Published at the Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots held in conjunction with the International Conference on Intelligent

Robots and Systems (IROS), 2016.

Properties of timebased local OctoMaps

Peter Weissig and Peter Protzel

Abstract— Autonomous navigation of our rough-terrain
rovers implies the need of a good representation of their near
surrounding. In order to archive this we fuse several of their
sensors into one representation called OctoMap. But moving
obstacles can produce artefacts, leading to untraversable re-
gions. Furthermore the map itself is increasing in size while
discovering new places. Even though we are only interested in
the near surrounding of the rovers.

Our approach to these problems is the usage of timestamps
within the map. If a certain region was not updated within a
given interval, it will be set to free space or deleted from the
map. This first option is an existing solution and the second
option reflects our new alternative.

The proposed approach will be provided as open source'.

I. MOTIVATION

Within our group we focus on autonomous mapping and
navigation, especially on rough terrain and without GNSS.
In the following figure 1 are two of our rovers equipped with
a robust skid-steering chassis and different sensors.

Fig. 1. Two of our rovers during the spacebot cup [1].

On one hand we use the multisense S7° stereo camera
and the Xtion> RGBD-sensor combination as visual depth
sensor. This gives us dense pointclouds with a high update
rate, however those are only covering a small part of the sur-
rounding. On the other hand we use a rotating laser-scanner
[2], leading to accurate, omni-directional and long-distance,
measurements. Nevertheless a full scan takes several seconds.

In order to use the advantages of both sensor types we
fuse them using the OctoMap [3], a discrete, efficient and
probabilistic representation. For each inserted measurement
the related voxels are updated as occupied. In additon all

The authors are with Technische Universitit Chemnitz, Germany
firstname.lastname@etit.tu-chemnitz.de
"'http://tu-chemnitz.de/etit/proaut/octo
2http://carnegierobotics.com/multisensefs7/
3http://www.asus.com/de/3D-Sensor/Xtion PRO/

voxels along the ray from the sensor to the detected obstacles
must be free. Therefore they will be updated as free.
Using this plain OctoMap a couple of problems emerge:

« Voxels are never deleted. While driving around, the map
continuously increases in size. Although we only rely
on the continuously-updated close surrounding of the
rover.

o Voxels are only cleared if they are seen as “free”. As
a result a resting rover may experience problems. For
example a moving object like a second rover may be
seen instantaneous. In contrast it is never cleared from
the map, if there is no obstacle within the range of the
Sensors.

¢ Also the area directly under each rover is unseen by
any sensor. Thus a bad motion estimation may lead to
a rover taking off or diving into the ground. Which in
turn disturbs the path planner.

To address all of these problems we compare two types
of timebased local OctoMaps. Both handle voxels that were
not updated for a certain amount of time. One type was im-
plemented by the authors of the OctoMap as class OcTreeN-
odeStamped“. The other is our alternative implementation,
having different properties.

II. IMPLEMANTATIONS

The basic OctoMap has three important properties: it is
discrete, efficient and probabilistic. Discrete means that the
whole volume covered by the map is represented by cubic
cells, called voxels. The voxels are the smallest unit for
which distinct properties can be set. The map is efficient
since the voxels are saved as a tree structure and not as a fixed
grid. Finally the map is probabilistic because it is storing
probabilities of occupancy instead of binary states, like free
and occupied. These probabilities are usually updated by new
measurement using the rule of bayes.

Both timebased implementations extent the basic OctoMap
by storing an additional timestamp for each voxel. For new
measurements related voxels will update their occupancy and
their timestamp. The map can therefore degrade outdated
voxels as needed.

The first implementation was created by authors of [3].
Their solution is using timestamps based on the local time
of the OctoMap. This may lead to unwanted effects while
playing back from recorded data-files at none-realtime. Also
the insertion of one measurement will create many slightly
different timestamps. Furthermore the degradation of voxels

4http://github.com/OctoMap/octomap/blob/master/
octomap/include/octomap/OcTreeStamped.h


http://tu-chemnitz.de/etit/proaut/octo
http://carnegierobotics.com/multisense-s7/
http://www.asus.com/de/3D-Sensor/Xtion_PRO/
http://github.com/OctoMap/octomap/blob/master/octomap/include/octomap/OcTreeStamped.h
http://github.com/OctoMap/octomap/blob/master/octomap/include/octomap/OcTreeStamped.h

does only change their occupancy from occupied to free.
This wrongly indicates free space instead of forgotten so
called unkown space. In the end those voxels will remain
and consume memory.

The second implementation was created by us. Our times-
tamp is based on the incoming sensor messages and not on
the system time. Since these messages are not always in order
the timestamp will updated as necessary. For us degradation
of voxels does not mean changing their occupancy to free,
but deleting those. This will reduce memory usage. Moreover
it implies the information of not knowing anything about the
voxels instead of suggesting free space. Finally the degrada-
tion is done based on the last received sensor message.

III. EXPERIMENTS

We evaluated both implementations within two scenarios.
The first one is a multi-robot scenario. One rover is standing
still, while a second rover is slowly crossing its close sur-
rounding. Since our visual depth sensors are tilted downward
only the lower part of the driving rover is updated almost
on time. In contrast the upper part is only sensed by the
slowly turning laser, creating several artifacts. As seen in
figure 2 both timebased implementations remove artefacts as
expected. Only those too new to be degraded are within the
map for a certain amount of time.

Fig. 2. Artefacts created by a crossing rover as seen as green voxels on the
left side of each image. Left: The artifacts stay within the basic OctoMap.
Right: Both timebased implementations removed almost all artefacts. Since
their output is nearly identical, only the result from our implementation is
shown.

The second scenario is an outdoor exploration. One
rover is driving along a rectangular path of approximately
90 m x 40 m while mapping its surrounding. The final result
of both implementations regarding occupied voxels are alike
and therefore not shown in figure 3. However a distinctive
difference is seen when comparing free voxels. Here our
implementation is clearly more memory saving.

IV. DISCUSSION

An exploring rover may create a huge map of its known
world. Nevertheless we are only interested in the close
surrounding, e.g. to create a local traversability map for the
pathplanner. A simple solution could be the degradation of
remote voxels. This will work perfectly and efficiently for
the map size, however it will not handle artefacts as shown in
figure 2. Therefore a timebased approach is recommanded, as
it will degrade artefacts and remote voxels. On the contrary
the new attribute will take some additional memory and
processing time and it will reduce the likeliness of prunning.

Fig. 3. Top view of the free space of the explored map. Left: Our
implementation - in total about 202 Mbyte. Right: Implementation from
the authors of [3] - in total about 867 Mbyte. The black rectangle shows
the approximate position and size of the left image.

The timebased approach itself can also be interpreted as
a temporal storage forgetting old data, which is likely to be
outdated. That is why we delete those voxels. This saves
memory and it implies that there is no information about
the voxel anymore - it is unknown. Yet the deletion is time-
wise more costly than a simple update of the probability of
occupancy. In case the rover stays within a limited region, as
in scenario one, there might be many unneccessary deletions
and creations.

The data within our map is mainly used to feed the local
path planner of the rover. Therefore only occupied voxels are
exported and processed. This means that the implementation
of the authors of [3] should be sufficient. Especially as it
is faster than our implementation. However their map will
grow in size if the rover is exploring. Also the difference
between unknown and free space is important. If a new
measurement suggests an obstacle in a degraded voxel their
approach may need additional measurements and hence more
time to convert the voxel from free to occupied.

Regarding the kind of timestamp, our version is in advan-
tage. It is capable of handling datastreams not synchronized
to real time, e.g. if they are played back from a recorded
file at different speeds. Finally all updates belonging to one
measurement share the exact same timestamp and therefore
prunning is more likely to happen.

V. CONCLUSION

Degradation of outdated voxels is an important extension
of the OctoMap. The main difference between the imple-
mentation from the authors of [3] and our alternative is what
happens to these voxels. As they set those to free space, they
are faster. On the contrary we save memory by deletion.

REFERENCES

[1] S. Lange, D. Wunschel, S. Schubert, T. Pfeifer, P. Weissig, A. Uhlig,
M. Truschzinski, and P. Protzel, “Two autonomous robots for the DLR
SpaceBot cup lessons learned from 60 minutes on the moon.” in Int.
Symp. on Robotics, Munich, Germany, 2016.

[2] S. Schubert, P. Neubert, and P. Protzel, “How to build and customize
a high-resolution 3d laserscanner using off-the-shelf components,” in
Proc. of Towards Autonomous Robotic Systems, Sheffield, England,
2016.

[3] A.Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based
on octrees,” Autonomous Robots, 2013, software available at http:
/foctomap.github.com. [Online]. Available: http://octomap.github.com


http://octomap.github.com
http://octomap.github.com
http://octomap.github.com

	MOTIVATION
	IMPLEMANTATIONS
	EXPERIMENTS
	DISCUSSION
	CONCLUSION
	References

