf
λ≥0,

xi∈Rd, i=1,...,m

{
λ+

∑
jk∈V

sup
z∗jk∈Rd

{
〈Ajkx, z∗jk〉 − λ

wjk
‖z∗jk‖

}

+
∑
ji∈Ṽ

sup
z̃∗ji∈Rd

{
〈Bjix, z̃∗ji〉 − 〈pi, z̃∗ji〉} − λ

wji
‖z̃∗ji‖

}}

= inf
λ≥0,

xi∈Rd, i=1,...,m

{
λ+

∑
jk∈V

sup
z∗jk∈Rd

{
〈xj − xk, z∗jk〉 − λ

wjk
‖z∗jk‖

}

+
∑
ji∈Ṽ

sup
z̃∗ji∈Rd

{
〈xj − pi, z̃∗ji〉 − λ

w̃ji
‖z̃∗ji‖

}}
.

The case λ = 0 leads to xj − pi = 0, ji ∈ Ṽ , and xj − xk = 0, jk ∈ V , which contradicts our
assumption that the given points pi, i = 1, ..., n, are distinct, such that we can assume λ > 0.
For this reason we can write for the Lagrange dual problem, or rather, the bidual of the location
problem (PMN ),

(DD̃M
N ) inf

λ>0,

(x1,...,xm)∈Rd×...×Rd

{
λ+

∑
jk∈V

λ
wjk

sup
z∗jk∈Rd

{〈
wjk
λ (xj − xk), z∗jk

〉
− ‖z∗jk‖

}

+
∑
ji∈Ṽ

λ
w̃ji

sup
z̃∗ji∈Rd

{〈
w̃ji
λ (xj − pi), z̃∗ji

〉
− ‖z̃∗ji‖

}}
= inf

λ>0, (x1,...,xm)∈Rd×...×Rd,
wjk‖xj−xk‖≤λ, jk∈V, w̃ji‖xj−pi‖≤λ, ji∈Ṽ

λ

= inf
(x1,...,xm)∈Rd×...×Rd

max
{
wjk‖xj − xk‖, jk ∈ V, w̃ji‖xj − pi‖, ji ∈ Ṽ

}
.
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By using the Lagrange dual concept we transformed the dual problem (D̃M
N ) back into the multifa-

cility minimax location problem (PMN ), showing that one has a full symmetry between the location

problem (PMN ), its dual problem (D̃M
N ) and the Lagrange dual problem (DD̃M

N ). In addition, we see
that the Lagrange multiplier associated to the equality constraint can be identified as the optimal
solution of the multifacility minimax location problem (PMN ) and the Lagrange multiplier associated
to the inequality constraint as the optimal objective value. A similar fact was stated in [61] for the
case of a multifacility minisum location problem.

The next corollary gives an estimation of the length of the vectors z∗jk, jk ∈ V , and z̃∗ji, ji ∈ Ṽ ,

feasible to the dual problem (D̃M
N ).

Corollary 4.3. Let ws := max{(wjk)jk∈V , (wji)ji∈Ṽ }, then for any feasible solution (z∗, z̃∗) of

the problem (D̃M
N ) it holds

‖z∗jk‖ ≤
wswjk
ws + wjk

for jk ∈ V and ‖z̃∗ji‖ ≤
wswji
ws + wji

for ji ∈ Ṽ .

Proof. As (z∗, z̃∗) is a feasible solution of (D̃M
N ), it holds∑

jk∈V

A∗jkz
∗
jk +

∑
ji∈Ṽ

B∗jiz̃
∗
ji = 0Rd×...×Rd ⇔ −A∗uvz∗uv =

∑
jk∈V,
jk 6=uv

A∗jkz
∗
jk +

∑
ji∈Ṽ

B∗jiz̃
∗
ji

⇒ ‖A∗uvz∗uv‖ = ‖
∑
jk∈V,
jk 6=uv

A∗jkz
∗
jk +

∑
ji∈Ṽ

B∗jiz̃
∗
ji‖ ⇒ ‖A∗uvz∗uv‖ ≤

∑
jk∈V,
jk 6=uv

‖A∗jkz∗jk‖+
∑
ji∈Ṽ

‖B∗jiz̃∗ji‖

⇔
√

2‖z∗uv‖ ≤
∑
jk∈V,
jk 6=uv

√
2‖z∗jk‖+

∑
ji∈Ṽ

‖z̃∗ji‖ ⇔ ‖z∗uv‖ ≤
∑
jk∈V,
jk 6=uv

‖z∗jk‖+
1√
2

∑
ji∈Ṽ

‖z̃∗ji‖

⇒ ‖z∗uv‖ ≤
∑
jk∈V,
jk 6=uv

‖z∗jk‖+
∑
ji∈Ṽ

‖z̃∗ji‖, uv ∈ V,

and more than that, it holds

1 ≥
∑
jk∈V

1

wjk
‖z∗jk‖+

∑
ji∈Ṽ

1

w̃ji
‖z̃∗ji‖ =

1

wuv
‖z∗uv‖+

∑
jk∈V,
jk 6=uv

1

wjk
‖z∗jk‖+

∑
ji∈Ṽ

1

w̃ji
‖z̃∗ji‖

≥ 1

wuv
‖z∗uv‖+

1

ws

 ∑
jk∈V,
jk 6=uv

‖z∗jk‖+
∑
ji∈Ṽ

‖z̃∗ji‖

 ≥ 1

wuv
‖z∗uv‖+

1

ws
‖z∗uv‖

=
ws + wuv
wswuv

‖z∗uv‖,

which means that

‖z∗jk‖ ≤
wswjk
ws + wjk

, jk ∈ V.

In the same way, we get

‖z̃∗ji‖ ≤
wswji
ws + wji

, ji ∈ Ṽ .

�

Example 4.5. For the existing facilities p1 = (0, 0)T , p2 = (−2, 3)T and p3 = (5, 8)T (t=3)
we want to locate two new facilities (m=2) in the plane (d = 2) . The weights are given by
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w12 = w̃11 = w̃13 = w̃21 = w̃22 = 1 and w̃12 = w̃23 = 0 and define the following multifacility
minimax location problem

(PMN ) inf
(x1,x2)∈R2×R2

max {‖x1 − x2‖, ‖x1 − p1‖, ‖x1 − p3‖, ‖x2 − p1‖, ‖x2 − p2‖} ,

i.e. V = {12}, |V | = 1, Ṽ = {11, 13, 21, 22} and |Ṽ | = 4. From the Matlab Optimization Toolbox
we obtained the following solution x1 = (2.5, 4) and x2 = (0, 0)T . The corresponding objective
value was v(PMN ) = 4.72.

The dual problem (see Remark 4.22)

(D̃M
N ) max

(z∗12,z̃
∗
11,z̃

∗
13,z̃

∗
21,z̃

∗
22)∈B̃N

{〈z̃∗11 + z̃∗21, p1〉+ 〈z̃∗22, p2〉+ 〈z̃∗13, p3〉} ,

where

B̃N = {(z∗12, z̃∗11, z̃∗13, z̃∗21, z̃∗22) ∈ R2 × R2 × R2 × R2 × R2 : z∗12 + z̃∗11 + z̃∗13 = 0R2 ,

z̃∗21 + z̃∗22 = 0R2 , ‖z∗12‖+ ‖z̃∗11‖+ ‖z̃∗21‖+ ‖z̃∗22‖+ ‖z̃∗13‖ ≤ 1},

was also solved by the Matlab Optimization Toolbox. The following solution was obtained

z∗12 = z̃
∗
11 = (0.13, 0.21)T , z̃

∗
13 = (−0.26,−0.42)T , z̃

∗
21 = z̃

∗
22 = (0, 0)T ,

with the corresponding objective value v(D̃M
N ) = 4.72 = v(PMN ), i.e. I = {12} ⊆ V and Ĩ =

{11, 13} ⊆ Ṽ .
In the situation when we have only the solution of the dual problem one can reconstruct the

optimal solution of the primal problem in a recursive way by using the necessary and sufficient
optimality conditions given in Theorem 4.25. By condition (iv) we know that there exists α̃11 > 0
such that

z̃
∗
11 = α̃11(x1 − p1), i.e. ‖z̃∗11‖ = α̃11‖x1 − p1‖, (4. 90)

and as, by condition (vi) it holds

v(D̃M
N ) = v(PMN ) = ‖x1 − p1‖ =

‖z̃∗11‖
α̃11

, (4. 91)

we get by combining (4. 90) and (4. 91) that

z̃
∗
11 =

‖z̃∗11‖
v(D̃M

N )
(x1 − p1)⇔ x1 =

v(D̃M
N )

‖z̃∗11‖
z̃
∗
11 + p1 =

4.72

0.25
(0.13, 0.21)T = (2.5, 4)T .

More than that, by condition (iii) there exists α12 > 0 such that

z∗12 = α12(x1 − x2), i.e. ‖z∗12‖ = α12‖x1 − x2‖, (4. 92)

and therefore, we derive from condition (v) that

v(D̃M
N ) = v(PMN ) = ‖x1 − x2‖ =

‖z∗12‖
α12

. (4. 93)

Finally, taking (4. 92) and (4. 93) together yields

z∗12 =
‖z∗12‖
v(D̃M

N )
(x1 − x2)⇔ x2 = x1 −

v(D̃M
N )

‖z∗12‖
z∗12 = (2.5, 4)T − 4.72

0.25
(0.13, 0.21)T = (0, 0)T .

For a geometrical illustration see Figure 4.4.
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Figure 4.4: Illustration of the Example 4.5.

Geometrical interpretation.
In the following we provide a geometrical characterization of the set of optimal solutions of the
dual problem by Theorem 4.25. By the conditions (iii) and (iv) it is clear that for jk ∈ I and

ji ∈ Ĩ the vectors z∗jk and z̃
∗
ji are parallel to the vectors xj − xk and xj − pi directed to xj ,

respectively. In addition, if we take into account the conditions (v), (vi) and (vii), then it is also

evident that jk ∈ I and ji ∈ Ĩ, i.e. z∗jk 6= 0Rd and z̃
∗
ji 6= 0Rd , if the points xk and pi are lying on

the border of the minimum covering ball with radius v(PMN ) centered in xj , respectively.

Vice versa, if jk /∈ I and ji /∈ Ĩ, then z∗jk = 0Rd and z̃
∗
ji = 0Rd , which is exactly the case when

the points xk and pi are lying inside the minimum covering ball centered in xj , respectively. There-
fore, analogously to the geometrical interpretation presented in Section 4.2.4 for single minimax

location problems, one can identify the vectors z∗jk, jk ∈ I, and z̃
∗
ji, ji ∈ Ĩ, as force vectors, which

pull the points lying on the borders of the minimum covering balls inside the balls in direction to
the their corresponding centers, the gravity points xj (see Figure 4.4).
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Chapter 5

Solving minimax location
problems via epigraphical
projection

5.1 Motivation

As argued in a large number of papers, the proximal method is an excellent tool to solve in an
efficient way optimization problems of the form

min
x∈H

{
n∑
i=1

fi(x)

}
, (5. 1)

where H is a real Hilbert space and fi : H → R is a proper, lower semicontinuous and convex
function, i = 1, ..., n. This kind of problems occur for instance in areas like image processing
[9,15,16,28], portfolio optimization [12,69], cluster analysis [11,26], statistical learning theory [18],
machine learning [13] and location theory [12, 14, 30, 56]. In the main step of this method it is
necessary to determine the proximity operators of the functions involved in the formulation of the
associated optimization problem. The proximity operator (a.k.a. proximal mapping) of a proper,
lower semicontinuous and convex function f : H → R denoted by proxf is defined by

proxf x : H → H, proxf x := arg min
y∈H

{
f(y) +

1

2
‖x− y‖2H

}
∀x ∈ H. (5. 2)

The proximity operator can be understood as a generalization of the projection onto a convex
set, as for a non-empty, closed and convex set A ⊆ H, i.e. δA is proper, convex and lower
semicontinuous, we have

proxδA x = PA x ∀x ∈ H, (5. 3)

where PA is the projection operator which maps every point x in H to its unique projection onto
the set A (see [2]).

From (5. 2) follows that the determination of the proximity operators of the functions fi,
i = 1, ..., n, of (5. 1) requires the solving of n subproblems, where a favorable situation exists,
when a closed formula of a proximity operator can be given. This in turn has a positive effect on
the solving of optimization problems from the numerical point of view.

Motivated by this background, our aim is to solve numerically extended multifacility minimax
location problems given by

(EPM,β
N ) min

(x1,...,xm)∈Rd×...×Rd
max
1≤i≤n


m∑
j=1

wij‖xj − pi‖βi

 , (5. 4)

95
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where wij > 0 and pi ∈ Rd are distinct points, j = 1, ...,m, i = 1, ..., n. In this framework we first
need to rewrite this kind of location problems into the form of (5. 1) where the objective function
is a sum of proper, lower semicontinuous and convex functions. For this purpose we introduce an
additional variable and obtain for (EPM,β

N ) the following formulation

(EPM,β
N ) min

(x1,...,xm,t)∈Rd×...×Rd×R,
m∑
j=1

wij‖xj−pi‖
βi≤t, i=1,...,n

t = min
(x1,...,xm,t)∈Rd×...×Rd×R,

(x1,...,xm,t)∈epi

 m∑
j=1

wij‖·−pi‖
βi

, i=1,...,n

t

= min
(x1,...,xm,t)∈Rd×...×Rd×R

t+

n∑
i=1

δ
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t)

 . (5. 5)

Now, to apply the proximal method to (EPM,β
N ) one needs to calculate the proximity operators

of the functions involved in the objective function of (5. 5). For this reason and especially in the
context of (5. 3), we give in Section 5.2 formulae for the projections onto the epigraphs of several
sums of powers of weighted norms. As the power of norm in (5. 5) can be replaced by a gauge
function, we present also formulae of projections onto the epigraphs of gauges.

To point out the benefits of the presented formulae we consider then examples of location prob-
lems in different settings and compare the numerical results with a method proposed by Cornejo
and Michelot in [30]. The difference between these two methods is that the one given by Cornejo
and Michelot splits the sum of powers of weighted norms by introducing n ·m additional variables.
In this situation one gets the following presentation of the extended multifacility minimax location
problem

(EPM,β
N ) min

t, tij∈R, xj∈Rd,
j=1,...,m,i=1,...,n

t+

m∑
j=1

n∑
i=1

δepi(wij‖·−pi‖βi)(xj , tij) +

n∑
i=1

δepi τi(ti1, ..., tim, t)

 , (5. 6)

where τi(ti1, ..., tim) :=
∑m
j=1 tij , i = 1, ..., n. In Section 5.3 we show that this concept makes the

solving process for the considered examples of location problems very slow and the advantage of
our approach more clear. The numerical tests are based on the parallel splitting algorithm, which
can be found for instance in [2].

Finally, we collect some properties of Hilbert spaces, which can be found with proofs for
instance in [2] and [29].

If f is Gâteaux-differentiable at x ∈ H, then ∂f(x) = {∇f(x)}. The set of global minimizers
of a function f : H → R is denoted by Argmin f and if f has a unique minimizer, it is denoted by
arg minx∈H f(x). It holds

x ∈ Argmin f ⇔ 0H ∈ ∂f(x) ∀x ∈ H. (5. 7)

It holds

y = proxf x⇔ x− y ∈ ∂f(y) ∀x ∈ H, ∀y ∈ H. (5. 8)

In addition, we make for the rest of this chapter the convention that 0
0 = 0 and 1

0 · 0H = 0H.

In the following let H1× ...×Hn be real Hilbert space endowed with inner product and norm,
respectively defined by

〈(x1, ..., xn), (y1, ..., yn)〉H1×...×Hn =

n∑
i=1

〈xi, yi〉Hi and ‖(x1, ..., xn)‖H1×...×Hn =

√√√√ n∑
i=1

‖xi‖2Hi ,

where (x1, ..., xn) ∈ H1 × ...×Hn and (y1, ..., yn) ∈ H1 × ...×Hn.
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We close this section with a lemma, which presents a formula for the projection onto a unit
ball generated by the weighted sum of norms and generalizes the results given in [76] to real
Hilbert spaces Hi, i = 1, ..., n. Let wi > 0, i = 1, ..., n, and C := {(x1, ..., xn) ∈ H1 × ... × Hn :∑n
i=1 wi‖xi‖Hi ≤ 1}, then the following statement holds.

Lemma 5.1. For all (x1, ..., xn) ∈ H1 × ...×Hn it holds

PC(x1, ..., xn) =

 (x1, ..., xn), if
n∑
i=1

wi‖xi‖Hi ≤ 1,

(y1, ..., yn), otherwise,

where

yi =
max{‖xi‖Hi − λwi, 0}

‖xi‖Hi
xi, i = 1, ..., n,

with

λ =

n∑
i=k+1

w2
i τi − 1

n∑
i=k+1

w2
i

and k ∈ {0, 1, ..., n − 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values τ0, ..., τn
are defined by τ0 := 0 and τi := ‖xi‖Hi/wi, i = 1, ..., n, and in ascending order.

Proof. In order to determine the projection onto the set C, we consider for fixed (x1, ..., xn) ∈
H1 × ...×Hn the following optimization problem

min
(y1,...,yn)∈H1×...×Hn,

n∑
i=1

wi‖yi‖Hi≤1

{
n∑
i=1

1

2
‖yi − xi‖2Hi

}
. (5. 9)

Obviously, if
∑n
i=1 wi‖xi‖Hi ≤ 1, i.e. (x1, ..., xn) ∈ C, then the unique solution is yi = xi,

i = 1, ..., n. In the following we consider the non-trivial situation where
∑n
i=1 wi‖xi‖Hi > 1, i.e.

(x1, ..., xn) /∈ C and define the function f : H1 × ...×Hn → R by f(y1, ..., yn) :=
∑n
i=1(1/2)‖yi −

xi‖2Hi and the function g : H1 × ... × Hn → R by g(y1, ..., yn) :=
∑n
i=1 wi‖yi‖Hi − 1. Hence,

by [2, Proposition 26.18] it holds for the unique solution (y1, ..., yn) of (5. 9) that

∇f(y1, ..., yn) ∈ −λ∂g(y1, ..., yn)⇔ yi − xi ∈ −λ∂ (wi‖ · ‖Hi) (yi), i = 1, ..., n,

as well as

λ

(
n∑
i=1

wi‖yi‖Hi − 1

)
= 0 and

n∑
i=1

wi‖yi‖Hi ≤ 1,

where λ ≥ 0 is the associated Lagrange multiplier of (y1, ..., yn). If λ = 0, then yi = xi, i = 1, ..., n,
and by the feasibility condition we obtain

∑n
i=1 wi‖xi‖Hi ≤ 1, which contradicts our assumption.

Therefore, λ > 0 and we get by (5. 8) that

yi − xi ∈ −λ∂ (wi‖ · ‖Hi) (yi)⇔ xi − yi ∈ ∂(λwi‖ · ‖Hi)(yi)⇔ yi = proxλwi‖·‖Hi
xi, i = 1, ..., n.

Using [29, Proposition 2.8] reveals that

yi =

{
xi − λwi

‖xi‖Hi
xi, if ‖xi‖Hi > λwi,

0Hi , if ‖xi‖Hi ≤ λwi
=

max{‖xi‖Hi − λwi, 0}
‖xi‖Hi

xi, i = 1, ..., n,
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and as
∑n
i=1 wi‖yi‖Hi = 1, we conclude that

n∑
i=1

wi max
{
‖xi‖Hi − λwi, 0

}
= 1. (5. 10)

Now, we define the function κ : R → R by κ(λ) =
∑n
i=1 w

2
i max{τi − λ, 0} − 1. Note, that there

exists λ̃ ≥ τi for all i = 1, ..., n, such that κ(λ̃) = −1 < 0. Moreover, κ is a piecewise linear
function with κ(0) = w2

i τi − 1 and its slope changes at λ = τi, i = 1, ..., n. To be more precise, at
λ = 0 the slope of κ is −

∑n
i=1 w

2
i and increases by w2

1 when λ = τ1. If we continue in this matter
for i = 2, ..., n, the slope keeps increasing and when λ ≥ τn, κ(λ) = −1 such that the slope is 0.
In summary, to find the zero of κ one needs to determine the unique integer k ∈ {0, 1, ..., n − 1}
such that κ(τk) ≥ 0 and κ(τk+1) ≤ 0. In the light of the above, it holds

κ(λ) =

n∑
i=k+1

w2
i τi − λ

n∑
i=k+1

w2
i − 1,

where τk ≤ λ ≤ τk+1, and hence, one gets for λ such that κ(λ) = 0,

λ =

n∑
i=k+1

w2
i τi − 1

n∑
i=k+1

w2
i

.

5.2 Formulae of epigraphical projection

The first aim of this section is to give formulae for the projection operators onto the epigraphs
of several sums of powers of weighted norms. For this purpose, we give a general formula in our
central theorem, from which we deduce special cases used in our numerical tests.

The second aim is to present formulae of the projection operators onto the epigraphs of gauges.
In this part of this section we use the properties of gauge functions listed in Section 4.1. Especially,
by using the fact that the sum of gauges is again a gauge, we also present a formula of the projector
onto the epigraph of the sum of gauges. Two examples in the cases of norms close this section.

5.2.1 Sum of weighted norms

Let us consider the following function h : H1 × ...×Hn → R defined as

h(x1, ..., xn) :=

n∑
i=1

wi‖xi‖βiHi , (5. 11)

where wi > 0 and βi ≥ 1, i = 1, ..., n. By defining the sets

L := {l ∈ {1, ..., n} : βl > 1} and R := {r ∈ {1, ..., n} : βr = 1},

we can state the following formula for the projection onto the epigraph of the sum of powers of
weighted norms, which generalizes the results given for instance in [2, 28,29,69].

Theorem 5.1. Assume that h is given by (5. 11). Then, for every (x1, ..., xn, ξ) ∈ H1×...×Hn×R
one has

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

wi‖xi‖βiHi ≤ ξ,

(y1, ..., yn, θ), otherwise,
(5. 12)
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with

yr =
max{‖xr‖Hr − λwr, 0}

‖xr‖Hr
xr, r ∈ R,

yl =
‖xl‖Hl − ηl(λ)

‖xl‖Hl
xl, l ∈ L,

θ = ξ + λ,

where ηl(λ) is the unique non-negative real number that solves the equation

ηl(λ) +

(
ηl(λ)

λwlβl

) 1
βl−1

= ‖xl‖Hl , l ∈ L, (5. 13)

and λ > 0 is a solution of the equation∑
r∈R

wr max{‖xr‖Hr − λwr, 0}+
∑
l∈L

wl(‖xl‖Hl − ηl(λ))βl = λ+ ξ. (5. 14)

Proof. For given ξ ∈ R and (x1, ..., xn) ∈ H1 × ... × Hn, let us consider the following opti-
mization problem

min
(y1,...,yn,θ)∈H1×...×Hn×R

n∑
i=1

wi‖yi‖
βi
Hi
≤θ

{
1

2
(θ − ξ)2 +

n∑
i=1

1

2
‖yi − xi‖2Hi

}
. (5. 15)

It is clear that in the situation when
∑n
i=1 wi‖xi‖

βi
Hi ≤ ξ, i.e. (x1, ..., xn, ξ) ∈ epih, the unique

solution of (5. 15) is yi = xi, i = 1, ..., n, and θ = ξ. Therefore, we consider in the following the

non-trivial case where
∑n
i=1 wi‖xi‖

βi
Hi > ξ, i.e. (x1, ..., xn, ξ) /∈ epih.

Let us now define the function f : H1 × ... × Hn × R → R by f(y1, ..., yn, θ) := (1/2)(θ −
ξ)2 +

∑n
i=1(1/2)‖yi − xi‖2Hi and the function g : H1 × ... × Hn × R → R by g(y1, ..., yn, θ) :=∑n

i=1 wi‖yi‖
βi
Hi − θ, then by [2, Proposition 26.18] there exists λ ≥ 0, such that for the unique

solution (y1, ..., yn, θ) of (5. 15) it holds

∇f(y1, ..., yn, θ) ∈ −λ∂g(y1, ..., yn, θ)⇔

{
yi − xi ∈ −λ∂(wi‖ · ‖βiHi)(yi), i = 1, ...n,

θ − ξ = λ,
(5. 16)

where λ is the associated Lagrange multiplier of (y1, ..., yn, θ). If λ = 0, then one gets by (5.
16) that yi = xi, i = 1, ..., n, and θ = ξ and by the feasibility of the solution it follows that∑n
i=1 wi‖xi‖

βi
Hi ≤ ξ, which contradicts our assumption. Hence, it holds λ > 0 and by (5. 8) and

(5. 16) we have{
xi − yi ∈ ∂(λwi‖ · ‖βiHi)(yi), i = 1, ...n,

θ = λ+ ξ,
⇔

{
yi = prox

λwi‖·‖
βi
Hi
xi, i = 1, ...n,

θ = λ+ ξ.

Further, from [29, Proposition 2.8] it follows for the case r ∈ R, i.e. βr = 1, that

yr =

{
xr − λwr

‖xr‖Hr
xr, if ‖xr‖Hr > λwr,

0Hr , if ‖xr‖Hr ≤ λwr
=

max{‖xr‖Hr − λwr, 0}
‖xr‖Hr

xr, (5. 17)

and for the case l ∈ L, i.e. βl > 0, that

yl = xl −
ηl(λ)

‖xl‖Hl
xl =

‖xl‖Hl − ηl(λ)

‖xl‖Hl
xl, (5. 18)
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where ηl(λ) is the unique non-negative real number that solves the following equation

ηl(λ) +

(
ηl(λ)

λwlβl

) 1
βl−1

= ‖xl‖Hl (5. 19)

(notice that by (5. 19) follows that ‖xl‖Hl−ηl(λ) ≥ 0). Furthermore, the complementary slackness
condition

λ

(
n∑
i=1

wi‖yi‖
βi
Hi − θ

)
= 0 (5. 20)

implies that
n∑
i=1

wi‖yi‖
βi
Hi = θ, (5. 21)

and from here follows by (5. 17) and (5. 18) that

n∑
i=1

wi‖yi‖
βi
Hi =

∑
r∈R

wr max{‖xr‖Hr − λwr, 0}+
∑
l∈L

wl(‖xl‖Hl − ηl(λ))βl = λ+ ξ. (5. 22)

Remark 5.1. In the situation when βi > 1 for all i=1,...,n, we get by summarizing the formulae
(5. 13) and (5. 14)

ηi(λ) +

 ηi(λ)

wiβi

(∑n
j=1 wj(‖xj‖Hj − ηj(λ))βj

)
− wiβiξ

 1
βi−1

= ‖xi‖Hi

⇔ ηi(λ)

wiβi

(∑n
j=1 wj(‖xj‖Hj − ηj(λ))βj

)
− wiβiξ

= (‖xi‖Hi − ηi(λ))βi−1, i = 1, ..., n.(5. 23)

By setting χi = ‖xi‖Hi − ηi(λ) ≥ 0, i = 1, ..., n, formula (5. 23) can be expressed by

‖xi‖Hi − χi
wiβi

(∑n
j=1 wjχ

βj
j

)
− wiβiξ

= χβi−1i

⇔ wiβiχ
βi−1
i

n∑
j=1

wjχ
βj
j − ξwiβiχ

βi−1
i + χi = ‖xi‖Hi

⇔ w2
i βiχ

2βi−1
i + wiβi

n∑
j=1
j 6=i

wjχ
βj
j − ξwiβiχ

βi−1
i + χi = ‖xi‖Hi , i = 1, ..., n.

Hence, it holds for every (x1, ..., xn, ξ) ∈ H1 × ...×Hn × R

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

wi‖xi‖βiHi ≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
χi
‖xi‖Hi

xi, i = 1, ...n, and θ =

n∑
i=1

wi(χi)
βi ,

where χi ≥ 0, i = 1, ..., n, are the unique real numbers that solve a polynomial equation system of
the form

w2
i βiχ

2βi−1
i + wiβi

n∑
j=1
j 6=i

wjχ
βj
j − ξwiβiχ

βi−1
i + χi = ‖xi‖Hi , i = 1, ..., n.

Let us additionally mention that the case where n = 1 was considered for instance in [28].
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An important consequence of Theorem 5.1 where βi = 1 for all i = 1, ..., n, follows.

Corollary 5.1. Let h be given by (5. 11) where βi = 1 for all i = 1, ..., n. Then for all
(x1, ..., xn, ξ) ∈ H1 × ...×Hn × R it holds

Pepih(x1, ..., xn, ξ) =


(x1, ..., xn, ξ), if

n∑
i=1

wi‖xi‖Hi ≤ ξ,

(0H1 , ..., 0Hn , 0), if ξ < 0 and ‖xi‖Hi ≤ −ξwi, i = 1, ..., n,

(y1, ..., yn, θ), otherwise,

(5. 24)

where

yi =
max{‖xi‖Hi − λwi, 0}

‖xi‖Hi
xi, i = 1, ..., n, and θ = ξ + λ,

with

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i + 1

(5. 25)

and k ∈ {0, 1, ..., n − 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values τ0, ..., τn
are defined by τ0 := 0 and τi := ‖xi‖Hi/wi, i = 1, ..., n and in ascending order.

Proof. As βi = 1 for all i = 1, ..., n, Theorem 5.1 yields

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

wi‖xi‖Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
max{‖xi‖Hi − λwi, 0}

‖xi‖Hi
xi, i = 1, ..., n, and θ = ξ + λ,

where λ > 0 is a solution of the equation

n∑
i=1

wi max{‖xi‖Hi − λwi, 0} = λ+ ξ.

Now, we consider the case where
∑n
i=1 wi‖xi‖Hi > ξ and distinguish two cases.

(a) Let ξ < 0. If ‖xi‖Hi + ξwi ≤ 0 for all i = 1, ..., n, we have by 0 ≤ θ = ξ + λ, i.e. ξ ≥ −λ,
that

0 ≥ ‖xi‖Hi + ξwi ≥ ‖xi‖Hi − λwi ∀i = 1, ..., n, (5. 26)

and from here follows that

λ+ ξ =

n∑
i=1

wi max{‖xi‖Hi − λwi, 0} = 0, i.e. λ = −ξ. (5. 27)

But this means that (y1, ..., yn, θ) = (0H1
, ..., 0Hn , 0), which verifies the second case of (5. 24).

If we now assume that there exists j ∈ {1, ..., n} such that ‖xj‖Hj + ξwj > 0, then we define
the function g : R→ R by

g(λ) :=

n∑
i=1

w2
i max {τi − λ, 0} − λ− ξ. (5. 28)
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Moreover, this assumption yields

g(λ) =

n∑
i=1

w2
i max{τi − λ, 0} − λ− ξ <

n∑
i=1

w2
i max{τi − λ, 0} − λ+

‖xj‖Hj
wj

.

Now, we choose λ̃ > 0 such that ‖xi‖Hi − wiλ̃ < 0 for all i = 1, ..., n, and get

g(λ̃) < −λ̃+
‖xj‖Hj
wj

< 0.

(b) Let ξ ≥ 0. If there exists j ∈ {1, ..., n} such that ‖xj‖Hj + ξwj < 0, we derive a contradiction.
Therefore, it holds ‖xi‖Hi + ξwi ≥ 0 for all i = 1, ..., n, and for the function g we have

g(λ) =

n∑
i=1

w2
i max{τi − λ, 0} − λ− ξ ≤

n∑
i=1

w2
i max{τi − λ, 0} − λ.

Now, we can take λ̃ > 0 such that ‖xi‖Hi − wiλ̃ < 0 for all i = 1, ..., n, and derive that g(λ̃) ≤
−λ̃ < 0.

In summary, we can secure the existence of λ̃ > 0 such that g(λ̃) < 0. Additionally, take note
that, if λ = 0, then g(0) =

∑n
i=1 wi‖xi‖Hi − ξ > 0. The rest of the proof is oriented on the

Algorithm I given in [76] to determine the projection onto an l1-norm ball.
Since, the values τ0, ..., τn are in ascending order, g is a piecewise linear function in λ, where the

slope of g changes at λ = τi, i = 0, ..., n. More precisely, at λ = 0 the slope of g is −(
∑n
i=1 w

2
i + 1)

and increases by w2
1 when λ = τ1. If we proceed in this way, one may see that the slope keeps

increasing when λ takes the values τk, k = 2, ..., n. In the case when λ ≥ τn the slope of g is −1.
Hence, to determine λ such that g(λ) = 0, we have to locate the interval where g changes its
sign from a positive to a negative value. In other words, we have to find the unique integer
k ∈ {0, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0. Hence, we have

g(λ) = −

(
n∑

i=k+1

w2
i + 1

)
λ+

n∑
i=k+1

w2
i τi − ξ,

where τk ≤ λ ≤ τk+1. Finally, we can determine λ such that g(λ) = 0:

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i + 1

.

Remark 5.2. From the ideas of the previous proof, we can now construct an algorithm to deter-
mine λ of Corollary 5.1.
Algorithm:

(i) If
∑n
i=1 wi‖xi‖Hi ≤ ξ, then λ = 0.

(ii) If ξ < 0 and ‖xi‖Hi ≤ −ξwi for all i = 1, ..., n, then λ = −ξ.

(iii) Otherwise, define τ0 := 0, τi := ‖xi‖Hi/wi, i = 1, ..., n, and sort τ0, ..., τn in ascending order.

(iv) Determine the values of g defined in (5. 28) at λ = τi, i = 0, ..., n.

(v) Find the unique k ∈ {0, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0.

(vi) Calculate λ by (5. 25).
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Corollary 5.2. Let h be given by (5. 11) where βi = 2 and wi = 1 for all i = 1, ..., n, then it
holds

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

‖xi‖2Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

where

yi =
1

2λ+ 1
xi, i = 1, ..., n, and θ = ξ + λ,

and λ > 0 is a solution of a cubic equation of the form

λ3 + (1 + ξ)λ2 +
1

4
(1 + 4ξ)λ+

1

4

(
ξ −

n∑
i=1

‖xi‖2Hi

)
= 0. (5. 29)

Proof. By Theorem 5.1 we get that

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

‖xi‖2Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
‖xi‖Hi − ηi(λ)

‖xi‖Hi
xi, i = 1, ..., n, and θ = ξ + λ, (5. 30)

where ηi(λ) is the unique non-negative real number that solves the equation

ηi(λ) +
ηi(λ)

2λ
= ‖xi‖Hi , i = 1, ..., n, (5. 31)

and λ > 0 is a solution of the equation

n∑
i=1

(‖xi‖Hi − ηi(λ))2 = λ+ ξ. (5. 32)

From (5. 31) we get immediately

ηi(λ)

(
1 +

1

2λ

)
= ‖xi‖Hi ⇔ ηi(λ) =

2λ

2λ+ 1
‖xi‖Hi , i = 1, ..., n, (5. 33)

and in combination with (5. 32) we derive

n∑
i=1

(
‖xi‖Hi −

2λ

2λ+ 1
‖xi‖Hi

)2

= λ+ ξ ⇔ 1

(2λ+ 1)2

n∑
i=1

‖xi‖2Hi = λ+ ξ

⇔ (2λ+ 1)2(λ+ ξ)−
n∑
i=1

‖xi‖2Hi = 0⇔ 4λ
3

+ 4(1 + ξ)λ
2

+ (1 + 4ξ)λ+ ξ −
n∑
i=1

‖xi‖2Hi = 0.

In the end, formula (5. 33) implies that

yi =
‖xi‖Hi − 2λ

2λ+1
‖xi‖Hi

‖xi‖Hi
xi =

1

2λ+ 1
xi, i = 1, ..., n, (5. 34)

which completes the proof.

The next remark discusses the question whether the solution λ > 0 of Corollary 5.2 is unique.
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Remark 5.3. Let (x1, ..., xn, ξ) ∈ H1× ...×Hn×R be such that
∑n
i=1 ‖xi‖2Hi > ξ and g : R→ R

be defined by g(λ) := λ3 + (1 + ξ)λ2 + (1/4)(1 + 4ξ)λ + (1/4)(ξ −
∑n
i=1 ‖xi‖2Hi), then g′(λ) =

3λ2 + 2(1 + ξ)λ+ (1/4)(1 + 4ξ) as well as g′′(λ) = 6λ+ 2(1 + ξ). From the zeros of g′ we derive
the local extrema of g as follows

λ1/2 = −1

3
(1 + ξ)±

√
(1 + ξ)2

9
− 1 + 4ξ

12
= −1

3
(1 + ξ)±

√
4(1 + 2ξ + ξ2)− 3(1 + 4ξ)

36

= −1

3
(1 + ξ)±

√
1− 4ξ + 4ξ2

36
= −1

3
(1 + ξ)± 1

6
(1− 2ξ)

and hence, λ1 = −(1/6)(1 + 4ξ) and λ2 = −(1/2).
Further, if ξ > 1/2 ⇔ −1 + 2ξ > 0, then g is strongly monotone increasing on R+, g′′(λ1) =

1− 2ξ < 0 and g′′(λ2) = −1 + 2ξ > 0, which means that g has in λ1 a local maximum and in λ2
a local minimum. As λ1 < λ2 < 0 and g(0) = (1/4)(ξ −

∑n
i=1 ‖xi‖2Hi) < 0, the function g has

exactly one positive zero in this situation.
If ξ < 1/2⇔ 1− 2ξ > 0, then g′′(λ1) = 1− 2ξ > 0 and g′′(λ2) = −1 + 2ξ < 0 and we derive a

local minimum in λ1 and a local maximum in λ2. From g(0) < 0 and λ2 < λ1 we conclude that g
has also in this situation exactly one positive zero.

Finally, let us consider the case where ξ = 1/2, then g is strongly monotone increasing on R+,
λ1 = λ2 = −1/2 and g′′(λ1) = 0, i.e. g has at the point −(1/2) a saddle point. From the fact that
g′′(λ) ≤ 0 for all λ ∈ (−∞,−(1/2)] and g′′(λ) > 0 for all λ ∈ (−(1/2),+∞), it is clear that g has
again exactly one positive zero.

In conclusion, the function g has in all situations exactly one positive zero, i.e. λ > 0 is unique.

Remark 5.4. In the framework of Corollary 5.2, let us consider the case where n = 1. Then, by
Remark 5.1 we have to find a real number χ ≥ 0 that solves the equation

2χ3 + (1− 2ξ)χ− ‖x‖H = 0, (5. 35)

to get a formula of the projection onto the epigraph of h.
As one may see by (5. 29), the arithmetic effort for the case n > 1 is not much higher compared

to the case n = 1. In both situations we have to solve a cubic equation to derive a formula for the
projection onto the epigraph of h.

As a direct consequence of Corollary 5.1 one gets the following well-known statement (see for
instance [2] or [28]).

Corollary 5.3. Let h be given by (5. 11) where n = 1, w1 = w ≥ 1 and β1 = 1, i.e. h(x) =
w‖x‖H. Then, for every (x, ξ) ∈ H × R

Pepiw‖·‖H(x, ξ) =


(x, ξ), if w‖x‖H ≤ ξ,
(0, 0), if ‖x‖H ≤ −wξ,(
‖x‖H+wξ
‖x‖H(w2+1)y,

w‖x‖H+w2ξ
w2+1

)
, otherwise.

For our numerical tests we need two lemmas more.

Lemma 5.2. For pi ∈ H, i = 1, ..., n, it holds

P
epi

(
n∑
i=1

wi‖·−pi‖
βi
Hi

)(x1, ..., xn, ξ) = P
epi

(
n∑
i=1

wi‖·‖
βi
Hi

)(x1 − p1, ..., xn − pn, ξ) + (p1, ..., pn, 0).
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Proof. For pi ∈ Hi, i = 1, ..., n one has

(x1, ..., xn, ξ) ∈ epi

(
n∑
i=1

wi‖ · −pi‖βiHi

)
⇔

n∑
i=1

wi‖xi − pi‖βiHi ≤ ξ

⇔ (x1 − p1, ..., xn − pn, ξ) ∈ epi

(
n∑
i=1

wi‖ · ‖βiHi

)

⇔ (x1, ..., xn, ξ) ∈ epi

(
n∑
i=1

wi‖ · ‖βiHi

)
+ (p1, ..., pn, 0).

Thus, by [2, Proposition 3.17] follows

P
epi

(
n∑
i=1

wi‖·−pi‖
βi
Hi

)(x1, ..., xn, ξ) = P
epi

(
n∑
i=1

wi‖·‖
βi
Hi

)
+(p1,...,pn,0)

(x1, ..., xn, ξ)

= P
epi

(
n∑
i=1

wi‖·‖
βi
Hi

)(x1 − p1, ..., xn − pn, ξ) + (p1, ..., pn, 0).

Lemma 5.3. Let w > 0 and A : H → K be a linear operator with AA∗ = µId, µ > 0, where K is
a real Hilbert space. Then,

Pepiw‖A·‖H(x, ξ) = (x, ξ) +
1

µ
(A∗ × Id)

(
Pepiw‖·‖H(Ax, ξ)− (Ax, ξ)

)
.

Proof. We have

δepi(w‖A·‖H)(x, ξ) = δepi(w‖·‖H)(Ax, ξ) = (δepi(w‖·‖H) ◦ (A× Id))(x, ξ).

By [2, Proposition 23.32] it follows that

proxδepiw‖A·‖H
(x, ξ) = proxδepiw‖·‖H◦(A×Id)

(x, ξ)

= (x, ξ) +
1

µ
(A× Id)T

(
proxδepiw‖·‖H

(Ax, ξ)− (Ax, ξ)
)

⇔ Pepiw‖A·‖H(x, ξ) = (x, ξ) +
1

µ
(A∗ × Id)

(
Pepiw‖·‖H(Ax, ξ)− (Ax, ξ)

)
.

5.2.2 Gauges

The next considerations are devoted to gauge functions of closed convex sets defined on Hilbert
spaces.

Theorem 5.2. Let C be a closed convex subset of H such that 0H ∈ C, then it holds for every
(x, ξ) ∈ H × R

Pepi γC (x, ξ) =


(x, ξ), if γC(x) ≤ ξ,(
Pcl(dom γC)(x), ξ

)
, if x /∈ dom γC and γC

(
Pcl(dom γC)(x)

)
≤ ξ < γC(x),

(y, θ), otherwise,

where

y = x− λPC0

(
1

λ
x

)
and θ = λ+ ξ

and λ > 0 is a solution of an equation of the form

λ+ ξ =

〈
x,PC0

(
1

λ
x

)〉
H
− λ

∥∥∥∥PC0

(
1

λ
x

)∥∥∥∥2
H
.
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Proof. Let us consider for fixed (x, ξ) ∈ H × R the following optimization problem

min
(y,θ)∈H×R,
γC (y)≤θ

{
1

2
(θ − ξ)2 +

1

2
‖y − x‖2H

}
. (5. 36)

If γC(x) ≤ ξ, i.e. (x, ξ) ∈ epi γC , then it is obvious that (y, θ) = (x, ξ). In the following we consider
the non-trivial situation where γC(x) > ξ.

We define the function f : H × R → R by f(y, θ) := (1/2)(θ − ξ)2 + (1/2)‖y − x‖2H and the
function g : H× R→ R by g(y, θ) = γC(y)− θ, then it is clear that f is continuous and strongly
convex and g is proper, lower semicontinuous and convex by Theorem 4.1. As γC(0) < 1, it follows
by [7, Theorem 3.3.16] (see also [7, Remark 3.3.8]) that

0 ∈ ∂(f + (λg))(y, θ) (5. 37)

and {
(λg)(y, θ) = 0,

g(y, θ) ≤ 0,
⇔

{
λ(γC(y)− θ) = 0,

γC(y) ≤ θ,
(5. 38)

where (y, θ) is the unique solution of (5. 36) and λ ≥ 0 the associated Lagrange multiplier.
Furthermore, from [7, Theorem 3.5.13] one gets that

0 ∈ ∂(f + (λg))(y, θ)⇔ 0 ∈ ∂f(y, θ) + ∂(λg)(y, θ). (5. 39)

If λ = 0, then it follows by (5. 8) and (5. 3)

0 ∈ ∂f(y, θ) + ∂δdom g(y, θ)⇔ 0 ∈ (y − x, θ − ξ) + ∂δdom γC×R(y, θ)

⇔ 0 ∈ (y − x, θ − ξ) + ∂δcl(dom γC)×R(y, θ)⇔ (x− y, ξ − θ) ∈ ∂δcl(dom γC)×R(y, θ)

⇔ (y, θ) = Pcl(dom γC)×R(x, ξ)⇔

{
y = Pcl(dom γC)(x),

θ = ξ,

and thus, it holds by the feasibility condition (5. 38) that γC(Pcl(dom γC)(x)) ≤ ξ, from which
follows that Pcl(dom γC)(x) ∈ dom γC . If x ∈ dom γC , this means that Pcl(dom γC)(x) = x and
again by the feasibility condition (5. 38) that γC(x) ≤ ξ, which contradicts our assumption.
Therefore, if x /∈ dom γC and the inequalities γC(Pcl(dom γC)(x)) ≤ ξ < γC(x) hold, then (y, θ) =(
Pcl(dom γC)(x), ξ

)
.

Now, let λ > 0, then it follows from (5. 39) and (5. 8)

0 ∈ ∂(f + (λg))(y, θ)⇔ 0 ∈ ∂f(y, θ) + λ∂g(y, θ)

⇔ ∇f(y, θ) ∈ −λ∂g(y, θ)⇔

{
y − x ∈ −λ∂γC(y),

θ − ξ = λ,
⇔

{
y = proxλγC x,

θ = ξ − λ,
(5. 40)

by combining (5. 40) and (5. 38) we derive that γC(y) = ξ + λ. Finally, as by Lemma 4.3 and
Remark 4.5 it holds that γ∗C = δC0 , one gets by [2, Theorem 14.3(iii)] the following equivalences

γC(y) = ξ + λ (5. 41)

⇔ ξ + λ = γC

(
proxλγC x

)
+ δC0

(
PC0

(
1

λ
x

))
=

〈
proxλγC x,PC0

(
1

λ
x

)〉
H

⇔ ξ + λ =

〈
x− λPC0

(
1

λ
x

)
,PC0

(
1

λ
x

)〉
H
.

Corollary 5.4. Let C ⊆ H be a closed convex cone, then

Pepi γC (x, ξ) =


(x, ξ), if γC(x) ≤ ξ,
(Pcl(dom γC)(x), ξ), if x /∈ dom γC and γC

(
Pcl(dom γC)(x)

)
≤ ξ < γC(x),

(PC x, γC(PC x)), otherwise.
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Proof. We use Theorem 5.2. Let x ∈ dom γC such that γC(x) > ξ, then one has from [2,
Proposition 28.22] and [2, Theorem 6.29] that

y = x− λPC0

(
1

λ
x

)
= x− PC0 x = PC x. (5. 42)

Moreover, by (5. 38) we have γC(y) = θ, which finally yields PepiγC
(x, ξ) = (PC x, γC (PC x)).

Corollary 5.5. Let Ci be a closed convex subset of Hi such that 0Hi ∈ intCi, i = 1, ..., n, and
the gauge γC : H1 × ... ×Hn → R be defined by γC(x1, ..., xn) =

∑n
i=1 γCi(xi). Then it holds for

every (x1, ..., xn, ξ) ∈ H1 × ...×Hn × R

Pepi γC (x1, ..., xn, ξ) =

(x1, ..., xn, ξ), if
n∑
i=1

γCi(xi) ≤ ξ,

(y1, ..., yn, θ), otherwise,

where

yi = xi − λPC0
i

(
1

λ
xi

)
, i = 1, ..., n, and θ = λ+ ξ (5. 43)

and λ > 0 is a solution of an equation of the form

λ+ ξ =

n∑
i=1

[〈
xi,PC0

i

(
1

λ
xi

)〉
Hi
− λ

∥∥∥∥PC0
i

(
1

λ
xi

)∥∥∥∥2
Hi

]
. (5. 44)

Proof. As 0Hi ∈ intCi, i = 1, ..., n, it is clear that the gauges are well-defined, i.e. dom γCi =
Hi, i = 1, ..., n, and so, dom γC = H1× ...×Hn. Further, let us recall that the polar set C0 of the
set C can be characterized by the dual gauge γC0 as

C0 = {x = (x1, ..., xn) ∈ H1 × ...×Hn : γC0(x) = γC0(x1, ..., xn) ≤ 1}. (5. 45)

This relation holds also for the polar set C0
i and its associated dual gauge γC0

i
, i = 1, ..., n.

Moreover, in Lemma 4.4 it was shown that γC0(x) = max1≤i≤n{γC0
i
(xi)} and hence, the polar set

in (5. 45) can be written as

C0 =

{
(x1, ..., xn) ∈ H1 × ...×Hn : max

1≤i≤n
{γC0

i
(xi)} ≤ 1

}
=

{
(x1, ..., xn) ∈ H1 × ...×Hn : γC0

i
(xi) ≤ 1, i = 1, ..., n

}
= {x1 ∈ H1 : γC0

1
(x1) ≤ 1} × ...× {xn ∈ Hn : γC0

n
(xn) ≤ 1} = C0

1 × ...× C0
n.

From here follows that

PC0(x) = PC0
1×...×C0

n
(x1, ..., xn) = PC0

1
(x1)× ...× PC0

n
(xn),

which by using Theorem 5.2 directly implies (5. 43) and (5. 44).

As one may see, the equation (5. 44) of the previous corollary can be very hard to solve
and hence, it can be very complicated to find a projection formula. The next two corollaries
are examples, which demonstrate how one can determine the formula of the projector by using
Corollary 5.5.

Corollary 5.6. Let γC : H1 × ...×Hn → R be defined by

γC(x1, ..., xn) := max
1≤i≤n

{‖xi‖Hi}+ ‖xn+1‖Hn+1 ,
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then for every (x1, ..., xn, ξ) ∈ H1 × ...×Hn × R

Pepi γC (x1, ..., xn+1, ξ) =

{
(x1, ..., xn+1, ξ), if max

1≤i≤n
{‖xi‖Hi}+ ‖xn+1‖Hn+1

≤ ξ,

(y1, ..., yn+1, θ), otherwise,

where exactly one of the following four cases holds:

(i)
∑n
i=1 max

{
‖xi‖Hi − ‖xn+1‖Hn+1 − ξ, 0

}
< ‖xn+1‖Hn+1 ,∑n

i=1 max
{
‖xi‖Hi − ‖xn+1‖Hn+1

− ξ, 0
}
<
∑n
i=1 ‖xi‖Hi ,∑n

i=1 ‖xi‖Hi > (‖xn+1‖Hn+1
− ξ)/2 > −ξ and ‖xn+1‖Hn+1

> −ξ, then

yi = xi −
max

{
‖xi‖Hi − 2λ− ξ + ‖xn+1‖Hn+1 , 0

}
‖xi‖Hi

xi, i = 1, ..., n,

yn+1 =
‖xn+1‖Hn+1 − λ
‖xn+1‖Hn+1

xn+1 and θ = λ+ ξ,

where λ > 0 is a solution of the equation

n∑
i=1

max
{
‖xi‖Hi − 2λ− ξ + ‖xn+1‖Hn+1

, 0
}

= λ.

(ii) ‖xn+1‖Hn+1 ≤
∑n
i=1 max

{
‖xi‖Hi − ‖xn+1‖Hn+1 − ξ, 0

}
<
∑n
i=1 ‖xi‖Hi and∑n

i=1 ‖xi‖Hi > −ξ, then

yi = xi −
max

{
‖xi‖Hi − λ− ξ, 0

}
‖xi‖Hi

xi, i = 1, ..., n, yn+1 = 0Hn+1 and θ = λ+ ξ,

where λ > 0 is a solution of the equation

n∑
i=1

max
{
‖xi‖Hi − λ− ξ, 0

}
= λ.

(iii)
∑n
i=1 ‖xi‖Hi ≤ (‖xn+1‖Hn+1 − ξ)/2 < ‖xn+1‖Hn+1 and ‖xn+1‖Hn+1 > −ξ, then

yi = 0Hi , i = 1, ..., n, yn+1 =
‖xn+1‖Hn+1

+ ξ

2‖xn+1‖Hn+1

xn+1 and θ =
‖xn+1‖Hn+1

+ ξ

2
.

(iv)
∑n
i=1 ‖xi‖Hi ≤ −ξ and ‖xn+1‖Hn+1 ≤ −ξ, then yi = 0Hi , i = 1, ..., n+ 1, and θ = 0.

Proof. By Corollary 5.5 we have

Pepi γC (x1, ..., xn+1, ξ) =

{
(x1, ..., xn+1, ξ), if max

1≤i≤n
{‖xi‖Hi}+ ‖xn+1‖Hn+1

≤ ξ,

(y1, ..., yn+1, θ), otherwise,

where

(y1, ..., yn) = (x1, ..., xn)− λPC0
1

(
1

λ
(x1, ..., xn)

)
, yn+1 = xn+1 − λPC0

2

(
1

λ
xn+1

)
,

θ = λ+ ξ and λ > 0.

From Lemma 4.5 follows that dual gauge of γC1(x1, ..., xn) = max1≤i≤n{‖xi‖Hi} is given by
γC0

1
(x1, ..., xn) =

∑n
i=1 ‖xi‖Hi and hence, the polar set of C1 = {(x1, ..., xn) ∈ H1 × ... × Hn :
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max1≤i≤n{‖xi‖Hi} ≤ 1} is C0
1 = {(x1, ..., xn) ∈ H1× ...×Hn :

∑n
i=1 ‖xi‖Hi ≤ 1}. Thus, we derive

for the case (1/λ)(x1, ..., xn) /∈ C0
1 , i.e.

∑n
i=1 ‖xi‖Hi > λ, from Lemma 5.1 that

PC0
1

(
1

λ
(x1, ..., xn)

)
= (z1, ..., zn) ∈ H × ...×H where zi =

max{‖xi‖Hi − λµ, 0}
λ‖xi‖Hi

xi, (5. 46)

i = 1, ..., n, and µ > 0 is a solution of the equation (see (5. 10) of the proof of Lemma 5.1)

n∑
i=1

max

{
1

λ
‖xi‖Hi − µ, 0

}
= 1⇔

n∑
i=1

max
{
‖xi‖Hi − λµ, 0

}
= λ. (5. 47)

Furthermore, as C2 = C0
2 = {xn+1 ∈ Hn+1 : ‖xn+1‖Hn+1 ≤ 1}, it holds by [2, Example 3.16]

(or also by Lemma 5.1 for n = 1)

PC0
2

(
1

λ
xn+1

)
=

1

λmax
{

1
λ
‖xn+1‖Hn+1

, 1
}xn+1. (5. 48)

Now, we need to consider the following four conceivable cases.
(a) (1/λ)(x1, ..., xn) /∈ C0

1 , i.e.
∑n
i=1 ‖xi‖Hi > λ, and (1/λ)x2 /∈ C0

2 , i.e. ‖xn+1‖Hn+1
> λ: Then

one has PC0
2
((1/λ)xn+1) = (1/‖xn+1‖Hn+1

)xn+1 and therefore, it follows together with (5. 46),
(5. 47) and (5. 48)

yi = xi − λzi, i = 1, ..., n, yn+1 = xn+1 −
λ

‖xn+1‖Hn+1

xn+1 =
‖xn+1‖Hn+1 − λ
‖xn+1‖Hn+1

xn+1

and θ = γC(y1, ..., yn+1) = λ+ ξ.

As for ‖xi‖Hi − λµ > 0 we have that

yi = xi − λzi = xi −
‖xi‖Hi − λµ
‖xi‖Hi

xi =
λµ

‖xi‖Hi
xi

and for ‖xi‖Hi − λµ ≤ 0 that yi = xi, i = 1, ..., n, it follows that max1≤i≤n{‖yi‖Hi} = λµ and
so, λ + ξ = γC(y1, ..., yn+1) = max1≤i≤n{‖yi‖Hi} + ‖yn+1‖Hn+1

= λµ + ‖xn+1‖Hn+1
− λ, which

means that λµ = 2λ+ ξ − ‖xn+1‖Hn+1
≥ 0. For this reason, we can write for (5. 47)

n∑
i=1

max
{
‖xi‖Hi − 2λ− ξ + ‖xn+1‖Hn+1 , 0

}
= λ.

Bringing the inequalities ‖xn+1‖Hn+1
> λ and

∑n
i=1 ‖xi‖Hi > λ together with the last equality

implies

n∑
i=1

max
{
‖xi‖Hi − ‖xn+1‖Hn+1

− ξ, 0
}
< ‖xn+1‖Hn+1

and

n∑
i=1

max
{
‖xi‖Hi − ‖xn+1‖Hn+1

− ξ, 0
}
<

n∑
i=1

‖xi‖Hi .

Moreover, as λµ > 0, we have λ+ξ > ‖xn+1‖Hn+1
−λ, which means that λ > (‖xn+1‖Hn+1

−ξ)/2.

From the assumption ‖xn+1‖Hn+1
> λ and

∑n
i=1 ‖xi‖Hi > λ follows that ‖xn+1‖Hn+1

> −ξ and∑n
i=1 ‖xi‖Hi > (‖xn+1‖Hn+1 − ξ)/2. This yields (i).

(b) (1/λ)(x1, ..., xn) /∈ C0
1 , i.e.

∑n
i=1 ‖xi‖Hi > λ, and (1/λ)xn+1 ∈ C0

2 , i.e. ‖xn+1‖Hn+1 ≤
λ: Then one has that PC0

2
((1/λ)xn+1) = (1/λ)xn+1, which means that yn+1 = 0Hn+1 and as
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(1/λ)(y1, ..., yn) /∈ C0
1 it follows, as shown in the previous case, that max1≤i≤n{‖yi‖Hi} = λµ.

This means that θ = γC(y1, ..., yn+1) = max1≤i≤n{‖yi‖Hi} + ‖yn+1‖Hn+1
= λµ = λ + ξ and for

(5. 47) we can write

n∑
i=1

max
{
‖xi‖Hi − λ− ξ, 0

}
= λ.

As ‖xn+1‖Hn+1 ≤ λ, it holds that

‖xn+1‖Hn+1 ≤
n∑
i=1

max
{
‖xi‖Hi − ‖xn+1‖Hn+1 − ξ, 0

}
<

n∑
i=1

‖xi‖Hi .

This verifies the case (ii).
(c) (1/λ)(x1, ..., xn) ∈ C0

1 , i.e.
∑n
i=1 ‖xi‖Hi ≤ λ, and (1/λ)xn+1 /∈ C0

2 , i.e. ‖xn+1‖Hn+1 >

λ: Then PC0
1
((1/λ)(x1, ..., xn)) = (1/λ)(x1, ..., xn) and PC0

2
((1/λ)xn+1) = (1/‖xn+1‖Hn+1)xn+1

implies

yi = 0Hi , i = 1, ..., n, yn+1 =
‖xn+1‖Hn+1 − λ
‖xn+1‖Hn+1

xn+1 and

λ+ ξ = θ = γC(y1, ..., yn+1) = max
1≤i≤n

{‖yi‖Hi}+ ‖yn+1‖Hn+1 = ‖xn+1‖Hn+1 − λ,

where from the last equality one gets λ = (‖xn+1‖Hn+1
− ξ)/2. But this yields

yn+1 =
‖xn+1‖Hn+1 −

‖xn+1‖Hn+1
−ξ

2

‖xn+1‖Hn+1

xn+1 =
‖xn+1‖Hn+1

+ ξ

2‖xn+1‖Hn+1

xn+1

and

θ = ‖xn+1‖Hn+1
−
‖xn+1‖Hn+1 − ξ

2
=
‖xn+1‖Hn+1 + ξ

2
.

Further, one has

n∑
i=1

‖xi‖Hi ≤
‖xn+1‖Hn+1

− ξ
2

< ‖xn+1‖Hn+1 as well as ‖xn+1‖Hn+1 > −ξ

and this yields (iii).
(d) (1/λ)(x1, ..., xn) ∈ C0

1 , i.e.
∑n
i=1 ‖xi‖Hi ≤ λ, and (1/λ)xn+1 ∈ C0

2 , i.e. ‖xn+1‖Hn+1
≤ λ:

Then PC0
1
((1/λ)(x1, ..., xn)) = (1/λ)(x1, ..., xn) and PC0

2
((1/λ)xn+1) = (1/λ)xn+1 implies

yi = 0, i = 1, ..., n+ 1, and λ+ ξ = θ = γC(y1, ..., yn+1) = 0,

which means that λ = −ξ. Hence, one gets that ξ < 0 and
∑n
i=1 ‖xi‖Hi ≤ −ξ as well as

‖xn+1‖Hn+1 ≤ −ξ. This verifies (iv).
As only these four cases are possible and exclude each other, we derive the statement of the

corollary.

Corollary 5.7. Let γC : H1×...×Hn → R be defined by γC(x1, ..., xn) := max1≤i≤n{(‖xi‖Hi)/wi},
then it holds

Pepi γC (x1, ..., xn, ξ) =

{
(x1, ..., xn), if max

1≤i≤n

{
1
wi
‖xi‖Hi

}
≤ ξ,

(y1, ..., yn, θ), otherwise,
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where

yi = xi −
max{‖xi‖Hi − (λ+ ξ)wi, 0}

‖xi‖Hi
xi, i = 1, ..., n, and θ =

n∑
i=k+1

w2
i τi + ξ

n∑
i=k+1

w2
i + 1

with

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i

n∑
i=k+1

w2
i + 1

and k ∈ {0, 1, ..., n − 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values τ0, ..., τn
are defined by τ0 := 0 and τi := (‖xi‖Hi)/wi, i = 1, ..., n, and in ascending order.

Proof. As C = {(x1, ..., xn) : H1× ...×Hn : max1≤i≤n{(1/wi)‖xi‖Hi}} ≤ 1 (see Remark 4.3),
Corollary 5.5 reveals that

Pepi γC (x1, ..., xn, ξ) =

{
(x1, ...xn, ξ), if max

1≤i≤n
{ 1
wi
‖xi‖Hi} ≤ ξ,

(y1, ..., yn, θ), otherwise,

where

(y1, ..., , yn) = (x1, ..., xn)− λPC0

(
1

λ
(x1, ..., xn)

)
, θ = λ+ ξ and λ > 0.

By Lemma 4.5 the polar set of C looks like C0 = {(x1, ..., xn) ∈ H1×...×Hn :
∑n
i=1 wi‖xi‖Hi ≤ 1}

and from Lemma 5.1 we derive

PC0

(
1

λ
(x1, ..., xn)

)
= (z1, ..., zn) ∈ H1 × ...×Hn,

where

zi =
max{‖xi‖Hi − λµwi, 0}

λ‖xi‖Hi
xi, i = 1, ..., n,

and µ > 0 is a solution of the equation (see (5. 10) of the proof of Lemma 5.1)

n∑
i=1

wi max{‖xi‖Hi − λµwi, 0} = λ. (5. 49)

Therefore, it follows

yi = xi −
max{‖xi‖Hi − λµwi, 0}

‖xi‖Hi
xi =

‖xi‖Hi −max{‖xi‖Hi − λµwi, 0}
‖xi‖Hi

xi, i = 1, ..., n,

and as for ‖xi‖Hi − λµwi ≤ 0 one gets yi = xi, i.e. ‖yi‖Hi = ‖xi‖Hi and for ‖xi‖Hi − λµwi > 0,
yi = (λµwi/‖xi‖Hi)xi, i.e. ‖yi‖Hi = λµwi, i = 1, ..., n, we obtain

γC(y1, ..., yn) = max
1≤i≤n

{
1

wi
‖yi‖Hi

}
= λµ = λ+ ξ. (5. 50)

Bringing (5. 49) and (5. 50) together yields

n∑
i=1

wi max
{
‖xi‖Hi − (λ+ ξ)wi, 0

}
= λ. (5. 51)
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Clearly, if ‖xi‖Hi − ξwi ≤ 0 for all i = 1, ..., n, i.e. max1≤i≤n{‖xi‖Hi/wi} ≤ ξ, then ‖xi‖Hi −
ξwi − λwi ≤ 0 for all i = 1, ..., n, and one gets by (5. 51) that

λ =

n∑
i=1

wi max
{
‖xi‖Hi − (λ+ ξ)wi, 0

}
= 0,

which means that yi = xi for all i = 1, ..., n, and θ = ξ.
Now, let us assume that J := {i ∈ {1, ..., n} : ‖xi‖ − ξwi > 0} 6= ∅ and define the function

g : R→ R by g(λ) =
∑n
i=1 w

2
i max {τi − (λ+ ξ), 0} − λ, then it follows from λ+ ξ ≥ 0 that

g(λ) =

n∑
i=1

w2
i max {τi − (λ+ ξ), 0} − λ ≤

n∑
i=1

w2
i max {τi, 0} − λ =

∑
i∈J

w2
i τi − λ.

If we choose λ̃ > 0 such that λ̃ >
∑
i∈J w

2
i τi, then we derive that g(λ̃) < 0. Thus, we can secure

the existence of a λ̃ > 0 such that g(λ̃) < 0.
As g is a piecewise linear function, one has, similarly to Corollary 5.1, to find the unique integer

k ∈ {0, 1, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0. This leads to

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i − λ

n∑
i=k+1

(w2
i + 1) = 0⇔ λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i

n∑
i=k+1

w2
i + 1

and hence, θ = λ+ ξ = (
∑n
i=k+1 w

2
i τi + ξ)/(

∑n
i=k+1 w

2
i + 1).

Remark 5.5. In [28] the formula in the previous corollary was given for the case where Hi = R,
i = 1, ..., n, in other words, where γC is the weighted l∞-norm.

Remark 5.6. Like in Lemma 5.3, one can give a formula for the projection onto the epigraph of
a gauge composed with a linear operator A : H → K with AA∗ = µId, µ > 0,

Pepi γC(A·)(x, ξ) = (x, ξ) +
1

µ
(A∗ × Id)

(
Pepi γC(·)(Ax, ξ)− (Ax, ξ)

)
.

Moreover, it can easily be observed that for p ∈ H holds (similar to the proof of Lemma 5.2)

Pepi γC(·−p)(x, ξ) = Pepi γC (x− p, ξ) + (p, 0).

We close this section with a characterization of the subdifferential of a gauge function by the
projection operator.

Remark 5.7. Let C ⊆ H be closed and convex such that 0H ∈ C, then it holds by (5. 3), (5.
8), [81, Lemma 2.1], [81, Remark 2.2] and [2, Theorem 14.3(ii)] for all x, y ∈ H that

x ∈ ∂γC(y)⇔ x+ y − y ∈ ∂γC(y)⇔ y = proxγC (x+ y)

⇔ y = x+ y − proxγ∗C (x+ y)⇔ y = x+ y − proxδC0
(x+ y)

⇔ x = PC0(x+ y).

From which follows that

∂γC(y) = {x ∈ H : x = PC0(x+ y)} .

In addition, if C is a closed convex cone, then it follows from [2, Theorem 6.29] that

∂γC(y) = {x ∈ H : x = x+ y − PC(x+ y)} = {x ∈ H : y = PC(x+ y)} .
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5.3 Numerical experiments

Our numerical tests are implemented on a PC with an Intel Core i7-6700HQ CPU with 2.6GHz
and 12 GB RAM. While the numerical tests in [30] were based on the partial inverse algorithm
introduced by Spingarn in [77], we use here the parallel splitting algorithm from [2, Proposition
27.8].

Theorem 5.3. (parallel splitting algorithm) Let n be an integer such that n ≥ 2 and fi : Rs → R
be a proper, lower semicontinuous and convex function for i = 1, ..., n. Suppose that the problem

(PDR) min
x∈Rs

{
n∑
i=1

fi(x)

}

has at least one solution and that dom f1∩
⋂n
i=2 int dom fi 6= ∅. Let (µk)k∈N be a sequence in [0, 2]

such that
∑
k∈N µk(2− µk) = +∞, let ν > 0, and let (xi,0)ni=1 ∈ Rs × ...× Rs. Set

(∀k ∈ N) rk = 1
n

n∑
i=1

xi,k,

yi,k = proxνfi xi,k, i = 1, ..., n,

qk = 1
n

n∑
i=1

yi,k,

xi,k+1 = xi,k + µk(2qk − rk − yi,k), i = 1, ..., n.

Then (rk)k∈N converges to a solution of problem (PDR).

In order to use the parallel splitting algorithm given in the previous theorem, we need to rewrite
the extended multifacility location problem (EPM,β

N ) in (5. 4) into an optimization problem with
an objective function, which is a sum of proper, convex and lower semicontinuous functions.

The first way to reformulate this location problem is based on the introduction of an additional
variable as presented in (5. 5):

(EPM,β
N ) min

(x1,...,xm,t)∈Rd×...×Rd×R

t+

n∑
i=1

δ
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t)

 . (5. 52)

We define the functions

f1 : Rd × ...× Rd × R→ R, f1(x1, ..., xm, t) = t and

fi : Rd × ...× Rd × R→ R, fi(x1, ..., xm, t) = δ
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t),

i = 2, ..., n+ 1, then dom f1 = Rd × ...× Rd × R and0Rd , ..., 0Rd , max
1≤i≤n


m∑
j=1

wij‖pi‖βi

+ 1

 ∈ int dom fi = int epi

 m∑
j=1

wij‖ · −pi‖βi


for all i = 2, ..., n + 1, i.e., it holds that dom f1 ∩
⋂n+1
i=2 int dom fi 6= ∅. Therefore, the sequences

generated by the algorithm from Theorem 5.3 converges to a solution of the location problem
(EPM,β

N ) and the following formulae for the proximal points associated to the functions f1, ..., fn+1

can be formulated by using (5. 8) and Lemma 5.2

(y1, ..., ym, θ) = proxνf1(x1, ..., xm, t)

⇔ (x1, ..., xm, t)− (y1, ..., ym, θ) ∈ ∂(νf1)(y1, ..., ym, θ) = (0Rd , ..., 0Rd , ν)

⇔ xi = yi, i = 1, ...,m, and θ = t− ν ⇔ (y1, ..., ym, θ) = (x1, ..., xn, t− ν)
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and

(y1, ..., ym, θ) = proxνfi(x1, ..., xm, t) = proxνδ
epi

 m∑
j=1

wij‖·−pi‖
βi

(x1, ..., xm, t)

= P
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t)

= P
epi

(
m∑
j=1

wij‖·‖βi
)(x1 − pi, ..., xm − pi, t) + (pi, ..., pi, 0). (5. 53)

The second way to rewrite the extended multifacility location problem (EPM,β
N ) into an op-

timization problem of the form of (PDR) makes use of the ideas of Cornejo and Michelot given
in [30] and splits the sums of weighted norms by n ·m additional variables (see also (5. 6)):

(EPM,β
N ) min

t, tij∈R, xj∈Rd,
j=1,...,m,i=1,...,n

t+
m∑
j=1

n∑
i=1

δepi(wij‖·−pi‖βi)(xj , tij) +

n∑
i=1

δepi τi(ti1, ..., tim, t)

 , (5. 54)

where τi(ti1, ..., tim) :=
∑m
j=1 tij , i = 1, ..., n. Now, let x̃ := (x1, ..., xm) ∈ Rd × ... × Rd, t̃ :=

(tij)i=1,...,n,j=1,...,m,

f1 : Rd × ...× Rd︸ ︷︷ ︸
m−times

×Rmn × R→ R, f1(x̃, t̃, t) := t,

fij : Rd × ...× Rd × Rmn × R→ R, fij(x̃, t̃, t) := δepi(wij‖·−pi‖βi)(xj , tij),

j = 1, ...,m, i = 1, ..., n, and

f̃i : Rd × ...× Rd × Rmn × R→ R, f̃i(x̃, t̃, t) := δepi τi(ti1, ..., tim, t), i = 1, ..., n.

As

dom f1 = Rd × ...× Rd × Rmn × R,
dom fij =

{
(x̃, t̃, t) ∈ Rd × ...× Rd × Rmn × R : (xj , tij) ∈ epi(wij‖ · −pi‖βi)

}
,

i = 1, ..., n, j = 1, ...,m,

dom f̃i =
{

(x̃, t̃, t) ∈ Rd × ...× Rd × Rmn × R : (ti1, ..., tim, t) ∈ epi τi
}
,

i = 1, ..., n

and (
0Rd , ..., 0Rd , max

1≤i≤n,
1≤j≤m

{wij‖pi‖βi}+ 1, ..., max
1≤i≤n,
1≤j≤m

{wij‖pi‖βi}+ 1,m max
1≤i≤n,
1≤j≤m

{wij‖pi‖βi}+m+ 1

)

∈ dom f1 ∩

 ⋂
1≤i≤n,
1≤j≤m

int dom fij

 ∩
 ⋂

1≤i≤n

int dom f̃i

 ,

convergence in the sense of Theorem 5.3 can be guaranteed. Now, let ỹ := (y1, ..., ym) and

θ̃ := (θij)1≤i≤n, 1≤j≤m, then one has by (5. 8) for the corresponding proximal points of the

functions f1, fij , j = 1, ...,m, i = 1, ..., n, and f̃i, i = 1, ..., n,

(ỹ, θ̃, θ) = proxνf1(x̃, t̃, t) = (0Rd , ..., 0Rd︸ ︷︷ ︸
m−times

, 0, ..., 0︸ ︷︷ ︸
mn−times

, t− ν)
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and by (5. 8) and Lemma 5.2

(ỹ, θ̃, θ) = proxνfij (x̃, t̃, t)⇔ (x̃, t̃, t)− (ỹ, θ̃, θ) ∈ ∂(νfij)(ỹ, θ̃, θ)

⇔ (xj , tij)− (yj , θij) ∈ ∂(νδepi(wij‖·−pi‖βi ))(yj , θij) and

yl = xl, θsl = tsl, θ = t, s = 1, ..., n, l = 1, ...,m, sl 6= ij,

⇔ (yj , θij) = proxνδ
epi(wij‖·−pi‖

βi )
(xj , tij) = Pepi(wij‖·−pi‖βi )(xj , tij)

= Pepi(wij‖·‖βi )(xj − pi, tij) + (pi, 0) and

yl = xl, θsl = tsl, θ = t, s = 1, ..., n, l = 1, ...,m, sl 6= ij, (5. 55)

j = 1, ...,m, i = 1, ..., n. Moreover, by (5. 8) and [2, Example 28.17] follows

(ỹ, θ̃, θ) = proxνf̃i(x̃, t̃, t)⇔ (x̃, t̃, t)− (ỹ, θ̃, θ) ∈ ∂(νf̃i)(ỹ, θ̃, θ)

⇔ (ti1, ..., tim, t)− (θi1, ..., θim, θ) ∈ ∂ (νδepi τi) (θi1, ..., θim, θ) and

(tl1, ..., tlm, t) = (θl1, ..., θlm, θ), l = 1, ..., n, l 6= i, (x1, ..., xm) = (y1, ..., ym)

⇔ (θi1, ..., θim, θ) = proxνδepi τi
(ti1, ..., tim, t) = Pepi τi(ti1, ..., tim, t)

=


(θi1, ..., θim, θ)

T , if
m∑
j=1

tij − t ≤ 0,

(θi1, ..., θim, θ)
T −

m∑
j=1

tij−t

m+1 (1, ..., 1,−1)T , if
m∑
j=1

tij − t > 0,

and (tl1, ..., tlm, t) = (θl1, ..., θlm, θ), l = 1, ..., n, l 6= i, (x1, ..., xm) = (y1, ..., ym),

i = 1, ..., n.

The tables below illustrate the performance of our method using the formulae from Corollary
5.1 and 5.2 for the projection onto the epigraph of the sum of powers of weighted norms (EpiSum-
Norms) compared with the concept proposed by Cornejo and Michelot in [30], where only the
projection onto the epigraph of a weighted norm (EpiNorm) is needed (see Corollary 5.3). We

solved the problem (EPM,β
N ) in R2 and R3 for different choices of given and new facilities. The

performance results are visualized by the associated figures, where we use the following notations:

NumGivFac: Number of given facilities
NumNewFac: Number of new facilities

NumIt: Number of Iterations of the algorithm
CPUtime: CPU time in seconds.

We used the following parameters for initialization: µn = 1 for all n ∈ N. Moreover, let us point
out that we tested the algorithm of Theorem 5.3 for different values of the parameter ν, where
the most remarkable results are printed in the tables and the best of them concerning the CPU
time and number of iterations are visualized in the corresponding figures.

First, we consider the situation where βi = 1 for all i = 1, ..., n.

Table 5.1: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

ν = 5 ν = 30 ν = 50
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 989 1.92 185 0.45 306 0.73
EpiNorm 21171 193.57 2179 17.89 2543 19.69
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Figure 5.1: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R2 for ν = 30

Table 5.2: Performance evaluation for NumGiFac 30 and NumNewFac 10 in R2

ν = 18 ν = 50 ν = 82
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 269 0.87 535 1.53 909 2.51
EpiNorm 14341 335.45 3478 71.69 4312 92.93
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Figure 5.2: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R2 for ν = 18

Table 5.3: Performance evaluation for NumGiFac 60 and NumNewFac 20 in R3

ν = 98 ν = 205 ν = 275
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 592 4.2 1129 7.53 1496 10.38
EpiNorm 28920 5653.66 15697 2951.28 15987 2983.45



5.3 NUMERICAL EXPERIMENTS 117

iterations (log scale)
100 101 102 103 104 105

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

20

25

30

35

40

45

EpiSumNorm
EpiNorm

iterations ×104
0 0.5 1 1.5 2 2.5 3 3.5 4

ga
p 

fr
om

 th
e 

op
tim

al
 s

ol
ut

io
n

0

1

2

3

4

5

6

7

8

9

EpiSumNorm
EpiNorm

Figure 5.3: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R3 for ν = 98

In Table 5.1 it is shown that the parallel splitting algorithm converges very slow when employed
in connection with the method proposed in [30], while our method performs much better. To be
more precise, we used here the value 0.001 as the maximum bound from the optimal solution. The
corresponding figure shows that our method EpiSumNorms regenerates after 185 iterations a so-
lution which is within the maximum bound from the optimal solution, while the method EpiNorm
needs 2179 iterations. Take also note that in this example the location problem has in the form
of EpiNorm 125 additional variables, while the examples in the Table 5.2 and 5.3 have 300 and
1200 additional variables, respectively. For this reason our method by far outperforms the concept
EpiNorm on such optimization problems regarding the accuracy as well as the CPU speed and
number of iterations.

Finally, we consider the situation where wi = 1 and βi = 2 for all i = 1, ..., n.

Table 5.4: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

ν = 5 ν = 39 ν = 72
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 398 0.47 2664 2.58 4877 4.89
EpiNorm 10377 90.34 2782 23.51 5035 42.72

Table 5.5: Performance evaluation for NumGiFac 60 and NumNewFac 10 in R3

ν = 110 ν = 445 ν = 495
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 1684 3.78 6468 13.68 7433 17.01
EpiNorm 15131 970.24 5154 326.78 5713 356.06



118 CHAPTER 5. SOLVING LOCATION PROBLEMS VIA EPIGRAPHICAL PROJECTION

iterations (log scale)
100 101 102 103 104 105

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

35

40

45

50

55

60

65

70

75

80

85

EpiSumNorm
EpiNorm

iterations
0 2000 4000 6000 8000 10000 12000

ga
p 

fr
om

 th
e 

op
tim

al
 s

ol
ut

io
n

0

0.5

1

1.5

2

2.5

EpiSumNorm
EpiNorm

Figure 5.4: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R2 for ν = 5
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Figure 5.5: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R3 for ν = 110

The examples in the last two tables draw a similar picture as the examples in the previous
ones. While the method EpiSumNorms generates a solution within the maximum bound from the
optimal solution after few seconds, the method EpiNorm needs several minutes. This also points
up the usefulness of our approach made in Section 5.2.

In the Appendix the corresponding source codes for the Matlab implementation are provided.



Index of notation

Spaces and sets

X∗ the topological dual space X∗ of X

〈x∗, x〉 the value of x∗ at x

w(X∗, X) weak* topology on X∗ induced by X

5K the partial ordering induced by the convex cone K

x ≤K x 5K y and x 6= y

0X the zero element of X

+∞K the greatest element regarding the ordering cone K

X the space X to which the element +∞K is added

K∗ the dual cone of the cone K

NS the normal cone of the set S

int(S) the interior of the set S

ri(S) the relative interior of the set S

cl(S) the closure of the set S

cone(S) the conic hull of the set S

core(S) the algebraic interior of the set S

sqri(S) the strong quasi interior of the set S

A×B the Cartesian product of two sets

A+B the Minkowski sum of two sets

|V | the cardinality of the index set V

C0 the polar set of the set C

∀ for all

∈ in

∃ there exists (at least one)

H the Hilbert space H

〈·, ·〉H the scalar product in Hilbert space H

‖ · ‖H the norm defined by the inner product 〈·, ·〉H
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Argmin f the set of global minimizers of the function f

arg minx∈H f(x) the unique minimizer of f

PC the projection onto the non-empty, closed and convex set C

±∞ plus and minus infinite, respectively

R the set of real numbers

R the extended set of real numbers, R = R ∪ {±∞}

Rn+ the non-negative orthant of Rn

〈·, ·〉 the scalar product in Rn

‖ · ‖ the Euclidean norm in Rn

Scalar and vector functions

dom f the domain of the function f

epi f the epigraph of the function f

f∗ the conjugate of the function f

f∗S the conjugate of the function f regarding the set S

f∗∗ the biconjugate of the function f

∂f the subdifferential of the function f

δA the indicator function of the set A

σA the support function of the set A

∂f(x) the subdifferential of the function f at x ∈ X

∇f(x) the gradient of the function f at x ∈ X

γC the gauge function (a.k.a. Minkowski functional) of the set C

proxf the proximity operator of a function f

(z∗F ) the function 〈z∗, F 〉, where F is a vector function and z∗ ∈ K∗

epiQ F the Q-epigraph of the vector function F

F ◦G the composition of two functions

Id the identity mapping

0 the zero mapping

Ajk, Bji linear mappings

v(PC) the optimal objective value of the optimization
problem (PC)



Appendix A

Appendix

Here we present the Matlab source codes of the m-files for our numerical tests, which can be found
on the compact disk attached to this thesis.

The file projection weighted sum.m calculates the projection onto the epigraph of the sum
of weighted norms.

1 % calculate the projection onto the epigraph of the weighted sum of norms
2 function [proj y,proj xi] = projection weighted sum(w,y,xi)
3

4 k1 = size(y,1);
5 k2 = size(y,2);
6 proj y = zeros(k1,k2);
7 nrm y = zeros(k1,1);
8 tau old = zeros(k1,1);
9 s = zeros(k1+1,1);

10 s tilde = zeros(k1,1);
11

12 for i = 1:k1
13 nrm y(i )= norm(y(i,:));
14 tau old(i) = nrm y(i)/w(i);
15 end
16

17 tau old tilde = [0;tau old];
18

19 if dot(w,nrm y) <= xi % check whether (y,xi) is an element of the epigraph
20 proj xi = xi;
21 for i = 1:k1
22 proj y(i,:) = y(i,:);
23 end
24

25 elseif xi<0 && max(tau old tilde) <= −xi
26 proj xi = 0;
27 for i = 1:k1
28 proj y(i,:) = zeros(1,k2);
29 end
30

31 else
32 [tau new,I] = sort(tau old); % sort the vector tau old in ascending order
33 w tilde = w(I);
34 tau new tilde = sort(tau old tilde); % sort the vector tau old tilde in ...

ascending order
35

36 % determine the value of the function g (see (5.28)) at tau new(i)
37 for i = 1:k1+1
38 for j = 1:k1
39 s tilde(j) = w tilde(j)ˆ2*max(tau new(j)−tau new tilde(i),0);
40 end
41 s(i) = sum(s tilde)−tau new tilde(i)−xi;

121
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42 end
43

44 % find the unique i such that g(tau new(i))>=0 and g(tau new(i+1)<=0
45 for i = 1:k1
46 if (s(i) >= 0) && (s(i+1) <= 0)
47 l = w tilde(i:end);
48 r = l.ˆ2;
49 u = tau new(i:end);
50 lambda = (1/(sum(r)+1))*(dot(r,u)−xi);
51 end
52 end
53

54 % calculate the projection (proj y,proj xi)
55 for i = 1:k1
56 if (nrm y(i) > lambda*w(i))
57 proj y(i,:) = (((nrm y(i)−lambda*w(i)))/nrm y(i)).*y(i,:);
58 else
59 proj y(i,:) = zeros(1,k2);
60 end
61 end
62

63 proj xi = xi+lambda;
64 end
65

66 end

The file EpiSumNorms.m is one of the main files and solves the extended location problem
(5. 5). The given points are generated by the command randn and the given weights by the
command rand, both data sets are saved in mat-files, respectively. The optimal solution is also
saved in a mat-file. In the step where the projection onto the epigraph of the sum of weighted
norms is calculated the file projection weighted sum.m is used.

1 % parallel splitting algorithm
2 clear all
3 clc
4 close all
5

6 nIterations = 25000; % define the number of iterations
7

8 maxBoundFromOpt = 1e−3; % maximum gap from the optimal solution
9

10 load 'optSol g25 n5.mat' optimalSolution;
11

12 % p is a matrix of given points
13 load 'points g25 dim2.mat' p;
14

15 % w is a matrix of given weights
16 load 'weights g25 n5.mat' w;
17

18 k = size(w,2); % define number of new points
19

20

21 m = size(p,1); % number of given points
22 d = size(p,2); % dimension of the underlying space
23

24 z = zeros(k,d);
25 t = zeros(k,d);
26 p tilde = zeros(k,d);
27 x = zeros(m+1,k*d+1);
28 l = zeros(k,d);
29 xnew = zeros(m+1,k*d+1);
30 y = zeros(m+1,k*d+1);
31

32 xVerlaufDR = [];
33 xnormDR = [];
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34

35 % determine a feasible solution as startpoint
36 v = zeros(1,m);
37 for i = 1:m
38 v(i) = norm(p(i,:));
39 end
40

41 vtilde = zeros(m,k);
42 for i = 1:m
43 vtilde(i,:) = v(i)*ones(1,k);
44 end
45

46 vstar = zeros(1,m);
47 for i = 1:m
48 vstar(i) = dot(w(i,:),vtilde(i,:));
49 end
50 vstarmax = max(vstar(:));
51 startPoint = [zeros(1,k*d), vstarmax]; % vector of dimension k*d+1
52

53 nu = 33; % specify the parameter nu of the algorithm
54

55 for i = 1:m+1
56 x(i,:) = startPoint; % startpoint x 0 is a feasible solution
57 end
58

59 tic
60 for nIter = 1:nIterations
61

62 rk = (1/(m+1)).*sum(x); % current solution
63

64 xVerlaufDR(end+1,:) = rk; % save the current solution
65

66 y(1,:)=x(1,:)−[zeros(1,k*d) nu]; % calculate the proximal point of f 1
67

68 % calculate the proximal points of f 2,...f m+1
69 for i=2:m+1
70 t(:,:)=reshape(x(i,1:k*d),[d,k])'; % write the row vector as a matrix
71

72 % create a matrix, where the row vectors are copies of the associated ...
given point

73 for j=1:k
74 p tilde(j,:)=p(i−1,:);
75 end
76

77 % calculate the projection onto the epigraph of the weighted sum of norms
78 [z(:,:),y(i,d*k+1)]=projection weighted sum(w(i−1,:)', ...

t(:,:)−p tilde(:,:),x(i,k*d+1));
79 l(:,:)=p tilde(:,:)+z(:,:);
80 y(i,1:d*k)=reshape(l(:,:)',[d*k,1])';
81 end
82

83 q = (1/(m+1)).*sum(y);
84

85 for i=1:m+1
86 xnew(i,:) = x(i,:) + 2.*q − rk − y(i,:);
87 end
88

89 x = xnew;
90

91 % if the gap between the current solution and the optimal solution is small ...
enough, stop and display current solution

92 xnormDR(end+1,:) = norm(rk(1:d*k)−optimalSolution);
93 if ( norm(rk(1:d*k)−optimalSolution) <= maxBoundFromOpt )
94 disp(rk);
95 semilogx(xVerlaufDR(:,end));
96 figure
97 plot(xVerlaufDR(:,end));
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98 figure
99 plot(xnormDR(:,end));

100 disp(toc);
101 break;
102 end
103 end
104 toc
105

106 xVerlaufDR(end+1,:) = rk;
107 % if the defined number of iterations is reached, display current solution
108 if ( nIter == nIterations )
109 disp(rk);
110 plot(xVerlaufDR(:,end));
111 disp(toc);
112 end

The file EpiNorm.m solves the extended location problem (5. 6). The projection onto the
epigraph of the weighted norm is determined by the file projection weighted sum.m.

1 % parallel splitting algorithm
2 clearvars −except xnormDR xVerlaufDR
3 clc
4 close all
5 pause(1.0)
6

7 nIterations = 25000; % define the number of iterations
8

9 maxBoundFromOpt = 1e−3; % maximum gap from the optimal solution
10

11 load 'optSol g25 n5.mat' optimalSolution;
12

13 % p is a matrix of given points
14 load 'points g25 dim2.mat' p;
15

16 % w is a matrix of given weights
17 load 'weights g25 n5.mat' w;
18

19 k = size(w,2); % define number of new points
20

21 m = size(p,1); % number of given points
22 d = size(p,2); % dimension of the underlying space
23

24 z = zeros(k,d,m);
25 r = zeros(m,k);
26 y2 = zeros(m,d*k+m*k+1);
27 y3 = zeros(m,k*d+m*k+1);
28 x2new = zeros(k,d*k+m*k+1,m);
29 x3new = zeros(m,k*d+m*k+1);
30 x2tilde = zeros(m,d*k+m*k+1);
31 y2tilde = zeros(m,d*k+m*k+1);
32 % determine a feasible solution as startpoint
33 nrm w = zeros(m,k);
34 for j = 1:k
35 for i = 1:m
36 nrm w(i,j) = w(i,j)*norm(p(i,:));
37 end
38 end
39

40 nrm w vec = reshape(nrm w,[m*k,1])';
41

42 sum nrm w = zeros(m,1);
43

44 for i = 1:m
45 sum nrm w(i) = sum(nrm w(i,:));
46 end
47
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48 max sum nrm w = max(sum nrm w);
49

50 startPoint = [zeros(1,k*d) nrm w vec max sum nrm w]; % vector of dimension ...
k*d+m*k+1

51

52 % startpoint is a feasible solution
53 x1 = startPoint;
54

55 x2 = zeros(k,d*k+m*k+1,m);
56 for j = 1:k
57 for i = 1:m
58 x2(j,:,i) = startPoint;
59 end
60 end
61

62 x3 = zeros(m,d*k+m*k+1);
63 for i = 1:m
64 x3(i,:) = startPoint;
65 end
66

67 nu = 33; % specify the parameter nu of the algorithm
68

69 xnormM = [];
70 xVerlaufM = [];
71 tic
72 for nIter = 1:nIterations
73

74 for i = 1:m
75 x2tilde(i,:) = sum(x2(:,:,i));
76 end
77

78 % sum up x 1, x 2 and x 3 into x
79 x = [x1;x2tilde;x3];
80

81 rk = (1/(m*k+m+1)).*sum(x); % current solution
82

83 xVerlaufM(end+1,:) = rk; % save the current solution
84

85 % calculate the proximal point of f 1
86 y1 = x1−[zeros(1,k*d+m*k) nu];
87

88 % calculate the proximal points of f 2,...f k*d
89 for j = 1:k
90 for i = 1:m
91 C = zeros(d,k*d);
92 for l = 1:k
93 if (l == j)
94 C(:,d*(l−1)+1:d*(l−1)+d) = eye(d);
95 end
96 end
97

98 X 2 = reshape(x2(j,k*d+1:k*d+m*k,i),[k,m])';
99

100 % calculate the projection onto the epigraph of the weighted norm
101 [z(j,:,i), r(i,j)] = ...

projection weighted sum(w(i,j),(C*x2(j,1:k*d,i)')'−p(i,:),X 2(i,j));
102 z(j,:,i) = z(j,:,i)+p(i,:);
103 teta = reshape(x2(j,1:k*d,i),[d,k])';
104 zeta = reshape(x2(j,k*d+1:k*d+k*m,i),[k,m])';
105 teta(j,:) = z(j,:,i);
106 zeta(i,j) = r(i,j);
107 y2(j,:,i) = [reshape(teta',[1,k*d]) reshape(zeta',[1,m*k]) ...

x2(j,k*d+k*m+1,i)];
108 end
109 end
110

111 % calculate the proximal points of f k*d+1,...f k*d+k*m+1
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112 for j = 1:m
113 a = [zeros(1,m*k), −1];
114 for i = 1:m
115 if i == j
116 a(1,k*(i−1)+1:k*(i−1)+k) = ones(1,k);
117 end
118 end
119

120 if (dot(a,x3(j,k*d+1:k*d+m*k+1)) <= 0)
121 y3(j,:) = x3(j,:);
122 elseif (dot(a,x3(j,k*d+1:k*d+m*k+1)) > 0)
123 u = norm(a)ˆ2;
124 u tilde = dot(a,x3(j,k*d+1:k*d+m*k+1));
125 y3(j,:)=[x3(j,1:k*d) (x3(j,k*d+1:k*d+m*k+1)−(u tilde/u).*a)];
126 end
127 end
128

129

130

131 for i = 1:m
132 y2tilde(i,:) = sum(y2(:,:,i));
133 end
134

135

136 y = [y1;y2tilde;y3];
137

138 q = (1/(m*k+m+1)).*sum(y);
139

140 x1new = x1 + 2.*q − rk − y1;
141 x1 = x1new;
142

143 for j = 1:k
144 for i = 1:m
145 x2new(j,:,i) = x2(j,:,i) + 2.*q − rk − y2(j,:,i);
146 x2(j,:,i) = x2new(j,:,i);
147 end
148 end
149

150 for i = 1:m
151 x3new(i,:) = x3(i,:) + 2.*q − rk − y3(i,:);
152 x3(i,:) = x3new(i,:);
153 end
154

155 % if the gap between the current solution and the optimal solution is small ...
enough, stop and display current solution

156 xnormM(end+1,:) = norm(rk(1:d*k)−optimalSolution);
157 if (norm(rk(1:d*k)−optimalSolution) <= maxBoundFromOpt)
158 disp(rk);
159 semilogx(xVerlaufDR(:,end));
160 hold on;
161 semilogx(xVerlaufM(:,end));
162 figure
163 plot(xnormDR(:,end));
164 hold on;
165 plot(xnormM(:,end));
166 disp(toc);
167 break;
168 end
169

170 end
171 toc
172

173 xVerlaufM(end+1,:) = rk;
174 xnormM(end+1,:) = norm(rk(1:d*k)−optimalSolution);
175 % if the defined number of iterations is reached, display current solution
176 if ( nIter == nIterations )
177 disp(rk);
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178 plot(xVerlaufM(:,end));
179 disp(toc);
180 end

In the next we document which files were used for solving the location problem (5. 5) in the
case where wi = 1 and βi = 2 for all i = 1, ..., n.

The file projection squared sum.m calculates the projection onto the epigraph of the sum
of squared norms.

1 % calculate the projection onto the epigraph of the sum of squared norms
2 function [x,t] = projection squared sum(y,xi)
3 h = zeros(1,size(y,1));
4 for j = 1:size(y,1)
5 h(j) = norm(y(j,:))ˆ2;
6 end
7 x = zeros(size(y,1),size(y,2));
8 if ( sum(h) <= xi )% check whether (y,xi) is an element of the epigraph
9 for j = size(y,1)

10 x(j,:) = y(j,:);
11 end
12 t = xi;
13 else% if (y,xi) is not an element of the epigraph, define a, b, c, d
14 a = 1;
15 b = (1+xi);
16 c = (1/4)*(1+4*xi);
17 d = (1/4)*(xi−sum(h));
18 p = [a b c d];
19 r = roots(p);% determine the roots of the cubic equation with the ...

coefficients a, b, c, d
20 for i=1:3
21 if (r(i) > 0)% find the unique positive root
22 g = r(i);
23 end
24 end
25 % calculate the projection (x,t)
26 for j = size(y,1)
27 x(j,:) = (1/((2*g)+1))*y(j,:);
28 end
29 t = xi+g;
30 end
31 end

The file squaredEpiSumNorm.m solves the location problem (5. 5). In the step where
the projection onto the epigraph of the sum of squared norms is calculated the file projec-
tion squared sum.m is used.

1 % parallel splitting algorithm
2 clear all
3 clc
4 close all
5 pause(1.0)
6

7 nIterations = 25000; % define the maximum number of iterations
8

9 maxBoundFromOpt = 1e−3; % maximum gap from the optimal solution
10

11 load 'squared optSol g25 n5.mat' optimalSolution;
12

13 % p is a matrix of given points
14 load 'points g25 dim2.mat' p;
15

16 k = 5; % set number of new points
17
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18 m = size(p,1); % number of given points
19 d = size(p,2); % dimension of the underlying space
20

21 a = zeros(1,m+1);
22 x = zeros(m+1,k*d+1);
23

24 % determine a feasible solution as startpoint
25 v = zeros(1,m);
26 for i = 1:m
27 v(i) = k*norm(p(i,:))ˆ2;
28 end
29 vtilde = max(v(:));
30 startPoint = [zeros(1,k*d), vtilde]; % vector of dimension k*d+1
31

32 nu = 7; % specify the parameter nu of the algorithm
33

34 for i=1:m+1
35 x(i,:) = startPoint; % startpoint x 0 is a feasible solution
36 end
37

38 z = zeros(1,k*d);
39 xVerlaufDR = [];
40 xnormDR = [];
41 ptilde = zeros(k,d);
42 tic
43 for nIter = 1:nIterations
44

45 rk = (1/(m+1)).*sum(x); % current solution
46 xVerlaufDR(end+1,:) = rk; % save the current solution
47

48 y = zeros(m+1,k*d+1);
49 y(1,:) = x(1,:)−[zeros(1,k*d) nu]; % save the current solution
50

51 % calculate the proximal points of f 2,...f m+1
52 for i = 2:m+1
53 % create a matrix, where the row vectors are copies of the associated ...

given point
54 for j = 1:k
55 ptilde(j,:) = p(i−1,:);
56 end
57

58 ptildeStar = reshape(ptilde',[d*k,1])'; % rewrite the matrix ptilde as a ...
row vector

59

60 % calculate the projection onto the epigraph of the sum of squared norms
61 [z(:,:),y(i,d*k+1)] = ...

projection squared sum(x(i,1:k*d)−ptildeStar,x(i,k*d+1));
62 y(i,1:d*k) = ptildeStar + z(:,:);
63 end
64

65 q = (1/(m+1)).*sum(y);
66

67 xnew = zeros(m+1,k*d+1);
68

69 for i=1:m+1
70 xnew(i,:) = x(i,:) + 2.*q − rk − y(i,:);
71 end
72

73 x = xnew;
74 % if the gap between the current solution and the optimal solution is small ...

enough, stop and display current solution
75 xnormDR(end+1,:) = norm(rk(1:d*k)−optimalSolution);
76 if (norm(rk(1:d*k)−optimalSolution) <= maxBoundFromOpt)
77 disp(rk);
78 semilogx(xVerlaufDR(:,end));
79 figure
80 plot(xnormDR(:,end));
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81 disp(toc);
82 break;
83 end
84

85 end
86 toc
87 xVerlaufDR(end+1,:) = rk;
88

89 % if the defined number of iterations is reached, display current solution
90 if (nIter == nIterations)
91 disp(rk);
92 %disp(['x1 = ' num2str(rk(1)) ' x2 = ' num2str(rk(2)) ' x3 = ' ...

num2str(rk(3)) ' x4 = ' num2str(rk(4)) ' t = ' num2str(rk(5)) ' ...
iterations: ' num2str(nIterations) ' gamma = ' num2str(g)]);

93 disp(toc);
94 plot(xVerlaufDR(:,end));
95 hold on;
96 end

The file squaredEpiNorm.m solves the location problem (5. 6), where the projection onto
the epigraph of the squared norm is calculated by the m-file projection squared sum.m.

1 % parallel splitting algorithm
2 clearvars −except xVerlaufDR xnormDR
3 clc
4 close all
5 pause(1.0)
6

7 nIterations = 25000; % define the number of iterations
8

9 maxBoundFromOpt = 1e−3; % maximum gap from the optimal solution
10

11 load 'squared optSol g25 n5.mat' optimalSolution;
12

13 % p is a matrix of given points
14 load 'points g25 dim2.mat' p;
15

16 k = 5; % set number of new points
17

18 m = size(p,1); % number of given points
19 d = size(p,2); % dimension of the underlying space
20

21 % determine a feasible solution as startpoint
22

23 nrm2 p = zeros(m,k);
24 for j = 1:k
25 for i = 1:m
26 nrm2 p(i,j) = norm(p(i,:))ˆ2;
27 end
28 end
29

30 nrm2 vec = reshape(nrm2 p,[m*k,1])';
31

32 sum nrm2 = zeros(1,m);
33 for i = 1:m
34 sum nrm2(i) = sum(nrm2 p(i,:));
35 end
36

37 max sum nrm2 = max(sum nrm2);
38

39 startPoint = [zeros(1,k*d) nrm2 vec max sum nrm2]; % vector of dimension k*d+m*k+1
40

41 % startpoint is a feasible solution
42 x1 = startPoint;
43

44 x2 = zeros(k,k*d+m*k+1,m);
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45 for j=1:k
46 for i=1:m
47 x2(j,:,i)=startPoint;
48 end
49 end
50

51 x3 = zeros(m,k*d+m*k+1);
52 for i=1:m
53 x3(i,:) = startPoint;
54 end
55

56 nu = 7; % specify the parameter nu of the algorithm
57

58 z = zeros(k,d,m);
59 r = zeros(m,k);
60

61 y2 = zeros(m,d*k+m*k+1);
62 y3 = zeros(m,k*d+m*k+1);
63 x2new = zeros(k,d*k+m*k+1,m);
64 x3new = zeros(m,k*d+m*k+1);
65 x2tilde = zeros(m,d*k+m*k+1);
66 y2tilde = zeros(m,d*k+m*k+1);
67

68 xnormM = [];
69 xVerlaufM = [];
70

71 tic
72 for nIter = 1:nIterations
73 % sum up x 1, x 2 and x 3 into x
74 for i = 1:m
75 x2tilde(i,:) = sum(x2(:,:,i));
76 end
77

78 % sum up x 1, x 2 and x 3 into x
79 x = [x1;x2tilde;x3];
80

81 rk = (1/(m*k+m+1)).*sum(x); % current solution
82

83 xVerlaufM(end+1,:) = rk; % save the current solution
84

85 % calculate the proximal point of f 1
86 y1 = x1−[zeros(1,k*d+m*k) nu];
87

88 % calculate the proximal points of f 2,...f k*d
89 for j = 1:k
90 for i = 1:m
91 C = zeros(d,k*d);
92 for l = 1:k
93 if (l == j)
94 C(:,d*(l−1)+1:d*(l−1)+d) = eye(d);
95 end
96 end
97

98 X 2 = reshape(x2(j,k*d+1:k*d+m*k,i),[k,m])';
99

100 % calculate the projection onto the epigraph of the squared norm
101 [z(j,:,i), r(i,j)] = ...

projection squared sum((C*x2(j,1:k*d,i)')'−p(i,:),X 2(i,j));
102

103 z(j,:,i) = z(j,:,i)+p(i,:);
104 teta = reshape(x2(j,1:k*d,i),[d,k])';
105 zeta = reshape(x2(j,k*d+1:k*d+k*m,i),[k,m])';
106 teta(j,:) = z(j,:,i);
107 zeta(i,j) = r(i,j);
108 teta tilde = reshape(teta',[1,k*d]);
109 zeta tilde = reshape(zeta',[1,m*k]);
110 u tilde = [teta tilde zeta tilde x2(j,k*d+k*m+1,i)];
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111 y2(j,:,i) = u tilde;
112 end
113 end
114

115 % calculate the proximal points of f k*d+1,...f k*d+k*m+1
116 for j = 1:m
117 a = [zeros(1,m*k), −1];
118 for i = 1:m
119 if i == j
120 a(1,k*(i−1)+1:k*(i−1)+k) = ones(1,k);
121 end
122 end
123

124 if (dot(a,x3(j,k*d+1:k*d+m*k+1)) <= 0)
125 y3(j,:)=x3(j,:);
126 elseif (dot(a,x3(j,k*d+1:k*d+m*k+1)) > 0)
127 u = norm(a)ˆ2;
128 u tilde = dot(a,x3(j,k*d+1:k*d+m*k+1));
129 y3(j,:) = [x3(j,1:k*d) (x3(j,k*d+1:k*d+m*k+1)−(u tilde/u).*a)];
130 end
131

132 end
133

134 for i = 1:m
135 y2tilde(i,:) = sum(y2(:,:,i));
136 end
137

138 y = [y1;y2tilde;y3];
139

140 q = (1/(m*k+m+1)).*sum(y);
141

142 x1new = x1 + 2.*q − rk − y1;
143 x1 = x1new;
144

145 for j = 1:k
146 for i = 1:m
147 x2new(j,:,i) = x2(j,:,i) + 2.*q− rk − y2(j,:,i);
148 x2(j,:,i) = x2new(j,:,i);
149 end
150 end
151

152 for i = 1:m
153 x3new(i,:) = x3(i,:) + 2.*q − rk − y3(i,:);
154 x3(i,:) = x3new(i,:);
155 end
156 % if the gap between the current solution and the optimal solution is small ...

enough, stop and display current solution
157 xnormM(end+1,:) = norm(rk(1:d*k)−optimalSolution);
158 if ( norm(rk(1:d*k)−optimalSolution) <= maxBoundFromOpt )
159 disp(rk);
160 semilogx(xVerlaufDR(:,end));
161 hold on;
162 semilogx(xVerlaufM(:,end));
163 figure
164 plot(xnormDR(:,end));
165 hold on;
166 plot(xnormM(:,end));
167 disp(toc);
168 break;
169 end
170

171 end
172 toc
173

174 xVerlaufM(end+1,:) = rk;
175

176 % if the defined number of iterations is reached, display current solution
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177 if (nIter == nIterations)
178 disp(rk);
179 plot(xVerlaufM(:,end));
180 disp(toc);
181 end



Theses

1. The multi-composed optimization problem

(PC) inf
x∈A

(f ◦ F 1 ◦ ... ◦ Fn)(x),

A = {x ∈ S : g(x) ∈ −Q}

is introduced, where

� Z is a Hausdorff locally convex space partially ordered by the convex cone Q ⊆ Z and
Xi is a Hausdorff locally convex space partially ordered by the convex cone Ki ⊆ Xi

for i = 0, ..., n− 1,

� S is a non-empty subset of the Hausdorff locally convex space Xn,

� f : X0 → R is proper and K0-increasing on F 1(domF 1) +K0 ⊆ dom f ,

� F i : Xi → Xi−1 is proper and (Ki,Ki−1)-increasing on
F i+1(domF i+1) +Ki ⊆ domF i for i = 1, ..., n− 2,

� Fn−1 : Xn−1 → Xn−2 = Xn−2 is proper and (Kn−1,Kn−2)-increasing on Fn(domFn∩
A) +Kn−1 ⊆ domFn−1,

� Fn : Xn → Xn−1 = Xn−1 is a proper function and

� g : Xn → Z is a proper function fulfilling S∩g−1(−Q)∩((Fn)−1◦...◦(F 1)−1)(dom f) 6=
∅.

To (PC) a corresponding conjugate dual problem (DC) is constructed, where the conjugates
of the functions involved in the objective function of (PC) are split in the formulation of the
dual (DC)

sup
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

{
inf
x∈S
{〈z(n−1)∗, Fn(x)〉+ 〈zn∗, g(x)〉} − f∗(z0∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

}
.

For the primal-dual pair (PC)-(DC) we prove weak duality and formulate associated regular-
ity conditions of interiority type guaranteeing strong duality, the situation when the optimal
objective values of the two problems are equal and the dual has an optimal solution. In this
context we give necessary and sufficient optimality conditions by using conjugate functions
and subdifferentials. This approach generalizes the results from the literature and opens a
new way to investigate optimization problems.

As an application an optimization problem having as objective function the sum of reciprocals
of concave functions is presented (see also [79]).

2. As a further application of the previous approach, we consider the unconstrained version of
(PC) and add a linear continuous functional to the objective function to derive a formula
of the conjugate of the function γ = f ◦ F 1 ◦ ... ◦ Fn : Xn → R, where the conjugates of
the involved functions in γ are decomposed. We use the conjugate of γ to calculate also a
formula for its biconjugate function, which reveals an alternative representation for γ.

133
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3. We consider nonlinear single minimax location problems with geometric constraints of the
form

(PSh,a) inf
x∈S

max
1≤i≤n

{hi(γCi(x− pi)) + ai},

where S is a non-empty, closed and convex subset of the Fréchet space X and for i = 1, ..., n,
ai ∈ R+ are non-negative set-up costs, pi ∈ X are distinct points , Ci are closed and convex
subsets of X such that 0X ∈ intCi, γCi : X → R are gauge functions of Ci and hi : R→ R,
defined by

hi(x) :=

{
hi(x) ∈ R+, if x ∈ R+,

+∞, otherwise,

are proper, convex, lower semicontinuous and increasing functions on R+. By using the
results from the first part of this thesis, we attach to (PSh,a) a conjugate dual problem (DS

h,a)

sup
λi, z

0∗
i ≥0, z1∗i ∈X

∗, i=1,...,n,

I={i∈{1,...,n}:z0∗i >0}⊆R={r∈{1,...,n}:λr>0},
γ
C0
i
(z1∗i )≤z0∗i ,i∈I, z1∗j =0X∗ , j /∈I,

∑
r∈R

λr≤1

{
inf
x∈S

{∑
i∈I
〈z1∗i , x− pi〉

}
−
∑
r∈R

λr

[
h∗r

(
z0∗r
λr

)
− ar

]}

and prove strong duality in this framework. This approach allows us to formulate more
detailed necessary and sufficient optimality conditions expressed via conjugate functions,
dual gauges, subdifferentials and normal cones.

Moreover, we consider the primal-dual pair (PSh,a)-(DS
h,a) in different settings and show in this

way further connections between these two problems. For the situation when the underlying
space is a Hilbert space, the subset S is the whole space and the distances are measured by
the norm defined by the scalar product of the Hilbert space we give a formula which provides
the optimal solution of the primal problem from the optimal solution of the dual.

In addition, we present for the linear single minimax location problem a second dual problem
reducing the number of dual variables compared with the first formulated one. Then, we give
in the framework of the Euclidean space without constraints a geometrical interpretation of
the set of optimal solutions of this dual and show that its Lagrange dual problem coincides
with the original location problem (see also [81]).

4. We consider the extended multifacility location problem in a more general setting as intro-
duced by Drezner in [35] (see also [30,67]):

(EPMa ) inf
(x1,...,xm)∈Xm

max
1≤i≤n


m∑
j=1

γCij (xj − pi) + ai

 ,

where X is a Fréchet space, ai ∈ R+ are non-negative set-up costs, pi ∈ X are distinct
points and γCij : X → R are gauges defined by closed and convex subsets Cij of X such
that 0X ∈ intCij , i = 1, ..., n, j = 1, ...,m. We show that (EPMa ) can be rewritten as a
single minimax location problem and apply the previous results to formulate a corresponding
conjugate dual problem

(EDM
a ) sup

(z0∗1 ,...,z0∗n ,z1∗1 ,...,z1∗n )∈C

−∑
i∈I

〈 m∑
j=1

z1∗ij , pi

〉
− z0∗i ai

 ,
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where

C =

{
(z0∗1 , ..., z0∗n , z

1∗
1 , ..., z1∗n ) ∈ Rn+ × (X∗)m × ...× (X∗)m : I =

{
i ∈ {1, ..., n} : z0∗i > 0

}
z1∗kj = 0X∗ , k /∈ I, γC0

ij
(z1∗ij ) ≤ z0∗i , i ∈ I,

∑
i∈I

z1∗ij = 0X∗ , j = 1, ...,m,
∑
i∈I

z0∗i ≤ 1

}

as well as associated necessary and sufficient optimality conditions.

Further, we study the scenario in the Hilbert spaceH where the weights have a multiplicative
structure (see [30]) and present a second dual problem for which we give a geometrical
interpretation of the set of optimal solutions when H = Rd (see [80]).

5. Via our approach for multi-composed optimization problems we assign a conjugate dual
problem (DM ) to the following multifacility minimax location problem

(PM ) inf
(x1,...,xm)∈S

max
{
wjkγCjk(xj − xk), jk ∈ V, w̃jiγC̃ji(xj − pi), ji ∈ Ṽ

}
,

where X is a Fréchet space, pi ∈ X, i = 1, ..., t, are distinct points, Cjk ⊆ X with 0X ∈
intCjk for jk ∈ V := {jk : 1 ≤ j ≤ m, 1 ≤ k ≤ m, j 6= k, wjk > 0}, and C̃ji ⊆ X with

0X ∈ int C̃ji for ji ∈ Ṽ := {1 ≤ j ≤ m, 1 ≤ i ≤ t, w̃ji > 0}, be closed and convex, S ⊆ Xm

non-empty, closed and convex as wells as γCjk : X → R, jk ∈ V , and γC̃ji : X → R, ji ∈ Ṽ ,

be gauges. We show that strong duality holds between (PM ) and its dual

(DM ) sup
(z0∗,z̃0∗,z1∗,z̃1∗)∈B

inf
x∈S

{ ∑
jk∈I
〈z1∗jk , Ajkx〉+

∑
ji∈Ĩ
〈z̃1∗ji , Bjix− pi〉

}
,

with

B =

{
(z0∗, z̃0∗, z1∗, z̃1∗) ∈ R|V |+ × R|Ṽ |+ × (X∗)|V | × (X∗)|Ṽ | : I =

{
jk ∈ V : z0∗jk > 0

}
,

Ĩ =
{
ji ∈ Ṽ : z̃0∗ji > 0

}
, z1∗ef = 0X∗ , ef /∈ I, γC0

jk
(z1∗jk) ≤ z0∗jk , jk ∈ I,

z̃1∗ed ∈ 0X∗ , ed /∈ Ĩ , γC̃0
ji

(z̃1∗ji ) ≤ z̃0∗ji , ji ∈ Ĩ ,
∑
jk∈I

1
wjk

z0∗jk +
∑
ji∈Ĩ

1
w̃ji

z̃0∗ji ≤ 1

}
,

where Ajk, jk ∈ I, and Bji, ji ∈ Ĩ, are linear mappings and present necessary and sufficient
optimality conditions using conjugate functions, dual gauges, subdifferentials and normal
cones.

Apart from this approach we introduce a second dual problem reducing the number of
constraints and dual variables compared with (DM ) and give a geometrical interpretation
for the set of optimal solutions of this dual for S = X = Rd. In the context of this dual we
also demonstrate that the bidual of (PM ) is identical to (PM ) (see also [82]).

6. For solving extended multifacility location problems in Hilbert spaces Hi, i = 1, ..., n, nu-
merically by proximal methods we present first a general formula of the projection onto the
epigraph of the function h : H1 × ...×Hn → R, defined by h(x1, ..., xn) :=

∑n
i=1 wi‖xi‖

βi
Hi .

We consider the situations when βi = 1, i = 1, ..., n, and wi = 1, βi = 2, i = 1, ..., n, where
the formulae given for instance in [2, 28, 29] turn out to be special cases for n = 1 of our
considerations.

Moreover, we develop a formula for the projection onto the epigraph of a gauge function
γC : X → R of a closed and convex set C ⊆ H with 0H ∈ C. As a consequence, we derive a
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formula for the projection onto the epigraph of the gauge of a closed and convex cone as well
as the sum of gauges. Finally, two examples are considered to demonstrate how the latter
formula can be used to determine the projector.

7. We apply the formula for the projection onto the epigraph of the weighted sum of powers
of norms for solving extended multifacility location problems numerically by the parallel
splitting algorithm and compare our method with the one presented in [30], where the
formula of the projection onto the epigraph of the weighted power of norm is required. The
numerical tests show that our method clearly outperforms the one proposed in [30] from the
viewpoints of accuracy, CPU speed and number of iterations.
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[8] R. I. Boţ, S.-M. Grad, G. Wanka: New Constraint Qualification and Conjugate Duality for
Composed Convex Optimization Problems. Journal of Optimization Theory and Applications
135(2), 241-255, 2007.
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