
Toni Volkmer

Multivariate Approximation and High-Dimensional Sparse FFT
Based on Rank-1 Lattice Sampling





Toni Volkmer

Multivariate Approximation
and High-Dimensional Sparse FFT
Based on Rank-1 Lattice Sampling

Universitätsverlag Chemnitz

2017



Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Angaben sind
im Internet über http://dnb.d-nb.de abrufbar.

Titelgrafik: Toni Volkmer
Satz/Layout: Toni Volkmer

Technische Universität Chemnitz/Universitätsbibliothek
Universitätsverlag Chemnitz
09107 Chemnitz
http://www.tu-chemnitz.de/ub/univerlag

readbox unipress
in der readbox publishing GmbH
Am Hawerkamp 31
48155 Münster
http://unipress.readbox.net

ISBN 978-3-96100-020-3

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222820

http://dnb.d-nb.de
http://www.tu-chemnitz.de/ub/univerlag
http://unipress.readbox.net
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222820


Multivariate Approximation

and High-Dimensional Sparse FFT

Based on Rank-1 Lattice Sampling

von der Fakultät für Mathematik
der Technischen Universität Chemnitz

genehmigte

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt

von Dipl.-Math. Toni Volkmer

Tag der Einreichung: 02. Januar 2017

Betreuer: Prof. Dr. Daniel Potts, Technische Universität Chemnitz

Gutachter: Prof. Dr. Daniel Potts, Technische Universität Chemnitz
Prof. Dr. Gerlind Plonka-Hoch, Universität Göttingen
JProf. Dr. Dirk Pflüger, Universität Stuttgart

Tag der öffentlichen Prüfung: 28. März 2017





Contents

1 Introduction 9

2 Multivariate Trigonometric Polynomials 17

2.1 Fast evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Rank-1 lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Perturbed rank-1 lattices . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Fast reconstruction for known frequency index sets . . . . . . . . . . . . . . . 33

2.2.1 Rank-1 lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Perturbed rank-1 lattices . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Approximation of multivariate periodic signals . . . . . . . . . . . . . . . . . 43

2.3.1 Norm inequalities and embeddings of function spaces . . . . . . . . . . 44

2.3.2 Truncation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Rank-1 lattice sampling and error estimates . . . . . . . . . . . . . . . 51

2.3.4 Perturbed rank-1 lattice sampling . . . . . . . . . . . . . . . . . . . . 70

2.3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Multivariate Algebraic Polynomials in Chebyshev Form 83

3.1 Fast evaluation along rank-1 Chebyshev lattices . . . . . . . . . . . . . . . . . 90

3.2 Fast reconstruction for known frequency index sets . . . . . . . . . . . . . . . 93

3.2.1 Reconstruction method based on rank-1 Chebyshev lattices . . . . . . 93

3.2.2 Building reconstructing rank-1 Chebyshev lattices . . . . . . . . . . . 95

3.3 Relations to other non-periodic approaches . . . . . . . . . . . . . . . . . . . 98

3.3.1 Nodes on Lissajous curves . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.2 Tent transformed rank-1 lattices . . . . . . . . . . . . . . . . . . . . . 99

3.4 Approximation of non-periodic signals by rank-1 Chebyshev lattice sampling 100

3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 High-Dimensional Sparse FFT 121

4.1 Periodic case — rank-1 lattice sampling . . . . . . . . . . . . . . . . . . . . . 125

4.1.1 Dimension-incremental projection . . . . . . . . . . . . . . . . . . . . . 125

4.1.2 Randomized version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.1.3 Successful and failed detection . . . . . . . . . . . . . . . . . . . . . . 134

4.1.4 Number of samples and arithmetic complexity . . . . . . . . . . . . . 136

4.1.5 Deterministic version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Non-periodic case — rank-1 Chebyshev lattice sampling . . . . . . . . . . . . 147

4.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



5 Conclusion 157

Bibliography 159

Notations 169



C
h
a
p
te
r

1
Introduction

The approximation of multivariate functions is an important problem in numerical analysis.
The discretization of multivariate problems often leads to a dramatic growth of the degrees of
freedom for increasing refinements even for moderate dimensions, like four or five, since the
degrees of freedom may grow exponentially in the dimension when the approximation error
shall be decreased by a factor. This issue is known as the curse of dimensionality [Bel61].
In two or three dimensions, approaches using tensor products of univariate methods are fre-
quently used. However, for higher dimensions, such a straightforward approach is usually
impracticable. Methods for attenuating this problem are generally based on assuming ad-
ditional structure like smoothness or sparsity. Then, we also have a chance to deal with
high-dimensional problems. In order to be able to apply such a method in practice for larger
problem sizes, this property may not be enough. For that reason, we may need fast algorithms
for the numerical computations.

For high-dimensional periodic functions, multivariate trigonometric polynomials are very
well-suited as approximants, see e.g. [Tem85, Tem89, Tem93, DuU13, KSU14, KSU15,
DTU16]. One possibility to obtain such a multivariate trigonometric polynomial is to use
a truncated Fourier series of a function, and a comprehensive analysis of the associated ap-
proximation errors exists. Often, the error analysis is performed for functions from function
spaces characterized by the decay or summability of their Fourier coefficients with respect
to certain weights. Since the Fourier coefficients are unknown in general, common methods
for the construction of approximants are based on samples of a function. For this, one typi-
cally assumes that the function, which we want to approximate, is given as a black box and
that the evaluation of function values is possible at arbitrary nodes or at least at certain
nodes. Then, a fast Fourier transform (FFT) can be applied to function values and this
yields approximated Fourier coefficients. Now, we can use the corresponding approximated
Fourier partial sum, which is a multivariate trigonometric polynomial, as approximant of the
function.

For moderately high-dimensional problems, e.g. up to ∼ 20 dimensions, sparse grids are
frequently used as spatial discretization, which are sampling sets belonging to Smolyak’s al-
gorithm [Smo63], see also [Tem85, Tem93, Ull08, DTU16], and approximants with frequencies
supported on hyperbolic cross index sets yield a huge reduction in the degrees of freedom from
O(Nd) to O(N logd−1N), where d denotes the dimension and the number of nodes in one
coordinate direction is O(N). If the underlying function is sufficiently smooth, for instance
has bounded mixed derivatives, this reduction only slightly affects the approximation error.

9



10 1 Introduction

Even higher dimensions are possible using spatially adaptive versions of sparse grids for func-
tion approximation, see e.g. [Pfl10]. Moreover, there exist fast versions of the FFT adapted
to sparse grids called hyperbolic cross FFT (HCFFT), see e.g. [BD89, Hal92, Gra07, GH14],
which allow switching between sparse grids in spatial domain and hyperbolic crosses in fre-
quency domain in only O(N logdN) arithmetic operations. However, for growing refine-
ments N and dimensions d, the condition number of the Fourier matrix corresponding to the
hyperbolic cross discrete Fourier transform grows distinctly [KK11]. Moreover, the efficient
implementation of the HCFFT may be effortful due to the hierarchical scheme, e.g. see the
implementation considerations in [Hal92] and [Gra07].

An alternative approach for obtaining approximants of multivariate periodic functions is
based on using lattices as spatial discretization. Lattice rules are well known in numerical inte-
gration, see e.g. [Kor59, SK87, Tem86, SJ94] as well as the surveys [CN08, DKS13], they have
already been used by Korobov [Kor59, Kor63] and Hlawka [Hla62] at the end of the 1950ies
and the beginning of the 1960ies. In recent years, the utilization of lattice rules for multivari-
ate integration was considered again starting with [SW01] and was followed by many contri-
butions, see e.g. [SR02, SKJ02b, SKJ02a, Kuo03, Nuy07, CN08, CKN10]. Numerical integra-
tion and function approximation are closely related, since the computation of (approximated)
Fourier coefficients from samples of a function may be regarded as (approximately) computing
Fourier coefficients, defined by multivariate integrals of the function, with the help of cubature
formulas. Therefore, lattice rules have also been used for multivariate function approximation
for a long time, see e.g. [Kor63, Tem86, Tem89, Tem93] and the surveys [DKS13, DTU16], and
were considered again in recent times, see e.g. [LH03, ZLH06, KSW06, KSW08, KWW09].

Rank-1 lattice rules or the “method of good lattice points” are preferably used due to
their simple structure, the existence of fast and easy construction methods, explicit error
formulas as well as extensive tractability results, see e.g. the survey [DKS13] and the refer-
ences therein. A rank-1 lattice Λ(z,M) is completely characterized by two parameters, the
generating vector z ∈ Zd and the size M ∈ N. The corresponding rank-1 lattice rule is the
cubature formula with rank-1 lattice nodes xj := j

M z mod 1, j = 0, . . . ,M − 1, and equal
weights 1/M . We remark that a rank-1 lattice rule is a quasi-Monte Carlo rule, see e.g.
[Nie78, DKS13].

Despite the relatively simple structure of rank-1 lattices Λ(z,M), an exhaustive search
of its parameters may be too costly. Even for given rank-1 lattice size M , the generating
vector z ∈ {0, 1, . . . ,M − 1}d may have O(Md) possible values. For the efficient construc-
tion of rank-1 lattices Λ(z,M) for integration and approximation, construction methods
were developed which work in a component-by-component (CBC) way, considering one com-
ponent of the generating vector z at a time and yielding a reduction of the search space
to O(dM). Within the search method, the component of the generating vector z is typically
chosen to minimize a certain error criterion. We remark that CBC construction methods
were first considered in [Kor59, Kor63] and we refer to the survey [DKS13] for more histor-
ical details. More recently, important results for CBC construction methods and integra-
tion error analysis were obtained in [SR02] and many contributions followed afterwards, see
e.g. [SKJ02b, SKJ02a, Kuo03] for weighted Sobolev spaces and Korobov spaces in different
settings. Moreover, fast CBC construction methods based on FFTs were developed for func-
tions in reproducing kernel Hilbert spaces, cf. [Nuy07, CN08], which reduce the number of
required arithmetic operations for the CBC search distinctly. In recent years, the approx-
imate computation of the Fourier coefficients of a function by lattice rules was considered
in [LH03, ZLH06] and CBC construction methods as well as tractability results were dis-
cussed in [KSW06, KSW08, KWW09]. Again, fast construction methods based on FFTs
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may be used to accelerate the CBC approach, see e.g. [CKN10, DKS13]. Moreover, the com-
putation of the approximated Fourier coefficients can be performed by a FFT, see [LH03],
in O(M logM) arithmetic operations.

More recently, another CBC construction approach was developed which ensures that
multivariate trigonometric polynomials can be exactly reconstructed from samples taken at
the nodes xj of a rank-1 lattice Λ(z,M), which fulfills a special reconstruction property, by
applying a rank-1 lattice rule, see [KKP12, Käm13, Käm14a, Käm14b]. For a multivariate
trigonometric polynomial pI with frequencies supported on an arbitrary index set I ⊂ Zd
of finite cardinality, |I| < ∞, such a rank-1 lattice Λ(z,M) is called reconstructing rank-1
lattice [Käm14a] for the frequency index set I and is denoted by Λ(z,M, I). From sam-
ples at the corresponding nodes, the exact computation of the Fourier coefficients is very
simple, using only a single one-dimensional FFT followed by a simple index transform, and
requires only O(M logM) arithmetic operations (under mild assumptions). Moreover, the
corresponding Fourier matrix has always condition number 1 and the reconstruction method
is perfectly stable.

In this work, we consider the approximation of multivariate periodic functions f : Td → C
by multivariate trigonometric polynomials pI based on samples of f taken along reconstruct-
ing rank-1 lattices Λ(z,M, I), see also [KPV15a, KPV15b, BKUV16]. In doing so, we assume
that we know the frequency index sets I which contain the non-zero Fourier coefficients p̂k ̸= 0
of multivariate trigonometric polynomials pI or the approximately largest Fourier coefficients
of multivariate periodic functions f due to the function classes they belong to. We show
error estimates for rank-1 lattice sampling of multivariate periodic functions f from weighted
subspaces Aα,β,γ(Td) of the Wiener algebra A(Td) and for functions f from periodic Sobolev
spaces of generalized mixed smoothnessHα,β,γ(Td). Moreover, we develop a Taylor expansion
based method for the fast evaluation along perturbed rank-1 lattices, see also [Vol13], as well
as for the fast reconstruction, see also [KPV15a]. We obtain sampling error estimates which
yield similar results as in the unperturbed case. Numerical tests for function approximation
in up to 25 dimensions confirm the high performance and theoretical error estimates of the
proposed methods.

A main contribution of this work is that we transfer the approach from the periodic case
to the non-periodic case, where we develop a fast evaluation and reconstruction framework
as well as an approximation method. Here, we use multivariate algebraic polynomials in
Chebyshev form aI , which are linear combinations of tensor product Chebyshev polynomials
of the first kind Tk, with frequencies k supported on an arbitrary known index set I ⊂ Nd0
of finite cardinality, |I| < ∞. As spatial discretization, we employ rank-1 Chebyshev lat-

tices CL(z,M) [CP11]. For the special case of ℓ1-ball frequency index sets I = Id,−∞
a,n , the

reconstruction has already been considered in [CP11, BDMV16, BDMV15]. In this work,
we discuss methods for the fast evaluation of arbitrary multivariate algebraic polynomials
in Chebyshev form aI at the nodes xj := cos( jM πz), j = 0, . . . ,M , of an arbitrary rank-1
Chebyshev lattice CL(z,M). We develop methods for the fast and exact reconstruction of ar-
bitrary multivariate algebraic polynomials in Chebyshev form aI with frequencies supported
on arbitrary known index sets I ⊂ Nd0, |I| < ∞, from samples, see also [PV15]. For this,
we establish reconstruction properties for this non-periodic setting and define reconstruct-
ing rank-1 Chebyshev lattices CL(z,M, I) analogously to the periodic case. Interestingly,
we can use the generating vector z of certain reconstructing rank-1 lattices Λ(z,M, Î) from
the periodic case for the non-periodic case, which has already been considered for so-called
tent transformed rank-1 lattices in [SNC16] for a different non-periodic setting than ours.
We describe CBC construction algorithms for generating reconstructing rank-1 Chebyshev
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lattices CL(z,M, I) for arbitrary frequency index sets I ∈ Nd0, |I| < ∞. As in the periodic
case, we show sampling error estimates for the approximation of multivariate non-periodic
functions f : [−1, 1]d → R from subspaces Aα,β([−1, 1]d) of the analogon of the Wiener al-
gebra A([−1, 1]d) and for functions f from corresponding Sobolev-type spaces of generalized
mixed smoothness Hα,β([−1, 1]d). Numerical tests in up to 25 dimensions confirm the ef-
fectiveness of the proposed reconstruction methods for multivariate algebraic polynomials in
Chebyshev form aI and for multivariate non-periodic functions f .

Until now, we assumed that we know frequency index sets I, which contain the locations of
the non-zero Fourier or Chebyshev coefficients of a multivariate trigonometric polynomial pI
or multivariate algebraic polynomial aI , respectively. However, these frequency locations are
unknown in many cases. In general, it is a very challenging task to obtain such frequency
index sets I, especially in higher dimensions.

A further main contribution of this work is the development of sparse FFT methods,
which determine these unknown frequency locations in a dimension-incremental way based
on a CBC approach, see also [PV16] for the periodic case. Especially notable are the simple
structure, the general and easy applicability as well as the numerically observed high robust-
ness of the proposed methods. We discuss a framework based on dimension-incremental pro-
jections parallel to the coordinate axes. Starting with the first component, we determine the
unknown frequency locations Ĩ belonging to the approximately largest Fourier or Chebyshev
coefficients one component at a time and then proceed with the next component. As sampling
sets, we employ the nodes of reconstructing rank-1 lattices Λ(z,M, Ĩ) or reconstructing rank-1
Chebyshev lattices CL(z,M, Ĩ), and we make use of fast reconstruction algorithms. We de-
velop methods for the reconstruction of high-dimensional trigonometric polynomials pI as well
as for the approximation of multivariate periodic functions f with infinitely many non-zero
Fourier coefficients, using rank-1 lattice sampling. For high-dimensional algebraic polynomi-
als in Chebyshev form aI as well as for multivariate non-periodic functions f with infinitely
many non-zero Chebyshev coefficients, we discuss modifications using rank-1 Chebyshev lat-
tice sampling. We only require that a very large superset Γ of possible frequency locations,
the search domain, is known and that we are able to obtain sampling values from the function
under consideration. The proposed methods are successfully applied in numerical tests for
the reconstruction of high-dimensional trigonometric polynomials pI in up to 30 dimensions
and high-dimensional algebraic polynomials in Chebyshev form aI in up to 15 dimensions as
well as for the approximation of a 10-dimensional periodic test function and a 9-dimensional
non-periodic test function.

Parts of this work have already been published in [Vol13, KPV15a, KPV15b, KKM+14,
PV16, PV15, PTV16, BKUV16].

Outline of the Thesis

In the following, we give a short overview of the remaining chapters of this thesis. For a
detailed overview, we refer to the introduction of each chapter.

Chapter 2: Multivariate Trigonometric Polynomials

We introduce necessary notations for multivariate trigonometric polynomials pI . Our main
focus is on the fast evaluation and fast reconstruction of multivariate trigonometric poly-
nomials pI with frequencies supported on arbitrary known index sets I ⊂ Zd, |I| < ∞, as
well as the fast approximation of multivariate periodic functions f : Td → C by multivariate
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trigonometric polynomials pI . We give a short overview of results for sparse grid sampling.
In the main part of this chapter, we develop results for rank-1 lattice sampling and perturbed
rank-1 lattice sampling based on reconstructing rank-1 lattices Λ(z,M, I). We collect the
obtained error estimates for rank-1 lattice sampling in Table 2.1, 2.2 and 2.4.

In Section 2.1, we deal with the fast evaluation at rank-1 lattice nodes and perturbed
rank-1 lattice nodes. We review the fast evaluation of arbitrary multivariate trigonometric
polynomials pI at the nodes xj of an arbitrary rank-1 lattice Λ(z,M) using a simple index
transform and a single one-dimensional FFT of length M . In Section 2.1.2, we develop a
Taylor expansion based method for the fast evaluation at perturbed rank-1 lattice nodes and
we show error estimates in Lemma 2.1 and Theorem 2.3. The evaluation error is small if the
perturbations are not too large or if the Fourier coefficients p̂k have a certain decay.

In Section 2.2, we deal with the fast reconstruction using samples at rank-1 lattice nodes
or perturbed rank-1 lattice nodes. We review results for the fast and exact reconstruction of
arbitrary multivariate trigonometric polynomials pI at the nodes xj of a reconstructing rank-1
lattice Λ(z,M, I) as well as methods for the CBC construction of such lattices. Moreover, we

show bounds on the cardinalities |Id,T,1N | of frequency index sets Id,T,1N , cf. (2.14), in Lemma 2.5

and we collect bounds on the sizesM of reconstructing rank-1 lattices Λ(z,M, Id,T,1N ) for Id,T,1N

in Table 2.3. Depending on the choice of the shape parameter T ∈ [−∞, 1), the considered

frequency index sets Id,T,1N include ℓ1-balls I
d,−∞,1
N and hyperbolic crosses Id,0,1N as well as

energy-norm based hyperbolic crosses Id,T,1N for 0 < T < 1. In general, we have an oversam-
pling, i.e., we may require significantly more rank-1 lattice nodes xj than there are frequen-
cies k ∈ I, |I| ≤ M ≲ |I|2. In Section 2.2.2, we consider the reconstruction from samples
taken at perturbed nodes originating from a reconstructing rank-1 lattice Λ(z,M, I) and we
obtain error estimates in Theorem 2.10. The reconstruction is stable if the perturbations are
not too large.

In Section 2.3, we consider the approximation of multivariate periodic functions
f : Td → C from weighted subspaces Aα,β,γ(Td) of the Wiener algebra A(Td) = A0,0,1(Td)
and from periodic Sobolev spaces of generalized mixed smoothness Hα,β,γ(Td) ↪→ L2(Td) =
H0,0,1(Td) by multivariate trigonometric polynomials pI with focus on rank-1 lattice sampling
and perturbed rank-1 lattice sampling. In Section 2.3.1, we consider norm inequalities and
embeddings for the used function spaces in Lemma 2.11, 2.12 and 2.14. In Section 2.3.2, we
show error estimates for truncation errors in Theorem 2.17 and 2.20 as well as Corollary 2.21
and 2.22, i.e., for the approximation of a multivariate periodic function f : Td → C by a trun-
cated Fourier series, which is a multivariate trigonometric polynomial pI . In Section 2.3.3, we
consider rank-1 lattice sampling and require only O (M logM + d |I|) arithmetic operations
for the computation of approximated Fourier coefficients from samples along reconstructing
rank-1 lattices Λ(z,M, I) using Algorithm 2.4. Moreover, we show error estimates for rank-1
lattice sampling of multivariate periodic functions f ∈ A(Td) using reconstructing rank-1
lattices Λ(z,M, I). We obtain theoretical results, where the error rates asymptotically cor-
respond to the ones of the truncation errors in Section 2.3.2 (up to logarithmic factors in
some cases), see Table 2.1 and 2.2. In Section 2.3.4, we show error estimates for the case of
perturbed rank-1 lattice sampling in Theorem 2.46 using the method from Section 2.2.2. In
Section 2.3.5, we discuss various numerical examples for the approximation of multivariate
periodic functions f by multivariate trigonometric polynomials pI based on rank-1 lattice
sampling for up to 25 dimensions and based on perturbed rank-1 lattice sampling for up to
10 dimensions. Moreover, we compare the obtained numerical results with the theoretical
estimates. The observed decay rates of the sampling errors correspond approximately to the
theoretical estimates.
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Chapter 3: Multivariate Algebraic Polynomials in Chebyshev Form

We transfer the results from the periodic case of Chapter 2 to the non-periodic case. As basis
functions, we use tensor products of Chebyshev polynomials of the first kind and we consider
multivariate algebraic polynomials in Chebyshev form aI which are a linear combination
of these. As spatial discretization, we use rank-1 Chebyshev lattices CL(z,M). Our main
focus is on the fast evaluation and fast reconstruction of multivariate algebraic polynomials in
Chebyshev form aI with frequencies supported on arbitrary known index sets I ⊂ Nd0, |I| <∞,
as well as the fast approximation of multivariate non-periodic functions f : [−1, 1]d → R by
multivariate algebraic polynomials in Chebyshev form aI . We mention results for sparse grid
sampling and develop results for rank-1 Chebyshev lattice sampling.

In Section 3.1, we deal with the fast evaluation of arbitrary multivariate algebraic polyno-
mials in Chebyshev form aI at the nodes of an arbitrary rank-1 Chebyshev lattice CL(z,M).
We present a method indicated in Algorithm 3.1 which only uses easy-to-compute in-
dex transforms and a single one-dimensional discrete cosine transform (DCT), requiring
O(M logM + d 2d|I|) arithmetic operations in total.

In Section 3.2, we consider the fast and exact reconstruction of arbitrary multivariate
algebraic polynomials in Chebyshev form aI with frequencies supported on arbitrary known
index sets I ⊂ Nd0, |I| < ∞, from samples at the nodes of special rank-1 Chebyshev lat-
tices CL(z,M). In Section 3.2.1, we develop a method for the reconstruction indicated in Al-
gorithm 3.2 which is based on using a single one-dimensional DCT and easy-to-compute index
transforms, requiring O(M logM+d 2d|I|) arithmetic operations in total. Using the extended
symmetric index setM(I), a modified version of Algorithm 3.2 for the fast and exact recon-
struction has an arithmetic complexity of O(M logM + d |M(I)|), which may be distinctly
less if only some components of the frequency index set I are coupled. We derive conditions
which allow for the exact reconstruction, i.e., we establish reconstruction properties (3.22),
(3.23) and (3.25), and we define reconstructing rank-1 Chebyshev lattices CL(z,M, I) based
on these. In Section 3.2.2, we develop two CBC construction approaches for reconstructing
rank-1 Chebyshev lattices CL(z,M, I). One method is based on building a reconstruct-
ing rank-1 lattice Λ(z,M,M(I)) from the periodic case for the extended symmetric index
setM(I), see Theorem 3.4, and the second method directly uses the obtained reconstruction
property (3.25) of the non-periodic case, see Algorithm 3.3.

In Section 3.3, we mention relations to other non-periodic approaches. In Section 3.3.1,
we explain relations of reconstructing rank-1 Chebyshev lattices CL(z,M, I) to Padua point
sets and Lissajous curves. In Section 3.3.2, we discuss a related non-periodic approach based
on tent transformed rank-1 lattices which uses different basis functions than Chebyshev poly-
nomials.

In Section 3.4, we consider rank-1 Chebyshev lattice sampling for the approximation of
multivariate non-periodic functions f . We consider norm inequalities and embeddings for the
used function spaces in Lemma 3.9 analogously to the considerations in Section 2.3.1. More-
over, we develop an aliasing formula for rank-1 Chebyshev lattice sampling in Lemma 3.11.
Analogously to the periodic case, we use reconstructing rank-1 Chebyshev lattices CL(z,M, I)
as sampling sets for function approximation and we obtain Algorithm 3.4, which requires
O(M logM +d 2d |I|) arithmetic operations for the computation of approximated Chebyshev
coefficients from the samples. We discuss a modified version of Algorithm 3.4 which requires
O(M logM+d |M(I)|) arithmetic operations. We show error estimates for rank-1 Chebyshev
lattice sampling in Theorem 3.16 and 3.17 as well as Corollary 3.18 and 3.19 similar to the
results from the periodic case.

In Section 3.5, we give numerical results for the fast reconstruction of multivariate alge-
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braic polynomials in Chebyshev form aI . Additionally, we apply rank-1 Chebyshev lattice
sampling for test functions in up to 25 dimensions. Moreover, we compare the numerical
results with the error estimates and approximately observe the theoretical upper bounds.

Chapter 4: High-Dimensional Sparse FFT

For unknown frequency index sets I, we introduce a dimension-incremental method for de-
termining the location of the non-zero Fourier coefficients of a multivariate trigonometric
polynomial pI based on rank-1 lattice sampling from Chapter 2. In doing so, we assume that
the unknown frequency locations are a subset of a search domain Γ ⊂ Zd which may be very,
very large, e.g., a d-dimensional full grid. We apply this method for determining the (roughly)
largest approximated Fourier coefficients of multivariate periodic functions f with infinitely
many non-zero Fourier coefficients. Moreover, we transfer this idea to the non-periodic case
and we obtain an analog method using the results from Chapter 3.

In Section 4.1, we deal with the periodic case. In Section 4.1.1, we introduce the general
idea of a CBC based dimension-incremental projection method as Algorithm 4.1 and explain
this on the reconstruction of a three-dimensional trigonometric polynomial using rank-1 lat-
tice sampling in Figure 4.1. In Section 4.1.2, we develop two randomized algorithms indicated
in Algorithm 4.2 and 4.3 for the general approach from Section 4.1.1. Both algorithms only
differ in one computation step when building a reconstructing rank-1 lattice Λ(z,M, Ĩ). Al-
gorithm 4.2 performs a search in step 2b using a method similar to Algorithm 2.2, whereas
Algorithm 4.3 directly uses Theorem 2.7. Consequently, the obtained rank-1 lattice sizes M
and numbers of required samples of Algorithm 4.2 may be smaller but Algorithm 4.3 may
be faster. In Section 4.1.3, we discuss situations when the successful detection may fail. In
Section 4.1.4, we discuss the number of required samples and the arithmetic complexity of the
proposed methods. Assuming

√
N ≲ s ≲ Nd for sparsity parameter s ∈ N, which is an input

parameter of Algorithm 4.2 and 4.3, we require O(d s2N) many samples for both algorithms
as well as O(d s3N2) and O(d s3 + d s2N log(sN)) arithmetic operations for Algorithm 4.2
and 4.3, respectively. If all detections succeed, we can replace s by the sparsity |supp p̂|,
i.e., the number of non-zero Fourier coefficients p̂k ̸= 0 of a multivariate trigonometric poly-
nomial pI , in the sampling and arithmetic complexities. In Section 4.1.5, we give purely
deterministic versions of the randomized algorithms from Section 4.1.2, which can be applied
if the Fourier coefficients p̂k of the multivariate trigonometric polynomials pI fulfill certain
properties. For instance, this is the case when all Fourier coefficients p̂k are non-negative or
non-positive. In Section 4.1.6, we present numerical results for up to 30 dimensions which
confirm the effectiveness and high performance of the presented methods. Especially, we
consider a numerical example where we successfully reconstruct the frequency locations of
sparse 10-dimensional trigonometric polynomials pI when the samples are perturbed by heavy
noise. Moreover, we apply (a modified version of) Algorithm 4.2 and 4.3 for the approximate
reconstruction of the (roughly) largest Fourier coefficients of a 10-dimensional test function
with infinitely many non-zero Fourier coefficients. We successfully determine approximated
Fourier coefficients and the corresponding frequency locations yielding small approximation
errors.

In Section 4.2, we transfer the results from the periodic case to the non-periodic case. In
Section 4.2.1, we describe the required modifications of the methods from Section 4.1.2 for the
non-periodic case. For this, we replace all computations in Algorithm 4.2 related to rank-1
lattice sampling and reconstructing rank-1 lattices Λ(z,M, Ĩ) by their non-periodic counter-
parts from Chapter 3, i.e., by rank-1 Chebyshev lattice sampling and reconstructing rank-1
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Chebyshev lattices CL(z,M, Ĩ). We obtain Algorithm 4.4, which uses the first CBC construc-
tion method from Section 3.2.2 by searching for reconstructing rank-1 lattices Λ(z,M,M(Ĩ))
from the periodic case for the extended symmetric index setM(Ĩ), and Algorithm 4.5, which
uses the second CBC construction method, i.e., the reconstructing rank-1 Chebyshev lat-
tices CL(z,M, Ĩ) are directly searched for. In Section 4.2.2, we present numerical examples
which again show very promising results. We successfully reconstruct the frequency locations
and non-zero Chebyshev coefficients âk ̸= 0 of high-dimensional sparse algebraic polynomials
in Chebyshev form aI in up to 15 dimensions. Moreover, we apply (a modified version of)
Algorithm 4.4 and 4.5 for the approximate reconstruction of the (roughly) largest Chebyshev
coefficients of a 9-dimensional test function with infinitely many non-zero Chebyshev coeffi-
cients. We successfully determine approximated Chebyshev coefficients and the corresponding
frequency locations yielding small approximation errors.

Chapter 5: Conclusion

We briefly summarize the topics discussed in this work and recapitulate main contributions.
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Franziska Nestler, Dr. Michael Pippig, Michael Quellmalz, Prof. Dr. Karla Rost, and the
above mentioned for the excellent working climate.



C
h
a
p
te
r

2
Multivariate Trigonometric Polynomials

We consider multivariate trigonometric polynomials

pI ∈ ΠI := span{e2πik·◦ : k ∈ I}, (2.1)

pI(x) :=
∑
k∈I

p̂k e2πik·x, (2.2)

with frequencies k ∈ Zd supported on arbitrary index sets I ⊂ Zd, |I| <∞, and corresponding
Fourier coefficients p̂k ∈ C. Throughout this chapter, we assume that the frequency index
set I is arbitrarily chosen but known and of finite cardinality, |I| < ∞. We are interested
in methods for the fast evaluation of such a multivariate trigonometric polynomial (2.2)
at certain nodes as well as the fast reconstruction of the Fourier coefficients p̂k, k ∈ I,
from samples. Moreover, we apply these methods for the fast approximation of multivariate
periodic signals f : Td → C by trigonometric polynomials pI based on samples of f . Then,
the index set I contains the frequencies k belonging to the roughly largest Fourier coefficients
of f and those Fourier coefficients are approximately obtained using a reconstruction method
based on function values of f taken at certain nodes.

Various fast evaluation and reconstruction methods are already known for special cases.
For instance, if the frequency index I is a d-dimensional full grid, e.g. I := [−N,N)d ∩ Zd
with refinement N ∈ N, then one may use nodes yj ∈ Td ≃ [0, 1)d on the d-dimensional full

grid Y := {0, 1, . . . , 2N − 1}d/(2N) in spatial domain. Here, a d-dimensional fast Fourier
transform (FFT) of length 2N in each coordinate direction allows for the easy and fast
computation of the function values pI(yj) from the Fourier coefficients p̂k and vice versa, see
Figure 2.1 for an illustration. However, since the cardinalities |I| of the frequency index set I
and |Y| of the spatial grid Y are both (2N)d, this approach suffers heavily from the curse of
dimensionality [Bel61] even for moderate dimensions d, like e.g. d = 4, 5, 6.

This problem can be attenuated by using thinner frequency index sets I, like hyperbolic
crosses, see e.g. the survey [DTU16] and the references therein. In case of the approximation
of a periodic signal f , its Fourier coefficients should decrease accordingly to such frequency
index sets I in order to obtain a reasonable approximation error. If we consider a hyperbolic
cross confined in a cube [−N,N ]d ∩ Zd, N ∈ N, the cardinality |I| is O(N logd−1N), see
e.g. [Tem93], and the constant may be exponential in the dimension d. As spatial node set
Y ⊂ Td, one may use the nodes yj of a sparse grid, which is a sampling set belonging to
Smolyak’s algorithm [Smo63], see also [Tem85, Tem93, Ull08, DTU16]. In this case, there
exist fast algorithms for the evaluation and reconstruction called HCFFT (hyperbolic cross

17
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Figure 2.1: d-dimensional FFT between full grids.

fast Fourier transform), cf. [BD89, Hal92, Gra07, GH14]. In Figure 2.2, a two-dimensional
hyperbolic cross and sparse grid are depicted.
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Figure 2.2: d-dimensional FFT between hyperbolic cross index set I and sparse grid {y}|I|−1
j=0 ,

see e.g. [BD89, Hal92, Gra07, GH14].

However, as proven in [KK11], the condition number of the Fourier matrix corresponding
to the hyperbolic cross discrete Fourier transform grows for increasing refinement N and
dimension d. For fixed refinement N , the condition number scales approximately like |I|2
and for fixed dimension d approximately like

√
|I|. Moreover, the implementation of a fast

efficient version of such a HCFFT may be effortful due to the hierarchical scheme, e.g. see
the implementation considerations in [Hal92] and [Gra07].

A generalization of hyperbolic cross index sets allows for even thinner frequency index
sets, cf. [BG99, BG04, Kna00, GH14], where the cardinality |I| is only O(N) for so-called
energy-norm based hyperbolic crosses. Correspondingly, one may use generalized sparse
grids as spatial discretization and there exists a version of the HCFFT which allows for
the fast conversion between function values pI(yj) and Fourier coefficients p̂k in O(N logN)
arithmetic operations, see e.g. [GH14].

Still, the issue with the growing condition numbers for increasing hyperbolic cross in-
dex sets and the implementation effort for the HCFFT motivate to consider alternative ap-
proaches, where the corresponding Fourier matrix is better conditioned and the computation
is very easy to implement.

Such an approach, which is suitable for arbitrary frequency index sets I ⊂ Zd of finite
cardinality, |I| < ∞, is going to be considered in this chapter. As spatial discretization,
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so-called rank-1 lattices

Λ(z,M) :=

{
xj :=

j

M
z mod 1: j = 0, . . . ,M − 1

}
⊂ Td (2.3)

are used, which are characterized by the generating vector z ∈ Zd and the rank-1 lattice
size M ∈ N, see e.g. [SJ94, DKS13] and the references therein as well as Figure 2.3 for illus-
tration. The number |Λ(z,M)| of distinct nodes xj of the rank-1 lattice Λ(z,M) is a positive
integer ≤M . We emphasize that the frequency index set I of finite cardinality |I| may be ar-
bitrarily chosen from Zd and we do not have an admissibility condition, which may be required
for sparse grids, cf. [GG03]. The striking advantage of using rank-1 lattices Λ(z,M) as spa-
tial discretization is that for an arbitrary multivariate trigonometric polynomial pI , I ⊂ Zd,
|I| < ∞, all the function values pI(xj) at the nodes xj , j = 0, . . . ,M − 1, of an arbitrary
rank-1 lattice Λ(z,M) ⊂ Td can be computed using a simple index transform and a sin-
gle one-dimensional FFT of length M with total computational costs of O(M logM + d |I|),
see e.g. [Käm14a]. In order to be able to reconstruct the Fourier coefficients p̂k, k ∈ I,
from samples of pI taken at the rank-1 lattice nodes xj , j = 0, . . . ,M − 1, a certain recon-
struction property needs to be fulfilled for the rank-1 lattice Λ(z,M) with respect to the
frequency index set I, i.e., the equivalent conditions (2.25), (2.26), (2.27), (2.28) and (2.30),
cf. [KKP12, Käm13, Käm14a]. Then, the condition number of the Fourier matrix is 1 and
the reconstruction is perfectly stable. Such a rank-1 lattice will be called reconstructing
rank-1 lattice Λ(z,M, I) for a given frequency index set I, see [Käm14a] where this name was
used for the first time, and it can be easily constructed using a component-by-component
(CBC) approach, see e.g. the survey [DKS13] for CBC constructions for integration lattices.
The Fourier coefficients p̂k, k ∈ I, may be computed from samples along a reconstructing
rank-1 lattice Λ(z,M, I) using a single one-dimensional FFT and a simple index transform,
cf. [Käm14a] and see Figure 2.4 for illustration. We remark that for special frequency in-
dex sets I like hyperbolic crosses, the concept of reconstructing rank-1 lattices Λ(z,M, I)
has already been used earlier, see e.g. [Tem86]. Moreover, CBC based construction methods
for lattices also have a long history dating back at least to Korobov in 1959, see e.g. the
surveys [CN08, DKS13] and the references therein.
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Figure 2.3: Examples of two-dimensional rank-1 lattices Λ(z,M).

Based on these results, we consider the usage of trigonometric polynomials pI for the
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Figure 2.4: FFT between arbitrary index set I and suitable rank-1 lattice Λ(z,M).

approximation of periodic signals f from weighted subspaces of the Wiener algebra

A(Td) :=

⎧⎨⎩f ∈ L1(Td) : ∥f |A(Td)∥ :=
∑
k∈Zd

|f̂k| <∞

⎫⎬⎭ , (2.4)

where L1(Td) is the space of all absolutely (Lebesgue) integrable functions defined on the
d-dimensional torus Td and the Fourier coefficients of f are (formally) given by

f̂k :=

∫
Td

f(x) e−2πik·x dx, k ∈ Zd. (2.5)

Using the Fourier coefficients f̂k, a function f ∈ A(Td) can be approximated by the Fourier
partial sum

SIf :=
∑
k∈I

f̂k e
2πik·◦, (2.6)

i.e., by a truncated Fourier series which is a trigonometric polynomial pI from (2.1). We
call the error f − SIf of this approximation truncation error. We remark that multivariate
trigonometric polynomials pI are very well-suited for the approximation of high-dimensional
periodic functions, see e.g. the survey [DTU16] and the references therein as well as [Tem85,
Tem89, Tem93, DuU13, KSU14, KSU15].

Since the Fourier coefficients f̂k, k ∈ Zd, of a function f ∈ A(Td) are usually neither known
nor easy to obtain analytically, one computes approximations of the Fourier coefficients f̂k,
e.g. based on samples of the function f . Motivated by the easy construction of a reconstructing
rank-1 lattice Λ(z,M, I) and by the fast computation of Fourier coefficients p̂k, k ∈ I, from
function samples pI(xj) taken along a reconstructing rank-1 lattice Λ(z,M, I), we consider
the approximation of the integrals (2.5) by a lattice rule in this work. For this, we sample
the function f at the nodes xj := j

M z mod 1, j = 0, . . . ,M − 1, of a reconstructing rank-1
lattice Λ(z,M, I). Here, we assume that the function f ∈ A(Td) is continuous or identify f
by its continuous representative, cf. Remark 2.15. We compute all the approximated Fourier
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coefficients f̂ Λ
k , k ∈ I, by applying the same rank-1 lattice rule to the integrand in (2.5),

f̂ Λ
k :=

1

M

M−1∑
j=0

f

(
j

M
z mod 1

)
e−2πijk·z/M , k ∈ I. (2.7)

This computation can be performed in O(M logM+d |I|) arithmetic operations using a single
one-dimensional FFT of length M and a simple index transform, see e.g. [Käm14a]. Based
on (2.7), we define an approximation of the function f by the approximated Fourier partial
sum

SΛ
I f :=

∑
k∈I

f̂ Λ
k e2πik·◦, (2.8)

which itself is a trigonometric polynomial pI ∈ ΠI of the form (2.2). We will call the corre-
sponding error f − SΛ

I f sampling error. We remark that in [KPV15a, KPV15b], this error
was called “approximation error”. Moreover, the described approach of rank-1 lattice sam-
pling has already been used for a long time for certain function classes, see e.g. [Kor63,
Tem86, Tem93] and the references therein. Later, rank-1 lattice sampling was considered
again in [LH03, ZLH06, KSW06, KSW08, KWW09]. As an alternative to using reconstruct-
ing rank-1 lattices Λ(z,M, I) as sampling sets, rank-1 lattices Λ(z,M) may be constructed by
a CBC method minimizing certain error criteria, see e.g. [KSW06, KSW08, KWW09]. More-
over, there exist fast CBC construction methods based on FFTs for rank-1 lattices, which are
constructed for the approximate integration and reconstruction of functions in reproducing
kernel Hilbert spaces, cf. [Nuy07] as well as [CN08, CKN10].

In general, the approximated Fourier coefficients f̂ Λ
k and the Fourier coefficients f̂k do not

coincide and using the approximated Fourier partial sum SΛ
I f instead of the Fourier partial

sum SIf causes an additional error, which will be called aliasing error SIf − SΛ
I f in the

following. When we estimate the sampling error f − SΛ
I f in this chapter for various norms,

we usually split this error into the truncation error and aliasing error,

f − SΛ
I f = (f − SIf) + (SIf − SΛ

I f), (2.9)

and using the triangle inequality yields

∥f − SΛ
I f∥ ≤ ∥f − SIf∥+ ∥SIf − SΛ

I f∥, (2.10)

where ∥ ◦ ∥ is a given norm. As a consequence of this approximation approach, we are going
to characterize the considered functions f ∈ A(Td) by the decay behavior of their Fourier
coefficients f̂k, k ∈ Zd. We remark that function spaces, where the Fourier coefficients f̂k
decay like hyperbolic crosses already occurred in [Kor59], see e.g. the survey [DTU16], and
error estimates for rank-1 lattice sampling in such spaces were already presented in [Kor63].
Moreover, function spaces for various weighted ℓp(Zd) norms, 1 ≤ p ≤ ∞, of the Fourier

coefficients f̂k were discussed in [Spr97a]. Using the notation from [KPV15a], we consider
the periodic Sobolev spaces of generalized mixed smoothness

Hα,β,γ(Td) :=

⎧⎨⎩f ∈ L1(Td) : ∥f |Hα,β,γ(Td)∥ :=
√∑

k∈Zd

ωα,β,γ(k)2|f̂k|2 <∞

⎫⎬⎭ ⊂ L2(Td)

(2.11)
with smoothness parameters β ≥ 0 and α ≥ −β, where the weights ωα,β,γ are defined by

ωα,β,γ(k) := max(1, ∥k∥1)α
d∏
s=1

max(1, γ−1
s |ks|)β, k :=

(
k1
...
kd

)
, γ :=

(
γ1
...
γd

)
∈ (0, 1]d,

(2.12)
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which are Hilbert spaces, and we have H0,0,1(Td) = L2(Td). The parameter α characterizes
the isotropic smoothness and the parameter β the so-called dominating mixed smoothness.
Moreover, the weight parameter γ moderates the dependencies and importances of the dif-
ferent variables, cf. [SW98, KSW06]. A large value γs ∈ (0, 1], s ∈ {1, . . . , d}, close to one
means high importance and a small value close to zero a low importance of the s-th com-
ponent. As discussed in [NSW04, p. 125], the weighted norm ∥f |Hα,β,γ(Td)∥ with weight
parameter γ ∈ (0, 1]d and the unweighted norm ∥f |Hα,β,1(Td)∥ with γ := 1 only differ by a
constant, which may be exponential in the dimension d. Equivalent function spaces

Hβ,αmix(T
d) := Hβ1+αe1mix (Td) ∩ · · · ∩ Hβ1+αedmix (Td),

where Hs
mix(Td) := Hs1(T) ⊗ · · · ⊗ Hsd(T) and ej denotes the j-th unit vector in Rd, were

introduced in [GK00, GH07] as a mixture of functions from the periodic isotropic Sobolev
spaces Hα(Td) = H0,α

mix(Td) = Hα,0(Td) and the periodic Sobolev spaces of dominating mixed

smoothness Hβmix(Td) = H
β,0
mix(Td) = H0,β(Td). Please note that there are various names and

characterizations with equivalent norms for these spaces. For instance, the periodic isotropic
Sobolev spaces Hα(Td) = H0,α

mix(Td) = Hα,0(Td) are also named periodic Bessel-Potential or
Lebesgue or Liouville spaces, cf. [ST87, 3.5.4 (11)], the periodic Sobolev spaces of dominat-

ing mixed smoothness Hβmix(Td) = H
β,0
mix(Td) = H0,β(Td) are also named classes of functions

of dominating mixed derivatives [GK00] or classes of functions with bounded mixed deriva-
tives [Tem89] or weighted Korobov spaces [KSW06]. Instead of using the 1-norm for the
isotropic smoothness in (2.12), other authors also commonly use a modified version with
∞-norm [GH14] or 2-norm [GH07, BDuSU16]. Moreover, Littlewood-Paley type dyadic de-
compositions are also used, see e.g. [BDuSU16, DTU16]. There exist various equivalent
weights which have different approximation properties for large dimensions d, especially if
one also considers the constants with respect to the dimension d, cf. [KSU14, KSU15]. More-
over, we remark that for smoothness parameters α, β ∈ N0, we also have the equivalent
characterization

Hα,β,1(Td) =

⎧⎨⎩f ∈ L1(Td) : ∥f |H̃α,β(Td)∥ :=
√ ∑

∥m∥1≤α

∑
∥n∥∞≤β

∥Dm+nf∥22 <∞

⎫⎬⎭ ,

see e.g. [BKUV16]. In addition to the Hilbert spaces Hα,β,γ(Td), we consider the subspaces

Aα,β,γ(Td) :=

⎧⎨⎩f ∈ L1(Td) : ∥f |Aα,β,γ(Td)∥ :=
∑
k∈Zd

ωα,β,γ(k)|f̂k| <∞

⎫⎬⎭ (2.13)

of the Wiener algebraA(Td) = A0,0,1(Td) with dominating mixed smoothness β ≥ 0, isotropic
smoothness α ≥ −β and weight parameter γ ∈ (0, 1]d. These spaces are a mixture and

extension of the spaces Aα1 (Td) of order α and of the spaces Sβ,β1,1 (T2) of bivariate periodic
functions with dominating mixed smoothness of order β from [Spr97a].

As frequency index sets I, we use the weighted frequency index sets

Id,T,γN :=

{
k ∈ Zd : ω−T,1,γ(k) = max(1, ∥k∥1)−T

d∏
s=1

max(1, γ−1
s |ks|) ≤ N1−T

}
, (2.14)

whereN ≥ 1 is the refinement, T ∈ (−∞, 1) is the shape parameter, γ is the weight parameter
as specified in (2.12) and the weights ωα,β,γ(k) are defined as in (2.12). As a natural extension
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for T = −∞, we define the weighted frequency index set Id,−∞,γ
N as the d-dimensional ℓ1-ball

of size N ,

Id,−∞,γ
N :=

{
k ∈ Zd : max(1, ∥k∥1) ≤ N

}
. (2.15)

Good choices of the shape parameter T ∈ [−∞, 1) depend on the function spaces and the
norms where the truncation, aliasing and sampling errors are measured. In Figure 2.5, two-
dimensional examples of frequency index sets Id,T,γN are shown for refinement N := 32, weight
parameter γ := 1 and different choices of the shape parameter T ∈ [∞, 1).

−32 0 32
−32

0

32

−32 0 32
−32

0

32

−32 0 32
−32

0

32

−32 0 32
−32

0

32

l1-ball I
2,−∞,1
32 index set I2,−5,1

32 symmetric energy-norm based

hyperbolic cross I2,0,132 hyperbolic cross I
2,1/2,1
32

Figure 2.5: ([KPV15b, Figure 1.1]). Frequency index sets I2,T,132 for T ∈ {−∞,−5, 0, 12}.

In this chapter, we show error estimates for rank-1 lattice sampling errors f − SΛ
I f

with respect to the refinement N and cardinality |I| for functions f from periodic Sobolev
spaces of generalized mixed smoothness Hα,β,γ(Td), when using reconstructing rank-1 lat-
tices Λ(z,M, I). We obtain results which correspond to those from (generalized) sparse
grid sampling [SU07, BDuSU16, DTU16]. For functions f from subspaces Aα,β,γ(Td) of the
Wiener algebra A(Td), we obtain comparable error bounds for the rank-1 lattice sampling
error f−SΛ

I f with respect to the refinement N or cardinality |I|. Additionally, we discuss the
rank-1 lattice sampling error f−SΛ

I f with respect to the number of samplesM . The obtained
error estimates are asymptotically best possible in several cases, since the upper bounds cor-
respond to the lower bounds, see also [BKUV16]. However, the obtained sampling rate with
respect to the number of samples M has only half the main rate compared to (generalized)
sparse grid sampling, see also [BKUV16, DTU16]. Nevertheless, rank-1 lattice sampling is a
very efficient and an easy-to-use method for the approximation of high-dimensional periodic
functions f .

The remaining parts of this chapter are structured as follows.

In Section 2.1, we review the fast evaluation of a trigonometric polynomial pI from (2.2)
with frequencies supported on an arbitrary index set I ⊂ Zd, |I| < ∞, at the nodes xj ,
j = 0, . . . ,M − 1, of an arbitrary rank-1 lattice Λ(z,M) ⊂ Td and we discuss the case of
perturbed rank-1 lattice nodes. In Section 2.1.1, we deal with (exact) rank-1 lattice nodes xj
and give a method for the fast evaluation, see e.g. [LH03, KKP12], which uses a simple index
transform and a single one-dimensional FFT. In this work, we extend these considerations to
the case where the rank-1 lattice nodes xj are perturbed. In Section 2.1.2, a Taylor expansion
based method for the fast evaluation is presented as well as error estimates, see also [Vol13].

In Section 2.2, we deal with the fast reconstruction of the Fourier coefficients p̂k,
k ∈ I, from samples of a trigonometric polynomial pI taken at rank-1 lattice nodes xj ,
j = 0, . . . ,M − 1, or perturbed rank-1 lattice nodes. Here we can not use arbitrarily chosen
rank-1 lattices Λ(z,M). Instead, we have to use a reconstructing rank-1 lattice Λ(z,M, I).
In Section 2.2.1, we review important properties and construction strategies for such lattices,
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see also [KKP12, Käm13, Käm14a]. The condition number of the Fourier matrix for the un-
perturbed case is 1 and consequently, the reconstruction is perfectly stable. However, there
is a price to pay for this nice property. In general, the number M of samples for the recon-
struction is distinctly higher than the number |I| of Fourier coefficients p̂k, cf. [Käm14b], it

may scale like up to |I|2, e.g. for energy-norm based hyperbolic crosses I = Id,T,γN , 0 < T < 1.
In such cases, we may observe an oversampling factor M/|I| of up to about |I|, i.e., we may
have approximately |I| times more sampling nodes xj than frequencies k ∈ I. Consequently,
if we use this method for the approximation of a periodic signal from samples, then we gener-
ally do not have an interpolation but so-called hyperinterpolation, see [Slo95]. On the other
hand, under mild assumptions, there exists a constructive method for obtaining such a re-
constructing rank-1 lattice Λ(z,M, I) of size M ≤ |I|2 with no further dependence on the
dimension d, cf. Theorem 2.4. Especially, if the frequency index set I does not have an ex-
ponential dependence on the dimension d, then we are able to construct these special rank-1
lattices, allowing for the reconstruction of any multivariate trigonometric polynomial pI with
frequencies supported on I, where the rank-1 lattice sizeM has the same property. Addition-
ally, the Fourier coefficients p̂k, k ∈ I, may be computed from samples along a reconstructing
rank-1 lattice Λ(z,M, I) using a single one-dimensional FFT and a simple index transform,
cf. [Käm14a] and see Figure 2.4 for illustration. In this work, we extend these considerations
to the case of perturbed reconstructing rank-1 lattices analogously to the considerations from
Section 2.1.2, see also [KPV15a]. In Section 2.2.2, we obtain a method for the approxi-
mation of the Fourier coefficients p̂k, k ∈ I, which uses multivariate Taylor expansion and
one-dimensional FFTs. Moreover, we give error estimates.

In Section 2.3, we consider the approximation of periodic functions f : Td → C from
Banach spaces Aα,β,γ(Td) and from periodic Sobolev spaces of generalized mixed smooth-
ness Hα,β,γ(Td) for suitable choices of the isotropic smoothness α, the dominating mixed
smoothness β and the weight parameter γ using rank-1 lattice sampling, see also [KPV15a,
KPV15b].

In Section 2.3.1, we discuss various embeddings between different periodic function spaces,
which yield admissible values for the smoothness parameters α, β and which are required in
the following sections. In Figure 2.6, we present an overview of the admissible values of the
statements in Section 2.3.2 and 2.3.3. The allowed parameter choices in Figure 2.6a and 2.6b
guarantee the existence of a continuous representative of a function f ∈ Aα,β,γ(Td) and
f ∈ Hα,β,γ(Td), respectively, cf. Remark 2.15 as well as Lemma 2.12 and 2.14.

In Section 2.3.2, we discuss the error estimates for the truncation error f − SIf , since
we estimate the sampling error f − SΛ

I f using inequality (2.10). This means, we consider
the approximation of the function f by the truncated Fourier series SIf and we show error
estimates which are optimal up to constants for the considered function classes for suitable
choices of the frequency index set I and of the involved norms. For dominating mixed
smoothness β ≥ 0 and isotropic smoothness α > −β, we use weighted frequency index sets
I := Id,T,γN with shape parameter T := −α/β ∈ [−∞, 1) and we obtain for the truncation
error f − SIf of a function f ∈ Aα,β,γ(Td) ↪→ A(Td) the with respect to the refinement N
asymptotically sharp bounds

∥γ∥β∞ (N + 1)−(α+β) ≤ ∥ Id−S
Id,T,γ
N
|Aα,β,γ(Td)→ L∞(Td)∥ ≤ N−(α+β)

from Theorem 2.17, see the first entry in Table 2.1. Similarly in the Hilbert space cases, for
dominating mixed smoothness β ≥ t ≥ 0 and isotropic smoothness r, α ∈ R with α + β >
r+ t ≥ 0, we set the shape parameter T := −α−r

β−t ∈ [−∞, 1) and we obtain for the truncation

error f − SIf of a function f ∈ Hα,β,γ(Td) ↪→ L2(Td) the with respect to the refinement N
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1
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β

α

(a) Theorem 2.17,
2.24, 2.26;
Corollary 2.40;
Aα,β,γ(Td) ↪→
A(Td) ↪→ C(Td).
Theorem 2.20;
Hα,β,γ(Td) ↪→
L2(Td).

1
2

1

−1

-12

d
2

β

α

(b) Lemma 2.12
for α ≥ 0,
Lemma 2.14
for α < 0;
Hα,β,γ(Td) ↪→
A(Td) ↪→ C(Td).

1
2

1

−1

-12

β

α

(c) Theorem 2.30, 2.42;
Corollary 2.44;
Hα,β,γ(Td) ↪→
A(Td) ↪→ C(Td).

1

−1

d
2

β

α

(d) Theorem 2.36 for α ≥ 0,
Theorem 2.39 for α < 0;
Corollary 2.41 for α > 0,
Corollary 2.45 for α ≤ 0;
Hα,β,γ(Td) ↪→
A(Td) ↪→ C(Td).

Figure 2.6: Visualization of admissible values from Table 2.1, 2.2 and 2.4 as well as from
Lemma 2.12 and 2.14 for isotropic smoothness α ∈ R and dominating mixed smoothness
β ≥ 0 setting r = t = 0.

asymptotically sharp bounds

∥γ∥β−t∞ (N + 1)−(α−r+β−t) ≤ ∥ Id−S
Id,T,γ
N
|Hα,β,γ(Td)→ Hr,t,γ(Td)∥ ≤ N−(α−r+β−t)

from Theorem 2.20, see the first entry in Table 2.2. We depict the admissible values of the
smoothness parameters α and β in Figure 2.6a. Alternatively, the error bounds may be ex-
pressed with respect to the degrees of freedom |Id,T,γN |, which also gives sharp asymptotic
bounds for increasing refinement N due to the sharp asymptotic bounds on the cardinali-
ties |Id,T,γN | in Table 2.3, see Corollary 2.21 and 2.22.

setting error estimates

truncation error ∥ Id−S
Id,T,γ
N
|Aα,β,γ(Td)→ L∞(Td)∥ ≍ N−(α+β)

T := −α/β ∈ [−∞, 1) Theorem 2.17, β ≥ 0, α > −β

sampling error ∥f − SΛ
Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − SΛ
Id,T,γ
N

f |A(Td)∥

arbitrary Λ(z,M, Id,T,γN ) ≤ 2N−(α+β)∥f |Aα,β,γ(Td)∥

T := −α/β ∈ [−∞, 1) Theorem 2.24, β ≥ 0, α > −β

Table 2.1: Overview of truncation error estimates and rank-1 lattice sampling error estimates
from Section 2.3.2 and 2.3.3 for functions f ∈ Aα,β,γ(Td) with respect to refinement N of

frequency index sets Id,T,γN .

In Section 2.3.3, we investigate the utilization of rank-1 lattice sampling for function
approximation by trigonometric polynomials, see also [KPV15a, KPV15b]. In doing so, we
always use reconstructing rank-1 lattices Λ(z,M, I), which may be arbitrarily chosen in many



26 2 Multivariate Trigonometric Polynomials

truncation error ∥ Id−S
Id,T,γ
N
|Hα,β,γ(Td)→ Hr,t,γ(Td)∥ ≍ N−(α−r+β−t)

T := −α−r
β−t ∈ [−∞, 1) Theorem 2.20, r, α ∈ R, β ≥ t ≥ 0, α+ β > r + t ≥ 0

sampling error ∥f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤ 2N−(α−r+β−t)∥f |Aα,β,γ(Td)∥

arbitrary Λ(z,M, Id,T,γN ) ∥f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≲ N−(α−r+β−t)∥f |Hα,β+λ,γ(Td)∥
T := −α−r

β−t ∈ [−∞, 1) Theorem 2.26, r, α ∈ R, β ≥ t ≥ 0, α+ β > r + t ≥ 0,

T ∈ [− r
t ,−

α
β ]

sampling error ∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ N−(α+β−t)

arbitrary Λ(z,M, Id,0,1N ) ∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ·

{
(logN)(d−1)/2 for α = 0,

1 for α < 0,

T := 0 Theorem 2.30, β > 1
2 , α ≤ 0, t ≥ 0, α+ β > max{t, 12}

sampling error ∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ N−(α+β) ∥f |Hα,β,1(Td)∥

special Korobov lattice

T := −α/β ∈ [−∞, 0] Theorem 2.36, α, β ≥ 0, α+ β > d
2
2dβ+α
dβ+α

β+α
dβ+α > 0

sampling error ∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ N−(α+β) ∥f |Hα,β,1(Td)∥

special Korobov lattice

T := −α/β ∈ (0, 1) Theorem 2.39, α < 0, β > 1− α

Table 2.2: Overview of truncation and rank-1 lattice sampling error estimates from Sec-
tion 2.3.2 and 2.3.3 for functions f ∈ Hα,β,γ(Td) and f ∈ Hα,β+λ,γ(Td), λ > 1

2 , with respect

to the refinement N of frequency index sets Id,T,γN .

cases as long as the reconstruction property (2.25) is fulfilled. For dominating mixed smooth-
ness β ≥ 0, isotropic smoothness α > −β and shape parameter T := −α/β ∈ [−∞, 1), we
show in the proof of Theorem 2.24 that the aliasing error fulfills ∥S

Id,T,γ
N
−SΛ

Id,T,γ
N

f |L∞(Td)∥ ≤

∥f−S
Id,T,γ
N

f |A(Td)∥ ≤ N−(α+β) ∥f |Aα,β,γ(Td)∥ and consequently, we obtain for the sampling
error

∥f − SΛ
Id,T,γ
N

f |L∞(Td)∥ ≤ 2 N−(α+β) ∥f |Aα,β,γ(Td)∥,

see the second entry in Table 2.1. In the Hilbert space case, we show in this work in the
proof of Theorem 2.26 for the aliasing error of a function f ∈ Hα,β+λ,γ(Td) the estimate

∥S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤ (1 + 2ζ(2λ))
d
2 N−(α−r+β−t)∥f |Hα,β+λ,γ(Td)∥,

where the dominating mixed smoothness β ≥ t ≥ 0, an additive factor λ > 1
2 , the isotropic

smoothness r, α ∈ R with α + β > r + t ≥ 0 and the shape parameter T := −α−r
β−t with the

additional constraint T ∈ [− r
t ,−

α
β ], see the second entry in Table 2.2. Since the norm on the

right hand side is stronger by the additive factor λ > 1/2, this estimate and the resulting
upper bound for the sampling error ∥f−SΛ

Id,T,γ
N

f |Hr,t,γ(Td)∥ ≲ N−(α−r+β−t)∥f |Hα,β+λ,γ(Td)∥
are not asymptotically optimal. By using a different proof technique and restricting the
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considered parameter combinations further to hyperbolic cross frequency index sets Id,0,1N

with shape parameter T := 0, isotropic smoothness r := 0 and α ≤ 0, dominating mixed
smoothness t ≥ 0 and β > 1/2 with α+ β > max{t, 1/2}, we obtain from Theorem 2.30 that
the sampling error is bounded by

∥f − SΛ
Id,T,γ
N

f |H0,t,γ(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ N−(α+β−t)

{
(logN)(d−1)/2 for α = 0,

1 for α < 0,

which is asymptotically best possible up to the logarithmic factor (logN)(d−1)/2 in the case
of isotropic smoothness α = 0 and asymptotically best possible for α < 0, see the third entry
in Table 2.2 and compare with the truncation error in the first entry. We remark that for
sparse grids, similar results can be obtained, see e.g. [BDuSU16, DTU16]. We denote the
approximated Fourier partial sum where the corresponding approximated Fourier coefficients
are computed using a suitable sparse grid by SSG

I with I := Id,0,1N . Then for isotropic
smoothness r := 0, α ≤ 0 and dominating mixed smoothness t := 0, β > 1/2− α, the sparse
grid sampling error is bounded by

∥f − SSG
I f |L2(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ N−(α+β)

{
(logN)(d−1)/2 for α = 0,

1 for α < 0,

due to [SU07, Theorem 8] and [BDuSU16, Theorem 6.10]. In the case of dominating mixed
smoothness t > 0 and β > max{t, 1/2} − α, the sparse grid sampling error is bounded by

∥f − SSG
I f |H0,t,1(Td)∥ ≲ N−(α+β−t)∥f |Hα,β,1(Td)∥

due to [BDuSU16, Theorem 6.10]. For rank-1 lattice sampling in the hyperbolic cross case
T := 0 with isotropic smoothness r = α = 0 and dominating mixed smoothness t := 0,
β > 1, the logarithmic factor (logN)(d−1)/2 in the sampling error ∥f − SΛ

I f |L2(Td)∥ can

be removed when using special reconstructing rank-1 lattices Λ(z,M, Id,0,1N ) with generating
vector z := (1, a, a2, . . . , ad−1) of Korobov form [Kor60], which fulfill certain additional prop-
erties, cf. [Tem86], and one obtains ∥f − SΛ

Id,0,1N

f |L2(Td)∥ ≲ N−β ∥f |H0,β,1(Td)∥ in this case.

We remark that (parts of) the used proof ideas and the employed rank-1 lattices are non-
constructive. In this work, we extend these results for the special rank-1 lattices of Korobov
form using proof techniques from [Tem86] to the sampling error estimates

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ N−(α+β) ∥f |Hα,β,1(Td)∥

for shape parameters T := −α/β ∈ [−∞, 0] with α, β ≥ 0, α + β > d
2
2dβ+α
dβ+α

β+α
dβ+α > 0 in

Theorem 2.36 as well as for shape parameters T := −α/β ∈ (0, 1) with α < 0, β > 1− α in
Theorem 2.39, see the last two entries in Table 2.2 and see also [KPV15b].

Please note that since the used rank-1 lattice sampling method employs reconstructing
rank-1 lattices Λ(z,M, I) and we do not have an interpolation in general, the results for
the error estimates in Table 2.1 and 2.2 look slightly different if we consider the sampling
errors f − SΛ

I f with respect to the number of samples M instead of the refinement N or
cardinality |I|, cf. Table 2.4. In case of (standard or energy-norm based) hyperbolic cross

frequency index sets I := Id,T,γN , 0 ≤ T < 1, the numbers of samples M for rank-1 lattice
sampling behave approximately like |I|2 and consequently the errors only decay with half
of the rate in the main order with respect to the number of samples M compared to the
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results with respect to the refinement N , cf. [BKUV16], or compared to the case of sparse
grid sampling, cf. [BDuSU16, DTU16] and the references therein.

In Section 2.3.4, we extend the idea of sampling along reconstructing rank-1 lat-
tices Λ(z,M, I) to the case of perturbed rank-1 lattices using the results from Section 2.2.2
and we obtain estimates for the corresponding sampling errors similar to the results from
Section 2.3.3.

Finally, in Section 2.3.5, we give several numerical examples in up to 25 dimensions for
the theoretical results of Section 2.3.2, 2.3.3 and 2.3.4.

2.1 Fast evaluation

In this section, the fast evaluation of trigonometric polynomials pI , as defined in (2.2), at
the nodes of a rank-1 lattice Λ(z,M) is reviewed, see also [KPV15a] and the references
therein. The fast evaluation can be realized using a simple index transform and a single
one-dimensional FFT of length M with total computational costs of O(M logM + d |I|).
We extend these considerations to the case of perturbed rank-1 lattice nodes and obtain a
fast Taylor expansion based method, which uses several one-dimensional FFTs of length M .
Moreover, we give error estimates for our approximate method, see also [Vol13].

2.1.1 Rank-1 lattices

Given an arbitrary trigonometric polynomial (2.2), we are going to evaluate pI at the nodes
xj := j

M z mod 1, j = 0, . . . ,M − 1, of an arbitrary rank-1 lattice Λ(z,M) ⊂ Td. For this,
we obtain from the definition by appropriate grouping of the summands

pI(xj) =
∑
k∈I

p̂k e2πik·xj =
∑
k∈I

p̂k e2πijk·z/M

=
M−1∑
l=0

⎛⎜⎜⎝ ∑
k∈I

k·z≡ l (mod M)

p̂k

⎞⎟⎟⎠
  

=: ĝl

e2πijl/M =
M−1∑
l=0

ĝl e
2πijl/M , j = 0, . . . ,M − 1, (2.16)

see e.g. [LH03, KKP12]. The term on the right-hand side is simply a one-dimensional discrete
Fourier transform (DFT) of length M . This means we can evaluate the trigonometric poly-
nomial pI at all rank-1 lattice nodes xj , j = 0, . . . ,M − 1, by computing the inner sums ĝl
followed by a single one-dimensional FFT of length M . In total, the computational costs are
O(M logM + d |I|), where the constants do not depend on d. The implementation is very
easy, for instance one line of Octave / MATLAB code suffices,

(pI(xj))
M−1
j=0 = M*ifft(accumarray(mod(I*z,M)+1,(p̂k)k∈I,[M,1],@sum));

cf. [Käm14c].

2.1.2 Perturbed rank-1 lattices

In Section 2.1.1, the fast and exact evaluation of an arbitrary trigonometric polynomial pI at
the nodes of an arbitrary rank-1 lattice Λ(z,M) has already been discussed. Based on this,
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we consider the case where the evaluation nodes yℓ ∈ Td are perturbed versions of rank-1
lattice nodes xj .

As presented in [Vol13, KPV15a] and based on the ideas in [AD96, Kun08], we evaluate
a trigonometric polynomial pI from (2.2) at nodes yℓ ∈ Td, ℓ = 0, . . . , L− 1, using a Taylor
expansion sm of degree m− 1, m ∈ N, at a closest rank-1 lattice node xj′ ∈ Λ(z,M) for each
node yℓ,

pI(x) ≈ sm(x) :=
∑

0≤|ν|<m

Dνp(xj′)

ν!
(x− xj′)

ν ,

whereD0pI := pI , D
νpI :=

∂ν1
∂x1ν1

. . . ∂νd
∂xd

νd pI , x := (x1, . . . , xd)
⊤ ∈ Td, ν := (ν1, . . . , νd) ∈ Nd0,

|ν| := |ν1|+ . . .+ |νd|, ν! := ν1! · . . . · νd!, xν := x1
ν1 · . . . · xdνd . Since the ν-th derivative

DνpI(x) :=
∂ν1

∂x1ν1
. . .

∂νd

∂xdνd
pI(x) =

∑
k∈I

(2πik)ν p̂k e2πik·x, x ∈ Td,

of pI is again a trigonometric polynomial in ΠI and

DνpI(xj) =

M−1∑
l=0

⎛⎜⎜⎝ ∑
k∈I

k·z≡ l (mod M)

(2πik)ν p̂k

⎞⎟⎟⎠ e2πijl/M ,

we can also perform the fast evaluation of the ν-th derivative DνpI at all rank-1 lattice
nodes xj , j = 0, . . . ,M − 1, by a one-dimensional FFT of length M in O(M logM + d |I|)
arithmetic operations. We obtain

sm(x) =
∑

0≤|ν|<m

(x− xj′)
ν

ν!

∑
k∈I

(2πik)ν p̂k e
2πik·xj′ . (2.17)

In order to present error estimates for the approximate evaluation of the trigonometric
polynomial pI by the Taylor expansion sm of degree m − 1, we first introduce additional
notation. We define the metric ρ(y,x) := minh∈Zd ∥x− y + h∥∞ for y,x ∈ Td. For a given
point y ∈ Td, the corresponding expansion point xj′ ∈ Td in (2.17) is chosen as a closest
rank-1 lattice point xj′ ∈ Λ(z,M) where ρ(y,xj′) = minxj∈Λ(z,M) ρ(y,xj).

Assuming that the index µℓ ∈ {0, . . . ,M − 1} of a closest rank-1 lattice node
xµℓ ∈ Λ(z,M), ρ(yℓ,xµℓ) = minxj∈Λ(z,M) ρ(yℓ,xj), is known for each evaluation node yℓ,
ℓ = 0, . . . , L−1, the approximate evaluation of the trigonometric polynomial pI using the Tay-
lor expansion sm of degree m− 1 can be realized in O

(
md(L+M logM + d |I|)

)
arithmetic

operations for L evaluation nodes yℓ. We write the evaluation of the Taylor expansion sm at
evaluation nodes yℓ, ℓ = 0, . . . , L− 1, in matrix-vector notation as

(sm(yℓ))
L−1
ℓ=0 = Am−1p̂ =

∑
0≤|ν|≤m−1

BνFDν p̂, (2.18)

where p̂ := (p̂k)k∈I ∈ C|I| is the vector of the Fourier coefficients, Dν :=

diag
(
((2πik)ν)k∈I

)
∈ C|I|×|I| is a diagonal matrix, F :=

(
e2πijk·z/M

)M−1

j=0; k∈I ∈ CM×|I| is

the Fourier matrix for the rank-1 lattice Λ(z,M) and frequency index set I, Bν ∈ RL×M is
a sparse matrix with at most one non-zero entry (yℓ − xµℓ)

ν/ν! at column µℓ in each row
ℓ = 0, . . . , L− 1.



30 2 Multivariate Trigonometric Polynomials

Next, we establish error bounds for the approximate evaluation of a trigonometric poly-
nomial pI ∈ ΠI by a Taylor expansion sm of degree m− 1 from (2.17) for nodes y ∈ Yε from
the set of admissible evaluation nodes

Yε := {x ∈ Td : ∃xj′ ∈ Λ(z,M) such that ρ(x,xj′) ≤ ε} (2.19)

with perturbation parameter ε ∈ [0, 1
2 ], see Figure 2.7 for an illustration. The results for the

error bounds in Theorem 2.3 are similar to the ones in [Vol13, Theorem III.1]. However, in the
latter one, we allowed arbitrary evaluation nodes x ∈ Td and used the so-called mesh norm δ,
whereas we restrict the evaluation nodes y here to the set Yε, i.e., to those nodes from Td
which are close to the rank-1 lattice Λ(z,M) with respect to the perturbation parameter ε.

0 1
0

1

ε

Yε

Figure 2.7: Illustration of set Yε of admissible evaluation nodes.

First, we give a general error estimate for trigonometric polynomials pI with frequencies
supported on arbitrary index sets I ⊂ Zd of finite cardinality, |I| <∞.

Lemma 2.1. Let a trigonometric polynomial pI ∈ ΠI with frequencies supported on an
arbitrary index set I ⊂ Zd of finite cardinality, |I| <∞, be given. Furthermore, let Λ(z,M)
be a rank-1 lattice and Yε be a special set of admissible evaluation nodes for a parameter
ε ∈ [0, 1

2 ] from (2.19). For the approximate evaluation of the trigonometric polynomial pI by
a truncated Taylor series

sm(y) :=
m−1∑
|ν|=0

DνpI(xj′)

ν!
(y − xj′)

ν

of degree m − 1 at nodes y ∈ Yε with expansion point xj′ ∈ Λ(z,M), ρ(y,xj′) =
minxj∈Λ(z,M) ρ(y,xj), we obtain that the remainder Rm(y) := pI(y)− sm(y) is bounded by

|Rm(y)| ≤
(2π)m

m!
εm

∑
k∈I
|p̂k| ∥k∥m1 , y ∈ Yε.

Proof. This proof follows the major steps of the proof of [Vol13, Theorem III.1]. Let ξ(t) :=
xj′ + t(y − xj′), t ∈ [0, 1]. We use a one-dimensional Taylor expansion on the function
g(t) := pI(ξ(t)) at the point t = 0, where g(0) = pI(xj′) and g(1) = pI(y), and this yields

pI(y) =
∑m−1

ℓ=0 g(ℓ)(0)/ℓ! +
∫ 1
0 (1 − t)

m−1g(m)(0)/m! dt, cf. e.g. [Hör90, Ch. 1]. Due to the
multivariate chain rule, we have

g(ℓ)(t) =
dℓ

dtℓ
pI
(
xj′ + t(y − xj′)

)
=
∑
|ν|=ℓ

ℓ!

ν!
(DνpI)

(
xj′ + t(y − xj′)

)
(y − xj′)

ν
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and the remainder Rm(y) =
∫ 1
0 (1− t)

m−1g(m)(0)/m! dt can be written in the form

Rm(y) = m

∫ 1

0
(1− t)m−1

∑
|ν|=m

DνpI(ξ(t))
(y − xj′)

ν

ν!
dt.

Then, the remainder Rm(y) is bounded by

|Rm(y)| ≤ m

∫ 1

0
(1− t)m−1

∑
|ν|=m

|DνpI(ξ(t))|
⏐⏐(y − xj′)

ν
⏐⏐

ν!
dt

≤ max
t∈[0,1]

∑
|ν|=m

⏐⏐⏐⏐⏐∑
k∈I

(2πik)ν p̂k e2πik·ξ(t)

⏐⏐⏐⏐⏐
⏐⏐(y − xj′)

ν
⏐⏐

ν!
.

Since we have ρ(y,xj′) ≤ ε and by applying the multinomial theorem, we get

|Rm(y)| ≤ max
t∈[0,1]

∑
|ν|=m

ε|ν|

ν!

∑
k∈I
|(2πik)ν | |p̂k| |e2πik·ξ(t)|

≤ 2mπmεm
∑
k∈I
|p̂k|

∑
|ν|=m

|k1|ν1 · . . . · |kd|νd
ν!

=
2mπm

m!
εm

∑
k∈I
|p̂k| ∥k∥m1

for arbitrary y ∈ Yε.

Next, we consider results for special cases of weighted frequency index sets I = Id,T,γN as
defined in (2.14) and (2.15).

Lemma 2.2. ([KPV15a, Lemma 2.3]). Let a refinement N ∈ R, N ≥ 1, a shape param-
eter T ∈ [−∞, 1) and a weight parameter γ ∈ (0, 1]d be given. The following inclusions
hold

Id,T,γN ⊂

{
Zd ∩ [−N,N ]d for T ≤ 0,

Zd ∩ [−d
T

1−T N, d
T

1−T N ]d for 0 < T < 1.
(2.20)

Proof. In order to prove the inclusions, we use

max(1, ∥k∥∞) ≤
d∏
s=1

max(1, γ−1
s |ks|) (2.21)

and max(1, ∥k∥∞) ≤ max(1, ∥k∥1) ≤ dmax(1, ∥k∥∞). (2.22)

For k ∈ Id,T,γN and T ∈ (−∞, 1), we infer

N ≥

(
d∏
s=1

max(1, γ−1
s |ks|)

) 1
1−T

max(1, ∥k∥1)−
T

1−T

≥ max(1, ∥k∥∞)
1

1−T

{
max(1, ∥k∥∞)−

T
1−T for − T

1−T ≥ 0,

d−
T

1−T max(1, ∥k∥∞)−
T

1−T for − T
1−T < 0.

Similarly, we estimate N ≥ max(1, ∥k∥1) ≥ max(1, ∥k∥∞) for k ∈ Id,−∞,γ
N . Thus, we have

max(1, ∥k∥∞) ≤

{
N for T ≤ 0

d
T

1−T N for 0 < T < 1

}
and this yields the assertion.

Estimating parts of the isotropic smoothness in Lemma 2.1 in terms of dominating mixed
smoothness leads to
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Theorem 2.3. ([KPV15a, Theorem 4.1]). Let a weighted frequency index set I = Id,T,γN

and a trigonometric polynomial (2.2) be given by its Fourier coefficients p̂k ∈ C, where the
refinement N ≥ 1, the shape parameter T ∈ [−∞, 1) and the weight parameter γ ∈ (0, 1]d.
Furthermore, let Λ(z,M) be a rank-1 lattice and Yε be a special set of admissible evaluation
nodes for a perturbation parameter ε ≥ 0. Additionally, let a Taylor expansion parameter
m ∈ N, the dominating mixed smoothness β ≥ 0 and the isotropic smoothness α ∈ R be
given, where 0 ≤ α+β ≤ m. We approximately evaluate the trigonometric polynomial pI by
a truncated Taylor series sm(y) :=

∑m−1
|ν|=0D

νpI(xj′) (y − xj′)
ν/ν! of degree m− 1 at nodes

y ∈ Yε, where the expansion point xj′ ∈ Λ(z,M), ρ(y,xj′) = minxj∈Λ(z,M) ρ(y,xj). Then,
the remainder Rm := pI − sm is bounded by

|Rm(y)| ≤
(2π)m

m!
d

m−α−Tβ
1−T εmNm−α−β

∑
k∈Id,T,γ

N

|p̂k| ωα,β,γ(k).

Proof. Applying Lemma 2.1 and using the simple inequality ∥k∥m1 ≤ max(1, ∥k∥1)m =
ωm,0,γ(k), m > 0, we obtain

|Rm(y)| ≤
2mπm

m!
εm

∑
k∈Id,T,γ

N

ωm,0,γ(k) |p̂k|.

Furthermore, we estimate parts of the isotropic smoothness in terms of the dominating mixed

smoothness, ω
m−α−Tβ

1−T
,0,γ(k) ≤ d

m−α−Tβ
1−T ω0,m−α−Tβ

1−T
,γ(k) for all k ∈ Zd, using the inequalities

(2.21) and (2.22). Therefore, we have

ωm,0,γ(k) = ωm−α−m−α−Tβ
1−T

,−β,γ(k) ω
m−α−Tβ

1−T
,0,γ(k) ωα,β,γ(k)

≤ ωm−α−m−α−Tβ
1−T

,−β,γ(k) d
m−α−Tβ

1−T ω0,m−α−Tβ
1−T

,γ(k) ωα,β,γ(k)

= d
m−α−Tβ

1−T ω− T
1−T

(m−α−β), 1
1−T

(m−α−β),γ(k) ωα,β,γ(k)

for k ∈ Z. Consequently, we infer

|Rm(y)| ≤
(2π)m

m!
d

m−α−Tβ
1−T εm max

k∈Id,T,γ
N

(
ω− T

1−T
, 1
1−T

,γ(k)
)m−α−β ∑

k∈Id,T,γ
N

ωα,β,γ(k) |p̂k|.

We observe by (2.14) that

Id,T,γN =

{
k ∈ Zd : max(1, ∥k∥1)−

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

1
1−T ≤ N

}
. (2.23)

and we obtain max
k∈Id,T,γ

N

(
ω− T

1−T
, 1
1−T

,γ(k)
)m−α−β

≤ Nm−α−β. This yields the assertion.

The results of Theorem 2.3 will be used later in the proof of Theorem 2.10 in Section 2.2.2
for the fast reconstruction of trigonometric polynomials pI from samples at perturbed rank-1
lattice nodes as well as in the proof of Theorem 2.46 in Section 2.3.4 for the fast approximation
of periodic signals f : Td → C.

As a consequence of Theorem 2.3, we have several possibilities to ensure a small (relative)
approximation error Rm for fixed Taylor expansion parameterm and increasing refinementN .
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1. Choose the perturbation parameter ε like ∼ d−
m−α−Tβ
(1−T )m N−m−α−β

m or smaller and restrict
evaluation nodes to the set Yε, i.e., permit only relatively small perturbations to the
nodes xj of the rank-1 lattice.

2. Allow arbitrarily chosen evaluation nodes x ∈ Td and use trigonometric polynomials pI
with a certain decay of the Fourier coefficients p̂k. For instance, choose α+ β = m and
ensure that the Fourier coefficients p̂k decay at least like ∼ 1/ωα,β,γ(k) or faster.

2.2 Fast reconstruction for known frequency index sets

In this section, we discuss the reconstruction of the Fourier coefficients p̂k, k ∈ I, of a
trigonometric polynomial (2.2) from samples using fast and (relatively) simple algorithms.
As sampling nodes, we review the usage of the nodes xj := j

M z mod 1 of a reconstructing
rank-1 lattice Λ(z,M, I) in Section 2.2.1. We extend these considerations to the case of
perturbed versions of such a reconstructing rank-1 lattice Λ(z,M, I) in Section 2.2.2, see
also [KPV15a].

2.2.1 Rank-1 lattices

In this subsection, we summarize various results from [Käm14a, Käm14b, KPV15a, KPV15b,
PV16] for the reconstruction of trigonometric polynomials pI from samples along reconstruct-
ing rank-1 lattices Λ(z,M, I). We are going to compute the Fourier coefficients p̂k, k ∈ I, of
a trigonometric polynomial pI , which are formally given by

p̂k =

∫
Td

pI(x) e
−2πik·x dx, k ∈ I,

using the rank-1 lattice rule

p̂Λ
k :=

1

M

M−1∑
j=0

pI(xj) e
−2πik·xj =

1

M

M−1∑
j=0

pI

(
j

M
z

)
e−2πijk·z, k ∈ I. (2.24)

This means we compute all Fourier coefficients p̂k, k ∈ I, of pI using a cubature formula
with equal weights 1/M and identical samples pI(xj) taken at the rank-1 lattice nodes
xj :=

j
M z mod 1, j = 0, . . . ,M − 1, for all frequencies k ∈ I. We remark that the cuba-

ture formula (2.24) is a quasi-Monte Carlo rule, see e.g. [Nie78] as well as the survey [DKS13]
and the references therein.

Now, we ask for the exactness of this cubature formula, i.e., under which condition is
p̂k = p̂Λ

k for all frequencies k ∈ I. As discussed in [Käm13, KPV15a, KPV15b], the condition

1

M

M−1∑
j=0

e2πij(k
′−k)·z/M =

{
1 for k = k′

0 for k ̸= k′,k,k′ ∈ I,
(2.25)

has to be fulfilled since we have

p̂Λ
k =

1

M

M−1∑
j=0

∑
k′∈I

p̂k′ e2πijk
′·z/Me−2πijk·z/M =

∑
k′∈I

p̂k′
1

M

M−1∑
j=0

e2πij(k
′−k)·z/M .

In matrix-vector notation, this means FHF =MI, where

F :=
(
e2πijk·z/M

)M−1

j=0; k∈I
∈ CM×|I|
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is the Fourier matrix and I the identity matrix. This is the case if and only if

(k′ − k) · z ̸≡ 0 (mod M) ∀k,k′ ∈ I,k ̸= k′, (2.26)

⇐⇒ k · z ̸≡ k′ · z (mod M) ∀k,k′ ∈ I,k ̸= k′, (2.27)

see also [Käm14a, Section 2]. Using the notion of the difference set

D(I) := {h := k − k′ : k,k′ ∈ I}

for the frequency index set I, we can rewrite the above conditions to

h · z ̸≡ 0 (mod M) ∀h ∈ D(I) \ {0}. (2.28)

Introducing the notion of the integer dual lattice

Λ⊥(z,M) := {h ∈ Zd : h · z ≡ 0 (mod M)} (2.29)

of a rank-1 lattice Λ(z,M), which contains all integer frequencies which alias to the origin,
we obtain

p̂Λ
k =

1

M

M−1∑
j=0

∑
h∈Zd

p̂h e−2πij(k−h)·z/M =
∑
h∈Zd

p̂h
1

M

M−1∑
j=0

e−2πij(k−h)·z/M =
∑

h∈Λ⊥(z,M)

p̂k+h.

Consequently, condition (2.28) may be rewritten as

Λ⊥(z,M) ∩ D(I) = {0}. (2.30)

We will use this notation later in Section 2.3 for characterizing the aliasing and obtaining
estimates for the sampling error.

A rank-1 lattice Λ(z,M) which fulfills the equivalent conditions (2.25), (2.26), (2.27),
(2.28), (2.30) for a given frequency index set I will be called reconstructing rank-1 lat-
tice Λ(z,M, I) for I and is suitable for the reconstruction of multivariate trigonometric
polynomials (2.2). Each of the equivalent conditions (2.25), (2.26), (2.27), (2.28), (2.30) will
be called reconstruction property. Later, we will typically use the condition which is most
convenient in terms of notation for the specific task.

Using samples of a trigonometric polynomial pI along such a reconstruction rank-1 lat-
tice Λ(z,M, I), we easily obtain all the Fourier coefficients p̂k = p̂Λ

k , k ∈ I, in a fast and exact
way by means of Algorithm 2.1. As in the case of the fast evaluation, the implementation is
very easy and can be done with two lines of Octave / MATLAB code,

g_hat = fft( (pI(xj))
M−1
j=0 );

(p̂k)k∈I = g_hat(mod(I*z,M)+1) / M;

cf. [Käm14c].

Algorithm 2.2 describes an approach for searching for a reconstructing rank-1 lat-
tice Λ(z,M, I) for a given (arbitrary) frequency index set Iinput := I, |I| < ∞. Please
note that we do not assume any structure for the frequency index set I.

The next theorem gives general bounds on the rank-1 lattice size M of reconstructing
rank-1 lattices Λ(z,M, I).
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Algorithm 2.1 ([Käm14b, Algorithm 3.2]). Fast and exact reconstruction of a multivariate
trigonometric polynomial pI ∈ ΠI from sampling values on a reconstructing rank-1 lat-
tice Λ(z,M, I).

Input: I ⊂ Zd frequency index set of finite cardinality
Λ(z,M, I) reconstructing rank-1 lattice for I of size M

with generating vector z ∈ Zd

p =
(
pI

(
j
M z mod 1

))M−1

j=0
sampling values of pI

Compute ĝ := FFT_1D(p), i.e. ĝl :=
∑M−1

j=0 pI(
j
M z mod 1) e−2πilj/M for l = 0, . . . ,M − 1.

for each k ∈ I do
p̂k = p̂Λ

k := 1
M ĝk·z modM

end for
Output: p̂ :=

(
p̂Λ
k

)
k∈I Fourier coefficients of pI

Complexity: O (M logM + d |I|)

Theorem 2.4. ([PV16, Theorem 2.1] as a consequence of [Käm14a, Käm14b]).
For a given frequency index set I ⊂ Zd, 1 ≤ |I| <∞, and any prime rank-1 lattice size

M ≥ max

{
|D(I)|+ 3

2
, max

k∈I
2∥k∥∞ + 1

}
, (2.31)

there always exists a generating vector z ∈ Zd such that Λ(z,M) is a reconstructing rank-1
lattice Λ(z,M, I). Moreover, there always exists a prime rank-1 lattice size M ,

|I| ≤M ≤ max

{
2

3
(|D(I)|+ 7), max

k∈I
3∥k∥∞

}
(2.32)

≤ max

{
2

3
(|I|2 − |I|+ 8), max

k∈I
3∥k∥∞

}
,

and a generating vector z ∈ Zd such that Λ(z,M) is a reconstructing rank-1 lattice Λ(z,M, I).
For such a suitable rank-1 lattice size M , the generating vector z ∈ Zd can be constructed
using the component-by-component (CBC) approach in Algorithm 2.2, see [Käm14a], and
the construction requires no more than 3 d |I|M arithmetic operations.

Proof. The inequality (2.32) is a consequence of [Käm14a, Corollary 1] and [Käm14b, inequal-
ity (3.8)]. The lower bound for the rank-1 lattice size M is a consequence from [Käm14a,
Theorem 1 and Lemma 2].
When searching for the component zt, t ∈ {1, . . . , d}, of the generating vector z :=
(z1, . . . , zd)

⊤ in the component-by-component step t, the tests for the reconstruction prop-
erty (2.28) for a given component zt take no more than |I| multiplications, |I| additions as
well as |I| modulo operations, and this yields 3 |I| many arithmetic operations. Due to this
and since each component zt, t ∈ {1, . . . , d}, of the generating vector z can only have M
different values modulo M , we obtain that the construction requires no more than 3 d |I|M
arithmetic operations in total.

We refer to [Käm14b] for detailed considerations for specific frequency index sets I and
on how to efficiently determine the cardinality |D(I)| of the difference set D(I). Next, we give

cardinalities for frequency index sets Id,T,1N , N ≥ 1, T ∈ [−∞, 1), from (2.14), which result
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Algorithm 2.2 Combined Algorithm 1 and 2 from [Käm14a] for obtaining a reconstructing
rank-1 lattice Λ(z,M, Iinput), which is suitable for the reconstruction of multivariate trigono-
metric polynomials (2.2) with frequencies supported on the index set I := Iinput.

Input: index set Iinput ⊂ Zd, |Iinput| <∞.
1: Determine suitable initial rank-1 lattice size Mstart, see e.g. Theorem 2.4.
2: for t := 1, . . . , d do
3: for zt := 0, . . . ,Mstart do
4: if condition (2.27) is valid for I := {(k1, . . . , kt)⊤ : k ∈ Iinput}, z := (z1, . . . , zt)

⊤,
M :=Mstart, i.e. if |{k · z modM}| = |I|, then

5: break
6: end if
7: end for
8: end for
9: for M := |Iinput|, . . . ,Mstart do

10: if condition (2.27) is valid for I := Iinput, z := (z1, . . . , zd)
⊤, M then

11: break
12: end if
13: end for

Output: generating vector z ∈ Nd0 and rank-1 lattice sizeM ∈ N0 fulfilling the equivalent
conditions (2.25), (2.26), (2.27), (2.28), (2.30) for index set I := Iinput.

in bounds on the size M of the existence of constructively built reconstructing rank-1 lat-
tices Λ(z,M, Id,T,1N ) due to Theorem 2.4. For the case of weighted frequency index sets Id,T,γN ,
γ ∈ (0, 1]d, we refer to [Käm14b].

Lemma 2.5. ([KPV15b, Lemma 4.1]). Let the dimension d ∈ N, and a shape parameter

T ∈ [−∞, 1) be given. Then, the cardinalities of the frequency index sets Id,T,1N are

|Id,T,1N | ≍

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Nd for T = −∞,
N

T−1
T/d−1 for −∞ < T < 0,

N logd−1N for T = 0,

N for 0 < T < 1,

(2.33)

for fixed parameters d and T , where the constants only depend on d and T .

Proof. We show the cardinalities for the different cases.

• Case T = −∞. Since we have the inclusions {−⌊Nd ⌋, . . . , ⌊
N
d ⌋}

d ⊂ Id,−∞,1
N ⊂

{−N, . . . , N}d, we infer c1(d)N
d ≤ |Id,−∞,1

N | ≤ C1(d)N
d, where c1(d) = d−d and

C1(d) = 3d.

• Case −∞ < T < 0. First, we consider the lower bound and for this, we show
Id,−∞,1

N(1−T )/(d−T ) ⊂ I
d,T,1
N . For arbitrary k ∈ Id,−∞,1

N(1−T )/(d−T ) , we have

N
1−T
d−T ≥ max(1, ∥k∥1) = max(1, ∥k∥1)−

T
d−T max(1, ∥k∥1)1+

T
d−T .
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Since max(1, ∥k∥1)d ≥ max(1, ∥k∥∞)d ≥
∏d
s=1max(1, |ks|), we infer

N
1−T
d−T ≥ max(1, ∥k∥1)−

T
d−T

d∏
s=1

max(1, |ks|)
1
d
(1+ T

d−T
)

= max(1, ∥k∥1)−
T

1−T
1−T
d−T

d∏
s=1

max(1, |ks|)
1

1−T
1−T
d−T

and consequently max(1, ∥k∥1)−
T

1−T
∏d
s=1max(1, |ks|)

1
1−T ≤ N . This means, we have

k ∈ Id,T,1N and therefore we obtain Id,−∞,1

N(1−T )/(d−T ) ⊂ I
d,T,1
N . Since we have |Id,−∞,1

N(1−T )/(d−T ) | ≥

c1(d)N
1−T
d−T

d, we obtain |Id,T,1N | ≥ |Id,−∞,1

N(1−T )/(d−T ) | ≥ c1(d)N
1−T
d−T

d = c1(d)N
T−1

T/d−1 .

Due to [GK00, Lemma 1], we obtain |Id,T,1N | ≤ C2(d, T )N
T−1

T/d−1 , where C2(d, T ) > 0 is
a constant depending only on d and T .

• Case T = 0. We apply the inclusions of [KKP12, Lemma 2.1] and use the results from

[Hal92, Section 5.3]. This yields c3(d)N logd−1
2 N ≤ |Id,0N | ≤ C3(d)N max(1, log2N)d−1,

where c3(d) = (8d− 8)−d+1 and C3(d) =
8
3
(d+1)d−1

(d−1)! 12d.

• Case 0 < T < 1. Since the frequencies on the coordinate axis from −⌊N⌋ to ⌊N⌋ are
elements of Id,T,1N , we obtain |Id,T,1N | ≥ 2d⌊N⌋+1 ≥ 2d(N − 1)+1 ≥ c4(d)N for N ≥ 2,
where c4(d) = d.

Due to [GK09, Lemma 4.2], we obtain |Id,T,1N | ≤ C4(d, T )N , where C4(d, T ) > 0 is a
constant depending only on d and T .

These estimates yield the assertion.

Next, we show for shape parameters T ∈ [−∞, 0] that we can cover the difference

set D(Id,T,1N ) with the index set Id,T,1L of larger refinement L = 2
d−T
1−T N1+ d

d−T . This yields

smaller upper bounds for the existence of reconstructing rank-1 lattices Λ(z,M, Id,T,1N ) for
shape parameters T ∈ [−∞, 0).
Lemma 2.6. ([KPV15b, Lemma 4.2]). Let the dimension d ∈ N and a shape parameter

T ∈ [−∞, 0] be given. We consider the difference set D(Id,T,1N ) :=
{
k′ − k : k,k′ ∈ Id,T,1N

}
.

Then, we have the inclusion
D(Id,T,1N ) ⊂ Id,T,1

2
d−T
1−T N

1+ d
d−T

. (2.34)

Proof. For k ∈ Id,T,1N , we have max(1, ∥k∥1)−
T

1−T
∏d
s=1max(1, |ks|)

1
1−T ≤ N by definition.

Consequently, for k,k′ ∈ Id,T,1N and −∞ ≤ T < 0, we infer

max(1, ∥k − k′∥1)
d∏
s=1

max(1, |ks − k′s|)−
1
T

≤
(
max(1, ∥k∥1) + max(1, ∥k′∥1)

) d∏
s=1

(
max(1, |ks|) + max(1, |k′s|)

)− 1
T

≤
(
max(1, ∥k∥1) + max(1, ∥k′∥1)

)
2−

d
T

d∏
s=1

max(1, |ks|)−
1
T max(1, |k′s|)−

1
T

≤ 2−
d
T N− 1−T

T

(
d∏
s=1

max(1, |k′s|)−
1
T +

d∏
s=1

max(1, |ks|)−
1
T

)
.
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Next, we estimate dominating mixed smoothness by isotropic smoothness. Since we have∏d
s=1max(1, |ks|) ≤ max(1, ∥k∥∞)d ≤ max(1, ∥k∥1)d for k ∈ Zd, we obtain

d∏
s=1

max(1, |ks|)−
1
T =

d∏
s=1

max(1, |ks|)
1

d−T

d∏
s=1

max(1, |ks|)−
1
T
− 1

d−T

≤ max(1, ∥k∥1)
d

d−T

d∏
s=1

max(1, |ks|)−
d

T (d−T )

=

(
max(1, ∥k∥1)−

T
1−T

d∏
s=1

max(1, |ks|)
1

1−T

)− 1−T
T

d
d−T

≤ N− 1−T
T

d
d−T

and analogously
∏d
s=1max(1, |k′s|)−

1
T ≤ N− 1−T

T
d

d−T . For T = 0, we have

d∏
s=1

max(1, |ks − k′s|) ≤ 2d
d∏
s=1

max(1, |ks|)
d∏
s=1

max(1, |k′s|) ≤ 2dN2.

These results yield

max(1, ∥k − k′∥1)−
T

1−T

d∏
s=1

max(1, |ks − k′s|)
1

1−T ≤ 2
d−T
1−T N1+ d

d−T for all k,k′ ∈ Id,T,1N

and inclusion (2.34) follows.

In Table 2.3, we give the cardinalities and bounds on sizes of reconstructing rank-1 lattices
for ℓ∞-balls I = ĜdN := [−N,N ]d ∩ Zd, ℓ1-balls I = Id,−∞,1

N , hyperbolic crosses I = Id,0,1N ,

and energy-norm based hyperbolic crosses I = Id,T,1N , 0 < T < 1, depending on the re-
finement N ∈ R, N ≥ 1, as well as for generic unstructured index sets I ⊂ Zd of finite
cardinality, |I| <∞, fulfilling a mild assumption. The upper bound on the rank-1 lattice

size M for hyperbolic cross index sets I = Id,0,1N is discussed in [Käm13]. The lower bounds
for the structured index sets in Table 2.3 are a consequence of (2.32) and (2.33) as well as
[BKUV16, Lemma 4]. The latter states that the size M of a reconstructing rank-1 lattice
for an index set I which contains the coordinate axes in two dimensions from −N to N , e.g.
I ⊃ ({−N, . . . , N} × {0}d−1) ∪ ({0} × {−N, . . . , N} × {0}d−2), must be greater than N2.

In preparation for the rank-1 lattice based sparse FFT in Chapter 4, we additionally
repeat some statements from [Käm14a] and [PV16]. The next theorem and corollary will
play an important role. They give a straightforward answer to the problem of obtaining
a reconstructing rank-1 lattice (for an index set of higher dimension), if one already has a
reconstructing rank-1 lattice of a (lower dimensional) frequency index set and an additional
dimension should be added (by Cartesian product).

Theorem 2.7. (see [Käm14a]). Let a dimension d ∈ N, d ≥ 2, and a frequency index set
I ⊂ Zd of finite cardinality |I| ≥ 2 be given. We assume that Λ(z,M) with generating vector
z := (z1, . . . , zd−1)

⊤ is a reconstructing rank-1 lattice Λ(z,M, I(1,...,d−1)) for the frequency
index set I(1,...,d−1) := {(ks)d−1

s=1 : k ∈ I}. Then, the rank-1 lattice Λ((z1, . . . , zd−1,M)⊤,MS)
with

S := min {m ∈ N : |{kd mod m : k ∈ I}| = |{kd : k ∈ I}|}
is a reconstructing rank-1 lattice Λ((z1, . . . , zd−1,M)⊤,MS, I).
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guarantee of existence of recon-

structing rank-1 lattice, size M
index set I cardinality |I| lower bound upper bound

ℓ∞-ball ĜdN := [−N,N ]d ∩ Zd Θ(Nd) Θ(Nd)

ℓ1-ball I
d,−∞,1
N

frequency index set Θ
(
N

1−T
1−T/d

)
Ω

(
N

max
{
2, 1−T

1−T/d

})
O
(
N

1−T
1−T/d

2−T/d
1−T/d

)
Id,T,1N , −∞ < T < 0

hyperbolic cross Id,0,1N Θ(N logd−1N) Ω(N2) O(N2 logd−2N)

energy-norm based hyper- Θ(N) Θ(N2)

bolic cross Id,T,1N , T ∈ (0, 1)

generic unstructured index set |I| |I|2

I ⊂ Zd ∩ [−N,N ]d, |I| ≥ N ≥ 4

Table 2.3: Bounds (for fixed dimension d ≥ 2 and shape parameter T ∈ [−∞, 1)) on cardi-
nalities |I| of selected frequency index sets I from Lemma 2.5 and on rank-1 lattice sizes M
which guarantee the existence of a generating vector z such that Λ(z,M) is a reconstructing
rank-1 lattice Λ(z,M, I). The bounds onM follow from Theorem 2.4, Lemma 2.5, Lemma 2.6
and [Käm13].

Corollary 2.8. ([PV16, Corollary 2.3]). Let a frequency set I ′ ⊂ ĜdN , |I ′| = s ≥ 2, be given.

Furthermore, let I ′′ ⊂ Ĝ1
N be another non-empty frequency index set. Then, there exists a

reconstructing rank-1 lattice Λ(z,M, I ′× I ′′) for I ′× I ′′ of size M ≤ max{2s2, 3N} 2(N +1).

Proof. Due to (2.32) in Theorem 2.4, there exists a reconstructing rank-1 lattice Λ(z,M ′, I ′)
for I ′ with generating vector z := (z1, . . . , zd−1)

⊤ and size

M ′ ≤ max

{
2

3
(s2 − s+ 8), 3N

}
≤ max{2s2, 3N}.

We apply Theorem 2.7 with I := I ′ × I ′′. Consequently, I(1,...,d−1) := {(ks)d−1
s=1 : k ∈ I} = I ′

and {kd : k ∈ I} = I ′′ in Theorem 2.7. Since we have S ≤ max(I ′)−min(I ′) + 1 ≤ 2(N + 1),
the rank-1 lattice Λ((z1, . . . , zd−1,M

′)⊤,M ′S) is a reconstructing rank-1 lattice for I = I ′×I ′′
of size M :=M ′S ≤ max{2s2, 3N} 2(N + 1).

Based on Theorem 2.7, an alternative component-by-component construction algorithm of
a reconstructing rank-1 lattice Λ(z,M, I) can be obtained for unknown rank-1 lattice sizeM ,
see Algorithm 2.3. This approach determines the rank-1 lattice size M in a dimension incre-
mental way and does not (explicitly) search for the components of the generating vector z.
Instead, it uses the rank-1 lattice size Mt−1 from the previous dimension increment step
t ∈ {1, . . . , d} as component zt of the generating vector z. Due to this, using Algorithm 2.3
instead of Algorithm 2.2 should improve the runtime required for building a reconstructing
rank-1 lattice Λ(z,M, I) but may increase the lattice size M .
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Algorithm 2.3 ([Käm14b, Algorithm 3.7]). Alternative approach for building reconstruct-
ing rank-1 lattice Λ(z,M, Iinput) suitable for reconstruction of multivariate trigonometric
polynomials (2.2) with frequencies supported on the index set I := Iinput.

Input: frequency index set Iinput ⊂ Zd, |Iinput| <∞.
1: M1 := min{m ∈ N : |{k1 mod m : k ∈ Iinput}| = |{k1 : k ∈ Iinput}|}
2: z1 := 1
3: for t := 2, . . . , d do
4: S := min{m ∈ N : |{kt mod m : k ∈ Iinput}| = |{kt : k ∈ Iinput}|}
5: zt :=Mt−1

6: I := {(k1, . . . , kt)⊤ : k ∈ Iinput}
7: Mt := min{m ∈ N : |{h · (z1, . . . , zt) mod m : h ∈ I}| = |I|} ≤ SMt−1

8: end for
Output: generating vector z := (z1, . . . , zd) ∈ Nd0 and rank-1 lattice size M :=Md ∈ N0

fulfilling the equivalent conditions (2.25), (2.26), (2.27), (2.28), (2.30) for the frequency
index set I := Iinput.

2.2.2 Perturbed rank-1 lattices

This section has already been presented in [KPV15a].
Let a frequency index set I ⊂ ĜdN := ([−N,N ]d ∩Zd), N ≥ 1, be given. In addition, let a

reconstructing rank-1 lattice Λ(z,M, I) be given that allows for the exact reconstruction of
the Fourier coefficients p̂k ∈ C, k ∈ I, of a trigonometric polynomial (2.2). Our aim is now
to approximately reconstruct the Fourier coefficients p̂k, k ∈ I, from sampling values pI(yℓ),
ℓ = 0, . . . , L−1, using the approach from Section 2.1.2. In matrix-vector notation this problem
reads as follows: Solve the linear system of equations Am−1

˜̂p = p in the least-squares sense,

˜̂p := argmin
ĝ∈C|I|

∥Am−1 ĝ − p∥2, (2.35)

where Am−1 :=
∑

|ν|≤m−1BνFDν ∈ CM×|I| is the approximated Fourier matrix, see (2.18),

˜̂p := (˜̂pk)k∈Id,T,γ
N

is the vector of approximated Fourier coefficients and p := (p(yℓ))ℓ=0,...,L−1

is the vector of sampling values. Assuming that the approximated Fourier matrix Am−1 has
full column rank, we expect a unique solution of (2.35) solving the normal equation of the
first kind, AH

m−1Am−1
˜̂p = AH

m−1 p.
This normal equation may be solved fast using an iterative method like the LSQR algo-

rithm [PS82] in combination with (2.18) and its adjoint version for the fast matrix vector
multiplication of the matrix Am−1 with a vector ĝ ∈ C|I| and of the matrix AH

m−1 with a
vector g ∈ CL, respectively.

In the following, we assume that the number L of sampling nodes yℓ is equal to the rank-1
lattice size M and that each rank-1 lattice node xj is a closest one for the sampling node yj ,
j = 0, . . . ,M − 1. Then, the sparse matrix Bν from (2.18) is a diagonal matrix,

Bν = diag

([
(yj − xj)

ν

ν!

]
j=0,...,M−1

)
∈ RM×M , ν ∈ Nd0. (2.36)

Moreover, we have computational costs of O
(
K md(M logM + d |I|)

)
for numerically com-

puting (2.35), where K is the maximal number of iterations of the LSQR algorithm. Choos-

ing K =
⌈

log(2κ(Am−1))−log δ
log(κ(Am−1)+1)−log(κ(Am−1)−1)

⌉
guarantees a relative error of ∥˜̂h − ˜̂p∥2/∥ ˜̂p∥2 ≤ δ,
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cf. [Bjö96, Section 7.4.4], where ˜̂h is the approximation of ˜̂p obtained by the LSQR algo-
rithm, κ(Am−1) := σ1(Am−1)/σ|I|(Am−1) denotes the condition number of the approximated
Fourier matrix Am−1 as well as σ1(Am−1) and σ|I|(Am−1) are the largest and smallest sin-
gular values of Am−1, respectively.

Theorem 2.9. ([KPV15a, Theorem 4.2]). Let a frequency index set I ⊂ ĜdN , N ≥ 1, and
a reconstructing rank-1 lattice Λ(z,M, I) be given as well as a Taylor expansion parameter
m ∈ N. Let the sparse matrix Bν from (2.18) be a diagonal matrix of form (2.36) and
∥yj − xj∥∞ ≤ ε, j = 0, . . . ,M − 1, for fixed perturbation parameter ε, 0 ≤ ε < ln 2/(2πdN).
Then, the condition number κ(Am−1) can be estimated by

κ(Am−1) ≤
1 +

∑m−1
r=1 (2πdNε)r/r!

1−
∑m−1

r=1 (2πdNε)r/r!
≤ e2πdNε

2− e2πdNε
.

Proof. For the case m = 1, we obtain AH
0 A0 = DH

0F
HBH

0B0FD0. Since D0 = I |I| and

B0 = IM are identity matrices, it follows from condition (2.25) that AH
0 A0 = FHF =MIM

and thus, all singular values σ1(A0) = . . . = σ|I|(A0) =
√
M . Therefore, the condition

number κ(A0) = σ1(A0)/σ|I|(A0) = 1. In the following, we consider the case m > 1. For the
largest singular value σ1(Am−1), we have

σ1(Am−1) ≤ ∥B0FD0∥2 +


∑

1≤|ν|≤m−1

BνFDν


2

=
√
M + σ1

⎛⎝ ∑
1≤|ν|≤m−1

BνFDν

⎞⎠ .

(2.37)

Next, we show an upper bound for σ1

(∑
1≤|ν|≤m−1BνFDν

)
. We have

σ1

⎛⎝ ∑
1≤|ν|≤m−1

BνFDν

⎞⎠ ≤
∑

1≤|ν|≤m−1

∥BνFDν∥2 ≤
∑

1≤|ν|≤m−1

∥Bν∥2∥F ∥2∥Dν∥2

=
∑

1≤|ν|≤m−1

σ1(Bν)σ1(F )σ1(Dν). (2.38)

Since Bν = diag
([

(yj − xj)
ν/ν!

]
j=0,...,M−1

)
∈ RM×M , F ∈ CM×|I| has orthogonal columns

and Dν = diag ([(2πik)ν ]k∈I) ∈ C|I|×|I|, we obtain σ1(Bν) ≤ ε|ν|/ν!, σ1(F ) =
√
M and

σ1(Dν) ≤ (2πN)|ν|. Due to this fact and by applying the multinomial theorem

(ξ1 + . . .+ ξd)
r =

∑
|ν|=r

r!

ν!
ξν , ξ := (ξ1, . . . , ξd)

⊤,

on
∑

|ν|=r 1
|ν|/ν! =

∑
|ν|=r(1, . . . , 1)

ν/ν! = dr/r!, we infer

σ1

⎛⎝ ∑
1≤|ν|≤m−1

BνFDν

⎞⎠ (2.38)

≤
∑

1≤|ν|≤m−1

(2πNε)|ν|

ν!

√
M =

√
M

m−1∑
r=1

(2πNε)r
∑
|ν|=r

1|ν|

ν!

=
√
M

m−1∑
r=1

(2πdNε)r

r!
≤
√
M (e2πdNε − 1).
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With (2.37), we obtain σ1(Am−1) ≤
√
M +

√
M
∑m−1

r=1 (2πdNε)r/r! ≤
√
Me2πdNε.

Next, we estimate the smallest singular values σ|I|(Am−1). Therefor, we use the well-
known inequality for the singular values (cf. [HJ91, Theorem 3.3.16]) for arbitrary matrices
E,G ∈ Cr×s,

σp+q−1(E +G) ≤ σp(E) + σq(G) if p+ q − 1 ≤ min(r, s).

Setting E := Am−1 =
∑

|ν|≤m−1BνFDν , G := −
∑

1≤|ν|≤m−1BνFDν , p = |I| and q = 1,
this yields

σ|I| (Am−1) ≥ σ|I| (B0FD0)− σ1

⎛⎝− ∑
1≤|ν|≤m−1

BνFDν

⎞⎠
≥
√
M −

√
M

m−1∑
r=1

(2πdNε)r

r!
≥
√
M
(
2− e2πdNε

)
. (2.39)

The condition ε < ln 2/(2πdN) guarantees σ1

(∑
1≤|ν|≤m−1BνFDν

)
<
√
M for all m > 1

and thus, we have σ|I|(Am−1) > 0. Altogether, this yields the assertion.

Similar statements can be found in [Grö92, FG93, PT08] with the same maximal and min-
imal singular values. However, in these publications, the approximated Fourier coefficients ˜̂p
are not the solution of the (unweighted) optimization problem (2.35) but of a weighted prob-
lem. Furthermore, they assume that the so-called mesh-norm of the sampling set {yℓ}L−1

ℓ=0

has the upper bound ln 2/(2πdN), while we assume in Theorem 2.9 that the perturbation
parameter ε has this upper bound.

Based on the evaluation error of (2.18) and based on the stability results from Theo-
rem 2.9, we consider the error for the fast and approximate reconstruction of trigonometric
polynomials p

Id,T,γ
N

∈ Π
Id,T,γ
N

by sampling at perturbed nodes yj , j = 0, . . . ,M − 1, of a

reconstructing rank-1 lattice Λ(z,M, Id,T,γN ).

Theorem 2.10. ([KPV15a, Theorem 4.3]). Let a weighted frequency index set I = Id,T,γN and
a trigonometric polynomial (2.2) be given by its Fourier coefficients p̂k ∈ C, where the refine-
mentN ≥ 1, the shape parameter T ∈ [−∞, 1) and the weight parameter γ ∈ (0, 1]d. Further-

more, let a Taylor expansion parameterm ∈ N, a reconstructing rank-1 lattice Λ(z,M, Id,T,γN )
and a set of sampling nodes Y = {yj}M−1

j=0 be given, where ∥yj−xj∥∞ ≤ ε, j = 0, . . . ,M −1,

for fixed perturbation parameter ε, 0 ≤ ε <
(
2π
(
d1+max(0, T

1−T )
)
N
)−1

ln 2. Then, the error

of the approximation S̃I pI(x) =
∑

k∈I
˜̂pke

2πik·x of the trigonometric polynomial pI with(
˜̂pk

)
k∈I

:= argmin
ĝ∈C|I|

∥Am−1 ĝ − p∥2 and p := pI(yj)
M−1
j=0 is bounded by

∥pI − S̃I pI |L2(Td)∥ ≤
C(d, T, α, β,m)

2− e2π
(
d
1+max

(
0, T

1−T

))
Nε

N−(α+β)
∑
k∈I

ωα,β,γ(k) |p̂k|,

where the constant C(d, T, α, β,m) := d
min(0,Tm)−α−Tβ

1−T
(ln 2)m

m! and the smoothness parameters
α, β ∈ R, β ≥ 0, 0 < α+ β ≤ m.
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Proof. By Parseval’s identity, we have ∥pI − S̃I pI |L2(Td)∥ =
(p̂k − ˜̂pk)k∈I


2
. Based on the

normal equation AH
m−1Am−1

(
˜̂pk

)
k∈I

= AH
m−1p, we obtain

AH
m−1Am−1

(
˜̂pk − p̂k

)
k∈I

= AH
m−1

(
p−Am−1 (p̂k)k∈I

)
.

Since we have (2.20) by Lemma 2.2 and ε <
(
2π
(
d1+max(0, T

1−T )
)
N
)−1

ln 2, the smallest sin-

gular value σ|I|
(
AH
m−1Am−1

)
= σ|I| (Am−1)

2 > 0 by (2.39) in the proof of Theorem 2.9

Consequently, the matrix AH
m−1Am−1 is invertible. Therefore, we obtain(

˜̂pk − p̂k
)
k∈I

=
(
AH
m−1Am−1

)−1
AH
m−1

(
p−Am−1 (p̂k)k∈I

)
.

This yields the estimate(p̂k − ˜̂pk)k∈I


2
≤
(AH

m−1Am−1)
−1AH

m−1


2

p−Am−1 (p̂k)k∈I

2
. (2.40)

According to [Bjö96, Subsection 1.4.3], we have
(AH

m−1Am−1)
−1AH

m−1


2
= 1/σ|I|(Am−1).

Thus, we obtain
(AH

m−1Am−1)
−1AH

m−1


2
≤ 1

√
M

⎛⎝2−e
2π

(
d
1+max(0, T

1−T )
)
Nε

⎞⎠ by (2.39) in the

proof of Theorem 2.9. Furthermore, we havep−Am−1 (p̂k)k∈I

2
≤
√
M
p−Am−1 (p̂k)k∈I


∞ =

√
M
(Rm(yj))M−1

j=0


∞
,

where Rm is the remainder from Theorem 2.3. We apply Theorem 2.3 and infer(Rm(yj))M−1

j=0


∞
≤ (2π)m

m!
d

m−α−Tβ
1−T εm Nm−α−β

∑
k∈I
|p̂k| ωα,β,γ(k)

≤ (ln 2)m

m!
d

m−α−Tβ
1−T

(
d1+max(0, T

1−T )
)−m  

=d
min(0,Tm)−α−Tβ

1−T

N−α−β
∑
k∈I
|p̂k| ωα,β,γ(k).

Altogether, this yields the assertion.

The steps of the proof of Theorem 2.10 will be also used in the proof of Theorem 2.46
to show an error bound for sampling functions from subspaces of the Wiener algebra A(Td)
at nodes of perturbed rank-1 lattices. If the perturbation parameter ε is not too large, the
order of the sampling error does not deteriorate compared to the results of Theorem 2.26 for
rank-1 lattice sampling.

2.3 Approximation of multivariate periodic signals

In this section, we consider the approximation of multivariate periodic signals f : Td → C from
certain weighted function spaces by trigonometric polynomials pI . In doing so, we assume that
we (approximately) know the corresponding function space of a function f and we choose the
frequency index set I ⊂ Zd accordingly. As mentioned in the introduction of this chapter,
we consider the subspaces Aα,β,γ(Td) as defined in (2.13) of the Wiener algebra A(Td) =
A0,0,1(Td) and the periodic Sobolev spaces of generalized mixed smoothness Hα,β,γ(Td) as
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defined in (2.11) for dominating mixed smoothness β ≥ 0 and isotropic smoothness α > −β,
where the weights ωα,β,γ(k) are defined as in (2.12) and the Fourier coefficients f̂k of a
function f are (formally) given by (2.5).

We proceed in this section as follows. First, we discuss various norm inequalities and give
several function space embeddings in Section 2.3.1, which will be used afterwards.

In Section 2.3.2, we consider the approximation of a function f ∈ A(Td) by the Fourier
partial sum SIf using the Fourier coefficients f̂k, k ∈ I, as defined in (2.6), and SIf is a
trigonometric polynomial pI from (2.1). The main results are shown as “truncation error” in
Table 2.1 and 2.2 in the introduction of this chapter.

In Section 2.3.3, we apply the results from Section 2.2.1 and use a rank-1 lattice rule
for the computation of the approximated Fourier coefficients f̂ Λ

k ≈ f̂k, k ∈ I, as defined
in (2.7) based on samples along a reconstructing rank-1 lattice Λ(z,M, I). Since we sam-
ple the function f ∈ A(Td), we additionally demand that f is continuous or identify f by
its continuous representative as discussed in Remark 2.15. In Table 2.1 and Table 2.2, we
present an overview of error estimates when approximating a function f ∈ A(Td) ∩ C(Td)
by the approximated Fourier partial sum SΛ

I f as defined in (2.8), where the corresponding

approximated Fourier coefficients f̂ Λ
k were defined in (2.7). For the parameter choices of

isotropic smoothness α and dominating mixed smoothness β in both tables, the condition
f ∈ A(Td) is fulfilled, cf. Lemma 2.11, 2.12 and 2.14. We remark that the admissible values
of the smoothness parameters α and β are also illustrated in Figure 2.6. In Table 2.4, we
summarize the error estimates with respect to the number of samples M from Section 2.3.3.
We observe for shape parameters T ∈ [0, 1) that we have about half of the main rate compared
to sampling along sparse grids, cf. [BKUV16]. The reason for this is that for reconstructing
rank-1 lattices Λ(z,M, I), in general, the rank-1 lattice size M is larger than the cardinal-
ity |I| of the frequency index set I, i.e., we require more samples than we have degrees of
freedom. As we see from the lower bounds in Theorem 2.42 and the third entry in Table 2.4
for the sampling errors f − SΛ

I f when using an arbitrary rank-1 lattice Λ(z,M), the corre-
sponding upper bounds in Table 2.4 when using reconstructing rank-1 lattices Λ(z,M, I) are
asymptotically best possible (up to logarithmic factors) for shape parameters T ∈ [0, 1) and
functions f ∈ Hα,β,1(Td).

In Section 2.3.4, we consider the case where we do not obtain the samples of the function f
exactly at rank-1 lattice nodes xj . Instead, we assume that the sampling nodes are perturbed
versions of these. If the perturbation is sufficiently small, we obtain similar results as in
Section 2.3.3.

In Section 2.3.5, we give various numerical examples for rank-1 lattice sampling and
compare the observed behavior with the theoretical results of this section. Moreover, we
present examples for sampling along perturbed rank-1 lattices.

2.3.1 Norm inequalities and embeddings of function spaces

Later in this chapter, we repeatedly use embeddings between subspaces Aα,β,γ(Td) of
the Wiener algebra A(Td) and periodic Sobolev spaces of generalized mixed smooth-
ness Hα,β,γ(Td).

Lemma 2.11. ([KPV15a, Lemma 2.2]). Let a function f ∈ Aα,β,γ(Td) be given, where the
smoothness parameters α, β ∈ R, β ≥ 0, α > −β, and the weight parameter γ ∈ (0, 1]d.
Then, we have ∥f |Hα,β,γ(Td)∥ ≤ ∥f |Aα,β,γ(Td)∥. For f ∈ Hα,β+λ,γ(Td) with λ > 1/2, we
have

∥f |Aα,β,γ(Td)∥ ≤ (1 + 2ζ(2λ))
d
2 ∥f |Hα,β+λ,γ(Td)∥, (2.41)
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setting error estimates

CBC Λ(z,M, Id,T,1N ) ∥f − SΛ
Id,T,1
N

f |L∞(Td)∥ ≤ ∥f − SΛ
Id,T,1
N

f |A(Td)∥

using [Käm14b, Tab. 3.1] ≲ ∥f |Aα,β,1(Td)∥

⎧⎪⎪⎨⎪⎪⎩
M

−(α
d
+β)

(
1− β

2β+α/d

)
for α > β ≥ 0,

M−β
2 (logM)

d−2
2
β for β > α = 0,

M−α+β
2 for − β < α < 0,

T := −α/β ∈ [−∞, 1) Corollary 2.40, β ≥ 0, α > −β

special Korobov lattice ∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ ∥f |Hα,β,1(Td)∥M
−(α

d
+β)

(
1− β

2β+α/d

)

T := −α/β ∈ [−∞, 0) Corollary 2.41, β ≥ 0, α > max
(
d (14 + 1

4

√
8β + 1− β), 0

)
arbitrary Λ(z,M) ∥ Id−SΛ

Id,T,1
N

|Hα,β,1(Td)→ H0,t,1(Td)∥ ≳M−α+β−t
2

T ∈ [0, 1) Theorem 2.42, β > 1
2 , t ≥ 0, α ≤ 0, α+ β > max{t, 12}

CBC Λ(z,M, Id,0,1N ) ∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ (logM)
d−2
2

(α+β−t)

M
α+β−t

2

using [Käm14b, Tab. 3.1] ∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ·

{
(logM)(d−1)/2 for α = 0,

1 for α < 0,

T := 0 Corollary 2.44, β > 1
2 , t ≥ 0, α ≤ 0, α+ β > max{t, 12}

special Korobov lattice ∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ ∥f |Hα,β,1(Td)∥M−α+β
2

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ ·

{
(logM)(d−1)α+β

2 for α = 0,

1 for α < 0,

T := −α/β ∈ [0, 1) Corollary 2.45, α ≤ 0, β > 1− α

Table 2.4: Overview of rank-1 lattice sampling error estimates from Section 2.3.3 with respect
to rank-1 lattice size M for functions f ∈ Aα,β,1(Td) and f ∈ Hα,β,1(Td) for certain choices
of the isotropic smoothness α and the dominating mixed smoothness β.

where ζ denotes the Riemann zeta function. Therefore, we have the continuous embeddings

Hα,β+λ,γ(Td) ↪→ Aα,β,γ(Td) ↪→ A(Td) ↪→ L2(Td) ↪→ L1(Td).

Proof. Using the Cauchy-Schwarz inequality, one obtains the inequalities, see e.g. the proof
of [KPV15a, Lemma 2.2].
The first embedding is due to (2.41) and the second one follows since the weights ωα,β,γ(k)
are bounded from below. The third embedding is due to Parseval’s identity, since we have

∥f |L2(Td)∥ =
√∑

k∈Zd |f̂k|2 ≤
∑

k∈Zd |f̂k| =: ∥f |A(Td)∥ for f ∈ A(Td).

As the embeddings in Lemma 2.11 suggest, periodic Sobolev spaces of generalized mixed
smoothness Hα,β,γ(Td) are subspaces of the Wiener algebra A(Td) for certain parameter
choices.
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Lemma 2.12. ([KPV15b, Lemma 4.6]). Let the dimension d ∈ N, d ≥ 2, and a function
f ∈ Hα,β,γ(Td) be given, where the smoothness parameters α, β ≥ 0 with α > d(12 − β) and
the weight parameter γ ∈ (0, 1]d. Then, the function f has an absolutely converging Fourier
series,

∑
k∈Zd |f̂k| <∞, and we have the continuous embedding Hα,β,γ(Td) ↪→ A(Td).

Proof. For f ∈ Hα,β,γ(Td), we apply the Cauchy-Schwarz inequality and obtain∑
k∈Zd

|f̂k| ≤
√∑

k∈Zd

1

ωα,β,γ(k)2

√∑
k∈Zd

ωα,β,γ(k)2|f̂k|2

=

√∑
k∈Zd

1

max(1, ∥k∥1)2α
∏d
s=1max(1, γ−1

s |ks|)2β
∥f |Hα,β,γ(Td)∥.

Due to
∏d
s=1max(1, γ−1

s |ks|) ≤ max(1, ∥k∥1)d
∏d
s=1 γ

−1
s for k ∈ Zd, we infer

∑
k∈Zd

|f̂k| ≤

(
d∏
s=1

γs

)−α
d

√∑
k∈Zd

d∏
s=1

1

max(1, |ks|)2(β+
α
d
)
∥f |Hα,β,γ(Td)∥

=

(
d∏
s=1

γs

)−α
d (

1 + 2 ζ
(
2
(
β +

α

d

))) d
2 ∥f |Hα,β,γ(Td)∥,

where ζ is the Riemann zeta function. Since β ≥ 0 and α > d(12 − β), we obtain 2
(
β + α

d

)
>

2
(
β + 1

2 − β
)
= 1 and consequently ζ

(
2
(
β + α

d

))
<∞. Due to this and since f ∈ Hα,β,γ(Td),

we infer
∑

k∈Zd |f̂k| <∞.

Remark 2.13. For non-negative integers α and β, we can give an alternative characterization
of periodic Sobolev spaces of generalized mixed smoothness Hα,β,1(Td), which is equivalent
with respect to the norms and which uses partial derivatives Dmf , m ∈ Nd0,

H̃α,β(Td) :=

⎧⎨⎩f ∈ L2(Td) : ∥f |H̃α,β(Td)∥2 :=
∑

∥m∥1≤α

∑
∥n∥∞≤β

∥Dm+nf∥22 <∞

⎫⎬⎭ , (2.42)

see e.g. [BKUV16] and the references therein.

Lemma 2.14. ([KPV15b, Lemma 4.9]). Let the dimension d ∈ N, d ≥ 2 and a function
f ∈ Hα,β,γ(Td) be given, where 0 > α > 1

2 − β and the weight parameter γ ∈ (0, 1]d. Then,

the function f has an absolutely converging Fourier series,
∑

k∈Zd |f̂k| <∞, and we have the
continuous embedding Hα,β,γ(Td) ↪→ A(Td).
Proof. As in the proof of Lemma 2.12, we apply the Cauchy-Schwarz inequality and obtain∑

k∈Zd

|f̂k| ≤
√∑

k∈Zd

1

max(1, ∥k∥1)2α
∏d
s=1max(1, γ−1

s |ks|)2β
∥f |Hα,β,γ(Td)∥.

Due to (2.21) and (2.22), we have max(1, ∥k∥1) ≤ d
∏d
s=1max(1, γ−1

s |ks|) for k ∈ Zd and
since α < 0, we infer

∑
k∈Zd

|f̂k| ≤

√∑
k∈Zd

d−α
d∏
s=1

1

max(1, γ−1
s |ks|)2(β+α)

∥f |Hα,β,γ(Td)∥

= d−
α
2 (1 + 2 ζ (2(α+ β)))

d
2 ∥f |Hα,β,γ(Td)∥.

Since we have 2(α+ β) > 1 and f ∈ Hα,β,γ(Td), we obtain
∑

k∈Zd |f̂k| <∞.
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Furthermore, the considered parameter choices yield the existence of a continuous repre-
sentative for a function from those spaces.

Remark 2.15. Since the Fourier coefficients of functions f from the Wiener algebra A(Td)
are absolutely summable, they have continuous representatives in L1(Td), A(Td) ↪→ C(Td).
As we are going to construct the approximant based on function values of the original func-
tion, we usually identify a function f ∈ A(Td) by its continuous representative given by
its Fourier series

∑
k∈Zd f̂k e

2πik·◦, see e.g. [Käm14b, equation (2.6)], and we denote this by
f ∈ A(Td) ∩ C(Td).

2.3.2 Truncation error

For functions f ∈ A(Td), we formally approximate f by the Fourier partial sum SIf as
defined in (2.6), where I ⊂ Zd is a frequency index set of finite cardinality, |I| < ∞. We
remark that the Fourier partial sum SIf is a trigonometric polynomial (2.2). In particular,
SIf is an orthogonal projection of the function f with respect to the L2(Td) scalar product.
The error f − SIf of this approximation will be called truncation error in this work and
may be measured in various norms. For estimating the error, we give upper bounds on the
maximum of the weight function ωα,β,γ of frequency index sets Id,T,γN as defined in (2.12) and
in (2.14).

Lemma 2.16. ([KPV15a, Lemma 3.2]). Let a dominating mixed smoothness β̃ ≥ 0, an
isotropic smoothness α̃ > −β̃, a shape parameter T ∈ [−∞, 1) and a weighted frequency

index set Id,T,γN be given, where the refinement N ≥ 1 and the weight parameter γ ∈ (0, 1]d.
Then, we have

max
k∈Zd\Id,T,γ

N

ω−α̃,−β̃,γ(k) ≤ N−(α̃+β̃)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Nd−1

∏d
s=1 γ

−1
s

)Tβ̃+α̃
d−T

for T > − α̃

β̃
,

1 for T = − α̃

β̃
,

d−
Tβ̃+α̃
1−T for T < − α̃

β̃
,

where − α̃

β̃
:= −∞ for β̃ = 0.

Proof. In the case of shape parameter T := −α̃/β̃, we observe due to the definition of the

frequency index sets Id,T,γN in (2.14) that

Zd \ Id,T,γN =

{
k ∈ Zd : max(1, ∥k∥1)

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

− 1
1−T < N−1

}

=

{
k ∈ Zd : max(1, ∥k∥1)

− α̃

α̃+β̃

d∏
s=1

max(1, γ−1
s |ks|)

− β̃

α̃+β̃ < N−1

}
.

This yields ω−α̃,−β̃,γ(k) =

(
max(1, ∥k∥1)

− α̃

α̃+β̃
∏d
s=1max(1, γ−1

s |ks|)
− β̃

α̃+β̃

)α̃+β̃
≤ N−(α̃+β̃)

for all k ∈ Zd \ Id,T,γN and the assertion follows. For the other cases, we refer to the proof of
[KPV15a, Lemma 3.2].

First, we estimate the truncation error f −SIf in the L∞(Td) norm for functions f from
subspaces Aα,β,γ(Td) of the Wiener algebra A(Td).
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Theorem 2.17. ([KPV15a, Theorem 3.3]). Let a function f ∈ Aα,β,γ(Td) and a weighted

frequency index set Id,T,γN be given, where the refinement N ≥ 1, the dominating mixed
smoothness β ≥ 0, the isotropic smoothness α > −β, −α

β
:= −∞ for β = 0, and the weight

parameter γ ∈ (0, 1]d. Then, the truncation error f − S
Id,T,γ
N

f is bounded by

∥f − S
Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − S
Id,T,γ
N

f |A(Td)∥

≤ N−(α+β) ∥f |Aα,β,γ(Td)∥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
Nd−1

∏d
s=1 γ

−1
s

)Tβ+α
d−T

for T > −α
β ,

1 for T = −α
β ,

d−
Tβ+α
1−T for T < −α

β .

More specifically for T := −α/β, the operator norm of Id−S
Id,T,γ
N

is bounded by

∥γ∥β∞ (N + 1)−(α+β) ≤ ∥ Id−S
Id,T,γ
N
|Aα,β,γ(Td)→ L∞(Td)∥ ≤ N−(α+β) (2.43)

where Id denotes the embedding operator from Aα,β,γ(Td) into L∞(Td).

Proof. We have f−S
Id,T,γ
N

f =
∑

k∈Zd\Id,T,γ
N

f̂k e
2πik·◦. Using the weights ωα,β,γ(k), we obtain

∥f − S
Id,T,γ
N

f |L∞(Td)∥ ≤
∑

k∈Zd\Id,T,γ
N

|f̂k| = ∥f − SId,T,γ
N

f |A(Td)∥

=
∑

k∈Zd\Id,T,γ
N

max(1, ∥k∥1)−α
d∏
s=1

max(1, γ−1
s |ks|)−β ωα,β,γ(k) |f̂k|

≤ max
k∈Zd\Id,T,γ

N

(
max(1, ∥k∥1)−α

d∏
s=1

max(1, γ−1
s |ks|)−β

) ∑
k∈Zd\Id,T,γ

N

ωα,β,γ(k) |f̂k|.

Applying Lemma 2.16 yields

∥f − S
Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − S
Id,T,γ
N

f |A(Td)∥

≤ N−(α+β)
∑

k∈Zd\Id,T,γ
N

ωα,β,γ(k) |f̂k|

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
Nd−1

∏d
s=1 γ

−1
s

)Tβ+α
d−T

for T > −α
β ,

1 for T = −α
β ,

d−
Tβ+α
1−T for T < −α

β .

(2.44)

and the upper bound follows. For the lower bound, we modify the explicit example from
[KPV15b, Lemma 4.4]. Let s′ ∈ {1, . . . , d} be an index where γs′ = ∥γ∥∞ and let the
trigonometric polynomial g(x) = e2πik

′·x be given, where k′ := (k′1, . . . , k
′
d)

⊤ with k′s := N+1

for s = s′ and k′s := 0 otherwise. We have k′ /∈ Id,T,γN and we calculate

∥g − S
Id,T,γ
N

g|L∞(Td)∥ = ∥g|L∞(Td)∥ = ess supx∈Td |e2πik
′·x| = 1 = ∥g|A(Td)∥

= ω−α,−β,γ(k′) ωα,β,γ(k′) |f̂k′ |

= (N + 1)−α
(
γ−1
s′ (N + 1)

)−β ∥g|Aα,β,γ(Td)∥
and we conclude that the norm of Id−S

Id,T,γ
N

is bounded from below by (2.43).
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Remark 2.18. If we had used the ∞-norm for the isotropic smoothness α in the definition
of the weights ωα,β,γ(k), then the third case in (2.44) would have the constant 1 instead

of d−
Tβ+α
1−T .

One can derive three cases for the relationship between the parameter T of a weighted
frequency index set Id,T,γN and the smoothness parameters α, β, see also [KPV15a, Section 3.1].

1. The weighted frequency index set Id,T,γN is “thinner” than required by the isotropic
smoothness α and dominating mixed smoothness β, i.e., the shape parameter T >
−α/β. Consequently, the approximation order with respect toN worsens as T increases,
see the first case in (2.44).

2. The weighted frequency index set Id,T,γN fits the isotropic smoothness α and dominating
mixed smoothness β, i.e., the shape parameter T = −α/β, see the second case in (2.44).

3. The weighted frequency index set Id,T,γN is “thicker” than required by the isotropic
smoothness α and dominating mixed smoothness β, i.e., the shape parameter T <
−α/β. Choosing the parameter T smaller than −α/β does not improve the estimate
for the truncation error compared to the case T = −α/β, see the third case in (2.44).

In this work, we concentrate on the second case, i.e., the weighted frequency index
set Id,T,γN is chosen in an “optimal” way.

Remark 2.19. Instead of the Banach spaces Aα,β,γ ↪→ A(Td), one may consider (more
general) spaces Aω(Td) := {f ∈ L1(Td) : ∥f |Aω(Td)∥ :=

∑
k∈Zd ω(k)|f̂k| < ∞} ↪→ A(Td)

with general weight function ω : Zd → [c,∞], c > 0, see e.g. [Käm14b, (2.9)]. Then, using the
index set IωN := {k ∈ Zd : ω(k) ≤ N}, |IωN | <∞, the truncation error can be estimated by

∥f − SIN f |L∞(Td)∥ ≤ ∥f − SIN f |A(T
d)∥ ≤ N−1∥f |Aω(Td)∥,

cf. [Käm14b, Lemma 2.2] and [KPV15b, Lemma 3.3]. In this setting, higher smoothness
leads to smaller frequency index sets IωN in contrast to a higher decay rate with respect to
the refinement N in Theorem 2.17.

For estimates in the Hilbert space norm, one may again consider different choices for the
shape parameter T ∈ [−∞, 1). Here we concentrate on the case where the shape parameter
is again chosen in an “optimal” way to match the norms on the left and right hand side. For
the other cases, we refer to [KPV15a, Theorem 3.4].

Theorem 2.20. Let smoothness parameters r, α ∈ R, β ≥ t ≥ 0, α+β > r+t ≥ 0, the shape
parameter T := −α−r

β−t with T := −∞ for β = t, a function f ∈ Hα,β,γ(Td) and a weighted

frequency index set Id,T,γN be given, where the refinement N ≥ 1 and the weight parameter
γ ∈ (0, 1]d. Then, the truncation error f − S

Id,T,γ
N

f is bounded by

∥f − S
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤ N−(α−r+β−t) ∥f |Hα,β,γ(Td)∥. (2.45)

More specifically, the operator norm of Id−S
Id,T,γ
N

is bounded by

∥γ∥β−t∞ (N + 1)−(α−r+β−t) ≤ ∥ Id−S
Id,T,γ
N
|Hα,β,γ(Td)→ Hr,t,γ(Td)∥ ≤ N−(α−r+β−t) (2.46)

where Id denotes the embedding operator from Hα,β,γ(Td) into Hr,t,γ(Td).
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Proof. We proceed as in the proof of [KPV15a, Theorem 3.4] and [KPV15b, Lemma 4.4].
For a function f ∈ Hα,β,γ(Td), we have

f − S
Id,T,γ
N

f =
∑

k∈Zd\Id,T,γ
N

f̂k e
2πik·◦.

Using the weights ωα,β,γ(k), we obtain

∥f − S
Id,T,γ
N

f |Hr,t,γ(Td)∥2 =
∑

k∈Zd\Id,T,γ
N

ωr,t,γ(k)2
ωα,β,γ(k)2

ωα,β,γ(k)2
|f̂k|2

≤ max
k∈Zd\Id,T,γ

N

ω−(α−r),−(β−t),γ(k)2
∑

k∈Zd\Id,T,γ
N

ωα,β,γ(k)2 |f̂k|2.

Applying Lemma 2.16 with α̃ := α − r and β̃ := β − t yields (2.45) which is also the up-
per bound in (2.46). For the lower bound, we modify the explicit example from [KPV15b,
Lemma 4.4]. Let s′ ∈ {1, . . . , d} be an index where γs′ = ∥γ∥∞ and let the trigonometric poly-

nomial g(x) = e2πik
′·x be given, where k′ := (k′1, . . . , k

′
d)

⊤ with k′s =

{
N + 1 for s = s′,

0 otherwise.

We have k′ /∈ Id,T,γN and we calculate

∥g − S
Id,T,γ
N

g|Hr,t,γ(Td)∥ = ∥g|Hr,t,γ(Td)∥ =
√
ωr−α,t−β,γ(k′)2 ωα,β,γ(k′)2 |f̂k′ |2

= (N + 1)r−α
(
γ−1
s′ (N + 1)

)t−β ∥g|Hα,β,γ(Td)∥
and we conclude that the norm of Id−S

Id,T,γ
N

is bounded from below by (2.46).

One can also formulate bounds on the truncation error with respect to the cardinality of
the weighted frequency index sets Id,T,γN . Here we concentrate on the unweighted case γ := 1.

Corollary 2.21. Let the dimension d ∈ N, d ≥ 2, the dominating mixed smoothness β ≥ 0,
the isotropic smoothness α > −β, the shape parameter T := −α/β with T := −∞ for β = 0,

and frequency index sets Id,T,1N be given, where the refinements N ≥ 1. Then, the operator
norm of Id−S

Id,T,1
N

is bounded by

∥ Id−S
Id,T,1
N
|Aα,β,1(Td)→ L∞(Td)∥ ≍ ∥ Id1−SId,T,1

N
|Aα,β,1(Td)→ A(Td)∥

≍

⎧⎪⎨⎪⎩
|Id,T,1N |−(β+α/d) for T ∈ [−∞, 0),
|Id,0,1N |−β(log |Id,0,1N |)(d−1)β for T = 0,

|Id,T,1N |−(α+β) for T ∈ (0, 1).

(2.47)

where Id and Id1 denote the embedding operators from Aα,β,1(Td) into L∞(Td) and
Aα,β,1(Td) into A(Td), respectively.

Proof. From (the proof of) Theorem 2.17, we obtain ∥ Id−S
Id,T,γ
N
|Aα,β,γ(Td) → L∞(Td)∥ ≍

∥ Id1−SId,T,γ
N
|Aα,β,γ(Td) → A(Td)∥ ≍ N−(α+β). We have N ≍ |Id,T,1N |

1−T/d
1−T = |Id,T,1N |

β+α/d
β+α

for T := −α/β ∈ [−∞, 0) and N ≍ |Id,T,1N | for T := −α/β ∈ (0, 1) due to (2.33) in Lemma 2.5.
This yields the lower and upper bounds for T ∈ [−∞, 1) \ {0}.
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For the upper bound in the case T = α = 0, we have N−1 ≍ |Id,0,1N | logd−1N ≤
|Id,0,1N |(log |Id,0,1N |)d−1 which results in the upper bound. For the corresponding lower bound,

we have N−1 ≍ |Id,0,1N | logd−1N = |Id,0,1N |21−d logd−1N2 ≳ |Id,0,1N | logd−1 |Id,0,1N | and the as-
sertion follows.

Corollary 2.22. Let the dimension d ∈ N, d ≥ 2, smoothness parameters r, α ∈ R, β ≥
t ≥ 0, α + β > r + t ≥ 0, the shape parameter T := −α−r

β−t with T := −∞ for β = t and

frequency index sets Id,T,1N be given, where the refinements N ≥ 1. Then, the operator norm
of Id−S

Id,T,1
N

is bounded by

∥ Id−S
Id,T,1
N
|Hα,β,1(Td)→ Hr,t,1(Td)∥

≍

⎧⎪⎨⎪⎩
|Id,T,1N |−(β−t+α−r

d
) for T ∈ [−∞, 0),

|Id,0,1N |−(β−t)(log |Id,0,1N |)(d−1)(β−t) for T = 0,

|Id,T,1N |−(α−r+β−t) for T ∈ (0, 1).

(2.48)

where Id denotes the embedding operator from Hα,β,1(Td) into Hr,t,1(Td).

Proof. From Theorem 2.20, we obtain ∥Id−S
Id,T,γ
N
|Hα,β,γ(Td)→ Hr,t,γ(Td)∥ ≍ N−(α−r+β−t).

We proceed as in the proof of Corollary 2.21 and obtain the assertion.

2.3.3 Rank-1 lattice sampling and error estimates

Since the Fourier coefficients f̂k, k ∈ Zd, of functions f ∈ A(Td) are usually neither known
nor easy to compute analytically, one computes approximations of the Fourier coefficients f̂k,
e.g. based on samples of the function f . Here, we consider the approximation by a lattice rule.
For this, we sample the function f at nodes xj :=

j
M z mod 1, j = 0, . . . ,M − 1, of a rank-1

lattice Λ(z,M). In doing so, we assume that f is continuous or identify f by its continuous
representative, cf. Remark 2.15. We compute all the approximated Fourier coefficients f̂ Λ

k ,
k ∈ I, by (2.7), i.e., by applying the same rank-1 lattice rule to the integrand in (2.5). This
computation can be performed in O(M logM + d |I|) arithmetic operations using a single
one-dimensional FFT of length M and a simple index transform. We approximate the func-
tion f by the approximated Fourier partial sum SΛ

I f as defined in (2.8), which itself is a
trigonometric polynomial pI ∈ ΠI of the form (2.2). In general, the approximated Fourier
coefficients f̂ Λ

k and the Fourier coefficients f̂k do not coincide. When we use the approxi-
mated Fourier partial sum SΛ

I f instead of the Fourier partial sum SIf for approximating the
function f , we additionally obtain the aliasing error SIf − SΛ

I f , see equation (2.9).
In this section, we give a formula for the aliasing error SIf −SΛ

I f in the general case and
we present an algorithm for rank-1 lattice sampling. In Subsection 2.3.3.1, we use these results
and we show error estimates for the sampling error f−SΛ

I f measured in the L∞(Td) norm with

respect to the refinement N of weighted frequency index sets I := Id,T,γN and the norm of func-
tions f ∈ Aα,β,γ(Td) when sampling along arbitrary reconstructing rank-1 lattices Λ(z,M, I).
Based on these estimates and inequality (2.41) from Lemma 2.11 of Section 2.3.1, we give
corresponding results measured in norms of periodic Sobolev spaces of generalized mixed
smoothness Hα,β,γ(Td) in Subsection 2.3.3.2, where the obtained results are not asymptoti-
cally optimal. In Subsection 2.3.3.3, we improve these results using a different proof technique,
see also [BKUV16], for special choices of the involved norms. The obtained results are asymp-
totically best possible in the main term with respect to the refinementN and may additionally
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contain logarithmic factors. In Subsection 2.3.3.4, the logarithmic factors are removed and
different choices of the involved norms are possible, but non-constructively obtained recon-
structing rank-1 lattices Λ(z,M, I) with generating vector z := (1, a, . . . , ad−1)⊤ of Korobov
form fulfilling additional properties have to be used. Finally, in Subsection 2.3.3.5, we con-
sider the sampling errors with respect to the number of samples M , which yields different
results in many cases compared to the estimates with respect to the refinement N from the
previous subsections, since reconstructing rank-1 lattices Λ(z,M, I) generally require more

samples M than degrees of freedom |Id,T,γN |, cf. Table 2.3.
We start with a characterization of the aliasing error SIf − SΛ

I f for arbitrary frequency
index sets I ⊂ Zd, |I| < ∞, and arbitrary rank-1 lattices Λ(z,M) ⊂ Td. This means we do
not assume any (reconstruction) property for the used rank-1 lattice Λ(z,M) or any structure
on the frequency index set I ⊂ Zd in the next lemma.

Lemma 2.23. ([KPV15a, Lemma 3.1]). Let a function f ∈ A(Td) ∩ C(Td), a frequency
index set I ⊂ Zd, |I| < ∞, and an arbitrary rank-1 lattice Λ(z,M) ⊂ Td with nodes xj :=
j
M z mod 1, j = 0, . . . ,M − 1, be given. The approximated Fourier coefficients f̂ Λ

k , k ∈ I,
computed by applying the lattice rule (2.7), are aliased versions of the Fourier coefficients f̂k
of the function f ,

f̂ Λ
k =

∑
h∈Zd

h·z≡ 0 (mod M)

f̂k+h =
∑

h∈Λ⊥(z,M)

f̂k+h,

where the dual lattice Λ⊥(z,M) is defined in (2.29). The aliasing error is given by

SIf − SΛ
I f = −

∑
k∈I

∑
h∈Λ⊥(z,M)\{0}

f̂k+h e2πik·◦. (2.49)

Proof. Since we have f( jM z mod 1) =
∑

h∈Zd f̂h e2πijh·z/M , we obtain

f̂ Λ
k =

1

M

M−1∑
j=0

∑
h∈Zd

f̂h e−2πij(k−h)·z/M =
∑
h∈Zd

f̂h
1

M

M−1∑
j=0

e−2πij(k−h)·z/M =
∑

h∈Λ⊥(z,M)

f̂k+h

and the assertion follows.

Since we do not want aliasing within the frequency index set I, we use a reconstructing
rank-1 lattice Λ(z,M, I) for I, cf. reconstruction property (2.30). Therefore, we only have
aliasing from Fourier coefficients f̂k with frequencies k ∈ Zd \ I. The method for computing
the approximated Fourier coefficients f̂ Λ

k , k ∈ I, is presented as Algorithm 2.4 and can be
realized using two lines of Octave / MATLAB code,

g_hat = fft( (f(xj))
M−1
j=0 );

(f̂ Λ
k )k∈I = g_hat(mod(I*z,M)+1) / M;

cf. [Käm14c].
We consider the sampling error f − SΛ

Id,T,γ
N

f in different norms in the remaining part of

this section. In doing so, we will also deal with the question on how good our approxima-
tion SΛ

Id,T,γ
N

f is. The answer to this question substantially depends on the used reference value

and the employed norms. Here, we are going to consider the refinement N of the frequency
index sets Id,T,γN and the number of samples M as reference values as well as the L∞(Td)
norm and Hilbert space norms Hα,β,γ(Td). Typically, we will use inequality (2.10).
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Algorithm 2.4 ([KPV15a, Algorithm 1]). Approximate reconstruction of a function f ∈
A(Td) ∩ C(Td) from sampling values on a reconstructing rank-1 lattice Λ(z,M, I) for I, i.e.,
application of Algorithm 2.1 on a function f ∈ A(Td) ∩ C(Td).
Input: I ⊂ Zd frequency index set of finite cardinality

Λ(z,M, I) reconstructing rank-1 lattice for I of size M
with generating vector z ∈ Zd

f =
(
f
(
j
M z mod 1

))M−1

j=0
function values f(xj), xj :=

j
M z mod 1, of

f ∈ A(Td) ∩ C(Td)

ĝ := FFT_1D(f)
for each k ∈ I do
f̂ Λ
k := 1

M ĝk·z modM

end for

Output: f̂
Λ
=
(
f̂ Λ
k

)
k∈I

approximated Fourier coefficients of
f ∈ A(Td) ∩ C(Td)

Complexity: O (M logM + d |I|)

We have already given upper bounds on the truncation error f−S
Id,T,γ
N

f in Theorem 2.17

and 2.20. Now, it remains to obtain bounds for the aliasing error S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f . The

corresponding estimates use the aliasing formula (2.49) in Lemma 2.23 as starting point and
rely on the equivalent reconstruction properties (2.25), (2.26), (2.27), (2.28) and (2.30) of

reconstructing rank-1 lattices Λ(z,M, Id,T,γN ). In many cases, we make use of the Minkowski
inequality for obtaining upper bounds.

Please note that the smoothness parameters α, β ∈ R in the remaining theorems and
corollaries of this section are chosen such that Aα,β,γ ↪→ A(Td) ↪→ C(Td) or Hα,β,γ ↪→
A(Td) ↪→ C(Td). Nevertheless, we demand for the sampled function f ∈ Aα,β,γ ∩ C(Td) or
f ∈ Hα,β,γ ∩ C(Td) to express that we sample the continuous representative of f given by its
Fourier series, cf. Remark 2.15.

2.3.3.1 Sampling error measured in L∞(Td) norm

First, we estimate the sampling error ∥f − SΛ
Id,T,γ
N

f |L∞(Td)∥ with the refinement N as ref-

erence value for functions f from subspaces Aα,β,γ(Td) of the Wiener algebra A(Td). For
simplicity, we concentrate on the special case where the shape parameter T and weight pa-
rameter γ matches the smoothness and weight parameters of the function spaces Aα,β,γ(Td).
The remaining cases, cf. [KPV15a, Theorem 3.3], are not more difficult but rather technical
as can be observed at the estimation of the truncation error f − S

Id,T,γ
N

f in the proof of

Theorem 2.17.

Theorem 2.24. ([KPV15a, Theorem 3.3]). Let a function f ∈ Aα,β,γ(Td)∩C(Td), a weighted
frequency index set I = Id,T,γN and a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) be given,
where the refinement N ≥ 1, the dominating mixed smoothness β ≥ 0, the isotropic smooth-
ness α > −β, the shape parameter T := −α

β with T := −∞ for β = 0 and the weight

parameter γ ∈ (0, 1]d. Then, the sampling error is bounded by

∥f − SΛ
Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − SΛ
Id,T,γ
N

f |A(Td)∥ ≤ 2N−(α+β) ∥f |Aα,β,γ(Td)∥. (2.50)
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Proof. Applying inequality (2.10) in the L∞(Td) norm, we estimate the sampling error by
∥f − SΛ

Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − S
Id,T,γ
N

f |L∞(Td)∥ + ∥S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f |L∞(Td)∥. For the

truncation error, we obtain

∥f − S
Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − S
Id,T,γ
N

f |A(Td)∥ ≤ N−(α+β) ∥f |Aα,β,γ(Td)∥

from Theorem 2.17. Last, we estimate the aliasing error. Due to (2.49), we infer

∥S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f |L∞(Td)∥ ≤
∑

k∈Id,T,γ
N

∑
h∈Λ⊥(z,M)\{0}

|f̂k+h|. (2.51)

As discussed in the proof of [BKUV16, Lemma 6], reconstruction property (2.30) yields

k + h ̸= k′ + h′ for all h,h′ ∈ Λ⊥(z,M) and k,k′ ∈ I with k ̸= k′ (2.52)

since otherwise 0 ̸= k − k′ = h′ − h ∈ Λ⊥(z,M) which is in contradiction to (2.30). By
considering the case h′ := 0, one obtains that

k + h /∈ I for all k ∈ I and h ∈ Λ⊥(z,M) \ {0}. (2.53)

This means each Fourier coefficient f̂k′ , k′ ∈ Zd \ Id,T,γN occurs at most once on the right

hand side in the estimate (2.51) and the Fourier coefficients f̂k, k ∈ Id,T,γN , do not occur.

Consequently, we obtain ∥S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f |L∞(Td)∥ ≤
∑

k∈Zd\Id,T,γ
N
|f̂k| and proceed as in

the estimate of the truncation error in the proof of Theorem 2.17. This yields the assertion.

From the previous theorem, we obtain upper bounds for the sampling error measured
in the L∞(Td) norm identical to the upper bounds for the truncation error in (2.43) of
Theorem 2.17 up to a constant factor of two for functions f from the weighted Banach
spaces Aα,β,γ(Td) and suitable frequency index sets Id,T,γN .

2.3.3.2 Sampling error measured in Hilbert space norm

Next, we estimate sampling errors f − SΛ
I f in the norm of periodic Sobolev spaces of gen-

eralized mixed smoothness Hr,t,γ(Td) of a continuous function f ∈ Aα,β,γ(Td) ⊂ Hα,β,γ(Td)
for suitable frequency index sets I = Id,T,γN .

Before we continue, we need to show embeddings into “thicker” weighted frequency index

sets Id,T̃ ,γN , i.e., for parameters T̃ ≤ T . These statements are going to be used in Theorem 2.26,
where we estimate the sampling error in the norm of periodic Sobolev spaces of generalized
mixed smoothness Hα,β,γ(Td).

Lemma 2.25. ([KPV15a, Lemma 2.4]). Let a refinement N ∈ R, N ≥ 1, a weight parameter
γ ∈ (0, 1]d and shape parameters T, T̃ ∈ [−∞, 1), −∞ ≤ T̃ ≤ T < 1, be given. Then, the
following upper bound holds

max
k∈Id,T,γ

N

ω
− T̃

1−T̃
, 1

1−T̃
,γ
(k) ≤

⎧⎨⎩d
T−T̃

(1−T )(1−T̃ )N for T̃ > −∞,
d

1
1−T N for T̃ = −∞,

where we define ∞
1+∞ := 1 and 1

1+∞ := 0. This implies the following inclusion

Id,T,γN ⊂

{
Id,T̃ ,γ
d(T−T̃ )/(1−T )/(1−T̃ )N

for T̃ > −∞,
Id,−∞,γ

d1/(1−T )N
for T̃ = −∞.
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Proof. We observe by (2.14) that

Id,T,γN =

{
k ∈ Zd : max(1, ∥k∥1)−

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

1
1−T ≤ N

}
.

Let T̃ > −∞ and k ∈ Id,T,γN . We estimate

N ≥ ω− T
1−T

, 1
1−T

,γ(k) = ω
− T

1−T
+ T−T̃

(1−T )(1−T̃ )
, 1
1−T

− T−T̃

(1−T )(1−T̃ )
,γ
(k)ω

− T−T̃

(1−T )(1−T̃ )
, T−T̃

(1−T )(1−T̃ )
,γ
(k)

= ω
− T̃

1−T̃
, 1

1−T̃
,γ
(k)

(∏d
s=1max(1, γ−1

s |ks|)
max(1, ∥k∥1)

) T−T̃

(1−T )(1−T̃ )

.

Due to T−T̃
(1−T )(1−T̃ )

≥ 0 and using the inequalities (2.21) and (2.22), we continue

N ≥ ω
− T̃

1−T̃
, 1

1−T̃
,γ
(k)

( ∏d
s=1max(1, γ−1

s |ks|)
d
∏d
s=1max(1, γ−1

s |ks|)

) T−T̃

(1−T )(1−T̃ )

and obtain d
T−T̃

(1−T )(1−T̃ )N ≥ ω
− T̃

1−T̃
, 1

1−T̃
,γ
(k). This yields k ∈ Id,T̃ ,γ

d(T−T̃ )/(1−T )/(1−T̃ )N
.

In order to prove all inclusions from the assertion above, we have to deal separately with
T̃ = −∞. Obviously, for T = T̃ = −∞, the inclusion from above holds. So, let us assume
−∞ = T̃ < T < 1. Due to the inequalities (2.21) and (2.22), we estimate for k ∈ Id,T,γN and
T ∈ (−∞, 1)

N ≥

(
d∏
s=1

max(1, γ−1
s |ks|)

) 1
1−T

max(1, ∥k∥1)−
T

1−T

≥
(
d−1max(1, ∥k∥1)

) 1
1−T max(1, ∥k∥1)−

T
1−T = d−

1
1−T max(1, ∥k∥1)

and obtain k ∈ Id,−∞,γ

d
1

1−T N

. The upper bound in the Lemma then follows.

The following theorem is a special case and a consequence of [KPV15a, Theorem 3.4].

Theorem 2.26. (special case of [KPV15a, Theorem 3.4]). Let smoothness parameters
r, t, α, β ∈ R, β ≥ t ≥ 0, α+ β > r + t ≥ 0, and the shape parameter T := −α−r

β−t ∈ [− r
t ,−

α
β ]

be given with T := −∞ for β = t, − r
t
:= −∞ for t = 0 and −α

β
:= −∞ for β = 0. Fur-

thermore, let a function f ∈ Aα,β,γ(Td) ∩ C(Td), a weighted frequency index set Id,T,γN and a

reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) be given, where the refinement N ≥ 1 and the
weight parameter γ ∈ (0, 1]d. Then, the sampling error is bounded by

∥f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤ N−(α−r+β−t)
(
∥f |Hα,β,γ(Td)∥+ ∥f |Aα,β,γ(Td)∥

)
(2.54)

and for functions f ∈
(
Hα,β+λ,γ(Td) ∩ C(Td)

)
⊂ Aα,β,γ(Td), λ > 1/2, this can be estimated

by

≤
(
1 + (1 + 2ζ(2λ))

d
2

)
N−(α−r+β−t)∥f |Hα,β+λ,γ(Td)∥. (2.55)
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Proof. For a function f ∈ Aα,β,γ(Td) ⊂ Hα,β,γ(Td), we have

f − S
Id,T,γ
N

f =
∑

k∈Zd\Id,T,γ
N

f̂k e
2πik·◦.

From Theorem 2.20, the first summand in (2.54) follows.
For the aliasing error of a function f ∈ Aα,β,γ(Td)∩C(Td), we have (2.49) and, in consequence
of the concaveness of the square root function, we conclude

∥S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤

⎛⎜⎝ ∑
k∈Id,T,γ

N

ωr,t,γ(k)2

⏐⏐⏐⏐⏐⏐
∑

h∈Λ⊥(z,M)\{0}

f̂k+h

⏐⏐⏐⏐⏐⏐
2
⎞⎟⎠

1
2

(2.56)

≤
∑

k∈Id,T,γ
N

⏐⏐⏐⏐⏐⏐
∑

h∈Λ⊥(z,M)\{0}

ωr,t,γ(k) f̂k+h

⏐⏐⏐⏐⏐⏐ (2.57)

≤ max
k∈Id,T,γ

N

ωr,t,γ(k)
∑

k∈Id,T,γ
N

∑
h∈Λ⊥(z,M)\{0}

⏐⏐⏐f̂k+h

⏐⏐⏐ . (2.58)

Since we have max
k∈Id,T,γ

N

{
ωr,t,γ(k)

}
=

⎧⎪⎨⎪⎩ max
k∈Id,T,γ

N

{
ω

r/t
1+r/t

, 1
1+r/t

,γ
(k)

}(1+r/t)t

for t > 0

max
k∈Id,T,γ

N

{
ω1,0,γ(k)

}r
for t = 0

⎫⎪⎬⎪⎭
and by applying Lemma 2.25 with T̃ = − r

t , we estimate

max
k∈Id,T,γ

N

{
ωr,t,γ(k)

}
≤
{

(d(T+
r
t
)/(1−T )/(1+ r

t
)N)t+r for t > 0

(d1/(1−T )N)r for t = 0

}
= d(Tt+r)/(1−T )N r+t.

(2.59)
Due to the reconstruction property (2.28), the representation property (2.52) follows and we
have (2.53). Thus, we infer

∥S
Id,T,γ
N

f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤ d
Tt+r
1−T N r+t

∑
k∈Zd\Id,T,γ

N

ωα,β,γ(k)

ωα,β,γ(k)

⏐⏐⏐f̂k⏐⏐⏐
≤ d

Tt+r
1−T N r+t max

k∈Zd\Id,T,γ
N

1

ωα,β,γ(k)
∥f |Aα,β,γ(Td)∥.

Applying Lemma 2.16 with α̃ := α and β̃ := β yields the second summand in (2.54).
Using inequality (2.41) we obtain the statement of Theorem 2.55 with the Hα,β+λ,γ(Td) norm
on the right hand side for functions f ∈

(
Hα,β+λ,γ(Td) ∩ C(Td)

)
⊂ Aα,β,γ(Td), λ > 1/2.

Alternatively, one obtains a different version of the upper bound (2.55) in Theorem 2.26
in the case β ≥ λ > 1/2 by substituting β̃ := β + λ.

Corollary 2.27. Let smoothness parameters β ≥ λ > 1/2, r, t, α ∈ R, β − λ ≥ t ≥ 0,
α + β − λ > r + t ≥ 0, the shape parameter T := − α−r

β−t−λ ∈ [− r
t ,−

α
β−λ ] with T := −∞ for

β − λ = t, a function f ∈ Hα,β,γ(Td) ∩ C(Td), a weighted frequency index set Id,T,γN and a

reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) be given, where the refinement N ≥ 1 and the
weight parameter γ ∈ (0, 1]d. Then, the sampling error is bounded by

∥f − SΛ
Id,T,γ
N

f |Hr,t,γ(Td)∥ ≤ C(d, r, t, α, β, λ) N−(α−r+β−t−λ)∥f |Hα,β,γ(Td)∥, (2.60)

where the constant C(d, r, t, α, β, λ) ≥ 1 depends on the parameters d, r, t, α, β, λ.
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Remark 2.28. As we observe from Theorem 2.26, the dominating mixed smoothness β on
the right hand side is increased by an additional additive factor λ > 1/2 . Alternatively, see
Corollary 2.27, this may be seen as losing an additive factor λ > 1/2 in the approximation

order with respect to the refinement N of the generalized hyperbolic cross Id,T,γN . The reason
for this is inequality (2.57) in combination with (2.58), where we switch between discrete
two-norms and one-norms, which themselves consist of inner sums of weighted Fourier coeffi-
cients, and use a “uniform” estimate. Subsequently, we introduce two alternative approaches
which solve this issue when measuring the sampling error f − SΛ

I f in the L2(Td) norm and
the function f in the Hα,β,γ(Td) norm of the periodic Sobolev space of generalized mixed
smoothness.

2.3.3.3 Improved sampling error measured in norm of Sobolev space of domi-
nating mixed smoothness when using reconstructing rank-1 lattices

In [BKUV16], it is shown that one can also obtain results similar to the ones from The-
orem 2.26 and Corollary 2.27 without the additive factor λ > 1/2 in the main order of

approximation using a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ). A key ingredient to

loose the additive factor λ > 1/2 is to partition the frequencies k + h, k ∈ Id,T,γN and
h ∈ Λ⊥(z,M)\{0}, in (2.56) into dyadic blocks, see e.g. [DTU16] and the references therein,
and to have control over the number of frequencies in each partition.

First we introduce additional notation from [BKUV16]. As frequency index sets, so-

called generalized dyadic hyperbolic crosses I = Hd,T
R :=

⋃
j∈Jd,T

R
Qj , are used, where R ∈ R,

R ≥ 1−d
1−T , denotes the refinement, T ∈ [0, 1) is an additional parameter,

Jd,TR := {j ∈ Nd0 : ∥j∥1 − T∥j∥∞ ≤ (1− T )R+ d− 1},

and Qj :=×d
s=1Qjs are sets of tensorized dyadic intervals

Qj :=

{
{−1, 0, 1} for j = 0,

([−2j ,−2j−1 − 1] ∪ [2j−1 + 1, 2j ]) ∩ Z for j > 0,
(2.61)

cf. [Kna00]. Then, for R ≥ 1, the cardinalities

|Hd,T
R | ≍

{
2RRd−1 for T = 0,

2R for 0 < T < 1,

for fixed dimension d and shape parameter T , see e.g. [BKUV16, Lemma 2] or the sur-
vey [DTU16].

Next, we state a relation between dyadic hyperbolic crosses Hd,0
R and hyperbolic cross

index sets Id,0,γN , see also [DTU16], which is required for estimating the sampling error.

Lemma 2.29. Let the dimension d ∈ N and the refinement N ∈ R, N ≥ 2, be given. Then,
we have Hd,0

⌈log2N⌉ ⊂ I
d,0,1
2dN

.

Proof. For each k ∈ Hd,0
⌈log2N⌉, there exists exactly one j ∈ Jd,0⌈log2N⌉ with k ∈ Qj . Due to the

definition of the tensorized dyadic interval Qj , we have
∏d
s=1max(1, |ks|) ≤

∏d
s=1 2

js = 2∥j∥1 .

Since j ∈ Jd,0⌈log2N⌉, we have ∥j∥1 ≤ ⌈log2N⌉+d−1 ≤ log2N+d and
∏d
s=1max(1, |ks|) ≤ 2dN

follows which yields k ∈ Id,0,1
2dN

.
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The previous lemma and the method in [BKUV16] give an improved upper bound for the
sampling error of a function from periodic Sobolev spaces Hα,β,1(Td) of generalized mixed
smoothness measured in the H0,t,1(Td) norm of periodic Sobolev spaces of dominating mixed
smoothness for isotropic smoothness α ≤ 0.

Theorem 2.30. Let the smoothness parameters β > 1
2 , α ≤ 0, t ≥ 0 with α+β > max{t, 12},

the dimension d ∈ N, d ≥ 2, a function f ∈ Hα,β,1(Td) ∩ C(Td), a hyperbolic cross in-

dex set Id,0,1N with refinement N ≥ 2d+1, and a reconstructing rank-1 lattice Λ(z,M, Id,0,1N )

for Id,0,1N be given. Then, we obtain

∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ N−(α+β−t)

{
(logN)(d−1)/2 for α = 0,

1 for α < 0,

where the constants may depend on the dimension d and smoothness parameters α, β, t.

Proof. As usually, we apply the triangle inequality (2.10),

∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≤ ∥f − S
Id,0,1N

f |H0,t,1(Td)∥+ ∥S
Id,0,1N

f − SΛ
Id,0,1N

f |H0,t,1(Td)∥,

and we obtain for the first summand on the right hand side

∥f − S
Id,0,1N

f |H0,t,1(Td)∥ ≤ N−(α+β−t)∥f |Hα,β,1(Td)∥

as in the proof of Theorem 2.26.
For the second summand, we have

∥S
Id,0,1N

f − SΛ
Id,0,1N

f |H0,t,1(Td)∥2 ≤
∑

k∈Id,0,1N

ω0,t,1(k)2

⏐⏐⏐⏐⏐⏐
∑

h∈Λ⊥(z,M)\{0}

f̂k+h

⏐⏐⏐⏐⏐⏐
2

due to (2.56). Following the proof of [BKUV16, Theorem 2], we apply the Cauchy-Schwarz
inequality followed by the Hölder inequality and we continue

≤
∑

k∈Id,0,1N

ω0,t,1(k)2

⎛⎝ ∑
h∈Λ⊥(z,M)\{0}

ω−α,−β,1(k + h)2

⎞⎠⎛⎝ ∑
h∈Λ⊥(z,M)\{0}

ωα,β,1(k + h)2|f̂k+h|2
⎞⎠

≤

(
max

k∈Id,0,1N

ω0,t,1(k)2

)⎛⎝ max
k∈Id,0,1N

∑
h∈Λ⊥(z,M)\{0}

ω−α,−β,1(k + h)2

⎞⎠
·

⎛⎜⎝ ∑
k∈Id,0,1N

∑
h∈Λ⊥(z,M)\{0}

ωα,β,1(k + h)2|f̂k+h|2

⎞⎟⎠ .

For the last part, we obtain∑
k∈Id,0,1N

∑
h∈Λ⊥(z,M)\{0}

ωα,β,1(k + h)2|f̂k+h|2 ≤ ∥f |Hα,β,γ(Td)∥2,
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see the proof of Theorem 2.26.
We define θ̃2β,α(k, z,M) :=

∑
h∈Λ⊥(z,M)\{0} ω

−α,−β,1(k + h)2 and we proceed analogously to
the proof of [BKUV16, Lemma 6]. This means we define the indicator function

φj(k) :=

{
0 for k ̸∈ Qj ,

1 for k ∈ Qj ,
k ∈ Zd, j ∈ Nd0,

and we achieve

θ̃2β,α(k, z,M) =
∑

h∈Λ⊥(z,M)\{0}

∑
j∈Nd

0

φj(k + h) ω−α,−β,1(k + h)2

for fixed k ∈ Id,0,1N . Due to the reconstruction property (2.28), the representation prop-

erty (2.52) follows for I = Id,0,1N and we have (2.53). Since we have Hd,0
−d+log2N

⊂ Id,0,1N for

N ≥ 2d+1 due to Lemma 2.29 and since the summands are only non-zero for k+h ∈ Qj due
to the definition of the indicator function φj , we infer

θ̃2β,α(k, z,M) =
∑

j∈Nd
0\J

d,0
−d+log2 N

∑
h∈Λ⊥(z,M)\{0}

φj(k + h) ω−α,−β,1(k + h)2

≤
∑

j∈Nd
0\J

d,0
−d+log2 N

(
max
k′∈Qj

ω−α,−β,1(k′)2
) ∑

h∈Λ⊥(z,M)\{0}

φj(k + h)

for fixed k ∈ Id,0,1N . Using the definition of the weights ω−α,−β,1 and of the tensorized dyadic
intervals Qj , we obtain

max
k′∈Qj

ω−α,−β,1(k′)2 = max
k′∈Qj

max(1, ∥k′∥1)−2α
d∏
s=1

max(1, |k′s|)−2β

≤ max
k′∈Qj

d−2αmax(1, ∥k′∥∞)−2α
d∏
s=1

(2js−2)−2β

≤ d−2α 24dβ 2−2α∥j∥∞ 2−2β∥j∥1 .

This yields

θ̃2β,α(k, z,M) ≲
∑

j∈Nd
0\J

d,0
−d+log2 N

2−(2α∥j∥∞+2β∥j∥1)
∑

h∈Λ⊥(z,M)\{0}

φj(k + h)

for k ∈ Id,0,1N . We apply [BKUV16, Lemma 5] with R := −d+ log2N and consequently, for

k ∈ Id,0,1N , we have

θ̃2β,α(k, z,M) ≲ N−1
∑

j∈Nd
0\J

d,0
−d+log2 N

2−(2α∥j∥∞+(2β−1)∥j∥1).

Using [BKUV16, Lemma 7] with R := −d+ log2N , we obtain

max
k∈Id,0,1N

θ̃2β,α(k, z,M) ≲ N−1

{
N−(2β−1+2α) for α < 0,

N−(2β−1)(logN)d−1 for α = 0,

and the assertion follows.
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Remark 2.31. Theorem 2.30 does not give results for the case where the isotropic smooth-
ness α > 0. This issue will be dealt with later in Theorem 2.36 using a different approach.

2.3.3.4 Optimal sampling error in L2(Td) norm with respect to refinement N for
special rank-1 lattices with generating vector of Korobov form

In the following, we discuss another approach for improving the results of Theorem 2.26
and Corollary 2.27 by removing the additional additive factor λ > 1/2 in the order of ap-
proximation, see [KPV15b] for more detailed explanations and proofs. This is done using
and extending ideas and techniques from [Tem86], where the case α = 0 was considered. For
simplicity, we concentrate on the unweighted case γ := 1. We remark that we only obtain ex-
istence results here, i.e., that there exist special reconstructing rank-1 lattices Λ(z,M, Id,T,1N )
such that the optimal approximation order with respect to the refinement N ∈ R, N ≥ 1,
of the frequency index set Id,T,1N , T ∈ [−∞, 1), is achieved. This means we do not have
a constructive method or conditions testable on a computer for obtaining such a special
reconstructing rank-1 lattice Λ(z,M, Id,T,1N ).

The following lemma states that there exists a reconstructing rank-1 lattice Λ(z,M, Id,T,1N )
with generating vector z := (1, a, . . . , ad−1) ∈ Nd of Korobov form where the number of points
in the dual lattice Λ(z,M)⊥ := {h ∈ Zd : h · z ≡ 0 (mod M)} is bounded in a certain way.

Lemma 2.32. We define the frequency index sets

IN :=

⎧⎪⎨⎪⎩
Id,T,1

2
d−T
1−T N

1+ d
d−T

⊃ D
(
Id,T,1N

)
for −∞ ≤ T ≤ 0,

D
(
Id,T,1N

)
for 0 < T < 1,

where the refinement N ∈ R, N ≥ 1, and the shape parameter T ∈ [−∞, 1). For fixed N
and T , let the rank-1 lattice size M ∈ N be a prime number such that

M >
d |IN |
1− 2−κ

+ 1 (2.62)

for arbitrarily chosen parameter κ ∈ R, κ > 0. We define the shells Fl(N) := IN2l \ IN2l−1 ,
l ∈ N, and for each generating vector z := (1, a, . . . , ad−1) ∈ Nd of Korobov form with
parameter a ∈ {1, . . . ,M − 1} the sets

M l
a := {h ∈ Fl(N) : h · z = h1 + h2 a+ . . .+ hd a

d−1 ≡ 0 (mod M) and h ̸=Mi ∀i ∈ Zd}

of non-trivially aliasing frequencies within these shells. Then, there exists a number a ∈
{1, . . . ,M − 1}, such that Λ(z,M, Id,T,1N ) is a reconstructing rank-1 lattice for Id,T,1N and

|M l
a| ≤ ANl :=

d

2κ − 1
(M − 1)−1 |Fl(N)| 2(l+1)κ, l ∈ N. (2.63)

Proof. Applying [KPV15b, Lemma 2.1] with φ(l) := 2l, which is a generalization of [Tem86,
Lemma 1], yields the assertion.
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Remark 2.33. In Lemma 2.32, the shells Fl(N) := IN2l \ IN2l−1 , l ∈ N, form a dyadic

partition of the frequency set Zd \ IN ⊂ Zd \D(Id,T,1N ) and the sets M l
a contain “non-trivial”

frequencies from the dual lattice Λ(z,M)⊥ intersected with the shell Fl(N), i.e., those fre-
quencies from the dual lattice Λ(z,M)⊥ which are not multiples of the rank-1 lattice size M .
The crucial property for improving the estimate of the sampling error is given in (2.63),
which bounds the number of non-trivial dual lattice points in the shells Fl(N). The Ko-
robov form of the generating vector z is required by the proof of [KPV15b, Lemma 2.1] since
Lagrange’s Theorem from number theory is used therein, which states that the congruence
h · z = h1 + h2 a+ . . .+ hd a

d−1 ≡ 0 (mod M) has at most d− 1 many roots modulo M for
fixed h ∈ Zd \ (MZd). Upper bounds for the numbers of “trivial” frequencies from the dual
lattice Λ(z,M)⊥ are given later in Lemma 2.35 and 2.38.

The next theorem is a special case of [KPV15b, Theorem 3.4] and a generalization of
[Tem86, Theorem 2]. The aliasing error S

Id,T,1
N

f−SΛ
Id,T,1
N

f is bounded from above for (contin-

uous) functions f from periodic Sobolev spaces of generalized mixed smoothness Hα,β,1(Td)
using the special reconstructing rank-1 lattices Λ(z,M, Id,T,1N ).

Theorem 2.34. Let the dimension d ∈ N, d ≥ 2, a parameter κ > 0, a function f ∈
Hα,β,1(Td) ∩ C(Td) with absolutely convergent Fourier series, smoothness parameters β ≥ 0
and α > −β be given. Furthermore, let the frequency index sets

Id,TN :=

⎧⎪⎨⎪⎩
Id,T,1

2
d−T
1−T N

1+ d
d−T

⊃ D
(
Id,T,1N

)
for −∞ ≤ T ≤ 0,

D
(
Id,T,1N

)
for 0 < T < 1,

where the refinement N ∈ R, N ≥ 1, and the shape parameter T := −α/β ∈ [−∞, 1). For

each fixed refinement N ∈ R, N ≥ 1, let Λ(z,M, Id,T,1N ) be a reconstructing rank-1 lattice
with generating vector z := (1, a, . . . , ad−1)⊤ ∈ Zd of Korobov form and prime rank-1 lattice

size M > d |IN |
1−2−κ + 1 which fulfills property (2.63). Additionally, let the inequality

⏐⏐⏐Id,TN2l
∩MZd

⏐⏐⏐ ≤ C |Id,TN2l
|

M
ψ(l) + 1 ∀l ∈ N (2.64)

be valid, where ψ : [0,∞)→ [1,∞),

ψ(l) :=

{
1 for −∞ ≤ T ≤ 0

ld−1 for 0 < T < 1,

and C > 0 is a constant which does not depend on N or M . Then, the aliasing error is
bounded by

∥S
Id,T,1
N

f − SΛ
Id,T,1
N

f |L2(Td)∥ ≤ 2α+β N−(α+β) ∥f |Hα,β,1(Td)∥

·
∞∑
l=0

√
2 (2 + (1− 2−κ)C ψ(l + 1)) 2(l+1)(κ

2
−α−β)

√ |Id,TN2l+1 |
|Id,TN |

.

(2.65)

Proof. We give the major steps of the proof. For more details, we refer to the proof of
[KPV15b, Theorem 3.4]. First, one defines shells Ul := Id,T,1

N2l+1 \ Id,T,1N2l
⊂ Zd, l ∈ N0, which
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fulfill the properties Ul′ ∩ Ul′′ = ∅ for l′ ̸= l′′ and suppf̂ \ I ⊂
⋃∞
l=0 Ul, where suppf̂ := {k ∈

Zd : f̂k ̸= 0}. Due to [KPV15b, Lemma 3.2] the aliasing error can be estimated by

∥S
Id,T,1
N

f − SΛ
Id,T,1
N

f |L2(Td)∥ ≤
∞∑
l=0

σl, σl :=

⎛⎝ 1

M

M−1∑
j=0

|SUl
f(xj)|2

⎞⎠1/2

.

Using additional notation and the Cauchy Schwarz inequality twice yields

σ2l =
∑

k,h∈Ul

f̂kf̂h
1

M

M−1∑
j=0

e2πij(k−h)·z/M =
∑
k∈Ul

f̂k
∑

h∈θl,k

f̂h

≤

⎛⎝∑
k∈Ul

|f̂k|2
⎞⎠1/2⎛⎝∑

k∈Ul

|θl,k|
∑

h∈θl,k

|f̂h|2
⎞⎠1/2

,

where θl,k :=
{
h ∈ Ul : 1

M

∑M−1
j=0 e2πij(k−h)·z/M = 1

}
= {h ∈ Ul : (k − h) · z ≡ 0 (mod M)}

for k ∈ Ul. Since k − h ∈ D(Id,T,1
N2l+1) ⊂ Id,TN2l+1 for k,h ∈ Ul and using Lemma 2.32, the

estimate

|θl,k| ≤ |{m ∈ Id,TN2l+1 : m · z ≡ 0 (mod M)}| ≤
l+1∑
j=1

ANj + C
|Id,T
N2l+1 |
M

ψ(l + 1) + 1 =: Bl

follows from properties (2.63) and (2.64). Next, one obtains∑
k∈Ul

∑
h∈θℓ,k

|f̂h|2 ≤
∑
k∈Ul

Bl|f̂k|2

and this yields

σ2l ≤

⎛⎝∑
k∈Ul

|f̂k|2
⎞⎠ 1

2
⎛⎝B2

l

∑
k∈Ul

|f̂k|2
⎞⎠ 1

2

≤ Bl
∑

k∈Zd\Id,T,1

N2l

|f̂k|2

≤ Bl (N2l)−2(α+β) ∥f |Hα,β,1(Td)∥2.

For the first sum in Bl, the estimate

l+1∑
j=1

ANj =

l+1∑
j=1

|Id,T
N 2j
\ Id,T

N 2j−1 |
d2(j+1)κ

(2κ − 1)(M − 1)
≤ d 2(l+1)κ

|Id,T
N2l+1 |
M

2

1− 2−κ

holds. Due to lower bound on the rank-1 lattice size M in property (2.62), we continue

Bl ≤ 2(l+1)κ+1 |I
d,T

N2l+1 |

|Id,T
N |

(2 + (1− 2−κ)C ψ(l + 1)) and this means

σl ≤ (N2l)−(α+β) ∥f |Hα,β,1(Td)∥
√
Bl

≤
√

2 (2 + (1− 2−κ)C ψ(l + 1)) 2α+β N−(α+β) ∥f |Hα,β,1(Td)∥ 2(l+1)(κ
2
−(α+β))

√ |Id,TN2l+1 |
|Id,TN |

,

which yields the assertion.

Before we can use Theorem 2.34 to obtain an estimate for the sampling error, we need to
show that condition (2.64) is fulfilled.
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Lemma 2.35. ([KPV15b, Lemma 4.5]). Let the dimension d ∈ N, d ≥ 2, a shape parameter

T ∈ [−∞, 0] and a numberM ∈ N,M ≥ 2, be given. We set Id,TN := Id,T,1

2
d−T
1−T N

1+ d
d−T

⊃ D(Id,T,1N )

and we have

|Id,T
N2l
∩MZd| ≤ CA(d, T )

|Id,T
N2l
|

M
+ 1

for all refinements N ∈ R, N ≥ 1, and levels l ∈ N, where CA(d, T ) ≥ 1 is a constant which
only depends on d and T .

Proof. We denote Ad,T
N2l

:= {m ∈ Id,T
N2l

: ∃m′ ∈ Zd such that m = Mm′} and we group the

indices m ∈ Ad,T
N2l

, where all components are zero, exactly one component is non-zero, . . . ,
d − 1 components are non-zero, and all d components are non-zero. For s = 0, . . . , d, we
denote Ad,T

N2l,s
:= {m ∈ Ad,T

N2l
: exactly s components of m are non-zero}.

• Case s = 0. We have Ad,T
N2l,0

= {0}.

• Case 1 ≤ s ≤ d. If exactly the components mi1 , . . . ,mis of m ∈ Ad,T
N2l

are non-zero,
i1, . . . , is ∈ {1, . . . , d}, ij ̸= ij′ for j ̸= j′, we have

ω− T
1−T

, 1
1−T (m) = max(1, ∥Mm′∥1)−

T
1−T

s∏
τ=1

max(1,M |m′
iτ |)

1
1−T

= M− T
1−T max(1, ∥m′∥1)−

T
1−T M

s
1−T

s∏
τ=1

max(1, |m′
iτ |)

1
1−T

= M
s−T
1−T ω− T

1−T
, 1
1−T (m′) ≤ 2

d−T
1−T N1+ d

d−T 2l(1+
d

d−T
)

⇐⇒ ω− T
1−T

, 1
1−T (m′) ≤ 2

d−T
1−T N1+ d

d−T 2l(1+
d

d−T
)

M
s−T
1−T

.

Since there are
(
d
s

)
choices for the non-zero components and due to the upper bounds

in Lemma 2.5, we have

⏐⏐⏐Ad,TN2l,s

⏐⏐⏐ ≤ (d
s

)
·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C1(d)

(
2N 2l

M

)s
for T = −∞,

C2(d, T )

(
2
d−T
1−T N

1+ d
d−T 2

l(1+ d
d−T

)
) s(1−T )

s−T

Ms for −∞ < T < 0,

C3(d)
(
2dN2 22l

Ms

)
logs−1

(
2dN2 22l

Ms

)
for T = 0,

for fixed d ∈ N.

Summing up for s ∈ {0, . . . , d} and using the lower bounds in Lemma 2.5, we obtain

• for T = −∞

|Ad,−∞
N2l

| ≤ 1 +

d∑
s=1

(
d

s

)
C1(d)

(
2N 2l

M

)s
≤ 1 +

(2N 2l)d

M
C1(d) (2

d − 1)

L. 2.5
≤ 1 +

|Id,−∞
2N 2l

|
M

C1(d)

c1(d)
(2d − 1) = (2d − 1)

C1(d)

c1(d)

|Id,T
N 2l
|

M
+ 1,
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• for −∞ < T < 0

⏐⏐⏐Ad,TN 2l

⏐⏐⏐ ≤ 1 +
d∑
s=1

(
d

s

)
C2(d, T )

(
2

d−T
1−T N1+ d

d−T 2l(1+
d

d−T
)

M
s−T
1−T

) s(1−T )
s−T

≤ 1 + C2(d, T )

(
2

d−T
1−T N1+ d

d−T 2l(1+
d

d−T
)
) d(1−T )

d−T

M
(2d − 1)

L. 2.5
≤ 1 +

C2(d, T )

c1(d)

⏐⏐⏐⏐Id,T
2
d−T
1−T N

1+ d
d−T 2

l(1+ d
d−T

)

⏐⏐⏐⏐
M

(2d − 1)

= (2d − 1)
C2(d, T )

c1(d)

|Id,T
N 2l
|

M
+ 1,

• for T = 0⏐⏐⏐Ad,02dN2 22l

⏐⏐⏐ ≤ 1 +

d∑
s=1

(
d

s

)
C3(d)

(
2dN2 22l

M s

)
logs−1

(
2dN2 22l

M s

)
≤ 1 + C3(d)

2dN2 22l

M
logd−1

(
2dN2 22l

)
(2d − 1)

L. 2.5
≤ 1 +

⏐⏐⏐Id,02dN2 22l

⏐⏐⏐
M

C3(d)

c3(d)
(2d − 1) = (2d − 1)

C3(d)

c3(d)

|Id,T
N 2l
|

M
+ 1.

We set

CA(d, T ) := (2d − 1) ·

⎧⎪⎨⎪⎩
C1(d)/c1(d) for T = −∞,
C2(d, T )/c1(d) for −∞ < T < 0,

C3(d)/c3(d) for T = 0,

and this yields the assertion.

Collecting the previous statements, we estimate the sampling error for functions f ∈
Hα,β,1(Td) ∩ C(Td). As mentioned before, the previous results in Theorem 2.30 did not give
improved statements for the case of isotropic smoothness α > 0.

Theorem 2.36. ([KPV15a, Theorem 3.4] and [KPV15b, Theorem 4.7]).
Let the dimension d ∈ N, d ≥ 2, a function f ∈ Hα,β,1(Td) ∩ C(Td) and a refinement N ∈ R,
N ≥ 2, be given, where the dominating mixed smoothness β ≥ 0 and the isotropic smoothness
α ≥ 0 with

α+ β >
d

2

2dβ + α

dβ + α

β + α

dβ + α
> 0. (2.66)

We set the shape parameter T := −α/β ∈ [−∞, 0]. Additionally, let a prime number M ∈ N,

M >

d

⏐⏐⏐⏐Id,T,1
2
d−T
1−T N

1+ d
d−T

⏐⏐⏐⏐
1− 2−κ

+ 1, κ := α+ β − d

2

2dβ + α

dβ + α

β + α

dβ + α
,

be given. Then, there exists a generating vector z := (1, a, . . . , ad−1)⊤ ∈ Zd of Korobov form

such that Λ(z,M, Id,T,1N ) is a reconstructing rank-1 lattice for the frequency index set Id,T,1N ,
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which additionally fulfills property (2.63). Using this lattice, the sampling error is bounded
by

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≤ (1 + C(d, α, β))N−(α+β) ∥f |Hα,β,1(Td)∥,

where C(d, α, β) > 0 is a constant which only depends on d, α, β.

Proof. Due to Lemma 2.32, the claimed reconstructing rank-1 lattice Λ(z,M, Id,T,1N ) exists.
We use Theorem 2.20 for estimating the truncation error f − S

Id,T,1
N

f and we proceed with

the aliasing error S
Id,T,1
N

f − SΛ
Id,T,1
N

f . Due to Lemma 2.35, condition (2.64) is fulfilled and

we can apply Theorem 2.34. This yields that there exists a reconstructing rank-1 lattice
Λ(z,M, Id,T,1N ) such that the aliasing error is bounded by

∥S
Id,T,1
N

f − SΛ
Id,T,1
N

f |L2(Td)∥ ≤
√
2 (2 + (1− 2−κ)C) 2α+β N−(α+β) ∥f |Hα,β,1(Td)∥

·
∞∑
l=0

2(l+1)(κ
2
−α−β)

√
|IN2l+1 |
|IN |

.

Now, one can estimate
∑∞

l=0 2
(l+1)(κ

2
−α−β)

√
|I

N2l+1 |
|IN | ≤ C̃(d, α, β), where C̃(d, α, β) > 0 is a

constant which only depends on d, α, β, cf. the proof of [KPV15b, Theorem 4.7] for detailed
estimates. Altogether, this yields the assertion.

Remark 2.37. In the case of functions from periodic Sobolev space of dominating mixed
smoothness H0,β,1(Td), β > 1, and hyperbolic cross frequency index sets Id,0,1N , the bound
M ≳ N2 logd−1N in Theorem 2.36 is asymptotically larger by the logarithmic factor (logN)

compared to Table 2.3. The reason for this is the choice Id,0N := I2dN2 ⊃ D(Id,0,1N ) in
Lemma 2.32, which is due to the technical reason that we do not know an optimal lower bound
for the difference set D(Id,0,1N ) corresponding to the upper bound |D(Id,0,1N )| ≲ N2 logd−2N .

Additionally, one may consider the case of shape parameter T := −α/β ∈ (0, 1). Here we
obtain results where the order of approximation with respect to the refinement N is identical
to Theorem 2.30. First we give an analog version of Lemma 2.35 which bounds the number
of trivial aliases.

Lemma 2.38. ([KPV15b, Lemma 4.8]). Let the dimension d ∈ N, d ≥ 2, a shape parameter

T ∈ (0, 1), a parameter κ > 0, and a number M ∈ N, M >
d |D(Id,TN )|
1−2−κ + 1 be given. Then, we

have

|D(Id,T
N2l

) ∩MZd| ≤ CA(d, T )
|D(Id,T

N2l
)|

M
ld−1 + 1

for all refinements N ∈ R, N ≥ 1, and levels l ∈ N, where CA(d, T ) ≥ 1 is a constant which
only depends on d and T .

Proof. We proceed analogously to the proof of Lemma 2.35. Especially, we use the properties
|D(Id,TN )| ≥ (2N+1)2 > N2 and the inclusions Id,TN ⊂ Id,0

d
T

1−T N
due to Lemma 2.25 with T̃ := 0

for N ∈ R, N ≥ 1, and 0 < T < 1. For more details, we refer to the proof of [KPV15b,
Lemma 4.8].
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Theorem 2.39. ([KPV15a, Theorem 3.4] and [KPV15b, Theorem 4.10]). Let the dimension
d ∈ N, d ≥ 2, a function f ∈ Hα,β,1(Td) ∩ C(Td) and a refinement N ∈ R, N ≥ 2, be given,
where the isotropic smoothness α < 0 and the dominating mixed smoothness β > 1− α. We
set the shape parameter T := −α/β ∈ (0, 1). Additionally, let a prime number M ∈ N,

M >
d
⏐⏐⏐D (Id,T,1N

)⏐⏐⏐
1− 21−α−β

+ 1,

be given. Then, there exists a generating vector z := (1, a, . . . , ad−1)⊤ ∈ Zd of Korobov form

such that Λ(z,M, Id,T,1N ) is a reconstructing rank-1 lattice for the frequency index set Id,T,1N ,
which additionally fulfills property (2.63). Using this lattice, the sampling error is bounded
by

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≤ (1 + C(d, α, β))N−(α+β) ∥f |Hα,β,1(Td)∥,

where C(d, α, β) > 0 is a constant which only depends on d, α, β.

Proof. The proof works analogously to the one of Theorem 2.36. Due to Lemma 2.32, the
claimed reconstructing rank-1 lattice Λ(z,M, Id,T,1N ) exists. We use Theorem 2.20 for estimat-
ing the truncation error f−S

Id,T,1
N

f and we proceed with the aliasing error S
Id,T,1
N

f−SΛ
Id,T,1
N

f .

Due to Lemma 2.38, condition (2.64) is fulfilled and we can apply Theorem 2.34. For the
remaining technical details, we refer to the proof of [KPV15b, Theorem 4.10].

The upper bounds in Theorem 2.36 and 2.39 are optimal with respect to the refinement N
up to constants which may depend on the dimension d and the smoothness parameters α, β,
see estimate (2.45) in Theorem 2.20.

2.3.3.5 Sampling error with respect to number of samples

Until now, we have considered the sampling error with respect to the refinement N of the
frequency index set Id,T,γN . Another commonly used criterion is the number of samples M .
Here again, we focus on the unweighted case with weight parameter γ := 1 to simplify
the notation and reduce the amount of technical details. We start with functions from the
subspaces Aα,β,1(Td) of the Wiener algebra A(Td).

Corollary 2.40. Let the smoothness parameters β ≥ 0, α > −β, the shape parameter
T := −α/β, the dimension d ∈ N, d ≥ 2, a function f ∈ Aα,β,1(Td) ∩ C(Td) and a frequency

index set Id,T,1N with refinement N ≥ 1 be given. Moreover, let Λ(z,M, Id,T,1N ) be a recon-

structing rank-1 lattice for Id,T,1N generated by [Käm14b, Table 3.1] or by Algorithm 2.2 with

Mstart ≲ |D(Id,T,1N )|. Then, the sampling error is bounded by

∥f − SΛ
Id,T,1
N

f |L∞(Td)∥ ≤ ∥f − SΛ
Id,T,1
N

f |A(Td)∥

≲ ∥f |Aα,β,1(Td)∥

⎧⎪⎪⎨⎪⎪⎩
M

−(α
d
+β)

(
1− β

2β+α/d

)
for α > β ≥ 0,

M−β
2 (logM)

d−2
2
β for β > α = 0,

M−α+β
2 for − β < α < 0,

where the constants may depend on the dimension d and smoothness parameters α, β.
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Proof. From Theorem 2.24, we obtain ∥f − SΛ
Id,T,γ
N

f |L∞(Td)∥ ≤ ∥f − SΛ
Id,T,γ
N

f |A(Td)∥ ≤

2N−(α+β) ∥f |Aα,β,γ(Td)∥ and we remark that the rank-1 lattice size M ≲ |D(Id,T,1N )| due to
the assumptions. For the first case, we use the inclusion (2.34) from Lemma 2.6 and obtain

M ≲ N
1−T

1−T/d
2−T/d
1−T/d = N

β+α
β+α/d

2β+α/d
β+α/d due to (2.33), which gives the upper bound.

In the second case, we use the upper bound M ≲ |D(Id,0,1N )| ≲ N2 logd−2N , cf. [Käm13,

Section 4] and [Käm14b, Section 3.8.2], which means N−1 ≲ M−1/2 log(d−2)/2N , and this
yields the upper bound due to N ≲M .
The third case follows analogously from |D(Id,T,1N )| ≤ |Id,T,1N |2 ≲ N2.

We continue with functions from periodic Sobolev spaces of generalized mixed smoothness
Hα,β,1(Td). First, we consider the case of frequency index sets Id,T,1N which are thicker
than hyperbolic crosses, T := −α/β ∈ [−∞, 0) and corresponding periodic Sobolev spaces
of generalized mixed smoothness Hα,β,1(Td) for dominating mixed smoothness β ≥ 0 and
isotropic smoothness α > max

(
d (14 + 1

4

√
8β + 1− β), 0

)
.

Corollary 2.41. Let the dimension d ∈ N, d ≥ 2, the dominating mixed smoothness
β ≥ 0, the isotropic smoothness α > max

(
d (14 + 1

4

√
8β + 1− β), 0

)
, the shape parameter

T := −α/β ∈ [−∞, 0), and a function f ∈ Hα,β,1(Td) ∩ C(Td) be given. For each fixed

refinement N ∈ R, N ≥ 2, there exists a reconstructing rank-1 lattice Λ(z,M, Id,T,1N ) with
generating vector z := (1, a, . . . , ad−1)⊤ ∈ Zd of Korobov form and prime rank-1 lattice size

M ≍ N
(2β+α/d)(α+β)

(β+α/d)2 which fulfills property (2.63). Using these lattices, the sampling error is
bounded from above by

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ ∥f |Hα,β,1(Td)∥M
−(α

d
+β)

(
1− β

2β+α/d

)
,

where the constants may depend on the dimension d and smoothness parameters α, β.

Proof. Since β ≥ 0 and α > max
(
d (14 + 1

4

√
8β + 1− β), 0

)
, inequality (2.66) is fulfilled.

From Theorem 2.36 and due to Bertrand’s postulate, we obtain the existence of the recon-

structing rank-1 lattices Λ(z,M, Id,T,1N ) of size M ≍
⏐⏐⏐⏐Id,T,1

2
d−T
1−T N

1+ d
d−T

⏐⏐⏐⏐ fulfilling property (2.63)

and that the sampling error is bounded from above by

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ N−(α+β) ∥f |Hα,β,1(Td)∥.

Due to the bounds on the cardinality of the frequency index set Id,T,1N in Table 2.3, we have

M ≍ N
2d−T
d−T

1−T
1−T/d = N

2dβ+α
α+dβ

α+β
β+α/d = N

2β+α/d
β+α/d

α+β
β+α/d and this yields the assertion.

Next, we deal with the case of hyperbolic cross index sets Id,0,1N and energy-norm based

hyperbolic crosses Id,T,1N , T := −α/β ∈ (0, 1). First, we give a lower bound of the error for
rank-1 lattice sampling.

Theorem 2.42. Let the dimension d ∈ N, d ≥ 2, the dominating mixed smoothness β > 1
2

and t ≥ 0 as well as the isotropic smoothness α ≤ 0 with α + β > max{t, 12} be given.
Moreover, let I ⊂ Zd be an arbitrary frequency index set of finite cardinality, |I| < ∞, and
Λ(z,M) ⊂ Td be an arbitrary rank-1 lattice. Then, the operator norm of Id−SΛ

I is bounded
by

∥ Id−SΛ
I |Hα,β,1(Td)→ H0,t,1(Td)∥ ≥ 2−(α+β−t+

1
2)M−α+β−t

2 ,

where Id denotes the embedding operator from Hα,β,1(Td) into H0,t,1(Td).
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Proof. We follow the proof of [BKUV16, Theorem 1] step-by-step. First define the two-
dimensional axis cross Xd√

M
:= {h ∈ Z2×{0}d−2 : ∥h∥1 = ∥h∥∞ ≤

√
M} and fix an arbitrary

rank-1 lattice Λ(z,M). Due to [BKUV16, Lemma 4], there exist two distinct frequencies
k′,k′′ ∈ Xd√

M
which alias with respect to the rank-1 Λ(z,M), i.e. k′ · z ≡ k′′ · z (mod M).

Using these indices, we construct the normalized fooling function

g(x) :=
e2πik

′·x − e2πik
′′·x√

ωα,β,1(k′)2 + ωα,β,1(k′′)2
, ∥g|Hα,β,1(Td)∥ = 1,

which is zero at all rank-1 lattice nodes xj :=
j
M z mod 1, i.e., we have g(xj) = 0 for all j =

0, . . . ,M − 1. Consequently, SΛ
I g = 0 and this means ∥g − SΛ

I g|H0,t,1(Td)∥ = ∥g|H0,t,1(Td)∥.
W.l.o.g. we assume ∥k′∥1 ≥ ∥k′′∥1 and we infer

ωα,β,1(k′) = max(1, ∥k′∥1)α
d∏
s=1

max(1, |k′s|)β ≥ ωα,β,1(k′′),

which yields

∥g|H0,t,1(Td)∥ =
√
ω0,t,1(k′)2 + ω0,t,1(k′′)2√
ωα,β,1(k′)2 + ωα,β,1(k′′)2

≥
√
ω0,t,1(k′)2√

2 ωα,β,1(k′)2
=

1√
2 ωα,β−t,1(k′)

.

For k ∈ Xd√
M
, we have ∥k∥∞ = ∥k∥1 = |ks′ | and consequently

ωα,β−t,1(k′) = max(1, |ks′ |)α+β−t ≤ max(1,
√
M)α+β−t ≤ (2

√
M)α+β−t,

which yields the assertion.

Remark 2.43. As discussed in [BKUV16, Remark 1], the lower bound for rank-1 lattice
sampling in Theorem 2.42 is also valid for methods that use samples along so-called integration
lattices, see e.g. [SJ94, Section 2.7] for definition. The corresponding proof works analogously
by finding two distinct aliasing frequencies k′,k′′ on the axis cross Xd√

M
and constructing a

fooling function g.

Now, we complement the obtained lower bounds for rank-1 lattice sampling by tight upper
bounds, which are sharp up to logarithmic factors. The upper bounds are obtained for sam-
pling along reconstructing rank-1 lattices Λ(z,M, I), which were generated by a constructive
method.

Corollary 2.44. Let the smoothness parameters β > 1
2 , α ≤ 0, t ≥ 0 with α+β > max{t, 12},

the dimension d ∈ N, d ≥ 2, a function f ∈ Hα,β,1(Td) ∩ C(Td) and a hyperbolic cross

index set Id,T,1N with refinement N ≥ 2d+1 be given. Moreover, let Λ(z,M, Id,0,1N ) be a

reconstructing rank-1 lattice for Id,0,1N generated by [Käm14b, Table 3.1] or by Algorithm 2.2

with Mstart ≲ |D(Id,0,1N )|. Then, the sampling error is bounded by

∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ (logM)
d−2
2

(α+β−t)

M
α+β−t

2

{
(logM)(d−1)/2 for α = 0,

1 for α < 0,

where the constants may depend on the dimension d and smoothness parameters α, β, t.
Moreover, the operator norm of Id−SΛ

Id,0,1N

is bounded from below by

∥ Id−SΛ
Id,0,1N

|Hα,β,1(Td)→ H0,t,1(Td)∥ ≳M−α+β−t
2
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for any rank-1 lattice Λ(z,M), where Id denotes the embedding operator from Hα,β,1(Td)
into H0,t,1(Td) and the constants may depend on d, α, β, t.

Proof. From Theorem 2.30, we obtain

∥f − SΛ
Id,0,1N

f |H0,t,1(Td)∥ ≲ ∥f |Hα,β,1(Td)∥ N−(α+β−t)

{
(logN)(d−1)/2 for α = 0,

1 for α < 0.

Since the rank-1 lattice size M ≲ |D(Id,0,1N )| ≲ N2 logd−2N , cf. [Käm13, Section 4] and

[Käm14b, Section 3.8.2], we have N−1 ≲M−1/2 log(d−2)/2N and this yields the upper bound
due to N ≲M .
The lower bound follows directly from the general results of Theorem 2.42.

In the next corollary, we reduce the logarithmic factors in the upper bound for certain
cases using the special rank-1 lattices from Theorem 2.36 and 2.39.

Corollary 2.45. Let the dimension d ∈ N, d ≥ 2, smoothness parameters α ≤ 0 and
β > 1 − α, the shape parameter T := −α/β ∈ [0, 1), and a function f ∈ Hα,β,1(Td) ∩ C(Td)
be given. For each fixed refinement N ∈ R, N ≥ 2, there exists a reconstructing rank-1
lattice Λ(z,M, Id,T,1N ) with generating vector z := (1, a, . . . , ad−1)⊤ ∈ Zd of Korobov form
and prime rank-1 lattice size M ≍ N2 logd−1N for α = 0 and M ≍ N2 for α < 0 which
fulfills property (2.63). Using these lattices, the sampling error is bounded by

∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ ∥f |Hα,β,1(Td)∥M−α+β
2

{
(logM)(d−1)α+β

2 for α = 0,

1 for α < 0,

where the constants may depend on the dimension d and smoothness parameters α, β. More-
over, the operator norm of Id−SΛ

Id,T,1
N

is bounded from below by

∥ Id−SΛ
Id,T,1
N

|Hα,β,1(Td)→ L2(Td)∥ ≳M−α+β
2

for any rank-1 lattice Λ(z,M), where Id denotes the embedding operator from Hα,β,1(Td)
into L2(Td) and the constants may depend on d, α, β.

Proof. For α = T = 0, we obtain from Theorem 2.36 that there exists a reconstructing
rank-1 lattice Λ(z,M, Id,0,1N ) of size M ≍ |Id,0,1

2dN2 | ≍ N2 logd−1N such that the sampling error

is bounded by ∥f − SΛ
Id,T,1
N

f |L2(Td)∥ ≲ N−(α+β) ∥f |Hα,β,1(Td)∥ ≲ M−α+β
2 (logN)(d−1)α+β

2

and this yields the upper bound since N ≤M .
For α < 0, we apply Theorem 2.39 and obtain that there exists a reconstructing rank-1
lattice Λ(z,M, Id,T,1N ) of the claimed size which yields the upper bound.
The lower bound follows directly from the general results of Theorem 2.42.

Compared to the upper bound from Corollary 2.44, we were able to decrease the loga-
rithmic factor in the upper bound in the dominating mixed smoothness case α = 0 when
β < d − 1. Otherwise, the upper bound in Corollary 2.44 is asymptotically smaller. For
α < 0, the upper bounds in Corollary 2.45 correspond (asymptotically) to the upper bounds
from Corollary 2.44. However, the results are based on Lemma 2.32 and are therefore based
on a non-constructive proof.
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2.3.4 Perturbed rank-1 lattice sampling

In Section 2.2.2, we have dealt with the fast and stable approximate reconstruction of multi-
variate trigonometric polynomials pI by sampling at perturbed nodes yj , j = 0, . . . ,M − 1,

of a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ). Based on these results and the results from
Section 2.3.3, we consider the approximation of functions f ∈ Aα,β,γ(Td)∩C(Td) by sampling
at perturbed rank-1 lattice nodes yj , j = 0, . . . ,M − 1, see also [KPV15a]. We compute the
approximated Fourier coefficients

˜̂
f := argmin

ĝ∈C|I
d,T,γ
N |

∥Am−1 ĝ − f∥2 (2.67)

by solving the normal equation AH
m−1Am−1

˜̂f = AH
m−1f , where ˜̂f :=

(
˜̂
fk

)
k∈Id,T,γ

N

and

f := f(yj)
M−1
j=0 . Using the LSQR algorithm [PS82] in combination with (2.18) and its

adjoint version, we obtain an approximation
˜̂
h of the approximated Fourier coefficients

˜̂
f in

O
(
K md(M logM + d |I|)

)
arithmetic operations, where K is the maximal number of iter-

ations of the LSQR algorithm. Choosing K =
⌈

log(2κ(Am−1))−log δ
log(κ(Am−1)+1)−log(κ(Am−1)−1)

⌉
guarantees a

relative error ∥ ˜̂f − ˜̂
h∥2/∥ ˜̂f∥2 ≤ δ, cf. [Bjö96, Sec. 7.4.4], where κ(Am−1) denotes the condi-

tion number of the approximated Fourier matrix Am−1. If this condition number is unknown,
we may use an upper bound of κ(Am−1), for instance the upper bound from Theorem 2.9.
We stress the fact that the LSQR algorithm [PS82] in combination with (2.18) and its adjoint
version indicates a fast reconstruction algorithm for moderate dimensionality d and moderate
Taylor expansion parameter m.

The following theorem states that we obtain the same error bound as in Theo-
rem 2.26 up to the additional constant C(d, T,m) and the additional stability term

1/
(
2− exp

(
2π
(
d1+max(0, T

1−T )
)
Nε
))

in the aliasing error.

Theorem 2.46. ([KPV15a, Theorem 5.1]). Let smoothness parameter r, t, α, β ≥ 0, β ≥
t ≥ 0, α + β > r + t, be given and the shape parameter T := −α−r

β−t ∈ [− r
t ,−

α
β ] with

T := −∞ for β = t, − r
t
:= −∞ for t = 0 and −α

β
:= −∞ for β = 0. Furthermore,

let a Taylor expansion degree m ∈ N with 0 < α + β ≤ m, a weighted frequency index
set Id,T,γN and a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) be given, where the refinement
N ≥ 1 and the weight parameter γ ∈ (0, 1]d. Furthermore, let a set of sampling nodes
Y = {yj}M−1

j=0 be given, where ∥yj − xj∥∞ ≤ ε, j = 0, . . . ,M − 1, for fixed perturbation

parameter ε, 0 ≤ ε <
(
2π
(
d1+max(0, T

1−T )
)
N
)−1

ln 2. Then, the error of the approximation

SY
Id,T,γ
N

f(x) =
∑

k∈Id,T,γ
N

˜̂
fk e

2πik·x of a function f ∈ Aα,β,γ(Td)∩C(Td) with
(
˜̂
fk

)
k∈Id,T,γ

N

from

(2.67) is bounded by

∥f − SY
Id,T,γ
N

f |Hr,t,γ(Td)∥

≤ N−(α−r+β−t)

⎛⎜⎝∥f |Hα,β,γ(Td)∥+ C(d, T,m)

2− e2π
(
d
1+max

(
0, T

1−T

))
Nε

∥f |Aα,β,γ(Td)∥

⎞⎟⎠ , (2.68)

≤

⎛⎜⎝1 +
C(d, T,m)

2− e2π
(
d
1+max

(
0, T

1−T

))
Nε

⎞⎟⎠N−(α−r+β−t) ∥f |Aα,β,γ(Td)∥,
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where C(d, T,M) := 1 +

(
d

T
1−T ln 2

)m
m! .

Proof. We apply the triangle inequality (2.10) on ∥f − SY
Id,T,γ
N

f |Hr,t,γ(Td)∥ and estimate the

truncation error ∥f − S
Id,T,γ
N

f |Hr,t,γ(Td)∥ as in the proof of Theorem 2.26.

Next, we estimate the aliasing error ∥S
Id,T,γ
N

f − SY
Id,T,γ
N

f |Hr,t,γ(Td)∥. Based on the normal

equation AH
m−1Am−1

˜̂f = AH
m−1f , we calculate

D
(
˜̂
fk − f̂k

)
k∈Id,T,γ

N

= D
(
AH
m−1Am−1

)−1
AH
m−1

(
f −Am−1

(
f̂k

)
k∈Id,T,γ

N

)
where D := diag

(
ωr,t,γ(k)

)
k∈Id,T,γ

N
, Consequently, we obtainSId,T,γ

N
f − SY

Id,T,γ
N

f |Hr,t,γ(Td)
 =

D (
˜̂
fk − f̂k

)
k∈Id,T,γ

N


2

≤ ∥D∥2
(AH

m−1Am−1)
−1AH

m−1


2

f −Am−1

(
f̂k

)
k∈Id,T,γ

N


2

and we proceed as in the proof of Theorem 2.10 for
(AH

m−1Am−1)
−1AH

m−1


2
. We inferf −Am−1

(
f̂k

)
k∈Id,T,γ

N


2

≤
√
M

f −Am−1

(
f̂k

)
k∈Id,T,γ

N


∞

≤
√
M

(f −A
(
f̂k

)
k∈Id,T,γ

N


∞

+

(A−Am−1)
(
f̂k

)
k∈Id,T,γ

N


∞

)
=
√
M

(
(∑

k∈Zd\Id,T,γ
N

f̂k e2πikyj

)M−1

j=0


∞

+
(Rm(yj))M−1

j=0


∞

)
, (2.69)

where Rm(yj) =
∑

k∈Id,T,γ
N

f̂k e2πik·yj −
∑m−1

|ν|=0D
ν
(∑

k∈Id,T,γ
N

f̂k e2πik·xj

)
(yj−xj′ )

ν

ν! . Now, we

apply inequality (2.44) from the proof of Theorem 2.24 on the first summand and Theo-
rem 2.3 on the second summand in (2.69). Last, we obtain ∥D∥2 = max

k∈Id,T,γ
N

{
ωr,t,γ(k)

}
≤

d(r+Tt)/(1−T )N r+t due to (2.59) in the proof of Theorem 2.26. Altogether, this yields the
assertion.

As in Theorem 2.26, we may use the inequality (2.41) in order to obtain the state-
ment of Theorem 2.46 with the Hα,β+λ,γ(Td) norm on the right hand side for functions
f ∈ Hα,β+λ,γ(Td) ∩ C(Td), λ > 1/2.

2.3.5 Numerical examples

All numerical tests of this section were performed in IEEE 754 double precision arithmetic
using MATLAB R2015b on a computer with Intel Xeon E7-4880 2.50 GHz CPU. Parts of
the results have already been published in [KPV15a] and [KPV15b].

We consider the test functions Gd3,4 : Td → C from [KPV15a] and [KPV15b], Gd3,4(x) :=∏d
s=1 g3,4(xs), where the one-dimensional function g3,4 : T→ C is defined by

g3,4(x) := 8

√
6π

6369π − 4096

(
4 + sgn((x mod 1)− 1/2)

[
sin(2πx)3 + sin(2πx)4

])
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and sgn denotes the signum function, sgn(x) := x/|x| for x ̸= 0 and sgn(0) := 0. The Fourier
coefficients of g3,4 are given by

(ĝ3,4)k = 8

√
6π

6369π − 4096

⎧⎪⎪⎨⎪⎪⎩
−12

(k−3)(k−1)(k+1)(k+3)π for k ∈ 2Z \ {0},
48i

(k−4)(k−2)k(k+2)(k+4)π for k odd,

4− 4
3π for k = 0,

and consequently, we have Gd3,4 ∈ A0,3−ϵ,1(Td), Gd3,4 ∈ H0, 7
2
−ϵ,1(Td), ϵ > 0. Moreover, we re-

mark that ∥Gd3,4|L2(Td)∥ = 1 and ∥Gd3,4|A(Td)∥ =
(
8
√

6π
6369π−4096

(
4 + 388

105π

))d
≈ (1.42522)d.

As frequency index sets I, we use hyperbolic crosses Id,0,1N with various refinements N ∈ N
in this section. For further considerations with different shape parameters T and weight
parameters γ, we refer to the detailed considerations in [KPV15a, Section 6] and [KPV15b,
Section 5].

First, we investigate the truncation error Gd3,4 − S
Id,0,1N

Gd3,4 with respect to the refine-

ment N , which is an upper bound for the sampling error of our reconstruction method.

Example 2.47. For d ∈ {2, 3, 4, 5, 6} and N ∈ {20, 21, 22, . . . , 28}, the relative truncation
error

∥Gd3,4 − SId,0,1N
Gd3,4|A(Td)∥/∥Gd3,4|A(Td)∥

is depicted in Figure 2.8a. From Theorem 2.17 with β = 3 − ϵ and α = 0, we obtain the
upper bound

∥Gd3,4 − SId,0,1N
Gd3,4|L∞(Td)∥/∥f |A(Td)∥ ≤ ∥Gd3,4 − SId,0,1N

Gd3,4|A(Td)∥/∥f |A(Td)∥

≤ N−3+ϵ ∥Gd3,4|A0,3−ϵ,1(Td)∥/∥Gd3,4|A(Td)∥

and the observed decay rate corresponds roughly to the estimates. In this upper bound, the
factor ∥Gd3,4|A0,3−ϵ,1(Td)∥/∥Gd3,4|A(Td)∥ may be large, for instance > 13d for ϵ = 0.05.

Additionally, the relative truncation error measured in the L2(Td) norm is shown in Fig-
ure 2.8b. From Theorem 2.20 with β = 7/2− ϵ and r = t = α = 0, the upper bound

∥Gd3,4 − SId,0,1N
f |L2(Td)∥/∥Gd3,4|L2(Td)∥ ≤ N−7/2+ϵ ∥Gd3,4|H0,7/2−ϵ,1(Td)/∥Gd3,4|L2(Td)∥.

We observe that the rates of the measured errors approximately decay as the theoretical upper
bounds suggest. Especially for higher dimensions d, the observed decay rate is slightly smaller,
which most likely is caused by the relatively small values of the refinement N and the large
constants (increasing with d). For instance, the factor ∥Gd3,4|H0,7/2−ϵ,1(Td)/∥Gd3,4|L2(Td)∥ is
greater than 4.7d for ϵ = 0.05.

Next, we consider rank-1 lattice sampling. In doing so, we use the reconstructing rank-1
lattices Λ(z,M, Id,0,1N ) for hyperbolic cross frequency index sets Id,0,1N from Table 2.5, which
were constructed by the implementation [Vol16b, genlattice cbc incr bisect] of Algo-
rithm 2.3 and parts of this table can be found as [KPV15a, Table 6.2b]. Moreover, we depict

the oversampling factors M/|Id,0,1N | in Figure 2.12a. The observed oversampling factors are
still moderate for the considered refinements N and approximately grow as the asymptotic
upper bound O(N/ logN) on the existence of a reconstructing rank-1 lattice suggests, which
can be derived from Table 2.3.

Now, we approximately reconstruct the Fourier coefficients (Ĝd3,4)k, k ∈ I
d,0,1
N , of the test

functions Gd3,4 using rank-1 lattice sampling, cf. Algorithm 2.4.
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Figure 2.8: Relative A(Td) truncation errors rel trunc err A := ∥Gd3,4 −
SIG

d
3,4|A(Td)∥/∥Gd3,4|A(Td)∥ and L2(Td) truncation errors rel trunc err L2 :=

∥Gd3,4 − SIG
d
3,4|L2(Td)∥/∥Gd3,4|L2(Td)∥ for Gd3,4 with respect to the refinement N of

hyperbolic cross frequency index sets I := Id,0,1N .

Example 2.48. We employ the reconstructing rank-1 lattices Λ(z,M, Id,0,1N ) from Ta-
ble 2.5. The resulting sampling errors Gd3,4 − SΛ

Id,0,1N

Gd3,4 measured in the relative A(Td)

and L2(Td) norm are only slightly larger than the corresponding truncation errors Gd3,4 −
S
Id,0,1N

Gd3,4. In Figure 2.9, we depict the relative sampling errors in the A(Td) norm with

respect to the number of (approximately) computed Fourier coefficients |Id,0,1N | and lines

≍ |Id,0,1N |−3 (log |Id,0,1N |)3(d−1) which decay (asymptotically) slightly faster than the theo-

retical upper bounds |Id,0,1N |−3+ϵ (log |Id,0,1N |)(3−ϵ)(d−1) from Theorem 2.24 and the proof of
Corollary 2.21. The observed errors nearly decay as the upper bounds suggest.

Additionally, we consider the relative sampling errors in the L2(Td) norm. In Figure 2.10a, we
show the relative sampling errors with respect to the number of (approximately) computed

Fourier coefficients |Id,0,1N | and lines ≍ |Id,0,1N |−
7
2 (log |Id,0,1N |)

7
2
(d−1)+ d−1

2 (approximately) cor-

responding to the (asymptotic) upper bounds |Id,0,1N |−
7
2
+ϵ (log |Id,0,1N |)(

7
2
−ϵ)(d−1)+ d−1

2 which
follow from Theorem 2.30 and the proof of Corollary 2.21. Again, the observed errors nearly
decay as the upper bounds suggest. In Figure 2.17a, we depict the relative sampling errors
for dimensions d ∈ {2, 3, . . . , 10}. For higher dimensions d ≥ 7, the decay is slower and we
presumably observe pre-asymptotic behavior. For numerical results with weighted hyperbolic
cross index sets Id,0,γN , we refer to [KPV15a], e.g. see [KPV15a, Fig. 6.1b] for γ := 0.5.

Moreover, we consider the relative L2(Td) sampling error as a function of the rank-1 lattice

size M in Figure 2.10b. Additionally, the reference lines ≍ M− 7
4 (logM)

7
4
(d−2)+ d−1

2 are de-
picted in Figure 2.10b, which are (asymptotically) slightly smaller than the upper bounds
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N\s 1 2 3 4 5 6 7

1 1 3 9 27 81 243 729
2 1 5 23 105 479 2 185 9 967
4 1 9 58 343 1 911 10 579 57 897
8 1 17 163 1 035 5 727 33 769 191 808

16 1 33 579 3 628 21 944 169 230 1 105 193
32 1 65 2 179 11 525 106 703 785 309 6 897 012
64 1 129 8 451 47 463 475 829 3 752 318 31 829 977
128 1 257 33 283 176 603 2 244 100 20 645 268 192 757 285
256 1 513 132 099 753 249 10 561 497 136 178 715 1 400 567 254
512 1 1 025 526 339 2 773 801 39 632 648 – –

Table 2.5: Parameters zs depending on the refinement N of reconstructing rank-1 lattices

Λ
(
z = (z1, . . . , zd)

⊤,M = zd+1, I
d,0,1
N

)
for hyperbolic cross frequency index sets Id,0,1N .
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Figure 2.9: Relative A(Td) sampling errors rel sampl err A := ∥Gd3,4 −
SΛ
I G

d
3,4|A(Td)∥/∥Gd3,4|A(Td)∥ for Gd3,4 with respect to the cardinality |I| of hyperbolic

cross frequency index sets I := Id,0,1N for increasing refinements N and fixed dimension d.

≲M− 7
4
+ ϵ

2 (logM)(
7
4
− ϵ

2
)(d−2)+ d−1

2 from Corollary 2.44. The error plots decay similarly as the
reference lines and they might decay slightly faster in the cases d = 2, 3, 4. We investigate the
latter cases more closely in Figure 2.11, where we consider scaled relative L2(Td) sampling
errors. We scale by the M dependent factors in the upper bound of Corollary 2.44 in Fig-
ure 2.11a and by the factor M−β/2 from the lower bound of Corollary 2.44 in Figure 2.11b.

Both bounds differ asymptotically by the factor (logM)
d−2
2
β+ d−1

2 . We remark that if the
scaled error plots behave like a horizontal line, then the errors decrease (nearly) like the
scaling factor. Here, we observe that the sampling errors seem to decay faster than the upper
bound of Corollary 2.44 suggests in the cases d = 2, 3, 4. In the case d = 2, 3, the sampling
errors should decay approximately like the lower bound of Corollary 2.44. In the case d = 4,
the situation is not totally clear, but the error may also decay accordingly.
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Figure 2.10: Relative L2(Td) sampling errors rel sampl err L2 := ∥Gd3,4 −
SΛ
I G

d
3,4|L2(Td)∥/∥Gd3,4|L2(Td)∥ for Gd3,4 with respect to the cardinality |I| of hyper-

bolic cross frequency index sets I := Id,0,1N and the rank-1 lattice size M for increasing
refinements N and fixed dimension d.
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Figure 2.11: Relative L2(Td) sampling errors err := ∥Gd3,4 − SΛ
I G
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scaled by different factors for Gd3,4 with respect to the rank-1 lattice size M , I := Id,0,1N .
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Next, we consider the test functions Gd3 : Td → C from [KPV15a], Gd3(x) :=
∏d
s=1 g3(xs),

where the one-dimensional function g3 : T→ C is defined by

g3(x) := 4

√
3π

207π − 256

(
2 + sgn((x mod 1)− 1/2) sin(2πx)3

)
and the Fourier coefficients of g3 are given by

(ĝ3)k = 4

√
3π

207π − 256

⎧⎪⎨⎪⎩
−12

(k−3)(k−1)(k+1)(k+3)π for k ∈ 2Z \ {0},
0 for k odd,

2− 4
3π for k = 0,

which yields Gd3 ∈ A0,3−ϵ,1(Td) and Gd3 ∈ H0, 7
2
−ϵ,1(Td), ϵ > 0. Moreover, we remark that

∥Gd3|L2(Td)∥ = 1 and ∥Gd3|A(Td)∥ =
(

8(4+15π)

5
√
3π(207π−256)

)d
≈ (1.34181)d. Since the Fourier

coefficients (ĝ3)k of g3 are zero for odd frequencies k ∈ (2Z + 1), we can use hyperbolic

cross index sets “with holes” I = Id,0,1N,even := Id,0,1N ∩ (2Z)d. Correspondingly, we use the

reconstructing rank-1 lattices Λ(z,M, Id,0,1N,even) from Table 2.6, which were constructed by
the implementation [Vol16b, genlattice cbc incr bisect] of Algorithm 2.3 and parts of
this table can be found as [KPV15a, Table 6.3]. Moreover, we depict the oversampling

factors M/|Id,0,1N,even| in Figure 2.12b. The observed oversampling factors are still moderate
for the considered refinements N and approximately grow as the asymptotic upper bound
O(N/ logN) on the existence of a reconstructing rank-1 lattice suggests, which can be derived
from Table 2.3.

N\s 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 1 3 5 7 9 11 13 15 17
4 1 5 13 29 49 81 137 183 255
8 1 9 41 97 257 543 983 1643 2895

16 1 17 145 395 1213 3079 6905 12543 23375
32 1 33 545 1721 5815 14253 34117 84845 184859
64 1 65 2113 5161 21535 78167 226951 574275 1248979

128 1 129 8321 21569 111015 404035 1373325 4068807 11051805
256 1 257 33025 85405 485913 2328905 8145033 27910471 84391053
512 1 513 131585 359213 2353599 12181705 50770301 179044805 600266399

1024 1 1025 525313 1383595 11148851 70968649 293168219 – –
2048 1 2049 2099201 5416219 41601005 220147195 – – –

Table 2.6: Parameters zs depending on the refinement N of reconstructing rank-1 lat-

tices Λ
(
z = (z1, . . . , zd)

⊤,M = zd+1, I
d,0,1
N,even

)
for hyperbolic cross frequency index sets “with

holes” Id,0,1N,even.

Example 2.49. We apply rank-1 lattice sampling on the test functions Gd3 and use the

reconstructing rank-1 lattices Λ(z,M, Id,0,1N,even) from Table 2.6. In Figure 2.13a, the relative

sampling errors ∥Gd3 − SΛ
Id,0,1N,even

Gd3|A(Td)∥/∥Gd3|A(Td)∥ with respect to the refinement N are

shown for d ∈ {2, 3, . . . , 8} and various refinements N . We remark that the corresponding
relative truncation errors ∥Gd3 − SId,0,1N,even

Gd3|A(Td)∥/∥Gd3|A(Td)∥ almost coincide. In the case

d = 2 and d = 3, the obtained errors seem to decay approximately like N−3 in accordance
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Figure 2.12: Oversampling factorsM/|I| for the reconstructing rank-1 lattice Λ(z,M, I) from
Table 2.5 and 2.6.

with Theorem 2.17 as well as slightly slower for d ≥ 4. In Figure 2.13b, the corresponding
relative L2(Td) sampling errors are depicted, see also [KPV15a, Figure 6.4a]. These errors
should approximately decay like N−3.5 due to Theorem 2.20. Additionally, we consider the
relative A(Td) and L2(Td) sampling errors with respect to the rank-1 lattice size M for
d ∈ {2, 3, 4, 6} in Figure 2.14a and 2.14b, respectively. We compare these results with the

relative sampling errors when using standard hyperbolic crosses I = Id,0,1N and the recon-

structing rank-1 lattices Λ(z,M, Id,0,1N ) from Table 2.5. We observe that both plots for fixed
dimension d behave similarly, they roughly look like shifted versions of each other. As ex-
pected, the errors for comparable numbers of samples are distinctly lower when using the
hyperbolic cross index sets “with holes” Id,0,1N,even := Id,0,1N ∩ (2Z)d. Moreover, the shift clearly
depends on the dimension d, most likely exponentially. Additionally, the theoretical upper

bounds ≲ M−β
2 (logM)

d−2
2
β from Corollary 2.40 and ≲ M−β

2 (logM)
d−2
2
β+ d−1

2 from Corol-
lary 2.44 are shown in Figure 2.14a and 2.14b, respectively. We observe that the obtained
errors nearly decay as these bounds suggest.
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Figure 2.13: Relative A(Td) sampling errors rel sampl err A := ∥Gd3 −
SΛ
I G

d
3|A(Td)∥/∥Gd3|A(Td)∥ and L2(Td) sampling errors rel sampl err L2 := ∥Gd3 −

SΛ
I G

d
3|L2(Td)∥/∥Gd3|L2(Td)∥ for Gd3 with respect to the refinement N , I := Id,0,1N,even.
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Figure 2.14: Relative A(Td) sampling errors rel sampl err A := ∥Gd3 −
SΛ
I G

d
3|A(Td)∥/∥Gd3|A(Td)∥ and L2(Td) sampling errors rel sampl err L2 := ∥Gd3 −

SΛ
I G

d
3|L2(Td)∥/∥Gd3|L2(Td)∥ for Gd3 with respect to the rank-1 lattice size M , when using

the frequency index sets I := Id,0,1N,even with corresponding reconstructing rank-1 lattices

Λ(z,M, Id,0,1N,even) (denoted by solid lines) and I := Id,0,1N with corresponding reconstructing

rank-1 lattices Λ(z,M, Id,0,1N ) (denoted by dashed lines).
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For the test functions Gd3, we also consider higher dimensional cases up to 25 dimensions

using frequency index sets “with holes” Id,0,1N,even.

Example 2.50. We consider higher dimensional cases with dimension d ∈ {10, 15, 20, 25}
for the test functions Gd3. In doing so, we use frequency index sets “with holes” I := Id,0,1N,even

and we build reconstructing rank-1 lattices Λ(z,M, Id,0,1N,even) using implementation [Vol16b,

genlattice cbc incr bisect] of Algorithm 2.3. In Figure 2.13a, the relative L2(Td) sam-
pling errors ∥Gd3−SΛ

I G
d
3|L2(Td)∥/∥Gd3|L2(Td)∥ with respect to the refinement N and cardinal-

ity |I| are shown for various refinements N . We observe that the obtained errors decrease fast
for increasing refinements N . The observed aliasing errors SIG

d
3 − SΛ

I G
d
3 are larger than the

corresponding truncation errors Gd3−SIGd3 for small refinements N ≤ 4 and distinctly smaller
for larger refinements N ≥ 8. Moreover, we remark that some of the obtained relative L2(Td)
sampling errors ∥Gd3 − SΛ

I G
d
3|L2(Td)∥/∥Gd3|L2(Td)∥ belonging to smaller refinements N are

greater than one, which is still below the asymptotic upper bounds in Theorem 2.30 stated rel-
ative to the ∥Gd3|H0,7/2−ϵ,1(Td)∥ norm, ϵ > 0, and the factor ∥Gd3|H0,7/2−ϵ,1(Td)/∥Gd3|L2(Td)∥
is greater than 8d for ϵ = 0.05 for instance.
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Figure 2.15: Relative L2(Td) sampling errors rel sampl err L2 := ∥Gd3 −
SΛ
I G

d
3|L2(Td)∥/∥Gd3|L2(Td)∥ for test functions Gd3, d ∈ {10, 15, 20, 25}, I := Id,0,1N,even.

Next, we give a numerical example for sampling along perturbed rank-1 lattices as de-
scribed in Section 2.3.4.

Example 2.51. We use the test functions Gd3,4, hyperbolic cross frequency index sets Id,0,1N

and the reconstructing rank-1 lattices Λ(z,M, Id,0,1N ) from Table 2.5, see also [KPV15a, Ex-

ample 6.4]. For each reconstructing rank-1 lattice Λ(z,M, Id,0,1N ) = {xj}M−1
j=0 , we use sampling

nodes yj := xj + ηj , j = 0, . . . ,M − 1, where ηj ∈ {−ε, ε}d are drawn uniformly at random

with ε :=
(
2πdN

)−1
ln 2. We sample the function Gd3,4 at the sampling nodes yj and we

compute the approximated Fourier coefficients (
˜̂
fk)k∈Id,T,1

N
by solving (2.67) using the LSQR
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algorithm [PS82] in combination with (2.18) and its adjoint version. In doing so, we repeat
the computation 10 times and determine the maximum of the obtained relative L2(Td) sam-
pling errors. We consider the dimensions d ∈ {2, 3, 4, 5} for various refinements N and use
Taylor expansion parameters m ∈ {1, 2, 3}. In Figure 2.16, we depict the results as well as
the corresponding results of the unperturbed case from Figure 2.8b, which are denoted by
“R1L”. Since Gd3,4 ∈ A0,3−ϵ,1(Td), ϵ > 0, we expect the errors to decay at least like ∼ N−3+ϵ

for m = 3 and slower for m = 1, 2 due to Theorem 2.46. For dimension d = 2, we observe that
the relative L2(Td) sampling error decays approximately like ∼ N−3.5 for the unperturbed
case and the case m = 3, approximately like ∼ N−2 for m = 2 as well as ∼ N−1.5 for m = 1.
In the higher dimensional cases d = 3, 4, 5, the plots for the unperturbed case and the case
m = 3 again almost coincide but decay slower. Moreover, we approximately observe the
decay ∼ N−2 in the cases d = 3, 4, 5 for Taylor expansion parameter m = 2 and ∼ N−1.5 for
m = 1.
We also perform tests from [KPV15a, Example 6.4] for perturbations ηj drawn uniformly

at random from (−ε, ε)d for dimensions d ∈ {2, 3, . . . , 10} and Taylor expansion parameter
m = 3. The observed relative L2(Td) sampling errors are depicted in Figure 2.17b with respect

to the cardinality |Id,0,1N |. As expected, the errors decay for increasing cardinalities |Id,0,1N |.
We observe that the obtained errors almost coincide with those from the unperturbed case
depicted in Figure 2.17a. For results with Taylor expansion parameter m = 2, we refer to
[KPV15a, Fig. 6.9a]. These results are similar to the ones in Figure 2.16.
Additionally, we consider the test functions Gd3 in four and five dimensions. Here, we use

hyperbolic cross frequency index sets “with holes” I := Id,0,1N,even and corresponding recon-

structing rank-1 lattices Λ(z,M, Id,0,1N,even) from Table 2.6. Consequently, we can consider

higher refinements N than for the test functions Gd3,4. We sample at perturbed rank-1 lat-

tice nodes yj := xj + ηj , j = 0, . . . ,M − 1, where ηj ∈ {−ε, ε}d are drawn uniformly at

random with ε :=
(
2πdN

)−1
ln 2 and we use Taylor expansion parameters m ∈ {1, 2, 3}. The

corresponding error plots are shown in Figure 2.18. The relative L2(Td) sampling errors for
Taylor expansion parameter m = 1 and m = 2 behave similarly as before. For dimension
d = 4, there is a significant difference in the obtained errors between the cases m = 2 and
m = 3 for high refinements N ≥ 512 or small error values. The obtained errors for m = 3
and the unperturbed case almost coincide. For dimension d = 5, the errors in the case m = 1
are again distinctly larger. The errors of the case m = 3 and the unperturbed case almost
coincide. In the case m = 2, there is only a noticeable difference to the case m = 3 for
refinement N = 2048.

As we have seen in this chapter and in the numerical examples, the fast approximation
of a sufficiently smooth high-dimensional function f ∈ A(Td) ∩ C(Td) from samples along
reconstructing rank-1 lattices Λ(z,M, I) can be performed very easily and the obtained errors
decay fast if the frequency index sets I are chosen correspondingly to the decay of the Fourier
coefficients f̂k of the function or to the assumed decay given by a suitable function class. The
computation of approximated Fourier coefficients f̂ Λ

k ≈ f̂k, k ∈ I, can be performed very
fast in O(M logM + d |I|) arithmetic operations using Algorithm 2.4, which can be realized
using two short lines of Octave / MATLAB code.

If the samples are not given at exact rank-1 lattice nodes xj , a method for the fast
approximation of the function f using a rank-1 lattice based Taylor expansion can be applied.
Then, we solve a linear system of equations using the LSQR algorithm with computational
cost of O

(
K md(M logM + d |I|)

)
, where m ∈ N is the Taylor expansion parameter and K

is the number of iterations, which depends on the targeted error and the condition number
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Figure 2.16: Relative L2(Td) errors rel sampl err L2 := ∥Gd3,4 −
SΛ
I G

d
3,4|L2(Td)∥/∥Gd3,4|L2(Td)∥ and := ∥Gd3,4 − SY

I G
d
3,4|L2(Td)∥/∥Gd3,4|L2(Td)∥ with hy-

perbolic cross frequency index sets I := Id,0,1N when sampling at rank-1 lattice nodes
(“R1L”) and perturbed rank-1 lattice nodes using (2.67) with Taylor expansion parameters
m = 1, 2, 3.

of the system matrix, see Section 2.2.2 and 2.3.4.
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Figure 2.17: Relative L2(Td) errors rel sampl err L2 := ∥Gd3,4 −
SΛ
I G

d
3,4|L2(Td)∥/∥Gd3,4|L2(Td)∥ and := ∥Gd3,4 − SY

I G
d
3,4|L2(Td)∥/∥Gd3,4|L2(Td)∥ with hy-

perbolic cross frequency index sets I := Id,0,1N when sampling at rank-1 lattice nodes (“R1L”)
and perturbed rank-1 lattice nodes using (2.67) with Taylor expansion parameter m = 3.
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Figure 2.18: Relative L2(Td) errors rel sampl err L2 := ∥Gd3 − SΛ
I G

d
3|L2(Td)∥/∥Gd3|L2(Td)∥

and := ∥Gd3 − SY
I G

d
3|L2(Td)∥/∥Gd3|L2(Td)∥ for Gd3 with hyperbolic cross index sets “with

holes” I := Id,0,1N,even when sampling at rank-1 lattice nodes (“R1L”) and perturbed rank-1
lattice nodes using (2.67) with Taylor expansion parameters m = 1, 2, 3.
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3
Multivariate Algebraic Polynomials in

Chebyshev Form

We consider multivariate algebraic polynomials aI : [−1, 1]d → R in Chebyshev form,

aI(x) :=
∑
k∈I

âk Tk(x) =
∑
k∈I

âk

d∏
t=1

Tkt(xt), âk ∈ R, (3.1)

where I ⊂ Nd0, d ∈ N, is a non-negative index set of finite cardinality, |I| < ∞, and
Tk : [−1, 1]d → [−1, 1], Tk(x) :=

∏d
t=1 Tkt(xt), k ∈ Nd0, are multivariate Chebyshev poly-

nomials defined on the closed box [−1, 1]d, built from Chebyshev polynomials of the first
kind Tl : [−1, 1] → [−1, 1], Tl(x) := cos(l arccosx), for frequencies l ∈ N0. For each l ∈ N0,
the univariate Chebshev polynomial Tl is an algebraic polynomial of degree deg(Tl) = l re-

stricted to the domain [−1, 1]. Moreover, if the index set I = Id,−∞
a,n := {k ∈ Nd0 : ∥k∥1 ≤ n},

n ∈ N0, is the ℓ1-ball, then span {Tk(◦) : k ∈ I} is the space of all algebraic polynomials
of (total) degree ≤ n in d variables restricted to the domain [−1, 1]d, see e.g. [CP11]. We
remark that one may also consider other closed boxes [a1, b1]× . . .× [ad, bd] ⊂ Rd, at < bt for
t = 1, . . . , d, by a simple linear coordinate transform.

Let L2,w([−1, 1]) be the weighted Hilbert space of all square integrable functions
f : [−1, 1]→ R with respect to the Chebyshev weight w(x) := 1/

√
1− x2,∫ 1

−1
|f(x)|2 w(x) dx <∞,

equipped with the scalar product

(u, v)2,w :=

∫ 1

−1
u(x) v(x) w(x) dx =

∫ 1

−1

u(x) v(x)√
1− x2

dx,

see e.g. [Spr97b, Spr00]. The univariate Chebyshev polynomials Tl, l ∈ N0, form an orthogonal
basis of the Hilbert space L2,w([−1, 1]),

(Tk, Tl)2,w =

⎧⎪⎨⎪⎩
π for k = l = 0,

π/2 for k = l ̸= 0,

0 for k ̸= l,

(3.2)

83
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see e.g. [Sze75, Boy00]. We remark that a Chebyshev series g(x) :=
∑∞

k=0 âk Tk(x),
x ∈ [−1, 1], corresponds to the Fourier-cosine series G(θ) = g(cos θ) =

∑∞
k=0 âk cos(kθ),

θ ∈ [0, π], using the coordinate transform x := cos θ and the coefficients can be computed by
âk = 2

π2
−δk,0

∫ π
0 g(cos θ) cos(kθ) dθ = 2

π2
−δk,0

∫ 1
−1 g(x) Tk(x) (1 − x

2)−1/2 dx, see e.g. [GO77,
Section 3]. Extending the setting to the multivariate case via tensorization, see e.g. [Wei80,
Section 3.4], one obtains that the multivariate Chebyshev polynomials Tk, k ∈ Nd0, form an
orthogonal basis of the weighted Hilbert space L2,w([−1, 1]d).

Analogously to the considerations in Chapter 2 for the periodic case, we are interested
in methods for the fast evaluation of such a multivariate algebraic polynomial in Cheby-
shev form aI from (3.1) at certain nodes as well as the fast reconstruction of the Chebyshev
coefficients âk, k ∈ I, from samples. Additionally, we want to use these fast reconstruc-
tion methods for the fast approximation of multivariate non-periodic real-valued functions
f : [−1, 1]d → R by multivariate algebraic polynomials in Chebyshev form aI from samples
of f at certain nodes.

In one dimension, Chebyshev polynomials are frequently used in the non-periodic case
for function interpolation at Chebyshev nodes or Chebyshev–Gauß–Lobatto nodes, which are
the roots or extremal points of Chebyshev polynomials of the first kind Tl, see e.g. [AS72,
p. 889]. This approach allows to mitigate Runge’s phenomenon, see e.g. [Boy00, Section 4.2].
Moreover, there exist fast versions of the discrete cosine transform (DCT), which allow to
compute Chebyshev coefficients from function samples and vice versa, see e.g. [CLW70, Ste92,
BT97] and [VL92, p. 238]. Again, this approach may be transferred to dimensions d ≥ 2 by
tensorization, see e.g. [DL82].

In the multivariate case, if the frequency index set I of a multivariate algebraic polyno-
mial in Chebyshev form aI is a d-dimensional full grid, e.g. I = Ĝdn := [0, n]d ∩ Nd0 of refine-
ment n ∈ N, one may use the Chebyshev–Gauß–Lobatto nodes yj ∈ Y := {cos(lπ/n) : l =
0, 1, . . . , n}d ⊂ [−1, 1]d in spatial domain. Then, a d-dimensional DCT of length n + 1 in
each coordinate direction can be applied to compute the function values aI(yj) from the
Chebyshev coefficients âk, k ∈ I, and vice versa, see also Figure 3.1 for a two-dimensional
example and the Chebfun toolbox [DHT14]. As in the periodic case, this approach suffers
heavily from the curse of dimensionality.

0 8

0

8

(âk)k∈I
d-dim.←→
DCT

(
aI(yj)

)|I|−1
j=0

O(nd log n)
−1 0 1

−1

0

1

Figure 3.1: d-dimensional DCT between full grids.

Again, one may attenuate this problem by using nodes yj on sparse grids as spatial
discretization and hyperbolic cross frequency index sets I, cf. [BNR00, GH14]. Then, fast
transforms for switching between the spatial and frequency domain exist, cf. [SY10], and
software implementations are available, see e.g. the HCFFT [GH14], which allow for the
computation of the transforms in O(n logd n) arithmetic operations. Still, this approach may
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have the issues discussed in the introduction of Chapter 2. For instance, the frequency index
set I may have several restrictions, e.g., it should be “without holes” or admissible, cf. [GG03].

In this chapter, we consider a rank-1 Chebyshev lattice CL(z,M) as spatial discretization,
which is defined by

CL(z,M) :=
{
xj := cos

(
j
M πz

)
: j = 0, . . . ,M

}
⊂ [−1, 1]d, (3.3)

with the generating vector z ∈ Nd0 and the size parameter M ∈ N0, where the cosine is
applied component-wise, cf. [CP11]. We remark that rank-1 Chebyshev lattices CL(z,M)
are nodes on so-called Lissajous curves, see e.g. [DE15] and the references therein. Examples
for two-dimensional rank-1 Chebyshev lattices CL(z,M) are shown in Fig. 3.2. Please note
that not all (M + 1) nodes xj , j = 0, . . . ,M , have to be distinct, i.e., |CL(z,M)| ∈ {1, . . . ,
M + 1}, see e.g. Fig. 3.2a.
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0

1

(a) z := (8, 9)⊤, M := 72,
|CL(z,M)| = 45.

−1 0 1

−1

0

1

(b) z := (8, 9)⊤, M := 73,
|CL(z,M)| = 74.

−1 0 1

−1

0

1

(c) z := (1, 16)⊤, M := 76,
|CL(z,M)| = 77.

Figure 3.2: Examples of two-dimensional rank-1 Chebyshev lattices CL(z,M).

When the frequency index set I = Id,−∞
a,n is the ℓ1-ball of refinement n ∈ N0, there

exist various results. In the two-dimensional case, so-called Padua points [BCD+06,
CDV08] may be used, which are specially chosen two-dimensional rank-1 Chebyshev lat-
tices CL (z := (n, n+ 1),M := n(n+ 1)) , and there exists the Octave / MATLAB toolbox
Padua2DM [CDMSV11] for the fast evaluation, reconstruction and interpolation. For dimen-
sion d ≥ 3, further results have been developed. Choices for the generating vector z and the
size parameter M ∈ N0 of a rank-1 Chebyshev lattice suitable for reconstruction are known
for certain cases [CP11, BDMV16, BDMV15, DE15]. Moreover, there exists the Octave /
MATLAB toolbox CHEBINT [PC13], which uses the Clenshaw algorithm [Cle55]. In general,
we do not have an interpolation but so-called hyperinterpolation, see [Slo95].

In this work, we extend these considerations to multivariate algebraic polynomials in
Chebyshev form aI with arbitrarily chosen frequency index sets I ⊂ Nd0 of finite cardinality,
|I| < ∞. Parts of the results were presented in [PV15]. We discuss a method for the fast
evaluation of such an algebraic polynomial aI at the nodes of an arbitrary rank-1 Chebyshev
lattice CL(z,M) ⊂ [−1, 1]d, which only uses easy-to-compute index transforms and a single
one-dimensional DCT. For the exact reconstruction of the Chebyshev coefficients âk, k ∈ I,
from samples aI(xj) at rank-1 Chebyshev lattice nodes xj := cos( jM πz), j = 0, . . . ,M , with
the proposed method, the used rank-1 Chebyshev lattice CL(z,M) needs to fulfill a recon-
struction property, i.e., the equivalent conditions (3.22), (3.23) and (3.25). Then, CL(z,M)
will be called reconstructing rank-1 Chebyshev lattice for a given frequency index set I and will
be denoted by CL(z,M, I). It can be easily constructed using a component-by-component
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(CBC) approach as discussed in this chapter. For general CBC constructions of integration
lattices, we refer to the survey [DKS13] and the references therein. Using a reconstructing
rank-1 Chebyshev lattice CL(z,M, I), we are able to exactly reconstruct all the Chebyshev
coefficients âk, k ∈ I, from the samples aI(xj) using a single one-dimensional DCT and
easy-to-compute index transforms, see Figure 3.3 for illustration. The computational costs
are ≲ M logM + d |M(I)| ≲ M logM + d 2d |I|, where the extended symmetric index set
M(I) := {h ∈ Zd : (|h1|, . . . , |hd|)⊤ ∈ I}.
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. . .
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Figure 3.3: DCT between arbitrary index set I and reconstructing rank-1 Chebyshev lat-
tice CL(z,M, I).

Based on the reconstruction results, we are going to use multivariate algebraic polynomials
in Chebyshev form aI for the approximation of non-periodic functions from subspaces of the
analogon of the Wiener algebra

A([−1, 1]d) :=

{
f ∈ L2,w([−1, 1]d) : ∥f |A([−1, 1]d)∥ :=

∑
k∈Nd

0

|f̂k| <∞

}
, (3.4)

cf. [Spr97b, Spr00], where the Chebyshev coefficients f̂k, k ∈ Nd0, of a function
f ∈ L2,w([−1, 1]d) are formally given by

f̂k :=
2|k|0

πd

∫
x∈[−1,1]d

f(x) Tk(x)∏d
s=1

√
1− x2s

dx, k ∈ Nd0, (3.5)

where |k|0 :=
∑d

s=1 δks,0 and the factor 2|k|0/πd is due to the orthogonality relation (3.2).
In the following, we characterize a function f ∈ A([−1, 1]d) by the decay of its Chebyshev
coefficients f̂k. Analogously to the subspaces (2.13) of the Wiener algebra A(Td) in the
periodic case in Chapter 2, we define the subspaces

Aα,β([−1, 1]d) :=

{
f ∈ L2,w([−1, 1]d) : ∥f |Aα,β([−1, 1]d)∥ :=

∑
k∈Nd

0

ωα,β,1(k) |f̂k| <∞

}
(3.6)

of A([−1, 1]d) = A0,0([−1, 1]d) with dominating mixed smoothness β ≥ 0 and isotropic
smoothness α ≥ −β, where the weights ωα,β,1 are defined as in (2.12). Moreover, we consider
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the subspaces

Hα,β([−1, 1]d) :=

{
f ∈ L2,w([−1, 1]d) : ∥f |Hα,β([−1, 1]d)∥ :=

√∑
k∈Nd

0

ωα,β,1(k)2 |f̂k|2 <∞

}
(3.7)

of the Hilbert space L2,w([−1, 1]d) = H0,0([−1, 1]d) analogously to the function spaces (2.11)
from the periodic case. We remark that for the one-dimensional case, function spaces with
norms equivalent to Sobolev-type spaces Hα,0([−1, 1]), α ≥ 0, were considered in [BHS92] for
Jacobi polynomials as well as their relation to spaces characterized by the derivatives Dνf ,
ν ∈ N0. In the special case of Chebyshev polynomials of the first kind Tk, this means for
m ∈ N0 the equivalence of the spaces Hm,0([−1, 1]) and

L2
ρ,ρ(m) :=

{
f ∈ L2,w([−1, 1]) : ∥f |L2

ρ,ρ(m)∥2 :=
m∑
ν=0

∫ 1

−1
|Dνf(x)|2(1− x2)−

1
2
+ν dx <∞

}

from [BHS92]. For the two-dimensional case, Sobolev-type spaces Hα
w([−1, 1]2) of order α ≥ 0

were characterized in [Spr97b], which are equivalent to Hα,0([−1, 1]2), as well as Sobolev-type
spaces with dominating mixed smoothness Sβ,βw H([−1, 1]2) of order β ≥ 0 denoted in [Spr97b],
which are equivalent to H0,β([−1, 1]2). This concept can be extended to higher dimensions
using tensorization, cf. [Spr00, SW10].

Using the Chebyshev coefficients f̂k, a function f ∈ A([−1, 1]d) can be approximated by
the Chebyshev partial sum

SIf :=
∑
k∈I

f̂k Tk(◦), (3.8)

i.e., by a truncated Chebyshev series which is a multivariate algebraic polynomial in Cheby-
shev form aI from (3.1). As in the periodic case, we call the error f − SIf of this approx-
imation truncation error. In practice, we are going to compute approximated Chebyshev
coefficients f̂ CL

k ≈ f̂k, k ∈ I, by applying a DCT on the samples f(xj) taken at the nodes
xj := cos(jπz/M), j = 0, . . . ,M , of a rank-1 Chebyshev lattice CL(z,M) followed by com-
puting index transforms, see (3.29). Then, we define an approximation of the function f by
the approximated Chebyshev partial sum

S CL
I f :=

∑
k∈I

f̂ CL
k Tk(◦), (3.9)

which itself is a multivariate algebraic polynomial in Chebyshev form aI with frequencies
supported on the index set I. In this work, we concentrate on using reconstructing rank-1
Chebyshev lattices CL(z,M, I). Analogously to (2.9), we split the sampling error f − S CL

I f
into the truncation error f −SIf and aliasing error SIf −S CL

I f . By the triangle inequality,
we obtain

∥f − S CL
I f∥ ≤ ∥f − SIf∥+ ∥SIf − S CL

I f∥, (3.10)

where ∥ ◦ ∥ is a given norm.
We choose the frequency index set I in a suitable way corresponding to the used function

spaces and norms in the error estimates. Correspondingly to the periodic case in (2.14), we

define the frequency index sets I = Id,Ta,n of refinement n ≥ 1 by

Id,Ta,n :=

{
k ∈ Nd0 : ω−T,1,1(k) = max(1, ∥k∥1)−T

d∏
s=1

max(1, |ks|) ≤ n1−T
}

(3.11)
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for shape parameter −∞ < T < 1 with the ℓ1-ball extension

Id,−∞
a,n :=

{
k ∈ Nd0 : max(1, ∥k∥1) ≤ n

}
for shape parameter T = −∞. We remark that multivariate algebraic polynomials with
hyperbolic cross index sets I = Id,0a,n have already been used for approximations in sparse
high-dimensional spectral Galerkin methods, cf. [SW10] and [STW11, Section 8.5]. Please
note that we do not use a weight parameter γ in our considerations for the non-periodic case
to simplify the notation and reduce the amount of technical details, see also the discussion
regarding the weight parameter γ of the weights (2.12) in the introduction of Chapter 2.

Moreover, we have the relationM(Id,Ta,n ) = Id,T,1n between the frequency index sets Id,Ta,n from

the non-periodic case and the frequency index sets Id,T,1n from the periodic case.

The remaining parts of this chapter are structured as follows.

In Section 3.1, we develop a method for the fast evaluation of an arbitary multivariate
algebraic polynomial in Chebyshev form aI from (3.1) with frequencies supported on a given
arbitrary index set I ⊂ Nd0 of finite cardinality, |I| < ∞, at the nodes xj := cos( jM πz),
j = 0, . . . ,M , of an arbitrary rank-1 Chebyshev lattice CL(z,M) ⊂ [−1, 1]d, see also [PV15].
In doing so, we introduce additional notation and obtain Algorithm 3.1 for the fast and exact
evaluation based on easy-to-compute index transforms and a single one-dimensional DCT,
which requires O(M logM + d 2d |I|) arithmetic operations and these computational costs
contain an additional factor 2d compared to the periodic case in Section 2.1.1. We describe
a modified version requiring only O(M logM + d |M(I)|) arithmetic operations, which may
be a distinct reduction if only a small amount of components of the frequencies k ∈ I are
non-zero, i.e., if only some dimensions are coupled.

In Section 3.2, we develop an approach for the fast and exact reconstruction of an arbi-
trary multivariate algebraic polynomial in Chebyshev form aI with frequencies supported on
an arbitrary known index set I ⊂ Nd0 of finite cardinality, |I| <∞, from sampling values along
a reconstructing rank-1 Chebyshev lattice CL(z,M, I). In Section 3.2.1, we discuss condi-
tions on a rank-1 Chebyshev lattice CL(z,M) such that the reconstruction of all Chebyshev
coefficients âk, k ∈ I, of such a multivariate algebraic polynomial in Chebyshev form aI
is possible. We describe a method for the fast and exact reconstruction in Algorithm 3.2,
which only uses a single one-dimensional DCT and easy-to-compute index transforms. This
approach has computational costs of O(M logM + d 2d |I|), which contain an additional fac-
tor of 2d compared to Algorithm 2.1 in the periodic case. Again, we describe a modified
version requiring only O(M logM + d |M(I)|) arithmetic operations. In Section 3.2.2, we
discuss approaches for obtaining reconstructing rank-1 Chebyshev lattices CL(z,M, I), see

also [PV15]. We remark that for the special case of ℓ1-ball frequency index sets I = Id,−∞
a,n ,

approaches for obtaining a reconstructing rank-1 Chebyshev lattice CL(z,M, I) were already
discussed in [CP11] and the references therein. In this work, we develop two general methods
which allow for the handling of arbitrary frequency index sets I ⊂ Nd0 of finite cardinality,
|I| < ∞. The first method is based on using a reconstructing rank-1 lattice Λ(z,M,M(I))
from the periodic case for the non-periodic case, see Theorem 3.4. The second method uses
a direct CBC construction approach on the frequency index set I, cf. Algorithm 3.3, using
ideas from [SR02, CN04, Käm14a].

In Section 3.3, we briefly discuss relations to other non-periodic approaches. In Sec-
tion 3.3.1, we give more details for the reconstruction at Padua points and along Lis-
sajous curves. In Section 3.3.2, we explain the relation to tent-transformed rank-1 lattices
from [DNP14, SNC16, CKNS16].
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In Section 3.4, we consider the approximation of functions f from subspaces Aα,β([−1, 1]d)
of the analogon of the Wiener algebra A([−1, 1]d) and of functions f from Sobolev-type
spaces of generalized mixed smoothness Hα,β([−1, 1]d) for suitable choices of the isotropic
smoothness α and dominating mixed smoothness β using rank-1 Chebyshev lattice sam-
pling. We discuss various embeddings between different function spaces in Lemma 3.9 which
correspond to the periodic case from Section 2.3.1, see also Figure 2.6a. The allowed pa-
rameter choices of dominating mixed smoothness β ≥ 0 and isotropic smoothness α > −β
for functions f ∈ Aα,β([−1, 1]d) and f ∈ Hα,β+λ([−1, 1]d), λ > 1/2, guarantee the contin-
uous embedding into the analogon of the Wiener algebra A([−1, 1]d) and consequently the
existence of a continuous representative of the function f , cf. Lemma 3.9 and Remark 3.10.
Moreover, we develop the general aliasing formula (3.31) in Lemma 3.11 for the approx-
imated Chebyshev coefficients f̂ CL

k from (3.29) when using an arbitrary rank-1 Chebyshev
lattice CL(z,M) ⊂ [−1, 1]d. Based on this aliasing formula (3.31), we obtain in Theorem 3.13
for sampling along reconstructing rank-1 Chebyshev lattices CL(z,M, I) the general result

∥f − S CL
I f |L∞([−1, 1]d)∥ ≤ (1 + 2d−1)

∑
k∈Nd

0\I

|f̂k| = (1 + 2d−1) ∥f − SIf |A([−1, 1]d)∥

for the sampling error (of continuous representatives) of functions f ∈ A([−1, 1]d) and we
also estimate the corresponding truncation error by

∥f − SIf |L∞([−1, 1]d)∥ ≤
∑

k∈Nd
0\I

|f̂k| = ∥f − SIf |A([−1, 1]d)∥.

The obtained upper bounds, especially the factor 2d−1, are sharp in certain cases as we see
in Example 3.14. For functions f ∈ Aα,β([−1, 1]d) with dominating mixed smoothness β ≥ 0

and isotropic smoothness α > −β using frequency index sets I := Id,Ta,n with shape parameter
T := −α/β, we obtain in Theorem 3.16 results which are analogous to the results from
Theorem 2.17 and 2.24 for the periodic case. For the truncation error f − SIf , we estimate

∥f − S
Id,Ta,n

f |L∞([−1, 1]d)∥ ≤ ∥f − S
Id,Ta,n

f |A([−1, 1]d)∥ ≤ n−(α+β) ∥f |Aα,β([−1, 1]d)∥

and for sampling along reconstructing rank-1 Chebyshev lattices CL(z,M, Id,Ta,n ), we estimate
the sampling error by

∥f − S CL
Id,Ta,n

f |L∞([−1, 1]d)∥ ≤ (1 + 2d−1) n−(α+β) ∥f |Aα,β([−1, 1]d)∥.

Additionally, we measure the errors with respect to Hilbert space norms. For functions
f ∈ Hα,β([−1, 1]d) with smoothness parameters β ≥ t ≥ 0 and α + β > r + t ≥ 0 using

frequency index sets I := Id,Ta,n with shape parameter T := −α−r
β−t ∈ [−∞, 1), we estimate the

truncation error by

∥f − S
Id,Ta,n

f |Hr,t([−1, 1]d)∥ ≤ n−(α−r+β−t) ∥f |Hα,β([−1, 1]d)∥.

in Theorem 3.17 analogously to Theorem 2.20 from the periodic case. When we restrict the
shape parameter T := −α−r

β−t ∈ [− r
t ,−

α
β ] and sample along reconstructing rank-1 Chebyshev

lattices CL(z,M, Id,Ta,n ), then we obtain for the sampling error f − S CL
Id,Ta,n

f (of continuous

representatives) of functions f ∈ Hα,β+λ([−1, 1]d), λ > 1/2, the upper bound

∥f − S CL
Id,Ta,n

f |Hr,t([−1, 1]d)∥ ≤
(
1 + 2d−1 (1 + 2ζ(2λ))

d
2

)
n−(α−r+β−t)∥f |Hα,β+λ([−1, 1]d)∥
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corresponding to Theorem 2.26 from the periodic case. We remark that for the case of sparse
grid sampling with shape parameter T := 0 in the case of isotropic smoothness r := 0, α := 0
and dominating mixed smoothness t := 0, β > 1/2, the error estimate

∥f − S SG
Id,0a,n

f |L2,w([−1, 1]d)∥ ≲ n−β logd−1 n ∥f |H0,β([−1, 1]d)∥.

follows from [BNR00, inequality (14)] as a consequence of [Spr97b, Theorem 5], where S SG
Id,0a,n

denotes the sparse grid sampling operator, and the additive factor λ > 1/2 does not occur in
this error estimate.

Finally, in Section 3.5, we give numerical examples for the methods and theoretical results
of Section 3.2 and 3.4 in up to 25 dimensions.

3.1 Fast evaluation along rank-1 Chebyshev lattices

We consider the evaluation of a multivariate algebraic polynomial in Chebyshev form aI
from (3.1) with frequencies supported on an arbitrary index set I ⊂ Nd0, |I| <∞, at the nodes
xj := cos( jM z), j = 0, . . . ,M , of an arbitrary rank-1 Chebyshev lattice CL(z,M) ⊂ [−1, 1]d,

aI(xj) =
∑
k∈I

âk

d∏
t=1

cos

(
j

M
πktzt

)
, j = 0, . . . ,M. (3.12)

Analogously to the approach in Chapter 2, we are going to use a one-dimensional discrete
cosine transform of type I (DCT-I) for evaluating (3.12), see also [PV15]. A DCT-I of
length n + 1 applied to an input vector of coefficients (bj)

n
j=0 ∈ Rn+1 computes b̂k :=∑n

j=0(ε
n
j )

2 bj cos(jkπ/n) for k = 0, . . . , n, where εnj := 1/
√
2 for j ∈ {0, n} and εnj := 1

for j ∈ {1, . . . , n − 1}. In order to apply the DCT-I in the multivariate case, we transform
the product of cosines

∏d
t=1 cos(

j
M πktzt) in (3.12) into a cosine of sums,

cos

(
j

M
π (k1z1 + . . .+ kdzd)

)
= cos

(
j

M
π k · z

)
.

In doing so, we introduce additional notation following [PV15, Section II.B]. For a given
arbitrary index set I ⊂ Nd

0 of finite cardinality, we define the extended symmetric index set

M(I) := {h ∈ Zd : (|h1|, . . . , |hd|)⊤ ∈ I},

which contains all frequencies k ∈ I and versions of these frequencies k (repeatedly) mirrored
at all coordinate axes. We remark that we have the relation

M(Id,Ta,n ) = Id,T,1n (3.13)

between the frequency index set Id,Ta,n from the non-periodic case as defined in (3.11) and

the frequency index set Id,T,1n from the periodic case as defined in (2.14), and this relation
will play an important role in this chapter. In addition to the extended symmetric index
setM(I), we define the index sets

Mν(I) := {h ∈M(I) : hν ≥ 0}, ν ∈ {1, . . . , d},

which contain all frequencies k ∈ I and versions of these frequencies (repeatedly) mirrored at
all coordinate axes except the ν-th. In Figure 3.4, we depict the ℓ1-ball frequency index set
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I = I2,−∞
a,8 as well as the corresponding extended symmetric index set M(I2,−∞

a,8 ) ⊂ Z2 and

mirrored index sets M1(I
2,−∞
a,8 ) ⊂ N0 × Z, M2(I

2,−∞
a,8 ) ⊂ Z × N0. Additionally, we give its

cardinalities |I|. Here, the cardinalities of the index setsM1(I
2,−∞
a,8 ) andM2(I

2,−∞
a,8 ) coincide.

Moreover, in Figure 3.5, we show an example for a sparser frequency index set I ⊂ N2
0 as

well as the corresponding extended symmetric index set M(I) ⊂ Z2 and mirrored index
sets M1(I) ⊂ N0 × Z, M2(I) ⊂ Z × N0. We observe that the cardinalities of the index
setsM1(I) andM2(I) differ for this example.

0 8

0

8

−8 0 8

−8

0

8

0 8

−8

0

8

−8 0 8

0

8

|I2,−∞
a,8 | = 45 |M(I2,−∞

a,8 )| = 145 |M1(I
2,−∞
a,8 )| = 81 |M2(I

2,−∞
a,8 )| = 81

Figure 3.4: From left to right: frequency index sets I2,−∞
a,8 ,M(I2,−∞

a,8 ) = I2,−∞,1
8 ,

M1(I
2,−∞
a,8 ),M2(I

2,−∞
a,8 ).

−16 0 16

−16

0

16

−16 0 16

−16

0

16

−16 0 16

−16

0

16

−16 0 16

−16

0

16

|I| = 35 |M(I)| = 111 |M1(I)| = 62 |M2(I)| = 63

Figure 3.5: From left to right: frequency index sets I ⊂ N2
0,M(I) ⊂ Z2,M1(I),M2(I).

Next, we remark that for y1, y2 ∈ R, we have cos(y1) cos(y2) = 1
2(cos(y1+y2)+cos(y1−y2))

and cos(y1) cos(y2) cos(y3) = 1
4(cos(y1 + y2 + y3) + cos(y1 + y2 − y3) + cos(y1 − y2 + y3) +

cos(y1 − y2 − y3)). Using induction on the dimension d ∈ N and due to the symmetry of the
cosine cos(x) = cos(−x) for all x ∈ R, we obtain for y := (y1, . . . , yd)

⊤ ∈ R

d∏
t=1

cos(yt) =
∑

m∈Mν({1}d)

1

2d−1
cos (m · y) (3.14)

=
∑

m∈{−1,1}d

1

2d
cos (m · y) , (3.15)
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where m := (m1, . . . ,md)
⊤. Applying (3.14) and (3.15) on (3.12), we obtain

aI(xj) =
∑
k∈I

âk
2d−1

∑
m∈Mν({1}d)

cos

(
j

M
π (m⊙ k) · z

)
,

=
∑
k∈I

âk
2d

∑
m∈{−1,1}d

cos

(
j

M
π (m⊙ k) · z

)
, j = 0, . . . ,M,

for any ν ∈ {1, . . . , d} and for an arbitrary multivariate algebraic polynomial in Chebyshev
form aI from (3.1), where m⊙k := (m1k1, . . . ,mdkd)

⊤. For M ∈ N and l ∈ Z, we define the
even-mod relation

l emodM :=

{
l mod (2M), l mod (2M) ≤M,

2M − (l mod (2M)) else,
(3.16)

as well as in the special case M = 0, l emod 0 := 0 for l ∈ Z. For each l ∈ {0, . . . ,M}, we
consider the frequencies k ∈ I and m ∈Mν({1}d), such that l = (m⊙ k) · z emodM . Then
we obtain

aI(xj) =
M∑
l=0

⎛⎜⎜⎜⎝∑
k∈I

∑
m∈Mν({1}d)

(m⊙k)·z emodM= l

âk
2d−1

⎞⎟⎟⎟⎠ cos(jlπ/M) (3.17)

=
M∑
l=0

⎛⎜⎜⎜⎝∑
k∈I

∑
m∈{−1,1}d

(m⊙k)·z emodM= l

âk
2d

⎞⎟⎟⎟⎠
  

ĝl

cos(jlπ/M), j = 0, . . . ,M, (3.18)

for the nodes xj := cos( jM πz) of a rank-1 Chebyshev lattice CL(z,M), since cos(jlπ/M) =

cos( jM π (m⊙ k) · z) for all j = 0, . . . ,M . All inner double sums in (3.17) may have in total
up to 2d−1|I| many summands and in (3.18) up to 2d|I| many. The outer sum is simply a
one-dimensional DCT-I of length M + 1, which can be computed fast using a fast version
of the one-dimensional DCT-I or a one-dimensional FFT. In the end, we can evaluate an
arbitrary multivariate algebraic polynomial in Chebyshev form aI from (3.1) given by its
Chebyshev coefficients âk, k ∈ I, at all nodes xj := cos( jM πz), j = 0, . . . ,M , of an arbitrary
rank-1 Chebyshev lattice CL(z,M) ⊂ [−1, 1]d in O(M logM+d 2d|I|) arithmetic operations,
cf. Algorithm 3.1. Alternatively, using ideas from [SNC16], we may rewrite the coefficient

ĝl :=
∑
k∈I

∑
m∈{−1,1}d

(m⊙k)·z emodM= l

âk
2d

=
∑
k∈I

∑
h∈M({k})

h·z emodM= l

âk
2|h|0

in (3.18) and we obtain a modified version of Algorithm 3.1 with computational costs of
O(M logM + d |M(I)|). If only a small amount of components of the frequencies k ∈ I
are non-zero, i.e., only some dimensions are coupled, we have |I| ≤ |M(I)| ≪ 2d|I| and
consequently the modified version may require distinctly less arithmetic operations.
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Algorithm 3.1 Fast and exact evaluation of an arbitrary multivariate algebraic polynomial
in Chebyshev form aI , I ⊂ Nd0, |I| < ∞, at the nodes of an arbitrary rank-1 Chebyshev
lattice CL(z,M) ⊂ [−1, 1]d.
Input: I ⊂ Nd0 frequency index set of finite cardinality

(âk)k∈I Chebyshev coefficients of multivariate algebraic
polynomial in Chebyshev form aI

CL(z,M) arbitrary rank-1 Chebyshev lattice with size pa-
rameter M ∈ N and generating vector z ∈ Nd0

Initialize ĝl := 0 for all l = 0, . . . ,M .
for each k ∈ I and each m ∈ {−1, 1}d do
Compute l := (m⊙ k) · z emodM .
Set ĝl := ĝl + âk/2

d/(εMl )2.
end for
Compute a := DCT_I

(
(ĝl)

M
l=0

)
, i.e. aI(xj) =

∑M
l=0(ε

M
j )2 ĝl cos(jlπ/M) for j = 0, . . . ,M .

Output: a := (aI(xj))
M
j=0 function values of aI at rank-1 Chebyshev lattice

nodes xj := cos(jπz/M), j = 0, . . . ,M
Complexity: O(M logM + d 2d|I|)

3.2 Fast reconstruction for known frequency index sets

In this section, we consider the fast and exact reconstruction of a multivariate algebraic poly-
nomial in Chebyshev form aI from (3.1) with arbitrary frequency index set I ⊂ Nd0, |I| <∞.
In subsection 3.2.1, we describe a method for reconstructing the Chebyshev coefficients âk,
k ∈ I, of the multivariate algebraic polynomial in Chebyshev form aI from samples taken at
the nodes xj of a reconstructing rank-1 Chebyshev lattice CL(z,M, I). In subsection 3.2.2, we
discuss strategies for obtaining such a reconstructing rank-1 Chebyshev lattice CL(z,M, I).

3.2.1 Reconstruction method based on rank-1 Chebyshev lattices

Similar to the fast evaluation, our approach for the fast reconstruction is based on applying
a one-dimensional DCT-I on the sampling values aI(xj) at the nodes xj := cos(jπz/M),
j = 0, . . . ,M , of a rank-1 Chebyshev lattice CL(z,M) fulfilling a certain property. The
presented approach was first published in [PV15, Section III.B]. Formally, we compute the
coefficients

˜̂al :=

M∑
j=0

(εMj )2 aI(xj) cos

(
jl

M
π

)
(3.19)

=
M∑
j=0

(εMj )2
∑
k∈I

âk

(
d∏
t=1

cos

(
j

M
π kt zt

))
cos

(
jl

M
π

)

for l ∈ {0, . . . ,M} by a DCT-I of length M + 1. Inserting formula (3.15), this yields

˜̂al =
∑
k∈I

âk
2d

∑
m∈{−1,1}d

M∑
j=0

(εMj )2 cos

(
j

M
π (m⊙ k) · z

)
cos

(
jl

M
π

)
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for l ∈ {0, . . . ,M}. We remark that the orthogonality relation

2

n
εnkε

n
k′

n∑
j=0

(εnj )
2 cos

(
jkπ

n

)
cos

(
jk′π

n

)
= δk,k′ , k, k

′ ∈ {0, . . . , n} (3.20)

holds, where δk,k′ is Kronecker’s delta, see e.g. [RY90, Section 2.4], and that{
m⊙ k : m ∈ {−1, 1}d

}
=M({k}) for k ∈ I.

We consider the indices l := k · z emodM for frequencies k ∈ I and consequently, we obtain

˜̂al =
∑

h∈M(I)

â(|h1|,...,|hd|)⊤

2d

(
d∏
s=1

2δhs,0

)
M∑
j=0

(εMj )2 cos

(
j

M
π h · z

)
cos

(
j

M
π k · z

)
. (3.21)

Using the orthogonality relation (3.20), we obtain that the summands of each coefficient ˜̂al,
l := k · z emodM for frequencies k ∈ I, consist solely of the Chebyshev coefficient âk if and
only if

k · z emodM ̸= h · z emodM for all k ∈ I and h ∈M(I), k ̸= (|h1|, . . . , |hd|)⊤. (3.22)

For example, all the rank-1 Chebyshev lattices CL(z,M) in Figure 3.2 fulfill property (3.22)
for the ℓ1-ball frequency index set I = I2,−∞

a,8 in Figure 3.4 and the rank-1 Chebyshev lat-
tice CL(z,M) in Figure 3.3 fulfills this property for the frequency index set I depicted therein.

Due to the symmetry of the emod operator, we can reduce the number of frequencies h
in condition (3.22) by a factor of (about) two.

Lemma 3.1. ([PV15, Lemma III.1]). For M ∈ N0 and l ∈ Z, we have l emodM =
(−l) emodM .

Proof. We consider the two different cases in the definition of the emod operator and addition-
ally treat the case l = 0. For 0 < l mod (2M) < M , we have M < (−l) mod (2M) ≤ 2M − 1
and this means (−l) emodM = 2M − ((−l) mod (2M)) = 2M − (2M − (l mod (2M))) =
l emodM . Otherwise, for M < l mod (2M) < 2M , we obtain 0 < (−l) mod (2M) < M
and this yields (−l) emodM = (−l) mod (2M) = 2M − (l mod (2M)) = l emodM . For
the remaining cases l mod (2M) = 0 and l mod (2M) = M , we also obtain (−l) emodM =
l emodM .

Lemma 3.2. ([PV15, Lemma III.2]). For a given arbitrary index set I ⊂ Nd0 of finite
cardinality, |I| < ∞, let Ĩ ⊂ Zd be an arbitrary index set with the property M(I) =
Ĩ ∪ {−h : h ∈ Ĩ}. Then, condition (3.22) is equivalent to

k · z emodM ̸= h · z emodM for all k ∈ I and h ∈ Ĩ , k ̸= (|h1|, . . . , |hd|)⊤. (3.23)

Proof. Due to (−h) · z = −(h · z) for h ∈ Zd, we obtain

(−h) · z emodM = h · z emodM for h ∈ Zd (3.24)

from Lemma 3.1 and the assertion follows.
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Corollary 3.3. ([PV15, Corollary III.3]). For any ν ∈ {1, . . . , d}, condition (3.22) is equiv-
alent to

k · z emodM ̸= h · z emodM for all k ∈ I and h ∈Mν(I), k ̸= (|h1|, . . . , |hd|)⊤. (3.25)

If the equivalent conditions (3.22), (3.23) or (3.25) are fulfilled, we can reconstruct the
Chebyshev coefficients âk, k ∈ I, in the following way. We apply a DCT-I to the sampling val-
ues aI(xj) = aI(cos(jπz/M)), j = 0, . . . ,M , which yields the coefficients ˜̂al, l ∈ {0, . . . ,M},
in (3.19). Then, we obtain the Chebyshev coefficients âk, k ∈ I, of the multivariate algebraic
polynomial in Chebyshev form aI by

âk =
2d(εMl )2

M

˜̂al
|{m ∈Mν({1}d) : (m⊙ k) · z emodM = l}|

(3.26)

with l := k · z emodM for all frequencies k ∈ I and any ν ∈ {1, . . . , d}. Using a fast algo-
rithm for the DCT-I, this computation can be performed in O(M logM + d 2d|I|) arithmetic
operations.

Analogously to the periodic case, we will name a rank-1 Chebyshev lattice CL(z,M)
which fulfills the equivalent reconstruction properties (3.22), (3.23) and (3.25) for a given
frequency index set I ⊂ Nd0 reconstructing rank-1 Chebyshev lattice for I and this will be
denoted by CL(z,M, I). We stress the fact that throughout the discussions in this section,
the frequency index set I ⊂ Nd0 was arbitrarily chosen of finite cardinality, |I| <∞.

In Algorithm 3.2, we summarize the fast and exact reconstruction of the Chebyshev
coefficients âk, k ∈ I, based on samples of the multivariate algebraic polynomial in Chebyshev
form aI at nodes xj := cos(jπz/M) of a reconstructing rank-1 Chebyshev lattice CL(z,M, I).
The realization requires only few lines of Octave / MATLAB code,

a_hat_tilde = dct_I( (aI(xj))
M
j=0 );

a_hat_tilde(1) = a_hat_tilde(1) / 2;

if M > 0; a_hat_tilde(end) = a_hat_tilde(end) / 2; end;

for ik = 1:size(I,1)

k_m = repmat(I(ik,:),2^(d-1),1) .* Mν({1}d);
factor(ik) = length(find(emod(k_m*z’,M)==emod(I(ik,:)*z’,M)));

end

(âk)k∈I = 2^d / M ./ factor .* a_hat_tilde(emod(I*z’,M)+1);

cf. [Vol16a], and has an arithmetic complexity of O(M logM + d 2d |I|). We can rewrite the
computation in (3.26) and in the for loop in Algorithm 3.2 as

âCL
k =

2|k|0+1 (εMl )2

M

˜̂al
|{h ∈M({k}) : h · z emodM = l}|

, l := k · z emodM, k ∈ I,

and we obtain an arithmetic complexity of O(M logM + d |M(I)|), which may be distinctly
smaller if only a small amount of components of the frequencies k ∈ I are non-zero.

3.2.2 Building reconstructing rank-1 Chebyshev lattices

For an arbitrary frequency index set I ⊂ Nd0 of finite cardinality, |I| < ∞, we just discussed
how to obtain the Chebyshev coefficients âk, k ∈ I, from samples of a multivariate alge-
braic polynomial in Chebyshev form aI at nodes xj of a reconstructing rank-1 Chebyshev
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Algorithm 3.2 Fast and exact reconstruction of a multivariate algebraic polynomial
in Chebyshev form aI from sampling values on a reconstructing rank-1 Chebyshev lat-
tice CL(z,M, I).

Input: I ⊂ Nd0 frequency index set of finite cardinality, |I| <∞
CL(z,M, I) reconstructing rank-1 Chebyshev lattice for I with

size parameterM ∈ N and generating vector z ∈ Nd0
a := (aI(xj))

M
j=0 sampling values of aI at nodes xj := cos(jπz/M)

of CL(z,M, I)

Compute ˜̂a := DCT_I(a), i.e.
∑M

j=0(ε
M
j )2 aI (cos(jπz/M)) cos(jlπ/M) for l = 0, . . . ,M .

for each k ∈ I do

Compute l := k · z emodM .

âk = âCL
k :=

2d(εMl )2

M

˜̂al
|{m ∈Mν({1}d) : (m⊙ k) · z emodM = l}|

.

end for

Output: â :=
(
âCL
k

)
k∈I exact Chebyshev coefficients of aI

Complexity: O(M logM + d 2d |I|)

lattice CL(z,M, I), which fulfills the reconstruction properties (3.22), (3.23) and (3.25) by
definition. Next, we present two approaches for the easy construction.

The first construction method will be based on the search strategy from the periodic case
in Section 2.2.1, cf. Algorithm 2.2 and 2.3. For this, we show the relation to reconstructing
rank-1 lattices Λ(z, M̂ , Î), |Î| < ∞, of multivariate trigonometric polynomials pÎ , where we

denote the frequency index set ⊂ Zd from the periodic case by Î and the rank-1 lattice size
by M̂ . This relation also leads to an upper bound in the non-periodic case on the size param-
eter M for the existence of a reconstructing rank-1 Chebyshev lattice CL(z,M, I) in Corol-
lary 3.6. We remark, that such a relation has already been considered for tent-transformed
rank-1 lattices in [SNC16] in a different non-periodic setting, see also Section 3.3.2.

Theorem 3.4. ([PV15, Theorem IV.2]). Let I ⊂ Nd0 be an arbitrary index set of finite
cardinality, |I| < ∞. Moreover, let Λ(z, M̂ , Î) := { j

M̂
z mod 1 : j = 0, . . . , M̂ − 1} be a

reconstructing rank-1 lattice with generating vector z ∈ Nd0 and even rank-1 lattice size
M̂ ∈ 2N for the extended symmetric index set Î :=M(I), i.e.,

h · z ̸≡ h′ · z (mod M̂) for all h,h′ ∈M(I), h ̸= h′. (3.27)

Then, the rank-1 Chebyshev lattice CL(z,M = M̂
2 ) fulfills the equivalent conditions (3.22),

(3.23) and (3.25), i.e., we are able to exactly reconstruct all the Chebyshev coefficients âk,
k ∈ I, of a multivariate algebraic polynomial in Chebyshev form aI from (3.1) based on

samples of aI at the nodes xj := cos(jπz/M̂2 ), j = 0, . . . , M̂2 , of the reconstructing rank-1

Chebyshev lattice CL(z, M̂2 , I).

Proof. For h ∈M(I), we consider the values

h · z emod
M̂

2
=

{
h · z mod M̂, h · z mod M̂ ≤ M̂

2 ,

M̂ − (h · z mod M̂) else.

We remark that h ·z emod M̂
2 ∈ {0, . . . ,

M̂
2 }. Due to property (3.27), all values h ·z mod M̂ ∈
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{0, . . . , M̂ − 1} are distinct for h ∈ M(I) and we obtain for each l ∈ {0, . . . , M̂/2} that one
of the following three cases may occur: Either

1. exactly two distinct frequencies h,h′ ∈ M(I) exist such that h · z emod M̂
2 = h′ ·

z emod M̂
2 = l, or

2. exactly one frequency h ∈M(I) exists such that

h · z emod M̂
2 = l, or

3. such a frequency does not exist for l.

In the first case, h′ = −h follows, since for each h ∈ M(I) \ {0}, also the frequency −h ∈
M(I) \ {0} and we have (3.24) with M := M̂

2 , i.e., (−h) · z emod M̂
2 = h · z emod M̂

2 = l.
The second case can only occur for h = 0, since otherwise the (non-zero) frequency −h ∈
M(I) \ {0}, −h ̸= h, and this would yield (−h) · z emod M̂

2 = h · z emod M̂
2 which would be

in contradiction to the assumed uniqueness of case 2.

In total, we obtain h · z emod M̂
2 ̸= h′ · z emod M̂

2 for all h,h′ ∈ M(I), (|h1|, . . . , |hd|)⊤ ̸=
(|h′1|, . . . , |h′d|)⊤, implying condition (3.22) since I ⊂M(I).

Remark 3.5. ([PV15, Remark IV.3]). Condition (3.22) and (3.27) with M̂ = 2M are not
equivalent in general. For instance, the generating vector z := (8, 9)⊤ and size parameter
M := 72 from Fig. 3.2a fulfill condition (3.22) for I = I2,−∞

a,8 but not condition (3.27) with

M̂ = 2M . Clearly, there exist cases where both the conditions (3.22) and (3.27) are fulfilled,
see e.g. the examples in Fig. 3.2b and 3.2c, which fulfill both conditions for I = I2,−∞

a,8 .

Corollary 3.6. (see [PV15, Remark IV.4]). For a given frequency index set I ⊂ Nd0, 1 ≤
|I| <∞, and any prime size parameter

M ≥ max

{
|D(M(I))|+ 3

2
, max

k∈I
2∥k∥∞ + 1

}
, (3.28)

there always exists a generating vector z ∈ Nd0 such that the rank-1 Chebyshev lat-
tice CL(z,M) is a reconstructing rank-1 Chebyshev lattice CL(z,M, I), which is suitable
for the reconstruction of multivariate algebraic polynomials in Chebyshev form aI from (3.1).
Moreover, there always exists a reconstructing rank-1 Chebyshev lattice Λ(z,M, I) for the
frequency index set I with prime size parameter

M ≤ max

{
2

3
(|M(I)|2 − |M(I)|+ 8), max

k∈I
3∥k∥∞

}
.

For such prime size parameter M , the generating vector z ∈ Nd0 can be constructed using the
component-by-component approach in Algorithm 2.2 with Iinput :=M(I) and Mstart := 2M .

Proof. We apply Theorem 2.4 on the index set I :=M(I). This yields that for any prime M̂ ≥
max

{
|D(M(I))|+3

2 , maxk∈I 2∥k∥∞ + 1
}
, there exists a reconstructing rank-1 lattice Λ(z, M̂)

for M(I) and the generating vector z can be constructed component-by-component. If
Λ(z, M̂) is a reconstructing rank-1 lattice forM(I), this is also true for Λ(z, 2M̂). Applying
Theorem 3.4 yields that the rank-1 lattice fulfills condition (3.22) and we have the lower
bound (3.28). The upper bound follows correspondingly.
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Remark 3.7. If the reconstructing rank-1 Chebyshev lattice CL(z,M, I) fulfills condi-
tion (3.27) with M̂ = 2M , then we may rewrite formula (3.26) as

âk =
max(2, 2|k|0) (εMl )2

M
˜̂al, l := k · z emodM, k ∈ I,

i.e., we do not need to compute the cardinalities |{m ∈Mν({1}d) : (m⊙k) ·z emodM = l}|
in the denominator of (3.26).

Alternatively to building a reconstructing rank-1 Chebyshev lattice CL(z,M, I) by ap-
plying Algorithm 2.2 in combination with Theorem 3.4, one may use a direct component-
by-component approach which tests for condition (3.25) of the non-periodic case, see also
[PV15, Fig. 5]. This means, we split the search for a reconstructing rank-1 Chebyshev lat-
tice CL(z,M, I) into two phases. First, given a size parameter M which is large enough,
we perform a component-by-component search for a generating vector z ∈ Nd0 which fulfills
the equivalent conditions (3.22), (3.23) and (3.25). Second, we determine the smallest size
parameter M for this generating vector z. This approach is described as Algorithm 3.3.

Algorithm 3.3 ([PV15, Fig. 5]). Construction of reconstructing rank-1 Chebyshev lat-
tice CL(z,M, Iinput) suitable for reconstruction of multivariate algebraic polynomials in
Chebyshev form aI from (3.1) supported on the index set I := Iinput.

Input: index set Iinput ⊂ Nd0, parameter ν ∈ {1, . . . , d}.
1: Determine initial size parameter Mstart, see e.g. Corollary 3.6.
2: for t := 1, . . . , d do
3: for zt := 0, . . . ,Mstart do
4: if condition (3.25) is valid for I := {(k1, . . . , kt)⊤ : k ∈ Iinput}, z := (z1, . . . , zt)

⊤,
M :=Mstart then

5: break
6: end if
7: end for
8: if zt = Mstart and condition (3.25) is not valid for I := {(k1, . . . , kt)⊤ : k ∈ Iinput},

z := (z1, . . . , zt)
⊤, M :=Mstart then

9: increase Mstart and goto line 2.
10: end if
11: end for
12: for M := |Iinput| − 1, . . . ,Mstart do
13: if condition (3.25) is valid for I := Iinput, z := (z1, . . . , zd)

⊤, M then
14: break
15: end if
16: end for

Output: generating vector z ∈ Nd0 and size parameterM ∈ N0 fulfilling condition (3.22),
(3.23), (3.25) for index set I := Iinput.

3.3 Relations to other non-periodic approaches

In this section, we shortly discuss relations of rank-1 Chebyshev lattices CL(z,M) with Padua
points and nodes on Lissajous curves as well as tent-transformed rank-1 lattices.
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3.3.1 Nodes on Lissajous curves

As mentioned in the introduction of this chapter, the nodes xj :=
(cos( jM πz1), . . . , cos(

j
M πzd))

⊤, j = 0, . . . ,M , of a rank-1 Chebyshev lattice CL(z,M)
are equispaced points on a Lissajous curve LCz(t) := (cos(z1t), . . . , cos(zdt))

⊤ ∈ [−1, 1]d,
t ∈ [0, π], having t := jπ/M , see e.g. [BDMV16, DE15].

In two dimensions for a parameter n ∈ N, choosing the generating vector z :=
(n, n + 1)⊤ and the size parameter M := n(n + 1) yields the so-called Padua points
xj := (cos(jπ/(n+ 1)), cos(jπ/n))⊤ = cos(jπz/M), j = 0, . . . ,M , of the rank-1 Cheby-
shev lattice PP(n) := CL(z,M), cf. [BCD+06]. As discussed in [BCD+06, Section 2], the

Padua point set PP(n) only consists of |I2,−∞
a,n | =

(
n+2
2

)
= n2

2 + 3
2n+1 distinct points, whereas

the size parameter M = n2 + n, and PP(n) is a reconstructing rank-1 Chebyshev lattice for
the ℓ1-ball frequency index set I2,−∞

a,n as the following lemma states.

Lemma 3.8. ([PV15, Lemma IV.1]). Let the frequency index set I = I2,−∞
a,n := {k ∈

N2
0 : k1+ k2 ≤ n} be the two-dimensional ℓ1-ball of refinement n ∈ N. Then, the Padua point

set PP(n) is a reconstructing rank-1 Chebyshev lattice CL(z,M, I2,−∞
a,n ) and we can exactly

reconstruct any two-variate algebraic polynomial of total degree ≤ n from sampling values
at the nodes xj of the Padua point set PP(n) using Algorithm 3.2.

Proof. The assertion follows from the Lagrange interpolation formula [CDV08, (7c)]. Alter-
natively, condition (3.25) from Corollary 3.3 can be verified.

Explicit choices of the generating vector z and size parameter M of a reconstructing
rank-1 Chebyshev lattice CL(z,M, I3,−∞

a,n ) for the three-dimensional ℓ1-ball index set I3,−∞
a,n

are also known, see e.g. [CP11, BDMV16, BDMV15], or for certain subsets of d-dimensional

ℓ1-ball frequency index Id,−∞
a,n , cf. [DE15]. We remark that the obtained results yield a so-

called hyperinterpolation for dimensions d ≥ 3 and that any cubature formula which exactly
integrates a multivariate algebraic polynomial of total degree ≤ 2n may be used for the exact
reconstruction of a polynomial of total degree ≤ n, cf. [Slo95, CP11].

3.3.2 Tent transformed rank-1 lattices

Point sets where the tent transform (or baker’s transform)

ψ : [0, 1]→ [0, 1], ψ(x) := 1− |2x− 1|,

is applied component-wise to (shifted) lattices were introduced in [Hic02], and tent-
transformed rank-1 lattices

Pψ(z,M) := {ψ(jz/M mod1) : j = 0, . . . ,M − 1}

were considered in [DNP14] for the (approximate) integration of functions from smooth
subspaces of L2([0, 1]

d). Functions g ∈ L2([0, 1]
d) are expanded into a cosine series

g(x) :=
∑

k∈Nd
0
ĝkϕk(x), ĝk ∈ R, of half-periodic cosine functions

ϕk(x) :=
d∏
s=1

√
2
δ0,ks cos(πksxs), k ∈ Nd0,

where the latter form an orthonormal basis of L2([0, 1]
d). In [SNC16], the reconstruction of

truncated series expansions

gI(x) :=
∑
k∈I

ĝkϕk(x)
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was considered for weighted hyperbolic cross frequency index sets I ⊂ Nd0 using special tent-
transformed rank-1 lattices Pψ(z,M). We remark that the functions gI are not algebraic
polynomials in general. It was discussed in [SNC16] that the reconstruction is possible if
property (3.27) is fulfilled. This means, if the generating vector z and rank-1 lattice size M
belong to a reconstructing rank-1 lattice Λ(z,M,M(I)) for the extended symmetric index
setM(I), then the CBC construction method from [Käm13] can be used, cf. Figure 3.6 for
a two-dimensional example. Moreover, the reconstruction can be performed by applying a
single one-dimensional FFT on the function samples followed by index transforms and requires
O(M logM+d |M(I)|) arithmetic operations, which corresponds to the arithmetic complexity
of our method in Section 3.2.1. The method in [SNC16] is applied to the fast approximation
of functions f from (non-periodic) weighted Korobov spaces ⊂ L2([0, 1]

d). In [CKNS16],
the utilization of fast CBC construction methods from [Nuy07] for tent-transformed rank-1
lattices Pψ(z,M) is considered for the integration and approximation of functions f using
samples, where the generating vector z and rank-1 lattice sizeM do not necessarily belong to
a reconstructing rank-1 lattice Λ(z,M, I). Moreover, an extensive theory is developed with
error estimates for tent transformed rank-1 lattice sampling in non-periodic weighted Korobov
spaces and very good tractability results are shown. The sampling rates are comparable to
those obtained for the periodic case in Section 2.3.3.5.

0 16

0

16

−16 0 16

−16

0

16

0 1
0

1

0 1

0

1

I2,0a,16 M(I2,0a,16) = I2,0,116 Λ(z,M,M(I2,0a,16)) Pψ(z,M)

Figure 3.6: From left to right: hyperbolic cross index set I2,0a,16, extended symmetric index

set M(I2,0a,16) = I2,0,116 , reconstructing rank-1 lattice Λ(z,M,M(I2,0a,16)) and tent-transformed
rank-1 lattice Pψ(z,M) with generating vector z := (1, 33) and size M := 579.

3.4 Approximation of non-periodic signals by rank-1 Chebyshev
lattice sampling

In this section, we consider the approximation of multivariate non-periodic signals
f : [−1, 1]d → R from certain function spaces by multivariate algebraic polynomials in Cheby-
shev form aI from (3.1). The corresponding function spaces are characterized by the decay
of the Chebyshev coefficients f̂k, k ∈ Nd0, of a function f as defined in (3.5). In this section,
we assume that we (approximately) know the corresponding function spaces and we choose
the frequency index set I ⊂ Nd0, |I| < ∞, accordingly. As mentioned in the introduction of
this chapter, we consider subspaces Aα,β([−1, 1]d) as defined in (3.6) of the analogon of the
Wiener algebra A([−1, 1]d) = A0,0([−1, 1]d) and Sobolev-type spaces of generalized mixed
smoothness Hα,β([−1, 1]d) as defined in (3.7) for dominating mixed smoothness β ≥ 0 and
isotropic smoothness α > −β.

Since the exact Chebyshev coefficients f̂k, k ∈ Nd0, are not known in general, we compute



3.4 Approximation of non-periodic signals using rank-1 Chebyshev lattices101

the approximated Chebyshev coefficients f̂ CL
k ≈ f̂k of a function f ∈ A([−1, 1]d)∩C([−1, 1]d)

by using the methods from Section 3.2. This means we apply a DCT-I on the samples f(xj)
taken at the nodes xj := cos(jπz/M), j = 0, . . . ,M , of a rank-1 Chebyshev lattice CL(z,M)
and compute index transforms,

˜̂al :=
M∑
j=0

(εMj )2 f(xj) cos

(
jl

M
π

)
, l = 0, . . . ,M,

and for any ν ∈ {1, . . . , d}

f̂ CL
k :=

2d(εMl )2

M

˜̂al
|{m ∈Mν({1}d) : (m⊙ k) · z emodM = l}|

, l := k · z emodM, k ∈ I.

(3.29)
This requires O(M logM+d 2d |I|) arithmetic operations. As in Section 3.2.1, we may rewrite
formula (3.29) as

f̂ CL
k =

2|k|0+1 (εMl )2

M

˜̂al
|{h ∈M({k}) : h · z emodM = l}|

, l := k · z emodM, k ∈ I,

and we obtain an arithmetic complexity of O(M logM+d |M(I)|). We define an approxima-
tion of the function f by the approximated Chebyshev partial sum S CL

I f as defined in (3.9)
which is a multivariate algebraic polynomial in Chebyshev form aI with frequencies supported
on the index set I ⊂ Nd0.

In the next lemma, we state embeddings between different function spaces which are
analogous to Lemma 2.11 from the periodic case.

Lemma 3.9. Let a function f ∈ Aα,β([−1, 1]d) be given, where the dominating mixed
smoothness β ≥ 0 and the isotropic smoothness α > −β. Then, we have ∥f |Hα,β([−1, 1]d)∥ ≤
∥f |Aα,β([−1, 1]d)∥. For f ∈ Hα,β+λ([−1, 1]d) with λ > 1/2, we have

∥f |Aα,β([−1, 1]d)∥ ≤ (1 + 2ζ(2λ))
d
2 ∥f |Hα,β+λ([−1, 1]d)∥, (3.30)

where ζ denotes the Riemann zeta function. Therefore, we have the continuous embeddings

Hα,β+λ([−1, 1]d) ↪→ Aα,β([−1, 1]d) ↪→ A([−1, 1]d) ↪→ L2,w([−1, 1]d).

Proof. Analogously to the proof of [KPV15a, Lemma 2.2], we infer

∥f |Hα,β([−1, 1]d)∥2 =
∑
k∈Nd

0

ωα,β,1(k)2 |f̂k|2 ≤

⎛⎝∑
k∈Nd

0

ωα,β,1(k) |f̂k|

⎞⎠2

= ∥f |Aα,β([−1, 1]d)∥2

and applying the Cauchy-Schwarz inequality for arbitrary λ > 1/2 yields

∥f |Aα,β([−1, 1]d)∥ =
∑
k∈Nd

0

ω0,λ,1(k)

ω0,λ,1(k)
ωα,β,1(k)

⏐⏐⏐f̂k⏐⏐⏐
≤

⎛⎝∑
k∈Nd

0

1

ω0,λ,1(k)2

⎞⎠ 1
2
⎛⎝∑

k∈Nd
0

ωα,β+λ,1(k)2
⏐⏐⏐f̂k⏐⏐⏐2

⎞⎠ 1
2

= (1 + 2ζ(2λ))
d
2 ∥f |Hα,β+λ([−1, 1]d)∥.
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The first embedding is due to (3.30) and the second one follows since the weights ωα,β,1(k)
are bounded from below for fixed dimension d. The third embedding follows from Parseval’s
identity, since we have

∥f |L2,w([−1, 1]d)∥ =

√∑
k∈Nd

0

πd

2|k|0
|f̂k|2 ≤ πd/2

∑
k∈Nd

0

|f̂k| = πd/2 ∥f |A([−1, 1]d)∥

for f ∈ A([−1, 1]d) due to (3.5).

As in Remark 2.15 of the periodic case, the considered parameter choices yield the exis-
tence of a continuous representative.

Remark 3.10. Since the Chebyshev coefficients f̂k of functions f from (subspaces
Aα,β([−1, 1]d), β ≥ 0, α > −β, of) the analogon of the Wiener algebra A([−1, 1]d) are
absolutely summable, they have continuous representatives, A([−1, 1]d) ↪→ C([−1, 1]d). As
we are going to construct the approximant S CL

I f based on function values of the original
function f , we usually identify a function f ∈ A([−1, 1]d) by its continuous representative
given by its Chebyshev series

∑
k∈Nd

0
f̂k Tk(◦) and denote this by f ∈ A([−1, 1]d)∩C([−1, 1]d).

Next, we show an analogon of the aliasing formula from Lemma 2.23 in the non-periodic
case for arbitrary rank-1 Chebyshev lattices CL(z,M).

Lemma 3.11. Let a function f ∈ A([−1, 1]d)∩ C([−1, 1]d), an arbitrary frequency index set
I ⊂ Nd0 of finite cardinality, |I| <∞, and an arbitrary rank-1 Chebyshev lattice CL(z,M) ⊂
[−1, 1]d be given. Then, for any ν ∈ {1, . . . , d}, the aliasing formula of the approximated
Chebyshev coefficients f̂ CL

k from (3.29) is given by

f̂ CL
k = f̂k +

∑
k′∈Nd

0\{k}

f̂k′
|{m ∈Mν({1}) : (m⊙ k′) · z emodM = k · z emodM}|
|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|

(3.31)

for frequencies k ∈ I, where 1 := (1, . . . , 1)⊤ ∈ Nd.

Proof. For the computation of the approximated Chebyshev coefficients f̂ CL
k , k ∈ I, we use

formula (3.29),

f̂ CL
k =

2d(εMk·z emodM )2

M

˜̂ak·z emodM

|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|
,

where

˜̂al =

M∑
j=0

(εMj )2 f(xj) cos

(
jl

M
π

)

=
M∑
j=0

(εMj )2

⎛⎝ ∑
k′∈Nd

0

f̂k′

d∏
t=1

cos

(
j

M
π k′t zt

)⎞⎠ cos

(
jl

M
π

)

(3.14)
=

M∑
j=0

(εMj )2

⎛⎝ ∑
k′∈Nd

0

f̂k′

2d−1

∑
m∈Mν({1})

cos

(
j

M
π (m⊙ k′) · z

)⎞⎠ cos

(
jl

M
π

)

=
∑

k′∈Nd
0

f̂k′

2d−1

∑
m∈Mν({1})

M∑
j=0

(εMj )2 cos

(
j

M
π (m⊙ k′) · z

)
cos

(
jl

M
π

)
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for l = 0, . . . ,M . Due to orthogonality relation (3.20), we infer

˜̂al
(3.20)
=

∑
k′∈Nd

0

f̂k′

2d−1

∑
m∈Mν({1})

(m⊙k′)·z emodM=l

M

2 (εMl )2

=
∑

k′∈Nd
0

f̂k′
M |{m ∈Mν({1}) : (m⊙ k′) · z emodM = l}|

2d (εMl )2
. (3.32)

Due to the choice l := k ·z emodM and together with (3.26), this yields the aliasing formula

f̂ CL
k =

∑
k′∈Nd

0

f̂k′
|{m ∈Mν({1}) : (m⊙ k′) · z emodM = k · z emodM}|
|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|

, k ∈ I.

and the assertion follows.

As we see in the aliasing formula (3.31), the approximated Chebyshev coefficients f̂ CL
k

may contain original Chebyshev coefficients f̂ CL
k′ , k′ ∈ Nd0 \ {k}, of the function f , which are

amplified or damped by factors θ(z,M,k,k′) ∈ {21−d, 22−d, . . . , 2d−2, 2d−1},

θ(z,M,k,k′) :=
|{m ∈Mν({1}) : (m⊙ k′) · z emodM = k · z emodM}|
|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|

,

depending on the used rank-1 Chebyshev lattice CL(z,M). Such a behavior can be observed
in the following example.

Example 3.12. We consider the two-dimensional ℓ1-ball frequency index set of refinement
n := 2,

I = I2,−∞
a,2 = {(0, 0)⊤, (0, 1)⊤, (0, 2)⊤, (1, 0)⊤, (1, 1)⊤, (2, 0)⊤}.

Then, the 2-dimensional rank-1 Chebyshev lattice CL(z,M) with generating vector z :=
(1, 4)⊤ and size parameter M := 7 is a reconstructing rank-1 Chebyshev lattice CL(z,M, I).
For the test function f : [−1, 1]2 → R, f(x) := f̂k′ Tk′(x), f̂k′ ∈ R \ {0}, k′ := (5, 0)⊤, we
compute the approximated Chebyshev coefficients f̂ CL

k , k ∈ I, from sampling values of f at
the nodes xj of the reconstructing rank-1 Chebyshev lattice CL(z,M, I) and we obtain one

non-zero coefficient f̂ CL
(1,1)⊤

= 2 f̂(5,0)⊤ . The reason for this is that we have with the frequency

k := (1, 1)⊤ the relations

|{m ∈M1(1) : (m⊙ k′) · z emodM = k · z emodM = 5}|
|{m ∈M1(1) : (m⊙ k) · z emodM = k · z emodM = 5}|

=

⏐⏐{(1, 1)⊤, (1,−1)⊤}⏐⏐
|{(1, 1)⊤}|

=
2

1

for the case ν = 1 and

|{m ∈M2(1) : (m⊙ k′) · z emodM = k · z emodM = 5}|
|{m ∈M2(1) : (m⊙ k) · z emodM = k · z emodM = 5}|

=

⏐⏐{(1, 1)⊤, (−1, 1)⊤}⏐⏐
|{(1, 1)⊤}|

=
2

1

for the case ν = 2 in the aliasing formula (3.31), but k · z emodM ̸= 5 for all remaining
frequencies k ∈ I \ {(1, 1)⊤}.
If we consider the test function f : [−1, 1]2 → R, f(x) := f̂k′ Tk′(x), f̂k′ ∈ R \ {0} with
k′ := (2, 1)⊤ instead, we obtain the two non-zero coefficients f̂ CL

(0,2)⊤
= f̂ CL

(2,0)⊤
= 1

2 f̂(2,1)⊤ .

Setting k := (0, 2)⊤ and l := (2, 0)⊤, this is due to

|{m ∈M1(1) : (m⊙ k′) · z emodM = k · z emodM = 6}|
|{m ∈M1(1) : (m⊙ k) · z emodM = k · z emodM = 6}|

=

⏐⏐{(1, 1)⊤}⏐⏐
|{(1, 1)⊤, (1,−1)⊤}|

=
1

2
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and

|{m ∈M1(1) : (m⊙ k′) · z emodM = l · z emodM = 2}|
|{m ∈M1(1) : (m⊙ l) · z emodM = l · z emodM = 2}|

=

⏐⏐{(1,−1)⊤}⏐⏐
|{(1, 1)⊤, (1,−1)⊤}|

=
1

2

for the case ν = 1 as well as

|{m ∈M2(1) : (m⊙ k′) · z emodM = k · z emodM = 6}|
|{m ∈M2(1) : (m⊙ k) · z emodM = k · z emodM = 6}|

=

⏐⏐{(1, 1)⊤}⏐⏐
|{(1, 1)⊤, (−1, 1)⊤}|

=
1

2

and

|{m ∈M2(1) : (m⊙ k′) · z emodM = l · z emodM = 2}|
|{m ∈M2(1) : (m⊙ l) · z emodM = l · z emodM = 2}|

=

⏐⏐{(−1, 1)⊤}⏐⏐
|{(1, 1)⊤, (−1, 1)⊤}|

=
1

2

for the case ν = 2 in the aliasing formula (3.31), but k · z emodM /∈ {2, 6} for all remaining
frequencies k ∈ I \ {(0, 2)⊤, (2, 0)⊤}.

Since we do not want to have aliasing within the frequency index set I ⊂ Nd0, we use recon-
structing rank-1 Chebyshev lattices CL(z,M, I) as sampling sets. This yields Algorithm 3.4,
which can be realized using few lines of Octave / MATLAB code,

a_hat_tilde = dct_I( (f(xj))
M
j=0 );

a_hat_tilde(1) = a_hat_tilde(1) / 2;

if M > 0; a_hat_tilde(end) = a_hat_tilde(end) / 2; end;

for ik = 1:size(I,1)

k_m = repmat(I(ik,:),2^(d-1),1) .* Mν({1}d);
factor(ik) = length(find(emod(k_m*z’,M)==emod(I(ik,:)*z’,M)));

end

(f̂k)k∈I = 2^d / M ./ factor .* a_hat_tilde(emod(I*z’,M)+1);

in O(M logM + d 2d|I|) arithmetic operations. As in Section 3.2.1, we can rewrite the com-
putation in the for loop over k ∈ I in Algorithm 3.4 as

f̂ CL
k :=

2|k|0+1 (εMl )2

M

˜̂al
|{h ∈M({k}) : h · z emodM = l}|

, l := k · z emodM,

and we obtain an arithmetic complexity of O(M logM + d |M(I)|). Again, we may not need
to compute the cardinalities in the denominator in certain cases, cf. Remark 3.7.

Using the aliasing formula (3.31) from Lemma 3.11, we obtain the following results for
the truncation error f −SIf and sampling error f −S CL

I f of a function f from the analogon
of the Wiener algebra A([−1, 1]d) or its continuous representative, see Remark 3.10.

Theorem 3.13. Let a function f ∈ A([−1, 1]d) ∩ C([−1, 1]d) and an arbitrary frequency
index set I ⊂ Nd0 of finite cardinality, |I| <∞, be given. Then, the truncation error f − SIf
is bounded by

∥f − SIf |L∞([−1, 1]d)∥ ≤
∑

k∈Nd
0\I

|f̂k| = ∥f − SIf |A([−1, 1]d)∥.

Additionally, let CL(z,M, I) be a reconstructing rank-1 Chebyshev lattice for the frequency
index set I. Then, the sampling error f − S CL

I f is bounded by

∥f −S CL
I f |L∞([−1, 1]d)∥ ≤ (1+2d−1)

∑
k∈Nd

0\I

|f̂k| = (1+2d−1) ∥f −SIf |A([−1, 1]d)∥. (3.33)
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Algorithm 3.4 Approximate reconstruction of a function f ∈ A([−1, 1]d)∩ C([−1, 1]d) from
sampling values on a reconstructing rank-1 Chebyshev lattice CL(z,M, I) for frequency index
set I, i.e., application of Algorithm 3.2 on a function f ∈ A([−1, 1]d) ∩ C([−1, 1]d).
Input: I ⊂ Nd0 frequency index set of finite cardinality

CL(z,M, I) reconstructing rank-1 Chebyshev lattice for I with
size parameter M and generating vector z ∈ Nd0

f = (f(xj))
M
j=0 function values f(xj), xj := cos

(
j
M πz

)
, of

f ∈ A([−1, 1]d) ∩ C([−1, 1]d)

Compute ˜̂a := DCT_I(f), i.e.
∑M

j=0(ε
M
j )2 f (cos(jπz/M)) cos(jlπ/M) for l = 0, . . . ,M .

for each k ∈ I do

Compute l := k · z emodM .

f̂ CL
k :=

2d(εMl )2

M

˜̂al
|{m ∈Mν({1}d) : (m⊙ k) · z emodM = l}|

.

end for

Output: f̂
CL

:=
(
f̂ CL
k

)
k∈I

approximated Chebyshev coefficients of
f ∈ A([−1, 1]d) ∩ C([−1, 1]d)

Complexity: O(M logM + d 2d |I|)

Proof. For the truncation error f − SIf , we obtain

∥f − SIf |L∞([−1, 1]d)∥ = ess supx∈[−1,1]d

⏐⏐⏐⏐⏐⏐
∑

k∈Nd
0\I

f̂kTk(x)

⏐⏐⏐⏐⏐⏐ ≤
∑

k∈Nd
0\I

|f̂k|. (3.34)

We apply inequality (3.10) on the sampling error f−S CL
I f . For the aliasing error SIf−S CL

I f ,
we use aliasing formula (3.31) and this yields

∥SIf − S CL
I f |L∞([−1, 1]d)∥

= ess supx∈[−1,1]d

⏐⏐⏐⏐⏐∑
k∈I

(
f̂k − f̂ CL

k

)
Tk(x)

⏐⏐⏐⏐⏐ ≤∑
k∈I

⏐⏐⏐f̂k − f̂ CL
k

⏐⏐⏐
(3.31)
=

∑
k∈I

⏐⏐⏐⏐⏐⏐
⎛⎝− ∑

k′∈Nd
0\{k}

f̂k′
|{m ∈Mν({1}) : (m⊙ k′) · z emodM = k · z emodM}|
|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|

⎞⎠⏐⏐⏐⏐⏐⏐
≤

∑
k∈I

∑
k′∈Nd

0\{k}

|f̂k′ | |{m ∈Mν({1}) : (m⊙ k′) · z emodM = k · z emodM}|
|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|

.

For each k ∈ I, there does not exist any frequency k′ ∈ I \ {k} such that the numerator is
non-zero due to reconstruction property (3.22) and we continue by interchanging both sums

(3.22)
=

∑
k′∈Nd

0\I

∑
k∈I
|f̂k′ | |{m ∈Mν({1}) : (m⊙ k′) · z emodM = k · z emodM}|

|{m ∈Mν({1}) : (m⊙ k) · z emodM = k · z emodM}|
.

Due to condition (3.22), we have k · z emodM ̸= k̃ · z emodM for all frequencies k, k̃ ∈ I,
k ̸= k̃. This means for fixed frequency k′ ∈ Nd0 \ I and for each m ∈ Mν({1}) that there
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exists at most one frequency k ∈ I such that (m⊙k′) · z emodM = k · z emodM . Since the
cardinality |Mν({1})| = 2d−1, we obtain

∥SIf − S CL
I f |L∞([−1, 1]d)∥ ≤

∑
k∈I

⏐⏐⏐f̂k − f̂ CL
k

⏐⏐⏐ ≤ 2d−1
∑

k′∈Nd
0\I

|f̂k′ | (3.35)

for the aliasing error and this yields the assertion.

The factor 2d−1 in the estimates (3.35) and (3.33) of Theorem 3.13 for the aliasing error
SIf−S CL

I f and sampling error f−S CL
I f , respectively, may occur in practice as the following

example illustrates.

Example 3.14. We consider the three-dimensional ℓ1-ball index set I := I3,−∞
a,4 of refinement

n := 4. Then, the 3-dimensional rank-1 Chebyshev lattice CL(z,M) with generating vector
z := (1, 8, 36)⊤ and size parameter M := 83 is a reconstructing rank-1 Chebyshev lattice
CL(z,M, I). For the test function f : [−1, 1]3 → R, f(x) := f̂k′ Tk′(x), f̂k′ ∈ R, k′ :=
(46, 0, 0)⊤, we compute the approximated Chebyshev coefficients f̂ CL

k , k ∈ I, from sampling
values of f at the nodes xj of the reconstructing rank-1 Chebyshev lattice CL(z,M, I) and

we obtain one non-zero coefficient f̂ CL
(2,1,1)⊤

= 4 f̂(46,0,0)⊤ . This means with the frequency

k := (2, 1, 1)⊤ and the node y′ := (−1, 1,−1)⊤, we have

∥f − S CL
I f |L∞([−1, 1]d)∥ := ess supx∈[−1,1]d

⏐⏐⏐f̂k′ Tk′(x)− f̂ CL
k Tk(x)

⏐⏐⏐
=

⏐⏐⏐f̂k′ Tk′(y′)− f̂ CL
k Tk(y

′)
⏐⏐⏐ = ⏐⏐⏐f̂k′ Tk′(y′)− f̂ CL

k Tk(y
′)
⏐⏐⏐

=
⏐⏐⏐f̂k′ + f̂ CL

k

⏐⏐⏐ = 5 |f̂k′ | = (1 + 22) |f̂k′ | = (1 + 2d−1) |f̂k′ |

which corresponds to the upper bound in Theorem 3.13 for the case d = 3. We remark
that the considered rank-1 Chebyshev lattice CL(z,M) is a reconstructing one fulfilling con-
dition (3.22) according to Theorem 3.4, since the rank-1 lattice Λ(z, M̂) with generating
vector z := (1, 8, 36)⊤ and size M̂ := 166 is a reconstructing rank-1 lattice for the extended
symmetric index setM(I3,−∞

a,4 ) = I3,−∞,1
4 .

Next, we consider functions f from general subspaces of the analogon of the Wiener
algebra A([−1, 1]d), where these subspaces are defined similar to the weighted function
spaces Aω(Td) in [Käm14b, Theorem 3.11]. Let ω̃ : Nd0 → [c,∞), c > 0, be a weight func-

tion, such that the frequency index set Id,ω̃a,n := {k ∈ Nd0 : ω̃(k) ≤ n} is of finite cardinality,

|Id,ω̃a,n | <∞, for each refinement n ∈ R, n ≥ 1. We define the function space

Aω̃([−1, 1]d) :=

⎧⎨⎩f ∈ L2,w([−1, 1]d) : ∥f |Aω̃([−1, 1]d)∥ :=
∑
k∈Nd

0

ω̃(k) |f̂k| <∞

⎫⎬⎭ .

An upper bound for the sampling error f − S CL
I f of functions f from Aω̃([−1, 1]d) is given

in the next theorem.

Theorem 3.15. Let f ∈ Aω̃([−1, 1]d) ∩ C([−1, 1]d) be a function and let a refinement pa-
rameter n ∈ R, n ≥ 1 be given. Moreover, let CL(z,M, I) be a reconstructing rank-1

Chebyshev lattice for the frequency index set I := Id,ω̃a,n . We approximate the function f by
the approximated partial sum S CL

I f . Then, the sampling error is bounded by

∥f − S CL
I f |L∞([−1, 1]d)∥ ≤ (1 + 2d−1)

n

∑
k∈Nd

0\I
d,ω̃
a,n

ω̃(k) |f̂k| ≤
(1 + 2d−1)

n
∥f |Aω̃([−1, 1]d)∥.
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Proof. We apply Theorem 3.13 and use the weights ω̃(k). This yields

∥f − S
Id,ω̃a,n

f |L∞([−1, 1]d)∥
(3.33)

≤ (1 + 2d−1)
∑

k∈Nd
0\I

d,ω̃
a,n

|f̂k| = (1 + 2d−1)
∑

k∈Nd
0\I

d,ω̃
a,n

ω̃(k)

ω̃(k)
|f̂k|

≤ (1 + 2d−1)

(
max

k∈Nd
0\I

d,ω̃
a,n

1

ω̃(k)

) ∑
k∈Nd

0\I
d,ω̃
a,n

ω̃(k) |f̂k|

and the assertion follows.

For functions f ∈ Aα,β([−1, 1]d), we obtain analogous results as in Theorem 2.17 and 2.24.

Correspondingly to the periodic case in (2.14), we use the frequency index sets Id,Ta,n as defined
in (3.11). These frequency index sets are constructed differently compared to the frequency

index sets Id,ω̃a,n from above, since we do not include the smoothness parameters α, β directly
but only use their ratio via the shape parameter T .

Theorem 3.16. Let a function f ∈ Aα,β([−1, 1]d) ∩ C([−1, 1]d) and a frequency index set

I := Id,Ta,n be given, where the refinement n ≥ 1, the dominating mixed smoothness β ≥ 0, the
isotropic smoothness α > −β and the shape parameter T := −α

β with T := −∞ for β = 0.
Then, the truncation error f − S

Id,Ta,n
f is bounded by

∥f − S
Id,Ta,n

f |L∞([−1, 1]d)∥ ≤ ∥f − S
Id,Ta,n

f |A([−1, 1]d)∥ ≤ n−(α+β) ∥f |Aα,β([−1, 1]d)∥

and the operator norm of Id−S
Id,Ta,n

is bounded by

(n+ 1)−(α+β) ≤ ∥ Id−S
Id,Ta,n
|Aα,β([−1, 1]d)→ L∞([−1, 1]d)∥ ≤ n−(α+β) (3.36)

where Id denotes the embedding operator from Aα,β([−1, 1]d) into L∞([−1, 1]d).
Additionally, let CL(z,M, I) be a reconstructing rank-1 Chebyshev lattice for the frequency

index set I := Id,Ta,n . Then, the sampling error is bounded by

∥f − S CL
Id,Ta,n

f |L∞([−1, 1]d)∥ ≤ (1 + 2d−1) n−(α+β) ∥f |Aα,β([−1, 1]d)∥. (3.37)

Proof. We apply Theorem 3.13 and we obtain for the truncation error

∥f − S
Id,Ta,n

f |L∞([−1, 1]d)∥ ≤
∑

k∈Nd
0\I

d,T
a,n

|f̂k| = ∥f − SId,Ta,n
f |A([−1, 1]d)∥

≤ max
k∈Nd

0\I
d,T
a,n

1

ωα,β,1(k)

∑
k∈Nd

0\I
d,T
a,n

ωα,β,1(k) |f̂k|

≤ n−(α+β) ∥f |Aα,β([−1, 1]d)∥.

For the lower bound in (3.36), we proceed analogously to the proof of Theorem 2.17. We
define the d-variate algebraic polynomial g(x) := Tk′(x) with k′ := (n + 1, 0, . . . , 0)⊤ ∈ Nd0
and we conclude that the norm of Id−S

Id,Ta,n
is bounded from below by (3.36) since

∥g − S
Id,Ta,n

g|L∞([−1, 1]d)∥ = ∥g|L∞([−1, 1]d)∥ = ess supx∈[−1,1]d |Tk′(x)| = 1

= ∥g|A([−1, 1]d)∥ = ω−α,−β,1(k′) ωα,β,1(k′) |f̂k′ | = (n+ 1)−(α+β) ∥g|Aα,β([−1, 1]d)∥.
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Moreover, we estimate the sampling error by

∥f − S CL
Id,Ta,n

f |L∞([−1, 1]d)∥
(3.33)

≤ (1 + 2d−1)
∑

k∈Nd
0\I

d,T
a,n

|f̂k|

≤ (1 + 2d−1)n−(α+β) ∥f |Aα,β([−1, 1]d)∥,

which completes the proof.

As in Theorem 2.26 in the periodic case, we also show estimates for the sampling error
f − S CL

Id,Ta,n
f with respect to Hilbert space norms and we obtain analog results.

Theorem 3.17. Let smoothness parameters r, t, α, β ∈ R with β ≥ t ≥ 0 and α + β >
r+ t ≥ 0, a function f ∈ Hα,β([−1, 1]d) ↪→ Aα,β([−1, 1]d) and a frequency index set I := Id,Ta,n

of refinement n ≥ 1 with shape parameter T := −α−r
β−t ∈ [−∞, 1) be given with T := −∞ for

β = t. Then, the truncation error is bounded by

∥f − S
Id,Ta,n

f |Hr,t([−1, 1]d)∥ ≤ n−(α−r+β−t) ∥f |Hα,β([−1, 1]d)∥

and the operator norm of Id−S
Id,Ta,n

is bounded by

(n+ 1)−(α−r+β−t) ≤ ∥ Id−S
Id,Ta,n
|Hα,β([−1, 1]d)→ Hr,t([−1, 1]d)∥ ≤ n−(α−r+β−t) (3.38)

where Id denotes the embedding operator from Hα,β([−1, 1]d) into Hr,t([−1, 1]d).
We restrict the shape parameter T := −α−r

β−t ∈ [− r
t ,−

α
β ] with −

r
t
:= −∞ for t = 0 and

−α
β
:= −∞ for β = 0 as well as let the function f ∈ Aα,β([−1, 1]d) ∩ C([−1, 1]d). Moreover,

let CL(z,M, I) be a reconstructing rank-1 Chebyshev lattice for the frequency index set

I := Id,Ta,n . Then, the sampling error is bounded by

∥f − S CL
Id,Ta,n

f |Hr,t([−1, 1]d)∥

≤ n−(α−r+β−t)
(
∥f |Hα,β([−1, 1]d)∥+ 2d−1 ∥f |Aα,β([−1, 1]d)∥

)
(3.39)

and for functions f ∈
(
Hα,β+λ([−1, 1]d) ∩ C([−1, 1]d)

)
⊂ Aα,β([−1, 1]d), λ > 1/2, this can be

estimated by

≤
(
1 + 2d−1 (1 + 2ζ(2λ))

d
2

)
n−(α−r+β−t)∥f |Hα,β+λ([−1, 1]d)∥, λ > 1

2 . (3.40)

Proof. We apply inequality (3.10) and proceed analogously to the proof of Theorem 2.26
from the periodic case. For the truncation error, we have f − SIf =

∑
k∈Nd

0\I
f̂kTk(◦) and

thus,

∥f − S
Id,Ta,n

f |Hr,t([−1, 1]d)∥2 =
∑

k∈Nd
0\I

d,T
a,n

ωr,t,1(k)2 |f̂k|2 =
∑

k∈Nd
0\I

d,T
a,n

ωr,t,1(k)2

ωα,β,1(k)2
ωα,β,1(k)2 |f̂k|2

≤

(
max

k∈Nd
0\I

d,T
a,n

1

ωα−r,β−t,1(k)2

) ∑
k∈Nd

0\I
d,T
a,n

ωα,β,1(k)2 |f̂k|2

≤ n−2(α−r+β−t)∥f |Hα,β([−1, 1]d)∥2.
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For the lower bound in (3.38), we use the example from the proof of Theorem 3.16. We define
the algebraic polynomial g(x) := Tk′(x) with k′ := (n+ 1, 0, . . . , 0)⊤ ∈ Nd0 and we conclude
that the norm of Id−S

Id,Ta,n
is bounded from below by (3.38) since

∥g − S
Id,Ta,n

g|Hr,t([−1, 1]d)∥ = ∥g|Hr,t([−1, 1]d)∥ =
√
ωr−α,t−β,1(k′)2 ωα,β,1(k′)2 |f̂k′ |2

= (n+ 1)−(α−r+β−t) ∥g|Hα,β([−1, 1]d)∥.

For the aliasing error S
Id,Ta,n

f − S CL
Id,Ta,n

f of a function f ∈ Aα,β([−1, 1]d) ∩ C([−1, 1]d), we have

the aliasing formula (3.31) and, in consequence of the concaveness of the square root function,
we conclude

∥S
Id,Ta,n

f − S CL
Id,Ta,n

f |Hr,t([−1, 1]d)∥ =

⎛⎜⎝ ∑
k∈Id,Ta,n

ωr,t,1(k)2
⏐⏐⏐f̂k − f̂ CL

k

⏐⏐⏐2
⎞⎟⎠

1
2

(3.41)

≤
∑

k∈Id,Ta,n

ωr,t,1(k)
⏐⏐⏐f̂k − f̂ CL

k

⏐⏐⏐ (3.42)

≤ max
k∈Id,Ta,n

ωr,t,1(k)
∑

k∈Id,Ta,n

⏐⏐⏐f̂k − f̂ CL
k

⏐⏐⏐
(2.59)

≤
(3.35)

d(Tt+r)/(1−T )nr+t 2d−1
∑

k∈Nd
0\I

d,T
a,n

ωα,β,1(k)

ωα,β,1(k)
|f̂k|

≤ d
Tt+r
1−T nr+t 2d−1 max

k∈Nd
0\I

d,T
a,n

1

ωα,β,1(k)
∥f |Aα,β([−1, 1]d)∥

L. 2.16
≤ 2d−1 n−(α−r+β−t) ∥f |Aα,β([−1, 1]d)∥

and we obtain (3.39). For functions f ∈ Hα,β+λ([−1, 1]d) ∩ C([−1, 1]d), λ > 1/2, we use
inequality (3.30) and the inequality ∥f |Hα,β([−1, 1]d)∥ ≤ ∥f |Hα,β+λ([−1, 1]d)∥, which yield
the estimate (3.40).

Since we have relation (3.13), we obtain the asymptotic bounds (2.33) from Lemma 2.5 on

the cardinalities |Id,Ta,n | of the frequency index sets Id,Ta,n from the non-periodic case. This yields

upper bounds on the sampling errors f −S CL
Id,Ta,n

f with respect to the degrees of freedom |Id,Ta,n |.

Corollary 3.18. Let a function f ∈ Aα,β([−1, 1]d) ∩ C([−1, 1]d), a frequency index set I :=

Id,Ta,n and a reconstructing rank-1 Chebyshev lattice CL(z,M, I) be given, where the refinement
n ≥ 1, the dominating mixed smoothness β ≥ 0, the isotropic smoothness α > −β and the
shape parameter T := −α

β with T := −∞ for β = 0. Then, for fixed dimension d, the
sampling error is bounded by

∥f − S CL
Id,Ta,n

f |L∞([−1, 1]d)∥ ≲ ∥f |Aα,β([−1, 1]d)∥

⎧⎪⎨⎪⎩
|Id,Ta,n |−(β+α/d) for T ∈ [−∞, 0),
|Id,0a,n|−β(log |Id,0a,n|)(d−1)β for T = 0,

|Id,Ta,n |−(α+β) for T ∈ (0, 1).

Proof. Using estimate (3.37) from Theorem 3.16 and proceeding similar to the proof of Corol-
lary 2.21 together with relation (3.13), we obtain the assertion.
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Corollary 3.19. Let smoothness parameters r, t, α, β ∈ R with β ≥ t ≥ 0 and α+β > r+t ≥
0, a function f ∈ Hα,β+λ([−1, 1]d) ∩ C([−1, 1]d), λ > 1/2, a frequency index set I := Id,Ta,n of
refinement n ≥ 1 and a reconstructing rank-1 Chebyshev lattice CL(z,M, I) be given, where
the shape parameter T := −α−r

β−t ∈ [− r
t ,−

α
β ] with −

r
t
:= −∞ for t = 0 and −α

β
:= −∞ for

β = 0. Then, for fixed dimension d, the sampling error is bounded by

∥f − S CL
Id,Ta,n

f |Hr,t([−1, 1]d)∥ ≲ ∥f |Hα,β+λ([−1, 1]d)∥

·

⎧⎪⎨⎪⎩
|Id,Ta,n |−(β−t+α−r

d
) for T ∈ [−∞, 0),

|Id,0a,n|−(β−t)(log |Id,0a,n|)(d−1)(β−t) for T = 0,

|Id,Ta,n |−(α−r+β−t) for T ∈ (0, 1).

Proof. Using estimate (3.40) from Theorem 3.17 and proceeding similar to the proof of Corol-
lary 2.21 together with relation (3.13), we obtain the assertion.

3.5 Numerical examples

In this section, we present numerical results for the considerations in Section 3.2 and 3.4.
All numerical tests were performed in IEEE 754 double precision arithmetic using MATLAB
R2015b on a computer with Intel Xeon E7-4880 2.50 GHz CPU.

We start with the reconstruction of random multivariate algebraic polynomials in Cheby-
shev form aI from samples along reconstructing rank-1 Chebyshev lattices CL(z,M, I).

Example 3.20. For each dimension d ∈ {2, . . . , 5}, we randomly generate 100 multivariate
algebraic polynomials in Chebyshev form aI with 1000 frequencies k ∈ I, |I| = 1000, chosen
uniformly at random from Ĝd128 := {0, 1, . . . , 128}d, and with corresponding Chebyshev coeffi-
cients âk, k ∈ I, chosen uniformly at random from [−1, 1]. For these polynomials aI , we build
reconstructing rank-1 Chebyshev lattices CL(z,M, I) using the two approaches discussed in
Section 3.2.2. The first approach for obtaining reconstructing rank-1 Chebyshev lattices
is based on Theorem 3.4, i.e., we construct a reconstructing rank-1 lattice Λ(z, M̂ ,M(I))
from the periodic case for the extended symmetric index setM(I) with even rank-1 lattice

size M̂ ∈ 2N and we obtain the reconstructing rank-1 Chebyshev lattice CL(z,M = M̂
2 , I)

for I. In doing so, we first apply Algorithm 2.2 on the extended symmetric index setM(I)
and obtain reconstructing rank-1 lattices Λ(z, M̂ ,M(I)). If the corresponding rank-1 lattice
size M̂ is not even, we search for a larger (even) one. This yields a reconstructing rank-1

Chebyshev lattice CL(z,M = M̂
2 , I) for each frequency index set I. The second approach

directly builds a reconstructing rank-1 Chebyshev lattice CL(z,M, I) using Algorithm 3.3.
Having a reconstructing rank-1 Chebyshev lattice CL(z,M, I), we sample the multivariate
algebraic polynomials in Chebyshev form aI at the corresponding nodes xj := cos( jM πz),
j = 0, . . . ,M , and reconstruct the Chebyshev coefficients âk, k ∈ I, using Algorithm 3.2. We
determine the relative ℓ1 error

∑
k∈I |˜̂ak − âk|/

∑
k∈I |ak|, where ˜̂ak denote the numerically

reconstructed Chebyshev coefficients from Algorithm 3.2. The obtained relative ℓ1 errors
are up to 4.8e-11 in IEEE 754 double precision arithmetic if the sampling values aI(xj) are
generated by a direct computation of formula (3.12). When we use Algorithm 3.1 with a fast
version of the DCT instead for generating sampling values aI(xj), we obtain a maximal rel-
ative ℓ1 error of 1.1e-15. In Table 3.1, we present the numerical results. In the columns 3–5,
we show the results for reconstructing rank-1 Chebyshev lattices CL(z,M, I) generated by
Algorithm 2.2 in combination with Theorem 3.4 and in columns 6–8 the results when gener-
ated by Algorithm 3.3. In both cases, we give the minimal and maximal size parameter M
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and the maximal relative ℓ1 error, where the maximum is computed over the 100 multivari-
ate algebraic polynomials in Chebyshev form aI for each dimension d. We observe that the
errors for both construction methods behave similarly and are at most 1.1e-15. The recon-
struction using Algorithm 3.2 succeeded in all considered cases. For dimensions d ≥ 3, the
direct construction approach of Algorithm 3.3 yields distinctly smaller size parameters M
compared the method based on Theorem 3.4 which first builds a reconstructing rank-1 lat-
tice Λ(z, M̂ ,M(I)) for the extended symmetric index setM(I). Moreover, we observe that
the maximal size parameters M are roughly the same for dimension d = 4 and d = 5 when
using the direct construction approach of Algorithm 3.3. For the construction approach via
a reconstructing rank-1 lattice Λ(z, M̂ ,M(I)) based on Theorem 3.4, the maximal size pa-
rameters M grow for increasing dimension d by a factor of about 3.5 starting from d ≥ 3.
For the considered test cases, already the first three or four components of the generating
vector z ∈ Nd0 of a reconstructing rank-1 Chebyshev lattice CL(z,M, I) often suffice to have
the reconstruction property (3.22) fulfilled and the remaining components of z (except the
t-th) may be set to zero due to the large numbers of possible frequencies |Ĝd128| = 129d

and the small cardinality |I| = 1000 of the used frequency index sets I. However, if we
use the construction approach via a reconstructing rank-1 lattice Λ(z, M̂ ,M(I)) based on
Theorem 3.4, the cardinalities |M(I)| ≤ 2d|I| of the extended symmetric index sets M(I)
grow for increasing dimension d and the rank-1 lattice sizes M̂ grow since we have neces-
sarily M̂ ≥ |M(I)| due to reconstruction property (2.27) compared to M ≥ |I| caused by
reconstruction property (3.22) of the direct construction approach of Algorithm 3.3.

parameters CL(z,M = M̂
2 , I) CL(z,M, I)

Algorithm 2.2, Theorem 3.4 Algorithm 3.3

d |I| min M max M max err min M max M max err

2 1 000 15 239 18 076 7.5e-16 15 982 17 781 6.2e-16
3 1 000 336 475 508 623 7.8e-16 151 998 238 070 9.6e-16
4 1 000 1 253 573 1 793 631 1.1e-15 145 074 473 323 9.7e-16
5 1 000 4 559 243 6 371 833 1.1e-15 156 237 452 740 9.6e-16

Table 3.1: Minimal and maximal size parameters M of reconstructing rank-1 Chebyshev
lattices CL(z,M, I) for 100 random frequency index sets I ⊂ Ĝd128 := {0, 1, . . . , 128}d as well
as maximal relative ℓ1 errors when using Algorithm 3.2 for the reconstruction of multivariate
algebraic polynomials in Chebyshev form aI with random Chebyshev coefficients âk ∈ [−1, 1].

Next, we determine reconstructing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) for hyperbolic

cross frequency index sets I := Id,0a,n using the methods from Section 3.2.2. These will be used
in later examples.

Example 3.21. We build reconstructing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) for hy-

perbolic cross frequency index sets I := Id,0a,n of dimensions d = 2, 3, 4, 5, 6 and various re-
finements n ∈ N using the two approaches discussed in Section 3.2.2. In Table 3.2, we
give the cardinalities |I| of the considered hyperbolic crosses as well as the cardinalities of
the mirrored frequency index sets M1(I) and extended symmetric index sets M(I). We
observe almost a constant ratio |M(I)|/|I| for increasing refinement n and fixed dimen-
sion d ∈ {3, 4, 5, 6} as well as approximately |M(I)|/|I| ≍ 1.6d for increasing dimension d
and fixed refinement n ∈ {32, 64, 128}. In the 6th and 7th column of Table 3.2, the size
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parameters M = M̂/2 and oversampling factors (M̂/2 + 1)/|Id,0a,n| of reconstructing rank-1
Chebyshev lattices CL(z,M = M̂/2, I) = Λ(z, M̂ ,M(I)) constructed by Algorithm 2.2 in
combination with Theorem 3.4 are given. Additionally, we directly build the reconstructing
rank-1 Chebyshev lattices CL(z,M, I) using Algorithm 3.3. The corresponding size param-

eters M and oversampling factors (M + 1)/|Id,0a,n| are shown in the 8th and 9th column of
Table 3.2. We observe that the obtained size parametersM for both construction approaches
coincide in the considered cases for dimension d = 2 and almost coincide for dimension d = 3.
However, for dimension d = 4, 5, 6, the obtained values differ distinctly in several cases, the
resulting size parameters M may be considerably lower when using Algorithm 3.3. For in-
stance for refinement n = 128 and dimension d = 6, there is a factor of about 1.6 between
both approaches.
In Figure 3.7, we compare the oversampling factors M/|Id,0,1n | of the reconstructing rank-1

lattices Λ(z,M, Id,0,1n ) for hyperbolic cross frequency index sets Id,0,1n from Table 2.5 and

(M + 1)/|Id,0a,n| of the reconstructing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) for hyperbolic

cross frequency index sets Id,0a,n from Table 3.2. In Figure 3.7a, we visualize the oversampling
factors for fixed dimension d ∈ {3, 4, 6}. Due to the theoretical results for hyperbolic cross

frequency index sets Id,0,1n in Table 2.3, the oversampling factors should behave approxi-
mately like ≍ n/ log n and this behavior should transfer to the non-periodic case, since we

have Corollary 3.6 and since we numerically observe approximately 1.6d ≍ |M(Id,0a,n)|/|Id,0a,n| =
|Id,0n |/|Id,0a,n|. We obtain that the oversampling factors grow approximately like this upper
bound for the considered refinements n ∈ N, or slightly larger which may be because of
the relatively small values of the refinement n. Moreover, the constants for the reconstruct-
ing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) are higher than the ones for the reconstructing

rank-1 lattices Λ(z,M, Id,0,1n ). In Figure 3.7b, we consider the growth of the oversampling
factors with respect to the dimension d for fixed refinement n ∈ {32, 64, 128}. We observe that

the oversampling factors M/|Id,0,1n | of the reconstructing rank-1 lattices Λ(z,M, Id,0,1n ) grow

approximately like ≍ 1.62d. Moreover, the oversampling factors (M + 1)/|Id,0a,n| of the recon-

structing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) increase approximately between ≍ 2.05d

and ≍ 2.2d.

Based on the reconstructing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) for hyperbolic cross

frequency index sets I := Id,0a,n from Table 3.2, we generate random Chebyshev coefficients âk,
k ∈ I, which yield multivariate algebraic polynomials in Chebyshev form aI , and we recon-
struct aI from samples using Algorithm 3.2.

Example 3.22. We perform reconstruction tests similar to the ones in Example 3.20 for
multivariate algebraic polynomials in Chebyshev form aI for hyperbolic cross frequency in-
dex sets I := Id,0a,n of refinements n ∈ {16, 32, 64, 128, 256} and dimensions d ∈ {3, 4, 5} with
Chebyshev coefficients âk chosen uniformly at random from [−1, 1]. We use the reconstruct-
ing rank-1 Chebyshev lattices CL(z,M, I) from Table 3.2. We sample at the corresponding
nodes xj , j = 0, . . . ,M , and apply Algorithm 3.2 for the reconstruction of the Chebyshev

coefficients âk, k ∈ I. For each hyperbolic cross frequency index set I := Id,0a,n, we repeat the
tests 10 times with different random Chebyshev coefficients âk and determine the maximal
relative ℓ1 error of the Chebyshev coefficients âk. We observe that the reconstruction suc-
ceeded in all considered cases. The observed maximal relative ℓ1 error was 7.4 · 10−16. In
Table 3.3, we show the obtained results.

Next, we approximately reconstruct Chebyshev coefficients f̂k of test functions f using
the results from Section 3.4. We define the shifted, scaled and dilated B-Spline B2 : R → R
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param- cardinalities for CL(z,M = M̂
2 , I) CL(z,M, I)

eters hyperbolic cross index set Algorithm 2.2,

I := Id,0a,n Theorem 3.4 Algorithm 3.3

d n |Id,0a,n| |M1(I
d,0
a,n)|

|M(Id,0a,n)|
=

|Id,0,1n |
M =

M̂

2

M̂
2 + 1

|Id,0a,n|
M

M + 1

|Id,0a,n|

2 8 37 65 113 82 2.24 82 2.24
2 16 83 149 265 290 3.51 290 3.51
2 32 184 335 605 1 090 5.93 1 090 5.93
2 64 409 753 1 377 4 226 10.33 4 226 10.33
2 128 902 1 675 3 093 16 642 18.45 16 642 18.45
2 256 1 979 3 701 6 889 66 050 33.38 66 050 33.38
2 512 4 305 8 097 15 169 263 170 61.13 263 170 61.13

3 8 123 353 593 518 4.22 518 4.22
3 16 309 921 1 577 1 814 5.87 1 814 5.87
3 32 754 2 313 4 021 6 222 8.25 5 859 7.77
3 64 1 829 5 745 10 113 26 501 14.49 18 473 10.10
3 128 4 365 13 981 24 869 94 755 21.71 89 198 20.44
3 256 10 303 33 553 60 217 359 075 34.85 302 883 29.40
3 512 23 976 79 197 143 225 1 424 662 59.42 1 424 613 59.42

4 8 368 1 681 2 769 2 864 7.79 2 181 5.93
4 16 1 009 4 845 8 113 13 656 13.54 8 492 8.42
4 32 2 665 13 343 22 665 52 079 19.54 44 000 16.51
4 64 6 945 36 001 61 889 249 837 35.97 176 948 25.48
4 128 17 700 94 503 164 137 1 083 747 61.23 860 284 48.60
4 256 44 403 243 205 426 193 4 355 469 98.09 3 136 383 70.63
4 512 109 395 612 765 1 082 305 19 550 612 178.72 14 659 035 134.00

5 8 1 032 7 401 12 033 18 245 17.68 12 691 12.30
5 16 3 042 23 153 38 193 89 911 29.56 57 985 19.06
5 32 8 603 69 025 115 385 376 606 43.78 288 785 33.57
5 64 23 853 200 097 338 305 1 703 741 71.43 1 382 832 57.97
5 128 64 373 561 241 958 345 9 138 634 141.96 6 843 471 106.31
5 256 170 299 1 535 585 2 644 977 41 255 293 242.25 31 997 990 187.89

6 8 2 768 30 897 49 761 95 904 34.65 65 849 23.79
6 16 8 684 103 701 169 209 557 773 64.23 303 396 34.94
6 32 26 088 331 423 547 461 2 867 903 109.93 1 751 513 67.14
6 64 76 433 1 024 081 1 709 857 13 603 339 177.98 8 979 932 117.49
6 128 217 113 3 048 067 5 137 789 83 435 553 384.30 51 662 221 237.95

Table 3.2: Cardinalities of hyperbolic cross frequency index sets I := Id,0a,n, mirrored in-

dex sets M1(I
d,0
a,n) and extended symmetric index sets M(Id,0a,n) = Id,0,1n as well as size pa-

rameters M and oversampling factors (M + 1)/|I| of reconstructing rank-1 Chebyshev lat-
tices CL(z,M, I), when using Algorithm 2.2 in combination with Theorem 3.4 as well as
Algorithm 3.3.
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Figure 3.7: Illustration of oversampling factors M/|Id,0,1n | of reconstructing rank-1 lat-

tices Λ(z,M, Id,0,1n ) from Table 2.5 (solid lines with marks) and (M + 1)/|Id,0a,n| of recon-

structing rank-1 Chebyshev lattices CL(z,M, Id,0a,n) from Table 3.2 (dashed lines with marks).

parameters CL(z,M = M̂
2 , I) CL(z,M, I)

Algorithm 2.2, Theorem 3.4 Algorithm 3.3

d n |I| M max err M max err

3 16 309 1 814 3.7e-16 1 814 3.7e-16
3 32 754 6 222 3.0e-16 5 859 2.4e-16
3 64 1 829 26 501 5.0e-16 18 473 2.1e-16
3 128 4 365 94 755 3.4e-16 89 189 7.4e-16
3 256 10 303 359 075 6.7e-16 302 883 6.0e-16

4 16 1 009 13 656 4.4e-16 8 492 3.8e-16
4 32 2 665 52 079 3.1e-16 44 000 2.1e-16
4 64 6 945 249 837 2.9e-16 176 948 3.6e-16
4 128 17 700 1 083 747 3.1e-16 860 284 3.4e-16
4 256 44 403 4 355 469 3.7e-16 3 136 383 4.1e-16

5 16 3 042 89 911 3.9e-16 57 985 6.4e-16
5 32 8 603 376 606 3.1e-16 288 785 6.9e-16
5 64 23 853 1 703 741 2.9e-16 1 382 832 3.7e-16
5 128 64 373 9 138 634 2.4e-16 6 843 471 4.8e-16
5 256 170 299 41 255 293 3.0e-16 31 997 990 3.5e-16

Table 3.3: Size parameters M of reconstructing rank-1 Chebyshev lattices CL(z,M, I) for

symmetric hyperbolic cross frequency index sets I := Id,0a,n as well as maximal relative ℓ1
errors of the Chebyshev coefficients âk when using Algorithm 3.2 for the reconstruction of
10 multivariate algebraic polynomials in Chebyshev form aI with random Chebyshev coeffi-
cients âk ∈ [−1, 1], k ∈ Id,0a,n.
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of order 2 by

B2(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2/8 + 9x/8 + 81/32 for − 9/2 ≤ x < −5/2,
−x2/4− 3x/4 + 3/16 for − 5/2 ≤ x < −1/2,
x2/8− 3x/8 + 9/32 for − 1/2 ≤ x < 3/2,

0 otherwise.

(3.43)

Using tensorization, we define the d-variate version Bd
2(x) :=

∏d
t=1B2(xt). We restrict our

consideration on the function Bd
2 to the box [−1, 1]d and we are going to approximate f :=

Bd
2 ∈ L2,w([−1, 1]d) by the truncated Chebyshev series SIB

d
2(x) :=

∑
k∈I f̂kTk(x). Due to the

tensor product structure, we use hyperbolic cross frequency index sets I := Id,0a,n. In Figure 3.8,
we visualize the one-dimensional function B2 as well as the two-dimensional hyperbolic cross
frequency index set I2,0a,16 and a reconstructing rank-1 Chebyshev lattice CL(z,M, I2,0a,16).
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B2(x) I2,0a,16 CL((1, 33)⊤, 290, I2,0a,16)

Figure 3.8: Visualization of shifted, scaled and dilated B-Spline B2 of order 2 as well as
hyperbolic cross frequency index set I2,0a,16 and corresponding reconstructing rank-1 Chebyshev

lattice CL(z,M, I2,0a,16) with generating vector z := (1, 33)⊤ and size parameter M := 290.

The Chebyshev coefficients f̂k, k ∈ N0, of B2 are given by

f̂k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9
√
3k cos(2kπ/3)− 9(−2 + k2) sin(2kπ/3)

8k(4− 5k2 + k4)π
for k ≥ 3,

9
√
3/(128π) for k = 2,

−1/2 + 9
√
3/(32π) for k = 1,

1/4 + 9
√
3/(64π) for k = 0,

(3.44)

which yields |f̂k| ≲ k−3. Consequently, we have Bd
2 ∈ A0,2−ϵ([−1, 1]d) and Bd

2 ∈
H0,5/2−ϵ([−1, 1]d) for any ϵ > 0.

First, we investigate the truncation errors Bd
2 − S

Id,0a,n
Bd

2 with respect to the refine-

ment n ∈ N.

Example 3.23. For d ∈ {2, 3, 4, 5, 6} and refinements n ∈ {1, 21, 22, . . . , 29}, the relative
truncation errors

∥Bd
2 − SId,0a,n

Bd
2 |A([−1, 1]d)∥/∥Bd

2 |A([−1, 1]d)∥

are depicted in Figure 3.9a. From Theorem 3.16 with dominating mixed smoothness β = 2−ϵ,
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ϵ > 0, and isotropic smoothness α = 0, we obtain the upper bound

∥Bd
2 − SId,0a,n

Bd
2 |L∞([−1, 1]d)∥

∥Bd
2 |A([−1, 1]d)∥

≤
∥Bd

2 − SId,0a,n
Bd

2 |A([−1, 1]d)∥
∥B2|A([−1, 1]d)∥

≤ n−2+ϵ ∥Bd
2 |A0,2−ϵ([−1, 1]d)∥
∥Bd

2 |A([−1, 1]d)∥

and the observed decay rates correspond roughly to the estimates. In this upper bound, the
factor ∥Bd

2 |A0,2−ϵ([−1, 1]d)∥/∥Bd
2 |A([−1, 1]d)∥ may be large, for instance > 4.19d for ϵ = 0.05.

Additionally, the relative truncation error measured in the L2,w([−1, 1]d) norm is shown in
Figure 3.9b. Theorem 3.17 with β = 5/2− ϵ and r = t = α = 0 yields the upper bound

∥Bd
2 − SId,0a,n

Bd
2 |L2,w([−1, 1]d)∥

∥Bd
2 |L2,w([−1, 1]d)∥

≤ π
d
2 n−5/2+ϵ ∥Bd

2 |H0,5/2−ϵ([−1, 1]d)∥
∥Bd

2 |L2,w([−1, 1]d)∥
.

We observe that the rates of the measured errors approximately decay as the theoretical upper
bounds suggest. Especially for higher dimensions d, the observed decay rate is slightly smaller,
which most likely is caused by the relatively small values of the refinement n and the large con-
stants (increasing with d). For instance, the factor ∥Bd

2 |H0,5/2−ϵ([−1, 1]d)/∥Bd
2 |L2,w([−1, 1]d)∥

is greater than 1.65d for ϵ = 0.05.
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Figure 3.9: Relative A([−1, 1]d) truncation errors rel trunc err A :=
∥Bd

2 − SIB
d
2 |A([−1, 1]d)∥/∥Bd

2 |A([−1, 1]d)∥ and L2,w([−1, 1]d) truncation errors
rel trunc err L2w := ∥Bd

2 − SIB
d
2 |L2,w([−1, 1]d)∥/∥Bd

2 |L2,w([−1, 1]d)∥ for Bd
2 with re-

spect to the refinement n of the hyperbolic cross I := Id,0a,n.

Next, we consider the approximation of the test function Bd
2 based on samples along

reconstructing rank-1 Chebyshev lattices CL(z,M, I).
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Example 3.24. We use the reconstructing rank-1 Chebyshev lattices CL(z,M, I) built by

Algorithm 3.3 in Example 3.21 for hyperbolic cross frequency index sets I := Id,0a,n, where the
obtained size parameters M are shown in the 8th column of Table 3.2, and we additionally
build reconstructing rank-1 Chebyshev lattices CL(z,M, I) for dimensions d ∈ {7, 8, . . . , 11}.
Then, we sample the test functions f := Bd

2 at the corresponding nodes and apply Algo-
rithm 3.4. The resulting sampling errors Bd

2 − S CL
I Bd

2 measured in the relative A([−1, 1]d)
and L2,w([−1, 1]d) norm are only slightly larger than the corresponding truncation errors
Bd

2 − SIBd
2 , the obtained results are visualized in Figure 3.10a and 3.10b, respectively. For

the considered test function Bd
2 , we do not see the factor (1 + 2d−1) from the estimates in

Theorem 3.16 and 3.17. However, as we have seen in Example 3.14 of Section 3.4, this factor
may occur in principle. For the relative A([−1, 1]d) sampling errors Bd

2 − S CL
I Bd

2 , we obtain
that the error decays like ≲ n−2+ϵ from Theorem 3.16 and this corresponds approximately
to the observed behavior. For the relative L2,w([−1, 1]d) sampling error Bd

2 − S CL
I Bd

2 , we
obtain an error decay like ≲ n−2+ϵ from Theorem 3.17 due to the factor λ > 1/2. However,
we do not observe this factor here and the obtained errors nearly decay approximately like
≍ n−2.5+ϵ.
In addition to the error plots with respect to the refinement n, we also depict the relative
sampling errors with respect to the number |Id,0a,n| of approximated Chebyshev coefficients in
Figure 3.11 for dimensions d ∈ {2, 3, . . . , 6}. These plots behave like in the periodic case

since the cardinalities |Id,0a,n| ≍ n logd−1 n for fixed dimension d. In Figure 3.11a, we depict the

relative A([−1, 1]d) sampling errors and lines ≍ |Id,0a,n|−2 (log |Id,0a,n|)2(d−1) which decay (asymp-

totically) slightly faster than the theoretical upper bounds |Id,0a,n|−2+ϵ (log |Id,0a,n|)(2−ϵ)(d−1). The
observed errors nearly decay as the upper bounds suggest. For the relative sampling errors
in the L2,w([−1, 1]d) norm, we show the corresponding errors in Figure 3.11b as well as lines

≍ |Id,0a,n|−
5
2 (log |Id,0a,n|)

5
2
(d−1) (approximately) corresponding to the suspected (asymptotic) up-

per bounds without the factor λ > 1/2. Again, the observed errors nearly decay as the lines
suggest.

Example 3.25. Additionally, we use the test functions fd4 : R → R, fd4 (x) :=
∏d
t=1 f4(xt),

consisting of univariate dilated B-Splines of order 4,

f4(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
115
192 −

125
288x

2 + 625
5184x

4 for |x| < 3
5 ,

55
96 + 25

144 |x| −
125
144x

2 + 625
1296 |x|

3 − 625
7776x

4 for 3
5 ≤ |x| <

9
5 ,

625
31104(|x| − 3)4 for 9

5 ≤ |x| < 3,

0 otherwise.

We only consider the functions fd4 within the box [−1, 1]d and obtain that the corresponding
Chebyshev coefficients f̂k, k ∈ N0, of the univariate function f4(x) restricted to the inter-
val [−1, 1] behave like |f̂k| ≲ k−5. Consequently, we have fd4 ∈ H0,9/2−ϵ([−1, 1]d) for any
ϵ > 0. Moreover, all Chebyshev coefficients f̂k belonging to odd frequencies k ∈ (2N0+1) are

zero. This means, we can use frequency index sets “with holes” I = Id,0a,n,even := Id,0a,n ∩ (2N0)
d

analogously to Example 2.50 in the periodic case. We sample the functions fd4 along re-

constructing rank-1 Chebyshev lattices CL(z,M, Id,0a,n,even), which are constructed based on

Theorem 3.4 via the reconstructing rank-1 lattices Λ(z,M, Id,0,1n,even) used in Example 2.50.
We visualize the obtained relative L2,w([−1, 1]d) sampling errors fd4 − S CL

I fd4 for dimensions
d ∈ {5, 10, 15, 20, 25} in Figure 3.12 and we observe that the errors decrease fast for in-
creasing refinements n. We remark that the obtained relative L2,w([−1, 1]d) sampling errors
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Figure 3.10: Relative A([−1, 1]d) sampling errors rel sampl err A :=
∥Bd

2 − S CL
I Bd

2 |A([−1, 1]d)∥/∥Bd
2 |A([−1, 1]d)∥ and L2,w([−1, 1]d) sampling errors

rel sampl err L2w := ∥Bd
2 − S CL

I Bd
2 |L2,w([−1, 1]d)∥/∥Bd

2 |L2,w([−1, 1]d)∥ for Bd
2 with

respect to the refinement n of the hyperbolic cross I := Id,0a,n.

fd4 − S CL
I fd4 are only slightly larger than the corresponding truncation errors fd4 − SIfd4 and

we may still observe pre-asymptotic behavior since the observed error decay rate is lower
than n−9/2+ϵ+λ, λ > 1/2, for the considered refinements n and dimensions d.

As we have seen in this chapter and in the numerical examples, we were able to trans-
fer methods and results from the periodic case of Chapter 2 to the non-periodic case. We
can reconstruct multivariate algebraic polynomials in Chebyshev form aI in a fast and exact
way from samples along reconstructing rank-1 Chebyshev lattices CL(z,M, I). These meth-
ods can be applied in approximately reconstructing a sufficiently smooth high-dimensional
non-periodic function f ∈ A([−1, 1]d) ∩ C([−1, 1]d) and the obtained errors decay fast if
the frequency index sets I are chosen correspondingly to the decay of the Chebyshev coeffi-
cients f̂k of the function f or to the assumed decay given by a suitable function class. The
computation of approximated Chebyshev coefficients f̂ CL

k ≈ f̂k, k ∈ I, can be performed fast
in O(M logM + d 2d|I|) arithmetic operations using Algorithm 3.4, which can be realized
using few lines of Octave / MATLAB code. Using a modified version of Algorithm 3.4 as
discussed in Section 3.4, we require O(M logM + d |M(I)|) arithmetic operations.
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Figure 3.11: Relative A([−1, 1]d) sampling errors rel sampl err A :=
∥Bd

2 − S CL
I Bd

2 |A([−1, 1]d)∥/∥Bd
2 |A([−1, 1]d)∥ and L2,w([−1, 1]d) sampling errors

rel sampl err L2w := ∥Bd
2 − S CL

I Bd
2 |L2,w([−1, 1]d)∥/∥Bd

2 |L2,w([−1, 1]d)∥ for Bd
2 with

respect to the cardinality |I| of hyperbolic cross frequency index sets I := Id,0a,n for increasing
refinements n and fixed dimension d.
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Figure 3.12: Relative L2,w([−1, 1]d) sampling errors rel sampl err L2w := ∥fd4 −
S CL
I fd4 |L2,w([−1, 1]d)∥/∥fd4 |L2,w([−1, 1]d)∥ for fd4 with respect to the refinement n and the

cardinality |I| of hyperbolic cross frequency index sets “with holes” I := Id,0a,n,even for increas-
ing refinements n and fixed dimension d.
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4
High-Dimensional Sparse FFT

In the previous chapters, we discussed the fast evaluation and reconstruction of multivariate
trigonometric and algebraic polynomials as well as the fast approximation of high-dimensional
functions. In Chapter 2, we considered the fast reconstruction of arbitrary high-dimensional
trigonometric polynomials pI as defined in (2.2) with frequencies supported on arbitrary
known index sets I ⊂ Zd of finite cardinality, |I| < ∞. As sampling sets we used re-
constructing rank-1 lattices Λ(z,M, I) and we were able to exactly reconstruct all Fourier
coefficients p̂k, k ∈ I, from samples pI(xj) at rank-1 lattice nodes xj , j = 0, . . . ,M −1, using
a single one-dimensional FFT and a simple index transform. We successfully applied this
approach for the approximate reconstruction of Fourier coefficients f̂k of high-dimensional
periodic functions f ∈ A(Td) based on function samples f(xj). In Chapter 3, we transferred
these results to the non-periodic case, where we considered the reconstruction of arbitrary
multivariate algebraic polynomials in Chebyshev form aI as defined in (3.1) with frequencies
supported on arbitrary known index sets I ⊂ Nd0, |I| <∞, from samples aI(xj) taken at the
nodes xj , j = 0, . . . ,M , of a reconstructing rank-1 Chebyshev lattice CL(z,M, I). The recon-
struction can be performed using a single one-dimensional DCT and easy-to-compute index
transforms. We applied this method for the approximation of high-dimensional non-periodic
functions f ∈ A([−1, 1]d).

We stress the fact that we assumed for both the periodic and non-periodic case that we
know the corresponding frequency index sets I of the Fourier coefficients p̂k or Chebyshev
coefficients âk, k ∈ I, for the reconstruction of a multivariate trigonometric polynomial pI
or multivariate algebraic polynomial in Chebyshev form aI , respectively. Similarly, in case of
approximation of a multivariate function f , we assumed that we know the frequencies k ∈ I
belonging to the (approximately) largest Fourier or Chebyshev coefficients f̂k. For instance,
one may know a suitable function class for such a function f and corresponding frequency
index sets I.

In this chapter, we assume that we do not have this knowledge and that the frequency
index set I is unknown. This means, we need strategies to additionally search for the lo-
cations supp p̂ := {k ∈ I : p̂k ̸= 0} ⊂ Zd of the non-zero Fourier coefficients p̂k ̸= 0 of a
multivariate trigonometric polynomial pI or the locations supp â := {k ∈ I : âk ̸= 0} of the
non-zero Chebyshev coefficients âk ̸= 0 of a multivariate algebraic polynomial in Chebyshev
form aI . Similarly, we want to search for the locations of the (approximately) largest Fourier
or Chebyshev coefficients f̂k of a multivariate function f . The parts of this chapter dealing
with the periodic case have already been presented in [PV16].

121
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In practice, it may not be feasible to consider all possible integer frequencies k ∈ Zd
or k ∈ Nd0 in a numerical algorithm. Instead, we restrict the consideration to a (possibly
very large) search domain Γ ⊂ Zd or Γ ⊂ Nd0, for example a full grid ĜdN in d dimensions
of refinement N ∈ N with integer frequencies ∥k∥∞ ≤ N . A method which allows for
the efficient determination of a suitable frequency index set I ⊂ Γ and the corresponding
Fourier coefficients p̂k or Chebyshev coefficients âk, k ∈ I, from samples will be denoted by
sparse FFT in this chapter.

We start our considerations with the periodic case. When the search domain Γ ⊂ Zd is
the full grid ĜdN := {k ∈ Zd : ∥k∥∞ ≤ N}, one may use the simple approach of computing a
d-dimensional FFT of length (2N + 1, . . . , 2N + 1)⊤ to obtain Fourier coefficients ˜̂pk, k ∈ Γ,
and determine the non-zero ones. Clearly, we have ˜̂pk = p̂k, k ∈ supp p̂, if supp p̂ ⊂ Γ := ĜdN .
However, as discussed in the introduction of Chapter 2, this approach suffers heavily from the
curse of dimensionality and an alternative approach is required for practical computations.

Various methods for multivariate sparse FFT exist which are based on different con-
cepts and approaches, like e.g. compressed sensing [Don06, Can06, FR13], randomized sub-
sampling and filters [IK14], Chinese Remainder Theorem [Iwe13], randomized Kronecker
substitution [AR14, AGR16], Zippel’s algorithm [Zip79], Ben-Or/Tiwari algorithm [KL03,
CsL08, JM10], or Prony’s method [PT13, PPS15, KPRv16, PTV16], see also [PV16]. How-
ever, many of the mentioned methods may have one or several of the following issues. Some
of the algorithms use randomized sampling and the obtained results are only “with high
probability”. Moreover, the constants in the number of samples or arithmetic complexity
may be unknown due to missing implementations or severely grow with the dimension d.
Some of the methods may not be numerically stable if used on problems with large sparsity,
e.g. thousands or more of non-zero Fourier coefficients p̂k ̸= 0, arbitrary (e.g. clustered) lo-
cations supp p̂, very large search domain Γ or if the samples are perturbed by noise. In the
following, we give an overview for some of the mentioned methods.

One approach, which requires a relatively small amount of samples, is applying random
sampling in compressed sensing [Don06, Can06, FR13]. If a so-called restricted isometry
condition is fulfilled, ℓ1 minimization can be applied, cf. [CT05, Rau07, Rau08a, Rau08b,
NV09, KR08]. The restricted isometry condition is fulfilled with probability at least 1 − η
if the number of samples L ≥ C |supp p̂| log4(|Γ|) log2(1/η), where C is an absolute con-
stant independent of the dimension d, see also [KR08] and the references therein. However,
the number of required arithmetic operations contains the cardinality |Γ| of the search do-
main Γ, see e.g. [FR13, KKM+14], and therefore typically suffers heavily from the curse of
dimensionality.

In [IK14], a multivariate sparse FFT method was discussed which uses randomized sub-
sampling and filters. The method is based on the one-dimensional versions from [HIKP12b,
HIKP12a, IKP14]. As search domain Γ, a full grid ĜdN is used and the number of re-
quired samples is O(|supp p̂| logN) for constant dimension d and the arithmetic complex-
ity is O(Nd logO(1)N). We remark that the sample complexity O(|supp p̂| logN) contains a
factor of dO(d), cf. [IK14, Section IV].

In [Iwe13], a deterministic multivariate sparse FFT algorithm was presented, which uses
the Chinese Remainder Theorem and which requires O(d4 |supp p̂|2 log4(dN)) samples and
arithmetic operations. This means there is neither exponential/super-exponential depen-
dency on the dimension d ∈ N nor a dependency on a failure probability in the asymptotics of
the number of samples and arithmetic operations for this method. Besides this deterministic
algorithm, there also exists a randomized version which only requires O(d4 |supp p̂| log4(dN))
samples and arithmetic operations.
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Alternatively, one may combine sub-sampling on a reconstructing rank-1 lat-
tice Λ(z,M,Γ) and a one-dimensional sparse FFT method. If we consider the evaluation

of a multivariate trigonometric polynomial pI(x) :=
∑

k∈I p̂k e
2πik·x =

∑|I|
l=1 p̂l e

2πikl·x at

the nodes xj := j
M z mod 1 of a reconstructing rank-1 lattice Λ(z,M,Γ) for the search do-

main Γ ⊃ I, we obtain

pI

(
j

M
z mod 1

)
=

|I|∑
l=1

p̂l e
2πi(kl·z) j/M =

|I|∑
l=1

p̂l e
2πifl j/M = p̃Ĩ

(
j

M

)
, j = 0, . . . ,M − 1,

where the one-dimensional frequencies fl := kl · z modM ∈ Ĩ = {0, 1, . . . ,M − 1}. This
means we may regard the evaluation of a multivariate trigonometric polynomial pI : Td → C
at the nodes xj , j = 0, . . . ,M − 1, of a reconstructing rank-1 lattice Λ(z,M,Γ) as the
evaluation of a one-dimensional trigonometric polynomial p̃Ĩ : T→ C at the nodes j/M and
we have an injective mapping of multi-dimensional frequencies kl ∈ I to one-dimensional
frequencies fl ∈ Ĩ given by

Γ→ Ĩ := {0, 1, . . . ,M − 1}, kl ↦→ kl · z modM =: fl, l = 1, . . . , |I|,

see also [PTV16]. Consequently, we may apply a one-dimensional sparse FFT method
on (parts of the) samples p̃Ĩ(j/M) to determine the unknown one-dimensional frequen-

cies fl ∈ Ĩ belonging to non-zero Fourier coefficients p̂l ̸= 0 and compute its d-dimensional
counterparts kl ∈ I using the relation fl = kl · z modM . For one-dimensional sparse
FFTs, very efficient methods are available, for instance randomized algorithms based on fil-
ters [HIKP12b, HIKP12a, IKP14] or shifted sampling [CLW16] as well as deterministic meth-
ods based on Chinese Remainder Theorem [Iwe10], splitting approaches [PW16a, PW16b] or
Prony’s method [PP13, PTV16]. However, many methods have certain restrictions for the un-
known one-dimensional frequencies fl. For instance, approaches based on filters may require
the one-dimensional frequencies fl to be well-distributed or the approach [PW16a] requires
all one-dimensional frequencies fl to be within a certain small interval. Another approach
presented in [PTV16] is based on shifted sampling, see e.g. [CLW16], reconstructing rank-1
lattices Λ(z,M,Γ) as well as a version of Prony’s method and the approach requires for
numerical stability that there is a certain minimum distance between the one-dimensional
frequencies fl, which also depends on the rank-1 lattice size M and the numbers of samples.
In general, such properties may be hard to guarantee for the one-dimensional frequencies fl,
which are the combination of unknown d-dimensional frequencies kl ∈ I ⊂ Γ ⊂ Zd and a
reconstructing rank-1 lattice Λ(z,M,Γ) of (potentially) very large size M ≥ |Γ|.

In this work, we are interested in developing a sparse FFT method based on rank-1 lattice
sampling which works well for the reconstruction of high-dimensional trigonometric polyno-
mials pI with thousands and more non-zero Fourier coefficients p̂k ̸= 0 at unknown frequency
locations supp p̂ within a certain (possibly) very large search domain Γ ⊂ Zd without ad-
ditional restrictions on the frequencies k. The method should also work when samples are
perturbed by noise and be applicable for the approximation of multivariate periodic func-
tions f having infinitely many non-zero Fourier coefficients f̂k. Moreover, the approach is
transferred to the non-periodic case obtaining a method based on rank-1 Chebyshev lat-
tice sampling for the reconstruction of high-dimensional algebraic polynomials in Chebyshev
form aI and for the approximation of multivariate non-periodic functions f .

This chapter is structured as follows.
In Section 4.1, we discuss an approach for the dimension-incremental reconstruction of

multivariate trigonometric polynomials pI from samples, see also [PV16]. Similar to the
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component-by-component search for reconstructing rank-1 lattices Λ(z,M, I), we adaptively
construct the index set of frequencies belonging to the non-zero Fourier coefficients p̂k ̸= 0
in a dimension-incremental way. We remark that a similar idea was used in [PT13], where a
dimension-incremental method for anharmonic trigonometric polynomials based on Prony’s
method was presented, and similar concepts already occurred in [Zip79]. In Section 4.1.1,
we describe the general approach of dimension-incremental reconstruction based on projec-
tions parallel to the coordinate axes and we present the general approach as Algorithm 4.1.
Moreover, we explain each step of Algorithm 4.1 for the reconstruction of a three-dimensional
trigonometric polynomial pI using rank-1 lattice sampling and we illustrate the computation
steps in Figure 4.1. In Section 4.1.2, we describe two realizations of Algorithm 4.1 indicated
in Algorithm 4.2 and 4.3, which partially use random values for the sampling nodes. Both
algorithms are based on sampling along reconstructing rank-1 lattices Λ(z,M, Ĩ) and only
differ in the way how these lattices are constructed. Algorithm 4.2 performs a search as in
Algorithm 2.2 for a relatively large index set of frequency candidates in step 2b, whereas Algo-
rithm 4.3 uses the explicit construction from Theorem 2.7. This yields possible improvements
in the runtime for Algorithm 4.3 at the price of possibly more samples. In Section 4.1.3, we
discuss when the detection of all non-zero Fourier coefficients p̂k ̸= 0 succeeds and possible
cases where the detection may fail. In Section 4.1.4, we discuss the sampling and arithmetic
complexity of Algorithm 4.2 and 4.3, which depend on the sparsity parameter s. This sparsity
parameter s is an input parameter of both algorithms and is used to truncate the number of
detected frequencies in the dimension-incremental steps. Assuming that the search domain Γ
is the d-dimensional full grid ĜdN of refinement N ∈ N and

√
N ≲ s ≲ Nd for sparsity pa-

rameter s ∈ N, we require O(d s2N) many samples for both algorithms as well as O(d s3N2)
arithmetic operations for Algorithm 4.2 and O(d s3 + d s2N log(sN)) arithmetic operations
for Algorithm 4.3. In the case s ≲

√
N , we require O(dN2) many samples for both algorithms

as well as O(d sN3) and O(dN2 logN) arithmetic operations for Algorithm 4.2 and 4.3, re-
spectively. If the detection steps of Algorithm 4.2 or 4.3 succeed, we can replace the sparsity
parameter s in the stated sampling and arithmetic complexities by the number |supp p̂| of
non-zero Fourier coefficients p̂k ̸= 0. In Section 4.1.5, we describe a deterministic version
of Algorithm 4.2 and 4.3, which can be used when the Fourier coefficients p̂k fulfill certain
properties, e.g. if all Fourier coefficients p̂k are non-negative or non-positive. In Section 4.1.6,
we present results of numerical tests for Algorithm 4.2 and 4.3 in up to 30 dimensions. We
successfully apply both methods on random sparse trigonometric polynomials pI and compare
the required numbers of samples and the runtime. We observe that Algorithm 4.3 requires
slightly more samples for the considered test cases but has distinctly less runtime. Moreover,
we consider the case of noisy samples and also successfully reconstruct the considered multi-
variate trigonometric polynomials pI in this case. Afterwards, we numerically compute the
(approximately) largest Fourier coefficients f̂k and the corresponding frequency locations I
of a 10-dimensional test function f .

In Section 4.2, we transfer the method for the dimension-incremental reconstruction from
the periodic case with rank-1 lattice sampling to the non-periodic case using rank-1 Chebyshev
lattice sampling. In Section 4.2.1, we discuss the modifications to the approach from Sec-
tion 4.1 for the reconstruction of multivariate algebraic polynomials in Chebyshev form aI
from samples taken at the nodes of reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ).
We give two algorithms which are adapted versions of Algorithm 4.2. In Algorithm 4.4,
the reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ) are built via reconstructing rank-1
lattices CL(z,M,M(Ĩ)) from the periodic case, cf. Theorem 3.4 and Corollary 3.6. In Algo-
rithm 4.5, the reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ) are directly built using a
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CBC approach with reconstruction property (3.22) fulfilled. In Section 4.2.2, we evaluate the
proposed methods in numerical tests in up to 15 dimensions. We successfully reconstruct all
non-zero Chebyshev coefficients âk ̸= 0 and the corresponding frequency locations supp â of
random sparse algebraic polynomials in Chebyshev form aI . We observe that Algorithm 4.5
requires distinctly less samples compared to Algorithm 4.4 in several cases. Moreover, we suc-

cessfully reconstruct approximate Chebyshev coefficients
˜̂
fk and the corresponding frequency

locations I of a 9-dimensional test function f .

4.1 Periodic case — rank-1 lattice sampling

This section has already been presented in [PV16]. In Section 4.1.1, we discuss the general
approach of a high-dimensional sparse FFT based on dimension-incremental projection. We
explain the method on the example of the reconstruction of a three-dimensional trigonometric
polynomial pI based on rank-1 lattice sampling and visualize the involved computation steps
in detail. In Section 4.1.2, we describe two specific realizations of the approach which use re-
constructing rank-1 lattices Λ(z,M, Ĩ) for the lower components and randomly chosen values
for the higher components of the sampling nodes. In Section 4.1.3, we describe cases where
the proposed method may fail to detect all the frequencies k belonging to non-zero Fourier
coefficients p̂k ̸= 0. In Section 4.1.4, we discuss the sampling and arithmetic complexity of the
proposed methods. In Section 4.1.5, we describe a completely deterministic version, which
can be applied if the Fourier coefficients p̂k of the multivariate trigonometric polynomials pI
fulfill certain properties. In Section 4.1.6, we present numerical examples in up to 30 dimen-
sions. Especially, we deal with the case where we determine the frequency locations I of the
approximately largest Fourier coefficients f̂k of a 10-dimensional test function f : T10 → R
with infinitely many non-zero Fourier coefficients f̂k ̸= 0.

4.1.1 Dimension-incremental projection

The proposed method is based on reconstructing rank-1 lattices Λ(z,M, Ĩ) and the com-
putation of projected Fourier coefficients. For the explanations, we introduce some ad-
ditional notation from [PV16]. As mentioned in the introduction of this chapter, we as-
sume that the unknown support of the trigonometric polynomial pI in frequency domain,
supp p̂ := {k ∈ I : p̂k ̸= 0} ⊂ Zd, lies within a certain superset Γ ⊂ Zd of finite cardinality,
|Γ| < ∞. This superset Γ may be very large, for instance a d-dimensional full grid ĜdN of
refinement N ∈ N. The elements of the set supp p̂ are those frequencies k ∈ Zd which belong
to the non-zero Fourier coefficients p̂k ̸= 0 of the multivariate trigonometric polynomial pI .
In this context, Γ will also be denoted as the search domain of frequencies k. Examples
for those search domains Γ are a d-dimensional full grid ĜdN or (generalized) hyperbolic

crosses Id,T,γN . Moreover, we denote the projection of a frequency k := (k1, . . . , kd)
⊤ ∈ Zd

to the components i := (i1, . . . , im) ∈ {1, . . . , d}m by Pi(k) := (ki1 , . . . , kim)
⊤ ∈ Zm. Corre-

spondingly, we define the projection of a frequency index set I ⊂ Zd to the components i by
Pi(I) := {(ki1 , . . . , kim) : k ∈ I}.

Using this notation, we present the general strategy of the proposed method in Algo-
rithm 4.1. Since the description in Algorithm 4.1 is rather general, we illustrate the approach
in more detail on a three-dimensional trigonometric polynomial pI with 10 non-zero Fourier
coefficients p̂k with frequencies k within the search domain Γ = Ĝ3

8 when using rank-1 lattice
sampling, cf. Figure 4.1. The frequency locations supp p̂ of the three-dimensional trigono-
metric polynomial pI are shown in Figure 4.1a.
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Algorithm 4.1 ([PV16, Section 2.2.1]). General approach for dimension-incremental recon-
struction of multivariate trigonometric polynomial pI from samples for unknown frequency
index set I ⊂ Γ ⊂ Zd and known (possibly very large) search domain Γ ⊃ I.

1. Determine a frequency index set I(1) ⊆ P(1)(Γ) which should be identical to the projec-

tion P(1)(supp p̂) or contain this projection, I(1) ⊇ P(1)(supp p̂). This means we try to
detect the first component of the locations supp p̂ of those frequencies k which belong to
the non-zero Fourier coefficients p̂k ̸= 0 of the multivariate trigonometric polynomial pI .

2. For dimension increment step t = 2, . . . , d

(a) Determine a frequency index set I(t) ⊆ P(t)(Γ) which should be identical to the

projection P(t)(supp p̂) or contain this projection, I(t) ⊇ P(t)(supp p̂). In other
words, we try to detect the t-th component of the frequency locations supp p̂
belonging to the non-zero Fourier coefficients p̂k ̸= 0.

(b) Determine a suitable sampling set X (1,...,t) ⊂ Td, |X (1,...,t)| ≪ |Γ|, which allows to
determine the first t components from the index set (I(1,...,t−1)× I(t))∩P(1,...,t)(Γ)
of those frequencies k belonging to non-zero Fourier coefficients p̂k ̸= 0.

(c) Sample the multivariate trigonometric polynomial pI at the nodes of the sampling
set X (1,...,t).

(d) Compute the (projected) Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ).

(e) Determine the non-zero (projected) Fourier coefficients from ˜̂p(1,...,t),k, k ∈
(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ), and obtain the index set I(1,...,t) of the first t compo-

nents of the frequency locations. The frequency index set I(1,...,t) should be equal
to the projection P(1,...,t)(supp p̂). In simplified terms, we should have detected
the first t components of the frequency locations supp p̂ belonging to the non-zero
Fourier coefficients p̂k ̸= 0 of the multivariate trigonometric polynomial pI .

3. Use the frequency index set I(1,...,d) and the computed Fourier coefficients ˜̂p(1,...,d),k,

k ∈ (I(1,...,d), as an approximation for the support in frequency domain supp p̂ and
the corresponding Fourier coefficients p̂k, k ∈ supp p̂, of the multivariate trigonometric
polynomial pI .
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(a) Frequencies k ∈ supp p̂ ⊂ Γ
belonging to non-zero Fourier
coefficients p̂k ̸= 0 of multi-
variate trigonometric polyno-
mial pI , pI is only given as
black-box.
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(c) 1d-FFT along first direction,
determine I(1) ⊂ P(1)(Γ).
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(d) Sample in second direction
at X (2), |X (2)| = 17.
(t = 2, step 2a)
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(e) 1d-FFT along 2nd direction,
determine I(2) ⊂ P(2)(Γ).
(t = 2, step 2a)

−8
0

8 −8

0

8

k1 k2

(f) Build index set I(1) × I(2),
|I(1) × I(2)| = 49.
(t = 2, step 2b)
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(g) Build reconstructing rank-1 lattice Λ(z,M, I(1) ×
I(2)) ∈ T2 in first two directions, z = (1, 9)⊤,M = 99.
Choose x′3 ∈ T and set X (1,2) := Λ(z,M)× {x′3}.
(t = 2, step 2b)
Sample along first two directions at X (1,2).
(t = 2, step 2c)
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(h) Compute 1d-FFT and a simple
index transform (Algorithm 2.1
along first two directions).
(t = 2, step 2d)
Determine I(1,2) ⊂ P(1,2)(Γ).
(t = 2, step 2e)

Figure 4.1: ([PV16, Figure 2.1]). Reconstruction of a 3-dimensional trigonometric polyno-
mial pI based on Algorithm 4.1.
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(i) Sample in third direction at
X (3), |X (3)| = 17.
(t = 3, step 2a).
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(j) 1d-FFT along 3rd direction,
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(k) Build index set I(1,2) × I(3),
|I(1,2) × I(3)| = 70.
(t = 3, step 2b).

0

1 0

1
0

1

x1 x2

x
3

(l) Build reconstructing rank-1 lattice
X (1,2,3) := Λ(z,M, I(1,2) × I(3)),
z = (1, 4, 23)⊤, M = 276.
(t = 2, step 2b)
Sample at X (1,2,3).
(t = 3, step 2c)
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(m) Compute 1d-FFT and a simple
index transform (Algorithm 2.1).
(t = 2, step 2d)
Determine I(1,2,3) ⊂ Γ.
(t = 3, step 2e)
We have I(1,2,3) = supp p̂.

Figure 4.1: (continued) ([PV16, Figure 2.1]). Reconstruction of a 3-dimensional trigonometric
polynomial pI based on Algorithm 4.1.

In the first step, we choose a suitable sampling set to determine the first components
of the frequency locations supp p̂. Since the search domain Γ has 17 successive frequencies
in the first coordinate direction, P(1)(Γ) = {−8,−7, . . . , 8}, we use a set X (1) ∈ T3 of 17
equispaced sampling nodes along the first coordinate direction, see Figure 4.1b, where we fix
the second and third component of the sampling nodes. We sample pI at the nodes from
the sampling set X (1) and apply a one-dimensional FFT on these sampling values. From the
resulting Fourier coefficients, we search for the non-zero ones (or the ones above a certain
threshold) and put the corresponding frequencies into the index set I(1). This index set
I(1) ⊂ P(1)(Γ) ⊂ Z contains (possibly a subset of) the first components of the frequency
locations of those frequencies k which belong to the non-zero Fourier coefficients p̂k of the
multivariate trigonometric polynomial pI under consideration. In our example, all seven
frequency components are successfully detected, see Figure 4.1c,

At the beginning of the second step (t = 2), we proceed analogously for the second
coordinate direction. This means we use a set X (2) of 17 equispaced sampling nodes along
the second coordinate direction where we fix the first and third component of the sampling
nodes, cf. Figure 4.1d. We sample the multivariate trigonometric polynomial pI at the nodes
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from the sampling set X (2) ∈ T3 and apply a one-dimensional FFT on these sampling values.
From the resulting Fourier coefficients, we search for the non-zero ones (or the ones above a
certain threshold) and put the corresponding frequencies into the index set I(2). This index
set I(2) ⊂ P(2)(Γ) ⊂ Z contains (possibly a subset of) the second components of the frequency
locations of those frequencies k which belong to the non-zero Fourier coefficients p̂k ̸= 0 of the
multivariate trigonometric polynomial pI and all seven frequency components are successfully
detected in our example as depicted in Figure 4.1e. Next, we build the frequency index
set I(1) × I(2) ⊂ Z2, which acts as a (reduced) search domain for the first two components
of the frequency locations in supp p̂ and which contains 49 elements in our example, see
Figure 4.1f. We build a reconstructing rank-1 lattice Λ(z,M, I(1) × I(2)) ⊂ T2, choose a
fixed third component x′3 ∈ T, obtain the set X (1,2) := Λ(z,M) × {x′3} ∈ T3 of sampling
nodes, see Figure 4.1g, and we sample the multivariate trigonometric polynomial pI at these
nodes. Then, we apply a rank-1 lattice FFT, i.e., a one-dimensional FFT followed by a
simple index transform, cf. Algorithm 2.1. Now, we obtain (projected) Fourier coefficients
and we search for the non-zero ones (or the ones above a certain threshold) and put the
corresponding frequencies into the index set I(1,2) ⊂ I(1) × I(2) ⊂ P(1,2)(Γ) ⊂ Z2, which
contains (possibly a subset of) the first two components of the frequency locations of those
frequencies k which belong to the non-zero Fourier coefficients p̂k ̸= 0 of the multivariate
trigonometric polynomial pI , cf. Figure 4.1h.

Afterwards, we deal with the third component (t = 3). We use a set X (3) of 17 equis-
paced sampling nodes along the third coordinate direction where we fix the first and second
component of the sampling nodes, cf. Figure 4.1i. We sample the multivariate trigonometric
polynomial pI at the nodes from the sampling set X (3) ∈ T3 and apply a one-dimensional
FFT on these sampling values. From the resulting (projected) Fourier coefficients, we search
for the non-zero ones (or the ones above a certain threshold) and put the corresponding fre-
quencies into the index set I(3). This frequency index set I(3) ⊂ P(3)(Γ) contains (possibly a
subset of) the third components of the frequency locations of those frequencies k which belong
to the non-zero Fourier coefficients p̂k ̸= 0 of the multivariate trigonometric polynomial pI
and all seven frequency components are successfully detected in our example as depicted in
Figure 4.1j. Next, we build the index set I(1,2)×I(3) ⊂ Γ ⊂ Z3, which now acts as a (reduced)
search domain for the frequency locations in supp p̂ and which contains 70 elements in our
example, see Figure 4.1k. We build a reconstructing rank-1 lattice Λ(z,M, I(1,2)× I(3)) ⊂ T3

and use this as the set X (1,2,3) of sampling nodes, see Figure 4.1l. Again, we apply a rank-1
lattice FFT, i.e., a one-dimensional FFT followed by a simple index transform, cf. Algo-
rithm 2.1. Now, we obtain Fourier coefficients and we search for the non-zero ones (or the
ones above a certain threshold) and put the corresponding frequencies into the index set
I(1,2,3) ⊂ I(1,2) × I(3) ⊂ Γ ⊂ Z3, which contains (possibly a subset of) the frequency lo-
cations of those frequencies k which belong to the non-zero Fourier coefficients p̂k ̸= 0 of
the multivariate trigonometric polynomial pI , cf. Figure 4.1m. Finally, this frequency index
set I(1,2,3) ⊂ Γ ⊂ Z3 and the corresponding Fourier coefficients ˜̂p(1,2,3),k, k ∈ I(1,2,3), are used
as an approximation for the frequency locations supp p̂ and for the corresponding Fourier
coefficients p̂k of the multivariate trigonometric polynomial pI , respectively. If all prior steps
succeeded, we have successfully detected all frequencies k, I(1,2,3) = supp p̂, and the corre-
sponding Fourier coefficients ˜̂p(1,2,3),k = p̂k, k ∈ supp p̂, of the multivariate trigonometric
polynomial pI .
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4.1.2 Randomized version

4.1.2.1 Dimension-incremental reconstruction algorithm

Here, we present Algorithm 4.2 ([PV16, Algorithm 1]) as a realization of the general
approach in Algorithm 4.1, which uses reconstructing rank-1 lattices as sampling sets and
rank-1 lattice FFTs (Algorithm 2.1) for the computation of (projected) Fourier coefficients.
Besides the search domain Γ ⊃ supp p̂ and the multivariate trigonometric polynomial pI
(as black box), Algorithm 4.2 has three additional input parameters, which are the relative
threshold θ ∈ (0, 1), the sparsity parameter s ∈ N and the number of detection iterations
r ∈ N. The relative threshold parameter θ ∈ (0, 1) is used to determine the “non-zero” Fourier
coefficients from ˜̂p1,k1 for k1 ∈ P1(Γ) in step 1, ˜̂pt,kt for kt ∈ Pt(Γ) in step 2a, t ∈ {2, . . . , d}, as
well as ˜̂p(1,...,t),k for k ∈ (I(1,...,t−1)× I(t))∩P(1,...,t)(Γ) in step 2e. Since numerical algorithms

are used to compute the Fourier coefficients ˜̂p(1,...,t),k, the actual computed values of “zero”
Fourier coefficients may be larger than zero but are smaller than a certain (relative) threshold.
The sparsity parameter s ∈ N may be used to truncate the number of detected frequencies
and corresponding Fourier coefficients. Last, the input parameter r ∈ N for the number of
detection iterations controls how many times the sampling and frequency detection in the
step 2 is performed for each dimension increment step t ∈ {2, . . . , d}. Repetitions in these
computations r times may be necessary to ensure a successful exact reconstruction of the
multivariate trigonometric polynomial pI , as we describe in this section and in Section 4.1.3.

First in step 1, we determine the index set of detected frequency locations for the first
component I(1) ⊂ P1(supp p̂). For this, we set the last d−1 components in x := (x1, . . . , xd)

⊤

to fixed randomly chosen values x′2, . . . , x
′
d ∈ T. We sample the multivariate trigonometric

polynomial pI at the nodes of the sampling set X (1) :=
{
( l
L1
, x′2, . . . , x

′
d)

⊤ : l = 0, . . . , L1−1
}
,

where L1 := max(P1(Γ))−min(P1(Γ))+1, and we compute one-dimensional projected Fourier
coefficients for the first component

˜̂p1,k1 :=
1

L1

L1−1∑
l=0

pI

((
l

L1
, x′2, . . . , x

′
d

)⊤
)

e−2πilk1/L1 , k1 ∈ P1(Γ),

using a one-dimensional FFT of length L1. Due to the definition of the multivariate trigono-
metric polynomial pI , we obtain

˜̂p1,k1 =
1

L1

L1−1∑
l=0

∑
h:=(h1,...,hd)⊤∈supp p̂

p̂h e2πi(h2x
′
2+...+hdx

′
d) e2πi(h1−k1)l/L1

=
∑

h∈supp p̂
p̂h e2πi(h2x

′
2+...+hdx

′
d)

1

L1

L1−1∑
l=0

e2πi(h1−k1)l/L1

=
∑

h∈supp p̂
h1 ≡ k1 (mod L1)

p̂h e2πi(h2x
′
2+...+hdx

′
d)

for k1 ∈ P1(Γ). We define the index set of detected frequency locations for the first component
I(1) := {k1 ∈ P1(Γ) : ˜̂p1,k1 ̸= 0}. In practice, we do not test if the Fourier coefficients ˜̂p1,k1 ̸= 0,
but use a threshold θ ∈ (0, 1) relative to the largest absolute value of the computed Fourier
coefficients ˜̂p1,k1 in numerical computations and we restrict the number of detected frequencies
to the sparsity parameter s, i.e.,

I(1) := I(1) ∪

{
k1 ∈ P1(Γ) : (up to) s-largest values | ˜̂p1,k1 | ≥ θ · max

k̃1∈P1(Γ)
| ˜̂p1,k̃1 |

}
. (4.1)
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Algorithm 4.2 ([PV16, Algorithm 1]). Dimension-incremental reconstruction of a multivari-
ate trigonometric polynomial pI from samples for unknown frequency index set I ⊂ Γ ⊂ Zd.
Input: Γ ⊂ Zd search domain for frequencies k, superset for supp p̂

pI(◦) multivariate trigonometric polynomial pI as black box
(function handle)

θ ∈ (0, 1) relative threshold
s ∈ N sparsity parameter
r ∈ N number of detection iterations

(step 1)
Set L1 := max(P1(Γ))−min(P1(Γ)) + 1, I(1) := ∅.
for i := 1, . . . , r do

Choose x′2, . . . , x
′
d ∈ T uniformly at random.

Compute ˜̂p1,k1 := 1
L1

L1−1∑
l=0

pI(
l
L1
, x′2, . . . , x

′
d) e

−2πilk1/L1 , k1 ∈ P1(Γ), with 1-dim. FFT.

I(1) := I(1) ∪ {k1 ∈ P1(Γ) : (up to) s-largest values | ˜̂p1,k1 | ≥ θ ·maxk̃1∈P1(Γ)
| ˜̂p1,k̃1 |}

end for i
Determine S1 := min

{
m ∈ N : |{k1 mod m : k1 ∈ I(1)}| = |I(1)|

}
. Set M1 := S1, z1 := 1.

(step 2) for t := 2, . . . , d do
(step 2a) Set Lt := max(Pt(Γ))−min(Pt(Γ)) + 1, I(t) := ∅.

for i := 1, . . . , r do
Choose x′1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d ∈ T uniformly at random.

˜̂pt,kt :=
Lt−1∑
l=0

pI(x
′
1, . . . , x

′
t−1,

l
Lt
, x′t+1, . . . , x

′
d) e

−2πilkt/Lt , kt ∈ Pt(Γ), using 1-dim. FFT.

Set I(t) := I(t) ∪ {kt ∈ Pt(Γ) : (up to) s-largest values | ˜̂pt,kt | ≥ θ ·maxk̃t∈Pt(Γ)
| ˜̂pt,k̃t |}.

end for i

(step 2b) Set r̃ :=

{
r for t < d,

1 for t = d.

Determine St := min
{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
. Set I(1,...,t) := ∅.

Build reconstructing rank-1 lattice Λ(z,Mt, Ĩ) for Ĩ := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ),
z ∈ Zt:

Set initial Mt :=Mt−1 · St, cf. Theorem 2.7.
Search for zt ∈ {0, . . . ,Mt − 1} such that reconstruction property (2.27) is fulfilled.
Reduce rank-1 lattice size Mt with reconstruction property (2.27) fulfilled.

for i := 1, . . . , r̃ do
Choose x′t+1, . . . , x

′
d ∈ T uniformly at random.

Set X (1,...,t) := {xj := ( j
Mt
z1, . . . ,

j
Mt
zt, x

′
t+1, . . . , x

′
d)

⊤ mod 1 : j = 0, . . . ,Mt − 1}.
(step 2c) Sample pI at the nodes of the sampling set X (1,...,t).
(step 2d)

Compute ˜̂p(1,...,t),k := 1
Mt

∑Mt−1
j=0 pI(xj) e

−2πik·xj for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ)
with inverse rank-1 lattice FFT based on a single 1-dim. FFT, see Algorithm 2.1.

(step 2e)
absolute threshold := θ ·maxk̃∈(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ)

| ˜̂p(1,...,t),k̃|.
Set I(1,...,t) := I(1,...,t) ∪ {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) :

(up to) s-largest values | ˜̂p(1,...,t),k| ≥ absolute threshold}.
end for i
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Algorithm 4.2 continued.

(additional step 2f)
If t < d, build (possibly) smaller reconstructing rank-1 lattice Λ(z,Mt, Ĩ) for Ĩ := I(1,...,t):

Search for new zt ∈ {0, . . . ,Mt − 1} where reconstruction property (2.27) is fulfilled.
Reduce rank-1 lattice size Mt with reconstruction property (2.27) fulfilled.

end for t
Output: I(1,...,d) ⊂ Zd index set of detected frequencies

˜̂p :=
(
˜̂p(1,...,d),k

)
k∈I(1,...,d)

∈ C|I(1,...,d)| corresponding Fourier coefficients

Since this frequency detection may fail, see Section 4.1.3 for details, we repeatedly perform
the sampling, the computation of the projected Fourier coefficients ˜̂p1,k1 , k1 ∈ P1(Γ), and
the determination of the index set I(1) in totally r ∈ N detection iterations with different
randomly chosen values x′2, . . . , x

′
d ∈ T. Then, we use the union of the obtained index

sets I(1). We determine S1 := min
{
m ∈ N : |{k1 mod m : k1 ∈ I(1)}| = |I(1)|

}
and obtain a

reconstructing rank-1 lattice Λ(z1,M1, I
(1)) for the index set of detected frequency locations

for the first component I(1) by setting z1 := 1 and M1 := S1.
Then, we continue with step 2 in Algorithm 4.2 for t = 2, . . . , d. In step 2a, we randomly

choose values x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T, we determine Lt := max(Pt(Γ))−min(Pt(Γ))+1

and we compute the one-dimensional projected Fourier coefficients for the t-th component

˜̂pt,kt :=
1

Lt

Lt−1∑
l=0

pI

((
x′1, x

′
t−1,

l

Lt
, x′t+1, . . . , x

′
d

)⊤
)

e−2πilkt/Lt (4.2)

=
∑

h∈supp p̂
ht ≡ kt (mod Lt)

p̂h e2πi(h1x
′
1+...+ht−1x′t−1+ht+1x′t+1+...+hdx

′
d) (4.3)

for kt ∈ Pt(Γ), using a one-dimensional FFT of length Lt. Similarly as in step 1, we
obtain r ∈ N many index sets of detected frequency locations for the t-th component
{kt ∈ Pt(Γ) : (up to) s-largest values | ˜̂pt,kt | ≥ θ · maxk̃t∈Pt(Γ)

| ˜̂pt,k̃t |} in r ∈ N detection it-

erations with different randomly chosen values x′1, . . . , x
′
t−1, . . . , x

′
t+1, . . . , x

′
d ∈ T and we set

the union of these sets as the index set I(t).
Afterwards in step 2b, we determine St := min

{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
and

we search for a reconstructing rank-1 lattice Λ(z,Mt, Ĩ) for the index set Ĩ := (I(1,...,t−1) ×
I(t)) ∩ P(1,...,t)(Γ). For this, the initial rank-1 lattice size Mt is set to Mt−1 · St, cf. Theo-
rem 2.7. The components z1, . . . , zt−1 of the generating vector z from the previous dimension
increment steps 1, . . . , t − 1 are re-used and only one component zt ∈ {0, . . . ,Mt − 1} is
searched for, such that reconstruction property (2.27) is fulfilled. Next, the rank-1 lattice
size Mt is reduced with reconstruction property (2.27) fulfilled. We set the sampling set
X (1,...,t) := {xj := ( j

Mt
z1, . . . ,

j
Mt
zt, x

′
t+1, . . . , x

′
d)

⊤ mod 1 : j = 0, . . . ,Mt − 1} containing the
sampling nodes xj with fixed randomly chosen values x′t+1, . . . , x

′
d ∈ T. Then, we sample the

multivariate trigonometric polynomial pI at these nodes xj in step 2c. Next, we compute
t-dimensional projected Fourier coefficients for the first t components

˜̂p(1,...,t),k :=
1

Mt

Mt−1∑
j=0

pI(xj) e
−2πijk·z/Mt (4.4)

= ĝk·(z1,...,zt)⊤ modMt
for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ)
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in step 2d using a rank-1 lattice FFT, see Algorithm 2.1, where

ĝl :=
1

Mt

Mt−1∑
j=0

pI

((
j

Mt
(z1, . . . , zt) mod 1, x′t+1, . . . , x

′
d

)⊤
)

e−2πijl/Mt . (4.5)

This means, we use only a single one-dimensional FFT and a simple index transform. Note
that we have

˜̂p(1,...,t),k =
∑

h∈supp p̂

(
p̂h e2πi(ht+1,...,hd)

⊤·(x′t+1,...,x
′
d)

⊤
)⎛⎝ 1

Mt

Mt−1∑
j=0

e2πij(h−k)·z/Mt

⎞⎠
=

∑
h∈supp p̂

((h1,...,ht)⊤−k)·z≡ 0 (mod Mt)

p̂h e2πi(ht+1,...,hd)
⊤·(x′t+1,...,x

′
d)

⊤
. (4.6)

If the conditions I(1,...,t−1) = P(1,...,t−1)(supp p̂) and I
(t) = Pt(supp p̂) are fulfilled, then

˜̂p(1,...,t),k =

⎧⎪⎪⎨⎪⎪⎩
∑

(ht+1,...,hd)
⊤∈P(t+1,...,d)(supp p̂)

(k1,...,kt,ht+1,...,hd)
⊤∈supp p̂

p̂(k1,...,kt,ht+1,...,hd)⊤ e2πi(ht+1x′t+1+...+hdx
′
d), t < d,

p̂k, t = d,

for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(supp p̂) and ˜̂p(1,...,t),k = 0 for k ∈ (I(1,...,t−1) × I(t)) ∩(
P(1,...,t)(Γ) \ P(1,...,t)(supp p̂)

)
.

In step 2e, we determine the index set of detected frequency locations for the
first t components Ĩ(1,...,t) := {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) : | ˜̂p(1,...,t),k| ≥ θ ·
maxk̃∈(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ)

| ˜̂p(1,...,t),k̃|}. If the cardinality |Ĩ(1,...,t)| is larger than the spar-

sity parameter s, s ≥ |supp p̂|, we restrict the index set in Ĩ(1,...,t) to frequencies k belonging
to the s-largest values | ˜̂p(1,...,t),k|. We repeatedly perform the sampling, the computation

of the projected Fourier coefficients ˜̂p(1,...,t),k and the determination of the frequency index

sets Ĩ(1,...,t) in total for r ∈ N detection iterations if t < d and r = 1 detection iteration
if t = d. Afterwards, we use the union of the obtained index sets Ĩ(1,...,t) as I(1,...,t).
In the additional step 2f if t < d, we build a reconstructing rank-1 lattice Λ(z,Mt, I

(1,...,t))
for the index set I(1,...,t). As initial rank-1 lattice size, we use the value Mt from step 2b. We
only search for the component zt of the generating vector z as in step 2b and then reduce
the rank-1 lattice size Mt with reconstruction property (2.27) fulfilled.

Finally, we obtain the frequency index set I(1,...,d) ⊂ Γ ⊂ Zd. If all frequency detections
were successful, i.e.,

I(t) = Pt(supp p̂) for t = 1, . . . , d and

I(1,...,t) = P(1,...,t)(supp p̂) for t = 1, . . . , d− 1,

then we have

I(1,...,d) = supp p̂,

˜̂p(1,...,d),k = p̂k ̸= 0 for all k ∈ I(1,...,d) and

pI =
∑

k∈supp p̂
p̂k e

2πik·◦ =
∑

k∈I(1,...,d)

˜̂p(1,...,d),k e
2πik·◦.



134 4 High-Dimensional Sparse FFT

Note that we do not necessarily have I(1,...,d) ⊂ supp p̂, i.e., the algorithm may wrongly yield
frequencies k ∈ Γ where the true Fourier coefficients p̂k are zero, see case iv in Section 4.1.3
and the discussion concerning this case. However, this only happens if a previous detection
step fails.

Note that the illustrated example in Figure 4.1 corresponds to one run of Algorithm 4.2
with r = 1 detection iteration.

4.1.2.2 Modified Algorithm with less rank-1 lattice searches

Algorithm 4.3 ([PV16, Algorithm 2]). Dimension-incremental reconstruction of a multivari-
ate trigonometric polynomial pI from samples for unknown frequency index set I ⊂ Γ ⊂ Zd
with less rank-1 lattice searches.
Modifications of Algorithm 4.2:
...

(step 2b) Set r̃ :=

{
r for t < d,

1 for t = d.

Determine St := min
{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
. Set I(1,...,t) := ∅.

Build reconstructing rank-1 lattice Λ(z,Mt, (I
(1,...,t−1) ∩ P(1,...,t−1)(Γ))× (I(t) ∩ P(t)(Γ))):

Set Mt :=Mt−1 · St and zt :=Mt−1, i.e., z = (z1, . . . , zt−1,Mt−1)
⊤, cf. Theorem 2.7.

for i := 1, . . . , r̃ do
...

Algorithm 4.3 is another realization for the dimension-incremental method. The approach
is based on Algorithm 4.2. However, in step 2b, we do not search for a reconstructing rank-1
lattice for the frequency index set I(1,...,t−1) × I(t) but we explicitly build one using the
construction from Theorem 2.7 in Section 2.2.1. The other steps of Algorithm 4.2 remain
unchanged in Algorithm 4.3.

The arithmetic complexity for Algorithm 4.3 is distinctly lower than for Algorithm 4.2, see
Section 4.1.4, and the upper bound for the number of samples is asymptotically the same for
both algorithms. However, in practice, the number of samples when using Algorithm 4.3 may
be larger because we do not search for a preferably small rank-1 lattice size Mt. Especially, if
the search domain Γ is distinctly smaller than the full grid ĜdN and Γ is not a tensor product
grid, then Algorithm 4.2 should be better suited with respect to the number of samples. We
observe this behavior in the numerical results in Section 4.1.6. For our small example from
Figure 4.1, Algorithm 4.3 yields the identical index sets and reconstructing rank-1 lattices
Λ
(
z,Mt, (I

(1,...,t−1) ∩ P(1,...,t−1)(Γ))× (I(t) ∩ P(t)(Γ))
)
as Algorithm 4.2.

4.1.3 Successful and failed detection

As mentioned in the previous sections, the successful detection of all non-zero Fourier co-
efficients p̂k ̸= 0 of a multivariate trigonometric polynomial pI and the corresponding fre-
quencies k, i.e., obtaining I(1,...,d) = supp p̂, is not guaranteed. In the following, we discuss
conditions for the successful detection and we address the question if it is possible to notice
that not all frequencies were detected successfully during the incremental detection process
in Section 4.1. We remark that the computations in (4.2) are responsible for the correct fre-
quency detection, which belong to the computation steps 1 and 2a of Algorithm 4.2 and 4.3,
as well as the computations in (4.4), which belong to the computation step 2d.
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In [PV16, Theorem 5.2], the probability that the detection fails for a frequency location
in step 1, 2a and 2d is estimated by the upper bound

C(p, θ) := exp

(
−2

(minh∈supp p̂ |p̂h| − θ ·
∑

h∈supp p̂ |p̂h|)2

(
∑

h∈supp p̂ |p̂h|)2

)
< 1 for θ <

minh∈supp p̂ |p̂h|∑
h∈supp p̂ |p̂h|

.

Since we use r ∈ N many detection iterations with new values x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T

independently chosen uniformly at random, the frequency detection succeeds if we find the
frequency locations in at least one detection iteration i ∈ {1, . . . , r}, and we obtain the
probability P(kt ∈ I(t)) ≥ 1−(C(p))r for each kt ∈ Pt(supp p̂) in step 1 and 2a of Algorithm 4.2
and 4.3 for the index set I(t), assuming that the sparsity parameter s ≥ |supp p̂| and the
search domain Γ ⊃ supp p̂. Note that this probability can be arbitrarily close to 1 if the
number r of detection iterations is sufficiently large. Similarly, the frequency detection for
k ∈ (I(1,...,t−1)×I(t))∩P(1,...,t)(supp p̂) succeeds with probability P(k ∈ I(1,...,t)) ≥ 1− (C(p))r

for each k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(supp p̂), assuming that the sparsity parameter s ≥
|supp p̂|, the search domain Γ ⊃ supp p̂, I(τ) = Pτ (supp p̂) for τ ∈ {1, . . . , t} and I(1,...,τ) =
P(1,...,τ)(supp p̂) for τ ∈ {2, . . . , t− 1}.

Finally, all non-zero Fourier coefficients p̂k ̸= 0 of the multivariate trigonometric poly-
nomial pI and the corresponding frequencies k are successfully detected if the frequency
detections in the dimension increment steps t ∈ {1, . . . , d} succeed. During the computations
in step 2 of Algorithm 4.2 and 4.3, the following cases may occur.

i. For a frequency k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we have ˜̂p(1,...,t),k ̸= 0 and k ∈
P(1,...,t)(supp p̂), i.e., the detection of the frequency k was successful.

ii. For a frequency k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we have ˜̂p(1,...,t),k = 0 but k ∈
P(1,...,t)(supp p̂), i.e., the frequency k was considered but not recognized, and the detection
of the frequency k failed.

iii. For a frequency k ∈ P(1,...,t)(supp p̂), we have k /∈ (I(1,...,t−1)× I(t))∩P(1,...,t)(Γ), i.e., the
frequency k was not considered. This means the detection of the frequency k failed.

(a) For a frequency l ∈ {0, . . . ,Mt−1}, we have ĝl ̸= 0 in (4.5) but ∄k ∈ I(1,...,t−1)×I(t)
such that k · (z1, . . . , zt)⊤ ≡ l (mod Mt).

iv. For a frequency k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we have ˜̂p(1,...,t),k ̸= 0 but k /∈
P(1,...,t)(supp p̂), i.e., the frequency k was falsely detected.

As discussed before, we do not test the Fourier coefficients for zero/non-zero but if their
absolute values are below or above a certain threshold. Correspondingly, ˜̂p(1,...,t),k ̸= 0 means

| ˜̂p(1,...,t),k| ≥ threshold value and ˜̂p(1,...,t),k = 0 means | ˜̂p(1,...,t),k| < threshold value.

Case i is the optimal case where the frequency k was in the candidate list (I(1,...,t−1) ×
I(t)) ∩ P(1,...,t)(Γ) and detected correctly.

In contrast, case ii means that the frequency also was in the candidate list but was wrongly
not included in the index set I(1,...,t) of detected frequency locations. Similar to the discussion
for the computation (4.2), the fixed values x′t+1, . . . , x

′
d ∈ T influence the successful frequency

detection, see the aliasing formula (4.6). Again, we suggest to repeatedly evaluate (4.4) with
different randomly chosen values x′t+1, . . . , x

′
d ∈ T and compare the obtained index sets I(1,...,t)

of detected frequency locations. If all of them coincide, it is very likely that the case ii did
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not occur. Otherwise, we suggest to use the union of the obtained index sets I(1,...,t) for the
computations that follow.

In case iii, at least one frequency k ∈ P(1,...,t)(supp p̂) is already missing in the candidate

list (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ). Possibly, we will not be able to even notice this. If we
encounter case iiia, which is a special variant of case iii, we know that there exists at least one
frequency k :=

(
k′

k′′
)
∈ P(1,...,t)(supp p̂) for which k /∈ (I(1,...,t−1)× I(t))∩P(1,...,t)(Γ), but we do

not exactly know which and how many frequencies are affected by this. However, we know
that these frequencies are from the set {h ∈ P(1,...,t)(Γ) : h · (z1, . . . , zt)⊤ ≡ l (mod Mt)} for
Algorithm 4.2.

Furthermore, case iv may occur and is a consequence of having I(t) ̸⊃ Pt(supp p̂) in the
current (t-th) dimension increment step or case iii in one of the preceding dimension increment
steps 1, . . . , t − 1. This means, in the current or one of the previous dimension increment
steps, at least one frequency was not detected. Moreover, we have I(1,...,t) ̸⊂ P(1,...,t)(supp p̂).
However, we may not be able to notice that this case has occurred.

4.1.4 Number of samples and arithmetic complexity

In this section, we give upper bounds for the number of samples and for the arithmetic
complexity of Algorithm 4.2 and 4.3 in the case where the search domain Γ is the full grid ĜdN ,
see also [PV16, Section 2.2.3]. For computing the index set of detected frequencies for the t-th
component I(t), t = 1, . . . , d, in the steps 1 and 2a of Algorithm 4.3, (2N+1) function samples
are taken and the one-dimensional FFT requires at most C1N logN arithmetic operations
in each detection iteration i ∈ {1, . . . , r} for each t ∈ {1, . . . , d}, where the constant C1 ≥ 1
does not depend on N . This yields r d |Ĝ1

N | = r d (2N + 1) function samples and at most
C̃ r dN logN arithmetic operations for determining the frequency index sets I(1), . . . , I(d),
where C̃ ≥ 1 is an absolute constant.

In step 2 of Algorithm 4.2 and 4.3 for dimension increment step t, the index sets I(1,...,t−1)

and I(t) consist of at most rs many frequencies. This yields that the index set I(1,...,t−1)×I(t)
consists of |I(1,...,t−1) × I(t)| ≤ r s |Ĝ1

N | frequency candidates. The sampling set X (1,...,t) con-
structed in step 2b of Algorithm 4.2 and 4.3 has the size |X (1,...,t)| = Mt, where the rank-1
lattice size Mt ≤ max{2r2s2, 3N} (2N + 1) due to Corollary 2.8. Calling Algorithm 2.1 in
step 2d requires no more than C1Mt logMt + 2t|I(1,...,t−1) × I(t)| arithmetic operations for
each detection iteration i ∈ {1, . . . , r} and each dimension increment step t ∈ {2, . . . , d}.
For each detection iteration i ∈ {1, . . . , r} and each dimension increment step t ∈ {2, . . . , d}
when searching for the next component zt of the generating vector z in step 2b in Al-
gorithm 4.2, the number of arithmetic operations is bounded by 3 |I(1,...,t−1) × I(t)|Mt ≤
3 r s (2N +1)max{2r2s2, 3N}(2N +1), see the proof of Theorem 2.4. Moreover, reducing the
rank-1 lattice size Mt, e.g. by using [Käm14b, Algorithm 3.5], requires no more arithmetic
operations.
At the end of step 2e, the index set I(1,...,t) consists of no more than |I(1,...,t)| ≤
r s frequencies. Consequently, when searching for the new reconstructing rank-1 lat-
tice Λ((z1, . . . , zt)

⊤,Mt, I
(1,...,t)) in the additional step 2f of Algorithm 4.2 and 4.3 for each

t ∈ {2, . . . , d− 1}, the new rank-1 lattice size Mt is bounded by max{2r2s2, 3N} due to The-
orem 2.4. The number of arithmetic operations for the search of the next component zt of
the generating vector z is bounded by 3 |I(1,...,t)|Mt ≤ 3 r s max{2r2s2, 3N}, see the proof of
Theorem 2.4. Reducing the rank-1 lattice sizeMt requires no more than 3 r s max{2r2s2, 3N}
arithmetic operations.
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In total, this yields no more than

r (d− 1)max{2r2s2, 3N} 2(N + 1) + r d (2N + 1)

many samples for Algorithm 4.2 and 4.3 as well as

C d ·
(
max{r3s3N2, r sN3}+max{r3s2N, rN2} log(max{r2s2N,N2})

)
arithmetic operations for Algorithm 4.2 and

C d ·
(
max{r3s3, r sN}+max{r3s2N, r N2} log(max{r2s2N,N2})

)
arithmetic operations for Algorithm 4.3, where C > 1 is an absolute constant. We remark
that a large contribution to the arithmetic complexity comes from the rank-1 lattice search,
in particular for Algorithm 4.2 in step 2b. Moreover, we have no exponential dependence in
the dimension d, neither for the number of samples nor the arithmetic complexity. Assuming√
N ≲ s ≲ Nd, we require O(d s2N) many samples for both algorithms as well as O(d s3N2)

and O(d s3 + d s2N log(sN)) arithmetic operations for Algorithm 4.2 and 4.3, respectively.
In the case s ≲

√
N , we need O(dN2) many samples for both algorithms as well as O(d sN3)

and O(dN2 logN) arithmetic operations for Algorithm 4.2 and 4.3, respectively.

Remark 4.1. If all detection steps in Algorithm 4.2 or 4.3 succeed, see also Section 4.1.3,
we can replace the sparsity parameter s in the sampling and arithmetic complexities by
the number |supp p̂| of non-zero Fourier coefficients p̂k ̸= 0 of a multivariate trigonometric
polynomial pI . Assuming

√
N ≲ |supp p̂| ≲ Nd, we require O(d |supp p̂|2N) many samples for

both algorithms as well as O(d |supp p̂|3N2) and O(d |supp p̂|3 + d |supp|2N log(|supp p̂|N))
arithmetic operations for Algorithm 4.2 and 4.3, respectively.

4.1.5 Deterministic version

As described in [PV16], we do not need to use random sampling if the Fourier coefficients p̂k,
k ∈ supp p̂, of the multivariate trigonometric polynomial pI fulfill the property that the signs
of the real part Re(p̂k) of all Fourier coefficients p̂k are identical ̸= 0 or that the signs of
the imaginary part Im(p̂k) are identical ̸= 0. Then, we may set the number of detection
iterations r := 1, the sparsity parameter s := supp p̂ as well as the (random) components
x′1, . . . , x

′
d of the sampling nodes always to zero in Algorithm 4.2 and 4.3, by which both

algorithms become deterministic.
Because of the above choice of the components x′1, . . . , x

′
d := 0, the aliasing formula

in (4.3) simplifies to

˜̂pt,kt =
∑

h∈supp p̂
ht ≡ kt (mod Lt)

p̂(h1,...,ht−1,kt,ht+1,...,hd)⊤ ,

which means the one-dimensional projected Fourier coefficients for the t-th component are
simply sums of the corresponding Fourier coefficients p̂k of the multivariate trigonometric
polynomial pI , as well as the aliasing formula in (4.6) simplifies to

˜̂p(1,...,t),k =
∑

h∈supp p̂
((h1,...,ht)⊤−k)·z≡ 0 (mod Mt)

p̂h.

Consequently, if the Fourier coefficients p̂k fulfill the above assumptions, then aliasing Fourier
coefficients p̂(h1,...,ht−1,kt,ht+1,...,hd)⊤ or p̂h do not sum up to zero or very small values below
a certain threshold and the detection succeeds. However, for arbitrary Fourier coefficients
p̂k ∈ C, we rely on random sampling in both algorithms.
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4.1.6 Numerical results

The numerical results of this section were published in [PV16, Section 3]. An implementa-
tion of Algorithm 4.2 and 4.3 as well as MATLAB code for performing tests are available
online [Vol15]. Most of the numerical tests of this section were run on a computer with Intel
Xeon CPU E5-4640 CPU in MATLAB R2015b using IEEE 754 double precision arithmetic.
Time measurements were taken on a computer with Intel i7-970 CPU (3.2 GHz) using only
one thread.

4.1.6.1 Random sparse trigonometric polynomial in the noiseless case

We set the refinement N := 32 and construct random multivariate trigonometric polynomi-
als pI with frequencies supported within the full grid Ĝd32. This means, we choose |supp p̂|
many frequencies uniformly at random from Ĝd32 ⊂ Zd and corresponding Fourier coefficients
p̂k ∈ [−1, 1) + [−1, 1)i, |p̂k| ≥ 10−6, k ∈ I = supp p̂. For the reconstruction of the multi-
variate trigonometric polynomials pI , we choose the search domain Γ := Ĝd32. We do not
truncate the frequency index sets of detected frequencies I(1,...,t), t ∈ {2, . . . , d} here, i.e., we
set the sparsity parameter s := |Γ| for Algorithm 4.2 and 4.3. The truncation of detected
frequencies may only be required if the samples are perturbed by noise, see Section 4.1.6.2,
or if we have infinitely many non-zero Fourier coefficients, see the 10-dimensional test func-
tion in Section 4.1.6.4. Alternatively, choosing the sparsity parameter s := |supp p̂| gives
the same results in the examples of this section. Moreover, we set the number of detection
iterations r := 1. All tests are repeated 10 times with newly chosen frequencies k and Fourier
coefficients p̂k. We start with tests for Algorithm 4.2.

Example 4.2. ([PV16, Example 3.1], reconstruction of random sparse trigonometric poly-
nomials using Algorithm 4.2). We set the threshold parameter θ := 10−12. For the spar-
sities |supp p̂| ∈ {1 000, 10 000}, we applied Algorithm 4.2. In the cases |supp p̂| = 1000
and |supp p̂| = 10 000, we ran the tests for dimensions d ∈ {3, 4, . . . , 10, 15, 20, 25, 30} and
d ∈ {3, 4, 5, 6, 7}, respectively. In each test, all frequencies were successfully detected,
I(1,...,d) = supp p̂. The used parameters and results are presented in Table 4.1. The column
“max cand.” shows the maximal number maxt=2,...,d |I(1,...,t−1)×I(t)| of frequency candidates
of all 10 repetitions and “maxM” the overall maximal rank-1 lattice size used. Furthermore,
the total number of samples for each repetition was computed and the maximum of these
numbers for the 10 repetitions can be found in the column “#samples”. The relative ℓ2-error
∥(˜̂pk)k∈I − (p̂k)k∈I∥2/∥(p̂k)k∈I∥2 of the computed Fourier coefficients (˜̂pk)k∈I(1,...,d) was de-

termined for each repetition, where I := supp p̂ ∪ I(1,...,d) and ˜̂pk := 0 for k ∈ I \ I(1,...,d),
and the column “rel. ℓ2-error” contains the maximal value of the 10 repetitions. In all tests,
the relative ℓ2-error is smaller than 1.4 · 10−15 and is caused by the utilized IEEE 754 dou-
ble precision arithmetic. The numbers of used samples “#samples” increase for increasing
dimensions d and sparsities |supp p̂| of the trigonometric polynomials pI . Compared to the
cardinality of the full grids |Γ| = |ĜdN |, the observed numbers of samples are still moder-
ate. For sparsity |supp p̂| = 1000, the largest increase of the maximal rank-1 lattice size
“max M” is from dimension d = 3 to d = 4. For dimensions d ≥ 5, the maximal number of
frequency candidates “max cand.” is 65 000 and the maximal rank-1 lattice size “max M” is
between about 2.6 and 3.0 million. This is caused by the relatively large numbers of possible
frequencies |Γ| = |Ĝd32| = 65d and the small sparsity |supp p̂| = 1000, which cause that all
1 000 non-zero Fourier coefficients p̂k ̸= 0 are already detected in dimension-incremental step
t = 4 or t = 5 and that higher components zτ , 5 ≤ τ < t, (except the highest component zt)
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of the generating vector z := (z1, . . . , zt)
⊤ of the reconstructing rank-1 lattices Λ(z,M, Ĩ)

are zero in most cases. Consequently, the numbers of used samples “#samples” increase by
about 2.6 to 3.0 million per additional dimension. Moreover, we have a similar behavior
for sparsity |supp p̂| = 10 000 at dimensions d ≥ 6, where the maximal rank-1 lattice size
“max M” is about 160 million and the numbers of used samples “#samples” increase corre-
spondingly per additional dimension. We remark that we may have found all non-zero Fourier
coefficients p̂k ̸= 0 in a dimension-incremental step t ≤ 5, but we still need to continue with
remaining dimension-incremental steps t ≥ 6 in order to determine the higher components kt,
t ∈ {6, . . . , d}, of the frequencies k.

d |supp p̂| |Γ| = |ĜdN | max cand. max M #samples rel. ℓ2-error

3 1 000 274 625 53 365 142 870 145 275 4.5e-16
4 1 000 17 850 625 64 870 2 331 030 2 472 145 8.3e-16
5 1 000 1.16e+09 65 000 2 935 419 4 979 314 8.9e-16
6 1 000 7.54e+10 65 000 2 655 816 7 479 265 7.0e-16
7 1 000 4.90e+12 65 000 2 685 234 9 905 378 6.2e-16
8 1 000 3.19e+14 65 000 2 665 578 11 820 279 7.8e-16
9 1 000 2.07e+16 65 000 2 690 118 14 531 442 6.1e-16
10 1 000 1.35e+18 65 000 2 714 623 16 986 369 1.3e-15
15 1 000 1.56e+27 65 000 2 827 045 30 461 941 5.0e-16
20 1 000 1.81e+36 65 000 2 836 998 42 580 486 7.6e-16
25 1 000 2.10e+45 65 000 2 978 356 56 432 050 5.5e-16
30 1 000 2.44e+54 65 000 2 920 928 68 237 645 4.3e-16

3 10 000 274 625 143 585 147 810 150 280 5.0e-16
4 10 000 17 850 625 629 200 9 023 625 9 165 390 6.7e-16
5 10 000 1.16e+09 649 740 137 285 053 146 360 548 1.3e-15
6 10 000 7.54e+10 650 000 162 562 853 309 453 235 1.1e-15
7 10 000 4.90e+12 650 000 159 449 641 453 175 172 9.7e-16

Table 4.1: ([PV16, Table 3.1]). Results for random sparse multivariate trigonometric poly-
nomials pI , I ⊂ Ĝd32, using reconstructing rank-1 lattices Λ(z,M, Ĩ) and Algorithm 4.2 when
considering frequencies within the search domain Γ = Ĝd32.

Next, we run tests for Algorithm 4.3, which internally performs less searches for recon-
structing rank-1 lattices Λ(z,M, Ĩ).

Example 4.3. ([PV16, Example 3.2], reconstruction of random sparse trigonometric poly-
nomials using Algorithm 4.3). We set the threshold parameter θ := 10−12. For the sparsities
|supp p̂| ∈ {1 000, 10 000} and dimensions d ∈ {3, 4, . . . , 10, 15, 20, 25, 30}, we applied Al-
gorithm 4.3. In each test, all frequencies were successfully detected, I(1,...,d) = supp p̂. The
numerical results are presented in Table 4.2, where the column names have the same meaning
as described in Example 4.2. The relative ℓ2 errors are similar to the ones for Algorithm 4.2
in Table 4.1. In this example, the maximal rank-1 lattice sizes M are larger compared to the
results for Algorithm 4.2 in Table 4.1, since the reconstructing rank-1 lattices Λ(z,M, Ĩ) are
reduced by an additional search in step 2b of Algorithm 4.2 whereas they are explicitly con-
structed in Algorithm 4.3 without the reduction step, cf. Theorem 2.7. Correspondingly, the
total numbers of samples are slightly higher in this example compared to the results when
using Algorithm 4.2 for identical refinement N , dimension d and sparsity |supp p̂|. How-
ever, the runtime of the algorithms can differ significantly due to the additional search in
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Algorithm 4.2, see Example 4.4. As in Example 4.2, the maximal number of frequency candi-
dates “max cand.” is 65 000 for sparsity |supp p̂| = 1000 and the maximal rank-1 lattice size
“max M” is now between about 2.7 and 3.1 million. Again, this is caused by the relatively
large numbers of possible frequencies |Γ| = |Ĝd32| = 65d and the small sparsity |supp p̂| = 1000,
which cause that all 1 000 non-zero Fourier coefficients p̂k ̸= 0 are already detected in a
dimension-incremental step t ≤ 5 and higher components zτ , 6 ≤ τ < t, (except the highest
component zt) of the generating vector z of the reconstructing rank-1 lattices Λ(z,M, Ĩ) to
be zero in most cases. Consequently, the numbers of used samples “#samples” increase by
about 2.7 to 3.1 million per additional dimension. For sparsity |supp p̂| = 10 000, we have
analogously 650 000 maximal frequency candidates “max cand.” and the maximal rank-1
lattice size “max M” is now between about 192 and 204 million. Correspondly, the numbers
of samples increase by this for each additional dimension.

d |supp p̂| max cand. max M #samples rel. ℓ2-error

6 1 000 65 000 2 761 655 8 139 560 6.4e-16
7 1 000 65 000 2 795 390 10 953 150 4.8e-16
8 1 000 65 000 3 052 335 13 145 275 9.1e-16
9 1 000 65 000 2 932 085 16 339 115 8.0e-16
10 1 000 65 000 3 056 560 18 674 565 4.5e-16
20 1 000 65 000 3 056 560 46 572 500 4.4e-16
30 1 000 65 000 3 068 000 73 665 475 6.2e-16

6 10 000 650 000 192 287 810 392 345 005 8.9e-16
7 10 000 650 000 194 595 570 572 814 190 6.8e-16
8 10 000 650 000 197 127 645 745 706 455 8.9e-16
9 10 000 650 000 203 536 385 967 031 390 5.8e-16
10 10 000 650 000 200 068 050 1 132 939 795 9.0e-16
20 10 000 650 000 200 385 055 2 959 435 895 7.4e-16
30 10 000 650 000 203 592 740 4 924 539 100 6.9e-16

Table 4.2: ([PV16, Table 3.2]). Results for random sparse trigonometric polynomials using
reconstructing rank-1 lattices Λ(z,M, Ĩ) and Algorithm 4.3 when considering frequencies
within the search domain Γ = Ĝd32.

Next, we compare the runtimes of both algorithms for certain parameter choices.

Example 4.4. ([PV16, Example 3.6], runtimes of Algorithm 4.2 and 4.3). In Table 4.3,
we compare the runtimes for Algorithm 4.2 and 4.3. For both algorithms, we consider the
runtimes for the reconstruction of multivariate trigonometric polynomials pI with sparsity
|supp p̂| = 1000} and frequencies k supported within the d-dimensional full grid ĜdN of
refinement N = 32 and dimensions d ∈ {6, 10}. For Algorithm 4.3, we additionally consider
the sparsity |supp p̂| = 10 000. The tests for each method and set of parameters were repeated
10 times. We present the results in Table 4.3. The “total runtime” was measured without the
time required for sampling the multivariate trigonometric polynomials pI . We observe that
the total runtimes when using Algorithm 4.3 are dramatically smaller by about two orders of
magnitude compared to Algorithm 4.2. The reason for this behavior is that in Algorithm 4.3
only one reconstructing rank-1 lattice Λ(z,M, Ĩ) for the index set of detected frequencies
Ĩ := I(1,...,t), |I(1,...,t)| ≤ s, is searched for in the additional step 2f in each dimension increment
step t ∈ {2, . . . , d}, whereas an additional reconstructing rank-1 lattice for the index set of



4.1 Periodic case — rank-1 lattice sampling 141

frequency candidates I(1,...,t−1) × I(t) is searched for in step 2b of Algorithm 4.2. This is
apparent from the runtimes required for the rank-1 lattice constructions in column “time
lattice search” in Table 4.3.

time lattice search total runtime
(in s) (in s)

method d |supp p̂| min max avg min max avg

Algorithm 4.2 6 1 000 191 247 215 193 249 217
Algorithm 4.3 6 1 000 0.3 0.4 0.4 2.0 2.6 2.2

Algorithm 4.2 10 1 000 608 746 662 612 751 667
Algorithm 4.3 10 1 000 0.6 0.8 0.7 3.8 4.9 4.4

Algorithm 4.3 6 10 000 63 215 133 168 324 231

Algorithm 4.3 10 10 000 137 359 263 430 652 566

Table 4.3: Runtimes for random sparse multivariate trigonometric polynomial pI using Al-
gorithm 4.2 and 4.3.

In all our examples, the frequency detections succeeded and the Fourier coefficients p̂k
were reconstructed exactly up to a small error caused by the used IEEE 754 double precision
arithmetic. Algorithm 4.2 and 4.3 worked very well for the reconstruction of sparse high-
dimensional trigonometric polynomials pI .

4.1.6.2 Random sparse trigonometric polynomial with complex Gaussian noise

Next, we test the robustness of our method from Section 4.1.2 to noisy samples. We construct
random multivariate trigonometric polynomials pI with frequencies supported within the d-
dimensional full grids ĜdN ⊂ Zd of refinement N ∈ N and dimension d ∈ N. In doing so,

we randomly choose |supp p̂| many frequencies k ∈ ĜdN and we set the corresponding Fourier
coefficients p̂k := e2πiφk ∈ C, |p̂k| = 1, k ∈ I = supp p̂, where the angles φk ∈ [0, 1) are chosen
uniformly at random. For the reconstruction of multivariate trigonometric polynomials pI ,
we only assume supp p̂ ⊂ Γ := ĜdN . We perturb the samples pI(xj) taken at nodes xj ∈ Td,
j = 0, . . . ,M − 1, of the multivariate trigonometric polynomial pI by additive complex white
Gaussian noise ηj ∈ C with zero mean and standard deviation σ, i.e., we have measurements
f(xj) = pI(xj) + ηj . Then, we may approximately compute the signal-to-noise ratio (SNR)
in our case by

SNR ≈
∑M−1

j=0 |pI(xj)|2/M∑M−1
j=0 |ηj |2/M

≈
∑

k∈supp p̂ |p̂k|2

σ2
=
|supp p̂|
σ2

.

Correspondingly, we choose σ :=
√
|supp p̂|/

√
SNR for a targeted SNR value. For our nu-

merical tests in MATLAB, we generate the noise by ηj := σ/
√
2 * (randn + 1i*randn),

j = 0, . . . ,M−1. The SNR is often measured using the logarithmic decibel scale (dB), where
SNRdB = 10 log10 SNR and SNR = 10SNRdB/10, i.e., a linear SNR = 108 corresponds to a
logarithmic SNRdB = 80dB and SNR = 1 corresponds to SNRdB = 0dB.

Example 4.5. ([PV16, Example 3.15], reconstruction of random sparse trigonometric poly-
nomials using Algorithm 4.3, where the samples are perturbed by additive complex Gaus-
sian noise). We choose the dimension d := 10, the refinement N := 32 and the sparsity
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SNRdB noise σ #detect. #samples min #freq. success rate rel.

iter. r correct (all freq. correct) ℓ2-error

80 3.2e-03 1 22 216 155 998 0.995 4.5e-02
70 1.0e-02 1 23 004 475 998 0.986 4.5e-02
60 3.2e-02 1 22 381 905 998 0.974 5.5e-02
50 1.0e-01 1 22 533 615 996 0.893 7.1e-02
40 3.2e-01 1 22 434 295 994 0.722 8.4e-02
30 1.0e+00 1 22 662 055 988 0.319 1.2e-01
20 3.2e+00 1 22 646 975 979 0.032 1.5e-01

50 1.0e-01 2 49 597 275 1 000 1.000 7.5e-05
40 3.2e-01 2 55 243 565 998 0.998 4.5e-02
30 1.0e+00 2 41 881 645 998 0.994 5.5e-02
20 3.2e+00 2 42 064 815 996 0.933 7.7e-02
10 1.0e+01 2 41 512 185 990 0.465 1.1e-01
0 3.2e+01 2 43 322 695 942 0.000 2.5e-01

40 3.2e-01 3 61 300 655 1 000 1.000 2.3e-04
30 1.0e+00 3 61 847 825 1 000 1.000 7.1e-04
20 3.2e+00 3 61 477 195 998 0.998 4.5e-02
10 1.0e+01 3 60 542 365 996 0.936 6.4e-02
0 3.2e+01 3 61 832 225 984 0.015 1.4e-01

20 3.2e+00 4 82 104 165 1 000 1.000 2.4e-03
10 1.0e+01 4 80 312 115 998 0.997 4.5e-02
0 3.2e+01 4 81 618 355 994 0.442 9.1e-02

20 3.2e+00 5 101 459 605 1 000 1.000 2.3e-03
10 1.0e+01 5 99 610 745 1 000 1.000 7.3e-03
0 3.2e+01 5 98 090 005 997 0.869 7.4e-02

Table 4.4: ([PV16, Table 3.18]). Results for random sparse multivariate trigonometric poly-
nomials pI with sparsity |supp p̂| = 1000 perturbed by additive white Gaussian noise, when
using reconstructing rank-1 lattices Λ(z,M, Ĩ) and Algorithm 4.3.

|supp p̂| = 1000. We apply Algorithm 4.3 and we set the search domain Γ := Ĝ10
32, the spar-

sity parameter s := 1 000 as well as the threshold parameter θ := 10−12. The algorithm is
run setting the number of detection iterations to r := 1, 2, 3, 4, 5 and using the SNR values
SNRdB := 80, 70, . . . , 10, 0 (which corresponds to SNR = 108, 107, . . . , 10, 1). For each of
these 45 test settings, Algorithm 4.3 is repeatedly run 1 000 times. In each of the total 45 000
test runs, new random frequencies k and Fourier coefficients p̂k are drawn. A selection of the
test results is presented in Table 4.4. The total number of samples for each of the 1 000 repe-
titions was computed and the maximum of these numbers for each test setting can be found
in the column “#samples”. In the column “min #freq. correct”, the minimal number of cor-
rectly detected frequencies |I(1,...,10) ∩ supp p̂| for the 1 000 repetitions is shown, where supp p̂
denotes the set of true (input) frequencies of a trigonometric polynomial pI and I(1,...,10) the
frequencies returned by the detection algorithm. The column “success rate (all freq. correct)”
represents the relative number of the 1 000 repetitions where all frequencies were successfully
detected, I(1,...,10) = supp p̂. Moreover, the relative ℓ2-error ∥(˜̂pk)k∈I − (p̂k)k∈I∥2/∥(p̂k)k∈I∥2
of the computed Fourier coefficients (˜̂pk)k∈I(1,...,10) was determined for each repetition, where
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I := supp p̂∪I(1,...,10) and ˜̂pk := 0 for k ∈ I \I(1,...,10), and the column “rel. ℓ2-error” contains
the maximal value of the 1 000 repetitions. For test settings with larger SNR values, which
are not shown in Table 4.4, all frequencies in all 1 000 repetitions where correctly detected,
i.e., the column “min #freq. correct”=1 000 and “success rate”=1.000. In general, we ob-
serve that for decreasing SNR values, the minimal numbers of correctly detected frequencies
and the success rates decrease. When using r = 1 test iterations, there were always some
(of the 1 000 test runs), where one or two frequencies were incorrect. However, in all test
runs of all test settings, more than 77 percent of the frequencies were correctly detected, even
for the case SNRdB = 0 (SNR = 1) where the signal level may approximately correspond to
the noise level. When we increased the number of detection iterations r, the SNR level at
which all frequencies in all of the 1 000 test runs were correctly detected also decreased. For
instance for r = 5 detection iterations, the success rate was at 100 percent including the case
SNRdB = SNR = 10. However, we require about 5 times of the samples for r = 5 detection
iterations compared to the test settings with r = 1 detection iteration.

4.1.6.3 Symmetric weighted hyperbolic cross

Next, we reconstruct multivariate trigonometric polynomials pI with frequencies supported
on weighted hyperbolic crosses I = Id,0,γN , where we only assume that the search domain Γ is

the d-dimensional full grid ĜdN of refinement N .

Example 4.6. ([PV16, Example 3.7], reconstruction of hyperbolic cross trigonometric poly-
nomials using Algorithm 4.2 and 4.3). All tests are repeated 10 times with different randomly
chosen Fourier coefficients p̂k ∈ [−1, 1)+ [−1, 1)i, |p̂k| ≥ 10−6, k ∈ I, for weighted hyperbolic

cross frequency index sets I = Id,0,γN . We set the number of detection iterations r := 1 and
the threshold parameter θ := 10−12. Moreover, we set the sparsity parameter s := |Γ|, i.e.,
we do not truncate the frequency index sets of detected frequencies I(1,...,t), t ∈ {2, . . . , d}.
The considered refinements N , dimensions d and weight parameters γ are shown in Table 4.5.
We apply Algorithm 4.2 and 4.3 on these test cases. In all tests, all the frequencies were suc-
cessfully detected, I(1,...,d) = Id,0,γN , and the Fourier coefficients (p̂k)k∈Id,0,γN

were computed

correctly up to small numerical errors caused by the used IEEE 754 double precision arith-
metic. We depict the results for Algorithm 4.3 in Table 4.5, where the columns have the same
meaning as in Example 4.2. When using Algorithm 4.2, we obtain almost identical results
with about 5 to 10 percent smaller maximal rank-1 lattice sizes “max M” and total number
of samples “#samples”.

4.1.6.4 Tensor-product function

Next, we apply our method from Section 4.1.2 to a multivariate periodic function f : Td → C,
which is not sparse in frequency domain. In doing so, we consider the function f : T10 → R,

f((x1, . . . , x10)
⊤) :=

∏
t∈{1,3,8}

N2(xt) +
∏

t∈{2,5,6,10}

N4(xt) +
∏

t∈{4,7,9}

N6(xt), (4.7)

where Nm : T→ R is the B-Spline of order m ∈ N,

Nm(x) := Cm
∑
k∈Z

cos(πk) sinc
( π
m
k
)m

e2πikx,

sinc(y) :=

{
sin(y)/y for y ̸= 0,

1 for y = 0,
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N d γ2 |Id,0,γN | max cand. max M #samples rel. ℓ2-error

32 6 0.80 11 593 173 397 990 990 1745 779 2.1e-16
32 8 0.80 15 477 197 081 1 338 974 4 360 512 5.0e-16
32 10 0.80 16 871 197 081 1 430 231 6 961 062 5.5e-16

16 10 0.87 22 953 200 541 1 358 148 5 032 864 6.3e-16
16 15 0.87 25 963 200 541 1 358 148 10 175 387 7.3e-16
16 20 0.87 26 185 200 541 1 358 148 12 687 242 7.6e-16

32 10 0.84 40 387 531 145 5 337 879 23 712 165 3.4e-16
32 15 0.84 44 201 531 145 5 337 879 41 732 585 2.6e-16
32 20 0.84 44 433 531 145 5 337 879 49 777 589 2.7e-16

Table 4.5: ([PV16, Table 3.8]). Results for trigonometric polynomials with frequencies sup-

ported on symmetric weighted hyperbolic cross Id,0,γN with weights γ = (1, γ2, γ
2
2 , . . . , γ

d−1
2 )⊤

using reconstructing rank-1 lattices Λ(z,M, Ĩ) and Algorithm 4.3 with search domain
Γ = ĜdN .

and Cm > 0 is a constant such that ∥Nm|L2(T)∥ = 1. We remark that the factor cos(πk) sim-
ply causes a shift by 1/2 and consequently Nm has its maximum at x = 1/2. We approximate
the function f by multivariate trigonometric polynomials pI .

First, we compute reference results with Algorithm 2.4 using rank-1 lattice sampling.

Example 4.7. ([PV16, Example 3.12], s-sparse approximation using Algorithm 2.4). In this
example, we compute reference results which we compare with the dimension-incremental
method from this chapter in a later example. For this, we have to choose frequency index
sets I which contain the (approximately) largest Fourier coefficients f̂k of the test function f .
Due to the tensor product structure of our test function f as defined in (4.7), we use hyperbolic
cross index sets I = I10,0,1N := {k ∈ Zd :

∏10
t=1max(1, |kt|) ≤ N}, of refinement N = 4, 8, 16,

and the corresponding reconstructing rank-1 lattices Λ(z,M, I10,0,1N ) from Table 2.5. We
sample the function f at the rank-1 lattice nodes xj and compute all approximated Fourier

coefficients f̂ Λ
k , k ∈ I10,0,1N . Then, we use sparsity s = 1000, 2000, 3000, 4000 many of the

largest of these approximated Fourier coefficients f̂ Λ
k and obtain the approximated Fourier

partial sums S Λ
I f of the function f . We compute the relative L2(T10) sampling errors ∥f −

S Λ
I f |L2(T10)∥/∥f |L2(T10)∥ and the results are shown in Table 4.6. We observe that the

relative L2(T10) sampling errors do not decrease further when we use sparsity s = 3000
instead of s = 2000 for the considered refinement N = 4, 8, 16. The reason for this is that
the number of non-zero Fourier coefficients f̂k ̸= 0 is small and the sampling error f − S Λ

I f
is limited by the truncation error f − SIf . Moreover, the number of used samples is already
larger than 2 billion for refinement N = 16.

Next, we determine a frequency index set I = I(1,...,10) ⊂ Γ and compute approximated
Fourier coefficients ˜̂pk, k ∈ I, from sampling values of f using Algorithm 4.2, where the search
space Γ is chosen as the 10-dimensional full grid Ĝ10

N of refinement N . For numerical results
with Algorithm 4.3, we refer to [PV16, Section 3.3]. We expect the frequency index set I to
“consist of” three manifolds, a three-dimensional hyperbolic cross like structure in the dimen-
sions 1, 3, 8, a four-dimensional hyperbolic cross like structure in the dimensions 2, 5, 6, 10 and
a three-dimensional hyperbolic cross like structure in the dimensions 4, 7, 9. Furthermore, the
cardinality |I| should beO(N log3N) and the largest rank-1 lattice of sizeM = O(N3 log2N).
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N sparsity |I10,0,1N | M = #samples rel. L2-error

4 1 000 2 421 009 30 780 958 3.8e-02
4 2 000 2 421 009 30 780 958 3.8e-02

8 1 000 10 819 089 194 144 634 1.4e-02
8 2 000 10 819 089 194 144 634 1.1e-02
8 3 000 10 819 089 194 144 634 1.1e-02

16 1 000 45 548 649 2 040 484 044 1.2e-02
16 2 000 45 548 649 2 040 484 044 4.3e-03
16 3 000 45 548 649 2 040 484 044 3.6e-03
16 4 000 45 548 649 2 040 484 044 3.6e-03

Table 4.6: ([PV16, Table 3.14]). Relative L2(T10) sampling errors for function f : T10 → R
from (4.7) for Algorithm 2.4 when only considering frequencies k within the hyperbolic cross
Γ = I10,0,1N .

All tests were run 10 times and the relative L2(T10) approximation error

∥f − S̃If |L2(T10)∥/∥f |L2(T10)∥ =
√
∥f |L2(T10)∥2 −

∑
k∈I
|f̂k|2 +

∑
k∈I
| ˜̂pk − f̂k|2/∥f |L2(T10)∥

is computed, where the approximated Fourier partial sum S̃If :=
∑

k∈I
˜̂pk e

2πik·◦.

Example 4.8. (See also [PV16, Example 3.13], approximation of a function using Algo-
rithm 4.2 and 4.3 with minor modifications). We describe minor modifications to Algo-
rithm 4.2 and 4.3 to handle functions with infinitely many non-zero Fourier coefficients f̂k ̸= 0
better. For the truncation of the one-dimensional index sets I(t) of frequency candidates for
component t, t ∈ {1, . . . , d}, the relative threshold parameter θ :=“threshold”/10 is used,
whereas θ :=“threshold” is used for all other truncations. We apply this modified version of
Algorithm 4.2 on our test function f from (4.7). We choose the search domain Γ = Ĝ10

64 as
the full 10-dimensional grid of refinement N = 64, which consists of |Γ| = |Ĝ10

64| ≈ 1.276 ·1021
frequency candidates. We set the number of detection iterations r := 10. Moreover, the spar-
sity parameter s ∈ N is set to |Γ|, i.e., we do not additionally truncate the frequency index
sets I(1,...,t) in Algorithm 4.2. The results for “threshold” values ∈ {10−2, 10−3, . . . , 10−6} are
shown in Table 4.7. We observe that the numbers of used frequencies |I| and the numbers of
used samples “#samples” are distinctly lower for similar L2(T10) approximation errors com-
pared with the results of rank-1 lattice sampling in Table 4.6. We successfully determined

about 7 400 approximated Fourier coefficients
˜̂
fk of out about 1.276 · 1021 possible ones using

about 132 million samples of the function f and we achieve a relative L2(T10) approximation
error which is about one order of magnitude lower than using rank-1 lattice sampling as in
Example 4.7 with about 2 billion samples. Additionally, we apply the modified version of
Algorithm 4.3 and the results are shown in Table 4.8. We observe that the obtained L2(T10)
approximation errors and total numbers of samples are similar.

Until now, we have only assumed that the search domain Γ is a large 10-dimensional full
grid Ĝ10

N . If we restrict the search domain Γ to a hyperbolic cross I10,0,1N , we can reduce the
numbers of required samples distinctly.
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N threshold |I| max cand. max M #samples rel. L2-error

64 1.0e-02 493 3 885 19 201 327 689 1.3e-01
64 1.0e-03 1 109 25 039 191 307 2 551 143 1.1e-02
64 1.0e-04 3 009 135 321 966 241 17 198 228 2.0e-03
64 1.0e-05 7 435 285 735 10 633 082 132 285 922 4.8e-04
64 1.0e-06 20 721 1 187 379 104 739 006 949 519 196 4.1e-04

Table 4.7: Results for approximation of function f : T10 → R from (4.7) using Algorithm 4.2
when considering frequencies k within Γ = Ĝ10

N . “#samples” means worst case number of
function evaluations for 1 test run (out of the 10 runs).

N threshold |I| max cand. max M #samples rel. L2-error

64 1.0e-02 493 3 885 21 047 338 630 6.8e-02
64 1.0e-03 1 113 24 893 224 589 3 079 656 1.1e-02
64 1.0e-04 3 013 127 839 1 119 994 17 437 584 2.0e-03
64 1.0e-05 7 405 290 895 10 409 782 155 282 274 4.8e-04
64 1.0e-06 20 637 1 178 955 98 868 166 980 232 256 4.1e-04

Table 4.8: Results for approximation of function f : T10 → R from (4.7) using Algorithm 4.3
when considering frequencies k within Γ = Ĝ10

N . “#samples” means worst case number of
function evaluations for 1 test run (out of the 10 runs).

Example 4.9. (See also [PV16, Example 3.14], approximation of a function using Algo-

rithm 4.2 with minor modifications and restricting the search domain Γ = Id,0,1N ). We apply
Algorithm 4.2 with the minor modifications described in Example 4.8 on the test function f
from (4.7). As search domain Γ, we use the symmetric hyperbolic cross frequency index
set I10,0,1N of refinement N := 64. The used parameters and obtained results are presented
in Table 4.9. We observe that the number of used samples is distinctly lower for comparable

numbers |I| of used approximated Fourier coefficients
˜̂
fk and comparable relative L2(Td) ap-

proximation errors compared to the results in Table 4.7. For instance for “threshold”= 10−5,
we only require about 22 million samples to obtain about 6 900 approximated Fourier coef-

ficients
˜̂
fk yielding a relative L2(Td) approximation error of 5.1 · 10−4 compared to about

132 million samples to obtain about 7 400 approximated Fourier coefficients
˜̂
fk yielding a

relative L2(Td) approximation error of 4.8 · 10−4.

N threshold |I10,0,1N | |I| max cand. max M #samples rel. L2-error

64 1.0e-02 696 036 321 493 3 613 17 222 316 144 6.5e-02
64 1.0e-03 696 036 321 1 111 10 407 99 815 1 653 252 1.1e-02
64 1.0e-04 696 036 321 3 009 27 567 598 638 7 794 193 1.7e-03
64 1.0e-05 696 036 321 6 925 46 435 2 465 161 22 479 540 5.1e-04
64 1.0e-06 696 036 321 14 179 67 497 5 062 313 49 241 549 4.2e-04

Table 4.9: Results for function f : T10 → R from (4.7) for Algorithm 4.2 when only consid-
ering frequencies k within Γ = I10,0,1N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).
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As we have seen in the numerical examples of Section 4.1.6, we can easily apply the
methods from Section 4.1.2 for the exact reconstruction of multivariate trigonometric poly-
nomials pI from samples along reconstructing rank-1 lattices Λ(z,M, Ĩ) when the frequency
index set I ⊂ Zd is unknown and only a (possibly very large) superset Γ ⊃ I is known. These
methods were also applied to the approximation of a 10-dimensional periodic function f by

an approximated Fourier partial sum with its largest approximated Fourier coefficients
˜̂
fk.

In the next section, we transfer these results from the periodic case to the non-periodic
case using the approach from Chapter 3.

4.2 Non-periodic case — rank-1 Chebyshev lattice sampling

Next, we adapt our dimension-incremental reconstruction method from Section 4.1 for the re-
construction of multivariate algebraic polynomials in Chebyshev form aI from samples along
rank-1 Chebyshev lattices CL(z,M). In the non-periodic case, we proceed analogously to
the periodic case. In principle, we replace one-dimensional FFTs by DCTs, rank-1 lattice
sampling by rank-1 Chebyshev lattice sampling and Algorithm 2.1 by Algorithm 3.2. In Sec-
tion 4.2.1, we describe the changes in detail and obtain Algorithms 4.4 and 4.5 as non-periodic
versions of the periodic dimension-incremental reconstruction methods from Section 4.1. In
Section 4.2.2, we present numerical results which demonstrate the effectiveness and possibili-
ties of the proposed non-periodic dimension-incremental reconstruction method for the exact
reconstruction of sparse multivariate algebraic polynomials in Chebyshev form aI and the
approximation of a 9-dimensional test function f : [−1, 1]9 → R.

4.2.1 Method

As mentioned above, we are going to adapt the dimension-incremental projection method
from Algorithm 4.1 in Section 4.1.1 for the non-periodic case. In detail, we modify the
steps of the dimension-incremental reconstruction Algorithm 4.2 to be able to reconstruct
multivariate algebraic polynomials in Chebyshev form aI from samples along reconstructing
rank-1 Chebyshev lattices CL(z,M, Ĩ). This yields Algorithm 4.4. In the following, we
describe the adaption step-by-step.

Analogously to applying a one-dimensional FFT for the computation of one-dimensional
projected Fourier coefficients for the t-th component (4.2) in step 1 and 2a in Algo-
rithm 4.2, we apply a one-dimensional DCT-I in Algorithm 4.4. In detail, we choose values
x′1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d ∈ [−1, 1] uniformly at random and compute the one-dimensional

projected Chebyshev coefficients for the t-th component

˜̂at,kt :=
2(εLt

kt
)2

Lt

Lt∑
l=0

(εLt
l )2 aI

((
x′1, . . . , x

′
t−1, cos(

l
Lt
π), x′t+1, . . . , x

′
d

)⊤)
cos

(
lkt
Lt
π

)
(4.8)

=
2(εLt

kt
)2

Lt

Lt∑
l=0

(εLt
l )2

∑
h∈supp â

âh

⎛⎜⎝ d∏
τ=1
τ ̸=t

cos(hτ arccos(x
′
τ ))

⎞⎟⎠
· cos

(
ht arccos(cos(

l
Lt
π))
)
cos

(
lkt
Lt
π

)
, kt ∈ Pt(Γ).
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Algorithm 4.4 Dimension-incremental reconstruction of a multivariate algebraic polynomial
in Chebyshev form aI from samples for unknown frequency index set I ⊂ Γ ⊂ Nd0.
Input: Γ ⊂ Nd0 search domain for frequencies k, superset for supp â

aI(◦) multivariate algebraic polynomial in Chebyshev form aI as
black box (function handle)

θ ∈ (0, 1) relative threshold
s ∈ N sparsity parameter
r ∈ N number of detection iterations

(step 1)
Set L1 := max(P1(Γ)), I(1) := ∅, z1 := 1.
for i := 1, . . . , r do

Choose x′τ ∈ [−1, 1] uniformly at random for τ = 2, . . . , d.

Compute ˜̂a1,k1 :=
2(ε

L1
k1

)2

L1

∑L1
l=0(ε

L1
l )2 aI

(
cos( l

L1
π), x′2, . . . , x

′
d

)
cos
(
lk1
L1
π
)
, k1 ∈ P1(Γ),

with 1d DCT-I.
I(1) := I(1) ∪ {k1 ∈ P1(Γ) : (up to) s-largest values |˜̂a1,k1 | ≥ θ ·maxk̃1∈P1(Γ)

|˜̂a1,k̃1 |}
end for i
Determine S1 := min

{
m ∈ N : |{k1 mod m : k1 ∈M(I(1))}| = |M(I(1))|

}
.

Set M1 := S1.

(step 2) for t := 2, . . . , d do
(step 2a) Set Lt := max(Pt(Γ)), I(t) := ∅.

for i := 1, . . . , r do
Choose x′τ ∈ [−1, 1] uniformly at random for τ = 1, . . . , t− 1, t+ 1, . . . , d.

Compute ˜̂at,kt :=
2(ε

Lt
kt

)2

Lt

Lt∑
l=0

(εLt
l )2 aI

(
x′1, . . . , x

′
t−1, cos(

l
Lt
π), x′t+1, . . . , x

′
d

)
cos
(
lkt
Lt
π
)
,

kt ∈ Pt(Γ), using 1d DCT-I.
Set I(t) := I(t) ∪ {kt ∈ Pt(Γ) : (up to) s-largest values |˜̂at,kt | ≥ θ ·maxk̃t∈Pt(Γ)

|˜̂at,k̃t |}.
end for i

(step 2b) Set r̃ :=

{
r for t < d,

1 for t = d.

Determine St := min
{
m ∈ N : |{kt mod m : kt ∈M(I(t))}| = |M(I(t))|

}
.

Build reconstructing rank-1 Chebyshev lattice CL(z,Mt, Ĩ) for Ĩ := (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ) via reconstructing rank-1 lattice Λ(z, 2Mt,M(Ĩ)), cf. Theorem 3.4 and Corol-
lary 3.6:

Set initial M̂t := 2 ·Mt−1 · St, cf. Theorem 2.7.
Search for zt ∈ {0, . . . , M̂t − 1} such that property (2.27) is fulfilled forM(Ĩ).
Reduce rank-1 lattice size M̂t ∈ 2N with reconstruction property (2.27) fulfilled.
Set size parameter Mt := M̂t/2.

for i := 1, . . . , r̃ do
Choose x′τ ∈ [−1, 1] uniformly at random for τ = t+ 1, . . . , d.
Set X (1,...,t) := {xj := (cos( j

Mt
πz1), . . . , cos(

j
Mt
πzt), x

′
t+1, . . . , x

′
d)

⊤ : j = 0, . . . ,Mt}.
(step 2c) Sample multivariate algebraic polynomial in Chebyshev form aI at the nodes of the
sampling set X (1,...,t).
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Algorithm 4.4 continued.

(step 2d)

Compute ˜̂al :=
∑Mt

j=0(ε
Mt
j )2 aI(xj) cos

(
jl
Mt
π
)
, l = 0, . . . ,Mt, with 1d DCT-I.

Compute ˜̂a(1,...,t),k :=
2d(εMt

l )2

Mt

˜̂al
|{m ∈Mν({1}t) : (m⊙ k) · z emodMt = l}|

, for k ∈

(I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) with l := k · z emodMt.
(step 2e)

absolute threshold := θ ·maxk̃∈(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ)
|˜̂a(1,...,t),k̃|.

Set I(1,...,t) := I(1,...,t) ∪ {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) :
(up to) s-largest values |˜̂a(1,...,t),k| ≥ absolute threshold}.
end for i

(additional step 2f)
If t < d, build (possibly) smaller reconstructing rank-1 Chebyshev lattice CL(z,Mt, I

(1,...,t))
via reconstructing rank-1 lattice Λ(z, 2Mt,M(I(1,...,t))) for I(1,...,t):

Search for new zt ∈ {0, . . . , M̂t − 1} where property (2.27) is fulfilled forM(I(1,...,t)).
Reduce rank-1 lattice size M̂t ∈ 2N with reconstruction property (2.27) fulfilled.
Set size parameter Mt := M̂t/2.

end for t
Output: I(1,...,d) ⊂ Nd0 index set of detected frequencies

˜̂a :=
(
˜̂a(1,...,d),k

)
k∈I(1,...,d)

∈ R|I(1,...,d)| corresponding Chebyshev coefficients

Using orthogonality relation (3.20), we continue

˜̂at,kt =
∑

h∈supp â
âh

⎛⎜⎝ d∏
τ=1
τ ̸=t

Thτ (x
′
τ )

⎞⎟⎠ 2(εLt
kt
)2

Lt

Lt∑
l=0

(εLt
l )2 cos

(
lht
Lt
π

)
cos

(
lkt
Lt
π

)
  

δ(ht emodLt),kt

=
∑

h∈supp â
ht emodLt = kt

âh T(h1,...,ht−1,ht+1,...,hd)⊤

((
x′1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d

)⊤)
for kt ∈ Pt(Γ).

(4.9)

Similar to the aliasing formula (4.6) from the periodic case, we may regard each coeffi-
cient ˜̂at,kt as the evaluation of a (d− 1)-dimensional algebraic polynomial in Chebyshev form
˜̂at,kt :=

˜̂at,kt(x̃) at the node x̃ := (x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d)

⊤ ∈ [−1, 1]d−1.

Analogously to applying Algorithm 2.1 in step 2d of Algorithm 4.2 for the computation
of t-dimensional projected Fourier coefficients for the first t components (4.4), we apply
Algorithm 3.2 in step 2d of Algorithm 4.4 and compute t-dimensional projected Chebyshev
coefficients for the first t components

˜̂a(1,...,t),k :=
2d(εMt

l )2

Mt

˜̂ak·z emodMt

|{m ∈Mν({1}t) : (m⊙ k) · z emodMt = k · z emodMt}|
, k ∈ Ĩ .

Here, the coefficients ˜̂al :=
∑Mt

j=0(ε
Mt
j )2 aI(xj) cos

(
jl
Mt
π
)
, l = 0, . . . ,Mt, result from a one-

dimensional DCT-I applied to samples of the multivariate algebraic polynomial aI at the
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nodes xj := (xj,1, . . . , xj,t, x
′
t+1, . . . , x

′
d)

⊤, where (xj,1, . . . , xj,t)
⊤ are the nodes of a recon-

structing rank-1 Chebyshev lattice CL(z,Mt, Ĩ) for Ĩ := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) and
ν ∈ {1, . . . , d}.

Since we have

˜̂al :=

Mt∑
j=0

(εMt
j )2 aI(xj) cos

(
jl

Mt
π

)

=

Mt∑
j=0

(εMt
j )2

∑
h∈supp â

âh

(
t∏

τ=1

cos(hτ
j
Mt
πzτ )

)(
d∏

τ=t+1

Thτ (x
′
τ )

)
cos

(
jl

Mt
π

)

=
∑

h∈supp â
âh

(
d∏

τ=t+1

Thτ (x
′
τ )

)
Mt∑
j=0

(εMt
j )2

(
t∏

τ=1

cos(hτ
j
Mt
πzτ )

)
cos

(
jl

Mt
π

)
(3.32)
=

∑
h∈supp â

âh

(
d∏

τ=t+1

Thτ (x
′
τ )

)

·
Mt

⏐⏐{m ∈Mν({1}t) :
(
m⊙ (h1, . . . , ht)

⊤) · z emodMt = l
}⏐⏐

2d (εMt
l )2

for l = 0, . . . ,Mt, the aliasing formula

˜̂a(1,...,t),k =
∑

h∈supp â
âh T(ht+1,...,hd)⊤

((
x′t+1, . . . , x

′
d

)⊤)
·
⏐⏐{m ∈Mν({1}) :

(
m⊙ (h1, . . . , ht)

⊤) · z emodMt = k · z emodMt

}⏐⏐
|{m ∈Mν({1}) : (m⊙ k) · z emodMt = k · z emodMt}|

follows for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), which corresponds to aliasing formula (3.31)

with the additional term T(ht+1,...,hd)⊤( (x
′
t+1, . . . , x

′
d)

⊤ ) when setting k′ := (h1, . . . , ht)
⊤. If

the conditions I(1,...,t−1) = P(1,...,t−1)(supp â) and I
(t) = Pt(supp â) are fulfilled, this simplifies

to

˜̂a(1,...,t),k =
∑

h∈supp â
(h1,...,ht)⊤=k

âh T(ht+1,...,hd)⊤

((
x′t+1, . . . , x

′
d

)⊤)
.

For building the reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ) in Algorithm 4.4,
we use Theorem 3.4 and Algorithm 2.2, i.e., we build a reconstructing rank-1 lat-
tice Λ(z, 2M,M(Ĩ)) for the extended symmetric index set M(Ĩ). Alternatively, one may
use the direct CBC construction method from Algorithm 3.3 for building a reconstructing
rank-1 Chebyshev lattices CL(z,M, Ĩ). This approach is described as Algorithm 4.5.

Remark 4.10. As discussed in Section 4.1.5 for the periodic case, we may use a deterministic
version of Algorithm 4.4 or 4.5, when all Chebyshev coefficients âk, k ∈ I, of a multivariate
algebraic polynomial in Chebyshev form aI are either non-negative or non-positive. We obtain
this deterministic dimension-incremental reconstruction method by setting the number of
detection iterations r := 1 and choosing the nodes x′τ := 1 in the steps 1, 2a and 2b.
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Algorithm 4.5 Dimension-incremental reconstruction of a multivariate algebraic polynomial
in Chebyshev form aI from samples for unknown frequency index set I ⊂ Γ ⊂ Nd0 with direct
search for reconstructing rank-1 Chebyshev lattices CL(z,Mt, Ĩ).

Modifications of Algorithm 4.4:
...
Set S1 := min

{
m ∈ N : |{k1 mod (2m) : k1 ∈M(I(1))}| = |M(I(1))|

}
. Set M1 := S1.

(step 2) for t := 2, . . . , d do
...

(step 2b) Set r̃ :=

{
r for t < d,

1 for t = d.

Set St := min
{
m ∈ N : |{kt mod (2m) : kt ∈M(I(t))}| = |M(I(t))|

}
. Set I(1,...,t) := ∅.

Build reconstructing rank-1 Chebyshev lattice CL(z,Mt, Ĩ)
for Ĩ := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), z ∈ Nt0:

Set initial Mt := 4 ·Mt−1 · St.
Search for zt ∈ {0, . . . ,Mt} such that reconstruction property (3.22) is fulfilled,
increase size parameter Mt if necessary.
Reduce size parameter Mt with reconstruction property (3.22) fulfilled.

for i := 1, . . . , r̃ do
...
(additional step 2f)
If t < d, build (possibly) smaller reconstructing rank-1 Chebyshev lattice CL(z,Mt, I

(1,...,t))
for I(1,...,t):

Search for new zt ∈ {0, . . . ,Mt − 1} where reconstruction property (3.23) is fulfilled.
Reduce size parameter Mt with reconstruction property (3.23) fulfilled.

end for t
...
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4.2.2 Numerical results

An implementation of Algorithm 4.4 and 4.5 as well as MATLAB code for performing tests
are available online [Vol16a]. The numerical tests of this section were run on a computer with
Intel Xeon E7-4880 CPU in MATLAB R2015b using IEEE 754 double precision arithmetic.

We set the refinement n := 32 and construct random multivariate algebraic polynomials
in Chebyshev form aI with frequencies supported within the d-dimensional full grid Ĝd32.
This means, we choose |supp â| many frequencies uniformly at random from Ĝd32 ⊂ Nd0 and
corresponding Chebyshev coefficients âk ∈ [−1, 1], |âk| ≥ 10−6, k ∈ I = supp â. For the
reconstruction of the multivariate algebraic polynomials in Chebyshev form aI , we choose
the search domain Γ := Ĝd32. We do not truncate the frequency index sets of detected
frequencies I(1,...,t), t ∈ {2, . . . , d}, i.e., we set the sparsity parameter s := |Γ| in Algorithm 4.4
and 4.5. As discussed in Section 4.1.6.1, we may alternatively set the sparsity parameter
s := |supp â| and obtain the same results. Moreover, we set the number of detection iterations
r := 1. All tests are repeated 10 times with newly chosen frequencies k and Chebyshev
coefficients âk. First, we test Algorithm 4.4.

Example 4.11. (Sampling along reconstructing rank-1 Chebyshev lattices constructed via
reconstructing rank-1 lattices using Algorithm 4.4). We set the threshold parameter θ :=
10−12. For dimensions d ∈ {3, 4, . . . , 8} and sparsity |supp â| = 100, we apply Algorithm 4.4.
In each test, all frequencies were successfully detected, I(1,...,d) = supp â. The used parameters
and results are presented in Table 4.10. The column “max cand.” shows the maximal number
maxt=2,...,d |I(1,...,t−1) × I(t)| of frequency candidates of all 10 repetitions and “max M” the
overall maximal size parameter used. Furthermore, the total number of samples for each
repetition was computed and the maximum of these numbers for the 10 repetitions can be
found in the column “#samples”. The relative ℓ2-error ∥(˜̂ak)k∈I − (âk)k∈I∥2/∥(âk)k∈I∥2
of the computed Chebyshev coefficients (˜̂ak)k∈I(1,...,d) was determined for each repetition,

where I := supp â ∪ I(1,...,d) and ˜̂ak := 0 for k ∈ I \ I(1,...,d), and the column “rel. ℓ2-error”
contains the maximal value of the 10 repetitions. In all tests, the relative ℓ2-error is smaller
than 7.2 · 10−16 and is caused by the utilized IEEE 754 double precision arithmetic. The
numbers of used samples “#samples” increase for increasing dimensions d. For dimensions
d ≥ 4, Algorithm 4.4 required less samples than there are possible frequencies in the search
domain Γ = Ĝd32. In the case d = 8, only about 1/19 000 of the samples are required compared
to the utilization of a tensor Chebyshev grid and a d-dimensional DCT.

n d |supp â| |Γ| = |Ĝdn| max cand. max M #samples rel. ℓ2-error

32 3 100 35 937 3 168 115 119 117 336 6.76e-16
32 4 100 1 185 921 3 300 452 247 540 429 4.72e-16
32 5 100 39 135 393 3 300 1 502 107 2 002 277 6.64e-16
32 6 100 1 291 467 969 3 300 4 619 745 6 409 969 4.73e-16
32 7 100 42 618 442 977 3 300 15 620 108 21 770 762 6.80e-16
32 8 100 1.406e+12 3 300 54 705 235 74 598 246 7.16e-16

Table 4.10: Results for random sparse multivariate algebraic polynomials in Chebyshev
form aI , I ⊂ Ĝd32, using reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ) built via re-
constructing rank-1 lattices Λ(z, 2M,M(Ĩ)) and Algorithm 4.4 when considering frequencies
within the search domain Γ = Ĝd32.

We can reduce the numbers of required samples distinctly if we directly search for re-
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constructing rank-1 Chebyshev lattices CL(z,M, Ĩ) via a CBC construction method as the
following example demonstrates.

Example 4.12. (Sampling along reconstructing rank-1 Chebyshev lattices using Algo-
rithm 4.5). Again, we set the threshold parameter θ := 10−12. For dimensions d ∈
{3, 4, . . . , 9, 10, 15} and sparsity |supp â| = 100, we apply Algorithm 4.5. In each test, all
frequencies were successfully detected, I(1,...,d) = supp â. The used parameters and results
are presented in Table 4.11 and the columns have the same meaning as in Example 4.11. In
all tests, the relative ℓ2-error is smaller than 1.2 ·10−15 and is caused by the utilized IEEE 754
double precision arithmetic. The numbers of used samples “#samples” increase for increas-
ing dimensions d. For dimensions d ≥ 4, Algorithm 4.5 required less samples than there are
possible frequencies in the search domain Γ = Ĝd32. The numbers of used samples “#samples”
are dramatically lower than for the results of Algorithm 4.4 in Table 4.10. We remark that
we observed a similar behavior in Example 3.20. For instance, in the case d = 6, only about
1/1600 of the samples are required compared to the usage of a full-tensor Chebyshev grid and
1/8 of the samples compared to Algorithm 4.4. Similar to Example 4.2, the maximal number
of frequency candidates “max cand.” is 3 300 and the maximal size parameter “max M” is
between about about 220 000 and 460 000 in Table 4.11 for dimensions d ≥ 4. This is caused
by the relatively large numbers of possible frequencies |Γ| = |Ĝd32| = 33d and the small spar-
sity |supp â| = 100, which cause that all 100 non-zero Chebyshev coefficients âk ̸= 0 are
already detected in dimension-incremental steps t ≤ 4 and higher components zτ , 5 ≤ τ < t,
(except the highest component zt) of the generating vector z := (z1, . . . , zt)

⊤ of the recon-
structing rank-1 Chebyshev lattices Λ(z,M, Ĩ) to be zero in most cases. Consequently, the
numbers of used samples “#samples” increase by about 220 000 to 460 000 per additional
dimension. We remark that we may have found all non-zero Chebyshev coefficients âk ̸= 0 in
a dimension-incremental step t ≤ 4, but we still need to continue with remaining dimension-
incremental steps t ≥ 5 in order to determine the higher components kt, t ∈ {5, . . . , d}, of
the frequencies k ∈ supp â.
Additionally, we apply Algorithm 4.5 for dimensions d ∈ {3, 4, . . . , 8} and higher sparsity
|supp â| = 1000. In each test, all frequencies were successfully detected, I(1,...,d) = supp â.
We observe for dimensions d = 3, 4 that we require more samples than we have possible
frequencies in the search domain Γ = Ĝdn. For dimension d = 5, Algorithm 4.5 yields less
samples and for dimensions d ≥ 6 distinctly less samples than there are frequencies in the
search domain Γ = Ĝdn. For dimension d = 6, we have seven test runs where all 1 000 non-zero
Chebyshev coefficients âk ̸= 0 are already found in dimension increment step t = 5 yielding
size parameters M of about 21 million and numbers of used samples of about 50 million.
However, we still have three test runs, where all 1 000 non-zero Chebyshev coefficients âk ̸= 0
are found not until the last dimension increment step t = 6 yielding the maximal size param-
eter “max M” of about 45 million and the numbers of used samples “#samples” of about
74 million in Table 4.11. In dimensions d ≥ 7, all 1 000 non-zero Chebyshev coefficients âk ̸= 0
are already found in dimension increment steps t ≤ 6 for all ten test runs. Analogously to
the behavior for sparsity |supp â| = 100, we expect the numbers of used samples “#samples”
to increase by about 20 to 45 million per additional dimension for dimensions d ≥ 6.

Remark 4.13. The large difference in the maximal size parameters “max M” and the
numbers of used samples when utilizing Algorithm 4.4 and 4.5 is caused by the fol-
lowing issue, which corresponds to the one observed and discussed in Example 3.20.
In the additional step 2f of Algorithm 4.4, the reconstructing rank-1 Chebyshev lat-
tice CL(z,Mt, I

(1,...,t)) for the frequency index set I(1,...,t) is built via a reconstructing rank-1



154 4 High-Dimensional Sparse FFT

n d |supp â| |Γ| = |Ĝdn| max cand. max M #samples rel. ℓ2-error

32 3 100 35 937 3 168 81 642 83 826 4.92e-16
32 4 100 1 185 921 3 300 221 260 295 118 7.17e-16
32 5 100 39 135 393 3 300 234 655 537 964 5.45e-16
32 6 100 1 291 467 969 3 300 241 391 785 671 1.17e-15
32 7 100 42 618 442 977 3 300 456 119 1 614 677 9.37e-16
32 8 100 1.406e+12 3 300 392 251 1 828 842 6.43e-16
32 9 100 4.641e+13 3 300 386 490 2 195 804 7.30e-16
32 10 100 1.532e+15 3 300 414 611 2 710 158 1.78e-15
32 15 100 5.994e+22 3 300 380 502 4 439 451 4.20e-14

32 3 1 000 35 937 15 873 73 856 75 080 5.53e-16
32 4 1 000 1 185 921 32 604 6 490 663 6 630 162 6.74e-16
32 5 1 000 39 135 393 33 000 27 021 660 34 116 319 7.44e-16
32 6 1 000 1 291 467 969 33 000 44 791 174 74 215 472 1.48e-15
32 7 1 000 42 618 442 977 33 000 42 401 071 113 804 504 8.03e-16
32 8 1 000 1.406e+12 33 000 43 799 177 161 481 230 1.49e-15

Table 4.11: Results for random sparse multivariate algebraic polynomials in Chebyshev
form aI , I ⊂ Ĝd32, using reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ) and Algo-
rithm 4.5 when considering frequencies within the search domain Γ = Ĝd32.

lattice Λ(z, 2Mt,M(I(1,...,t))) for the extended symmetric index set M(I(1,...,t)) for each
t = 2, . . . , d−1, and we have for the size parameterMt ≥ |M(I(1,...,t))|/2 since reconstruction
property (2.27) needs to be fulfilled with I :=M(I(1,...,t)). Even if the cardinality |I(1,...,t)|
of the frequency index sets |I(1,...,t)| does not increase for dimension increment steps t ≥ t′,
the extended symmetric index sets M(I(1,...,t)) still grow in general and may contain up
to 2t |supp â| many frequencies. On the contrary, the reconstructing rank-1 Chebyshev lat-
tice CL(z,Mt, I

(1,...,t)) built in the additional step 2f of Algorithm 4.5 is obtained by testing
the reconstruction property (3.22) with I := I(1,...,t), which requires for the size parameter
Mt ≥ |I(1,...,t)| and consequently has a possibly much lower bound.

Next, we apply our method for the non-periodic dimension-incremental reconstruction to
a multivariate function f : [−1, 1]d → C, which is not sparse in frequency domain. In doing
so, we consider the 9-dimensional test function f : [−1, 1]9 → R,

f
(
(x1, . . . , x9)

⊤
)
:=

∏
t∈{1,3,4,7}

B2(xt) +
∏

t∈{2,5,6,8,9}

B4(xt), (4.10)

where B2 is the shifted, scaled and dilated B-Spline of order 2 as defined in (3.43) with
Chebyshev coefficients as given in (3.44) and B4 : R → R is the shifted, scaled and dilated
B-Spline of order 4,

B4(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2x+ 15)4/6144 for − 15/2 ≤ x < −11/2,
−5645

1536 −
205
48 x−

95
64x

2 − 5
24x

3 − 1
96x

4 for − 11/2 ≤ x < −7/2,
715
3072 + 25

128x+ 55
128x

2 + 5
32x

3 + 1
64x

4 for − 7/2 ≤ x < −3/2,
155
1536 −

5
32x+ 5

64x
2 − 1

96x
4 for − 3/2 ≤ x < 1/2,

(2x− 5)4/6144 for 1/2 ≤ x < 5/2,

0 otherwise,
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with Chebyshev coefficients B̂4,k, k ∈ N0, given by

B̂4,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(900
√
3k(−9 + k2)(−1)k/3) + 90(152− 75k2 + 3k4) sin(kπ/3)

768k(−16 + k2)(−9 + k2)(−4 + k2)(−1 + k2)π
for k ≥ 5,

−7/9216− 93
√
3/(114688π) for k = 4,

5(−70 + (27
√
3)/π)/32256 for k = 3,

181/4608− 39
√
3/(4096π) for k = 2,

−(95/576) + 33
√
3/(2048π) for k = 1,

2603/18432− 75
√
3/(8192π) for k = 0.

We approximate the test function f from (4.10) by multivariate algebraic polynomials in
Chebyshev form aI . For this, we determine a frequency index set I = I(1,...,9) ⊂ Γ := Ĝ9

n ⊂ Nd0
and compute approximated Chebyshev coefficients ˜̂ak, k ∈ I, from sampling values of f using
Algorithm 4.4 and 4.5. We expect the frequency index set I to “consist of” two manifolds,
a four-dimensional hyperbolic cross like structure in the dimensions 1, 3, 4, 7, and a five-
dimensional hyperbolic cross like structure in the dimensions 2, 5, 6, 8, 9. All tests were run
10 times and the relative L2,w([−1, 1]9) approximation errors

∥f − S̃If |L2,w([−1, 1]9)∥
∥f |L2,w([−1, 1]9)∥

=

√
∥f |L2,w([−1, 1]9)∥2 −

∑
k∈I |f̂k|2

π9

2|k|0
+
∑

k∈I |˜̂ak − f̂k|2
π9

2|k|0

∥f |L2,w([−1, 1]9)∥

are computed, where the approximated Chebyshev partial sum S̃If :=
∑

k∈I
˜̂ak Tk(◦).

Example 4.14. (Approximation of a function using Algorithm 4.4 and 4.5 with minor mod-
ifications). We describe minor modifications to Algorithm 4.4 and 4.5 to handle functions
with infinitely many non-zero Chebyshev coefficients f̂k ̸= 0 better. For the truncation of the
one-dimensional index sets I(t) of frequency candidates for component t, t ∈ {1, . . . , d}, the
relative threshold parameter θ :=“threshold”/100 is used. Otherwise, the relative threshold
parameter θ :=“threshold” is used. We apply this modified version of Algorithm 4.4 and 4.5
on our test function f from (4.10). We choose the search domain Γ = Ĝ9

32 ⊂ Nd0 as the full
9-dimensional grid of refinement n = 32, which consists of |Γ| = |Ĝ9

32| ≈ 4.641 ·1013 frequency
candidates. We set the number of detection iterations r := 5. Moreover, the sparsity param-
eter s ∈ N is set to |Γ|, i.e., we do not additionally truncate the frequency index sets I(1,...,t).
The results for “threshold” values ∈ {10−2, 10−3, 10−4, 10−5} are shown in Table 4.12 for Al-
gorithm 4.4. For instance for “threshold”=10−4, we obtain a maximal relative L2,w([−1, 1]9)
approximation error of 4.0 · 10−4 using 1 434 Chebyshev coefficients ˜̂ak and about 8 million
samples were taken. We require lower numbers of samples when using Algorithm 4.5, between
about 10 and 50 percent less in the considered cases, and we obtain similar errors. The corre-
sponding results are given in Table 4.13. We may reduce the numbers of samples further by
restricting the search domain Γ, e.g. to a hyperbolic cross I10,0a,32 , and still obtain comparable

maximal relative L2,w([−1, 1]9) approximation errors, see Table 4.14 for Algorithm 4.5. For
instance for “threshold”=10−4, we only required about half the number of samples.

As we have seen in the numerical examples of this section, we can easily apply the meth-
ods from Section 4.2.1 for the exact reconstruction of multivariate algebraic polynomials in
Chebyshev form aI from samples along reconstructing rank-1 Chebyshev lattices Λ(z,M, Ĩ)
when the frequency index set I ⊂ Zd is unknown and only a (possibly very large) superset
Γ ⊃ I is known. These methods were also successfully applied to the approximation of a
9-dimensional non-periodic test function f .
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n threshold |I| max cand. max M #samples rel. L2,w-error

32 1.0e-02 145 1 080 12 896 145 331 1.5e-02
32 1.0e-03 493 4 920 176 604 1 439 846 6.1e-03
32 1.0e-04 1 434 16 497 1 852 309 7 957 720 4.0e-04
32 1.0e-05 3 483 65 780 14 307 770 53 735 836 1.0e-04

Table 4.12: Results for approximation of function f : [−1, 1]9 → R from (4.10) using Algo-
rithm 4.4 when considering frequencies k within Γ = Ĝ9

n. “#samples” means worst case
number of function evaluations for 1 test run (out of the 10 runs).

n threshold |I| max cand. max M #samples rel. L2,w-error

32 1.0e-02 149 1 116 14 391 135 216 1.7e-02
32 1.0e-03 485 4 710 95 522 898 310 6.7e-03
32 1.0e-04 1 431 18 200 753 373 5 662 360 4.7e-04
32 1.0e-05 3 465 63 800 5 629 313 27 009 528 9.4e-05

Table 4.13: Results for approximation of function f : [−1, 1]9 → R from (4.10) using Algo-
rithm 4.5 when considering frequencies k within Γ = Ĝ9

n. “#samples” means worst case
number of function evaluations for 1 test run (out of the 10 runs).

n threshold |I| max cand. max M #samples rel. L2,w-error

32 1.0e-02 147 851 9 080 99 181 1.7e-02
32 1.0e-03 486 2 979 101 449 586 317 5.6e-03
32 1.0e-04 1 438 6 038 506 963 2 802 539 4.1e-04
32 1.0e-05 2 784 9 656 2 368 670 8 340 927 1.3e-04

Table 4.14: Results for approximation of function f : [−1, 1]9 → R from (4.10) using Algo-
rithm 4.5 when only considering frequencies k within Γ = I9,0a,n. “#samples” means worst
case number of function evaluations for 1 test run (out of the 10 runs).
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Conclusion

In this work, the approximation of multivariate smooth periodic functions f : Td → C by
multivariate trigonometric polynomials was considered. The smoothness of functions f was
characterized via the decay of their Fourier coefficients f̂k :=

∫
Td f(x) e

−2πik·x dx, k ∈ Zd.
A fast method for the evaluation of multivariate trigonometric polynomials pI with fre-

quencies supported on arbitrary index sets I ⊂ Zd, |I| < ∞, at all nodes xj of an arbitrary
rank-1 lattice Λ(z,M) was recapitulated, which only uses a simple index transform and a sin-
gle one-dimensional FFT. Moreover, reconstruction properties were repeated, which allow for
the exact reconstruction from samples pI(xj) using only a single one-dimensional FFT and a
simple index transform. Additionally, simple component-by-component (CBC) construction
methods for obtaining such reconstructing rank-1 lattices Λ(z,M, I) were given.

The reconstruction method was successfully applied to multivariate smooth periodic
functions f from subspaces of the Wiener algebra A(Td) and approximated Fourier coef-

ficients f̂ Λ
k := 1

M

∑M−1
j=0 f(xj) e

−2πik·xj , k ∈ I, were computed from samples f(xj), yielding

approximants pI = S Λ
I f :=

∑
k∈I f̂

Λ
k e2πik·◦. The computations can be performed using only

a single one-dimensional FFT and a simple index transform, which require O(M logM+d |I|)
arithmetic operations in total. For specific function classes and suitable frequency index
sets I, an extensive theory for estimating the sampling errors f − S Λ

I f was developed. To
this end, the sampling error f −S Λ

I f was split into the truncation error f −SIf and aliasing

error SIf − S Λ
I f , where SIf :=

∑
k∈I f̂k e

2πik·◦ is the truncated Fourier series. With the
help of suitable proof techniques, estimates for aliasing errors SIf − S Λ

I f were shown and
error rates were obtained which are comparable to the ones of corresponding truncation er-
rors f − SIf . Numerical tests for up to 25 dimensions confirmed the effectiveness and high
performance of the proposed method.

Moreover, an approximate method for the fast evaluation of multivariate trigonometric
polynomials pI at perturbed rank-1 lattice nodes yj was introduced, which is based on Taylor
expansion and one-dimensional FFTs. When the nodes yj are perturbed versions of the
nodes xj of a reconstructing rank-1 lattice Λ(z,M, I) and the perturbations are not too
large, multivariate trigonometric polynomials pI with frequencies supported on arbitrary
known index sets I ⊂ Zd, |I| < ∞, can be approximately reconstructed in a fast way using
an iterative method. This approach was also applied to the fast approximation of multivariate
periodic functions f ∈ A(Td). The corresponding sampling errors are estimated by terms
similar to those from the unperturbed case.

The method for the fast evaluation and reconstruction of multivariate trigonometric poly-
nomials pI as well as fast approximation of functions f ∈ A(Td) from samples along a re-
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constructing rank-1 lattice Λ(z,M, I) was transferred to the non-periodic case. For many
of the concepts and results from the periodic case, a non-periodic counterpart was devel-
oped. Multivariate algebraic polynomials in Chebyshev form aI(x) :=

∑
k∈I âk Tk(x) were

used as ansatz functions for the approximation of multivariate smooth non-periodic func-
tions f : [−1, 1]d → R. Rank-1 Chebyshev lattices CL(z,M), characterized by a generating
vector z ∈ Nd0 and size parameter M ∈ N0, were used as corresponding spatial discretiza-
tions. Multivariate algebraic polynomials in Chebyshev form aI with frequencies supported
on arbitrary index sets I ⊂ Nd0, |I| < ∞, can be evaluated in a fast and exact way at
the corresponding nodes xj := cos( jM πz), j = 0, . . . ,M , in O(M logM + d |M(I)|) arith-
metic operations by using easy-to-compute index transforms and a single one-dimensional
discrete cosine transform (DCT). Analogously to the reconstruction properties of reconstruct-
ing rank-1 lattices Λ(z,M, I) in the periodic case, similar reconstruction properties were
derived in this work for the non-periodic case and the term reconstructing rank-1 Cheby-
shev lattice CL(z,M, I) was introduced. The fast and exact reconstruction of all Chebyshev
coefficients âk, k ∈ I, can be performed by applying a single one-dimensional DCT to the
samples aI(xj) along a reconstructing rank-1 Chebyshev lattice CL(z,M, I) followed by easy-
to-compute index transforms. This reconstruction requires O(M logM+d |M(I)|) arithmetic
operations in total. For determining reconstructing rank-1 Chebyshev lattices CL(z,M, I),
simple CBC construction approaches were presented.

The reconstruction method was successfully applied to the approximation of multivari-
ate smooth non-periodic functions f from subspaces of the analogon of the Wiener al-
gebra A([−1, 1]d) and an error theory analogously to the periodic case was developed,

where functions f are characterized by the decay of their Chebyshev coefficients f̂k :=
2|k|0/πd

∫
[−1,1]d f(x) Tk(x)/(

∏d
s=1

√
1− x2s) dx, k ∈ Nd0. Numerical tests for up to 25 di-

mensions were successfully performed.
An additional important contribution of this work is the development of methods for

the exact reconstruction of high-dimensional sparse trigonometric polynomials pI and high-
dimensional sparse algebraic polynomials in Chebyshev form aI with unknown frequency in-
dex sets I from samples. The proposed methods can also be applied in determining unknown
frequency locations I of the approximately largest Fourier or Chebyshev coefficients f̂k of a
function f , which may be non-sparse in frequency domain. A suitable frequency index set I
is searched for in a dimension-incremental way with the help of projections parallel to the co-
ordinate axes and samples along reconstructing rank-1 (Chebyshev) lattices. Components of
frequency locations belonging to non-zero or the approximately largest Fourier or Chebyshev
coefficients f̂k are efficiently determined within a search domain Γ, which may be extremely
large, for instance a d-dimensional full grid. In each dimension increment step t = 1, . . . , d,
the t-th component of the unknown frequency locations is detected, i.e., one component at
a time starting with the first one. For high-dimensional sparse polynomials and functions
with arbitrary Fourier or Chebyshev coefficients f̂k, a randomized approach was proposed,
which performs repeated sampling in each dimension increment step t with different ran-
domly chosen higher components xj,t+1, . . . , xj,d of the sampling nodes xj . Numerical tests
performed for up to 30 dimensions confirmed high reliability for the exact reconstruction
of high-dimensional sparse polynomials. For a 10-dimensional periodic and 9-dimensional
non-periodic test function, the frequency locations I belonging to the approximately largest
Fourier and Chebyshev coefficients f̂k were successfully determined, respectively. Moreover,
the method was successfully applied to 10-dimensional sparse trigonometric polynomials pI ,
where the samples were perturbed by noise. Additional requirements on the Fourier or
Chebyshev coefficients f̂k even allow for a deterministic version of the dimension-incremental
approach.
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Notations

· Usual Euclidian scalar product.

⊙ Component-wise product of two vectors.

1 Vector 1 := (1, . . . , 1) ∈ Ns, where s ∈ N depends on the context.

∥ ◦ ∥p Usual p norm of a vector, ∥x∥p := (
∑d

t=1 |xt|p)1/p
for x := (x1, . . . , xd)

⊤ ∈ Cd and 1 ≤ p <∞, ∥x∥p := maxt=1,...,d |xt|.

|k|0 Number of nonzero components of a vector k ∈ Rd, |k|0 :=
∑d

t=1 δkt,0.

∥x|X∥ Norm of an element x of a normed vector space X.

∥A|X → Y ∥ Operator norm of linear operator A : X → Y between normed vector spaces

X and Y , ∥A|X → Y ∥ := sup
f∈X\{0}

∥Af |Y ∥
∥f |X∥

= sup
∥f |X∥=1

∥Af |Y ∥ for X ̸= {0}.

aI Algebraic polynomial in Chebyshev basis with Chebyshev coefficients
ak ∈ R, k ∈ I, cf. (3.1).

Aα,β,γ(Td) Subspaces of the Wiener algebra A(Td) = A0,0,1(Td)
for β ≥ 0 and α ≥ −β, cf. (2.13).

Aα,β([−1, 1]d) Subspaces of the non-periodic analogon of the Wiener algebra
A([−1, 1]d) = A0,0([−1, 1]d) for β ≥ 0 and α ≥ −β, cf. (3.6).

A(Td) Wiener algebra, cf. (2.4).

A([−1, 1]d) Analogon of the Wiener algebra A(Td), cf. (3.4).

CL(z,M) Rank-1 Chebyshev lattice of size M with generating vector z ∈ Nd0,
cf. (3.3).

CL(z,M, I) Reconstructing rank-1 Chebyshev lattice, which is a rank-1 Chebyshev
lattice CL(z,M) fulfilling the equivalent reconstruction properties (3.22),
(3.23) and (3.25) for a given frequency index set I ∈ Nd0.

C Complex numbers.

↪→ Continuous embedding between normed vector spaces. X ↪→ Y :⇔ X ⊆ Y
and ∃ constant C ≥ 0: ∥x|Y ∥ ≤ C ∥x|X∥ for all x ∈ X.

cos(x) Component-wise cosine of a vector x ∈ Rd, i.e. cos((x1, . . . , xd)) :=
(cos(x1), . . . , cos(xd)).
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δk,k′ Kronecker’s delta, δk,k′ = 1 for k = k′ and δk,k′ = 0 for k ̸= k′.

D(I) Difference set of frequency index set I⊂Zd, D(I) :={h :=k−k′ : k,k′∈I}.

d Spatial dimension.

Dνf ν-th derivative of a function f , Dνf(x) := ∂ν1
∂x1ν1

. . . ∂νd
∂xd

νd f(x), ν ∈ Nd0.

emod l emodM :=

{
l mod (2M), l mod (2M) ≤M,

2M − (l mod (2M)) else,
for M ∈ N and

l emod 0 := 0.

εnj εnj := 1/
√
2 for j ∈ {0, n} and εnj := 1 for j ∈ {1, . . . , n− 1}, n ∈ N0.

ess sup Essential supremum.

f̂k Fourier coefficient of a function f ∈ L1(Td), cf. (2.5), or
Chebyshev coefficient of a function f ∈ L2,w(Td), cf. (3.5).

f̂ CL
k Approximated Chebyshev coefficient ≈ f̂k computed by using the rank-1

Chebyshev lattice CL(z,M), cf. (3.29).

f̂ Λ
k Approximated Fourier coefficient ≈ f̂k computed by using the rank-1 lat-

tice Λ(z,M), cf. (2.7).

Γ Search domain ⊂ Zd or ⊂ Nd0 for frequency locations.

ĜdN d-dimensional full grid of refinement N ∈ N0,
ĜdN := {k ∈ Zd : ∥k∥∞ ≤ N} or ĜdN := {k ∈ Nd0 : ∥k∥∞ ≤ N}.

Hα,β,γ(Td) Periodic Sobolev spaces of generalized mixed smoothness, cf. (2.11).

Hα,β([−1, 1]d) Sobolev-type spaces of generalized mixed smoothness, cf. (3.7).

I Identity matrix.

I Frequency index set, I ⊂ Zd in the periodic case and I ⊂ Nd0 in the non-
periodic case.

Id,Ta,n Frequency index set ⊂ Nd0 as defined in (3.11).

Id,T,γN Weighted frequency index set ⊂ Zd as defined in (2.14).

Λ(z,M) Rank-1 lattice of size M with generating vector z ∈ Zd, cf. (2.3).

Λ(z,M)⊥ Integer dual lattice of rank-1 lattice Λ(z,M), cf. (2.29).

Λ(z,M, I) Reconstructing rank-1 lattice, which is a rank-1 lattice Λ(z,M) fulfill-
ing the equivalent reconstruction properties (2.25), (2.26), (2.27), (2.28)
and (2.30) for a given frequency index set I ∈ Zd.

≲,≍ g(x) ≲ h(x)⇔ g(x) ∈ O(h(x)),
g(x) ≍ h(x)⇔ g(x) ∈ Θ(h(x)), cf. [Knu76].

Lp(Td) Space of all measurable functions f : Td → C with
norm ∥f |Lp(Td)∥ := (

∫
Td |f(x)|p dx)1/p <∞ for 1 ≤ p <∞

and ∥f |L∞(Td)∥ := ess supx∈Td |f(x)| <∞ for p =∞.
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Lp([−1, 1]d) Space of all measurable functions f : [−1, 1]d → R with
norm ∥f |Lp([−1, 1]d)∥ := (

∫
[−1,1]d |f(x)|

p dx)1/p <∞ for 1 ≤ p <∞
and ∥f |L∞([−1, 1]d)∥ := ess supx∈[−1,1]d |f(x)| <∞ for p =∞.

L2,w([−1, 1]d) Weighted Hilbert space of all square integrable functions f : [−1, 1]d → R
with respect to the (product) Chebyshev weight w(x) :=

∏d
t=1 1/

√
1− x2t

with norm ∥f |L2,w([−1, 1]d)∥ :=
√∫

[−1,1]d |f(x)|2 w(x) dx.

M Size ∈ N of rank-1 lattice Λ(z,M) or size parameter ∈ N0 of rank-1 Cheby-
shev lattice CL(z,M).

M(I) Extended symmetric index set M(I) := {h ∈ Zd : (|h1|, . . . , |hd|)⊤ ∈ I}
⊂ Zd of frequency index set I ⊂ Zd.

Mν(I) Frequency index setMν(I) := {h ∈M(I) : hν ≥ 0} ⊂ Zd, ν ∈ {1, . . . , d}.

mod Component-wise modulo of a vector x ∈ Rd,
x mod 1 = (xt − ⌊xt⌋)dt=1, x modM = (xt − ⌊xt/M⌋M)dt=1 for M ∈ N.

N,n Refinement of frequency index set Id,T,γN or Id,Ta,n .

N Positive integers.

N0 Non-negative integers.

O(h(x)) Denotes the set of all functions g : Rd ↦→ R such that there exist positive
constants Cg,p ∈ R+ and n0 ∈ Nd with |g(x)| ≤ Cg,p h(x) for all x ≥ n0,
where the constant Cg,p may depend on the function g and additional
parameters p ∈ Rd but does not depend on the variables x, cf. [Knu76].
Especially, we may have h(x) = h(x,p). Whether a symbol belongs to the
parameters p or variables x depends on the context.

Ω(h(x)) g ∈ Ω(h(x))⇔ h ∈ O(g(x)), cf. [Knu76].

ωα,β,γ(k) Weights ωα,β,γ(k) := max(1, ∥k∥1)α
∏d
t=1max(1, γ−1

t |kt|)β
for frequency k := (k1, . . . , kd)

⊤ ∈ Zd, cf. (2.12).

pI Trigonometric polynomial with Fourier coefficients p̂k ∈ C, k ∈ I, cf. (2.2).

ΠI Space of trigonometric polynomials with frequencies supported on I,
cf. (2.1).

Pi Projection of a frequency k ∈ Zd to the components i := (i1, . . . , im) ∈
{1, . . . , d}m, Pi(k) := (ki1 , . . . , kim)

⊤ ∈ Zm, or of a frequency index set
I ⊂ Zd, Pi(I) := {(ki1 , . . . , kim) : k ∈ I}.

R Real numbers.

s Sparsity parameter s ∈ N of Algorithm 4.2, 4.3, 4.4 and 4.5 in Chapter 4.

SIf Fourier partial sum SIf :=
∑

k∈I f̂k e
2πik·◦ or

Chebyshev partial sum SIf :=
∑

k∈I f̂k Tk(◦).
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S CL
I f Approximated Chebyshev partial sum S CL

I f :=
∑

k∈I f̂
CL
k Tk(◦)

using approximated Chebyshev coefficients f̂ CL
k , k ∈ I ⊂ Nd0, from (3.29).

S Λ
I f Approximated Fourier partial sum S Λ

I f :=
∑

k∈I f̂
Λ
k e2πik·◦

using approximated Fourier coefficients f̂ Λ
k , k ∈ I ⊂ Zd, from (2.7).

sm Taylor expansion of total degreem (excludingm-th derivatives), cf. (2.17).

supp â Location supp â := {k ∈ I : âk ̸= 0} ⊂ Nd0 of non-zero Chebyshev coeffi-
cients âk ̸= 0 of a multivariate algebraic polynomial in Chebyshev form aI .

supp p̂ Location supp p̂ := {k ∈ I : p̂k ̸= 0} ⊂ Zd of non-zero Fourier coeffi-
cients p̂k ̸= 0 of a multivariate trigonometric polynomial pI .

T One-dimensional torus ≃ [0, 1).

Θ(h(x)) = Ω(h(x)) ∩ O(h(x)), cf. [Knu76].

Tk Tensor product of Chebyshev polynomials of the first kind,
Tk : [−1, 1]d → [−1, 1], Tk(x) :=

∏d
t=1 Tkt(xt) for frequency k ∈ Nd0,

Tkt(xt) := cos(kt arccosxt).

Y Sampling scheme on the d-dimensional torus Td or box [−1, 1]d.

Z Integers.

ζ Riemann zeta function ζ(ξ) =
∑∞

n=1 n
−ξ, ξ ∈ C, Re(ξ) > 1.

z Generating vector ∈ Zd of rank-1 lattice Λ(z,M) or ∈ Nd0 of rank-1 Cheby-
shev lattice CL(z,M).

The most frequently used notations are listed above. However, the table is not comprehensive.
Several necessary additional notations appear locally throughout the whole work.
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1. The utilization of multivariate trigonometric polynomials pI(x) :=
∑

k∈I p̂k e
2πik·x,

p̂k ∈ C, is a suitable approach for the approximation of multivariate smooth periodic
functions f : Td → C, where the frequency index set I ⊂ Zd, |I| < ∞, is chosen
appropriately. The characterization of the smoothness of functions f via the decay of
their Fourier coefficients f̂k :=

∫
Td f(x) e

−2πik·x dx, k ∈ Zd, provides a good starting
point for error considerations in weighted norms. Relatively thin frequency index sets I,
like hyperbolic crosses, may be used without distinctly deteriorating the approximation
error compared to full grid frequency index sets, when the considered functions f are
sufficiently smooth, for instance, if they have bounded mixed derivatives. A truncated
Fourier series SIf :=

∑
k∈I f̂k e

2πik·◦, i.e., the Fourier partial sum consisting of the

Fourier coefficients f̂k, k ∈ I, of a function f , may be used as an approximant in practice
if the Fourier coefficients f̂k are explicitly known. In general, this approximation causes
an error, the truncation error f − SIf , and asymptotically best possible truncation
errors f − SIf are shown in this work for functions f from periodic Sobolev spaces of
generalized mixed smoothness

Hα,β,γ(Td) :=

⎧⎨⎩f ∈ L1(Td) : ∥f |Hα,β,γ(Td)∥ :=
√∑

k∈Zd

ωα,β,γ(k)2|f̂k|2 <∞

⎫⎬⎭ ,

where the weights ωα,β,γ(k) := max(1, ∥k∥1)α
∏d
s=1max(1, γ−1

s |ks|)β with dominating
mixed smoothness β ≥ 0, isotropic smoothness α > −β and weight parameter γ ∈
(0, 1]d. Moreover, asymptotically best possible truncation errors f − SIf are shown for
functions f from weighted subspaces

Aα,β,γ(Td) :=

⎧⎨⎩f ∈ L1(Td) : ∥f |Aα,β,γ(Td)∥ :=
∑
k∈Zd

ωα,β,γ(k)|f̂k| <∞

⎫⎬⎭
of the Wiener algebra A(Td) = A0,0,1(Td).

2. Approximated Fourier partial sums of smooth periodic functions f : Td → C, where
approximated Fourier coefficients are numerically computed from sampling values of f ,
are considered in this work. In particular, we use the nodes xj := j

M z mod 1, j =
0, . . . ,M − 1, of a rank-1 lattice Λ(z,M) as sampling nodes, where z ∈ Zd is the gen-
erating vector and M ∈ N is the rank-1 lattice size. Rank-1 lattices Λ(z,M) are well
suited due to their good constructibility as a consequence of their simple structure and
due to the existence of a fast Fourier transform (FFT) for the computation of approxi-
mated Fourier coefficients f̂ Λ

k := 1
M

∑M−1
j=0 f(xj) e

−2πik·xj , k ∈ I, from samples f(xj),

j = 0, . . . ,M − 1. The computation of these approximated Fourier coefficients f̂ Λ
k ,
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k ∈ I, can be performed using only a single one-dimensional FFT and a simple in-
dex transform, which require O(M logM + d |I|) arithmetic operations in total. Spe-
cial rank-1 lattices fulfilling a certain reconstruction property, so-called reconstructing
rank-1 lattices Λ(z,M, I), allow for the fast and exact reconstruction of arbitrary mul-
tivariate trigonometric polynomials pI with frequencies supported on arbitrary known
index sets I ⊂ Zd, |I| <∞, from samples pI(xj), j = 0, . . . ,M − 1. The approximation

of smooth periodic functions f : Td → C by partial sums S Λ
I f :=

∑
k∈I f̂

Λ
k e2πik·◦ is

considered, where the approximated Fourier coefficients f̂ Λ
k are computed from sam-

ples along a reconstructing rank-1 lattice Λ(z,M, I), and an extensive error theory is
developed for suitable frequency index sets I. Splitting the sampling error f−S Λ

I f into
the truncation error f − SIf and aliasing error SIf − S Λ

I f yields a practical approach
for obtaining error estimates. With the help of suitable proof techniques, estimates for
aliasing errors SIf −S Λ

I f are shown and error rates are obtained which are comparable
to the ones of corresponding truncation errors f − SIf . Numerical tests for up to 25
dimensions confirm the effectiveness and high performance of the proposed method.

3. Perturbed rank-1 lattice nodes yj can be used instead of exact rank-1 lattice nodes xj
if the perturbations are sufficiently small. Then, multivariate trigonometric polynomi-
als pI can be fast evaluated by an approximate method based on Taylor expansion and
one-dimensional FFTs. When the nodes yj are perturbed versions of the nodes xj of a
reconstructing rank-1 lattice Λ(z,M, I), multivariate trigonometric polynomials pI with
frequencies supported on arbitrary known index sets I ⊂ Zd, |I| < ∞, can be approx-
imately reconstructed in a fast way using an iterative method. This approach can be
applied to the fast approximation of multivariate smooth periodic functions f : Td → C
yielding similar error estimates as in the unperturbed case for reconstructing rank-1
lattices Λ(z,M, I).

4. The method for the fast reconstruction of multivariate trigonometric polynomials pI
and fast approximation of multivariate smooth periodic functions f : Td → C from
samples along reconstructing rank-1 lattices Λ(z,M, I) can be transferred to the non-
periodic case. For many of the concepts and results from the periodic case, a non-
periodic counterpart can be used or established. Multivariate algebraic polynomials
in Chebyshev form aI(x) :=

∑
k∈I âk Tk(x) represent adequate ansatz functions for

the approximation of multivariate smooth non-periodic functions f : [−1, 1]d → R.
Rank-1 Chebyshev lattices CL(z,M), characterized by generating vector z ∈ Nd0 and
size parameter M ∈ N0, are used as corresponding spatial discretizations. Multivari-
ate algebraic polynomials in Chebyshev form aI with frequencies supported on ar-
bitrary index sets I ⊂ Nd0, |I| < ∞, can be evaluated in a fast and exact way at
the corresponding nodes xj := cos( jM πz), j = 0, . . . ,M , in O(M logM + d |M(I)|)
arithmetic operations by using easy-to-compute index transforms and a single one-
dimensional discrete cosine transform (DCT). Analogously to the reconstruction prop-
erties of reconstructing rank-1 lattices Λ(z,M, I) in the periodic case, similar recon-
struction properties are derived in this work for the non-periodic case and the term
reconstructing rank-1 Chebyshev lattice CL(z,M, I) is introduced. The fast and exact
reconstruction of arbitrary multivariate algebraic polynomials in Chebyshev form aI
with frequencies supported on arbitrary known index sets I ⊂ Nd0, |I| < ∞, can be
performed by applying a single one-dimensional DCT to the samples aI(xj), j =
0, . . . ,M , along a reconstructing rank-1 Chebyshev lattice CL(z,M, I) followed by
easy-to-compute index transforms. This reconstruction requires O(M logM+d |M(I)|)
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arithmetic operations in total. The construction of reconstructing rank-1 Chebyshev
lattices CL(z,M, I) can be performed using a simple component-by-component (CBC)
approach. Reconstructing rank-1 Chebyshev lattices CL(z,M, I) are well-suited as
sampling sets for the approximation of multivariate smooth non-periodic functions
f : [−1, 1]d → R and an error theory analogously to the periodic case is developed
in this work, where functions f are characterized by the decay of their Chebyshev
coefficients f̂k := 2|k|0/πd

∫
x∈[−1,1]d f(x) Tk(x)/(

∏d
s=1

√
1− x2s) dx, k ∈ Nd0. Analo-

gously to the periodic case, we consider subspaces Hα,β([−1, 1]d) of the Hilbert space
L2,w([−1, 1]d) with Chebyshev product weight w(x) := 1/(

∏d
s=1

√
1− x2s) and sub-

spaces Aα,β([−1, 1]d) of the analogon of the Wiener algebra A([−1, 1]d) = A0,0([−1, 1]d).
Numerical tests for up to 25 dimensions confirm the effectiveness and high performance
of the proposed method.

5. The exact reconstruction of high-dimensional sparse trigonometric polynomials pI and
high-dimensional sparse algebraic polynomials in Chebyshev form aI as well as the ap-
proximation of multivariate periodic and non-periodic functions f can be realized based
on samples without exact knowledge of the frequency index sets I containing the non-
zero or largest coefficients. Methods performing a dimension-incremental determination
of frequency index sets Ĩ with the help of projections parallel to the coordinate axes are
suggested as reconstruction approaches. Components of frequency locations belonging
to non-zero or the approximately largest Fourier or Chebyshev coefficients can be effi-
ciently determined within a search domain Γ, which may be very large, for instance a
d-dimensional full grid. In each dimension increment step t = 1, . . . , d, the t-th compo-
nent of the unknown frequency locations is considered, i.e., one component at a time
starting with the first one. The utilization of reconstructing rank-1 lattices Λ(z,M, Ĩ)
in the periodic case and reconstructing rank-1 Chebyshev lattices CL(z,M, Ĩ) in the
non-periodic case enables the easy, fast and robust computation of projected Fourier
or Chebyshev coefficients and, based on these, the determination of relevant compo-
nents of a frequency index set I. For the case where high-dimensional sparse poly-
nomials and functions have arbitrary Fourier or Chebyshev coefficients, a randomized
approach is proposed, which performs repeated sampling in each dimension increment
step t with different randomly chosen higher components xj,t+1, . . . , xj,d of the sampling
nodes xj . Numerical tests performed for up to 30 dimensions in this work confirm high
reliability for the exact reconstruction of high-dimensional sparse polynomials. For a
10-dimensional periodic and 9-dimensional non-periodic test function, the frequency lo-
cations I belonging to the approximately largest Fourier and Chebyshev coefficients f̂k
were successfully determined, respectively. The case where the samples are perturbed
by noise is considered for 10-dimensional sparse trigonometric polynomials pI and the
frequency locations belonging to the non-zero Fourier coefficients are successfully recon-
structed. A deterministic version of the dimension-incremental approach is proposed,
which may be applied when the Fourier coefficients fulfill certain properties. Cor-
respondingly, this result is transferred to the non-periodic case and a deterministic
version is described.
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