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Report

The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the
conjugate duality by proposing a new duality concept, which can be understood as an umbrella
for different meaningful perturbation methods. On the other hand, this thesis aims to investigate
minimax location problems by means of the duality concept introduced in the first part of this
work, followed by a numerical approach using epigraphical splitting methods.

After summarizing some elements of the convex analysis as well as introducing important results
needed later, we consider an optimization problem with geometric and cone constraints, whose
objective function is a composition of n + 1 functions. For this problem we propose a conjugate
dual problem, where the functions involved in the objective function of the primal problem are
decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong
duality and give necessary and sufficient optimality conditions. As applications of this approach
we determine the formulae of the conjugate as well as the biconjugate of the objective function of
the primal problem and analyze an optimization problem having as objective function the sum of
reciprocals of concave functions.

In the second part of this thesis we discuss in the sense of the introduced duality concept three
classes of minimax location problems. The first one consists of nonlinear and linear single minimax
location problems with geometric constraints, where the maximum of nonlinear or linear functions
composed with gauges between pairs of a new and existing points will be minimized. The version
of the nonlinear location problem is additionally considered with set-up costs. The second class
of minimax location problems deals with multifacility location problems as suggested by Drezner
(1991), where for each given point the sum of weighted distances to all facilities plus set-up costs
is determined and the maximal value of these sums is to be minimized. As the last and third
class the classical multifacility location problem with geometrical constraints is considered in a
generalized form where the maximum of gauges between pairs of new facilities and the maximum
of gauges between pairs of new and existing facilities will be minimized. To each of these location
problems associated dual problems will be formulated as well as corresponding duality statements
and necessary and sufficient optimality conditions. To illustrate the results of the duality approach
and to give a more detailed characterization of the relations between the location problems and
their corresponding duals, we consider examples in the Euclidean space.

This thesis ends with a numerical approach for solving minimax location problems by epi-
graphical splitting methods. In this framework, we give formulae for the projections onto the
epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto
the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the
discussed location problems.
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Chapter 1

Introduction

Conjugate duality is a powerful instrument to analyze optimization problems and has for that
reason a wide range of applications. Over the last couple of years, an important field of applications
arises in areas such as vector variational inequalities [1], facility location theory [75], machine
learning [13], image restoration [15], portfolio optimization [19] and monotone operator theory
[48], to mention only a few of them. In many cases, the objective function of an optimization
problem occurring in the mentioned research areas may be written as a composition of two or
more functions. This presentation makes not only the derivation of duality assertions easier, but
also the handling of optimization problems from the numerical point of view.

But until now there is no duality approach for the more general situation, namely, where
the optimization problem is considered as the minimization of an objective function that is a
composition of more than two functions. The advantage of this consideration is that the objective
function of a certain optimization problem can be split into a certain number of functions to refine
and improve some theoretical and numerical aspects.

Therefore, the goal of this thesis is to consider an optimization problem with geometric and
cone constraints, whose objective function is a composition of n + 1 functions and to deliver a
detailed duality approach for this type of problems. For short, we call such problems multi-
composed optimization problems. In fact, this study is more general than in |7}8,[17}20}23,|55]
and can furthermore be understood as a combination of all kinds of meaningful perturbation
methods. To be more precise, we extended the already existing duality schemes to derive a more
detailed characterization of the set of optimal solutions and to give a unified framework with a
corresponding conjugate dual problem, regularity conditions as well as strong duality statements.
As applications we present the formulae of the conjugate and the biconjugate of a multi-composed
function, i.e. a function that is a composition of n + 1 functions. Moreover, we discuss an
optimization problem having as objective function the sum of reciprocals of concave functions.

The results presented in the first part of this thesis open a new approach to investigating
facility location problems. Such kind of optimization problems are known for their numerous
applications in areas like computer science, telecommunications, transportation and emergency
facilities programming. In the framework of continuous optimization where the distances are
measured by gauges, two kinds of location problems are particularly significant. The first one
consists of the so-called minisum location problems and has the objective to determine a new
point such that the sum of distances between the new and given points is minimal (see [20,23|
361,504,60}63},/66,/68]). The second type contains the so-called minimax location problems, where a
new point is sought such that the maximum of distances between the new and given points will
be minimized (see [38,40L|45}/58,62.|74]). In this work we study more general problems where the
gauges may additionally be composed with a nonlinear function, i.e. we consider besides linear
also nonlinear minimax location problems (see [33] and [44]).

The second class of location problems we consider was proposed in 1991 by Drezner in [35] and
describes the following emergency scenario. A certain number of emergency calls arise and ask for
an ambulance. To each of these demand points an ambulance is sent to load and transport the
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patient to a hospital. The location of the ambulance-station and the hospital must not be necessary
on the same site. This assumption may shorten the response time for the patients, especially for
the farthest one, in the situation when for example a hospital is completely overcrowded or short
of medical supplies. The aim is now to determine the location of the ambulance-station and the
hospital such that the maximum time required before the farthest patient arrives at the hospital
will be minimized. In this case the maximum time is naturally defined as the sum of the travel time
of the ambulance from the ambulance-station to the patient and the travel time to the hospital
plus some set-up costs. Set-up costs like the loading time at the emergency and the unloading
time at the hospital of the patient are few examples to cite.

While Drezner suggested a model for the case of the Euclidean norm, Michelot and Plastria [67]
work in a higher dimensional space where the distances are measured by a norm. In this thesis we
generalize this location model to the situation where the distances are measured by mixed gauges
defined on a Fréchet space. The goal is then to describe these type of location problems in the
framework of the introduced duality concept.

Apart from these two classes of location problems, we also consider a more general and complex
problem, namely, the so-called multifacility minimax location problem (see [39,/67]), which has
attracted less attention in the literature compared to the multifacility minisum location problems
(see [431[561|611[78]). The objective of the multifacility minimax location problems is to determine
several new points such that either the maximum of distances between pairs of new points or the
maximum of distances between new and existing points is minimal.

The last part of this work focuses on solving methods for minimax location problems. In this
context we first present formulae for projectors onto the epigraphs of several sums of powers of
weighted norms as well as onto the epigraphs of gauges. These formulae allow to combine the
epigraphical projection method, developed in 28] for constrained convex optimization problems,
with a parallel splitting algorithm (see [2] and [29]) minimizing a finite sum of functions. To show
the usefulness of the presented formulae we compare our solving method with the one presented
in [30] by Cornejo and Michelot.

Next we give a description of the contents, emphasizing the most important points.

In Chapter [2| we first collect some elements from the field of convex analysis and present
important statements that are used in this thesis. While in Section [2.1| notations and preliminary
results are listed on convex sets, Section [2.2] is dedicated to convex scalar and vector functions.

After introducing the basics, we consider in Chapter [3]a multi-composed optimization problem
with geometric and cone constraints. We give an equivalent formulation of this problem and use
the reformulated optimization problem to construct a corresponding conjugate dual problem to
the main problem, followed by a weak duality theorem. The convenience of this approach is
that the functions involved in the composed objective function of the original problem can be
decomposed in the formulation of the conjugate dual problem or, to formulate it more precisely,
their conjugates.

Section [3.2) is devoted to generalized interior point regularity conditions guaranteeing strong
duality. Moreover, by using the strong duality theorem we formulate some optimality conditions
for the original problem and its corresponding conjugate dual problem. Besides of this approach,
we discover in Section the formula of the conjugate of a multi-composed function. We find
also a formula of its biconjugate function and close this section with a theorem which characterizes
some topological properties of this function.

In Section [3.4] as a further application of our approach, we consider a convex optimization
problem having as objective function the sum of reciprocals of concave functions. For this problem
we formulate a conjugate dual problem and state a strong duality theorem from which we derive
necessary and sufficient optimality conditions. The approach done in this chapter is based on our
paper [79].

In Chapter [4] which is related to our articles [80/81] and [82], we analyze three classes of
location problems starting with some properties of gauge functions in Section .1} Then, we
consider single minimax location problems in Section In Subsection 2.1 we apply the
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approach done in Chapter |3] to nonlinear single minimax location problems with set-up costs in a
Fréchet space and give necessary and sufficient optimality conditions. Further, in Subsection [.2.2]
we consider linear single minimax location problems without set-up costs in a Hilbert space. After
presenting associated duality statements, we describe the relation between the optimal solutions
of the primal problem and its dual. In Subsection [4.2.3] as well as in Subsection the location
problems will be studied in a Fréchet space followed by a characterization to a Hilbert space
endowed with a norm. Here we formulate a second dual problem reducing the number of constraints
and dual variables compared with the first formulated dual problem in the previous sections.

In Section we study extended multifacility location problems introduced by Drezner in [35].
In Subsection we construct corresponding conjugate dual problems and prove strong duality
from which we derive some optimality conditions. Afterwards, we consider a special case of these
location problems where the weights have a multiplicative structure like treated by Michelot and
Plastria in [67] and describe the relation to their conjugate dual problems with norms as distance
measures. In Subsection we also deal with location problems without set-up costs. Besides
of strong duality assertions and optimality conditions we give geometrical characterizations of the
set of optimal solutions of the conjugate dual problem as well as illustrating examples.

The analysis of classic multifacility minimax location problems in Section [£.4] provides duality
statements in the sense of Chapter [8] In concrete terms, this means that we formulate an as-
sociated conjugate dual problem as well as derive necessary and sufficient optimality conditions
in Subsection [4.4.1] Further, we introduce another dual problem reducing the number of dual
variables compared to the first formulated dual problem. Continuing in this vein, we also employ
a duality approach including statements of strong duality and optimality conditions. As the most
location problems are considered in Euclidean spaces, we particularize in Subsection [£.4.2] the lat-
ter case in this context and show that we have a full symmetry between the location problem, its
dual problem and the Lagrange dual problem of the dual problem, which means that the Lagrange
dual is identical to the location problem. Finally, we close this paper with an example showing on
the one hand how an optimal solution of the location problem can be recovered from an optimal
solution of the associated conjugate dual problem and on the other hand how we can geometrically
interpret an optimal dual solution.

Along with a theoretical consideration, we are interested in Chapter [5]in a numerical method
for solving minimax location problems. For this purpose, we present in Section|5.2[some formulae of
projections onto the epigraphs of several sums of powers of weighted norms and onto the epigraphs
of gauges. In Section we first bring the extended multifacility minimax location problem in a
form of an unconstrained optimization problem where its objective function is a sum of functions.
This reformulation allows us then to use the parallel splitting algorithm (see [2,28,/29]) combined
with the formulae from the Section to solve minimax location problems. In addition, we solve
the numerical examples by the method proposed by Cornejo and Michelot in [30], where the sum
of powers of weighted norms is split such that the formulae of the projectors onto the epigraphs of
the powers of weighted norms are relevant. This splitting scheme makes it necessary to introduce
additional variables, which in turn goes at the expense of the numerical performance. It is shown
that the parallel splitting algorithm combined with the presented projection formulae performs
very well on these kind of location problems and outperforms the method given in [30].
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CHAPTER 1.

INTRODUCTION



Chapter 2

Notations and preliminary results

This chapter serves as an introduction and aims to make this thesis as self-contained as possible.
We introduce here basic notions from the convex analysis and give important statements on
convex sets, convex scalar and vector functions. For readers interested in convex analysis we refer
to [7124,/37,/57.[70,/83L[34].

2.1 Convex sets

Let X be a Hausdorff locally convex space and X* its topological dual space endowed with the
weak™® topology w(X™*,X). For x € X and z* € X*, let (z*,z) := 2*(z) be the value of the linear
continuous functional z* at x.
A set K C X is called convez if it holds Az + (1 — N)y € K for all z,y € K and X € [0,1] and
if K additionally satisfies the condition AK C K for all A > 0, then K is said to be a convez cone.
Given a set S C X and x € X, then the normal cone to S at x, defined by

Ng(@)={a" e X*: (2", y—T) <0V yeS}

is a convex cone.

Consider a convex cone K C X, which induces on X a partial ordering relation “<k”, defined
by Ski={(z,y) e X x X :y—2x € K}, ie forxz,y € X it holds x S y < y—x € K. Note
that we assume that all cones we consider contain the origin, which we denote by 0x. Further, we
attach to X a greatest element with respect to “<y”, denoted by +oog, which does not belong
to X and denote X = X U {+oox}. Then it holds x <x +oog for all z € X. We write z <f vy if
and only if  Sx y and = # y. Further, we write g, =:< and <p, =:<.

On X we consider the following operations and conventions: z+(+00k) = (+00k )+ := +0o0k
for all z € X U {+ocok} and A - (+o0k) := +ook for all A € [0,+00]. Further, K* := {z* €
X*: (z*,x) > 0forall z € K} is the dual cone of K and we take by convention (z*, +oog) := 400
for all * € K*. By a slight abuse of notation we denote the extended real space R = R U {400}
and consider on it the following operations and conventions: A 4+ (+00) = (4+00) + A := 400 for
all A € [—o00,+00], A+ (—00) = (—00) + A := —oo for all A € [—00, +00), A-(+00) := 400 for all
A € [0, 400], A-(4+00) := —oo for all A € [—00,0), A-(—00) := —oo for all A € (0, +o0], A-(—o0) :=
+oo for all A € [—00,0) and 0(—oc0) := 0.

For a set S C X the conic hull is defined by cone(S) := {\x : « € S, A > 0}. Further, the
prefix int we use to denote the interior of a set S C X, while the prefixes cl, ri, core and sqri
are used to denote the closure, relative interior, algebraic interior and the strong quasi relative
interior, respectively, where in the case of having a convex set S C X it holds (see [31])

core(.S) {z € S:cone(S—1z)=X},

sqri(S) = {xz € S:cone(S —x) is a closed linear subspace}.

13
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Note that if cone(S — ) is a linear subspace, then x € S.
The next statement was given in [5] for the quasi relative interior, qri(S) = {z € S :
cl(cone(S — x)) is a linear subspace}, we show the validity for the strong quasi relative interior.

Lemma 2.1. Let A C X and B C Z be non-empty convex subsets. Then, it holds
Oxxz € sqri(A x B) < 0x € sqri(A) and 0z € sqri(B).
Proof. First, let us recall that if A and B are convex and Ox € A and 0z € B, then
cone(A x B) = cone(A) x cone(B).

Now, let us assume that Oxxz € sqri(A x B), then cone(A x B) is a closed linear subspace of
X x Z, which implies that Oxxz = (0x,0z) € A x B. But this means that cone(A x B) =
cone(A) x cone(B) and hence, cone(A) and cone(B) are closed linear subspaces, i.e. 0x € sqri(A)
and 0z € sqri(B).

On the other hand, let O0x € sqri(A) and 0z € sqri(B), then cone(A) and cone(B) are closed
linear subspaces and so, Ox € A and 0z € B. From here follows that cone(A x B) = cone(A4) x
cone(B) and thus, cone(A x B) is a closed linear subspace, i.e. Oxxz € sqri(4 x B). O

2.2 Convex functions

2.2.1 Scalar functions

For a given function f : X — R we consider its effective domain dom f := {x € X : f(x) <
+oo} and call f proper if dom f # 0 and f(z) > —oo for all z € X. The epigraph of f is
epif = {(z,7) € X x R : f(z) < r}. Recall that a function f : X — R is called convez if
FOz+ (1 =Ny) < Af(z)+ (1 =N f(y) for all z,y € X and all A € [0, 1]. For a subset A C X, its
indicator function 54 : X — R is

Sa(z) = 0, ifx e A,
A=) 400, otherwise,
and its support function o4 : X* — R is 04(z*) = sup,e 4(z*, ).
The conjugate function of f with respect to the non-empty subset S C X is defined by

f5: X" =R, f5(27) = Slelg{<w*7fv> - f(@)}-

In the case S = X, f& turns into the classical Fenchel-Moreau conjugate function of f denoted by
I

A function f : X — R is called lower semicontinuous at T € X if liminf, .z f(x) > f(T) and
when this function is lower semicontinuous at all x € X, then we call it lower semicontinuous
(Ls.c. for short).

Let W C X be a non-empty set, then a function f : X — R is called K -increasing on W, if
from x Sk y follows f(z) < f(y) for all z,y € W. When W = X, then we call the function f
K-increasing.

We also use the notion of subdifferentiability to formulate optimality conditions. If we take an
arbitrary x € X such that f(x) € R, then we call the set

Of (@) :={a" € X" : f(y) — f(x) = (=", y —z) Vy € X}

the (convex) subdifferential of f at x, where the elements are called the subgradients of f at x.
Moreover, if df(z) # 0, then we say that f is subdifferentiable at x and if f(z) ¢ R, then we
make the convention that df(x) := (. Note, that the subgradients can be characterized by the
conjugate function, especially this means

' e df(x) e f(x)+ ff (@) =(z",2) Ve € X, 2" € X", (2. 1)
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i.e. the Young-Fenchel inequality is fulfilled with equality.

Furthermore, let H be a real Hilbert space equipped with the scalar product (-, )3, where the
associated norm || - || is defined by ||y|l% = /{y,y)x for all y € H. Some important results in
Hilbert spaces can be found in Chapter

2.2.2 Vector functions

Let Z be another Hausdorff locally convex space partially ordered by the convex cone Q C Z and
Z* its topological dual space endowed with the weak* topology w(Z*, Z). The domain of a vector
function F : X — Z = Z U {+oog} is dom F := {z € X : F(z) # +o0g}. F is called proper if
dom F # ().

When F(Az + (1 — N)y) Sg AF(z) + (1 — M) F(y) holds for all z,y € X and all A € [0, 1] the
function F' is said to be Q-convez.

The Q-epigraph of a vector function F' is epig F' = {(z,2) € X x Z: F(z) =q 2} and when Q
is closed we say that F is Q-epi closed if epig F' is a closed set.

For a z* € Q* we define the function (2*F) : X — R by (2*F)(z) := (2*,F(z)). Then
dom(z*F') = dom F. Moreover, it is easy to see that if F' is Q-convex, then (z*F') is convex for all
z* € @Q*. Let us point out that by the operations we defined on a Hausdorff locally convex space
attached with a maximal element and on the extended real space, there holds 0f = dqom s and
(OZ*F) = ddom F-

The vector function F is called positively Q-lower semicontinuous at x € X if (2*F) is lower
semicontinuous at z for all z* € @Q*. The function F is called positively Q-lower semicontinuous
if it is positively @Q-lower semicontinuous at every = € X. Note that if F' is positively @Q-lower
semicontinuous, then it is also @-epi closed, while the inverse statement is not true in general
(see: |7, Proposition 2.2.19]). Let us mention that in the case Z = R and @ = R, the notion of
Q-epi closedness falls into the classical notion of lower semicontinuity.

F: X — Z is called (K,Q)-increasing on W, if from = <f y follows F(z) <o F(y) for all
xz,y € W. When W = X, we call this function (K, Q)-increasing.

We give now some statements that will be useful later, beginning with one whose proof is
straightforward.

Lemma 2.2. Let V' be a Hausdorff locally convex space partially ordered by the convexr cone U,
F : X — Z be a proper and Q-convex function and G : Z — V be an U-convex and (Q,U)-
increasing function on F(dom F) C domG with the convention G(+00g) = +ooy. Then the
function (Go F): X — V is U-conver.

Lemma 2.3. (cf. [49]) Let Y be a Hausdorff locally convex space, Q also closed, h: X xY — Z
and F : X — Z proper vector functions and G : Y — Z a continuous vector functions, where h is
defined by h(z,y) := F(x) + G(y). Then F is Q-epi closed if and only if h is Q-epi closed.

Proof.“=": Let (Za,Ya,%a)a C epigh be a net such that (zo,Ya,2a) — (T,7,%). Then
F(2a)+G(ya) < 24 for any a, followed by (2a, 20 —G(Ya))a C epig F and (Yo, G(ya))a C epig G.
Because G is continuous and y, — ¥, it follows that G(y,) — G(¥). Then (24,20 — G(Ya)) —
(T,Z — G(7)) € epig I, because this set is closed. One has then F(7) =q Z — G(7), i.e. (7,7,%) €
epig h. As the convergent nets (za)a, (Ya)a and (24)a were arbitrarily chosen, it follows that
epig h is closed, i.e. his Q-epi closed.

“=": Let (Ta,%a)a C epig F such that (z4,24) — (7,%). Take also (ya)o € Y such that
Yo — - Because G is continuous, one has G(y.) — G(¥). Then (2o, Yo, 2o + G(Ya))a C epig h,
which is closed, consequently (7,7,Z + G(7)) € epig h, i.e. F(T)+ G(Y) =q Z+ G(y). Therefore
F(T) =q Z, i.e. (7,Z) € epip F. As the convergent nets (z4)o and (2q)a were arbitrarily chosen,
it follows that epig I is closed, i.e. F'is Q-epi closed. O

Remark 2.1. Note that a continuous proper vector function G : Y — Z, where Y is a Hausdorff
locally convex space, has a full domain, thus one can directly take G :' Y — Z in this situation.
The question whether the equivalence in Lemma remains valid if one considers a proper vector
function G :' Y — Z that is not necessarily continuous s still open.
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Remark 2.2, If we set Y = Z and G(y) = —y for ally € Y, then Lemma says that F is
Q-epi closed if and only if the vector function defined by (x,y) € X xY — F(x) —y is Q-epi
closed. For this special case a similar statement can be found in [79, Lemma 2.1], but under the
additional hypothesis int Q # 0.



Chapter 3

Lagrange duality for
multi-composed optimization
problems

The goal of this chapter is to consider an optimization problem with geometric and cone con-
straints, whose objective function is a composition of n + 1 functions and to deliver a full duality
approach for this type of problems.

By considering such a multi-composed optimization problem there are several ways to formulate
a corresponding conjugate dual problem where the composed functions involved in the objective
function of the primal problem, or, to be more precise, their conjugates, are separated and to give
associated duality statements.

The first method is the direct applying of the perturbation theory (see [7,37./52.[53}/64,/70]). A
second approach is presented in this chapter and starts in Section by reformulating the primal
problem as an optimization problem with set and cone constraints and continues by using the
Lagrange duality concept. The question is now, which of these two methods is more suitable? It is
shown in Section [3.2] that the second method asks for weaker hypotheses on the involved functions
of the primal problem for guaranteeing strong duality. As applications, we present the formulae
of the conjugate and the biconjugate of a multi-composed function in Section [3.3] i.e. a function
that is a composition of n + 1 functions. Moreover, we discuss in the Section [3.4] an optimization
problem having as objective function the sum of reciprocals of concave functions.

3.1 The multi-composed optimization problem and its con-
jugate dual

As already mentioned, our aim is to formulate a conjugate dual problem to an optimization
problem with geometric and cone constraints having as objective function the composition of
n + 1 functions. In other words, we consider the following problem

(PY) ziréfé‘(foFlo...oF")(x),

A={zeS:g(x) c-Q},

where Z is a Hausdorff locally convex space partially ordered by the convex cone @) C Z and X;
is a Hausdorff locally convex space partially ordered by the convex cone K; C X;,i=0,....,n — 1.
Moreover,

e S is a non-empty subset of the Hausdorff locally convex space X,,,

e f: Xy — Ris proper and Ko-increasing on F'!(dom F') + K, C dom f,

17
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e Fi: X; » X; 1 =X, 1 U{+o0g,_,} is proper and (K;, K;_1)-increasing on
Fil(dom F'™) + K; Cdom F* for i = 1,...,n — 2,

e FP7l i X, 1 = X, 9 = X, 2 U {+00k,_,} is proper and (K, _1, K,_2)-increasing on
F(dom F"NA) + K,,_; C dom F" !,

e F": X, = X1 =X,_1 U {+o0K, _,} is a proper function and
e g: X, — Z is a proper function fulfilling SNg=1(—Q)N ((F*)"to..o(F!)~1)(dom f) # 0.

Additionally, we make the convention that f(+ook,) = +oo and F(+oo0k,) = 40k, ,, i-e.
fZY() — R and F*! yz —)Yifl, t1=1,...,n—1.

Remark 3.1. For the rest of this paper it is preferable to make the following arrangement. In the
situation whenn = 1 we set {1,....,n—1} = {1,....n—2} = 0 and whenn =2, {1,...,n—2} =0. In
particular, this means for the case n = 1 that F' : X1 — X is a proper function and for the case
n =2 that F* : X1 — X is a proper and (K1, Ko)-increasing function on F?(dom F?NA)+K; C
dom F' and F?: Xy — X1 a proper function.

Let us now consider the following problem

(P°) inf (40, ....y"),
(y0,...,y")eA

where

"Z(: {(y0»~-~,yn_1,y”) < X() X ... X anl x S
g(y") € —Q, h'(y',y'"") e —K;_1, i=1,..,n}.

The functions f : Xo X ... x X,, = R and k' : X; x X;_1 — X,;_1 are defined as

FO° oy = f(y") and K(y',y' ™) = F'(y') —y'~ fori=1,....n.
Lemma 3.1. Let (4°,...,y™) be feasible to (PC), then it holds f((F'o...o0 F™)(y™)) < f(y°).

Proof. Let (y°,...,y™) be feasible to (ﬁc)7 then we have
Fn(yn) ganl yn_lv"'vFl(yl) gKo y0~

Moreover, since F"~ ! is (K,,_1, K, _2)-increasing on F™(dom F"NA)+K,,_1 and F*is (K;, K;_1)-
increasing on F*!(dom Fi*t!) + K; for i = 1,...,n — 2, it follows
(F* "o F")(y") Sk, , F" M (y" ") Sk, , y" 2 and so on (Fro...o F*)(y") <k, F'(y') Sk, y°-

Since f is Kg-increasing on F'*(dom F!)+ Kj we get the desired inequality f((F'o...o F™)(y")) <
F@°). O

Remark 3.2. If F™ is an affine function, then it can be useful to set K,,—1 = {0x, _, }, because
in this case F™"~1 does not need to be monotone to ensure the inequality of the previous lemma.

If we denote by v(PC) and v(PC) the optimal objective values of the problems (PY) and (PY),
respectively, then the following relation between the optimal objective values is always true.

Theorem 3.1. It holds v(PC) = v(P°).

Proof. Let = be a feasible element to (P°) and set y* = z, y"~! = F*(y"), y" 2% =
Fr=lyn=1), ., y% = Fl(y'). If there exists an i € {2,...,n} such that Fi(y") ¢ dom F'~!
or F(y!) ¢ dom f or there exists an i € {1,...,n} such that F(y') = +oog,_,, then it obviously
holds f((F!o...o F")(y™)) = 400 > v(PC). Otherwise it holds Fi(y’) — ¢y~ =0 € —K;_; for
it = 1,...,n. Moreover, by the feasibility of y™ it holds g(y™) € —@Q, which implies the feasibility
of (y%,...,y™) to the problem (]30) and f((Flo..o F")(y") = f(3°) = N(yo,...7y”) > v(]sc).



3.1 THE MULTI-COMPOSED PROBLEM 19

Hence it holds f((F! o ..o F™)(y")) > v(P€) for all y" feasible to (PC), which means that
v(PC) > v(PC).

Let now (y°,...,y™) be feasible to (ﬁc) If y° ¢ dom f, then obviously we have v(P¢) <
F(Flo...oF™)(y™) < f(¥°) = F(4°,...,y™) = +00. On the other hand, since (3°, ..., y™) is feasible
to (ISC) it holds hi(y',y'~1) € —K;_; fori =1,...,n (i.e. Fi(y’) —y'~t € —K;_; fori=1,...,n)
and g(y™) € —Q. By Lemmawe have v(PC) < f((F'o...o F")(y™) < f(4°) = F(°, ..., y™)
and by taking the infimum over (3°, ...,5™) on the right-hand side we get v(PC) < v(PC°).

Summarizing, we get the desired result v(P¢) = v(P). O

Remark 3.3. The assumption that f is Ko-increasing on F*(dom F')+ Ky C dom f was made to
allow functions which are not necessarily monotone on their whole effective domain. But in some
situations the inclusion F'(dom F') + Ky C dom f may not be fulfilled. As an ezample consider
the convex optimization problem (PY) in Section .

To overcome these circumstances one can alternatively assume that f is Ko-increasing on
dom f and F'(dom F') C dom f. For the functions F*',....F"~1 one can formulate in the same
way alternative assumptions. To be more precise, we can alternatively ask that F* is (K;, K;_1)-
increasing on dom F* and F**(dom F**) Cdom F', i =1,...n—2, and F" ! is (K, _1,Kn_2)-
increasing on dom F"~1 and F"(dom F™ N A) C dom F"~1. One can observe that under these
alternative assumptions Lemma[3.1] and especially Theorem still hold.

As we have seen by Theorem the problem (P€) can be associated to the problem (P°). In
the next step we want to determine the corresponding conjugate dual problems to the problems
(P¢) and (P©).

As we take a careful look at the optimization problem (ﬁc), we can see that this problem can
be rewritten in the form

(B%)  inf f(5) (1)
e

K

QR

h(

where 7 == (3°,...,y") € X = Xo X ... x Xpn, Z = X, X ... X Xy—1 x Z ordered by K =
Ko X o X Kp_1 XxQ, S :=Xo X ... x Xp_1 xSandﬁ:)?—)Z:ZU{—i—oof(} is defined as

. (hl(y17y0)’ ""hn(yn7yn71)7g(yn))7 if (yz’ylil) 6 dOthl? /L = 17 "'7”7
h(y) = y" € dom g,
+oog otherwise.

Note that by the definition of h* we have
domh! =dom F' x X;_1, i=1,...,n,
which yields _
domh = Xg x dom F' x ... x (dom F" N dom g). (3. 2)

At this point, let us additionally remark that the assumption from the beginning, SN g~!(—-Q) N
(F)~to...o(FYH~Y(dom f) # 0, implies also that dom f NS NA~1(—K) # (), but the inverse is
not true. This means
SNg T (=Q)N((F") " oo (FH) ™) (dom f) # 0
<30yt .y y™) €dom f x X x ... x X,,_1 x S such that
Fi(y') =y’ =0€ —Ko, .. F"(y") —y" ' =0 € —K,_1 and g(y") € —Q
=37 € SNdom f such that h(j) € —K
sdom fNSNh Y (—K) #0.
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The corresponding Lagrange dual problem (50) with 2% := (20%, ..., 2(n=1* 2n%) ¢ K* = K} x
.. X K¥_ x Q" as the dual variable to the problem (P¢) is

(D) sup inf {f(@) + (Z, @)},

ZreK* YeS

which can equivalently be written as

(DY) sup inf {f(yo, o)+ Y ETI Ry ) + <Z”*,g(y")>} :

nreQr, sireny ViES viEX:
Through the definitions we made above for fand h* and since we set ¢ = y”, we can deduce the
conjugate dual problem (D) to problem (P¢)

(DY) sup inf {f(yo) + (T F () =yt + (2 g(@)+

2MECQ*, zi*EKi* .7:‘63, yiEX,L'

o 1 i=0,...,n—1
=0,...,

n—1
> (U Fiy') — yH)}
i=1

= sup { inf (=D Fr(a)) + (=", g(@))} — sup {(2%%,5°) — f(y°)}—
2MFeQ*, 21,*51(;:*’ reS yOEXO
i=0,..., n—1

n_l . . . . .
> sup {(2",y") — <Z(”)*,F1(yl)>}}-
i=1 yieX,
Hence, the conjugate dual problem (D) to problem (P®) has the following form

(DY) sup { inf {(z("1%, F () + (", g(2))} — (%)
MreQr, HteK, zeS
1=0,..., n—1

_nzl(z(il)*Fi)*(Zi*)}. (3. 3)

i=1
The optimal objective values of the problems (D) and (D) are of course equal, i.e. v(DC) =

v(DY). The next result arises from the definition of the dual problem and is always fulfilled.

Theorem 3.2 (weak duality). Between the primal problem (P) and its conjugate dual problem
weak duality always holds, i.e. v(P) > v(DY).

Proof. By Theorem 3.1.1 in [7] it holds v(P) > v(D). Moreover, by Theorem [3.1| and since
v(DY) = v(D®) we have v(P¢) = v(P®) > v(D) = v(D°). O

Remark 3.4. Let Z; be a locally convex Hausdor(f space partially ordered by the non-empty convex
cone Q;, 1 = 0,....,n — 1. Then the introduced concept covers also optimization problems of the
form

cC :
(P77) inf o(x),

with

L:={zecS:(G'o..0G")(z) € —Qo},
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where ¢ : X,, — R is proper, G* : Z; — Z;_, is proper and (Q;, Qi—1)-increasing on G (dom G+
Q; CdomG?,i=1,...,n—1, and G" : X,, — Z,,_1 is proper. The problem (PYY) can equivalently
be rewritten as

(PCC) xle%gn{(p(x) +ds(x) + (6—_g, © G'o..oG")(z)}

and by setting Xo : =R x Zy, Kg:=Ry xQo, X; =R x Z;, K; :=Ry xQ;,i=1,...,n—1 and
by defining the following functions

o f:Xo xR, f(y°) ==} +0-q,(18) with y* = (4}, y3) € Xo,
o F': Xi— Xio1, F'(yh, ) = (01, G*(12)), i =1,...n— L with y' = (y1,45) € X;,
o F": Xp = Xno1, F'(z) = (p(2) + ds(2), G"(2)),

the problem (PYC) turns into a special case of the problem (PC)

(P°) xier}gn(f oFlo..oF")(x)

with A= X,,.

3.2 Regularity conditions, strong duality and optimality
conditions

In this section we want to characterize strong duality through the so-called generalized interior
point regularity conditions. Besides we provide some optimality conditions for the primal problem
and its corresponding conjugate dual problem. For this purpose we additionally assume for the rest
of this chapter that S C X, is a convex set, f is a convex function, F* is a K;_;-convex function
for i = 1,...,n and g is a Q-convex function. Hence, as can be easily seen, (f o Flo...o F") is a
convex function and (PC) is a convex optimization problem. Moreover, the problem (PC) is also
convex.

Remark 3.5. Let us point out that for the convexity of (f o Flo...o F™) we ask that the function
f is conver and Ko-increasing on F'(dom F') + Ky and the function F' is K;_i-convexr and
fulfills also the property of monotonicity for i = 1,...,n — 1, while the function F™ need just be
K,,_1-convez (see Theorem . This means that if F" is an affine function, we do not need the
monotonicity of F"~1, since the composition of an affine function and a function, which fulfills
the property of convexity, fulfills also the property of convexity. In this context let us pay also
attention to Remark i.e. one can choose K,,_1 = {0x,_,}.

To derive regularity conditions which secure strong duality for the pair (P¢)-(DY), we first
consider regularity conditions for strong duality between the problems (P¢) and (D®), which were
presented in [7]. The first one is the well-known Slater constraint qualification

——C ~ ~ ~ ~
(RCy) ‘ Jy’ € dom f N S such that h(y') € —int K.
Using the definitions of fand h as well as S and K we get

dom f NS = (dom f X X1 X ... x X)) N (Xo X X1 X ... X Xpp_q x S)
=domfxX; x..xX,_1 xS (3. 4)

and
int K = int(Ky x ... x K1 x Q) = int Ko X ... X int K,,_1 X int Q.

—C
Therefore the condition (RC; ) can in the context of the primal-dual pair (P¢)-(D%) be rewritten
as follows
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(RCE) | 3™, yY, ...,y 4"y e dom f x X1 X ... X X1 x S such that
Fi(y") =y ¢ —int K;_1, i=1,...,n, and gy ) € —int Q.

The condition (RC{) can also equivalently be formulated as

(RCS) | 32’ € S such that g(z') € —intQ and F"(z') € (F*1)~Y((F*~2)~1(...
(FY)~1(dom f — int Ko) — int K;...) — int K,, ) — int K,, 1.

This can be seen as follows: The assumption that there exists ’ € S such that
F* (') e (F* Y Y (F" ) (..(F)) ! (dom f — int Kp) — int K;...) —int K, ) — int K,,_;
implies that there exists (y°', ...,y 1) € Xy x ... x X,,_1 such that

YD e (PP (FP2) T (L(FY) T (dom f — int Ko) — int Ki...) — int K,,_»)
y=2 e (FP2) " (F3) " (L(FY) " (dom f — int Ko) — int Ky...) — int K,,_3)

y" € (FY)""(dom f — int Ko)
yol € dom f.

Therefore, by setting @’ = y™ the elements (y°,...,y™) € dom f x X1 X ... x X,,_1 x S fulfill
Fr(y™)—ym1" e —int K,_q, ..., FY(y"") =y € —int Ky and from here we can now affirm that
the condition (RCY) is fulfilled.

On the other hand, if there exists (y0/7...7y”/) € domf x Xy x ... x X,,_1 x S such that
g(y™) € —int Q and Fi(y") —yli=Y" € —int K,_; for i = 1,...,n, then we set ™ =z’ and get

F ') —y™ Y e —int Kp_y = F™(2') €y —int K. (3. 5)
Further, we have

F"_l(y(n_l)/) - y(”_z)/ € —intK,_ 2 = F"_l(y(”_l)/) S y(”_Q)/ —int K,
= ¢y e (F Yy —int K, _s). (3. 6)

From (3. 5)) and (3. 6 follows

F'z') e (F*" 1) ' (y" 2" —int K,,_) — int K,,_. (3. 7)
Since
Fn72(y(n72)/) _ y(n73)' € —intK, 5 = Fn72(y(n72)') c y(nf?))' —int K, 3
= Y e )y — it Ky )
we get for (3. 7))

F*(z') e (F" Y)Y (F* )Y (y™ 3 —int K,_3) — int K,,_) — int K,,_1.
If we continue in this manner until 4° € dom f we get finally
Fr(a")y e (F* Y)Y (F" ) (..(FY) " (dom f — int Ko) — int K;...) — int K,,_5) — int K,,_1.

This means that (RC) is equivalent to (RCY{). Additionally, we consider a class of regularity
conditions which assume that the underlying spaces are Fréchet spaces:

——C ~ ~ ~ ~
(RC5) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
h is K-epi closed and 03 € sqri(h(dom f NS Ndomh) + K).
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If we exchange sqri for core or int we get stronger versions of this regularity condition:

——C ~ ~ ~ ~
(RC,) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
h is K-epi closed and 03 € core(h(dom f NS Ndomh) + K),

—C ~ ~ ~ ~
(RCy) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
h is K-epi closed and 0z € int(h(dom f NS Ndomh) + K),

where the last two conditions are equivalent (see [7]). If we work in finite dimensional spaces the

—C
regularity condition (RC\ ) can be written in the following way (see [7])

_—_C - - o~ - ~
(RC3) | dim(lin(h(dom f NS Ndomh) + K)) < +oo and
0z € ri(h(dom f NS Ndomh)+ K).

To derive corresponding regularity conditions for the primal-dual pair (P)-(D) formulated with
the involved functions we first consider the formulae (3.2)) and (3.4), which imply that

h(dom f N S N domh)
= h(dom f x dom F' x ... x dom F"! x (dom F™ Ndom g N S))
= h'(dom F' x dom f) x h*(dom F? x dom F') x ... x

R (dom F™~! x dom F™~?) x

R"((dom F™ N'dom g N S) x dom F™"!) x g(dom F™ Ndom g N S)
= (F'(dom F') — dom f) x (F?(dom F?) — dom F') x ... x

(F" *(dom F™ ') — dom F"?) x

(F"(dom F" Ndom g N S) — dom F™™ 1) x g(dom F™ Ndom g N S)

and from here we get by Lemma [2.1] that

07 € sqri <(F1(domF1) —dom f + Ky) X ...

x(F" Y (dom F"™ 1) —dom F" 2 + K,, )
x (F™(dom F" Ndomg N S) — dom F" ! + K, ;)

x(g(dom F* Ndomg N S) + Q)>

is equivalent to

0x, € sqri(F*(dom F') — dom f + K),

Ox, € sqri(F*(dom F*) —dom F*"™ ' + K; 1), i =2,...,n — 1,
0x, € sqri(F™(dom F" NdomgnN S) —dom F"~' + K,,_;) and
0z € sqri(g(dom F* Ndomg N S) + Q).

Now, let 0 : Xog X ... x X, X Xg X ... x Xj,_1 X Z — Xg X . X kal X X, X Z be defined by
o(y?, o y™ 00 v = (y0, 00, .., y™, v™). Further, let us define the functions o, + Xy X X1 X
Xio1 = Xio1 x Ximy x X by o%, (v, ¢ o) = (v o'l y'), i = 1,...,n. Obviously, the
defined functions are homeomorphisms and map open sets into open sets and closed sets into
closed sets. More precisely, this means that o(epiz h) is closed if and only if epiz h is a closed set
and g% (epig, , h') is closed if and only if epif, , h' is a closed set, i = 1,...,n. Furthermore, we
have
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epigh = {0, oy, 00, 0™) € Xo X oo X Xy X X X oo X X1 X Z
(yl,yO’vO) € epiKO hla

yn’yn717vn71)
y",v") € epig g}
(WO, .y, 0%, ™) € Xo X oo X Xy X Xo X oo X Xpp1 X Z

yO, ,UO’yl) € Q?(l (epiKo hl)v

— e

€ epiKn71 hn,

Il
A~ A~

n

(y" 0" y") € 0% (epig,  B™),
(y",v") € epig g}

= (0 .y v € Xg X X Xy x Xg X oo X Xy 1 X Z

o

(y )’U07y17vl7y27v2) ""yn_17vn_17yn7vn) 6
(0%, (epig, h')) x X1 x X3 x .. x X2 | x X, x Z,

o,0,1 1 n—2 ,n—2 , n—
(yav7y7va'“7y , U Y

XZ X X?x .. x X2 5% (g’}( (epig, | h”)) x Z,

1 -1
7Un 7ynavn) €

(10,0, Ly ey ™) € X x L x XDy X epig g}

= {(yo,...,y”,vo, o) EXg X X Xy X Xg X o X Xy X 7

(00 2 1 1

i— -2 i—
Yy,v,.ny y U 'Y

X2 x .. x X2 4% (g’}( (epig, , hi)) X Xix X2 %o x Xy x Z, i=1,..,n,

=1 4 1 ,4+1 i+l n ,n
U Y,V Y U yee Y U )6

(10,00 Ly ey ™) € X x L x XD X epig g},

SO we can write

n

olepiz h) = (ﬂ (Xg X ..o x X2, x (g’)‘(i(epiKF1 hi)> x Xi x X7 1 X o x Xy ¥ Z))
i=1

[ (X5 x ... x X2, x epig g)

and get as a consequence that epiz h is closed if epig, ht, i=1,...,n, and epig g are closed sets.

Vice versa, let epif(ﬁ be closed, i.e. o(epig ﬁ) is closed, and

(yiuyngg)a g epiKO hla ] (ygﬂyg_la ’Ug_l)a g epiK",I hn and (yg7 U;L)Ot g eplQ 9,
ie. (¥2, ..y, 00, . 0", C epig h. As epif(ﬁ is closed, we have that (y2,...,47, 02, ...,0%) s —

(°, ..., y™, 0%, ...,v") € epij h, but this means that

1 nfl)

(y17y0,v0) € epiKO h’17 ] (ynvyn7 » U € epiKn_l h'™ and (yn7vn) € eplQ g,

which implies the closedness of epiy, hl,...,epi K, , " and epig g.
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Besides, we know by Lemma that for a non-empty closed convex cone K;_i it holds that
epig, , h' is closed if and only if epig, | F* is closed, i = 1,...,n. Bringing now the last facts
together implies that for non-empty closed convex cones K;_1, ¢ = 1,...,n, it holds that epi gﬁ is
closed if and only if epig g and epig, | F* are closed sets, i = 1,...,n.

Moreover, since S is closed if and only if S is closed and fis lower semicontinuous if and only
if f is lower semicontinuous (follows from the fact that epi f is closed if and only if epi f is closed),
we get the following regularity condition for the primal-dual pair (P¢)-(D%) (note that if X; is a

Fréchet space, i =0, ...,n, then X = X x ... x X, is a Fréchet space, too)

(RCY) Xo, ..., X, and Z are Fréchet spaces, f is Ls.c., S is closed, g is Q-epi,
closed, K;_; is closed, F* is K;_1-epi closed, i = 1,...,n,
0x, € sqri(F!(dom F') — dom f + Kj),
Ox, , € sqri(Fi(dom F*) —dom F*"" ' + K;_1),i=2,...,n—1,
0x,_, €sqri(F"(dom F* Ndom gN S) — dom F"~! + K,,_1) and
0z € sqri(g(dom F™" Ndomg N S) + Q).

In the same way we get equivalent formulations of the regularity conditions (RCS) and (RCS,)
using core and int, respectively, instead sqri. The same holds also for the condition (RC?,C ).

—C
As we have seen, the condition (RCE) is equivalent to (RC; ), i € {1,2,2',2"” 3}. Moreover,
since on the one hand Theorem is always fulfilled and on the other hand the optimal objective
values between (D) and (DY) are equal, it holds the following theorem (see Theorem 3.2.9 and
3.2.10 in [7]).

Theorem 3.3 (strong duality). If one of the conditions (RCE), i € {1,1',2,2',2" 3}, is fulfilled,
then between (PY) and (D) strong duality holds, i.e. v(P®) = v(D%) and the conjugate dual
problem has an optimal solution.

Remark 3.6. If for some i € {1,...n} the function F' is positively K; i-lower semicontin-
uous, then we can omit asking that F' is K;_i-epi closed in the regularity conditions (RCiC),
i € {2,2/,2"}, because the positive K;_1-lower semicontinuity of F' implies the positive K; -
lower semicontinuity of k', which then implies the K;_1-epi closedness of h'.

Remark 3.7. Besides the used regularity conditions there are also the so-called closedness type
conditions guaranteeing strong duality. Such reqularity conditions were studied in different con-
texts, like strong duality, subdifferential calculus etc. (see [22]). These types of reqularity conditions
were also studied in [42] and [41)], to cite only few of them.

We have also extensively studied closedness type conditions in the context of multi-composed
optimization problems with the focus on stable strong duality and e-optimality conditions in our
article [49]. As applications we considered problems from fractional programming and entropy
optimization (see also (3,|4)6,/25,|32,146,|73]).

We come now to the point where we can give necessary and sufficient optimality conditions for
the primal-dual pair v(P¢)-v(D%).

Theorem 3.4 (optimality conditions). (a) Suppose that one of the regularity conditions (RCE),
i€{1,1,2,2',2" 3}, is fulfilled and let T € A be an optimal solution of the problem (P). Then
there exists (2, ..., 2" 1V* 7)€ K& x ... x KX_| x Q*, an optimal solution to (D), such that

(i) f((F'o..0 F™)(T)) + f*(z°) = %, (F' o...0 F")(7)),

(i) ZUV*F)((F o, o F™)(T))+ (ZU-D*Fi)*(2%) = (2, (F'*'o..o F")(T)), i = 1,...,n—1,
(iii) (Z DV FM)(@) + (77 9)(@) + ("D F?) + (279))5(0x;) = 0,
(iv) (z"*,9(x)) = 0.
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(b) If there exists T € A such that for some (2°*,..,Z""D* %) € K& x .. x Kf_| x Q* the
conditions (i)-(iv) are fulfilled, then T is an optimal solution of (PY), (2%, ...,2™) is an optimal
solution for (D) and v(P¢) = v(DC).

Proof. First, we consider part (a). By Theorem [3.3] E strong duality holds for the primal-dual
pair (P¢)-(D), which means that there exists (2%, ..., 2" "V* 27*) € K& x ... x K} _| x Q*,
optimal solution to (D), such that the following equahty holds

(foF'o..oF™")(T)

n—1
= I ({270, @) + (277, ()} - ) — SO (),
=1

Furthermore, since by definition it holds

n

Z(E(i—l)*Fi)((F“‘l 0.0 F")(7))
=2, (F' 0.0 F™)( +Z 2 (P o 0 F™)(@)),

the assertions (7)-(iv) can be deduced immediately by the following consideration

(foFlo..oF™)(z)+ f* (" +Z ZU-Dx iy (2 4

("D F™) 4 (27 9))5(0x:) =0
n—1
<:>(f o Fl 0...0 Fn)(f) -+ f*(fo*) + Z(E(i_l)*Fi)*(Ei*)

F(EVE) + (2 9)3(0x;) + (77 9) (@) — (57 9(2)

+Y ETF)(F oo F7)(E))

— (@, (F'o...0 F")(z)) — i(zi*, (F*lo . o F")(T)) =0
i=1
S[(foFo..o F™) (@) + f*(Z") — &Y, (Fto...0 F™)(z))]+
n—1
S IETVFN(F oo FM)(T)) + (ZUTVTFY)(E) — (27, (FT o o F)(T))]
i=1

+ [ TVF @) + (2 9) (@) + (E" V) + (279)5 (0 )
+ [ (", g(T))] = 0.

By the Young-Fenchel inequality and the constraints of the primal and dual problem, all the terms
within the brackets are non-negative and consequently must be equal to zero.

Concerning the proof of part (b) we observe that all considerations and calculations within the
proof of part (a) can be done in the reverse direction. O

Remark 3.8. The conditions (i)-(iv) can equivalently be expressed as
(i) 2°* € Of((Flo...o F")(T)),
(ii) 7% € EFVF)(Fitlo ..o F*)(T)), i=1,...,n— 1,

(iii) Ox: € O((Z"™V*F™) + (2"*g) + 65)(T),
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(i) (z*,9(T)) = 0.

Remark 3.9. In fact, we can write every optimization problem in the form of a multi-composed
problem by splitting the objective function into n+ 1 composed functions. Allowing n to be greater
than one, as considered until now in the literature, is very fruitful for dealing with a big variety of
optimization problems because many such problems cannot be described with an objective function
composed by only two functions (casen = 1, cf. the optimization problem presented in Section .
The problems and results in several papers (cf. [7,8,17,20,21,25,55]) turn out to be special cases of
our approach for the situation when only two functions are composed in the objective function, i.e.
n = 1. For this reason our analysis sums up the approaches and the results in the mentioned papers
into one unified theory. Similarly to the difficulties of the usual perturbation theory, where every
perturbation is accompanied by additional conditions, like monotonicity and convexity, needed for
strong duality, we derive situations in our approach, where for each additional splitting function
involved in the multi-composed objective function, also additional properties must be fulfilled to
ensure strong duality.

But viewed from the other side, one can derive a conjugate dual problem, where the associated
objective function is easier to handle due to the fact that the conjugate functions of the functions
inwvolved in the objective function of the primal problem are split. Furthermore, one can derive
by the corresponding optimality conditions listed above a more detailed characterization of the
set of optimal solutions of the dual and the primal problems as well as their relationship to each
other. Such information can be used on the one hand to give a geometrical interpretation of the
dual problem and on the other hand to improve the approach of optimization problems from the
numerical point of view. In Chapter[J] we consider in this context minimaz location problems as
an application of the presented theory.

3.3 The conjugate function of a multi-composed function

Before we continue with our further approach we want to calculate the conjugate of the function
(foF'o..oF"™), or, to be more precise, we determine to the function

y(z)=(foFlo..o F")(z), z € X,,
its conjugate function

¥ (z*) = seu)? {{z*,2) = (fo Flo..o F")(x)}, 2" € X

With this in mind, we consider for fixed z* € X, the problem

(PX) mier}gn{(f oF'o.. .o F™")(z)— (z*,z)}

and the equivalent primal problem

(P*)y . inf {(F6° " y™) = ("™}
i (y ,...‘,y?)e);ox...x.x,f,
iy —gi-le—K; 1. iml,..n

In the same way like in the proof of Theorem one can show that it holds v(PX) = v(PK)
(where v(PX) and v(PX) denote the optimal objective values of the problems (PX) and (PX),
respectively). The corresponding Lagrange dual problem to problem (PX) looks like

n

(D¥) sup inf {f(yo,yl, ™)+ U Fy) =yt - <$*,y”>}
#rEKY, iy:O,,..i,;L =1
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= sup ‘ { — sup {(20*7?/0> - f(yo)} -

Zi*EK* y0e Xy
i=0,...,n—
ap A -
e e LS =
n—1 ) ) )
— sup { _ f*(ZO*> _ (Z(nfl)*Fn)*(l,*) _ (Z(zl)*Fz)*(Zz*)}'
Lt e K*, Pl
i=0,...,m—1

Hence, we define the conjugate dual problem corresponding to the primal problem (P¥) as

n—1
(DK) sup { _ f*(ZO*) _ (Z(n_l)*Fn)*((E*) _ Z(Z(i_l)*Fi)*(Zi*)}.

z EK:y i=1

Let us notice that for all #* € X' one has domf: dom(f—l— (z*,-)). To guarantee strong duality
between the problem (PX) and its conjugate dual problem (D¥), we use the regularity conditions
we introduced above. Therefore, we set Z = X ordered by the trivial cone Q = X and define the
function g : X — X by g(z) := x such that g is Q-epi closed and

Ox €sqri(g(X) + Q) = sqri(X + Q) = X
Hence, we get for the pair (PX )—(DK ) the following regularity conditions. The first one looks like

(RCE) | 3"
F'(y

/
X2

Lyl ,y )Gdomfolx...xanuchthat
) — gyt Ve —intK;, 4, i=1,..,n

and can also be written as
(RCE) 32’ € X,, such that F"(z') € (F*~ 1)~ ((F"=2)71(...
(FY)~1(dom f — int Ko) — int K,,_;...) —int K,, o) —int K,,_1.
For the interior point regularity condition we get
(RCE) Xo, ..., X, are Fréchet spaces, f is ls.c.,

K;_; is closed, F*is K;_j-epi closed, i = 1,...,n,

0x, € sqri(F!(dom F1) — dom f + Ky) and

Ox, , € sqri(F*(dom F*) — dom F'"! + K; 1),i=2,...,n.

In the same way we get representations for (RCHX), i =2/, 2" 3.
By Theorem [3.3] we can state the following one:

Theorem 3.5 (strong duality). Let f : Xy — R be proper, conver and Ky-increasing on
Fl(dom F') + Kq, F': X; — X;_1, be proper, K;_1-conver and (K;, K;_1)-increasing on
FHldom F*Y + Ky, i =1,..,n—1 and F" : X,, — X,,_1 be proper and K,_1-convex. If one
of the conditions (RCE), i € {1,1',2,2,2",3}, is fulfilled, then between (PX) and (DX) strong
duality holds, i.e. v(PX) = v(D¥) and the conjugate dual problem has an optimal solution.

Furthermore, it holds the following theorem.

Theorem 3.6. Let f : Xo — R be proper, convexr and Ko-increasing on F'(dom F'') 4+ Ky,
F': X; — X;_1, be proper, K;_-convex and (K;, K;_1)-increasing on F+1(dom F*l) + K,
i=1,...,n—1and F* : X,, = X,_1 be proper and K, _i-convex. If one of the regularity
conditions (RCE), i e {1,1,2,2/,2", 3}, is fulfilled, then the conjugate function of ~y is given by

,7*(1,*) _ :min1 {f*(z )+( (n— 1)*Fn +Z (i— 1)*Fz ’L )} (3 8)

forall z* € X.
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Proof. By using Theorem [3.5] it follows that

T = sup{(ea) — (FoFl oo FY) ()

n—1
= min {f*(yo*) T () + Z(ﬁ“”*F%*@“)} Vo' € X
i iy i=1

O

Remark 3.10. The advantage of the introduced concept is that a “complicated” function 7y can
be split into n+ 1 “simple” functions such that the calculation of the conjugate can be simplified
by calculating just the conjugates of the n+ 1 “simple” functions.

Example 3.1. Let us consider the following generalized signomial function v : R™ x R™ — R
defined by

(2 y) = { max{ﬁ,..., W} if (z,y) € int R} x int R”}

400, otherwise,

with pi,q; > 0 for alli =1,...,n, and © = (x1,...,2,)T €R™, y = (y1,...,yn)" € R". Then, we
split the function ~ into the functions

e f:R" - R defined by

£00) = max{yf, ... yp}, if y° = (47, . yp)" € RY,
’ 400, otherwise,

o F':Rn — R", defined by

1 1 .
Fighy = { @@ iyt = ()T €R?
+00R? , otherwise,

and
e F2:R" x R® = R”, defined by

F2(o,y) = (=p1iner —qilngy, ..., —ppInw, — g lny,)", if o,y € it RY,
’ +00R? , otherwise,

such that v is writeable as

Y(@,y) = (fo F' o F?)(z,y) (3.9)

and set Ko = K; = R}. Without much effort one can observe that f is proper, conver and
R’} -increasing on Fl(dom F') +R7? = int R} + R} =int R} C R, F1 is proper, R -conver and
(R, R7%)-increasing on F?(dom F?)+ R = R" and F? is proper and R'} -convez. Moreover, it is
easy to verify that the reqularity condition (RCE) looks in this special case like

(RCE*) ‘ (2, y') € R™ x R™ such that —p;Inz; — g;lny, e R, i =1,...,n,

which, of course, is always fulfilled. Thus, we can apply the formula of Theoremfor the
determination of the conjugate function of :

vt y*) =  min_ {f*(") + GPFY* (") + (" F?) (2t y*)} V(z*,yF) € R" x R™.(3. 10)

20%,21*€R7
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Now, we have to calculate the conjugate functions involved in the formula . We have for
0 O n.
20 = (29, .., 28T e R :

") = sup {ZZO )}—( sup {Zzo maX{y?,---,yS}
y 5.

(y(l)a“'vyn ER™ ,y")TE]Rn

= sup Zzo* v_ inf  t3= sup {Z 29 — }

U<
Y9,y TERY | 527 teqk+1 i b Y ER+ tEJR+ y)<t,

As one may see, f* can be expressed as a supremum of a linear function and thus, by elementary
calculations, we have that

- - 0% < 0 0x\T n
f-*(zo*): Oa Zf ;Zz = 1’ (Zl ). ) ER-{-; (3 11)

400, otherwise.

From and follows for the conjugate function of ~y
v (x*,y*) = min {(zO*Fl)*(zl*) + (2" FH)* (z, v} (3. 12)

z?*, 1*em+, i=1,...,n,

2 20 <1

i=1

Furthermore, we have for 29* > 0,i=1,...,n,

(ZO*F1>*(21*) _ sup {Zzl* 1 Zzo*eyl }

yleR, i=1,..,n

= Zsup{zl* 1 eyil}

i= 1yz€R

with (see [7] or also [24)])

1
) (ln & — ),zfz 21 >0,
sup {Zl* 1 2’9*6%} = ’ Zf Zzl* — O7 7,0* Z O, (3 13)
vl €R +00, otherwise,

fori=1,...,n and for z}* >0, i=1,....,n, it holds

n n n n
(VP F?)* (2%, y*) = sup {fo:ﬂ, +Zyz‘yi+z,€}*pi ln:z:iJrZzil*qi lny,;}
i=1 i=1 i=1 i=1

x;,yi >0, i=1,....n

Z(sup{m x; + 2} pllnm}—i—sup{ylyz—i—z qzlnyz}>
= ys>

for all x* = (x%,...,x)T, yv* = (v, ...,y5)T € R™, where (see [24))

—z1*p; (1 +1In (—ch—lp)) ,ifxp <0, 2, pi >0,
. * 1% _ . i P
51;%{951 Ti+2; pilnw} = 0, ifxf <0 and z* =0 or x¥ <0 and p; = 0, (3. 14)
’ 400, otherwise,

and likewise

) if yf <0, zl g >0,

—zl*qi (1 + In (
0ory; <0 andgq; =0, (3. 15)

Sup{ylyz—i—z “gilny;} =< o, if yf <0 and z}*
viz +o00, otherwise,

q
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fori=1,..,n. Finally, we define the function & : R — {0,1} by

E(x) = { L o> 0, (3. 16)

0, otherwise,

which leads, by using (3. 12), (3. 13), (3. 14), (3. 14]) and , to the following formula of

the conjugate function of ~y

i

y(@*,y") = | min { > 2 (2 — Iz — 1) (=)
i=1

n
> 29*<1, 29 >o0,
n=1 )

—p; (1 +Inz! — lnzil*pi) —q; (1 +Iny’ —1In zzl*ql)]}

forallz}, yf >0,i=1,...,n, with the convention 01ln0 = 0.

Next, we give an alternative representation for . But, first pay attention to the following
function

n—1
5(LE*) — ‘inf {f*(ZO*) + (Z(nfl)*Fn)*(x*) + Z(Z(zl)*Fz)*(zz*)} = Xr*z
i i=1

If f: Xo — Ris a Ko-increasing function on {F'*(dom F'') + Ko} — Ko, it follows by |7, Proposition
2.3.11] that
FF(2%) = +0o V2 ¢ K, ie. dom f* C Kp,

and thus it holds

0% * ik *
z EKO, z EXi B
i=1,...,n—1

for all 2* € X;. Moreover, if Fl: X; — X is (K31, Ko)-increasing on {F?(dom F?) + K1} — K1,
then (2°*F1) : X; — R is Kj-increasing on {F?(dom F?) + K;} — K; for 2%* € K. By using
again [7, Proposition 2.3.11] one gets for z°* € K¢

(2" F)*(21*) = 400 V2'* ¢ K7, ie. dom(z"F') C K7

and we can write

n—1
0% ey, lreky, ]
2I*EXF, i=2,...,n—1 =

for all z* € X. If we proceed in this way, it follows that
(07D PO (27) = 400 V2™ ¢ K7, ie. dom(z0"V FY* CKF, i=2,...,n—1,

and therefore, it holds
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for all z* € X. For the conjugate function of 5 one has

g7(x) = sup {{z",2) - B(z")}

z*reXr’
= sup <$*,(13>7 lIlf f*(Z ) ( (n— 1)*Fn +Z (i—1)= Fz z)
z*eX; Coexi

* * L% *
TrEX), 2ieX),

— sup {<l‘*,$> _ f*(ZO*) _ (z(nfl)*Fn)*(x*) _ z_:(z(zl)*Fz)*(Zz*)}

i=0,...,n—1 i=1
= sup { sup {<.’17*,$> _ (Z(n—l)*Fn)*(m ) Z (i— 1)*Fz P )}
2k g X -Z’*GX:; P

sup {(z("_l)*F”)**(x) ni: Z0TD (2 )} (3. 17)

zi'*EXZ‘, i=1

1=0,...,n—1
for all x € X,,. Since F" is proper and K, _j-convex and if we ask that F" is also positively
K,,_1-lower semicontinuous, (3. 17)) can by using the Fenchel-Moreau Theorem be written as

5*(@ — sup {( (n— 1)*Fn)( i (i— 1)*Fz z )} (3 18)

2i*eX ¥
1
1=0,..., n—1

for all x € X,,. If we additionally ask that the function F" is positively K;_;-lower semicontinuous,
t=1,....,n—1, and if we assume that f is lower semicontinuous, then one gets for (3. 18) by using
again the Fenchel-Moreau Theorem

B*(x) = sup { sup {(Z(nfl)*,Fn(x» _ (z(n72)*F(n71))*(z(n,l)*)}_

z(n=DxeXr |

1=1
n—2
— (n—2)*Fn—1 o ([ _ (i— 1)*Fz 1
sup z (z
{< ) - ) - S )
i=0,...,n—2
n—2
= sup {( (n— 2)*Fn 1)(Fn( ) Z (i— 1)*Fz P )}
ZtrEXS i=1
1=0,..., n—2
~ s { sup (2 F E (@) — (2D EOD) (020
2irexy z("*2)*€X;_2
i=0,...,n—3
n—3 . , )
_ f*(z()*) _ Z(z(z—l)*Fz)*(zz*)}
=1

n—3

= sup {(Z(nB)*FTLZ)(Fnl(Fn(l'))) _ f*(ZO*) _ (Z(zl)*Fz)*(Zz*)}

i=1

= sup {(",(Flo..o F")(z)) — f*(2")} = f**((F'o...0 F")(x))

=(foF'o..0o F")(x) =v(z) Vx € X,,.
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Since the weak duality always holds, i.e. v(PX) > v(DX), we have v*(z*) < 8(z*) for all z* € X .
Moreover, it holds vy(x) > v**(z) for all x € X,, and from here it follows that v(z) > v**(x) >
B*(z) = v(z), v € Xy, ie. v(x) = v**(z) for all z € X,,. The latter means that ~ is proper,
convex and lower semicontinuous. Summarizing, we get the following theorem:

Theorem 3.7. Let f : Xg — R be a proper, conver, Ky-increasing on {F(dom F') + Ky} —
Ky and lower semicontinuous function, F* : X; — X,_1 be a proper, K;_1-convex, (K, Ki—1)-
mcreasmg on {F*(dom F'*™Y) + K;} — K; and positively K;_1-lower semicontinuous function,
i =1,. —1, and F" : X, — Xn_1 be a proper, K,_1-convex and positively K, _1-lower
semzcontmuous functwn. Then the function v = foF'o...0 F" : X,, — R is proper, convex and

lower semicontinuous and can alternatively be written as

(foF'o..o F")(z) = sup {(z("_l)*F")(x) — (") - z_:(z(i_l)*Fi)*(zi*)} Vo e X,,.

,,,,, a1 =1
Remark 3.11. Besides the introduced duality concept there is a second way to construct a cor-
responding conjugate dual problem to (PC) and to formulate associated duality statements, where
the conjugates of the functions involved in the objective function of the original problem are split.
This dual approach is characterized by the direct applying of the perturbation theory by defining

an associated perturbation function of the following form

0 oty J FECFTHEY @+ y") +yt ) +y0), if g(z) €y - Q,
Oy’ oy )_{ 400, otherwise,

where (y°, ..., y", y" 1) € Xo x ... x X,, X Z are the dual variables.

If we use this method in the context of the generalized interior point reqularity conditions, then
we have to impose for strong duality that the perturbation function ® is lower semicontinuous
(see (7). But this means, as shown in Theorem that we have to ensure that the functions
F' are all positively K;_1-lower semicontinuous, respectively. In contrast, to employ the proposed
method in this chapter, we only need to secure that each of these functions is K;_1-epi closed,
respectively. It is well known that if a function F* is positively K;_1-lower semicontinuous, then it
is also K;_1-epi closed, while the inverse statement is not true in general (see Proposition 2.2.19
and Example 2.2.6. in [1]). In this sense the method introduced in this thesis asks for weaker
hypothesis on the involved functions for quaranteeing strong duality.

Finally, let us turn to the question why we did not apply the Fenchel-Lagrange duality theory
to the reformulated primal problem (PC) with set and cone constraints. The reason is that even
though that the functions F™ and g can not be split directly, one derives more complicated and
stronger regularity conditions compared to the ones proposed in this work.

3.4 An optimization problem having as objective function
the sum of reciprocals of concave functions

Let E; be a non-empty convex subset of X, i = 1,...,n, where X is a locally convex Hausdorff
space partially ordered by the closed and convex cone K. Then, we consider a convex optimization
problem having as objective function the sum of reciprocals of concave functions h; : E; — R with
strict positive values, i = 1,.., n, and geometric and cone constraints, i.e., the optimization problem
that we discuss in this section (cf. the definitions from Section is given by

o St

g(x)E—Q =1

Optimization problems of this type arise, for instance, in the study of power functions by setting
hi: Ry = R, hi(z) = ¢;aP with ¢;pi(p; —1) < 0,4 =1,...,n, (see [72]) and have a wide range of
applications in economics, engineering and finance.
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To apply the results from the previous section to (P%), i.e. to characterize strong duality and to
derive optimality conditions, we assume that the function —h; is K-increasing on E;, i =1,...,n,
and set Xg = R", Ko = R}, X; = X", K; = K" and Xy = X. Additionally, we define the
following functions

o f:R" =R,

n
—Z%Q, ify) <0, i=1,...,n,

400, otherwise,

Fl 1\ _ (_hl(y%)a [RX3) _hn(yrlL))Ta if yil € Eiv i = 17 ey 10,
()= .
+00R , otherwise

and

e F2: X - X", F?(x) := (v,...,2) € X"
and we assume that F2(SNdomg) C By x ... X E,, (cf. Remark . From here, it follows that

the problem (P%) can equivalently be written as

(P9 inf {(foF' o F?)()}

g(z)e—-Q

and by using the formula from Section its corresponding conjugate dual problem (D) turns
into

(DE) o {22§{< 23*,z>+<22*,g(x)>}f*(ZO*)(ZO*Fl)*(Zl*)}_

i=1
22+ eQ*

Furthermore, one has (see [§], [51] or [54)):

n 1 n
pe =Y s L =237

i=1 y; <0

for all 2% >0, i=1,...,n, and since

n n

EF) () =) sup {7 uh) + 2 hilul) } = Y (=20 ha) g, (217)
i—1 ViEE; i=1

holds, one gets for the conjugate dual problem

(09 suwp {—<z2*g)§ (— Z) iy (2 - Chz i) } .
=1 =1

ZO*ERiy 2lre(K*)m,
22xc—Q*

It is easy to observe that f is proper, R -increasing on dom f = —int(R" ), convex and lower
semicontinuous, F! is proper, (K™, R" )-increasing on dom F' = B, x ... x E, and R”-convex
and that F'(dom F') C int(—R%) = dom f (in this context pay attention on Remark [3.3)). For
that reason we can now attach the regularity condition (RCY), specialized for the optimization
problem (P%),
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2!

(RCE) | 3”,y",y%) € (—00,0)" x X™ x § such that h;(y}) +y? >0,
v —yl e —itK, i=1,..,n, and g(y*) € —int Q.

As h; is a concave function with strict positive values on Fj, there exist y9* < 0 and y}* € E; such
that h;(yl) + 42 > 0,i=1,...,n, and hence (RCE) reduces to

(RCE) | 3(y",y¥) € X™ x S such that y* —y} € —int K, i=1,..,n
and g(y*) € —int Q.

or, equivalently, in the light of (RC),
(RCY)) | 32’ € S such that o/ € E; —int K, i =1,...,n, and g(2) € —int Q.
The generalized interior point regularity conditions (RCY), specialized for (P%), looks like

(RCS) X and Z are Fréchet spaces, S is closed, g is Q-epi closed,
—h; is lower semicontinuous, Ox € sqri(domgN S — FE; + K),
t=1,..,n, and 0z € sqri(g(domgn S) + Q).

In the same way one can formulate a specialized regularity condition (RCE) in respect to the
condition (RCE) for i € {2,2",3}.

Remark 3.12. Recall, that in respect to Remarks and the function F' does not need to
be monotone, because F? is a linear function. In this case we set, like mentioned in Remark
Ky = {0xn} = {0x}". But pay attention to the circumstance that the regularity conditions (RC¥)
and (RCS}) are no more applicable in this framework, as int{0x} = ()

By Theorems and the strong duality statement and the optimality conditions follows
immediately.

Theorem 3.8 (strong duality). If one of the conditions (RCE), i € {1,1',2,2',2" 3}, is fulfilled,
then between (PY) and (D) strong duality holds, i.e. v(P%) = v(D%) and the conjugate dual
problem has an optimal solution.

Theorem 3.9 (optimality conditions). (a) Suppose that one of the regularity conditions (RCS),
i€ {1,1',2,2',2" 3}, is fulfilled and let T € S be an optimal solution of the problem (P%). Then
there exists (Z 0* *1* ,Z2) € R x (K*)™ x Q*, an optimal solution to (DY), such that

(iv) (2%, 9(7)) = 0.

(b) If there exists T € S such that for some (2°%,z'*,2%) € R% x (K*)™ x Q* the conditions
(i)-(iv) are fulfilled, then T is an optimal solution of (P%), (2°*,2**,2%*) is an optimal solution
for (DY) and v(P%) = v(D%).

Remark 3.13. In view of the Young-Fenchel inequality, we can refine the conditions (i) and (i%)
of Theorem [3.9 - like follows

(i) 2%*h;(T) = 2\/7 > (w =1,...,n,
(i) (—20ho), (51°) — 20ha(@) = (71°,7), i = 1,
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In the end of this section we give, for completeness, alternative representations of the optimality
conditions presented in Theorem [3.9) and refined in the previous remark.

Remark 3.14. In accordance with Remarks|3.8 and the optimality conditions (i)-(iv) of
Theorem [3.9 can equivalently be rewritten as

(i) 29* €0 (—l) (=hi(T)), i =1,...,n,
(i) z}* € O(—=2Y*h;)(T), i =1,...,n,

(iii) — ; 21 € 0((22g) + 65)(@),

(iv) (z*,9(z)) = 0.

Remark 3.15. One may see that the function F? has been introduced in order to split the functions
hi,i=1,...,m, and g or, more precisely, to decompose their conjugate functions in the formulation
of the dual problem (D). As a further advantage one gets a detailed characterization of the set
of optimality conditions presented in Theorem[3.9, Remark[3.13 and Remark[3.1]} Other duality
schemes may be employed for approaching this kind of optimization problems, too, however, the
separation of the conjugates of the involved functions in the corresponding dual problems may fail
to happen. This also underlines the benefit of the introduced multi-composed duality concept.



Chapter 4

Duality results for minimax
location problems

In the recent years, location problems attracted enormous attention in the scientific community and
a large number of papers studying minisum and minimax location problems have been published
(see [20},23}[33H361/38/40},44L/45. 5015860626 7./68, 74, /74L[75]). This is due to the fact that location
problems cover many practical situations occurring for example in urban area models, computer
science, telecommunication and also in emergency facilities location programming.

In this chapter, which is mainly based on our articles [80,81] and [82], minimax location
problems form the focal point of our approach. In particular, we are interested to give a duality
approach for nonlinear and linear minimax location problems with geometric constraints, where
the version of the nonlinear location problem is additionally equipped with set-up costs. For
this purpose, we apply the duality theory developed in the previous chapter, which allows us to
formulate more detailed dual problems as well as associated duality statements as in the mentioned
papers. To be more exact, we study three classes of location problems, namely, single, extended
multifacility and classical multifacility minimax location problems and to each of them, we consider
different settings to specialize the associated duality results.

But first, some properties of gauges will be listed in the next section. Gauge functions are a
generalization of norms and can be understood as infimal distances to sets. The use of these func-
tions allows to consider more general location models, especially, in situations when asymmetric
distance measures are of interest.

4.1 Some properties of the gauge function

Let us start this section by proving the following statements that we also shall use in the sequel.

Lemma 4.1. Let a; € Ry be a given point and h; : R — R with h;(x) € Ry, if v € Ry, and
h;(z) = 400, otherwise, be a proper, lower semicontinuous and convex function, i =1,...,n. Then
the conjugate of the function g : R™ — R defined by

h o hn(2n) Fan), ifzi€Ry, i=1,..,n,
ey = { ) b ) ) R

400, otherwise,

is given by g* : R® - R,

g'(@h i) = win {Zuz?*m)*(x:)—z?*ai]}.

37
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Proof. We set Xg = X; = R" and Ko = R’}. Further, we define the function f : R™ = R by

max{y} +a, ..., y" + an}, if ) €eRy, i=1,...,n,
400, otherwise,

f@l, ) = {

and the function F' : R® — R” by

(h1 (1), ooy b ()T, ifez; eRy, i=1,...,nm,

+00R, otherwise.

FY21,...,2p) i= {

Hence, the function g can be written as

g(x1, .., xn) = (fo Fl)(xl, ey T )

It can easy be verified that the function f is proper, convex, lower semicontinuous and R’ -
increasing on F!(dom F') + Ky C R% (as f is the pointwise supremum of proper, convex and
lower semicontinuous functions) and the function F' is proper, R” " -epi closed and R’ -convex.
Therefore, it follows by Theorem |3.6} . note also that Ogn € sqri(F 1(dom Fl) —dom f + Ky) =
squ(Fl(domFl) R +R%) =R") that

g (z7, .., x)) = HllIl {f (2 ) (Y 2T FYY (2], 2 )
For the conjugate of the function f we have

£ = sup {Zy?*y? yo)}

y2€R, i=1,..,n

= sup {Zy y; — max {yz +az}}

yge]RJr, i=1,.
n
_ -
y1 GRJr, i= 1 i=1 tER;r:i,,f.an<t

= sup {Z Pyl — t} (4. 1)

teRy, yPERy, i=1
y?+ai§t, i=1,...,n

Now, let us consider for any y%* € R? the following primal optimization problem
n
(P™e®) inf {t -> y?*y?} (4. 2)
=1

teRy, yfEeRr,,
;1;?+a,i§t, i=1,..., n

and its corresponding Lagrange dual problem

(Dmaa:) Sup inf {t — Z y?*y? + Z )\l(y? +a; — t)}

i=1

.....

n
= sup — sup Z)‘i_l ty—
iifzoyn LER =1



CHAPTER 4. DUALITY RESULTS FOR MINIMAX LOCATION PROBLEMS 39

As the Slater constraint qualification is fulfilled, it holds v(P™%*) = v(D™") and the dual has an
optimal solution, thus one gets for the conjugate function of f

) = . min {— Z )\iai} . 4. 3)
i=1

T A<1, 220,

1=1

y9* <A, i=1,....m
Furthermore, one has

(" sy ) F) (a7, 2

n
— s {Zx:fxi—<y?*,...,y2*>TF1<x1,...,xn>}

z;€R, i=1,...,n

= sup {Zm T; — Zyg*h x;) }

Tz, €ERL, i=1,...,n i—1
= > sup {afa —y ()} = (0 )" (), (4. 4)

i=1 z;€Ry i=1

and so, the conjugate function of g turns into

n n
g (x3,..,x}) = min ~ min {Z)\iaz}+ (47 ha)* ()
vi'z i=1 i=1

3 A;<1 x>0,

We fix 7 € R", i = 1,...,n, and emphasize that the problem

(P?) min {Z[(y?*hi)*(wf) - Aiai]} (4. 6)

i=1

is equivalent to

(P%)  min {Z[(Z?*hi)*(fvf)zg*ai]} (4. 7)

,,,,,

in the sense that v(P9) = v(P9) (where v(P?) and v(P9) denote the optimal objective values of
the problems (P9) and (P9), respectively).

To see this, take first a feasible element (Aq, ..., A, ¥, ..., y0*) € Ri x R of the problem (PY)
and set z0* = \;, i = 1,...,n, then it follows from > 1" A\ < 1, Xj,yd* >0, y?* <\, i=1,....,n

that > 0 | 20 <1, ZO* >0, i=1,..,n, ie (2% ..,29%) is feasible to the problem (P9). From
Yo < 20 we have that yl*hi(xi) < 29*h;(x;) and by [7, Proposition 2.3.2.(c)] follows that
(y9*hy)*(zF) > (29*hi)* (x}). Hence it holds
D 1@ ha) (25) = Niai] =Y [(207hi)* (@}) — 20*ai] > v(PY) (4. 8)
i=1 i=1

for all (A1, ..., An, 93, ..., y0%) feasible to (PY), i.e. v(PY) > v(ﬁg).
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Now, take a feasible element (29*,...,29*) € R} of the problem (Pg) and set y?* = \; = 29*
for all i = 1,. nthenwehavefrom211?*<1 2% >0, Z—l ,n, that >0 A < 1,

iy y* >0, yd* = N\;, i = 1,...,n, which means that (A1, ..., A\, y0*, ...,y ) is a feasible element of
(P?) and it holds

D ol ) (@p) = 2] = D [ he)* (25) — Niai] > o(PY) (4. 9)
i=1 i=1
for all (z9* JREE 9%) feasible to ’U(Pg), which implies v(P9) < v(ﬁg). Finally, it follows that

v(P9) = ’U(Pg) and thus, the conjugate function of g is given by

g*(z},.., ) = min {Z[( PRt (af) — 29* a,]} (4. 10)

i=1

and takes only finite values. U

Lemma 4.2. Let a; € Ry be a given point and h; : R — R with h;(x) € Ry, if v € Ry, and
hi(z) = o0, otherwise, be a proper, lower semicontinuous and convez function, i =1,...,n. Then
the function g : R — R,

h crh(@a) +an}, ifa € Ry i=1,m,
g(Il,...,xn)_{maX{ 1($1)+a1, ’ (.’E )+a } if x; € 4, 2 n

400, otherwise,

can equivalently be expressed as

g(x1,.yxp) = max {Z 2% Thi(x) —l—ai]} Ve, €R, i=1,...,n

Proof. By Lemmal[{.I]and the definition of the conjugate function we have for the biconjugate
function of g

g (x1,..,x,) = sup Zx;"xl —  min {Z[(z?*hl)*(xf) — z?*ai]}

H =1 i=1
i=1 n f; 20*% <1
i=1
n
= sup D sup {wjws — (27ha)" (@)} + 20" as
z?*ZO, i=1,..., n i—1 zreR
> 29r<a

= sup {Z[(z?*hl)**(wz) + Z?*ai]} Ve, €R, i =1,...,n. (4. 11)

As h;, i =1,...,n, are proper, convex and lower semicontinuous functions it follows by the Fenchel-
Moreau Theorem that

I (x1,xy) = sup {Z[z?*hi(mi) + z?*ai]} (4. 12)

i=1
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for all z; € R, i = 1,...,n, and moreover, as g is also a proper, convex and lower semicontinuous
function it follows by using again the Fenchel-Moreau Theorem that g = ¢g**, i.e.

9(T1, ey Ty) = max {Z[z?*h,(xz) + z?*a,-]} (4. 13)

i=1
forall z; eR, i=1,...,n. O

Remark 4.1. Note that the statement in Lemma[{.4 can also be proved in a simpler way, as the
mazximum of finitely many real numbers is the maximum over the convex hull of finitely many real
numbers.

Remark 4.2. If we consider the situation when the given points a;, i = 1,...,n, are arbitrary, i.e.
a; € R, then it can easily be verified that the conjugate function of f in looks like

n
f'o"=  sw > ol (4. 14)
yery, ter, =
yO+a;<t, i=1,...n

(notice that here t € R instead of t € R, ).
If we now construct to the conjugate function in a primal problem in the sense of (P™%)
in , then the corresponding Lagrange dual problem (D™%) has the form

(D™eT) sup {Z Aia; } )

Analogously to the calculations done above in - one derives for the conjugate
function of g,

n
gt i) =, min {Eﬁ[wf*hi)*(x:)z?*ai]},
X ozpt=1 27720, | =1

i=1

i=1,...,n

while its biconjugate is then given by

g**(xla"'axn) :g(xla"wxn) - max {ZZ?*[hZ(Ii)+CLl]}

forallz;, e R, i=1,...n.

In the following, let X be a Hausdorff locally convex space partially ordered by the convex cone
K C X and X* its topological dual space endowed with the weak* topology w(X™*, X). Further,
let Y; be another Hausdorff locally convex space partially ordered by the convex cone ); C Y; and
Y its topological dual space endowed with the weak* topology w(Y;*,Y;). Now, we collect some

properties of the gauge function (a.k.a. Minkowski functional) of the subset C C X, y¢: X — R
defined by

inf{\>0:z € A\C}, if{A>0:2€)XC}#0,
Yo (x) = .
400, otherwise.

When in the literature the question of continuity of the gauge function arises, then it is often
assumed that Ox € intC (see [2,/7,124,/47,|57,[83L/84]). We start with a statement where this
assumption is weakened to Ox € C.
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Theorem 4.1. Let C C X be a convexr and closed set with 0x € C, then the gauge function vc
is proper, convex and lower semicontinuous.

Proof. Let us define the function g : X* — R by

o) = {0, if oo (2*) < 1,

—+00, otherwise.

It is obvious that g is proper, convex and lower semicontinuous. For the corresponding conjugate
function of g one has
g*(x) = sup {(z",z) —g(z")} = sup (2", 7).
rreX* z*EX*,
oo (@*)<1
There is g*(x) = sup,. cx-{(a*,7) — g(z*)} > (O0x-,a) — g(0x-) = 0 since g(0x-) = 0 for all
z € X, and ¢"(0x) = sup,.cx-{—g(z*)} =0, i.e. g* is proper. At this point it is important to
say that from Ox € C follows that y¢(0x) =0, i.e. ¢*(0x) = vc(0x).
Let us now assume that x # 0x and consider for fixed € X the following convex optimization
problem

(P7)  inf , (—a*, x).

As 0¢(0x+) = 0 < 1, the Slater condition is fulfilled and hence, it holds strong duality between
the problem (P7) and its corresponding Lagrange dual problem

(D}) sup *in)f(*{(—x*,ac} + AMoc(z*) — 1)}
A>0T €

Therefore, the conjugate function of g can be represented for x # 0x as

g (z) = sup (", x) = — I;\lg())(x*iél)f(*{<—$*,x> + AMoc(z*) — 1)}
co @< -
= min {/\ + sup {(z*,z) — /\Uc(:v*)}} : (4. 15)
A>0 rreX*

For A = 0 we verify two conceivable cases.
(a) If o¢(z*) < +o0, then 0- oc(x*) = 0 and therefore,

sup {(¢*,2) —0-00(a”)} = sup (a*,z) =

rreX* rreX*

0, if{E:OX,
+o0, if x #0x.

As by assumption = # 0x, we have sup,.x«(z*, ) = 400, but this has no effect on the minimum
in 4. 15|
(b) If oc(x*) = 400, then one has by convention that A - o¢(2*) =0 (+00) = 400 and hence,

(x*,x) — Aog(z™) = (a¥,z) — 00 = —00,

which has no effect on sup,.cx-{(z*,2) — Aoc(z*)}, since ¢ is proper.
Hence, as the cases (a) and (b) are not relevant for g*, we can omit the situation when A = 0 and

can write
g (z) = )1\1;% {)\—i— )\wsgg {<x*, /l\x> — Uc(x*)}} .

Moreover, as C' is a non-empty, closed and convex subset of X, the conjugate of the support
function o¢ is the indicator function d¢, i.e.

. . 1 _ . . .
g () = /{I;f(){)\+>\5c (Ax>}— inf  A=inf{A>0:2 € \C}.

A>0, Fz€C
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Taking the situations where z = 0x and = # Ox together implies that g*(z) = y¢(z) for all x € X.
Hence, v¢ is the conjugate function of g and by the definition of the conjugate function it follows
that y¢ is convex and lower semicontinuous. This completes the proof. O

Lemma 4.3. Let C C X be a convexr and closed set with O0x € C, then the conjugate of the gauge
function vo is given by

x 0, ifoc(z”) <1,
) = )
00, otherwise.

Proof. In the proof of Theorem we have shown that y¢ is the conjugate function of g, i.e.
Yo = g*, and as g is proper, convex and lower semicontinuous we have g = ¢g**. As g** is also the
conjugate function of y¢, it holds v¢ = g. O

Remark 4.3. (see [47,|57]) Let C be convex and Ox € int C, then the gauge function vo is not
only convex but also sublinear and the following properties holds

vo(z) >0 Ve € X,
Yc(0x) =0,
Yo (pr) = pye(x) Yu >0, Vo € X,
Yo (@1 + x2) < yelz) +vc(z2) Vo, z2 € X.
Moreover, y¢o is well-defined, which means that dom~yc = X, as well as continuous and

intC ={zeX:ye(z) <1}, c(C)={zx € X :vc(x) <1}

(see [47]).

Remark 4.4. Let C; CY; be a closed and convex set with Oy, € int C; and v¢, : Y; — R be a gauge
function of the set Cy, i =1,...,n. Then y¢, is continuous, © = 1,...,n, and moreover, it is an easy
exercise to check that the function yo : Y1 % ... x Y, — R defined by yo (w1, ..., 2y) 1= iy Yo, (@),
is a gauge function fulfilling the properties listed in Remark [{.3 Especially, it holds that v is
continuous such that C := {(x1,...,2,) € Y1 X ... X Yy, : yo (21, ..y 2y) < 1}

Definition 4.1. Let C C X. The polar set of C is defined by
Cc0 = {x* € X" :sup(z*,z) < 1} ={z* e X" :0c(z") <1}
zeC

and by means of the polar set the dual gauge is defined by

Yoo (") 1= sup (@, 2) = oola”).
zeC

Remark 4.5. Note that C° is a convex and closed set containing the origin and by the definition
of the dual gauge follows that the conjugate function of yo can equivalently be expressed by

L (%) = {O, if ve0() <1, _ {o, ifa” € C°,

e 400, otherwise. 400, otherwise.

Furthermore, if C is a convex cone, then C° = {z* € X* : oc(x*) <0}, i.e. —C° is the dual cone

of C.

Lemma 4.4. Let ¢, : Y; — R be a gauge of the closed and convex set C; C'Y; with Oy, € int C;,
i=1,...,n. If the gauge vo : Y1 X ... X Y,, = R is defined by

vo(z) = ZvCi(xi), = (T1,..,Tpn) €Y1 X .. X Yy,
i=1

then its associated dual gauge yoo @ Y7 X ... x Y, — R is given by

Yoo (z*) = max {”ycg(a:f)} , ot = (2], ..,x) €Y x L x Y, (4. 16)
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Proof. As C; is closed, convex and Oy, € int C;, the gauge ~¢, is continuous, convex and
well-defined, i = 1,...,n, and thus, the gauge ¢ is also continuous, convex and well-defined. In
the following, let X™* = Y7* x ... X Y be the topological dual space of X :=Y; x ... x Y,, where for
2= (21, ...,2n) € X and * = (2%, ...,27) € X* we define (z*,z) := Soi{@f, x;). Hence, for the
associated dual gauge of yo holds

Yeo(z*) = sup(z”, x).
zeC

Now, we fix x* € X* and consider the problem

(PWU) inf (—z*,x) = _ inf (—z*, z),
zelC zeX, vo(z)<1

where its associated Lagrange dual problem is

0F) s it (") + M) < 1) =sup { Aok int (=070} + M)}
A>0zeX A>0 zeX
= sup {—/\ — sup{(z", z) — /\Vc(ﬂf)}} =sup{—-A— (A\yo)"(z")}. (4. 17)
A>0 zeX A>0

For A > 0 it holds (see Lemma and Remark

(Me)*(z*) = sup{(z*,z) — Me(x)} = sup {Z<fc2‘7wi>—AZm(%)}

reX @i €Y,

= Z sup {(zj,x;) — Mo, ()}

i—1 Ti€Yi

n
_ « (1 N [0 ifog(zf) <AVi=1,..,n,
N Z;/\fyci <)\xz> N { 400, otherwise

_ 0, if 'ycg(x;“).g AVi=1,..,n, (4. 18)
400, otherwise
and for A = 0 we have
Wy N _J 0, ifxf =0y~ Vi=1,..,n,
007 = sl ={ I (4. 19)

As Yoo (Oyy) = sup,,eq, Oy, 2;) = 0, one gets by (4. 18) and (4. 19) for the Lagrange dual
problem (DZO) that

0
(D}) sup{—X — (Mye)*(z*)} = sup {—)\ tyco(ai) SAVi=1, ,n}
A>0 A>0

and since for the primal-dual pair (PWO)—(DZO) the Slater constraint qualification is fulfilled, it
holds strong duality. From the last statement we derive an alternative formula for the dual gauge

Yco,

Yeo(z¥) igg(f ) ) rgg{kvcg(wz),/\w 1n} ggxgxn{vcg(%)}' O

Now, it is natural to ask, whether the dual gauge of maxi<;<n{7c,(-)} is Yi_; Yco(-). The
next lemma gives a positive answer.
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Lemma 4.5. Let ¢, : Y; = R be a gauge of the closed and convex set C; C'Y; with Oy, € int C;,
1=1,...,n. If the gauge v¢ : Y1 X ... X Y,, = R is defined by

vo(z) := max {ve,(z)}, 2= (21,...,xp) €Y1 X ... X Yy,

then its associated dual gauge yco 1 Y7" X ... X Y* — R is given by
n
Yoo (z*) = Z’ycg(xf), xf = (27, ..,x)) €Y x .. x Y] (4. 20)
i=1

Proof. The main ideas here are similar to the ones in the proof of Lemma As yo is
the pointwise maximum of n continuous, convex and well-defined gauges, it is clear that vo is
continuous, convex and well-defined and for the corresponding dual gauge of v¢ holds oo (2*) =

supgec{(z”, 2)}- N
For fixed z* := (27, ...,z}) € X* =Y7* x ... x Y}’ we consider the problem

(]370) inf (—z*,2) = _ inf (—x*, x),
zeC z€X, vo(x)<1

with its Lagrange dual problem (see (4. 17))

(DY) sup{—A— (Me) (@)}
A>0

For A > 0 one has

(M) (@%) = sup{(z”,2) = Me(x)} = sup {Z@f?,wi)—%maX{m(w‘i)}}-

z;€Y;, 1<i<n
zeX 25 Uit =

Now, let Xo :=R", Ko =R%}, X| = )?, the function f : R® — R be defined by

0 oy max{y?, ..., y0}, ify) eRy, i=1,...,n,
f(yla'“ayn) T .
400, otherwise,

and the function F*!: X; — R" by

Fl(xla axn) = (701(x1)7'~'»7Cn(xn))T

Hence, the gauge y¢ can be written as

Yo (@1, 2n) = (f o FY) (21, .y ).

Obviously, f is proper, convex, lower semicontinuous and R -increasing on F''(dom F'') + Ko C
R7, the function F' is proper, R"-epi closed and R'}-convex as well as Og» € ri(F'(dom F') —
dom f + Kp) = R™ and thus, it follows by Theorem that

Yo(@1, - a,) = min (W )+ (W0 un ) TFY) (@], s a) )
Yi +

i=1,...,n

From (4. 3|) we have for a; =0, i =1,...,n, that

n
0, if SSA<, A>0 <N, i=1,..,n,
£ ) = Zhsh Co
400, otherwise,
n
0, if <1, y*>0,i=1,...,n
_ zzz:lyz —_ yz — b ) ) b (4. 21)

+-o00, otherwise.
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In addition, it holds

n n

i=1 TiCYi i=1

For y9* > 0 holds

0, if 'YC?("E?) < y?*,
400, otherwise,

(%" ve) " (27) = {

and if y0* = 0, then

0, if 27 = Oy,

zi€Y; 400, otherwise.

(0-7e,)"(27) = sup {(z7,2:)} = {

This implies that

n

199 Yn 15 dp = i 1C; i
((yO* yO*)TFl)*(x* $*) (y0*7 )*(LL‘*)
i=1
0 if N <y i=1,..,n,
_ { ) 1 ’VC?(‘('I’.z) S Y; ? n (4 22)
400, otherwise,
and hence, one has by (4. 21) and (4. 22)
c = i=
00, otherwise.
n
0, if 3 yeo(zy) <1,
= ’L=1 k2
00, otherwise.
For A > 0 it follows
n
1 0, if Yoo (zF) < A,
(Me) (@) = M <)\x> _ 2 enled) (4. 23)
+-00, otherwise.
Moreover, by (4. 19) follows for A =0
IR~ . (0, ifar =0y Vi=1,..,n,
(0-7¢)"(z") = ;ffel%{<x“m’>} = { Voo, otherwise. (4. 24)

and as > ;_; yeo Oy ) = D072, sup{(Oy;, z;)} = 0, we have by (4. 23)) and (4. 24) for the Lagrange

dual problem

(DY) sup {=A— (M) (@)} = sup {/\ : ;ch (i) < A} :

It is obvious that the Slater constraint qualification for the primal-dual problem (ﬁ”o) - (EZO) is
fulfilled and thus, strong duality holds, i.e.,

Yoo(w") = sup{{a”, z)} = min {A D ven(a) < A} = ;m@(wﬂ O

i=1
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4.2 Single minimax location problems

4.2.1 Constrained location problems with set-up costs in Fréchet spaces

Let us now focus our discussion on problems with given non-negative set-up costs a; € R4 and
distinct points p;, © = 1,...,n (where n > 2). Consider the following geometrically constrained
minimax location problem

S : . . .
(Pia)  inf max {hi(ye, (@ —pi)) +ai},

where
e S is a non-empty, closed and convex subset of the Fréchet space X,
e (; is a closed and convex subset of X such that Ox € int C; and

e h; : R — R with h;(z) € Ry, if » € Ry, and h;(x) = +o0, otherwise, is a proper, convex,
lower semicontinuous and increasing function on Ry, i =1,...,n.

Hence, it is clear that the defined gauges are continuous and convex functions, which implies
that the problem (Phs .) 1s a convex optimization problem. The case where the set-up costs are
arbitrary, i.e. a; € R, will be discussed in Remark 19

For applying the duality concept developed in Chapter [3] for multi-composed optimization
problems, we set Xo = R" ordered by Ko = R}, X; = X ordered by the trivial cone K; = {O0xn}

and X, = X and introduce the following functions:

o f:R"” = R defined by

0 max {hi(y?) +a;}, if ¥ = (), ..., 90T € RY, i=1,..,n,
Jf) =4 st
400, otherwise,

o F': X" — R" defined by F'(y") := (ye, (Y1), -+ 70, (43))T with y* = (y1,...,ys) € X™ and
e F2: X — X" defined by F?(x) := (x — p1, ..., T — Dp).
These definitions yield the following equivalent representation for the considered problem

(Pia)  inf(foF'oF?)(a).

The function f is proper, convex, R’ -increasing on F'(dom F') + Ky = dom f = R"} and lower
semicontinous. Additionally, one can verify that the function F! is proper, R -convex and R’} -epi
closed. Furthermore, since the function F? is affine, it follows that the function F'' does not need
to be monotone (see Remark .

By setting Z = X ordered by the trivial cone Q = X and defining the function g : X — X
by g(z) := x, we have that Q* = {0x~}, i.e. 22* = 0x«, and thus, the conjugate dual problem
corresponding to (P;l9 .); in accordance with the concept from the previous chapter, looks like

(fo,a) sup { inf {Z<Z,Ll*7$ _pi>} — f*(ZO*) _ (ZO*Fl)*(Zl*)}’

where 2% = (29*,...,209)7 € R? and 2'* = (2{*,...,z}*) € (X*)". It remains to determine the

Y n Y n

conjugate functions of f and (z°*F'). For the conjugate function of f one gets by Lemma

R 20 = min {Z[(x\zhv)*(z?*) - /\iai]} )
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while for the conjugate function of (2% F'!) we have

CUFYE") = swp n{z Zz% }

zleX, i=1,..., -1

i

n

= 3 sup {2 — e (D) = Zz o) (=Y. (4 25)

=17 €X
Therefore, the conjugate dual problem (D;'ia) turns into
o o LS S0 ) vl - 36 |

i=1 i=1

lrex*, i=1,..,n

By separating the sum Z?Zl()\ihi)* into the terms with A; > 0 and the terms with \; = 0 as well
as Yo (22*y¢,)* into the terms with 2{* > 0 and the terms with 2Y* = 0 in (D;ia)7 the dual
problem turns into

(D5.) sup { in {i<z}*,x —pl>} S (0-h) (204

2;,20%>0, 21*€X*, i=1,...,n, z€S | i=1 ¢R
R={re{1,..., n}:)\r>0},I:{i€{1 ..... n}:z?*>0},
> Ar<1
rER
= 2 AOwhe) (2) = Avar] = 32(0-90,)"(2%) = X (2 70)* (21) ¢
reR ¢l i€l

If ¢ € I, then we have (see Lemma and Remark
oo el o (2 0, if oc, (%) <1,
)Gl = e (5 )z{ 7o (3

z) 400, otherwise,

B { 0, if o, (21%) < 207, { 0, ifyeg (i) <22 o

+o00, 0therw1se +00, otherwme,

and if ¢ ¢ I, then it holds

. * 7 1% 07 lfzzl*:OX*7
(0-960"(1%) = sup (47,31} = L e (1. 27)

Further, let us consider the case r ¢ R, i.e. A, = 0, then one has for z2* >0,

0%y , if 29* =0,
(0 hr)*(2,7) = ;(}121)(){2 }_{ +00, otherwise. (4. 28)
For r € R, i.e. A, > 0, follows
ZO*
rilr Z = Ar . .
Aphe)*(29%) = AR /\T 4. 29

Hence, the equation in (4. 28)) implies that if 7 ¢ R, then 22* = 0, which means that I C R. In
summary, the conjugate dual problem (D,ia) becomes to

sup {irelfs{z:@}*,m—pl } > [h(
(4. 30)

Ai, 22720, 2l ex”, i=1,...,n, icl reR
1={ie{1,...,n}:22* >0} CR={re{1,....,n}: x>0},
Yoo (21*)<29* iel, 21*=0x, j¢1, T Ar<t
(3 re
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Remark 4.6. If h; : R — R is defined by

x, ifx € Ry,
hi (l‘) = ‘+
400, otherwise,
then the conjugate function of h; is
0 if x* <1, .
h:(x*) = ’ f 7‘ 9 Zzl? "'7n7
+o0, otherwise,

and the conjugate dual problem (D,f’a) transforms to

S . 1
(Dj.0) sup inf g (z;",x—pi) p + E Arly o
Ai, 227 >0, 2lrex”, i=1,...n, z€ES | 4
I:{i€{1 ..... n}:z?*>0}gR:{7'E{l ..... n}:Ar->0},
20% <A, TER, v (2} ") <20 GET, 21 =0xx, jgI, T A<t
k2 r

This dual problem can be reduced to the following equivalent problem

S . 1% 0%
(Dh,a) sup inf E (y; %, —pi) p + E v Ya; p . (4. 31)
y0* >0yl *eX* i=1,...n,T={i€(1,....,n}:40* >0}, zesS | 4 7 7
yjl-*=0x* ,J&Zf,wcg(y}*)ﬁy?*,ief, Ziy?*él e €
z i€

To see the equivalence between (D;ia) and (5fa), take first a feasible element (\,20%,2*) =
(A1, ey A, 205,207 2%, 20%) € RT x R x (X*)™ of the problem (Dia) and set I = R,

ey Apy s ey R

Yot =\, z'ef, yjo-’*:O,j¢fcmdyil*:zil*7 ielCI, yjl-*:()X*,jgéI(i.e. y* e X*, i€

3

I and yjl* =0x~, J ¢ f), then it follows from the feasibility of (X, z°%,z'*) that Z?efy?* <

Loy >0, yl* € X*, yoo(yl*) <9, i €T and y9* =0, y}* = 0x+, j ¢ I, ice. (y°,y"*) =
(Y%, o 0 yi*, L yle) € R% x (X*)™ is feasible to the problem (D;ja). Hence, it holds

n n n n
;Iég {;@’3 )T —pi>} + ;/\iai = ;Ielg {;@3 ' T —pi>} + ;y? a; <v(Dy ,)
for all (X, 2%%, 21*) feasible to (Df}a), i.e. ’U(D}‘ia) < v(lN)ia) (where ’U(D,‘?’a) and U(B}ia) denote
the optimal objective values of the dual problems (D,f,a) and (ﬁ;fa), respectively).

Now, take a feasible element (y°*,y'*) of the problem (E,fa) and setI =1 =R, 20 =\ =y
and z}* = yl* fori € I = R and z?* =X =0 for j ¢ I = R, then we have from the feasibility
of (y**,y'*) that YorerM <1, 2 =X\, >0, keR N =0,1¢R and ’Yc?(zil*) <z el
which means that (X, 2°%, 21%) is a feasible element of (D;ia) and it holds

. 1% (OFS —_ 1x . 1 S
225 {E_Ry @ —m} +Y ule =il {D @ —m} 2 i < (D)
for all (y°*,y'*) feasible to (f),fa), which implies v(f);?a) < v(D,ia). Finally, it follows that
v(Dji,) = (D).

Remark 4.7. The index sets I and R of the dual problem (D;?’a) m give a detailed
characterization of the set of feasible solutions and are very useful in the further approach. But

from the numerical aspect, these index sets make the dual in very hard to solve, as they
transform it into a discrete optimization problem.
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For this reason we prefer to use for theoretical approaches the dual (Df,a) in the form of
@) and for numerical studies its equivalent dual problem (ﬁfa)

(Dia) sup {inf {Z(zil*,x —pi>} - [(Nihi)* (29%) — Aiai]} (4. 32)

R R Lo A Gl
i=1,.m, 3 A <1
i=1
The equivalence of the dual problems (Dy ) and (Dy ) can easily be proven as follows.
Let (A, ooy A, 2%, 0, 207 247 L 21%) be a feasible solution of (D;?’a), then it follows from r ¢

R ={re{l,..n}:A >0} by that 20 =0, ie I={ie{l, ..n}: 2 >0} CR,

and for i ¢ I we have (see Remark 0 < ’ycg(zil*) <0 & z/* = 0x-. This means that
(A1 eeey A, 295,00, 20% 220 21%) s also feasible to (D,ia) and by 44, Q(ﬂ) and (f4. 2%) follows
immediately that v(ﬁfa) = v(nya).

Conversely, by the previous considerations it is clear that any feasible solution of (D,f’a) is also
a feasible solution of (lA);fa) such that v(Dj ) = v(ﬁfa)

In this context, the dual of (lN);?a) in looks like

S . 1% . O* )
(D7) sup {;22{2% @ pz>}+;zz az}~

0 1 1x 0
2% 20 2T EeX*, ’Yc?(yi )<y, i=1

n
i=1,...,n, 3 29%<1
=1

The weak duality between the primal-dual pair (P;L9 a)—(D;s;a) always holds, i.e. v(P; ) >
o(D§,).

Our aim is now to verify whether strong duality holds. For this purpose, we verify the fulfillment
of the the generalized interior point regularity condition (RCS'), which was imposed in the Section
Let us recall that f is lower semicontinuous, Ko = R} is closed, S is closed and F' Lis R -epi
closed.

As the function g : X — X is defined by g(z) := z, it follows that ¢ is continuous, thus also
Q-epi closed and

Ox €sqri(g(X NS) + Q) = sqri(S + X) = X.
Moreover, it holds
Ogn € sqri(F! (dom F') — dom f + Ko) = sqri(F" (dom F*') — R} +R") = R"
and
Oxn € sqri(F?(dom F? Ndom g N S) — dom F'! + K1) = sqri(F?(S) — X" + {0x=}) = X™.

Finally, as F? is {0x~ }-epi closed, the regularity condition is obviously fulfilled and we can state
the following theorem as a consequence of Theorem [3.3

Theorem 4.2. (strong duality) Between (P;za) and (Dia) strong duality holds, i.e. v(P}f:a) =
U(D,é;a) and the conjugate dual problem has an optimal solution.

The following necessary and sufficient optimality conditions are a consequence of the previous
theorem.

Theorem 4.3. (optimality conditions) (a) Let T € S be an optimal solution of the problem
(P}ia). Then there exist (A1, ..., An, 205, ., 205, 217, . Zh") € RT X R x (X*)" and index sets

ey Rm s ey Am

I C RC{1,..,n} as an optimal solution to (D;ia) such that
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(i) max {hj(ve, (@ —pj)) +a;} = ngg*%i(f—pi) - %Xr [hi (?XL) _ ar]

Z [ ( (j_pr))"'_arL

rER
(i) AR (A ) + Mhe(ve, (T = pr)) = 20 v¢, (T — pr) V7 € R,

(iii) 20 ye, (T — pi) = (1, T —p;i) Vi € 1,

(iv) 2(23*7E> = —0s < Zl*>;

el el

() max {h; (0, (@ = ;) + a5} = ho(1c, (@ =) +a, Vi € R,

(i) X X =1, >0, keR, N=0,1¢R, 2*>0,icl,andzy* =0, j¢1I,
r€R

(vii) 7o (217) =20, 2 € X"\ {0x-}, i €T and 74" = Ox-, j ¢ T.

(b) If there exists T € S such that for some (A1, ..., A, 205, ., 205, Z1%, .., Z8h°) € RT X R x (X*)"
and the index sets I C R C {1,...,n} the condztzons (7)-(vii) are fulfilled, then T is an optimal
solution of (P,ia), (A, -ery )\n,z?*,. 20zl 2 T R) is an optimal solution for (D,fa) and

v(Py,) = v(Dj ).

Proof. (a) By using Theorem we derive the following necessary and sufficient optimality
conditions

. — . [0 0w =
() max (b, (@ = p) +a} + £ X [0 (5) —ar| = T26,@ - ).
reR el
el el
(iii) (= ,>+as< Z“) =
i€l iel
(iv) SASL N%>0keR N =0,1¢R 2 >0,icl,andz)* =0, j ¢ 1,
reR

(V) veo(z) <20, zi* € X*, ie T and 2}* = Ox-, j ¢ 1,

where case (iii) arises from condition (iii) of Theorem [3.4] by the following observation (note that
2%
zZ%* = 0x~)

iel o€ iel

& Y ENT =Y @G p) Hsup =Y (@) o+ > (3 p) =
i€l i€l ves iel i€l

& ,T) + supQ — zZ*x) » =0
REERES I e
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Additionally, one has by Theorem [4.2that v(Py,) = v(D} ,), i.e.

—0%
. R 1% _ _ by * ZT —
1I£1]a<xn{h (ve; (T —pj)) +a;} = ;gg > (= —pi) Z,/\T [hT (/\r> ar}
reR

icl

& max{h (o, @ —p)) +a;} +os [ =D 2" | + D (=)

a5 (2) ] |

i€l i€l
=0
—=1x% —1%* N * Zr
& mux e, @ p) +a) +os |- ) + S+ DA 1 () <o
reR

iel i€l

+> Mhe(r0, (@ —pr) = Y Ao, (T — py)

réR réER
+> B0, @—pi) = Y B e @ -p)+ D _EFNT) - D (75T =0
i€l i€l i€l i€l

A max {h (70 (3? - pj)) + aj} - Z(thrﬁc,,. (f - pr)) + /\rar)

1<j<n ~
reR
=0 — 1% — =1 71* —
+Y B e @—p) = EE-p)]+ |os | =D _ET | +D_E5T)
i€l i€l i€l

Ox

=) ihilre = ) - 0@ - )

+ b [ 2
> [ (5
+ 3 ki (0) + Xehe (0, (@ = pr) = 076, (F = pr)] =0,

reR\T

where the last two sums arise from the fact that I C R. By Lemma holds that the term
within the first bracket is non-negative. Moreover, by the Young-Fenchel inequality we have that
the terms within the other brackets are also non-negative and hence, it follows that all the terms
within the brackets must be equal to zero. Combining the last statement with the optimality
conditions (i)-(v) yields

(i) max {h;(vc,(T —p;)) +a;} = 22?*701'(5_%) - M [ hy (E ) —ar]

<5< =
lsjsn iel reR

z; [h ( (f_pr))""ar]a
€ER

(i) Mhz (35) + Aohe (v, (T = b)) = 2290, = pr) Vr € R,

(iii) 2%*ve, (T —pi) = (277, — pi) Vi € 1,

(iv) z<z}*,x>=—as< Z)
il el

(V) YA <1, >0, keR N=0,1¢R 2" >0 icl, andz" =0, j¢1,
reR

(Vi) Yoo () <20,z € X*, i el and Zj* = 0x-, j ¢ 1.
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From conditions (i) and (v) we obtain that

1I£1a<x {h; (’yc (T —pj))+a;} = (thr(VC’T (T —pr)) + Arar)
reR
< YN s (e, (7 ) + ag)
T'EE
< max {h;(1e, (T —pj) +

which means on the one hand that

>N r oax {hj(ve, (@ —pj)) +a;} = lfgj&gn{hj(vcj (T —p;)) +a;},
reER

i.e. condition (v) can be written as
D AM=1X%>0,k€R N=0,1¢R, z">0,icl, andz)* =0, j¢1, (4. 33)
r€R

and on the other hand that

S O, (@ = p) + Rear) = 328 max {0, (7 = 1) + a3} (4. 34

reR reR

or, equivalently,

SN Lglagn{h (e, (@ — p3)) + a5} — (e (7e, (& — 1)) + a,) | = 0. (4. 35)
r€ER

As the brackets in the sum of (4. 35) are non-negative and A\, > 0 for » € R, it follows that the
terms inside the brackets must be equal to zero, more precisely,

wax {h;(hc, (T = p;) +a;} = he(v0, (@ = pr)) +ar V7 € R. (4. 36)

Further, if for i € I holds ¢, (Z —p;) = 0, then we have by the condition (iii) that (Z}*,Z —p;) = 0,
from which follows that

ve (@ = pi)veo (") = (27,7 — pi) = 0. (4. 37)
If for ¢ € I holds ¢, (T — p;) > 0, then we obtain by the Young-Fenchel inequality that
v, (T = pi)veo (277) + (Y0, (F = pi)yee) (2) > (1%, 2) Vo € X, (4. 38)
where

(16,7 = phen)" (@) =165 = pty (e ) =@ = e ().

As by |83, Theorem 1.1.9] it holds that C?° := (C?)? = C;, i = 1,...,n, one gets that (see Remark
and

T . * — o . 1 _ 0, if ’Yci(l’) < e, (Tfpi)a
(16,5 = pen)" (@) = 6.5~ e, (— o) = { § E0) <0 (4. 39)

for all x € X, which implies that

V0, (T = pi)veo (27) > (27T — pi). (4. 40)
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Combining now (4. 37) and (4. 40) with the conditions (iii) and (vi) yields
270, (@ = pi) = (27,7 = pi) < Y00 (2 e, (T = pi) <2 90,7 - po),
which means that condition (vi) can be expressed as

Voo (7)) =7, 21" € X*\{0x+}, i € I, and 2}" = Ox~, j ¢ . (4. 41)

Taking now the optimality conditions (i)-(vi), (4. 33)), (4. 36) and (4. 41) together delivers the
desired statement.

(b) All the calculations done in (a), can also be made in the reverse order. O

Remark 4.8. The optimality conditions (i)-(iv) of the previous theorem can also be expressed by
using subdifferentials. As

_ 0 0\T noo;_

f(yo) _ 1123“<X {h’ (yz)+al}a ny (yla"'ayn) ER—{-? 1= 17"'7”3
+0oR? , otherwise,

and

FrE ) = min {Z[(Aihi)*@?*) - /\iai]} :

i=1
we have by the optimal condition (i) of Theorem- 4.5 that
FOe, @ =p1) o ve, @ —pn) + [ 2)) =D 20, (T — o).
iel
By the last equality is equivalent to

(20", 20") € 0f (40, (T = 1), -7, (T — Pn))-
Therefore, the condition (i) of Theorem- can equivalently be written as

() (2. >ea(max{h<>+aj})<m<x—p1> e (F — ).

In the same way, we can rewrite the conditions (it)-(iv)
(ii) Z* € d(\:hy) (e, (T —pr)), T € R,

(iii) z;* € 0(Z)*ve,) (T —pi), i €1,

(iv) =3 7z;* € 965(T) = Ns(T).

i€l

Bringing the optimality conditions (i) and (i7) together yields

@) € 0 (x50 +05}) (16, (= p1) e, (T )

N (O(A1h1)(ve, (T = p1)) X .. X O Anhn) (Y0, (T = pn))) -

Moreover, summarizing the optimality conditions (iii) and (iv) reveals that

Yoz e ) 0 ve)@ —pi) N (~Ns(@).

i€l iel
Finally, take also note that the optimality conditions (iii) and (vii) of Theorem[4.3 give a detailed
characterization of the subdifferential of Z2¥*yc, at T — p;, i = 1,...,n. More precisely,

(210,)(@ —pi) = {2 € X* 1200, (T - pi) = (217 — pi) and e (517) =20}, i€ 1.



CHAPTER 4. DUALITY RESULTS FOR MINIMAX LOCATION PROBLEMS 95

Remark 4.9. If we consider the situation when the set-up costs are arbitrary, i.e. a; can also be
negative, i = 1,...,n, then the conjugate function of f looks like (see Remark

f*(Z?*, ,22*) = min ‘ {Z[(/\zhz)*(z?*) — )\iai]} .

As a consequence, we derive the following corresponding dual problem

(OF3
(D5 ) sup inf Z(zil*,xfpﬁ - Z/\’“ [hf (Zr ) far} .
Aiy 20%20, zl*€X*, i=1,...,n, ves reR Ar
I:{ie{l,...,n}:z?*>O}QR:{T‘€{1,4..,n}:)\T>0},

Yoo (217)<20% e, 21 =0y, jeI, T A=t
[3 re

Therefore, all the statements given in this subsection are also true in the case of arbitrary set-up
costs with the difference that ) . A = 1 in the constraint set.

Minimaz location problems with arbitrary set-up costs were considered for example in [35]
and [67]. For readers who are also interested in minimaz location problems with nonlinear set-up
costs, we refer to [35] and [44).

4.2.2 Unconstrained location problems with set-up costs in Hilbert spaces

This subsection is devoted to the case where S = X = H, where H is a Hilbert space, a; > 0 and
Yo, : H — R is defined by ¢, () := ||x||%, ¢ = 1,...,n, such that the minimax location problem
(Phs,a) turns into

PSNY i T N\
( h,a) gﬁlngIgﬁg}(n{hz(Hgs pilln) + ai}

Its corresponding dual problem (D,fév) transforms by l) to

0%
. z
sup inf Z<Zzl*7x —Di)H p — Z Ar {h;", ( ; > - ar]

A, 29720, 21 en, i=1,...,n, A G <R r
1={ie{1,...,n}:20* >0} CR={re{1,...,n}: A, >0},

2112 <297 i€, 3 Ar<1
rER

= sup — sup — E i
Xis z?*zO, zil*e'H, i=1,...,n, TEH icl u

I:{i€{1 ..... n}:z?*>0}gR:{7'E{1 ..... n}:Ap>0},
Izl <2p"iel, & A<t
”

€R
1 ZO*
o Lk . o * r o
K3
Z<Z vpz>?-[ Z Ar |:hr ( \ ) ar:|
el re€R r
1 ZO*
= sup - Z<Z’L*7pl>7'[ - Z AT |:h: ( ; > - ar:| .
i, 29%20, 21 e, i=1,...n, el reR r

1={ie{1,...,n}:20* >0} CR={re{1,....,n}:x, >0},
28l <207 i€, 3 217 =04, ¥ Ar<1
el

rTER
The following duality statements are direct consequences of Theorem and
Theorem 4.4. (strong duality) Between (PhSaN) and (Dfiv) holds strong duality, i.e. U(Pfiv) =
U(Dfi\’) and the dual problem has an optimal solution.

Theorem 4.5. (optimality conditions) (a) Let T € H be an optimal solution of the problem
(PhSaN) Then there exist (A1, ..., A, 207, 21%) € R x R} x H™ and index sets I C R C {1,...,n}

as an optimal solution to (Dfév) such that
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(i) max {h;([|Z —pjlln) +a;} = S E T —pille — X Ar [ (z:) _GT]

<j<n
1 i€l reER

Z [ ||§_pr||7-l) +ar]7

r€R
(ii) \ h*(
(iii) Z||T — pilln = (2", 7 —pi)n Vi €1,

(i) Yz = O,

i€l

=)+ Xeh (17 = prlln) = 277 = ool Vr € R,

(v) max {h;(||Z - pjlla) + a;} = he ([T = prlla) + ar Vr € R,
1<j<n

(vi) A =1, A>0, keR, N=0,1¢R, z*>0,icl, andz)* =0, j¢1,
reER
(vii) [|Z7* |l =20, Zi* € H\{On}, i €1 and zj* = 0y, j ¢ I.
(b) If there exists T € H such that for some (A1,..., A, 2%, 2") € R% x R? x H™ and the in-
dex sets I C R the conditions (i)-(vii) are fulfilled, then T is an optimal solution of (P:’;V),
(A1, ooy A, 205,21 I, R) is an optimal solution for (Dfév) and (PS N) (DSN).
Regarding the relation between the optimal solutions of the primal and the dual problem the

following corollary can be given under the additional assumption that the function h; is continuous
and strictly increasing for all i =1,...;n

Corollary 4.1. Let the function

_ ) R . R
hi : R =R, hi(x):= hi(z) € Ry, ifx € .+7
+00, otherwise,

be convez, continuous and strictly increasing for alli=1,...,n, and T € H an optimal solution of
the problem (P,f:’aN). If My ey A, 22%,21) € R X R x H™ and I € R C {1,...,n} are optimal

solutions of the dual problem (D;?iv), then it holds

— 1 3 [l
xr = Z 125 1 h (DS’N) - Di
h, (o(Dy N )—a;) i€l VWha ) = i

i€l

Proof. The optimality conditions (#i7) and (vii) of Theorem [4.5(imply that
123 |7 = pills = (7T — piyu, i €1,
By |2, Fact 2.10] there exists a; > 0 such that
= (T-pi), i €1, (4. 42)

and so, ||Z;*|l% = ail|T — pilln, i € I. Therefore, it follows from the optimality condition (v) of
Theorem [4.5| that (note that I C R)
_ 1
wax {h;(|[F = pjlla) +aj} = hi *HZ ¢ | + ai
<j<n

& mlﬁgg{mmx—mmn+%}—w)=lwﬂ
SJsn

=1
o B I = U

hi! ( max {h;(|[7 = pjlln) +a;} - ai) e (U(D’fjiv) N ai)

1<j
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o7

Now, we take in (4. 42)) the sum over all i € T, which yields by condition (iv) of Theorem

Oy = Zzzl* az pz =T = Z o Z Q;ip;.

i€l i€l icT i€l

Finally, bringing (4. 43)) and (4. 44) together implies

, ! [l
r = " pi-
S e 2 o) - ai)

S (oD Y )—ar) €T

1€

Example 4.1. (a) Let a;s, Bis >0, s=1,...,v, and h; : R — R be defined by

maX Ollsx‘i‘ﬁzs Zf.'lf cR s
hi(x) := {1< { b *

400, otherwise,

i =1,...,n, then the corresponding location problem looks like

(4. 44)

(P;?(fv) inf max {max {as|lx _pi|?-[+ﬁis}+ai} = inf max {sl|z — pilln + Bis + ai} -

zeH 1<i<n | 1<s<w rEH 1<i<n

1<§<1)
Moreover, we define the function

Qs + Bisa me € ]R'i‘v
400, otherwise,

fs :R=R, fo(z) ::{

then we derive by (71, Theorem 3.2]
W) = (s 20}) @)= e {mes) <xs>}.

As the conjugate of the function 74 fs is
(Tsfs)*(x:) = sup{x:x - Tsfs(x)} = Sup{$:x — TsQisk — Tsﬁis}
z€R x>0

- *
_Tsﬁisv Zf Ty < Teus,
400, otherwise,

= _Tsﬁis + Sup{(l’: - TSOéiS).'L'} = {
x>0

and hence, the dual problem is given by

(D;?iv) sup { - Z 2" i)y + Z Ar lZTSars -

Xi, 22¥>0, z1* e, i=1,..n,
1={ie{1,...,n}:22* >0} CR={re{1,....n}: x>0},

|zt || <29% i€l z 21 =04, ZR/\ ~<1
re

el reR s=1

LY Te=1, Te20, my<Teap, s=1,0
s=1
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Furthermore, h;l(y) = minj<s<y {ai(y — 5is)} foralli =1,...,n, and thus, we have by Corollary
[£.1
1 173" [l

2 { SNy a }pi'
= 1?:21){7( (Dfi\f) ai— st)} i€l 1r<n.512v a”( (Dha) a; ﬂzs)

8|
Il

(b) Let h; : R — R be defined by

hi() w;z?, ifx e Ry,
() =
’ 00, otherwise,

with w; >0, B; >1,i=1,...,n, then

(Pr) Inf max {win — i

and since the conjugate function of h; is given by (see [2, Example 13.2 (i)])

Bi
; — 1 1 Bi—1 i — 1 oy 221 .
h:(z*) :wzﬂ ($*> = 571(1’ )Bifl, i=1,..,n,

ﬁi Wy ﬂiwzﬁ/L -1

the associated dual problem (Dfé\l) is

su — 71 0 ﬁy.17a
p { PN DT PP [ﬁr()\wr) (2") r] }

0 1 o
i, 29%2>0, 2}*eH, i=1,..., n, iel reR
I={i€{1 ..... n};z§*>o}gR={re{1 ,,,,, n}:Ar>0},
22 1 <20% i€, 3 21* =04, ¥ An<1
i€l r€ER

In addition, as hi_l(y) = (y/wl)‘% foralli=1,....,n, it holds

1
i . w1z |
T = + Ll T P
ol (“(D )
T (v(Df:,Z,V)_a”)E

S

(c) Let h; : R — R be defined by

hi() w; T, ifx € Ry,
i(x) =
! 400, otherwise,

where w; > 0, then hi_l(y) = wiy foralli=1,...,n, and hence,

_ 1 wi|[Z |
Ty > ) - (4. 45)
iel oDy ) —ai €T '

Ifa; =0, i=1,...,n, then formula in reduces to
1 1
T = = wil|Z5" || mpi- (4. 46)
TERTR

i€l

Remark 4.10. Let us note that all the results in this section hold also for negative set-up costs.
Like already mentioned in Remark[].9, we have in this case in the constraint set of the dual problem

YorerAr =1L
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4.2.3 Constrained location problems without set-up costs in Fréchet
spaces

In this section we discuss single minimax location problems without set-up costs (ie. a; =0, i =
1,...,n), where X is a Fréchet space, S C X and h; : R — R is defined by

hi(z) x, ifx € Ry,
i\T) = .
00, otherwise.

Hence, the location problem (P ,) turns into

S )
(P7) inf max {yc,(z — pi)}

and by (4. 31)) we can write the corresponding dual (D) as
(D%) sup inf E (z*x—p)po.
0*>o vl ex* i=1,..n, I={ie{l,...,n}:y9*>0}, | Z€ES el
y *=0xx,J¢1I, Wco(yl*)<y0* i€l Z y0*<1

Let us now introduce the following optimization problem

(D%) sup {gigrelg {Z(Zi‘, r— m}} , (4. 47)
rex+, iz, ; , il
Sr=0xe, G, %wcmz;)él

then the following theorem can be formulated.

Theorem 4.6. It holds v(DS) = v(D5).

(2 3 7
i €Iand 2)* =0, z1* = 0x- for i ¢ I. Then, it is obvious that z0* and 2}*, i
feasible elements to (D) and it holds

;Ielg {Z(zf,x —pi>} = ;relg {Z(z}*,x —pz>} <w(D%) (4. 48)

i€l i€l

Proof. Let 2z}, i =1,...,n, be a feasible element to (DS) and set 21 =28, 29 = qp0(2)) for
1

. =3

, M, are

for all zF, i = 1,...,n, feasible to (DS), which implies v(D5) < v(D5).

Vice versa, let z{* and z}* be feasible elements to (D®) for i = 1, ..., n, then we have Yeo (2 )<
z*forie I,y ;22 <landz)* =0, z/* = O0x- fori ¢ I, from Wthh follows by setting 2} = z;*
fori €l and 2] = Ox; forz¢[that

Z Yoo (2

iel
in other words z} is a feasible solution to (BS ) for all ¢ = 1, ...,n. Furthermore, we have that
g {z< = { St} <) (419
1€ 1€

for all 29 and zl* i= 1 ., feasible to (D), which implies that v(DS) < v(DS). Bringing the
=v

statements and 9) together reveals that it must hold v(D%) (D). O
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Remark 4.11. As mentioned in Remark[.5, we have that yco(2}) = 0 < 2z = 0x- and therefore,
the index set I of the dual (D®) contains all indices such that z} # Ox-.

Motivated by Theorem it follows immediately the following one.

Theorem 4.7. (strong duality) Between (PS) and (D5) holds strong duality, i.e. v(PS) = v(D5)
and the dual problem v(D®) has an optimal solution.

Now, it is possible to formulate the following optimality conditions for the primal-dual pair
(P%)-(D%) (note that a; =0, i =1,...,n).

Theorem 4.8. (optimality conditions) (a) Let T € S be an optimal solution of the problem (P%).

Then there exist z* € (X*)" and an index set T C {1,....,n} as an optimal solution to (DS) such
that

(i) wax {yc,(T = pj)t = 2 vep (Z)ve. (@ — pi),
iel

(i) Y(21,7) = —os (— 2z:>,

i€l i€l
(Z“) ’YCO( )’YC (I’ 7p1) = <Ezvfipi>7 1€ 7;

() Y veo(z)) =1, z; € X*\{0x-}, i €I, and Z; = 0x+, i ¢ I,
jer
(v) 10, (T = pi) = max {y¢, (T —p;j)} 1 € 1.
(b) If there exists T € S such that for some z* € (X*)" and an index set I the conditions (i)-(v)
are fulfilled, then T is an optimal solution of (P®), (2*,1) is an optimal solution for (D°) and
v(P%) = v(D?%).

Proof. Let 7 € S be an optimal solution of (P°), then by Theoremthere exists % € (X*)"
and an index set T C {1, ...,n} such that v(PS) = v(D%), i.e

oax {5, (@ = p;)} = inf ¢ 3 (.o = pi)
i€l
& max {ye,(@—p))} +os | =D 7 |+ D (=.pi) =0

1<j<n

icl el

& max {1e,@—p)} +os (=D 7 |+ (=)

1<j<n ~

i€l el
+Z'YC?(§?)7 (T —pi) Z’Yco (T —pi +Z Zz ,ZT) =0

i€l iel iel iel
& | max {he, (@ = pi)}t = 3 ver(E —p;)
i€l
+ |6s(T) +os ZZ +<sz,$> +Z’Ycﬂ o (T —pi) + (Zi,pi —7)] = 0.
i€l i€l i€l
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By Lemma holds that the term within the first bracket is non-negative and by the Young-
Fenchel inequality we derive that the term within the second bracket is non-negative. Further,
from ygo(Z;7) > 0 for @ € I, it follows by the Young-Fenchel inequality that

Yoo (270, (T = pi) + (Yoo (Z7)ve,)" (27) = (27,7 — pi) Vo™ € X7, (4. 50)
and since (see Remark
— 1 0, if Yo (.’E*) < Yeo (E*)v
*) = e | —==2" | = i it 4. 51
(VCU( )7C> (33 ) ’YC?(ZZ),YCZ (’YC? (ff)x > {—FOO, otherwise, ( )

one has that yco (Z)ve, (T —pi) = (2,7 — p;) for all i € 1. This means that the terms within the
other brackets are also non-negative and therefore, all the terms inside the brackets must be equal
to zero. This implies the cases (i)-(#i¢). Further, we obtain by the first bracket

ax {50, = pi)}k = 3 Y00 (F )10, (@ - pi)
i€l
z (@-p)} < (@ - p;
>_ o () max {v0,(@ = pj)} < max {y0, (7 - p))}
i€l

and from here follows that }_, 77vc0(z}) = 1, which yields condition (iv), as well as

> e () max {WC @ =)} =>_ o )ve, (T —pi)

i€l iel
& Y [mx e, (@ = )} @ = )] =0, (4. 52
i€l

As the brackets in 1' are non-negative and yco(27) > 0, i € I, we get that

1glja<x{7c(x—pg)} ve,(T —pi), i € 1.

which yields the condition (v) and completes the proof. O

4.2.4 Unconstrained location problems without set-up costs in the Eu-
clidean space

Now, we turn our attention to the case where S = X = R? and w; > 0, i = 1, ..., n. Furthermore,
we use as the gauge functions the Euclidean norm, i.e. o, (-) = w;|| - ||, ¢ = 1,...,n. By these
settings, the minimax location problem (P®) transforms into the following one

S _
(PY)  inf, max {uillo i}

By using (4. 47) we obtain the following dual problem corresponding to (Py),

(D%) sup inf {Z<ZZ*’ T — pz>}

) d
2rerd, i=1,..,n, I= {16(1 ..... n}:llzF (>0}, z€R el

z;:ow igl, ¥ l=rist
ier Wi

* *
= sup —opga | — g 2F | — g (27, pi)
zferd, i=1,...,n, I= {16(1 ..... n}:|zF >0}, : X

iel el
z]*.:oRd Ji¢lI, iz[ a7 l=ri<t

= sup } {—Z(zj,pﬂ} (4. 53)
n}:llz3 >0},

z¥erd, i=1,...n, I={ie{1,..., icl
. 1 * *

2*=0_4, j¢I, Ljzx<1, 2*=0,

§0d IR0 wp IETIST ) 200k
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Remark 4.12. Note that for simplicity it is also possible to substitute 2z} = —z} for alli =1,...,n,
whence it follows

(D) W {Z<z;:pz->}. (4. 54)

ZEERd' i=1,...,n, I:l{z‘e*{l ..... ) iel
F=0_4, i¢I, LojzF<, *—0
25 =0pq, 5&1, ig] wy 12511 7%)[ 27 =0pd

Theorem 4.9. (strong duality) Between (Py) and (5%) holds strong duality, i.e. v(Py) = v(ﬁf\})
and the dual problem has an optimal solution.

By Theorem [£.8 and [£.9] we derive the following necessary and sufficient optimality conditions.

Theorem 4.10. (optimality conditions) (a) Let T € R? be an optimal solution of the problem
(PY). Then there exist z; € R, i = 1,...,n, and an index set I as an optimal solution to (DY)
such that
(i) max {w;|[z —p;ll} = X 17717 — pill,
Sjsn i€l
(i) > zZF = Oga,
i€l
(iii) |Z |17 = pill = (25,7 —pi), i €1,
(iv) ZU%HZ;*H =1,z € R\ {Oga} fori eI and z; = Oga fori ¢ I,
Jjel

(v) willZ —pill = max {w;|[T —p;l}, i € 1.

(b) If there exists T € R? such that for some Z; € R, i = 1,...,n, and an index set I the conditions
(i)-(v) are fulfilled, then T is an optimal solution of (Py), (Z*,1) is an optimal solution for (DY)
and v(Py) = v(D%).

For the length of the vectors z], i € I, feasible to (515\,) the following estimation from above
can be made.

Corollary 4.2. Let w,s := maxj<;<p{w;} and zf € R%, i=1,....n, and I C {1,...,n} be a feasible
solution to (DY), then it holds
WsW;

— " iel
Ws + W;

1271 <
Proof. Assume that 27 € RY, i =1,..,n and I C {1,...,n} are feasible elements of the dual
problem (D%), then one has for j € I,
sz =Opa & 2] = —sz
iel g;l_
i#]
and hence,

Iz =1 = <> =, s el (4. 55)

iel i€l
i#] i#j

Moreover, from the feasibility of z¥, i € I, to (D) and by (4. 55), we have

1= Z;illzi I = uTjHZjH +ZEHZZ» |

iel i€l
1 1 1 1 wg + w;
>7%7Z*>7*7%:753%'61
> I+ L N 2 )+ 2|25l j e 1,
i#£]
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and so,
w; .
73, jel.
Ws + w;
O

By the next remark we point out the relation between the minimax and minisum problems.

Remark 4.13. The optimal solution T of the problem (Pf,) 18 also a solution of the following
generalized Fermat-Torricelli problem

(PyT) min LY illz = pill

i€l

where w; = ||z}, i € 1.
This can be seen like follows: It is well known that T is an optimal solution of the problem
(PET) with T # p;, i € I, if and only if the resultant force R at T, defined by

Z —
-
[z —pill’
is zero (see [63]). As T is an optimal solution of (Py), we have by that

sz an*n Zaz —pi) =) % = Oga,

i i

which implies that T is also an optimal solution of the problem (PLT). In this context, pay attention
also to the fact that for the optimal solution T of the problem (Py) it holds T # p;, i € I. Because

if there exists j € I such that T = pj, then T = p; for all i € I, which contradicts the assumption
that the given points are distinct.

Geometrical interpretation.

For simplicity let us suppose that w; = ... = w, = 1, then it is well-known that the problem
(PY) can be interpreted as the finding of a ball with center Z and minimal radius such that all
given points p;, ¢ = 1,...,n are covered by this ball. This problem is also known as the minimum
covering ball problem.

Our plan is now to give a geometrical interpretation of the set of optimal solutions of the dual
problem (D%) by using Theorem {4.10l By condition (iii) we see that for i € T the dual problem
can geometrically be understood as the ﬁndlng of vectors Z;, which are parallel to the vectors
Z — p; and directed to 7 fulfilling ), 72 = Oga and ;7 ||ZZ || = 1. Especially, conditions (iv)
and (v) are telling us that for i € I, i.e. z} # Oga, the corresponding point p; is lying on the
border of the minimal covering ball and for i ¢ I, i.e. Z* = Oga, the corresponding point p; is
lying inside the mentioned ball. Therefore, for i € I the elements Z; can be interpreted as force
vectors, which pull the points p; lying on the border of the minimum covering ball inside of this
ball in direction to the center, the gravity point T, where the resultant force of the sum of these
force vectors is zero. For illustration see Example and Figure

Another well-known geometrical characterization of the location problem (P&) is to find the
minimum radius of balls centered at the points p;, i« = 1,...,n, such that their intersection is
non-empty. In this situation, the set of optimal solutions of the dual problem can be described as
force vectors fulfilling the optimality conditions of Theorem and increasing these balls until
their intersection is non-empty and the radius of the largest ball is minimal. From the conditions
(iv) and (v) we obtain that a force vector Z} is equal to the zero vector if T is an element of the
interior of the ball centered at point p; with radius v(Py ), which is exactly the case when i ¢ I. If
i € I, which is exactly the case when Z is lying on the border of the ball centered at point p; with
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radius v(Py ), then the corresponding force vector z} is unequal to the zero vector and moreover,
by the optimality condition (iii) follows that Z} is parallel to the vector T — p; and has the same
direction.

To demonstrate the statements we made above, let us discuss the following example.

Example 4.2. Consider the unconstrained single minimaz location problem in R? defined by the
given points:

p1=(=5,-2.5)7; po = (=2, 1)T; p3 = (2.5,3)7; pa = (3.5,-2)T and ps = (0, -3)".
The primal problem looks in this case like follows

-5 .
(Py) ot max (o~ i)}

and by using the Matlab Optimization Toolbox we get the solution T = (—0.866, —0.273)T with the
objective function value maxi<;<s{||T — pil|} = 4.695.
For the dual problem we have the formulation (see Remark

(DY) sup {—Z@;‘,p»}. (4. 56)

*eR2, i=1,...,5 A
zle P r’ s i=1

5 * < . *
Eonnen £ oo
with the solution

zy = (0.412,0.222)7; z5 = (0,0)"; z3 = (-0.281,-0.273)";
z; = (—0.131,0.052)7; %% = (0,0)7.

_The dual problem was also solved by using the Matlab Optimization Toolbox. In fact, it holds
I = {17334}; <E>1kap1> + <§§,p3> + <227p4> = 4695} xr = ”51”1)1 + HngpS + EZHpﬁl = 0.468 -
(—5,-2.5)7 +0.392-(2.5,3)T +0.14- (3.5, —2)T = (-0.866, —0.273)T (see (4. 46))) and the points
p1, p3 and py are lying on the border of the minimum covering circle as Figure [{.1] verifies.

Remark 4.14. Let w; = 1, i=1,...,n. Then, for the case n = 2 it follows immediately by condition
(iv) of Theorem and Corollary [{.9 the well-known fact that T = (1/2)(p1 + p2).

Remark 4.15. Letw; = 1, i=1,...,n. If we consider the case d = 1, we can write the dual problem
(D% as

(DY) sup } {—ZZZ‘pi} =  sup  {=(z"p)},
n}il=¥ >0},

*¥ER, i=1,...,n, I={ic{1,... - z*ERM, (z*,1)=0,
P ER i=he o fieti. i€l Hz*l\< <1>
2¥=0, j¢I, > |zf|<1, X =zf=0 1=
7 i€l i€r

where z* = (25,..,25)T € R", p = (p1,..,pn)T € R", 1 = (1,...,1)T € R" and | - || is the
Manhattan norm. From the second formulation of the problem (ﬁf\}) it is clear that the set of the
feasible elements is the intersection of a hyperplane orthogonal to the vector 1 and a cross-polytope
(or hyperoctahedron), i.e. a convex polytope. Further, it is clear that the optimal solution of this
problem can get immediately by the following consideration. Let us assume that p1 < ... < pn,
then it holds p1 < T < p, and by condition (v) of Theorem one gets
max ([T —pjl} = |7 —p1| = |7 —pal,

i.e. I ={1,n}. By Remark this means T = (1/2)(p1 + pn). Moreover, by Corollary we
have that |Z7| = |Z}| = 0.5 and by condition (iii) of Theorem finally follows that Z7 = 0.5
and Z;, = —0.5. A more detailed analysis of location problems using rectilinear distances was given
mn [34/.
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P24 4

T2 =% 9
Ny Z) [ pa

y
=4 s

Figure 4.1: Geometrical illustration of the Example [£.2]

By the next remark, we discover that the Lagrange multiplier associated with the linear equa-
tion constraint of the dual problem (D7) is the optimal solution of the primal problem (Pg) and
moreover, the Lagrange multiplier associated with the inequality constraint of the dual (D%) is
the optimal objective value. A similar result was shown in [61] for minisum location problems.

Remark 4.16. First, let us notice that the dual problem (ﬁ;";,) can be written as (see Remark

(D§) sp {—Z<z:,pi>},

*cpd  i— ‘
z¥eRrd, i=1 i—1

O Py > 2
=¥ <1, 2¥=0_4
i=1 Wit =1+ R

then the Lagrange dual of the dual (ﬁjsv) looks like

(DD3) it sup {—Z<z:,pi> * <xz> - (Z =21 - 1) }

A20, ER zxcRd | j=1,...,n

i=1 i=1 i=1 "
n )\
=t > sw {wopen - 2eb b 457
»ﬁeRd{ ;Z?gd{@ poi) = 2os ||}} (4. 57)

If A\ =0, then we get

sup (x —p;, 2) =

27 R 400, otherwise,

{ 0, iof x = p;,

i =1,...,n, which contradicts the assumption from the beginning that the given pointsp;, i =1,....n
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are distinct. Therefore, we can write for

(DDY) inf {AHil sup {<‘§i<x—pi>,z:>—||z;‘||}}

A>0, z€R? 7 Wi zrcRd
= inf A= inf max {w;||x — pi| }
A>0, weRd, zeRd 1<i<n
wille—p; | <X, i=1,..., n

We conclude, on the one hand, that the Lagrange dual of the dual problem (ﬁi}) (i.e. the bidual of
the primal location problemN(PS)) is the problem (P®). On the other hand, we see that the Lagrange

multipliers of the dual (DD]SV) characterize the optimal solution and the optimal objective value
of the primal problem (P®). Therefore, we have a complete symmetry between the primal problem

(P3), the dual problem (131%) and its Lagrange dual problem (Dﬁf,)

4.3 Extended multifacility minimax location problems

4.3.1 TUnconstraint location problems with set-up costs in Fréchet spaces

The location problem, which we investigate in a more general setting as suggested by Drezner
in [35] and studied by Michelot and Plastria in [304/67], is

m
M .
(BEL) 00 e 42255, 22000 (53 = i) i

where X is a Fréchet space, a; € Ry are non-negative set-up costs, p; € X are distinct points and
Ye;; + X — R are gauges defined by closed and convex subsets Cj; of X such that Ox € int Cjy,
t=1,.,n, j=1,...,m. _ _ _

Now, set X = X™, x = (21, ..., Tm) € X, D; = (pi, ..., pi) € X and define the gauge y¢, : X = R
by

m

vo, (x) = Z'YCU (), ©=(z1,....,xm) € X,

j=1
where C; = {z € X : vo,; () < 1}, i = 1,...,n. Note that, as defined in the proof of Lemma
(x*,x) = Z;n:l@;,x]) for x € X and z* € X*. Then, it is obvious that the location problem

(EPM) can also be written in a slightly different form, namely, as a single minimax location
problem

(Epéw) inf. ax {ve, (@ —pi) + as}.
zeXx 1<i<n

We use (4. 16) of Lemma and (4. 31) and get for the dual problem corresponding to
(EP)

(EDM) sup s {ini {Z<z3*7x—@>} +§jz?*ai}.
n :z?*>0 R

0 1o e xon 5 . f.
2020, 2lrex*, i=l...n, j=1...m, 1={ie{1,..., reX el i€l

z}cj.:ox*, kel, ’ycgj(zil;‘)gz?*, iel, j=1,...,m, glz()*g

Because
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we obtain finally for the conjugate dual problem of (EPM)

(EDY) sup -3 <ip>— 7

(#0202t anee | g [\

where

C= {(z?*,. LA 2 L2 R X (X)) x Lx (X)™ T = {i € {1,...,n}: 22" > 0}

ij—OX* k¢l 'yco( <2 iel, z:jz =0x-, j=1,...,m, E:Iz?*<1}.
1S 1€

Remark 4.17. A similar dual problem was formulated by Michelot and Cornejo in (30] in the
situation where X is the Fuclidean space, m = 2 and the gauges are a norm. The authors construct
in their paper a Fenchel duality scheme to solve extended minimax location problems by a proximal
algorithm.

Remark 4.18. In the sense of Remark the dual problem (EDM) is equivalent to

(ED, ) sup —Z <Zz” ,p,> —2a;| ¢,

(Z Zn 7z1 EERREr=y *)EC i=1

where

C = {(z?*,...,zg*,z%*, LZp) € R X (XH)™ x Lox (X*)™ ’ycoj(z,i;) < 29,

n n
Yz =0x, k=10, j=1,...,m, Y z* §1}.

=1 i=1

Let v(EPM) be the optimal objective value of the location problem (EPM) and v(EDM) be
the optimal objective value of the dual problem (EDM), then we obtain the following duality
statement as a direct consequence of Theorem

Theorem 4.11. (strong duality) Between (EPM) and (EDM) holds strong duality, i.e. v(EPM) =
v(EDM) and the conjugate dual problem has an optimal solution.

The following necessary and sufficient optimality conditions are a consequence of the previous
theorem.

Theorem 4.12. (optimality conditions) (a) Let (T1,...,Tm) € X™ be an optimal solution of the
problem (EPM). Then there exist (Z20*,...,Z20%, Z1*, ... *1*) € R} x (X*)™ x ... x (X*)™ and an

T Tn Y
index set I C {1,...,n} as an an optimal solution to (EDM) such that

(i) max {i Ve, (Tj = pu) +au} =2 (Z Yo, (T —pi) + az‘) )

1<u<n el j=1

(ii) E?*'yci]. (T —pi) =(Z 11]*,*]- —pi), i€, j=1,..,m,

(iii) ZE%J’-" =0x+,5=1,...m
icl

(iv) 229* =1,2">0,icl,andz0* =0, k¢ 1,
jerI
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(v) > e, (T; — )+az—1max {Zvcw( pu)+au}> i€l
j=1

(vi) lrgllzix {70191 (Elll*)} =z (Zh, ., Z) e X* x o x X*\ {(0x~,...,0x-)}, i €I, and Ei; =

k¢l j=1,...m

(b) If there exists (Ty,...,Tm) € X™ such that for some (2%, ...,Z0", 21", ..., 7)) € R x (X*)™ x
X (X*)™ and an index set I C {1,...,n} the conditions (i)-(vi) are fulfilled, then (ml, vy L) 18
an optimal solution of (EPM), (20, .. ,Z?L*,Z}*,. Lz 1) is an optimal solution for (EDM) and
v(EPM) = v(EDM).

Proof. From Theorem we have ’U(EPGIVI) = v(ED}), ie. for (Ty,..,Tm) € X™ and
(Z0%,...,20 zk . 2 € R” ( )M X ... X (X*)™ and an index set I C {1,...,n} it holds

M Ead (A 7n

m m
—=1x% —=0x%
max E +a :—E ZissPi ) — Z; Q;
1<u<n I’YC pu) “ x iy Pi v
Jj= J

i€l
m i m ]
1% 0% _
o s 33 et p (e ) - ] o
J=1 iel | V=1 ]
m i m ]
—=1x% 0%
& max 0> 50, (@ =) Fau e+ <Zzij,p¢>—zi a
Jj=1 iel Jj=1 ]
m
+ Z ng*%}” (T —pi) — Z z ey, (T — pi)
ieT J=1 ieT 5=1
m m
(X3t ) - (S5 ) o
iel J=1 iel J=1
m
o | max 3 0@ - b - S W0, (- - YA
- J=1 iel J=1 iel
m m
) D +z<zzw Jeo s
i€l J=1 J=1 \ieT
If we define the function h; : R — R by
Y, ify e Ry,
hi(y) == 4. 59
i) {+oo, otherwise, ( )
then it follows by Lemma [£.2] that
m m
Z:I’VCL,» (T — 1),y 2170”]- @ —pn) | = max Zvcu] )+ ay
J= J=

IV

ZZO* Z’YC” )+ail,

i€l

which means that the term in the first bracket of | is equal to zero. Moreover, by the

Young-Fenchel inequality as well as by the fact that Zze I ” =0x+, j = 1,...,m, we get that
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the terms in the other brackets are also equal to zero. Hence, we derive the optimality conditions
By the feasibility condition, Y. 72" < 1, and the equality in the first bracket of it

i€l Zi
holds
0
max Z +a = Zz Z + a;
1Sun 'YC’W pu u ’YC” pz i
i€l
< ZZQ* max Z +a
= DR e : ’YCMJ pu U
el

IN

m
25, 270 (T ~ P+
]:

and from here follows on the one hand that

> oEr = (4. 60)

icT
and on the other hand that
Z'VCU )+ a; = max. Z’wa )+aup, i€l (4. 61)
Moreover, as z° Yo, (T; — pi) = <Ezlj*, ;= Dpi), i €1, j = 1,..,m, one gets by the feasibility
condition,

Yoo, (Z};) <F*Vji=1,..m,icl,& max {’yCo (*)} <z iel. (4. 62)
Recall that vo, (T — pi) = Y75, e, (T; — pi) and that by Lemma we have yco(Z1*) =
max1<j<m{'yco( 1*)} where ;bvl = (pz,. Lpi) € X™ and zV* = (ZY,..,Z) € (X)™, i€ 1.
Then one can show similarly to ) that

'VC?(E%*)’VC% (T _ﬁz) > < Z; T _pz> (4' 63)
i.e.
L 3 B m o
max {500 )} D70, (@5 - 2T iel. (4. 64)
== j=1 j:1
From here follows that
E(Z)*’ycz(f_ﬁl) = EZQ*Z’YC”‘ (fj 2] 77 - = <E%*v§_ﬁi>
- J:1
< — ;) = z
< vep (30, (F = Bi) = max {’YCO }Z

m
<EY e, @ —p), i €1,

Jj=1

and thus, the inequality in (4. 62 holds as equality. Taking now (4. 60)), (4. 61) and (4. 62)) as
equality together yields the optimality conditions (iv)-(vi) and completes the proof. O
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Remark 4.19. Let h; : R — R be defined by

hi(z;) o= {”f if v € Ry,

400, otherwise,
then the conjugate function of A\ih;, A\; > 0, is

. t=1,...,n.
400, otherwise,

(Aihi)*(27) = {

In addition, we consider the function f:R — R,

f(yo) _ { 1123“<X {y +a1}a ny (y?a "'ayg,)T € Ria i= 17"'7”3

400, otherwise,

and get by Lemma[{.1] that
R, 20 = min {—Z)\ az} ZZO*GZ

for all 29* < X\; with \; >0, i = 1,...,n, > A < 1. Hence, we have by the Young-Fenchel
inequality and the optimal condition (i ) of Them"em that

S e, @ —p) < D) e, @i —p Zvcm —pa)) | + FE 0 E)

i€l J=1 J=1
m m n m
- - =0 =0x -
Z’VC’U (xj _pl)v "'7Z’Van (xj _pn)) - ZZZ a; = ZZZ Z’VCij (xj -
Jj=1 Jj=1 i=1 i€l Jj=1

i.€.

m m
> e, @ - ZWCW —pn) | +FE L E) =) ED e, (7
j=1

icl J=1
and by this equality is equivalent to

m

(Z?*v ,22*) € af nyclj (fj _pl)’ ""Z’ycnj (Ej _pn))
=1

j=1
In other words, the condition (i) of Theorem can be written by means of the subdifferential,

ie.,

(i) (ZV*,...Z0) €0 ( magn{ + aj}> (i Yo, (Tj = p1)s s i::lwcnj (T; —m))) :

Similarly, we can rewrite the condition (ii) of Theorem as follows
(ii) zl* €0z} “vo,;)(Tj —pi), i € I, j=1,....m

Moreover, combining this condition with the optimality condition (iii) of Theorem yields that

Ox- € Za(zg*’ycu)(fj _pi)7 j=1..,m

icl
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Notice also that the optimality conditions (ii) and (vi) of Theorem[{.19 give a detailed character-
ization of the subdifferential of E?*’ycij at T; — p; such that

(e, (T — pi) = {Zzlf € X*:7) e, (T; —pi) = (Zi] . T; — pi), max {ch (le*)} = Z?*}

foralliel, j=1,..,m.

Let us now consider the extended location problem (EPM) in the following framework. We
set X = H, where H is a real Hilbert space and v¢,; : H — R, ¢, (x) := wyj[|x||3, where w;; > 0
for j=1,...,m, i =1,...,n. Hence, the location problem looks like

m
EPM inf ax ¢ > wijlla; — pilln + a;
( N,a) (11,.-.,wrrbl)ne7-t><..‘><7{1r£igxn j:1’LUzj||1'j szH a;

For this situation, where the gauges are all identical and the distances are measured by a round
norm, Michelot and Plastria examined in [67] under which conditions an optimal solution of
coincidence type exists. The authors showed that if the weights have a multiplicative structure,
ie. wy = Apy with Ay, p; > 0,4 =1,...,n, j =1,...,m, and Z;"zl t; = 1, then there exists
an optimal solution of (EP]{‘,{G) such that all new facilities coincide. Moreover, they described
when the optimal solution of coincidence type is unique and presented a full characterization of
the set of optimal solutions for extended multifacility location problems where the weights have a
multiplicative structure.

The next statement is based on the idea of weights with a multiplicative structure and illustrates
in this situation the relation between the extended location problem (EP]{\,{G) and its corresponding
conjugate dual problem.

Theorem 4.13. Let X = H, v¢,, : H — R be defined by vo,, (x) = wij||z||n, i = 1,...,n, j =
1,...,m, and wi; = Aspj with g, p; >0,i=1,...,n, j=1,...,m, and Z;n:l p; = 1. Assume that
Az = (T,...,T) € H X ... x H is an optimal solution of coincidence type of

—_——

m—times

m
EP} inf > wijllz; - pi ;
( N’a) ($17~..,$7n}§1€HX...XH11,;1%}(” :IU}%]ij leH—’_aZ

and (Z9%,...,2% zb 22 1) and T C {1,...,n} is an optimal solution of the corresponding con-

ey Ay ey Am s

jugate dual problem

m
(ED%a) sup 72 < Zil;vpi> 72?*6%' )
H

(29%,...,20% 2% . zlx)eC icl =1

C= {(z?*,...,zg*,z%*, a2 ) ERE X W™ x Lox W™ T ={ie{l,..,n}: 2" >0}
N————

n—times

Zé;:OH, k§él7 ||Zilj*H7'l SZZ»O*’UJZ‘J‘, iEI, ZZ};ZOH, j:l,...,m, ZZ?* S 1}.
iel i€l

Then, it holds

oL ME
- B EDY ) —a;
Z; v(EZD%,Ja)iai ieT W(EDy..) — as

1€

Di vj Ej7
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where

IZi5

_ . 1 1., o
7im { € (s o2 e = e {1 i T

Proof. First, let us remark that the dual norm of the weighted norm ~¢,; = wj;|| - ||3 is given
by s, = (L/wig) |-

Now, let Az = (Z, ..., T) be an optimal solution of coincidence type, then the optimality condi-
tions (ii), (iii), (v) and (vi) of Theorem [£.12] can be written as

(i) 20" wij |7 = pilln = i, T —pi)n, i €1, j=1,..,m,
(i) Yz =0y, j=1,..m

i€l

m —
(v) waHfE pilln +ai = max {Z quHx pn|’H+au}» i€l
j=1

(vi) 1%‘?5,1{% Izi ||H} =20, (B Zim) € H X oo X H\ {(09,...,03)}, i € T and Z5 =
O, keI, j=1,...m

By combining the conditions (ii) and (vi), we get
1235 1nl|T — pille = (21 Z —piyn, i €1, jeJ. (4. 65)
Moreover, by Fact 2.10 in [2] there exists a;; > 0 such that
Eil] = ij (T — pi) (4. 66)
and from here one gets that
17355 N3¢ = 1|7 — pillan (4. 67)
i €1,j € J. By condition (v) follows

Zwmnx pilla +a; = max. Zwujnx Pulla + au
Jj=1

m
N AZlugux—pzuwaz—lmag N Dl =l o
J 1=

& Nl pilla = max (T pullwctan), i€ T (4. 689)

Bringing (4.67)) and (4.68)) together yields

A
— |1z} ||H+az7121&>< Pl = pully + au}
ij
& a As Iz, i€, G (4. 69)
i = H . .
J max. {/\ IZ — pulla + au} —

1<u

Taking the sum overall i € T in (4. 69) gives

NillZ3 | -
i = € J. 4. 70
Zaj Z max {)‘ 17 = pulln + au} —ai’ ’ ( )
i€l icl 1<u
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Now, consider condition (iii), by (4. 66) follows

O =) Zi5 =) aij(@T—p)eT= Zal > aypi jed. (4. 71)

i€l icT icl
icl
Putting (4. 69)), (4. 70) and (4. 71) together reveals
_ 1 AillZi Nl
r = y23
Azl Z AT — —
Z o O lo— pju”::Jrau} o il 11<Iluai( Al = pulln +au} —ai
I 1<u<n
1 'HEU ||H —
= — L ] E J
I Z EDM )y _ g, P ’
N e At
i€l ‘
and the proof is finished. O
Remark 4.20. In the context of Theorem|4.18, it holds that T —p; and Z.* are parallel and so the
ij

vectors (l/wij)le;, j € J, are all parallel to each other. In other words, the vectors (l/wij)izlf,
j € J, are identical. In this sense, one can understand the optimal solution of the conjugate dual
problem also as a solution of coincidence type.

The next statement holds for any weights, not necessary of multiplicative structure.

Lemma 4.6. Let w,; := maxi<uy<n{wy}, X = H, 7¢,;, + H — R be defined by ¢, (x) =

wijllzls, i =1,..,n, j=1,...,m, and (2{*,.. .,zg*,z%*, ey ZX%) @ feasible solution of the conjugate

dual problem (ED]]\V,{G), then zt holds

el < —2%9 el j=1,.,m
Wsj + Wi

Proof. Let

(220 L ERY X H X X H X X H X x H

yPn

m—times m—times

be a feasible solution of the conjugate dual problem (ED% ), then we have

i) X<,

el
()HZ I|7‘l<z ’U)”,j—l m,i€I7

(iif) 35z =

i€l

The inequalities (i) and (ii) imply the inequality

1
> —leln <1, j=1,.,m. (4. 72)
: Wi 5
i€l
Furthermore, by (iii) we have
Zzﬁj:OH@z,ﬁ; Zz”7 kel, j=1,. (4. 73)
el i€l
itk
and hence,
kil = 11D 2 I < M=l k€L, j=1,.m. (4. 74)
i€l i€l

i#k i#k
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By (4. 74) we get in (4. 72)

Loyas
R e LR Dt i MRS PR B o
J

ierl Wsj o1
itk itk

MM

1 1 )
> EH 2l Il e = oy G =1,..,m,

Wsj W Wij
and finally,
Izl < —22 kel j=1,..,m. 0O
’ Wsj + Wy

Remark 4. 21 If we allow also negative set-up costs, then we have in the constraint set, as stated
n Remark Sier 2 = 1 instead Y, 20* < 1. One can easy verify that the results we
presented above also holds in this case.

4.3.2 Unconstrained location problems without set-up costs in Fréchet
spaces

In the next, we study the case where X is a Fréchet space and a; = 0 for all i = 1, ..., n. With this
assumption the extended multifacility location problem (EPM) can be stated as

(%1, mm ) EX™ 1<i<n

(EPM) inf max Z Yo, (T
=1

In this situation its corresponding conjugated dual problem (EDM) transforms into

(EDM) sup Z<sz,pz>

0% 1% 1
(21 s 20277207 ) EC icl

Additionally, let us consider the following dual problem

(EDM) sup Z <Z z”,pl>

(ZIWVZZ,)GC el

<m

5:{(2’{, L 2E) e (X*)m .X(X*)m:I:{iE{l Wn} rr;ax {'yco( )}>O}

ierl 1<Il<m

Gy =0 kgl e =0 j=1om & max {36 )}<1}
1€

Let us denote by v(EDM) and v(EDM) the optimal objective values of the dual problems (EDM)
and (EDM), respectively, then we can state.

Theorem 4.14. It holds v(EDM) = v(EDM).
Proof. The statement follows immediately by Theorem and (4. 16]). O

The next duality statements follow as direct consequences of Theorem .11 and Theorem

Theorem 4.15. (strong duality) Between (EPM) and (EDM) strong duality holds, i.e. v(EPM) =
(EDM) and the dual problem U(EDM) has an optimal solution.
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We define
Jyi={i € {1om} iv0n () > 0}, i€ 1,
and obtain as a result of Theorem (especially by using the optimality condition (vi)), Theorem
and the following optimality conditions.

Theorem 4.16. (optimality conditions) (a) Let (T1,...,Ty) € X™ be an optimal solution of the
problem (EPM). Then there exist (Z},...,Z5) € (X*)™ x ... x (X*)™ and an indez set T C {1,....,n}
as an optimal solution to (ED™) such that

(i) max {Z VCu; (T )} 2. Z ey, (Zi)os, (T = pi),

<u<n
1su ielJ=1

(ZZ) erj =0x+,j=1,....m
iel

(”Z) ’YC? (7zg>’ycu( pz) - < 7,]7‘%] _pl>7 S I7 .7 = 17"'>m;

() % mx {res )} =1,

(v) max {Z VCu; (@ Pu)} = iﬂcij (T —pi), i €1,

1<u<n -1

() max {req (1)} = e, () > 0, 5 € Ty, (B, 7h0) € X% x X\ (0,0 0x-)), i €
I,andz}, =0x+, k¢ 1, s=1,...m

(b) If there exists (Ty,...,Tm) € X™ such that for some (Z7,...,Z,) € (X*)™ x ... x (X*)™ and an
index set I the conditions (i)-(vi) are fulfilled, then (T1,...,Tm) is an optzmal solution of (EPM),
(z3, .., 25, 1) is an optimal solution for (EDM) and v(EPM) = v(EDM).

Now, our aim is to investigate the location problem (EP™) from the geometrical point of view.
For this purpose let X = R? and the distances are measured by the Euclidean norm. Then, the
problem (EPM) turns into

m
(EPM) inf max ZwinﬂUj—piH ,
j=1

(15T ) ERIX ... xRE 1<i<n,

while its conjugate dual problem transforms into
- m
D) o L3 (S )
(21,..,25)€C iel \j=1
with

C= {(zf,. L2%) € (RYm .X(Rd)m:I:{ie{l,...7n}:1gzgn{ 1 ||z”||} >o}

iel iel <l<

Via Theorem [£.15] and the following statements follows immediately.
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Theorem 4.17. (strong duality) Between (EPY) and (EDN) holds strong duality, i.e. v(EPY) =
v(EDA) and the dual problem has an optimal solution.

Theorem 4.18. (optimality conditions) (a) Let (T, ..., Tm) € R x ... x R? be an optimal solution
of the problem (EPY). Then there exist

(Z,..,7) e RYx .. x REx... x R x ... x RY
%,—/ ~—_————
m—times m—times

and an index set I as an optimal solution to (Eﬁ%) such that

(i) max {wall% pul} ZZHZUHII% pill,

iSusn icT =1

(ii) Y.z =Oga, j = 1,..ym,

iel
(Z“) ||E;kj||||fj —sz - < z]a p’t> Ia ]: 1a ey ML,

(i) % ms ax {2 ;;n}:l

m
(v) max {Z wy; | T; — pul} = > wi|[T; —pill, 1€ 1
j=1

(vi) max {LIzl} =

max 1] zZill, jedy={ie{l,...m}: |z >0}, Z,...7) € RY x
.. X Rd \ {(ORd, ...,O]Rd)}7 1€ 77 and ZZ] = ORd, k ¢ 77 j = 1,...,m

(b) If there exists (T1,...,Tm) € R x ... x R such that for some

(Z,..,7) eRYx .. x REx.. x R x ... x RY
— —

m—times m—times

and an index set I the conditions (i)-(vi) are fulfilled, then (Ty,...,Tm) is an optimal solution of
(EPY), (7%, ..., 75, 1) is an optimal solution for (EDA!) and v(EP}) = v(EDAY).

N

Geometrical interpretation.
We want now, in the concluding part of this section, to illustrate the results we presented above
and describe the set of optimal solutions of the conjugate dual problem. For that end, let us first
take a closer look at the optimality conditions stated in Theorem

By the condition (i) follows that the vectors Z}; and T; — p; are parallel and moreover, these
vectors have the same direction, i € I, 5 = 1,....m. From the optimality condition (vi) we
additionally deduce that the vectors EZ‘], j =1,...,m, are all unequal to the zero vector if i € I,
which is the situation when the sum of the weighted distances in condition (v) is equal to the
optimal objective value. In the reverse case, when i ¢ I, i.e. the sum of the weighted distances in
condition (v) is less than the optimal objective value, the vectors z};, j = 1, ..., m, are all equal to
the zero vector.

Therefore, it is appropriate to interpret for i € I the vectors z;; fulfilling doicTZ 7 = Ox-

YR

and ), 7 maxi<i<m {17,”211H} = 1 as force vectors pulling the given pomt p; in direction to the

associated gravity points Z;, j = 1,...,m. As an illustration of the nature of the optimal solutions
of the conjugate dual problem, let us consider the following example in the plane and especially,

Figure [£.2]
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Example 4.3. Let us consider the points p; = (0,0)T, pa = (8,0)T and p3 = (5,6) in the plane
(d = 2). For the given weights wi1 = 2, wia = 3, woy = 3, wo = 3, w3z = 2 and wzs = 2 we
want to determine m = 2 new points minimizing the objective function of the location problem

(BRY) it max(2les = pill +3lea = 1.3l = pall + 3l = pal.

2||z1 — p3ll + 2[|z2 — ps3|}.

To solve this problem, we used the Matlab Optimization Toolbox and obtained as optimal solution
71 = (6.062,0.858)T, Ty = (2.997,0.837)T and as optimal objective value (EPY) = 21.578.
The corresponding conjugate dual problem becomes to (see also Remark

(EDY) sup  {—(211 + 212, p1) — (231 + 232, p2) — (231 + 232, P3) }
(27,23,25)€eC
where
C= {(zf,z;,z;;) € (R? x R?) x (R? x R?) x (R? x R?) :
211 + 251 + 231 = Orz, 20y + 230 + 235 = Ope,
max { 3|21 [, 5ll232 ]} + max {3123, 1], Izl } +max {3]25: ], 5125201} < 1}~

The dual problem (EE%) was also solved with the Matlab Optimization Toolbox. The optimal
solution was

771 = (0.803,0.114)", z}, = (1.171,0.327)7,
73, = (~0.909,0.402)7, Z5y = (—0.98,0.164)7,
Z5, = (0.106, -0.516)", 73, = (—0.191, —0.491)"
and the optimal objective function value v(ElNDAN/I) = 21.578 = v(EPY). See Figure for an

illustration of the relation between the optimal solutions of the primal and the conjugate dual
problem.

=]
P

Figure 4.2: Tllustration of the Example [£.3]
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An alternative geometrical interpretation of the set of optimal solutions of the conjugate dual
problem is based on the fact that the extended multifacility location problem (EP*) can be
reduced to a single minimax location problem as seen in the beginning of Section [£.3.1] This
means precisely that the sum of distances in the objective function of the location problem (EPM)
can be understood as the finding the minimum value for n norms d; defined by the weighted sum
of Euclidean norms, i.e. d;(y1,...,Ym) := Z;"Zl wijl|ly; | with y; € RY, w;; >0, j = 1,...,m, such
that the associated norm balls centered at the points p; = (ps, ..., p;) with p; € R4 i = 1,...,n,
have a non-empty intersection. In this case, it is possible to interpret the optimal solution of
the corresponding conjugate dual problem as force vectors fulfilling the conditions in point (a) of
Theorem and increasing the norm balls until their intersection is non-empty. Notice that the
optimality conditions (v) and (vi) imply that the vectors Z};, j = 1,...,m, are equal to the zero
vector if i ¢ I, which is exactly the case when 7 is an element of the interior of the ball associated
to the norm d;. But this also means that the vectors z7;, j = 1,...,m, are all unequal to the zero
vector if 4 € I, which exactly holds if Z is lying on the border of the ball associated to the norm
d;.

For a better geometrical illustration of this interpretation, let us consider an example, where
d = 1. In this case the Euclidean norm reduces to the absolute value.

20 |

Figure 4.3: Illustration of the Example

Example 4.4. For the given points p1 = (p1,p1) = (2,2)T, P2 = (p2,p2) = (—4,—-4)T, p3 =
(p3,p3) = (5,5)7, Ds = (pa.pa) = (8,8)T and the weights wi1 = 2, wiz = 3, w1 = 2, way =
3, w3 =2, w3y =2, wy =3, wye =2 we want to locate an optimal solution x = (x1,x2)T € R?



CHAPTER 4. DUALITY RESULTS FOR MINIMAX LOCATION PROBLEMS 79

of the problem
(EPM) inf max{2|x; — 2| + 3|z — 2|,2|z1 + 4| + 3|z2 + 4],
(z1,22)T €R?

2|.’£1 — 5| + 2|IC2 — 5|, 3|£L'1 — 8| + 2|£C2 — 8|}
We solved the problem (EPM) with the Matlab Optimization Toolbox and obtain as optimal solution
T = (71,72)T = (7,-3)T and as optimal objective value v(EPM) = 25.

For the corresponding conjugate dual problem (see also Remark
(EDM) sup  {—2(z]1 + 215) +4(23; + 232) — (251 + 235) — 8(241 + 212)}

(21,25,25,25)€C
where
¢= {(z;,z;,zg,zz) €R? x R? x R? x R? :
21+ + s 2 =0, 20 + 25 + 235 + 25 =0,
maX{%IZ’fll, %|Zf2|} + max{%|z§1|, %‘252‘} + max{%|z§1|, %‘Zékﬂ} +max{%|zj£1|, %|212|} < 1},
we obtain by using again the Matlab Optimization Toolbox the associated optimal solution

z7 = (211, 712)" = (0.333,-0.5)", 25 = (25,,75,)" = (0.867,1.3)",
23 = (2313232) = (07O)Ta EZ = (EZDEZQ) = (_1'2v _0'8)T

and the optimal objective value v(EDM) = 25 = v(EPM). The numerical results are illustrated
in Figure[{.3 Take note that T is lying inside the norm ball centered at the point ps and that for
this reason Z3 is equal to the zero vector.

4.4 Classical multifacility minimax location problems

4.4.1 Constrained location problems in Fréchet spaces

In this section we use the results of our previous approach to develop a conjugate dual problem of
the multifacility minimax location problem with mixed gauges and geometric constraints. Further-
more, we show the validity of strong duality and derive optimality conditions for the corresponding
primal-dual pair.

Let X be a Fréchet space, Cj; € X with Ox € th]k forjke J:={jk:1<j<m, 1<k<
m, j #k}, andCﬂngrchOX Eth’ﬂ for ji € J ={1<j<m,1<i<t}, be closed and
convex as well as S C X™ non-empty, closed and convex. Moreover, let wj, > 0, jk € J, w;; > 0,
Ji € J as well as Yo+ X — R, jk € J, and Vg, X =R, jie J be gauges. Obviously, these
gauges are convex, continuous and well-defined.

For given distinct points p; € X, 1 < ¢ < t, the multifacility minimax location problem
minimizes the maximum of gauges between pairs of m new facilities 1, ..., x,, and between pairs
of m new and t existing facilities, concretely this means that

(PM) inf e max {wjk'ycjk (xj — k), jk e J, wjﬂé,-,-(xj — i), Ji € j} .

We introduce the index sets V := {jk € J: wj; > 0} and Vi={jieJ: w;; > 0}, which allows
us to write the problem (PM) as

(PM) o jr;f )esmax {wjk’ycjk(xj —xy), jkEV, @ji'yéﬂ(xj —p;), Ji € ‘7}

Take note that |V| < m(m — 1) and |V| < mt. Now, we set Xo = RIVI x RIVI ordered by Koy =
RLV‘ X le‘, X; = XIVIx XVl ordered by the trivial cone K; = {0x, } and X5 = X™, where the
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corresponding dual spaces and dual variables are (20%,20%) = ((z?;)jkev, (E?Z*)ﬂe‘;) e RIVIxRIVI

and (Zl*’gl*) _ (( jk‘).]ke‘/? <~1*)]i€\7) c (X*)\Vl % (X*)Iv\_
We continue with the decomposition of the objective function of the problem (P*) into the
following functions:

o f:RIVIxRIVI - R defined by f(3°,7°) = max {wjky;?m jk €V, wy%, jie T/}

if % = (Y )jrev € ]RIX‘ and 9° = (79, )jicv € ]R‘Vl otherwise f(y°,7°) = +oo,

o F1: XIVIx XIVI s RIVI x RIVI defined by F!(y',7!) = ((VCjk(y}k))jkew Wéﬂ@i))jief/) ,
where y' = (yh)jrev € XV and ' = (7,) ;v € XV,

o F2:X™ = XVl x XIVI defined by F2(z) = ((Ajkx)jkev, (Bji;z: _pi)ji€\7)’ where

1 J k m 1
A =(0,..,0,1d,0,...,—1d,0,...,0), jk €V, B; =(0,...,0, Id ) ji € V 0 is the
zero mapping and Id is the identity mapping, i.e. Ox; = OX and Id atl = x; for all x; € X,
i =1,...,m. In particular, 4,5 : X™ — X is defined as the mapping

T =(T1, .00y Tin) —

0xy + ...+ 0z +Idz; + 0xjp1 + ... + 021 — Id g + 0xpy1 + ... + 0xpp,

ie. (z1,...,2m) = x; — xp, jk €V, and Bj; : X™ — X is defined as the mapping
(@1, .oy Tm) = 01 + ... + 0z + Idaj; + 0xjiq + ... + 0y, = 25, ji € V.

Thus, it is easy to see that the problem (P™) can be represented in the form
(PM) inf (f o F* o F?)(z).
zeS
Like mentioned in Remark we do not need the monotonicity assumption for the function
F1, because F? is an affine function. Furthermore, it is clear that (P*) is a convex optimization
problem. Besides, it can easily be verified that f is proper, convex, RLY' X Rl_:/‘—increasing on
F1(dom Fl) + Ky = dom f = Rlv‘ le and lower semicontinuous and that F! is proper and

R'V‘ Rl |_convex as well as R‘V‘ Rlv‘—epl closed.

To use the formula from Chapter I 3| for the dual problem of (PM), we set Z = X™ ordered by
the trivial cone @ = X™ and define the function g : X™ — X™ by g(Z1, ..., Tm) := (X1, ..., Tn)-
As Q* = {0(x+)m }, which means that 2% = 0(x+)ym, we derive for the dual problem (see

(DM) sup { inf { > (zim Ajrz) + X (7, ﬂxpi>}

(zo*,ZO*)EWL_V‘x]R‘_y“ v€s jkev ]ZEV

(21%,21%)e(x ") IVIx (x5 VI
_f*(ZO*, %‘O*) _ ((ZO*, E{)*)F‘ll)*(zl*7 271*)}7
and hence, we need to calculate the conjugate functions f* and ((2%*,2%*)F')*. By Lemma

and Remark we get for f*,

0, if Z?;: < wjk)\jk, 291* < ﬂjji)\jia Z >\]k + Z >\]z <1
Jjkev ]'LEV
(Aj)jkev € R T and (A),,cp € RV
400, otherwise,

v v
0, if 3 wjk M+ Y A<, 2 e RV 00 e RV

400, otherwise,
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while for ((2°*,2%*)F1)* we obtain by using the definition of the conjugate function

((20*720*)F1)*(Z1*7’51*) — sup B { Z (z]lz,y]lg +
yleXVl gtex VI jkev

Z<~]1:agjlz Z Z]k’-)/CJk yjk‘ Z z]z ’YC” y]z }

jieV Jjkev jieV

= Z sup { ]k’yjk> ?Z’chk(ygl‘k)} + Z sup {<5g1z*7?7jlz> - 2?:’75]1(1‘7311)}
jkev kaEX JieV vji€

= Y G GO+ Y Ee ) G
Jkev jieV

for all (20%,2%%) € ]Rl_;/‘ X Rl_;/‘ and 2'* = (z}7)jkev € XVl and 2'* = (2 jiev € XIVI. Hence,
the dual problem may be written as

(DM) sup inf ®(20%, 2% 21 M),
(0%, 50% 215 z1x)c R'V‘xm‘f'xxl‘/\xxlv\ z€S
1 0%y 1 0% <
JKEV Wik Ik ji§~ i s
where
O 0% 1% 1= _ . 1% ~1%
(" 20 22 = muelg E <zjk,Ajkm>+ g <zji,Bjixfpi>
Jjkev ]16‘7
* ~0x ~1x
- E : jk'ycjk jk) - E (ij’ Véj ) ( %4 )
jkev Jiev

Let I := {jk: 203 > 0} and I := {ji: 29 > 0}, then we beparate in the objective function @ the

sum into the terms with nga NO* >0 and the terms with z]k, E]OZ* =0:
(20 30 1 ) = inf > (e Ajpr) + Y (37 Bjir — pi)
jkeVv JieV
= > Eeve) (=) = Y (e, ) G
jkel jZGT
= > (070, (250) = D07, )" (E57)-
Jk&I jigl

Now, it holds for jk € I that (see[4. 26)

0x w0 1x , if ’VC'O ( ) < Z?l:;
) = 4. 75
( Zik )Cjk) (Z]k) { Ot] erwise, ( )

and analogously, it follows for ji € I that

,lf’Yco( z)gg_(]):7 (4 76)

400, otherw1se.

(F3,)" 3 ={

For jk ¢ I it holds (see 4. 27))

0, if zjl,’c" =0x-~,
400, otherwise,

07,0 (40 = {
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and analogously, we get for ji ¢ I,

~ 0, if 23 = Ox-
iy = 5 DA =X
(0- V6 )" (&) { —+o00, otherwise,

which implies that if jk ¢ I, then z = 0x~ and if ji ¢ I, then Z z = Ox+. Therefore, we obtain
for the dual problem of the locatmn problem (PM):

(DM) sup inf { > (zjl-,:,Ajk@ + Z~<5}f,Bjix —pi>},

(20% F0% zlx ~1*)€Bm65 jkel jiel

where
B— {(20*750*,,21*,51*) c RLV\ % RIJ:/\ x (X*)VI x (X*)W/I ] = {jk; cev: ij > ()}

T={jieV 20 >0}, 2l =0x, ef £ 1, von, (25) < 0%, Gh e T,

~;2—0X* 6d¢[ ")/Co( Z) J17]'L€I Zu)k]k+zw],?:§1}

jiel

Since, the objective function of the conjugate dual problem (D™) can also be written as

;22{2 Zies Ajk) + ) (Z7 Bjiw — >}

Jjkel jiel
- irelg{<ZAJkZJk ZB;ZN;:’ >}_Z<Eﬂll*’pz>’
jkel jiel Jiel
where
1 ‘i ]f m 1
<A*kzjk, > <(Ox*, ....,Ox*,zj;,OX*, ceey Ox*, —Zj;,OX*,...,Ox*), (.131, ...,Jim)> = < ]Z,J}J — Jfk>
and
* Ak ! ~{* m Sl
<Bj7, ji > <(0X*3 ""70X*7Zj7; 70X*a "'aOX*)v (‘Tlv ,$m)> = <Zji vmj>7

we can express (DM) as

(DM) sup 1*)68{ —9s ( Z Ajkzjk Z B;l’vjll*> o Z}E;;‘,p»}

(20%,20% 21+ 7 jiel jiel

Remark 4.22. Take note that the problem (DM) is equivalent to the following one

(EM) Sup { —0s ( Z A]kzjk Z BJ*1~J11*> o Z~<g};’pi>}’

(20%,20% z1* Z1%)e B jiGV jieV

B = {(20*720*721*751*) c RLV\ « le\ x (X*)IVI x (X*)‘Vl Yoo, ( 5 < Z?Za jkev,

1},
]zEV

’}/5;)7(5]1;‘) j’L S V Z
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which can be proven as follows. R N
Let (20,20, 21 Z1*) € B be a feasible solution of (DM), then it holds for jk ¢ I and ji ¢ I,

0 Svc_?k(z;f;) zzsé%p <zj1k, r) <0 & (2} Zik, ) = 0 Vo € Cjy @zjl; = 0x~
i

as well as

O<'yco( 1?"): sup <§1* ><0<:><ﬂ, >=0V.’L‘€5ji<:>5}i*zox*.

The latter implies that from jk ¢ I, i.e. z =0, follows zl* =0x~ and from ji ¢ I i.€e. N?l* =0,
Zi* = 0x-. This relation means that B\f B, i.e. that (z 0*,~0*, Lx Z1%) is also a feasible solution

]’L
of (DM) and as

* ~1* ~1*
E : A]k‘zjk E sz Ji Z j’L ’pl

JjkeVv J'LGV ]ZGV

* "'1*
Z AJkZJk Z Bﬂ ji | T Z ji > Di)s
jkel jiel jiel

one has immediately that v(DM) = v(DM).

Vice versa, if we take a feasible solution (zo*,%ﬂ*, L Z1%) of the problem (D™), then it is
obvious that we have then also a feasible solution of (DM), which again implies that v(DM) =
v(DM).

From the theoretical aspect a dual problem of the form (DM) is very useful, as one has a
more detailed characterization of the set of feasible solutions. But from the numerical viewpoint
it is complicate to solve, as the index sets I and I bring an undesirable discretization in the dual
problem. For this reason it is preferable to use the dual problem (D) for numerical and (DM)
for theoretical studies.

We know that the weak duality between the problem (P*) and its corresponding dual problem
(DM) always holds. Now, we are interested to know whether we also can guarantee strong duality.
For this purpose we use the results from Section As Z = X™ ordered by the trivial cone
Q=X"and g: X™ — X™ is defined by g(z1, ..., %) = (21, ..., Tm), it is obvious that g is Q-epi
closed and Oxm € sqri(g(z) + @) = sqri(X™ + Q) = X™. More than that, recall that f is lower

semicontinous, Ko = R‘fl X RLV‘ is closed, S is closed and F' is er‘ X R‘Jyl-epi closed. As

0

m

RV g7 sqri(F*(dom F') — dom f + Kj)
+ xRy

= sqri(F!(dom F') — R‘rl X Rfl + Rl_;/‘ X lel)
- RIVI % RIW7

Oxivigxiv1 € sqri(F?(dom F?) — dom F! 4+ K;)
= sqri(XlV‘ X X‘V‘ —dom F! + K)) = xIVI & X|\7\
and F? is {0y viy 17 }-epi closed, the generalized interior point regularity condition (RCS) is

fulfilled and it follows by Theorem the following statement (note that we denote by v(PM)
and v(D™) the optimal objective values of the problems (P™) and (D), respectively).

Theorem 4.19. (strong duality) Between (P™) and (DM) holds strong duality, i.e. v(PM) =
v(DM) and the conjugate dual problem has an optimal solution.
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The previous theorem implies the following necessary and sufficient optimality conditions for
the primal-dual pair (PM)-(DM).

Theorem 4.20. (optimality conditions) (a) Let T € S be an optimal solution of the problem
(PM). Then there exist (?O*,ED*,E“,?*) € Rl_:/‘ X R‘Xl X (X)W (X and index sets T and

I as an optimal solution to (D™) such that
(i) max {wef’ycef (Te —Tf), ef €V, Wearg, ,(Te — pa), ed € ‘7}
o L =0 _
= X 20, @ —Tk) + X 26, (@ — i),

jk‘EY jiel

(“) <Z A]kzjk Z ]z j:’ >: inf <Z A]kzjk Z ]z ]17 > ’

jkel jiel ves kel jiel
< =0 = -
(iii) > w1k7§)* > --—1 Z0 >0, jkel, zj:>0,]z€Icmd§23;:0, ef ¢1,
jkGI ]lEI
=0,ed¢ 1,
ed

(iv) Z5ve,, (T —Tn) = (Zj5, Tj — Tn), jk €1,

=l* _ .=
(U) Z_/z’}/c ( pl)_< Jzaxj_p’i>a .]2617

(vi) max {wef’Ycef (Te —Ty), ef €V, Wearg, ,(Te — pa), ed € ‘7} = wjrye,, (T; — Tk), jk €1,
(vii) max {weffycef(fe ~Ty), ef €V, Weavp,,(Te — pa), ed € 17} = @yivg,, (@ =), Ji€l,
(viii) Yoo, (Z57) = 207, Zji € X"\ {0x-}, jk €T and 23 = 0x-, ef ¢ 1,

=1x =0

(ix) 'yco( i) = zji,zﬂeX \ {0x~}, ]zelandzed—OX* edgé?.

(b) If there exists T € S such that for some (2% e ?1*,7 , I) the conditions (i)-(ix) are

fulfilled, then T is an optimal solution of (PY), (EO*,?) zl* %J I,I) is an optimal solution of
(DM) and v(PM) = v(DM).

Proof. (a) From Theorem [3.4| one gets

(i) max {werc,, (T~ 7p), ef €V, Baar,, (Te — pa), ed €V}

- _ 0
= X 20, @ —Tk) + X 256, (@ — i),
jkel jZGT

(i) 32 Zhve, @ —T) + 2 Z;ﬂc @ -p)= XG0T —T) + X (5.7 — i),
jkel jiel Jjkel jiel
(111) < Z A]kzjk + Z B;z Jio > =—0s | — ZﬁA;ijllt Z B;z i )
jkeTl jiel jkel jiel

(iv) X o+ o Zzﬂ<1 20 >0, jkel, % >0,jicland 2% =0, ef ¢ 1,

] wik "J J
jkeT jZEI

=0 =

Zeqa=0,ed ¢ I,

(v) Ve, (7 )<z§),’;, ;ZGX*, jkeTandZi}_OX*, ef ¢1,
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=1 =0% =<I=*

(Vi) vgo (25:) < Zjis ,szEX*7 jZEIandzed—OX* engI

Condition (ii) yields

—1x%

Z [Z‘]k’ycjk - ka,) < gk:"rj - xk + Z ij ’YC pl) - < j’L7 pl>] 0 (4 77)
jkeT sz]

and by (4. 75), (4. 76) and the Young-Fenchel inequality it follows that the brackets in (4. 77))

are non-negative and must be equal to zero, i.e.

_ 0% _ _ =lx _ ..
z?chjk(xj —7p) = (2 Ziks Tj — Tr), jk € T and zﬂwc (Tj —pi) = (z Zji T —pi), jiel. (4. 78)

Similarly to the considerations done in and one derives that
Yo, (BN, @ — F) = (2} x ), gk e, (4. 79)
Combining the condition (v) with ( and (| reveals that
Z5ive, (T — Tn) = (255, T — Tu) < Yoo, (3}75)70“(@ — 1) < 2570, (T — T), gk €1,

which means that

Yeu, (247) = 2%, jk e T. (4. 80)
In the same way we get
=1 =0% . =~
Voo (Zi) = Zji, i€ 1. (4. 81)

Moreover, by conditions (i) and (iv) we have

max {werCef (Te —Ty), ef €V, @ed’}’@d(@ —pa), ed € ‘7} (4. 82)
= Y e, @ —T) + Z %, (T — i)
jkel jZGI
1 1 J)*~
= Z 'lUik ]kw]k'YCJk )+ Z Z4i WiiVE,; (Tj —pi)
jkel jiel
1 N B _
< Z w—zgk max {wefvcﬁf (Te —Tf), ef €V, Wearg, ,(Te —pa), ed € V}
kel 7
1 —ox . . - - ~
+ Z ——Zji max {werCef(xe —Z5), ef €V, wecﬂéed(% —pa), ed € V}
]zEI 7
< max {wef'ycef (Te —Tp), ef €V, Wearg, ,(Te —pa), ed € 17} , (4. 83)

which implies that

1 _ . _ ~ _
Z P Zh {max {wef“ycef (Te —Ty), ef €V, Wearg, ,(Te —pa), ed € V} —wjrye;, (Tj — xk)]
jkel k
1 =0« _ ~ _ = o _
+> =% | max {wef'YcEf(xe —Tf), ef €V, Weavg, ,(Te — pa), ed € V} — wjig,, (T — pi)
~ Wji
jiel

=0
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=0x

and as wjy, E?,’g >0, jkel,and wj;, 2 >0, i € T, it follows that

max {werCcf (Te —T¢), ef €V, ﬁedwéed(fe —pd), ed € 17} = WKy, (T — T), ik € T (4. 84)
and
max{wef'ycef (Te —Tf), ef €V, Wearg,,(Te —pa), ed € 17} = ﬁji’y@ji(fj —py), jiel. (4. 85)

Furthermore, we get by (4. 83)) that

1 . _ ~ _ ~
Z o z?k max {U/erCef (Te —=Ty), ef €V, Weavg, ,(Te — pa), ed € V}
Wy
jkel
1 —ox _ _ ~ — 7
+ E =—Zji max {werCcf(xe —T¢), ef €V, Weavz, (Te — pa), ed € V}
= Wji
jiel

= max {wef'ycef (Te —Tyf), ef €V, {Eed'y@ﬂd(fe —pa), ed € YN/} ,

from which follows that

1 % 1 —0x%
> —h+ > —ZF, =1 (4. 86)
jkel Wik jiel Wat

Combining now the conditions (i)-(vi) with (4. 78)), (4. 80), (4. 81)), (4. 84), (4. 85) and
provides us the desired conclusion.

(b) The calculations made in (a) can also be done in the reverse direction, which completes
the proof. O

Remark 4.23. We want to point out that the optimality condition (i) of the previous theorem can
be expressed by means of the subdifferential. We have

. ~ . . v 1%
f(y07@0) —_ { max {wjky?ka jk € ‘/a wji:?j;‘)m Jre V} ) Zf (yO’@'O) € RlJr | X RL |7
400, otherwise,

and

~0 0 vVl =0 4
zip <1, 27 e Ry, 2 e R,

~ 10 1
o jkze:v wj"zjk+ 2 Wi

f*(ZO*’EO*) = %

+00, otherwise,

and by the optimality condition (i) of the previous theorem, it holds

(e @ = T))esevs (g, @e = pa)) e ) + 12 )

— _ _ =0= _
- Z Z?Z’ycjk(zj —T) + Z Zji 75]‘7‘,(17]' - pi)s
jkel jiel

in other words, the optimality condition (i) can be rewrilten as

(i) *2") € 0f ((ve., @ = T))erevs (g, @e = Pa))ucr ) -

More than that, for the optimality conditions (ii), (iv) and (v) one gets by the same considerations
.. _ =1= - _
(i) — ZﬁA;kz}Z — X Bjizj; € 065(x) = Ns(7),
gkel jiel
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(iv) z;;:: € 8(§?Z7Cjk)(fj _Ek> = a(E?ZVCjk)(Ajkx) < Aj kz_]k € Ajk‘a(( ]k’YC k)OA]k)( ) Jk € T’
=lx* =0 — =0* *

(v) zj; € 8( ]z é; )(@j —pi) =0(z; ’Yéji)(Bjix —pi) B
& B;%; € B0 (((ring,) o B —p)) @), jie T,

Taking (i), (iv) and (v) together implies that

. *
ZﬁAijIZ"‘ Z ]1 ]z

jkel jiel
S ALA(Eives) 0 ) @) + 3 B0 ((Bhivg,) o B = pi)) @) | N (=Ns(@)).
Jkel jiel

Finally, notice that the optimality conditions (iv), (v), (viii) and (ixz) of the previous theorem give
a detailed characterization of the subdifferentials of the associated gauges.

Now, we show that the dual problem (D) is equivalent to the problem
(DM) sup { —0s ( Z Ajkzjk Z B]*z ;z) - Z~<gj*z’pl>}7 (4 87)
eB

(2*,7*)€B jiel jiel

where (2*,2*) = ((Z;k)jkev, (E;i)jief/)) and

B= { (Cioswers Elyier) € (XWX (X1 = {jk € Vi o, () > 0},
T:{]ZEV ’Yco( )>0} :f:OX*76f¢I7z:d:0X*,ed¢T

Z %MWC?(Jk)+ Z Wiq ’YCO(Jl)<1}

Jkel jiel

in the sense of the next theorem, where v(ﬁM ) denotes the optimal objective value of the problem
(DM).

Theorem 4.21. It holds v(DM) = v(DM).
Proof. Let (z*,%*) be a feasible element to (D™) and set
zjl,;k = 2, z?,j = vc.?k(z;kk) for jk € I, zel} = 0x-~, zg} =0foref ¢l,
and
Zii =25, 2y = Vagi(%ji) for ji € I, 2% = 0x+, 2% =0 for ed ¢ I.
Then, it is clear that (2°*,z%%, 21* Z1*) is a feasible element to (D). Furthermore, it holds

—0s ( Z A]kzjk Z ]Z ]Z) - ZN<z;z7pZ> =

szI

s <— 20 Ajzik - ZB;@?:) 3 (#ipi) < o(DM)
J

ke jiel

for all (z*,%*) feasible to (DM), from which follows that v(DM) < v(DM).
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Now, let (2%, 20%, 21*, ~1*) be feasible element to (D). By a careful look at the constraint set
B we get by settmg Z, = z]k for jk €I, z}; lf for ji € I and 27, = Ox~ for ef ¢ I,z =0x-
for ed ¢ I that

Z%VC‘O Zj, +Z ~,700 (7)) < 1.

Jkel Wi szI

Therefore, (z*,%*) is feasible to (D) and we have

< Z Ajkzjk Z B;z~]11*> - E~<zjlz*7pz> =

jiel jiel

kel jiel jiel

—0s ( > ALz — D0 B;f;) - Z~<g;ivpi> < v(DM)
j

for all (2%, 30% 21* 31%) feasible to (DM), i.e. v(DM) < v(DM), which completes the proof. [

The next theorem is direct consequence of Theorem [£.21]

Theorem 4.22. (strong duality) Between (PM)Y and (DM) holds strong duality, i.e. v(PM) =
v(DM) and the dual problem has an optimal solution.

We close this subsection by the following statement, which is a result of Theorem |4.20| (espe-
cially by using the optimality conditions (viii) and (iz)), Theorem [4.21| and |4.22}

Theorem 4.23. (optimality conditions) (a) Let T € S be an optimal solution of the problem
(PM). Then there exist (z*,% ) € (X*)IVI x (X*)IV and index sets T and I as an optimal solution
to (DM) such that

(i) max {wef'ycef(fe —Zy), ef €V, {Eed'y@ d(fe —pd), ed € ‘7}

= 2 708, (ZFp)ve (T —Tk) + 32 Y60 (2 i, (T — pi),
jkel jiel

(“) < Z A7 kzjk + Z ]z~jz7x> = —0s Z Ajk‘zjk + Z ]’L jl ’

jkel jiel jkel jiel
(iii) oo, (Zjk)V0, (Tj — Tn) = (Zjx Ty — T), Jh €1,
(iv) ve0 Zi0ve,, (@ — po) = Fjusmi —p), di € 1,
(v) max {wef'ycef (Ze —Ty5), ef €V, @edVGCd(fe —pd), ed € ‘7} = wjryo;, (T — Tk), jk € I,

(vi) max {weffycef(fe ~Ty), ef €V, Weavp,,(Te — pa), ed € 17} = @i, (@ =), Ji€l,

(vii) Y 5oves, F+ 2 5760, (5 ) =1, 7 € X\{0x-}, jkeT, ;€ X*\{0x-}, ji € I,
jkeTl szI

and z5; = O0x-, ef ¢ 1, Z.g = Oxe, edgé?.

(b) If there exists T € S such that for some (=7 .1, }N) the conditions (i)-(vii) are fulfilled, then T

is an optimal solution of (P™M), (E*,?j, f) is an optimal solution for (l~)M) and v(PM) = U(BM).
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4.4.2 Unconstrained multifacility minimax location problem in the Eu-
clidean space

In this section we are interested in a detailed analysis of the situation when S = X™ and X = R¢
and the gauges are defined by the Euclidean norm. In addition, we set w;r, =0for 1 <k <j<m
such that the index set V' can be represented as V = {jk : 1 < j < k < m, w;p > 0}, ie.
V| < (m/2)(m —1). In other words, we explore in the following the location problem

(P inf max {wylle; — ol €V, @yillay —pill, i€V (4 88)

z; €RL, i=1,...,m

For the dual of the location problem (P}) we get by (4. 87)
(5]]\\/{) sup ~ { - Z <z]*zvpz>}7 (4 89)
(z*,2*)EBN jiel
By = {<z*,5*> = (Eomevs G er) € ®OV x ®)T 1= {jke v : 5] >0},

1_{ﬂev [ ||>o} 2t = Opa, ef ¢ 1, Ty =0ga, ed ¢ 1,

j% wkH k||+ Z 11)17” || < 1 Z A*krzjk+ Z Bj*z,v;zioR XRd}.
\_\,_/

jiel jiel

m—times
The next theorems are direct consequences of the results of the previous section.

Theorem 4.24. (strong duality) Between (P¥) and (f)%[) strong duality holds, i.e. v(P}) =
v(D3) and the dual problem has an optimal solution.

Theorem 4.25. (optimality conditions) (a) Let (T1,...,Tm) be an optimal solution of the problem
(PM). Then there exist (E*,?) and index sets T and I as an optimal solution to (5%) such that
(i) max {wefoe ~ %4, ef € V,Wea|Te — pall, ed € V/}
= 3 Izl =zl + X 1Z5lz5 - il

jkel jiel
(“) Z A]kz_jk + Z B]'LN_jz - OR(IX..‘XR‘Q
leI
(iii) 125,11 T5 — Tull = (Z5. T — Tw), k€1,
(iv) 1Z:lllI7; — pill = (Z5in %5 —pi), Gi€ 1,

(v) max {wefn@ —Tf|l, ef € V, Weq|[Te — pal|, ed € 17} = w7 — Tk, jk €1,
(vi) max {wefoe —%fll, ef €V, Weq|[Te — pall, ed € 17} = |7 — pil, jiel,

sz =1, zj € R\ {Opa} for jk €1, % Z;; € R\ {Opa} for ji € 7

(vit) Z ozl + X 7

JZEI
and Zj), = Oga for jk ¢ 1,z ij‘ = Opa for ji ¢ T

(b) If there exists (T1,...,Tm) such that for somef(?*,?j, ?) the conditions (i)-(vii) are fulfilled,
then T is an optimal solution of (P), (E*,?‘j, f) is an optimal solution for (lN)JA\?) and v(P¥) =
v(D).
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Remark 4.24. The dual problem (B%) can equivalently be written in the form (see Remark

(DEI\V/[) Sup _ { - Z~<gj*mpz>}7
(Z*’z*)EBN Jiev

where

5N=%fﬂﬂ=ﬁﬁwmw@mmﬁeﬁﬁvX@WW:

> Eled+ T AE <, z&wﬁzj@—wxﬂw}

Jiev Jiev e e’
m—times
For its corresponding Lagrange dual problem we obtain
M . ~
(DDy) inf sup {— > (Zpo+
z=(z1,-.., em)eRdx... xrd (2%,2*)EBN Jjiev

< 5 Afz+ X B ;Z>—A<jk§v1;k||z;k||+ ) @;HE;;H—1>}

jieV jieVv

= inf {)\+ sup {— > (Zispi)

A>0, ~ =
z;€RD, i=1,..., (2*,2*)eBN Jiev
+ Y (e Al + X (e BRZ) - X aellnl - X 2-IE
jkev jieV jkev jieV

- f {A+ > sup {(Apa, 2 — 2l

JKEV 27, €R?

z;€RD, i=1,...,m

+ X sw {(Bw ) - 50 - 2015 ||}}

jieV Z5; ERY

= inf A+ > sup {(a:—a:k 25) — 2|2 ||}
z,'ERd?\iO,l,.,.,m{ jkeVz;keRd’ ! o v I

+ >, sup {<xj_piaz;'<i>_{ﬁ>;iz;i”}}'

jieV Z5; €R?

The case A = 0 leads to x; —p; = 0, ji € 17, and x; —x, = 0, jk € V, which contradicts our
assumption that the given points p;, © = 1,....,n, are distinct, such that we can assume A > 0.
For this reason we can write for the Lagrange dual problem, or rather, the bidual of the location

problem (P,

(DDY!) inf {A+ S s {(5E @ - a2 — Iz
(CITN mm)ER)dX...XRd JkeVv 'keRd

Wi (. N o* T
+ 2 2 sw {(5E -5 - 15
jieV zviERd
= inf A
A>0, (x1,..., zm)ERD X ... xRD, -
wija:jfzk”g)\, Jkev, @jinj—pngk, JieV

= inf Rdmax{wjk”xj_xk”7 ]keu wN”xJ_sza ]26‘7}

(Z1yeeyTrm )EREX ... X
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By using the Lagrange dual concept we transformed the dual problem (1311‘\1[) back into the multifa-
cility minimaz location problem (PM), showing that one has a full symmetry between the location
problem (P), its dual problem (ZN)%I) and the Lagrange dual problem (Dﬁ%) In addition, we see
that the Lagrange multiplier associated to the equality constraint can be identified as the optimal
solution of the multifacility minimaz location problem (PM) and the Lagrange multiplier associated
to the inequality constraint as the optimal objective value. A similar fact was stated in [61|] for the
case of a multifacility minisum location problem.

The next corollary gives an estimation of the length of the vectors 27, , jk € V, and Z5, Ji € ‘7,
feasible to the dual problem (5%[ ).

Corollary 4.3. Let W, := max{(wjx)jrev, (wji) iy}, then for any feasible solution (2*,z") of
the problem (DM) it holds

wsw Ik

||z;.‘k||_7 for]keVand 1% ||<7S I forjieV.

Ws +w Ws +w

Proof. As (z*,z*) is a feasible solution of (5%), it holds

Z Akzk+ ZB;’L~;1 Orax..xrd < Auv uv Z Akzk+ ZB;1~;Z

jkev jicV ]J:i;/v jieV
= HAuv uvH - H Z Aj kz k + Z B;N_’]kz ‘ = ||Au'u uv” < Z ||A kz]kll + Z |‘B;z~;z
]J,’:irv jieV J’fifv jieV
And \[”Zuv” < Z \[”ij” + Z ”ij” g ||ZuvH < Z HZJkH +—= Z ”ZJZH
j:;rﬂ jieV j]’:;‘fv szV
= lzgll < 30 2l + D0 Zl, weV,
J],l::rv jieV

and more than that, it holds

L > Z wfijijH + Z @TiHZﬁH = UTWHZWH + Z wfijijH + Z @Tiﬂzjz'”

JkeV,

jk#uv Jiev
* ~k * 1 *

= ik 7 uv — lI*uv
> Sl + > 11z I+ —Il= [

) ~ S

g jieV
= DT Yy,

wswuv

which means that

WsWjik .
25 < keV.
|| jk‘” = W, + y J
In the same way, we get
~ Ws Jt . 7
Zh < 1eV
Bl S 5

O

Example 4.5. For the existing facilities p1 = (0,0)7, po = (=2,3)T and p3 = (5,8)T (t=3)
we want to locate two new facilities (m=2) in the plane (d = 2) . The weights are given by
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Wig = W11 = Wiz = Woy = Woy = 1 and w1y = wez = 0 and define the following multifacility
minimaz location problem

(Py) inf ~ max {||z1 — 2|, [z1 = pall, |21 = pslls w2 — pall, [lz2 — p2ll},
(z1,22)ERZXR2

ie. V={12}, V| =1, V = {11,13,21,22} and |V| = 4. From the Matlab Optimization Toolbox
we obtained the following solution T1 = (2.5,4) and T = (0,0)T. The corresponding objective
value was v(PY) = 4.72.

The dual problem (see Remark[{.29)

(D) Comax  {(E + 3, p1) + (30,p2) + (s, p3)}
(279+271:273:%51,252) EBN
where
By = {(215, 211, 3. 31, 530) € R2 x R2 x R? x R2 x R? : 2§, + 2§y + 23 = Oge,
T3y + Ty = Oe, 2ol + 1IE0 1+ 135 )| + 1135l + 125 < 1},

was also solved by the Matlab Optimization Toolbox. The following solution was obtained
2y = 21 = (0.13,0.21)7, 315 = (=0.26, —0.42)7, Z5, = Zpp = (0,0)7,

with the corresponding objective value ’U(BAN/[) =4.72 = v(PM), iee. T = {12} CV and I =
{11,13} C V.

In the situation when we have only the solution of the dual problem one can reconstruct the
optimal solution of the primal problem in a recursive way by using the necessary and sufficient
optimality conditions given in Theorem . By condition (iv) we know that there exists aiyp > 0
such that

=k

Zn=an@ —p), ie [Z0] = anlz - pl, (4. 90)

and as, by condition (vi) it holds

oBY) = oY) = 71— pul = L2, (. 91

we get by combining (4. 90) and (4. 91) that

. DM 4.72
o Hzli/‘[‘ (F1—p1) & T1 = M L4 1= —=(0.13,0.21)7 = (2.5,4)T.
v(Dy) ||211|| 025

More than that, by condition (iii) there exists ang > 0 such that
Z1p = a12(T1 — Ta), e [[Z1a]| = 2|71 — T, (4. 92)

and therefore, we derive from condition (v) that

_ _ z:
o(DY) = o(PY) = |71 — 7 = 17121 (4. 93)
12

Finally, taking (4. 92) and (4. 93) together yields

v(DM ) 4.72

e _ 75l
2.5,4
= @547 - 55

Zig=—==—(T1 —T2) © To =T —
2 (DY) Iz 12”

—2(0.13,0.21)T = (0,0)7.

For a geometrical illustration see Figure[{.4
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10 T T T T

Figure 4.4: llustration of the Example

Geometrical interpretation.
In the following we provide a geometrical characterization of the set of optimal solutions of the
dual problem by Theorem By the conditions (i44) and (iv) it is clear that for jk € I and

ji € T the vectors Zj), and ?;i are parallel to the vectors T; — ), and T; — p; directed to ;,

respectively. In addition, if we take into account the conditions (v), (vi) and (vii), then it is also
evident that jk € I and ji € I, ie. Zjk, # Oga and Zi # Oga, if the points Ty and p; are lying on
the border of the minimum covering ball with radius v(P{) centered in T;, respectively.

Vice versa, if jk ¢ I and ji ¢ I, then Z}), = Oge and ?;i = Oga, which is exactly the case when
the points Ty, and p; are lying inside the minimum covering ball centered in 7 ;, respectively. There-
fore, analogously to the geometrical interpretation presented in Section [£:2.4] for single minimax
location problems, one can identify the vectors z7j;, jk € I, and ?;i, ji € f, as force vectors, which
pull the points lying on the borders of the minimum covering balls inside the balls in direction to
the their corresponding centers, the gravity points Z; (see Figure |4.4).
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Chapter 5

Solving minimax location
problems via epigraphical
projection

5.1 Motivation

As argued in a large number of papers, the proximal method is an excellent tool to solve in an
efficient way optimization problems of the form

%1?1;1 {Zfl(a:)} , (5. 1)

where H is a real Hilbert space and f; : H — R is a proper, lower semicontinuous and convex
function, ¢ = 1,...,n. This kind of problems occur for instance in areas like image processing
[91/15116}[28], portfolio optimization [12}/69], cluster analysis |[1126], statistical learning theory [18§],
machine learning [13] and location theory [12}/14}301|56]. In the main step of this method it is
necessary to determine the proximity operators of the functions involved in the formulation of the
associated optimization problem. The prozimity operator (a.k.a. proximal mapping) of a proper,
lower semicontinuous and convex function f:H — R denoted by prox ¢ is defined by

1
prox;z : H — H, prox;z := argrqn{in {f(y) + §||x - y||§_i} Vo € H. (5. 2)
ye

The proximity operator can be understood as a generalization of the projection onto a convex
set, as for a non-empty, closed and convex set A C H, i.e. d4 is proper, convex and lower
semicontinuous, we have

proxs, * =Pax Vo € H, (5. 3)

where P 4 is the projection operator which maps every point x in H to its unique projection onto
the set A (see |2]).

From follows that the determination of the proximity operators of the functions f;,
i=1,..,n, of requires the solving of n subproblems, where a favorable situation exists,
when a closed formula of a proximity operator can be given. This in turn has a positive effect on
the solving of optimization problems from the numerical point of view.

Motivated by this background, our aim is to solve numerically extended multifacility minimax
location problems given by

Bid (5. 4)

m

EPY? i N — o

PN i B 12035, 2 il =
J:

95
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where w;; > 0 and p; € R? are distinct points, j = 1,....,m, i = 1,...,n. In this framework we first
need to rewrite this kind of location problems into the form of where the objective function
is a sum of proper, lower semicontinuous and convex functions. For this purpose we introduce an
additional variable and obtain for (EPJJ\\,4 B ) the following formulation

M . .
(EPy 2y min t= min t
(@1, @m,t)ERD X ... xR xR, [CIR Zm,t)ERD x ... xRA XR,
m 3. .
jgl wijll@g —pilPi<t, i=1,...n (11,,_,,xm,t)ecpi<§l wiju._piuﬁi), i=1,...,n
=

n

= min t—i—Zé (

(1, sTm,t)EREX...XREIXR "1 epi

)(acl,...,x,mt) . (5. 5)

m
) wij [|-—pill i

Now, to apply the proximal method to (EPII\\,/[ B ) one needs to calculate the proximity operators
of the functions involved in the objective function of . For this reason and especially in the
context of , we give in Section formulae for the projections onto the epigraphs of several
sums of powers of weighted norms. As the power of norm in can be replaced by a gauge
function, we present also formulae of projections onto the epigraphs of gauges.

To point out the benefits of the presented formulae we consider then examples of location prob-
lems in different settings and compare the numerical results with a method proposed by Cornejo
and Michelot in [30]. The difference between these two methods is that the one given by Cornejo
and Michelot splits the sum of powers of weighted norms by introducing n - m additional variables.
In this situation one gets the following presentation of the extended multifacility minimax location
problem

n n

(EP]]\\ILQ) min t+ZZéepi(win'*PiHBi)(xj’tij) +Z($epin(tila~--atimat) B (5 6)

t, t;; ER, x;€ERT,
)t ER, z; ) — = —
G=1,. . m,i=1,....,n j=11i=1 =1

where 7;(ti1, ..., tim) = Z;nzl tij, i =1,...,n. In Section we show that this concept makes the
solving process for the considered examples of location problems very slow and the advantage of
our approach more clear. The numerical tests are based on the parallel splitting algorithm, which

can be found for instance in [2].

Finally, we collect some properties of Hilbert spaces, which can be found with proofs for
instance in |2] and [29].

If f is Gateaux-differentiable at « € H, then 0f(z) = {Vf(x)}. The set of global minimizers
of a function f: H — R is denoted by Argmin f and if f has a unique minimizer, it is denoted by
arg min, ¢4, f(x). It holds

x € Argmin f < 0y € 0f(z) Vo € H. (5. 7)
It holds

y=prox;z < —y € if(y) Ve € H, Vy € H. (5. 8)

In addition, we make for the rest of this chapter the convention that % =0 and % -0y = 0g4.

In the following let H; x ... X H,, be real Hilbert space endowed with inner product and norm,
respectively defined by

n

(@1, 2n), (Y15 s Yn ) Ha X x M, = Z<xuyz>?-l and [[(z1, .o Tn) ||y x .. xH, =
i=1

n
> Nl
i=1

where (z1,...,2,) € H1 X ... X Hp and (y1,...,Yn) € H1 X . X Hp.
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We close this section with a lemma, which presents a formula for the projection onto a unit
ball generated by the weighted sum of norms and generalizes the results given in [76] to real
Hilbert spaces H;, @ = 1,...,n. Let w; > 0,4 =1,....,n, and C := {(z1,...,2n) € H1 X ... X H, :
Soi willzi|la, <1}, then the following statement holds.

Lemma 5.1. For all (x1,...,x,) € H1 X ... X H,, it holds

n
('rlv"'vxn)7 Zf Z wZHxl”’Hz S ]"
=1

(U1, Jp), otherwise,

Pc(xl, ceey l‘n) =

where
max- |lx; . —X'LU 0 .
el X0}
|2l
with
n
> win—1
—  i=k+1
A= -
> w}
i=k+1

and k € {0,1,...,n — 1} is the unique integer such that 7, < X\ < 741, where the values 7o, ..., T,
are defined by 7o := 0 and 7; 1= ||x;||n, /wi, ¢ = 1,...,n, and in ascending order.

Proof. In order to determine the projection onto the set C', we consider for fixed (z1, ..., z,) €
Hi X ... X H, the following optimization problem

n
. 1 2
on o, {Z 2l —wi'%}‘ &.9)

i=1

&
1M
A

wiHyiHHiﬁl

Obviously, if >0, wi|lzillw, < 1, ie. (21,..,2,) € C, then the unique solution is y;, = ;,
i =1,...,n. In the following we consider the non-trivial situation where >\ | w;|l@;||3, > 1, i.e.
(%1, ...,xn) ¢ C and define the function f: Hy x ... x Hy, = R by f(y1, .0 yn) = >y (1/2)]Jy; —
z;]|3,, and the function g : Hy x ... X Hyp, = R by g(y1, .., yn) := dor g willyillz, — 1. Hence,
by [2, Proposition 26.18] it holds for the unique solution (%, ...,%,,) of that

V1o Un) € —A09([Y1s s Up) & Yy — i € =N (Wil - ||l1:) @), i =1,...,m,
as well as
n n
(St 1) <00 Sl <1

i=1 i=1
where A > 0 is the associated Lagrange multiplier of (7, ...,7,,). If A =0, theny, = z;,i =1,...,n,
and by the feasibility condition we obtain Y | w;l|zills, < 1, which contradicts our assumption.
Therefore, A > 0 and we get by 1' that
G — i € =20 (will - [3:) (@) & 2 — G; € 0wl - [l,)(T;) & 73 = PYOXTy, |5, Tis © = 1y

Using |29} Proposition 2.8] reveals that

U, = = T 1=1,...,n,

_ Ti — ”;\%%7 if [lill2e, > Awi, _ max{]|zil|z, — Mwi, 0}
024, if (|22 < Awi 3]

Hi
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and as ., w;||[7;]ln, = 1, we conclude that
Zwi max { ||z, — Aw;, 0} = 1. (5. 10)
i=1

Now, we define the function x : R — R by x(\) = >_i", w? max{r; — A\,0} — 1. Note, that there
exists A > 7; for all i = 1,...,n, such that KZ(X) = —1 < 0. Moreover, k is a piecewise linear
function with #(0) = w?7; — 1 and its slope changes at A = 7;, i = 1,...,n. To be more precise, at
A = 0 the slope of r is — Y"1 | w? and increases by w? when A = 7. If we continue in this matter
for ¢ = 2,...,n, the slope keeps increasing and when A > 7,,, k(A) = —1 such that the slope is 0.
In summary, to find the zero of k one needs to determine the unique integer k € {0,1,...,n — 1}

such that x(7;) > 0 and k(7x+1) < 0. In the light of the above, it holds

k() = i wit — A i w? — 1,

i=k+1 i=k+1

where 7, < A < 741, and hence, one gets for A such that x()\) = 0,

n
> owin—1
i=k+1
n

A= O

i=k+1

5.2 Formulae of epigraphical projection

The first aim of this section is to give formulae for the projection operators onto the epigraphs
of several sums of powers of weighted norms. For this purpose, we give a general formula in our
central theorem, from which we deduce special cases used in our numerical tests.

The second aim is to present formulae of the projection operators onto the epigraphs of gauges.
In this part of this section we use the properties of gauge functions listed in Section [f:1} Especially,
by using the fact that the sum of gauges is again a gauge, we also present a formula of the projector
onto the epigraph of the sum of gauges. Two examples in the cases of norms close this section.

5.2.1 Sum of weighted norms

Let us consider the following function h : H; X ... X H,, — R defined as

h(@1, ) = Y willz|| (5. 11)
i=1

where w; > 0 and 8; > 1,7 =1,...,n. By defining the sets
L={le{l,.,n}:p>1}and R:={re{1,...,n}: 5, =1},

we can state the following formula for the projection onto the epigraph of the sum of powers of
weighted norms, which generalizes the results given for instance in [2,/28,/29,/69].

Theorem 5.1. Assume that h is given by . Then, for every (x1,...,xn,&) € H1X...xHy xR

one has

n
(xla "'axﬂmg)) Zf Z wZHleﬁT S §)
Hi
=1

Pepih(xlv"wxnvg) = (5 12)

(U1 Ty, 0), otherwise,
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with
_ max{||z,| 7, —Xw,«,O}x v eR
" (A EYR " ’
—m(X
yl — ||lefHL 771( )xh ZE L,
[E[EY
0=¢E+ A,

where m;(X) is the unique non-negative real number that solves the equation

_ )\ AT
7’]1()\) + (m()\) ) — H.’I?lHq.[L, l S L, (5 13)
Aw B

and X > 0 is a solution of the equation

S w, max{, 3, = My, 0} + 3wl — mO)* = A+ €. (5. 14)

reR leL

Proof. For given £ € R and (21, ...,2,) € H1 X ... X Hy, let us consider the following opti-
mization problem

. 1 2 N1 2
- ywﬁgkwﬂmk{g9—ﬂ +§;gm—wAm}~ (5. 15)

gl willu 15, <6
It is clear that in the situation when > , w1||xl\|%1 <& ie (x1,...,2n,§) € epih, the unique
solution of 1) is g, = x;, i = 1,...,n, and 6 = £&. Therefore, we consider in the following the
non-trivial case where Y 7" | w;||z; % > €& e (x1,...,2n, &) ¢ epih.
Let us now define the function f : H; X ... Xx H,, x R = R by f(y1,...,Yn,0) := (1/2)(0 —
€)? 4+ > (1/2)]lyi — 2ill7,, and the function g : Hy X ... X Hp x R = R by g(y1,...,4n,0) :=
> w,HyzH%l — 6, then by [2, Proposition 26.18] there exists A > 0, such that for the unique

solution (¥, ..., 7,,,0) of (5. 15 it holds

ooy (5. 16)

V@ Tps0) € =X0G(Uy, -, Ty, 0) & {

where X is the associated Lagrange multiplier of (7y,...,%,,60). If X = 0, then one gets by
that 5, = z;, ¢ = 1,...,n, and § = £ and by the feasibility of the solution it follows that
Dy wszzH% < ¢, which contradicts our assumption. Hence, it holds A > 0 and by l| and
(5. 16)) we have

O=X+¢,

@), = Tn, [T PRy @ 1=,
f=X+¢.

Further, from |29, Proposition 2.8] it follows for the case r € R, i.e. 8, = 1, that

7 = Ty — mxr, if ||xp |3, > Ewr, _ max{||z,||x, —pr,O}xr, (5. 17)
0%, if ||z |2, < Awy 2|9,
and for the case [ € L, i.e. §; > 0, that
A —m(\
yl — xl _ 771( ) xl — ||xl||Hl nl( )ml, (5 18)

2|2, lz1ll2,
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where 7;(\) is the unique non-negative real number that solves the following equation

w®+ (22" = larl (5. 19

(notice that by (5. 19) follows that |2z, —m(}) > 0). Furthermore, the complementary slackness

condition
A (Z wzllﬂzllfi - 9) =0 (5. 20)
i=1

implies that

sz'”?i 7'8.[ =90, (5. 21)
i=1
and from here follows by (5. 17) and (5. 18]) that
sz”@
i=1

Remark 5.1. In the situation when 8; > 1 for all i=1,...,n, we get by summarizing the formulae

F1) and (1)

b= > wemax{||z, [y, — Aw,, 03+ wi(|zilla, —m()* =X+¢& O (5. 22)
r€ER leL

_1
Bi—1

i (A)
il (S5 wi (s, — (V)% ) = wibié

< n nv(/\) = (||'1:7«||H1 - ni(/\))ﬁiilv i=1, 7”(5 23)
wilh (S5 wi(lasllw, =m0 ) — wihe

H, —ni(A) >0,i=1,...,n, formula can be expressed by

[|2:]

= ||zl

ni(A) +

By setting x; = ||v4]

w; B (Z?:l ijfj) —w; B3¢

i—1

n
S wiBixg T wixy = EwiBix T+ xi = llwilla
j=1

n

& wB” T+ wiﬂizijjj — &wiBix{" T+ xi = willw,, i=1,..n.
j=1
i

Hence, it holds for every (x1,...,2n,&) € H1 X ... X Hy X R

n
(LEl, -~'axn7£)7 Zf Z wz”“&“%l S ga
=1

Pcpih(fﬂl, “wxnvf) =
(U1 Tp, ), otherwise,

with

n
yi — Xi Xi, 1= 17 ...n, and 9 = Zwl(Yz)Bl’
|4 |24, i—1

where x; > 0, i =1,...,n, are the unique real numbers that solve a polynomial equation system of
the form

n
2 i—l ] i—l .
wiBT T+ wiBi > wix — EwiBix? T+ X = ||willag, i =1,.m.
j=1
i

Let us additionally mention that the case where n =1 was considered for instance in [28].
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An important consequence of Theorem where 3; =1 for all i = 1, ..., n, follows.

Corollary 5.1. Let h be given by where B; = 1 for all i = 1,...,n. Then for all
(1, 0y T, &) € H1 X .. X Hypy X R it holds

(@11 &), i 3 wila]

Hi Sg,

. — =1
Peplh($1; ...,$n7§> = (O’Hla “.,OHJL)O)’ if € <0 and ||xz||’HL < —tw;, i=1,..,n, (5. 24)
(U1y oy n, 0), otherwise,
where
ill2; — Aw;, 0 . - -
Y, = max{ |, d }xi7 i=1,..,n, and 0 =&+ A,
with
> owiTi—¢
A= (5. 25)

i=k-+1
-
>ow?41
i=k+1

and k € {0,1,...,n — 1} is the unique integer such that 7, < X\ < 741, where the values 7o, ..., Ty
are defined by 7o := 0 and 7; 1= ||z;||n, /wi, i = 1,...,n and in ascending order.

Proof. As 8; =1 for all i = 1,...,n, Theorem [5.1] yields

n
(x17~"7xn7€)’ if Z w7/H$1||H1 S 57
i=1

Pcpih(xla "'71'77,,5) =
(G1y -y Up, 0), otherwise,

with

g, = maxlllzille, = Awi O} o and 0 = € + A

e |il2,

where X > 0 is a solution of the equation
Zwi max{||z;||3;, — A\w;, 0} = A+ &.
i=1

Now, we consider the case where Y " | w;||z;|l3, > € and distinguish two cases. B
(a) Let £ < 0. If ||a;||3, + &w; <0foralli=1,...n, we have by 0 < 0 =&+ A, ie. £ > =),

that 7
0> |||, + &ws > ||zillu, — Aw; Yi=1,...,n, (5. 26)
and from here follows that
X4+ & =Y wimax{|zil|p, — Aw;, 0} =0, ie. X = —¢. (5. 27)
i=1

But this means that (7, ...,7,,0) = (03, ..., 03, ,0), which verifies the second case of (5. 24)).

If we now assume that there exists j € {1,...,n} such that [|z;|l3, + §w; > 0, then we define
the function g : R — R by

g(N) = Xn:wf max {7; — A\, 0} — A —¢&. (5. 28)
i=1
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Moreover, this assumption yields

g(N) :Zw?max{n—A,O}—A—§<wamax{n—)\70}—)\—1—%.

w
i=1 i=1 J

Now, we choose A > 0 such that lwill#, — wix <0 for all i = 1,...,n, and get

~ ~ X .
Il _

gA) < —=A+
wj
(b) Let & > 0. If there exists j € {1,...,n} such that ||z;[|3, +&w; < 0, we derive a contradiction.
Therefore, it holds ||x;||#, + &w; > 0 for all i = 1,...,n, and for the function g we have

g(A) = wa max{m; — A\,0} —A—¢ < Zw? max{m; — A, 0} — A\
i=1

i=1

Now, we can take A > 0 such that ||z;]j3, — w;A < 0 for all i = 1,...,n, and derive that g(A) <
A <0. N N

In summary, we can secure the existence of A > 0 such that g(\) < 0. Additionally, take note
that, if A = 0, then g(0) = Y1 , wil|@ills, — & > 0. The rest of the proof is oriented on the
Algorithm I given in |76] to determine the projection onto an I;-norm ball.

Since, the values 7, ..., 7, are in ascending order, g is a piecewise linear function in A, where the
slope of g changes at A = 7;, 1 = 0, ...,n. More precisely, at A = 0 the slope of g is —(Z?:l w?+1)
and increases by w} when A = 7. If we proceed in this way, one may see that the slope keeps
increasing when \ takes the values 7, k = 2,...,n. In the case when A > 7, the slope of g is —1.
Hence, to determine A such that g(A\) = 0, we have to locate the interval where g changes its
sign from a positive to a negative value. In other words, we have to find the unique integer
k €{0,...,n — 1} such that g(7;) > 0 and g(7x+1) < 0. Hence, we have

g(A)z—(Z w,-2+1>/\+ Z wiT; — &,

i=k+1 i=k+1

where 7, < A < 741. Finally, we can determine A such that g(X) =0:

n
> owim —&
=kt 1
—_
>owi+l
=kt 1

X:

O

Remark 5.2. From the ideas of the previous proof, we can now construct an algorithm to deter-
mine X of Corollary .
Algorithm:

(1) If Yo7y willxillw, <&, then X = 0.

(i) If € <0 and ||z;||n, < —Ew; for alli=1,...,n, then X = —¢.
(iii) Otherwise, define 7o := 0, 7; := |||, /wi, i = 1,...,n, and sort 19, ..., T, in ascending order.
(iv) Determine the values of g defined in atA=m1;,1=0,...,n.

(v) Find the unique k € {0,...,n — 1} such that g(1;) > 0 and g(7x+1) < 0.

(vi) Calculate \ by .
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Corollary 5.2. Let h be given by where B; = 2 and w; = 1 for all i = 1,...,n, then it
holds

n
(T4, .0y Ty €), if zluxiH%i <€,
— 1=
(U152 T, 0), otherwise,

Pepih(xh "'79:7”5) =

where
1

Y= —=——T;, t=1,...,m, and 0 = & + )\,
YW :

and X > 0 is a solution of a cubic equation of the form

1
N (L ON + (149N + 7 (g Z|

) 0. (5. 29)

Proof. By Theorem [5.1] we get that

(1’1, ...,{En,g)7
_ i=
Y1y Yp, 0), otherwise,

Pepih(xla ...,l‘n,f) =

with

iz —n(Y)

P =

zi, i=1,...n, and = £+ )\, (5. 30)

where 7;(\) is the unique non-negative real number that solves the equation

i (X)

i\ + o2 = ||z, i=1,...,m, 5. 31
m(® + B = il (5. 31
and X > 0 is a solution of the equation
D il =m(V)* = A+ ¢ (5. 32)
i=1
From (5. 31)) we get immediately
0 (14 55 ) = i, 0) = ol i =1 . 33)
i — = [|T¢ . i = ——||7; s t=1,...,Nn, .
7 2 e DR

and in combination with (5. 32)) we derive

2

- 2X <
il — == lzilln, | =2+ =—— ill3, =X+
>~ (bt~ gyglloie ) =36 e G Dl =+

i=1

& @HDPA+6) = llzilld, =06 4% +4(1+ X +(
i=1 =1

In the end, formula (5. 33) implies that

Il‘TZ 2)\+1||leH 1

Ti= — ri, 1=1,...,n, (5. 34)

Yi =

which completes the proof. O

The next remark discusses the question whether the solution A > 0 of Corollary is unique.
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Remark 5.3. Let (21, ..., 25, &) € Hy X ... X Hy X R be such that Y, ||zi]|3, > & and g : R - R
be defined by g(\) = X0 + (1 + N + (1/4)(1 + 4\ + (/A = S0, (5113, then ¢/(\) =
SN2+ 2(1+ N+ (1/4)(1 + 4€) as well as g"'(N) = 6A + 2(1 + &). From the zeros of g we derive
the local extrema of g as follows

1 1+¢)? 144 1 4(1+26+€2)—3(1+4
/\1/2 = —3(1+§)i\/( 95) — 1252—3(1+£)i\/( £ 5325 ( £)

1 1464482 1 1.
= 75(1%)1,/736 =31+ (12

and hence, \y = —(1/6)(1 4+ 4¢) and Ao = —(1/2).

Further, if € > 1/2 & —142¢ > 0, then g is strongly monotone increasing on Ry, g”"(A1) =
1 -2 <0 and g" (X)) = =1+ 2€ > 0, which means that g has in A1 a local mazimum and in Ao
a local minimum. As A\ < Xa < 0 and g(0) = (1/4)(§ — X7, zill3,,) < 0, the function g has
exactly one positive zero in this situation.

Ife<1/21-2>0, then ¢"(\) =1—2£ > 0 and ¢"'(A\2) = =1+ 2¢ < 0 and we derive a
local minimum in A1 and a local mazimum in Ay. From g(0) < 0 and Ay < A1 we conclude that g
has also in this situation exactly one positive zero.

Finally, let us consider the case where £ = 1/2, then g is strongly monotone increasing on R4,
A1 =X =-1/2 and ¢" (A1) =0, i.e. g has at the point —(1/2) a saddle point. From the fact that
g"(X) <0 for all X € (=00, —(1/2)] and ¢g"(X) > 0 for all X € (—(1/2),+00), it is clear that g has
again exactly one positive zero.

In conclusion, the function g has in all situations exactly one positive zero, i.e. X > 0 is unique.

Remark 5.4. In the framework of Corollary[5.3, let us consider the case where n = 1. Then, by
Remark [5.1) we have to find a real number Y > 0 that solves the equation

2¢ + (1= 28)x — |lall =0, (5. 35)

to get a formula of the projection onto the epigraph of h.

As one may see by , the arithmetic effort for the case n > 1 is not much higher compared
to the case n = 1. In both situations we have to solve a cubic equation to derive a formula for the
projection onto the epigraph of h.

As a direct consequence of Corollary one gets the following well-known statement (see for
instance [2] or [28]).

Corollary 5.3. Let h be given by wheren =1, wy =w > 1 and B = 1, i.e. h(z) =
wl||z||%. Then, for every (z,£) € H x R

(z,8), if wlxlly <€,
Pepiwll-I (@, €) = ¢ (0,0), if ollw < —w,

2
(lelwwf wl|z 5 +w f), otherwise.

el @D Y — w2+l
For our numerical tests we need two lemmas more.

Lemma 5.2. Forp;, € H,i=1,...,n, it holds

P n N(Ty, . x,, ) =P n (T —p1y sy — Pns &) + (P1y ey Py 0).
epi(’_ZwiH'*pin_Zl)( 1 ) epi<zwi|\-|\§.¢’i>( 1 1 n ns &) + (p1 1, 0)

i=
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Proof. For p; € H;, i =1,...,n one has

n n
(01r iy ©) € i (zwﬁ - z) o S uille - pill <€
i=1 i=1
n
s (xl_pla'“?l‘n_pnag) Eepl <sz||||%L>
i=1
n
g (xla "'axnaf) € epl (Z wzH ! 5—[2) + (pla 7pn70)
1=1
Thus, by |2, Proposition 3.17] follows
P n T1,..,T =P n L1, .y Ty,
e 32 wiu-—mnéﬁi)( b nd) ei( 3 wi\I-\Iffi)ﬂplwwmo)( b Tnad)
i=1 i=1
= P n N —p1y s Ty — Py &) + (P10, Py 0).
epi(;wi”'”%i)( 1= P15 Tn = Py §) + (P15 -, P, 0)

O

Lemma 5.3. Let w > 0 and A : H — K be a linear operator with AA* = uld, u > 0, where KC is
a real Hilbert space. Then,

1
Pepiwfja-n (2,8) = (2,) + E(A* X 1d) (Pepi |-l (Az, &) — (A, €)) .
Proof. We have

Sepi(wl| A- 1) (T5§) = Gepiuw||- ) (A5 §) = (Bepi(uw]-[|2) © (A x 1d))(, £).
By [2, Proposition 23.32] it follows that

prOX(;epi wl| Al (Z’, 5) = prOthepi wl -l O(AXId) (xa 5)

= (2,6 + i(A x 1d)7 (prox5 (Az,€) — (Aa:,§)>

~ PepinA-HH(xvg) = (1‘,5) + %(A* X Id) (Pepiw\|~\|H(Axa€) - (Al‘,f)) .0

epiwll- |4

5.2.2 Gauges

The next considerations are devoted to gauge functions of closed convex sets defined on Hilbert
spaces.

Theorem 5.2. Let C' be a closed convex subset of H such that 0y € C, then it holds for every
(2.6) € H x R

(3375), ZfVC(JU) < 57
Pepi'yc (x7§) = (Pcl(dom’yc)(x)ag) ) Zfl' ¢ dOIIl")/C and Yc (Pcl(dom'yc)(x)) < f < ’YC(*T);

(y,0), otherwise,

where

=12 — APco (ix) and @ = X+ ¢

PC“ <§\I’)

and X > 0 is a solution of an equation of the form

A+E€= <x,PCo <§\x)> )\‘
H

2

H
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Proof. Let us consider for fixed (x,&) € H x R the following optimization problem

, 1 , 1 ,
Lmin {50-92+ 3l - ol }. (5. 36)

Yo (¥)<o

If yo(z) < &, ie. (z,€) € epive, then it is obvious that (77,0) = (z,¢). In the following we consider
the non-trivial situation where yo(z) > &.

We define the function f : H x R = R by f(y,0) := (1/2)(6 — £)* + (1/2)|ly — =||3, and the
function g : H x R — R by g(y,0) = yc(y) — 0, then it is clear that f is continuous and strongly
convex and g is proper, lower semicontinuous and convex by Theorem As v¢0(0) < 1, it follows
by [7, Theorem 3.3.16] (see also |7, Remark 3.3.8]) that

0€d(f+(Ag))(@.0) (5. 37)
and
(Ag)(7,0) = (ve(m) —0) =0,
{( 7 <0, ‘:’{wu . -39

where (7,6) is the unique solution of (5. 36) and X > 0 the associated Lagrange multiplier.
Furthermore, from [7, Theorem 3.5.13] one gets that

0ca(f+ (Xg))( ,0) 0 € 0f(7,0) + 0(Ag) (7, 9).- (5. 39)

If X = 0, then it follows by (5. §) and -

0 € 8f(y7 ) + 85domq(y79> <0 € @— .’I,‘,g— f) + aédom'ych(yag)
& 0e€ ( - 1’,9 - 5) + 8601 dom’yc)XR(§7 9) < ({17 - gag - 9) S afscl(dom'yc)XR(y79)
7 Y = Pci(dom Zz),
= (g, 9) = PCI(dOm’Yc)XR(xﬂé-) = {Z :é. 1(d ’YC’)( )

and thus, it holds by the feasibility condition @ that v (Pei(dom~e) () < &, from which
follows that Pgjdom~o)(7) € domyc. If z € domye, this means that Peygom~e)(z) = = and
again by the feasibility condition that yo(z) < &, which contradicts our assumption.
Therefore, if z ¢ dom~c and the inequalities Yo (Pei(dom o) (=) < & < 7o (z) hold, then (7, 0) =
(Peidome) (), €).-

Now, let A > 0, then it follows from (5. 39) and -

0€d(f+ (X)) (@.0) = 0€edf(y,0)+Mg(y.0)

& Vf(.0) € -2g(7,0) < {y Tee M) {y TPIORe ™ (5, 40)

=2, f=¢-

by combining (5. 40) and (5. 38) we derive that v¢(7) = &€ + A. Finally, as by Lemma and
Remark [4.5] it holds that v, = dco, one gets by [2, Theorem 14.3(iii)] the following equlvalences

(@) =&+ (5. 41)

& E+ =10 (proxch z) + dco <Pco (ix)) = <pI‘OX)\,YC z,Pco (iz) >H
_ - 1 1
A A Y

Corollary 5.4. Let C CH be a closed convex cone, then

(z,6), if vo(r) <&,
Pepi’)’c (1‘,5) = (Pcl(dom'yc)(m)ag)v if ¢ dom~yc and o (Pcl(domfyc)(x)) <E< ’yC(x)7
(Pez,vc(Pc x)), otherwise.
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Proof. We use Theorem Let # € dom~¢ such that yo(z) > &, then one has from [2]
Proposition 28.22] and [2, Theorem 6.29] that

- 1
g=1x— APco (/\:r)zx—Pcox:ch. (5. 42)
Moreover, by (5 we have ¢ (y) = 0, which finally yields Pepi, (a:, &) =(Pcx,vo (Pox)). O

Corollary 5.5. Let C; be a closed convex subset of H; such that Oy, € intCy, i = 1,...,n, and
the gauge yo : Hi X ... x Hyp, — R be defined by yo(x1, ..., ) = >y ve, (x:). Then it holds for
every (1, ...,n, &) € H1 X .. X Hyy X R
(.131,...,337“5), Zf Z’yc,i(xi) SE?

i=1

(1, -y U, 0), otherwise,

Pepi’yc (xlv '~'7$n7§) =

where

_ 1 _
Y; =z — APco (/\xi), i=1,...,n, and 0 =X+¢ (5. 43)

and X > 0 is a solution of an equation of the form

i e (), s ()

Proof. As Oy, €intC;, i =1, ...,n, it is clear that the gauges are well-defined, i.e. dom~¢, =
Hi, i =1,....,n, and so, domyc = Hq X ... x H,,. Further, let us recall that the polar set C° of the
set C' can be characterized by the dual gauge yco as

’ ] . (5. 44)

Hi

C'={z= (21, 2n) € H1 X .. X Hp i vc0(2) = yo0(21, ...y 7) < 1} (5. 45)

This relation holds also for the polar set C? and its associated dual gauge Yoo, i =1,.
Moreover, in Lemma [4.4] it was shown that ’}/CD( ) = maxi<;<n{yco(z:)} and hence, the polar set

in (5. 45)) can be Written as
cb = {(:1:1, vy Tp) € Hy X oo X Hy max {’yCo(:rz)} < 1}
= {(xl,...,xn) EHL X ... XxHy: 7079(%') <1, i= 1,...,n}
= {z1 € Hi o) <1} X x {zn € Hp i o (an) <13 =CF x .. x O,
From here follows that
Poo(z) =Pooy.. xco(T1, ..y Tn) = ch(gcl) X ... x Peo(xn),
which by using Theorem [5.2) - directly implies (b and O

As one may see, the equation (5. 44)) of the previous corollary can be very hard to solve
and hence, it can be very complicated to find a projection formula. The next two corollaries
are examples, which demonstrate how one can determine the formula of the projector by using

Corollary
Corollary 5.6. Let y¢ : Hi X ... X Hy — R be defined by

’YC(xla 7xn) = 1<i<n
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then for every (z1,...,%n,&) € Hi X ... X Hp xR

(1, ey Tnt1,€),  of max {||zilla, } + |@nt1llm,, <€
PCPi'YC(xlv"~7xn+17£) = { o 77 ’ 1<i<n v n +1 )

W1y Uny1,0), otherwise,
where exactly one of the following four cases holds:

(i) Yimymax {{|zilla, — [2ns1llpt,n — &0} < llznsallae, 0
n n
2z max {[l@ills, — [nalla,g, — &0} < i Nl
duim il > ([entalln ., —€)/2 > =€ and |zngallm, ., > =, then

max { ||zl — 22— €+ ||z 0
7=z — {” z”?—h g ” n+1||7'ln+1’ }-Tia i=1,...n,

[l 2:

x - _
L SO
H‘r’ﬂJrll Hnt1

where X > 0 is a solution of the equation

n
Zmax {H%HM —2X— &+ ||x"+1||Hn+1>0} =\
i=1
(ii) ||172+1||'Hn+1 <> max {||zlla, — |Znt e, — &0F < Sy llzilln, and
Yoicq lwilla, > =€, then

_— maX{HziHHi—X—&O}x

i =T —

s 1= ]-7 ey 10, yn+1 = 0'Hn+1 anda:x"_ga
[EHIET

where X > 0 is a solution of the equation

Zmax{”xiﬂyi —A=&0} =X
i=1

(i) 377y @illas < ([2nt1llpnen = €/2 < |@n1ll,n and [Tnrilla,., > =&, then

_ . _ [@n41ll,00 +€ =
Ui =0u i=1,n, Jppy = =3, and 0 =

lZnt1ll2,, +€
2H'Tn+1H7'ln+1

2

() S0y willw, < =€ and ||Tns1lla,,, < =& theny; =0y, i=1,...,n+1, and § = 0.

Proof. By Corollary [5.5] we have

(xlv "'7xn+17§)7 if nmax {”xZ”Hl} + ||xn+1||Hn+1 < 57
Pepine (T1, oo Tny1,€) = { _ lsisn

(?1 PRERED) yn+1 B 0), Otherwise,
where

+ 1 ~ 1
15 ’yn) = (1‘1, ,.T,‘n) - /\Pclo ()\(xl,,xn)> 5 yn+1 = Tn+1 — /\ch ()\an) s

f=X+&and X > 0.

—~~
<

From Lemma follows that dual gauge of vyo,(x1,....,2n) = maxi<i<n{||zilln,} is given by
Yoo (%15 n) = 30, [|%ill; and hence, the polar set of C1 = {(21,...,2n) € Hy X .. X Hyy
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max<i<n{||zilla, } < 1}is O = {(@1, .., 2n) € Ha X oo X Hpy 2 o0y [l]lag, < 1}, Thus, we derive
for the case (1/A)(z1, ..., zn) & CY, ie. >iy [|@ills, > A, from Lemma [5.1] that

max{ ||z, |3, _XEO}Q;. (5. 46)

1
Peo ((xl, ,xn)) = (Z1,..12n) € H X ... x H where Z; = —
A Allzilo,

t=1,...,n, and @ > 0 is a solution of the equation (see (5. 10 of the proof of Lemma

n 1 n i i
Zmax {)\szml - ,u,O} =le Zmax{”ajiﬂ% — A, 0} =X (5. 47)
i=1 i=1

Furthermore, as Co = C3 = {xp11 € Hpt1 ¢ [|[Tnt1] < 1}, it holds by [2, Example 3.16]

(or also by Lemma [5.1]| for n = 1)

Hnt+1

1 1
ch ()\xnﬂ) == 1 Tntl-
)\max{jﬂxnﬂ”?{nﬂa 1}

(5. 48)

Now, we need to consider the following four conceivable cases.
(a) (1/N)(21,...,xpn) & CF, ie. 0 |zl > A, and (1/X)ze ¢ CF, ie. ||@ny1a,,s > A Then
one has ch((l/X)an) = (1/||zn+11#,s1 )Znt1 and therefore, it follows together with ,
and

- N— . — _ X _ ||‘rn+1||7{n+1 - X
Ui=xi— A%, i=1,.m, Yy = Tpy1 — 7 Tpq1 = — Ty
[Zn+1 119004 Zn+1 #0414
and 0 = o (Fys s Yng1) = A+ &
As for ||z;]|%, — Mz > 0 we have that
N il =g M@
Ui =T — AZ; = 33 — i = Z5
ill2; 2|2,

and for ||z, — Mz < 0 that 7, = 2, i = 1,...,n, it follows that max,<;<n{[[7;[l%,} = A& and
50, A+ &= 015 Ups1) = maxi<i<n{Tilla ) + 1Tngallrn 0 = AE+ 20,0 — A which
means that A\ = 2\ + & — [|2n41]|#,,, > 0. For this reason, we can write for (5. 47

S max {l@illw, — 2X = €+ [|Tns1 3040, 0} = A
=1

Bringing the inequalities ||zp41l%,., > A and >i, ||#illa;, > A together with the last equality

implies

n+1

n
ZmaX{HxiHm - Hxn-‘rl‘IHnJA - §,O} < ||x71+1||71n+1
i=1

and

n n
> omax {[l@illw, = [entallon: — &0} <D el
i=1 i=1

Moreover, as A\fi > 0, we have A+& > ||@p41]/#,,, — A, which means that A > (||zy412,,,, —&)/2.
From the assumption ||@,41]/#,,, > A and >, [|z;][3, > A follows that ||zp41]/%,,, > —¢ and
S0 il > (1nsllne, — €/2. This yields (i). )

() (N (1, xg) & CF, dee 300 Izl > A and (1/N)zng1 € CF, de [ntalla,,, <
A: Then one has that Poo((1/A)zn11) = (1/A)2n+1, which means that ¥, = 0%,,, and as

n+1

n+1
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(1/X) (Y1, -, yn) ¢ CF it follows, as shown in the previous case, that maxi<i<n{|[7;lln,} = M.
This means that ¢ = ’Yc(yla "'?yn-i-l) = maxlﬁif’ﬂ{Hyi”?‘li} + ||?7L+1||Hn+1 = )‘ﬁ =X+ § and for
(5. 47) we can write

o~ X— €0} =X

n
Zmax EA
i=1

< X, it holds that

As HxﬂJrl | Hnt1

n
[t < Zmax EA
i=1

n
Hi ™ ||xn+1||Hn+1 - §70} < Z szl Hi-
i=1

This verifies the case (ii). B _
() (/N (@1, wn) € €Y, hes 3O @il < A, and (1/N)zngn ¢ CF, de (@il >
Ai Then Peo((1/A)(21, ..., 2n)) = (1/A)(@1, .., z5) and Poo((1/N)2nt1) = (1/[[@nt1ll, ) Tnt

implies

_ : _ st ll2,,, — A
Y =0u, i=1,n, Yy = ——— g, and
||xn+1||7'ln+1

X+£ = a = 70(?17 ~-~7@n+1) - ?g(n{Hyz”Hz} + ||gn+1||7‘ln+1 = |‘xn+1HHn+l _Xv

1<

where from the last equality one gets A = (||@p41]/#,., — £)/2. But this yields

|‘:E”l+1 IlHn+1 —£

7 _ HanrlHHn-H - Tpiq = ||xn+lHHn+1 +§$ .
= = Ty
i Zn+1l124044 " 2 wnyillag,,,
and
G- 21t =& NTngallp,,, +€
= zn+1lla0: — 5 = 5 :

Further, one has

n
[#nt1 2,00 =€
Z HleHz < % < ||xn+1”7—ln+1 as well as ||'r"+1||Hn+1 > —£
i=1
and this yields (iii). B B B
(d) (1/A) (21, ... 2n) € Cy, 1-6-722;1 [zill, < A, and (1/N)ania € CSLi.e. |Znt1ll2n,, < A
Then Poo((1/A) (@1, ..y 7)) = (1/A) (21, ...; zn) and Peoo((1/A)zn41) = (1/A)@p41 implies

7,=0,i=1,..,n+1, and A+ & =0 =7vc(Ty, -, Ynp1) = 0,

which means that A = —¢. Hence, one gets that ¢ < 0 and Y., [|#;]ln, < —¢ as well as
|ns1ll7,,, < =€ This verifies (iv).

As only these four cases are possible and exclude each other, we derive the statement of the
corollary. O

Hi)/wi}7

Corollary 5.7. Letyo : HiX...xHp, — R be defined by yo (21, ..., Tn) = maxi<i<n{ (|| zi]
then it holds

. 1
L1yeeey T if max  —=—||Tillx, ¢ <
Pem(%m’xmf):{ (1), 4 oo { il | < 6

(U1y -y Up, ), otherwise,
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where
3 > wiTi+¢
a illa, — (A i, 0 . — =
Y, =T — max{ |z llu, _ At Ows }xi, i=1,..,n, and § =" kjl'l
ol & i
i=k+1
with
n n
> wai—g > wzz
3 i=k+1 i=k+1
A= —
Sow?+1
i=k+1

and k € {0,1,....,n — 1} is the unique integer such that 7, < X\ < Ty11, where the values Tg, ..., T,
are defined by 7o := 0 and 7; := (||x;||n,)/wi, i = 1,...,n, and in ascending order.

Proof. As C = {(z1,....y) : H1 X ... X Hp : maxy<i<n{(1/wi)||ill, }} < 1 (see Remark [4.3)),
Corollary [5.5| reveals that

($17"'mn7£)7 if max {wL xlle} Sg,
Pepive (T15 0y T, §) = _ 1<i<n =™
("1 -y U, 0), otherwise,
where
_ 1 L 7
(1o 5 Tn) = (@15 20) = AP oo <A<x1, xn)> , 0 =X+¢€and X > 0.

By Lemmathe polar set of C'looks like CO = {(z1, ..., zn) € Hi X oo XHyp iy will@willa, < 1}
and from Lemma [5.1] we derive

1
PCO ()\(.’El, ,$n)) = (217...7271) €Hi X...X Hn,

where

5. _ max{||zi|lx, —Xﬁwz',o}xl i1 .m
7 A||xl| Hl 19 b b )

and 77 > 0 is a solution of the equation (see (5. 10) of the proof of Lemma

n
Zwi max{||z;||3, — \iw;,0} = . (5. 49)
i=1
Therefore, it follows
o maxflil, N0} el max{led, - X0
- T 1 1 - MRS b
' [EA(EP 3|9,

H; —Xﬁwl > 0,

#, and for ||z;|

and as for ||z;||ly, — Agw; < 0 one gets 7; = @y, ie. |[;]ln, = [l
v, = (Now; /|| x|l )xi, 1e. [Tl = ANaw;, @ = 1, ...,n, we obtain

_ _ 1. — T
e T) = max { Il p =30 =R+ € . 50)
K3

1<i<n

Bringing (5. 49) and (5. 50) together yields

Zwi max { ||zills, — (A +&w;, 0} = A (5. 51)
i=1
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Clearly, if ||x;|l3, — &w; < 0 for all ¢ = 1,...,n, i.e. maxi<i<n{||Tilln,/wit < &, then ||z, —
Ew; — Mw; <0 for all i = 1,...,n, and one gets by (5. 51| that

A= Zwl max { [|z;|l%, — (A + &w;, 0} =0,
i=1

which means that y, = x; forall i =1,...,n, and f=¢.

Now, let us assume that J := {i € {1,...,n} : |lz;]| — E&w; > 0} # O and define the function
g:R—=Rbyg(\) =" wmax{r — (A+£),0} — A, then it follows from A\ + £ > 0 that

g(\) = Zw?max{n —(A+9,0} =A< Zw?max{Ti,O} —A= Zw?n -
i=1

i=1 ic€J

If we choose A > 0 such that A > > iy wiTi, then we derive that g(X) < 0. Thus, we can secure

the existence of a A > 0 such that g(X) < 0.
As g is a piecewise linear function, one has, similarly to Corollary[5.1} to find the unique integer
k e€{0,1,...,n — 1} such that g(7%) > 0 and g(7%4+1) < 0. This leads to

n n
Swtn—6 S w2-A Y @l —0en= T =k
i=k+1 i=k+1 i=k+1 >owi+l
i=k+1
and hence, 0 = X+ & = (30, wini + &)/ wi +1). O

Remark 5.5. In [28] the formula in the previous corollary was given for the case where H; = R,
i=1,...,n, in other words, where vo is the weighted l-norm.

Remark 5.6. Like in Lemmal[5.3, one can give a formula for the projection onto the epigraph of
a gauge composed with a linear operator A : H — IC with AA* = pld, > 0,

1 *
Pepi'YC(A-)(xa§> = (.’ﬂ,é—) + ;(A X Id) (Pepi'yc(~)(Axa€) - (A.’E,g)) :
Moreover, it can easily be observed that for p € H holds (similar to the proof of Lemma

Pepivc(_p) (x,g) = Pepi’yc (95 - D, f) + (pa 0)-

We close this section with a characterization of the subdifferential of a gauge function by the
projection operator.

Remark 5.7. Let C C H be closed and convex such that 0y € C, then it holds by ,
[8), [81, Lemma 2.1], [81, Remark 2.2] and [3, Theorem 14.3(ii)] for all x,y € H that

r€0ve(y) & r+y—y€dcy) & y=prox, (z+y)
& y=az+y-—prox,. (r+y) ©y=z+y—prox;  (z+y)
& x=Peo(z +y).

From which follows that
Ocly) ={zeH:a=Pco(z+y)}.
In addition, if C is a closed convex cone, then it follows from (2, Theorem 6.29] that

ely) ={reH :z=x+y—Pole+y}={zreH:y=Polz+y)}.
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5.3 Numerical experiments

Our numerical tests are implemented on a PC with an Intel Core i7-6700HQ CPU with 2.6GHz
and 12 GB RAM. While the numerical tests in [30] were based on the partial inverse algorithm
introduced by Spingarn in [77], we use here the parallel splitting algorithm from [2, Proposition
27.8].

Theorem 5.3. (parallel splitting algorithm) Let n be an integer such that n > 2 and f; : R® — R
be a proper, lower semicontinuous and convex function for i =1,...,n. Suppose that the problem

(PPR) min {Z ﬁ(x)}
i=1

has at least one solution and that dom f1 N(;_, int dom f; # 0. Let (uy)ren be a sequence in [0, 2]
such that ), .y pr(2 — px) = 400, let v > 0, and let (z;0)j=; € R® x ... x R®. Set

n
(VkEN) rk:%ZxM,
i=1
Yik = ProX, s, Tik, t=1,...,n,
n
1
k. = 5 Z Yiks
i=1

Tigp1 = Tik + k(20 — T — Vi), i =1,...,n.
Then (1 )ren converges to a solution of problem (PPR).

In order to use the parallel splitting algorithm given in the previous theorem, we need to rewrite
the extended multifacility location problem (EP]]\\f p ) in into an optimization problem with
an objective function, which is a sum of proper, convex and lower semicontinuous functions.

The first way to reformulate this location problem is based on the introduction of an additional

variable as presented in (5. 5f):

n

(EPMP) min t+> 6 (

(21,01 Tm,t) EREX ... XRIXR “—1 epi

. (X1 ooy Ty t) p (5. 52)
leij\l'*;ﬁz‘\lﬁi>

j=
We define the functions

fi:RIx . xREXR =R, fi(x1,...,2m,t) =t and

fi : Rd X ..o X Rd x R %R7 fi(l'l,...,l'm,t) =4

. (1, eeey Ty 1),
epi .21 wij |- —pil| P
J=

i=2,...,n+1, then dom f; = R? x ... x R? x R and

Bi

m m
Ord, ..., Ora, max. szgﬂpz Bl +1| €intdom f; = intepi Zwm” ey
Jj=1 j=1
for all i = 2,...,n + 1, i.e., it holds that dom f; N ﬂ;f; int dom f; # (. Therefore, the sequences
generated by the algorithm from Theorem [5.3] converges to a solution of the location problem
(EPII\%B ) and the following formulae for the proximal points associated to the functions fi, ..., fn41

can be formulated by using (5. 8)) and Lemma

Y15 U 0) = Prox, ¢, (21, .0y Tns )

<~ (.’131,...,$m,t) - (yla aymag) € 8(1/.]01)(?1,...,@7”,5) = (ORC‘) "'aORday)
& =7, i=1,..m and 0=t —v < Yy, .., U, 0) = (T1, ..., Tp, t — V)
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and

15Uy 0) = DProx, 4, (@1, ..., Ty, t) = Prox,; (T1,.eey T,y t)

[ m B,
epi| X wijll-—pill”e
i=1

= P m (a:l,...,xm,t)
epi(leij\l~fpi\|ﬁi)

= P (1 — Piy ooy Tm — Diy t) + (D4 -, 03, 0). (5. 53)
ePi<Z wij\l‘HBi)

The second way to rewrite the extended multifacility location problem (EP]]\\,/[ # ) into an op-
timization problem of the form of (PP®) makes use of the ideas of Cornejo and Michelot given
in [30] and splits the sums of weighted norms by n - m additional variables (see also (5. 6)):

m n n
M, .
(BPYT) - min DY Do) (@5 tid) + D depimi(tins s timst) 5 (5. 54)
j=1,...,m,i=1,...,n j=11i=1 =1

where T;(ti1, .o, tim) == Yoy tij, © = 1,...,n. Now, let T := (z1,...,2p) € R? x ... x RY, t=

(tij)i=1,....;n5=1,....m>»
fi:REx . xREXR™ xR — R, f1(Z,1,t) :=t,
—_——
m—times
fij : Rd X ... X Rd x R™ xR — R, fzj(i,’tv,t) = 5epi(wij\|'—pi\|ﬂi)(x]”tij)’

j=1..m,i=1,...,n, and

ﬁ R¥x .. xRYXR™ xR — R, ﬁ(%,?,t) = Oepir (tit, oo tim, t), 1=1,...,m.

As
dom fi =R x ... x R x R™ x R,
dOIIlfij = {(i,at) € Rd X .o X Rd X R™ x R : (l'j;tij) € epl(w”H ©—Di ﬁl)},
1=1,..,n, j=1,..m,
domfi = {(i,ﬁt) S Rd X ... X Rd X R™ xR : (tila ...,tim,t) S epiTi},
i1=1,...,n

and

<0Rda oo Oy max {awiIpal| 3 + 1, ..., max {uwi;Ipil|*} +1,m max {willp;

Pt +m+ 1)
1<i<m 1<5<m 1<5<m
€ dom f1 N ﬂ int dom f;; | N ﬂ int domﬁ ,
1<i<n, 1<i<n

1555m

convergence in the sense of Theorem can be guaranteed. Now, let § := (U1 -y YUp) and

0 = (0ij)1<i<n, 1<j<m, then one has by |l for the corresponding proximal points of the
functions fi, fij, j=1,...m, i=1,..,n,and f;, i=1,...,n,

(?7575) = prOXl/fl(%v,i:t) = (ORdv"'7ORda 07"'70 7t_ V)
—_————

m—times mn—times



5.3 NUMERICAL EXPERIMENTS

and by (5. 8) and Lemma

(57 57 5) = prOXl/

115

1, @5 & 760 - (5,0,0) € 0wf;)(7,0.9)

A (xjatij) (yja 1]) € a(V(sepl (wij- 7p1\|51))(yj7§7;j) and
Yy=a1, O0g=tg, 0=t, s=1,...,n, I =1,...m, sl #ij,

& (yj,@-j) = prox,,

= Pepituwy 1170 (%5

Hﬂw(xj’tij) = Pepiuws - —ps 17) (L5 tij)

epi(w;;|-—p;

— pi, tij) + (pi, 0) and

Yy=a1, O0g=tg, 0=t, s=1,...n, I =1,...m, sl #ij, (5. 55)

j=1,...,m, i=1,..,n. Moreover, by (5. §) and |2, Example 28.17] follows

7.0.9) = prox, 7 (@, 1,1)

(
(
(t tlm, ) (911,...,
( wma) = prox,

(Gily ~-~79im7 G)Ta

ity ey i, )T — =

and (tlh ...,tlm,t) = (511
t=1,..,n.

t zma ) - (01’13 .. 5§1m7
0

— m
Z tij—t

& (& 0t) - (5,6,0) € 0w f,) (7, 6.6)
a) € 3(1/5epin) (?il, 752m,§) and
lm,?), I=1,un, L#4 (1, Zm) = (Ui eor Upm)

6epi7’1¥ (tila -'-7tim7t) = Pepiri (tila "-7tim7t)

m
if Sty —t<0,
j=1

L-DT, if Yt —t>0,
j=1

s O, @), L=1, . n, LA, (21,00 T) = (U1 Upm)s

(1,

The tables below illustrate the performance of our method using the formulae from Corollary
and for the projection onto the epigraph of the sum of powers of weighted norms (EpiSum-
Norms) compared with the concept proposed by Cornejo and Michelot in [30], where only the
projection onto the epigraph of a weighted norm (EpiNorm) is needed (see Corollary . We

solved the problem (EPJ]VW’ﬁ ) in R?

and R3 for different choices of given and new facilities. The

performance results are visualized by the associated figures, where we use the following notations:

NumGivFac:
NumNewFac:
Numlt:
CPUtime:

Number of given facilities

Number of new facilities

Number of Iterations of the algorithm
CPU time in seconds.

We used the following parameters for initialization: u, = 1 for all n € N. Moreover, let us point
out that we tested the algorithm of Theorem for different values of the parameter v, where

the most remarkable results are pri
time and number of iterations are v

inted in the tables and the best of them concerning the CPU

isualized in the corresponding figures.

First, we consider the situation where 8; =1 foralli=1,...,n

Table 5.1: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

v=25 v =30 v =50

Numlt

CPUtime | Numlt | CPUtime | Numlt | CPUtime

EpiSumNorms 989

1.92 185 0.45 306 0.73

EpiNorm 21171

193.57 2179 17.89 2543 19.69
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Figure 5.1: Comparison of the methods EpiSumNorm

line) in R? for v = 30

10%
iterations (log scale)

gap from the optimal

sssssssss

(blue solid line) and EpiNorm (red dashed

Table 5.2: Performance evaluation for NumGiFac 30 and NumNewFac 10 in R?

v=18 v =50 v=2_82
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 269 0.87 535 1.53 909 2.51
EpiNorm 14341 335.45 3478 71.69 4312 92.93
!
= \ é
\\ /“’

Figure 5.2: Comparison of the methods EpiSumNorm

line) in R? for v = 18

nnnnnnnnnn

(blue solid line) and EpiNorm (red dashed

Table 5.3: Performance evaluation for NumGiFac 60 and NumNewFac 20 in R3

v=98 v =205 v =275
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 592 4.2 1129 7.53 1496 10.38
EpiNorm 28920 5653.66 15697 2951.28 15987 2983.45
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jalue

Al

jective function

obi

gap from the optimal solution

10% 10
iterations (log scale) . terations

Figure 5.3: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R? for v = 98

In Table[5.1]it is shown that the parallel splitting algorithm converges very slow when employed
in connection with the method proposed in [30], while our method performs much better. To be
more precise, we used here the value 0.001 as the maximum bound from the optimal solution. The
corresponding figure shows that our method EpiSumNorms regenerates after 185 iterations a so-
lution which is within the maximum bound from the optimal solution, while the method EpiNorm
needs 2179 iterations. Take also note that in this example the location problem has in the form
of EpiNorm 125 additional variables, while the examples in the Table [5.2] and [5.3] have 300 and
1200 additional variables, respectively. For this reason our method by far outperforms the concept

EpiNorm on such optimization problems regarding the accuracy as well as the CPU speed and
number of iterations.

Finally, we consider the situation where w; =1 and 5; =2 for allt=1,...,n.

Table 5.4: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R?

v=>5 v =239 v="T2
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 398 0.47 2664 2.58 4877 4.89
EpiNorm 10377 90.34 2782 23.51 5035 42.72

Table 5.5: Performance evaluation for NumGiFac 60 and NumNewFac 10 in R3

v =110 v =445 v =495
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 1684 3.78 6468 13.68 7433 17.01
EpiNorm 15131 970.24 5154 326.78 5713 356.06
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Figure 5.4: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R? for v =5
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Figure 5.5: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed
line) in R? for v = 110

The examples in the last two tables draw a similar picture as the examples in the previous
ones. While the method EpiSumNorms generates a solution within the maximum bound from the
optimal solution after few seconds, the method EpiNorm needs several minutes. This also points
up the usefulness of our approach made in Section [5.2

In the Appendix the corresponding source codes for the Matlab implementation are provided.



Index of notation

Spaces and sets

X the topological dual space X* of X
(x*, x) the value of z* at x

w(X*, X) weak® topology on X* induced by X

<K the partial ordering induced by the convex cone K
T <K rS<gyandxz#y

Ox the zero element of X

400K the greatest element regarding the ordering cone K
X the space X to which the element +ocok is added
K the dual cone of the cone K

Ng the normal cone of the set S

int(.S) the interior of the set S

ri(.S) the relative interior of the set S

cl(S) the closure of the set S

cone(S) the conic hull of the set S
core(.S) the algebraic interior of the set S

sqri(.S) the strong quasi interior of the set S
Ax B the Cartesian product of two sets
A+ B the Minkowski sum of two sets

V| the cardinality of the index set V/
o the polar set of the set C'

N for all

€ in

3 there exists (at least one)

H the Hilbert space H

Y

the scalar product in Hilbert space H
| RuE" the norm defined by the inner product (-, )%
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Argmin f the set of global minimizers of the function f

argming, 4, f(z) the unique minimizer of f

Pe the projection onto the non-empty, closed and convex set C
+o00 plus and minus infinite, respectively

R the set of real numbers

R the extended set of real numbers, R = R U {£oc0}

R7Y the non-negative orthant of R™

() the scalar product in R™

Il the Euclidean norm in R"”

Scalar and vector functions

dom f the domain of the function f

epi f the epigraph of the function f

f the conjugate of the function f

s the conjugate of the function f regarding the set S

[ the biconjugate of the function f

af the subdifferential of the function f

oA the indicator function of the set A

oA the support function of the set A

of(z) the subdifferential of the function f at x € X

Vf(x) the gradient of the function f at x € X

Yo the gauge function (a.k.a. Minkowski functional) of the set C
prox s the proximity operator of a function f

(z*F) the function (z*, F'), where F is a vector function and z* € K*

epig F the Q-epigraph of the vector function F

FoG the composition of two functions
Id the identity mapping
0 the zero mapping

Aji, Bj;  linear mappings

v(P%) the optimal objective value of the optimization
problem (P¢)



Appendix A

Appendix

Here we present the Matlab source codes of the m-files for our numerical tests, which can be found
on the compact disk attached to this thesis.

The file projection_weighted _sum.m calculates the projection onto the epigraph of the sum
of weighted norms.

1 % calculate the projection onto the epigraph of the weighted sum of norms

2 function [proj.y,proj-xi] = projection_.weighted_sum(w,y,xi)

3

4 k1 = size(y,1);

5 k2 = size(y,2);

6 proj.y = zeros(kl,k2);

7 nrm.y = zeros(kl,1);

8 tau.old = zeros(kl,1);

9 s = zeros(kl+1l,1);

10 s_tilde = zeros(kl,1);

11

12 for i = 1:k1

13 nrm.y (1 )= norm(y (i, :));

14 tau-old (i) = nrm.y (i) /w(i);

15 end

16

17 tau_old_tilde = [0;tau_old];

18

19 1if dot (w,nrm.y) <= xi % check whether (y,xi) is an element of the epigraph

20 proj-xi = xi;

21 for i = 1:k1

22 proj.y (i, :) = y(i,:);

23 end

24

25 elseif xi<0 && max(tau-old-tilde) <= —xi

26 proj-xi = 0;

27 for 1 = 1:k1

28 proj.y (i, :) = zeros(l,k2);

29 end

30

31 else

32 [tau-new,I] = sort(tau-old); % sort the vector tau.old in ascending order

33 w_tilde = w(I);

34 tau.new_tilde = sort(tau.old_-tilde); % sort the vector tau.old_.tilde in
ascending order

35

36 % determine the value of the function g (see (5.28)) at tau-new (i)

37 for i = 1:k1+1

38 for j = 1:kl

39 s_.tilde(j) = w-tilde(j) "2+*max(tau_new (j)—tau-new_tilde(i),0);

40 end

41 s(i) = sum(s_.tilde)—tau_new_tilde (i)—xi;
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42 end

43

44 % find the unique 1 such that g(tau-new(i))>=0 and g(tau-new (i+1)<=0
45 for i = 1:kl1

46 if (s(i) >= 0) && (s(i+l) <= 0)

47 1 = wtilde(i:end);

48 r=1."2;

49 u = tau.new (i:end);

50 lambda = (1/ (sum(r)+1))* (dot (r,u)—xi);
51 end

52 end

53

54 % calculate the projection (proj.y,proj-xi)

55 for i = 1:k1

56 if (nrm_y (1) > lambda*w(i))

57 proj.y (i, :) = (((nrm.y (i)—lambda*w(i)))/nrm.y (i)) .xy(i,:);
58 else

59 proj-y (i, :) = zeros(l,k2);

60 end

61 end

62

63 proj-xi = xi+lambda;

64 end

66 end

The file EpiSumNorms.m is one of the main files and solves the extended location problem
(5. 5). The given points are generated by the command randn and the given weights by the
command rand, both data sets are saved in mat-files, respectively. The optimal solution is also
saved in a mat-file. In the step where the projection onto the epigraph of the sum of weighted
norms is calculated the file projection_weighted_sum.m is used.

1 % parallel splitting algorithm

2 clear all

3 clc

4 close all

5

6 nlterations = 25000; % define the number of iterations

7

8 maxBoundFromOpt = le—3; % maximum gap from the optimal solution
9

10 load 'optSol_g25.n5.mat’' optimalSolution;

[

12 % p 1is a matrix of given points
13 load 'points_g25.dim2.mat' p;

15 % w is a matrix of given weights
16 load 'weights_g25.n5.mat' w;

o

18 k = size(w,2); % define number of new points

number of given points
dimension of the underlying space

21 m = size(p,1);
22 d = size(p,2);

o o°

24 z = zeros(k,d);

25 t = zeros(k,d);

26 p-tilde = zeros(k,d);

27 x = zeros (m+l,kxd+1);

28 1 = zeros(k,d);

29 xnew = zeros (m+1l,kxd+1);

30 y = zeros(mt+l,kxd+l);

32 xVerlaufDR = [];
33 xnormDR = [];
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34

35 % determine a feasible solution as startpoint

36 v = zeros(l,m);

37 for i = 1:m

38 v(i) = norm(p(i,:));

39 end

40

41 vtilde = zeros (m,k);

42 for i = 1:m

43 vtilde (i, :) = v (i)+*ones(1l,k);

44 end

45

46 vstar = zeros(l,m);

a7 for i = 1:m

48 vstar (i) = dot(w(i,:),vtilde(i,:));

49 end

50 vstarmax = max(vstar(:));

51 startPoint = [zeros(l,k=*d), vstarmax]; % vector of dimension kxd+1

52

53 nu = 33; % specify the parameter nu of the algorithm

54

55 for i = l:m+l

56 x(i,:) = startPoint; % startpoint x_0 is a feasible solution

57 end

58

50 tic

60 for nIter = l:nlIterations

61

62 rk = (1/(m+1l)) .*sum(x); % current solution

63

64 xVerlaufDR(end+1,:) = rk; % save the current solution

65

66 y(1l,:)=x(1,:)—[zeros(l,kxd) nul]; % calculate the proximal point of f_1

67

68 % calculate the proximal points of f.2,...fm+1l

69 for i=2:m+1

70 t(:,:)=reshape(x(i,l:k+d), [d,k])"'; % write the row vector as a matrix

71

72 % create a matrix, where the row vectors are copies of the associated
given point

73 for j=1l:k

74 p-tilde (J, :)=p(i—1,:);

75 end

76

77 % calculate the projection onto the epigraph of the weighted sum of norms

78 [z(:,:),y(i,d*k+]l) ]=projection_.weighted_sum(w(i—1,:)",
t(:,:)—p-tilde(:,:),x(i,kxd+1));

79 1(:,:)=p-tilde(:,:)+z(:,:);

80 y(i,1l:dxk)=reshape(1l(:,:)"', [dxk,11)";

81 end

82

83 g = (1/(m+1l)) .xsum(y);

84

85 for i=l:m+1

86 xnew (i, :) = x(i,:) + 2.xg — rk — y(i,:);

87 end

88

89 X = xhew;

90

91 % 1f the gap between the current solution and the optimal solution is small

enough, stop and display current solution

92 xnormDR (end+1, :) = norm(rk(l:d+xk)—optimalSolution);

93 if ( norm(rk(l:dxk)—optimalSolution) <= maxBoundFromOpt )

94 disp (rk);

95 semilogx (xVerlaufDR(:,end));

96 figure

97 plot (xVerlaufDR(:,end));
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98

99
100
101
102
103
104
105

107
108
109
110
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112
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figure
plot (xnormDR(:,end));
disp(toc);
break;
end
end
toc
xVerlaufDR (end+1l, :) = rk;
% 1f the defined number of iterations is reached, display current solution
if ( nIter == nlIterations )
disp (rk);
plot (xVerlaufDR(:,end));
disp (toc);
end

The file EpiNorm.m solves the extended location problem (5. 6)). The projection onto the
epigraph of the weighted norm is determined by the file projection_weighted_sum.m.

o

% parallel splitting algorithm
clearvars —except xnormDR xVerlaufDR
clc

close all

pause (1.0)

nIterations = 25000; % define the number of iterations

o

maxBoundFromOpt = le—3; % maximum gap from the optimal solution

load 'optSol_g25.n5.mat' optimalSolution;

% p is a matrix of given points
load 'points_g25.dim2.mat' p;
% w is a matrix of given weights
load 'weights_g25.n5.mat' w;

k = size(w,2); % define number of new points

m = size(p,1); % number of given points

d = size(p,2); % dimension of the underlying space
z = zeros(k,d,m);

r = zeros(m,k);

y2 = zeros (m,dxk+mxk+1);

y3 = zeros (m, kxd+mxk+1);

x2new = zeros (k,dxk+m+k+1,m);

x3new = zeros (m, k*d+m*k+1) ;

x2tilde = zeros (m,dxk+mxk+1);

y2tilde = zeros (m,dxk+mxk+1);

% determine a feasible solution as startpoint
nrm.w = zeros(m,k);

for j = 1:k

for i = 1:m
nrmw(i,3) = w(i,Jj)*norm(p(i,:));
end
end
nrm.w_-vec = reshape (nrm-w, [mxk,1])"';
sum.nrm-w = zeros(m,1l);
for i = 1:m
sum-nrm-w (i) = sum(nrm-w (i, :));
end
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48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

103
104
105
106
107

109
110
111

max-sum-Nnrm-w = max(sum-nrm-w) ;

startPoint = [zeros(l,k*d) nrm_w_vec max_sum_nrm_w]; % vector of dimension
kxd+mxk+1

% startpoint is a feasible solution
x1 = startPoint;

x2 = zeros (k,d*k+mxk+1,m) ;
for j = 1:k
for i = 1:m
x2(j,:,1) = startPoint;
end
end

X3 = zeros (m,dxk+mxk+1) ;

for i = 1:m
x3(i,:) = startPoint;
end
nu = 33; % specify the parameter nu of the algorithm
xnormM = [];
xVerlaufM = [];
tic
for nIter = l:nlterations
for i = 1:m
x2tilde (i, :) = sum(x2(:,:,1));
end

% sum up x-1, x-2 and x-3 into x
x = [x1;x2tilde;x3];

rk = (1/ (m*xk+m+1)) .*sum(x); % current solution

xVerlaufM(end+1,:) = rk; % save the current solution

% calculate the proximal point of f_1

vyl = xl—[zeros(1l,kxd+mxk) nu]l;
% calculate the proximal points of f£.2,...f_kxd
for j = 1l:k
for i = 1:m
C = zeros(d,k=*d);
for 1 = 1:k
if (1 == 9)

C(:,dx(1l=1)+1:d* (1-1)+d) = eye(d);
end
end

X_2 = reshape (x2 (j, k+«d+1l:kxd+mxk,1), [k, m])";

% calculate the projection onto the epigraph of the weighted norm
[

z(3,:,1), T(i,3)] =

125

projection_weighted_sum(w (i, j), (C*x2(j,1l:k*d,1)")"'—p(i,:),X-2(i,3));

Z(jr:rj—) = Z(jr:ri)+p(ir:);
teta = reshape(x2(j,1l:k*d,1),I[d, k])";
zeta = reshape (x2 (j,kxd+1l:kxd+kxm, 1), [k, m])';
teta(j,:) = z(j,:,1);
zeta(i,j) = r(i,J);
v2(j,:,1) = [reshape(teta', [l,kxd]) reshape(zeta', [1l,mxk])
x2 (3§, kxd+ksm+1,1)];
end
end

% calculate the proximal points of f_kxd+1,...f_kxd+k+m+l
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157
158
159

161
162
163
164
165
166

168
169
170
171
172
173

175
176
177

end
toc

xVe
Xno

o

if

for j = 1:m

a = [zeros(l,mxk), —1];
for i = 1:m
if 1 == 3
a(l,kx(i—1)+1:k*(i—1)+k) = ones(1l,k);
end
end

if (dot (a,x3(j,kxd+1l:kxd+mxk+1l)) <= 0)
y3(3,:) = x3(3,1:);

elseif (dot(a,x3(j,kxd+1l:kxd+mxk+1)) > 0)
u = norm(a) "2;
u-tilde = dot(a,x3(j,k*xd+1l:kxd+mxk+1l));
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v3(3,:)=[x3(3,1:kxd) (x3(J,krxd+1:kxd+mxk+1)—(u_tilde/u).*a)l;

end
end
for i = 1:m
y2tilde (i, :) = sum(y2(:,:,1i));
end
y = lyljy2tilde;y3];

aq (1/ (m*k+m+1)) . *sum(y) ;

xlnew = x1 + 2.xq — rk — yl;
x1 = xlnew;

for j = 1l:k

for i = 1:m
x2new (j,:,1) = x2(j,:,1) + 2.xg — rk — y2(j,:,1);
x2(j,:,1) = x2new(j,:,1);
end
end
for i = 1:m
x3new (i, :) = x3(i,:) + 2.xqg — rk — y3(i,:);
x3(i,:) = x3new(i,:);
end

% 1if the gap between the current solution and the optimal solution is small

enough, stop and display current solution

xnormM (end+1, :) = norm(rk(l:d+«k)—optimalSolution);
if (norm(rk(l:dxk)—optimalSolution) <= maxBoundFromOpt)
disp (rk);
semilogx (xVerlaufDR(:,end));
hold on;
semilogx (xVerlaufM(:,end));
figure
plot (xnormDR(:,end));
hold on;

plot (xnormM(:,end)) ;
disp(toc);
break;

end

rlaufM(end+1,:) = rk;
rmM (end+1, :) = norm(rk(l:d+xk)—optimalSolution);

( nITter == nIterations )
disp (rk);

% 1f the defined number of iterations is reached, display current solution
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178 plot (xVerlaufM(:,end));
179 disp(toc);
180 end

In the next we document which files were used for solving the location problem (5. 5) in the
case where w; =1 and 8; =2 forallt=1,...,n.

The file projection_squared_sum.m calculates the projection onto the epigraph of the sum
of squared norms.

[

1 % calculate the projection onto the epigraph of the sum of squared norms

2 function [x,t] = projection._squared-sum(y,xi)

3 h = zeros(l,size(y,1));

4 for §J = l:size(y,1)

5 h(j) = norm(y(J,:))"2;

6 end

7 x = zeros(size(y,1l),size(y,2));

8 if ( sum(h) <= xi )% check whether (y,xi) is an element of the epigraph

9 for j = size(y,1)

10 x(J,r:) = y(3,0)i

11 end

12 t = xi;

13 else% if (y,xi) is not an element of the epigraph, define a, b, c, d

14 a=1;

15 b = (1+xi);

16 c = (1/4)*(1+4%xi);

17 d = (1/4)*(xi—sum(h));

18 p = [a b c d];

19 r = roots(p);% determine the roots of the cubic equation with the
coefficients a, b, c, d

20 for i=1:3

21 if (r(i) > 0)% find the unique positive root

22 g = r(i);

23 end

24 end

25 % calculate the projection (x,t)

26 for 7 = size(y,1)

27 X(3,:) = (1/((2xg)+1))*y (3, :);

28 end

29 t = xi+g;

30 end

31 end

The file squaredEpiSumNorm.m solves the location problem (5. 5)). In the step where
the projection onto the epigraph of the sum of squared norms is calculated the file projec-
tion_squared_sum.m is used.

o

1 % parallel splitting algorithm

2 clear all

3 clc

4 close all

5 pause(1l.0)

6

7 nlterations = 25000; % define the maximum number of iterations
8

9 maxBoundFromOpt = le—3; % maximum gap from the optimal solution

11 load 'squared.-optSol_g25.n5.mat' optimalSolution;

13 % p is a matrix of given points
14 load 'points_g25.dim2.mat' p;

16 k = 5; % set number of new points
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18 m = size(p,1l); % number of given points

19 d = size(p,2); % dimension of the underlying space
20

21 a = zeros(l,m+l);

22 x = zeros(mt+l,kxd+l);

23

ol

24 determine a feasible solution as startpoint

25 v = zeros(l,m);

26 for i = 1l:m

27 v (i) = ksnorm(p(i,:))"2;

28 end

20 vtilde = max(v(:));

30 startPoint = [zeros(l,kxd), vtilde]; % vector of dimension kxd+1
31

32 nu = 7; % specify the parameter nu of the algorithm

33
34 for i=l:m+1

35 x(i,:) = startPoint; % startpoint x_.0 is a feasible solution
36 end

37

38 z = zeros(l,kxd);

39 xVerlaufDR = [];

40 xnormDR = [];
41 ptilde = zeros(k,d);

42 tic

43 for nIter = l:nlterations

44

45 rk = (1/(m+1)) .*sum(x); % current solution

46 xVerlaufDR(end+1,:) = rk; % save the current solution

a7

48 y = zeros (m+l,kxd+1);

49 yv(l,:) = x(1,:)—[zeros(1l,kxd) nu]l; % save the current solution

50

51 % calculate the proximal points of f£.2,...fm+1l

52 for i = 2:m+1

53 % create a matrix, where the row vectors are copies of the associated
given point

54 for j = 1:k

55 ptilde(j,:) = p(i—-1,:);

56 end

57

58 ptildeStar = reshape (ptilde’', [dxk,1])"'; % rewrite the matrix ptilde as a
row vector

59

60 % calculate the projection onto the epigraph of the sum of squared norms
61 [z(:,:),y(i,dxk+1)] =
projection_.squared_sum(x (i, l:kxd)—ptildeStar,x(i,kxd+1));

62 y(i,1l:dxk) = ptildeStar + z(:,:);

63 end

64

65 g = (1/(m+1l)) .xsum(y);

66

67 xnew = zeros (m+1l,kxd+1);

68

69 for i=l:m+1

70 xnew(i,:) = x(i,:) + 2.xg — rk — y(i,:);

71 end

72

73 X = xhew;

74 % 1f the gap between the current solution and the optimal solution is small
enough, stop and display current solution

75 xnormDR (end+1, :) = norm(rk(l:d+xk)—optimalSolution);

76 if (norm(rk(l:d+k)—optimalSolution) <= maxBoundFromOpt)

77 disp (rk);

78 semilogx (xVerlaufDR(:,end)) ;

79 figure

80 plot (xnormDR(:,end));
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81 disp(toc);

82 break;

83 end

84

85 end

86 toc

87 xVerlaufDR(end+l,:) = rk;

88

89 % 1f the defined number of iterations is reached, display current solution

90 1f (nIter == nlterations)

91 disp(rk);

92 %disp(['x1l = ' num2str(rk(l)) ' x2 = ' num2str(rk(2)) ' x3 ="' ...
num2str (rk(3)) ' x4 = ' num2str(rk(4)) ' t = ' num2str(rk(5)) '
iterations: ' num2str (nIterations) ' gamma = ' num2str(g)]);

93 disp (toc);

94 plot (xVerlaufDR(:,end));

95 hold on;

96 end

The file squaredEpiNorm.m solves the location problem (5. 6)), where the projection onto
the epigraph of the squared norm is calculated by the m-file projection_squared_sum.m.

1 % parallel splitting algorithm

2 clearvars —except xVerlaufDR xnormDR

3 clc

4 close all

5 pause(1.0)

6

7 nlterations = 25000; % define the number of iterations

8

9 maxBoundFromOpt = le—3; % maximum gap from the optimal solution

10

11 load 'squared.optSol_g25.n5.mat' optimalSolution;

12

13 % p is a matrix of given points

14 load 'points_g25.dim2.mat' p;

15

16 k = 5; % set number of new points

17

18 m = size(p,1l); % number of given points

19 d = size(p,2); % dimension of the underlying space

20

21 % determine a feasible solution as startpoint

22

23 nrm2_.p = zeros(m,Kk);

24 for j = 1l:k

25 for i = 1:m

26 nrm2_p (i, j) = norm(p(i,:))"2;

27 end

28 end

29

30 nrm2_vec = reshape(nrm2_p, [mxk,1])"';

31

32 sum_nrm?2 = zeros (l,m);

33 for i = 1l:m

34 sum_nrm?2 (i) = sum(nrm2_p(i,:));

35 end

36

37 max_sum_.nrm2 = max(sum.nrm2) ;

38

39 startPoint = [zeros(l,k*d) nrm2_vec max_sum_.nrm2]; % vector of dimension kxd+mxk+1

40

41 % startpoint is a feasible solution

42 x1 = startPoint;

43

44 x2 = zeros (k,k*d+mxk+1,m);
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45 for j=1:k

46 for i=1l:m

47 x2(j, :,1)=startPoint;

48 end

49 end

50

51 x3 = zeros (m,kxd+mxk+1);

52 for i=1l:m

53 x3(i,:) = startPoint;

54 end

55

56 nu = 7; % specify the parameter nu of the algorithm

57

58 z = zeros(k,d,m);

59 r = zeros(m,Xk);

60

61 y2 = zeros (m,dxk+mxk+1) ;

62 y3 = zeros (m,k+xd+mxk+1) ;

63 x2new = zeros (k,dxk+mxk+1,m);

64 x3new = zeros (m,kxd+mxk+1);

65 x2tilde = zeros (m,d*k+mxk+1);

66 y2tilde = zeros (m,dxk+mxk+1);

67

68 xnormM = [];

69 xVerlaufM = [];

70

71 tic

72 for nIter = l:nlIterations

73 % sum up x-1, x-2 and x-3 into x

74 for i = 1:m

75 x2tilde (i, :) = sum(x2(:,:,1));

76 end

77

78 % sum up x-1, x-2 and x-3 into x

79 x = [x1;x2tilde;x3];

80

81 rk = (1/ (m*k+m+1)) .*sum(x); % current solution

82

83 xVerlaufM(end+1,:) = rk; % save the current solution

84

85 % calculate the proximal point of f_1

86 vyl = xl—[zeros(l,kxd+mxk) nul;

87

88 % calculate the proximal points of f£.2,...f_kxd

89 for j = 1:k

20 for i = 1:m

91 C = zeros(d,k=*d);

92 for 1 = 1:k

93 if (1 == 7)

94 C(:,dx(1l=1)+1:d* (1-1)+d) = eye(d);

95 end

96 end

97

98 X_2 = reshape (x2(j,k*d+1l:kxd+mxk, i), [k, m])"';

99

100 % calculate the projection onto the epigraph of the squared norm

101 [z(3,:,1), (i,3)] =
projection_squared_sum( (Cxx2 (j,1l:k*d, i) ") "'—p (i, :),X-2(i,3));

102

103 z(3,:,1) = z(3,:,1)+p (i, )5

104 teta = reshape(x2(j,1:k«d,1i), [d,k])";

105 zeta = reshape (x2 (j,kxd+1l:kxd+kxm, 1), [k, m]) ';

106 teta(j,:) = z(3j,:,1);

107 zeta (i, J) = r(i,J);

108 teta_-tilde = reshape(teta', [1,k*d]);

109 zeta_-tilde = reshape(zeta', [1,mxk]);

110 u.tilde = [teta_tilde zeta_tilde x2 (Jj,k*d+kxm+1,1i)];
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111 v2(j,:,1) = u-tilde;

112 end

113 end

114

115 % calculate the proximal points of f_kxd+1l,...f_kxd+ksm+1l

116 for 3 = 1:m

117 a = [zeros(l,mxk), —1];

118 for i = 1:m

119 if i == 3

120 a(l,kx(i—1)+1:k*(i—1)+k) = ones(1l,k);

121 end

122 end

123

124 if (dot (a,x3(j,kxd+1l:kxd+mxk+1l)) <= 0)

125 v3(3,:)=x3(3,:);

126 elseif (dot(a,x3(j,kxd+1l:kxd+mxk+1)) > 0)

127 u = norm(a) "2;

128 u-tilde = dot(a,x3(j,kxd+1l:kxd+mxk+1));

129 v3(3,:) = [x3(F,1:kxd) (x3(J,kxd+1l:kxd+m*k+1)—(u_tilde/u).x*a)l;

130 end

131

132 end

133

134 for 1 = 1:m

135 y2tilde (i, :) = sum(y2(:,:,1));

136 end

137

138 y = [yl;y2tilde;y3];

139

140 q = (1/ (mxk+m+1)) .*sum(y) ;

141

142 xlnew = x1 + 2.xq — rk — y1;

143 x1 = xlnew;

144

145 for j = 1:k

146 for i = 1:m

147 x2new (j,:,1) = x2(j,:,1) + 2.%g— rk — y2(j,:,1);

148 x2(3,:,1) = x2new(j,:,1);

149 end

150 end

151

152 for i = 1:m

153 x3new (i, :) = x3(i,:) + 2.xg — rk — y3(i,:);

154 x3(1i,:) = x3new(i, :);

155 end

156 % if the gap between the current solution and the optimal solution is small
enough, stop and display current solution

157 xnormM (end+1, :) = norm(rk(l:d+«k)—optimalSolution);

158 if ( norm(rk(l:dxk)—optimalSolution) <= maxBoundFromOpt )

159 disp(rk);

160 semilogx (xVerlaufDR(:,end));

161 hold on;

162 semilogx (xVerlaufM(:,end));

163 figure

164 plot (xnormDR(:,end));

165 hold on;

166 plot (xnormM(:,end));

167 disp (toc);

168 break;

169 end

170

171 end

172 toc

173

174 xVerlaufM(end+1,:) = rk;

175

o

176 % 1f the defined number of iterations is reached, display current solution
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177 1if (nIter == nlIterations)

178 disp(rk);

179 plot (xVerlaufM(:,end)) ;
180 disp (toc);

181 end




Theses

1. The multi-composed optimization problem
(P%) inf (fo Flo..oF")(z),
A={zeS:g(x) e -Q}
is introduced, where

e 7 is a Hausdorff locally convex space partially ordered by the convex cone @ C Z and
X; is a Hausdorff locally convex space partially ordered by the convex cone K; C X;
fori=0,...n—1,

e S is a non-empty subset of the Hausdorff locally convex space X,

e f:Xo — Ris proper and Ky-increasing on F''(dom F') + K, C dom f,

e F': X; — X, ; is proper and (K;, K;_1)-increasing on
Fi*l(dom Fi*!) + K; Cdom F' for i = 1,....,n — 2,

e F""1: X, | = X, =X, oisproper and (K, _1, K, _s)-increasing on F"(dom F"N
A)+ K,_1 Cdom F" 1,

o F": X, — X,_1 = X,_1 is a proper function and

e g: X, — Z is a proper function fulfilling SNg=(—Q)N((F™) to...o(FY)~1)(dom f) #
0.

To (PY) a corresponding conjugate dual problem (D) is constructed, where the conjugates
of the functions involved in the objective function of (P¢) are split in the formulation of the
dual (D%)

n—1
sup { inf {(z0"7D% F () + (2", g(2))} = (%) = Z(Z(i_l)*Fi)*(Zi*)}~
2nreQ*, ireK), zeSs Py
i=0,..., n—1

For the primal-dual pair (PY)-(DY) we prove weak duality and formulate associated regular-
ity conditions of interiority type guaranteeing strong duality, the situation when the optimal
objective values of the two problems are equal and the dual has an optimal solution. In this
context we give necessary and sufficient optimality conditions by using conjugate functions
and subdifferentials. This approach generalizes the results from the literature and opens a
new way to investigate optimization problems.

As an application an optimization problem having as objective function the sum of reciprocals
of concave functions is presented (see also [79)]).

2. As a further application of the previous approach, we consider the unconstrained version of
(P¢) and add a linear continuous functional to the objective function to derive a formula
of the conjugate of the function vy = fo Flo ..o F™ : X,, — R, where the conjugates of
the involved functions in v are decomposed. We use the conjugate of v to calculate also a
formula for its biconjugate function, which reveals an alternative representation for ~.
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We consider nonlinear single minimax location problems with geometric constraints of the
form

Py inf hi(ve, (x — p; :

( h,a) ;25 fgiagxn{ i(ve, (x —pi)) +ail,

where S is a non-empty, closed and convex subset of the Fréchet space X and fori =1, ...,n,
a; € R, are non-negative set-up costs, p; € X are distinct points , C; are closed and convex

subsets of X such that Ox € int Cj, v¢, : X — R are gauge functions of C; and h; : R — R,
defined by

h ( ) hl(l') ERJ,_, lf$€R+,
i) 1=
400, otherwise,

are proper, convex, lower semicontinuous and increasing functions on R;. By using the
results from the first part of this thesis, we attach to (P},) a conjugate dual problem (Dj )

sup {igfs{zgil*,x—pi)} - Z)\r [hf- <Z)?:> - ar:|}

i, 29%2>0, 2z} ex*, i=1,...,n, icl reR
I:{ie{l,m,n}:z?*>0}gR:{r6{1,.“,n}:kr>0},
Y00 (21 ) <2* GEel, 2] =0xx, j@I, 3 Ar<1
i ; reER

and prove strong duality in this framework. This approach allows us to formulate more
detailed necessary and sufficient optimality conditions expressed via conjugate functions,
dual gauges, subdifferentials and normal cones.

Moreover, we consider the primal-dual pair (P, )-(Dy ) in different settings and show in this
way further connections between these two prdblems. For the situation when the underlying
space is a Hilbert space, the subset S is the whole space and the distances are measured by
the norm defined by the scalar product of the Hilbert space we give a formula which provides
the optimal solution of the primal problem from the optimal solution of the dual.

In addition, we present for the linear single minimax location problem a second dual problem
reducing the number of dual variables compared with the first formulated one. Then, we give
in the framework of the Euclidean space without constraints a geometrical interpretation of
the set of optimal solutions of this dual and show that its Lagrange dual problem coincides
with the original location problem (see also [81]).

We consider the extended multifacility location problem in a more general setting as intro-
duced by Drezner in [35] (see also |30L|67]):

m
(BE) (o J00 on 1B35, 27000 =2 a1
where X is a Fréchet space, a; € R, are non-negative set-up costs, p; € X are distinct
points and v¢,; : X — R are gauges defined by closed and convex subsets Cj; of X such
that Ox € intCyj, i = 1,...,n, j = 1,...,m. We show that (EPM) can be rewritten as a
single minimax location problem and apply the previous results to formulate a corresponding
conjugate dual problem

m
oo e L[S ]}

0 1
(Zl*aw»Zg*Jl*»--«7271;*)66 el Jj=1
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where

C= {(z1 pen 20 22 ERE X (X)) x Lox (X T ={i € {1,..,n}: 20" >0}

z,iijX* k¢l ’yco( 1*)§z?*, 1e1, 22};:0)(*,3‘:1,...,771, leg*gl}
S 1€

as well as associated necessary and sufficient optimality conditions.

Further, we study the scenario in the Hilbert space H where the weights have a multiplicative
structure (see [30]) and present a second dual problem for which we give a geometrical
interpretation of the set of optimal solutions when H = R? (see [80]).

5. Via our approach for multi-composed optimization problems we assign a conjugate dual
problem (DM) to the following multifacility minimax location problem

(PM) inf  max {wjk'ycjk(xj — ), jk eV, wjyg (x; —pi), ji € 17} )
(3317“-7;5%1,)6»5 Jr

where X is a Fréchet space, p; € X, ¢ = 1,...,¢, are distinct points, Cj; C X with 0x €

IIltC]kaI"jkGV —{]k 1<j<m, 1<k<m Jj #k, wjp > 0}, andCﬂCvath

0x € 1ntC’ﬂ for ji € V= {1<j<m,1<i<t, w; >0}, beclosed and convex, S C X™

non-empty, closed and convex as wells as y¢,, : X = R, jk € V,and 75 : X =R, ji € V,

be gauges. We show that strong duality holds between (PM) and its dual

(DM) sup inf { > <ZJ1;:’ A]k$> + Z~<g]1:, Bjix — pi>},

(20% ,50% 1 ~1*)EBwES jkerl jiel

with
B = {(Zo*,z,o*7z1*’51*) ER‘X' % RLV\ % (X*)IVI ~ (X*)\\N/I ] = {jk cV: z?,j > 0}’
’f:{jz‘ef/:z;?;>o} 2l =0xe, ef € 1, von (23) < 2%, Gk €1,

Zl;GOX*ved¢Iv 75?7(2]11*)— 13.77’6] Zwk]k—’_z:% = }a
’ Jiel

where A, jk € I, and By;, ji € I, , are linear mappings and present necessary and sufficient
optimality conditions using conjugate functions, dual gauges, subdifferentials and normal
cones.

Apart from this approach we introduce a second dual problem reducing the number of
constraints and dual variables compared with (D™) and give a geometrical interpretation
for the set of optimal solutions of this dual for S = X = R?%. In the context of this dual we
also demonstrate that the bidual of (P™) is identical to (PM) (see also [82]).

6. For solving extended multifacility location problems in Hilbert spaces H;, i = 1,...,n, nu-
merically by proximal methods we present first a general formula of the projection onto the
epigraph of the function h : H1 x ... x H,, — R, defined by h(z1,...,2,) == > 1"
We consider the situations when §; =1,i=1,...,n, and w; =1, §; =2, i = 1,...,n, where
the formulae given for instance in [2,[28,29] turn out to be special cases for n = 1 of our
considerations.

Moreover, we develop a formula for the projection onto the epigraph of a gauge function
Yo : X = R of a closed and convex set C C ‘H with 04 € C. As a consequence, we derive a
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formula for the projection onto the epigraph of the gauge of a closed and convex cone as well
as the sum of gauges. Finally, two examples are considered to demonstrate how the latter
formula can be used to determine the projector.

We apply the formula for the projection onto the epigraph of the weighted sum of powers
of norms for solving extended multifacility location problems numerically by the parallel
splitting algorithm and compare our method with the one presented in [30], where the
formula of the projection onto the epigraph of the weighted power of norm is required. The
numerical tests show that our method clearly outperforms the one proposed in [30] from the
viewpoints of accuracy, CPU speed and number of iterations.
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