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Abstract

The APOLI project deals with Automated Power Line Inspection using

Highly-automated Unmanned Aerial Systems. Beside the Real-time dam-

age assessment by on-board high-resolution image data exploitation a post-

processing of the video data is necessary.

This Master Thesis deals with the implementation of an Isolator Detector

Framework and a Workflow in the Automotive Data and Time-triggered

Framework(ADTF) that loads a video direct from a camera or from a stor-

age and extracts the Key Frames which contain objects of interest. This

is done by the implementation of an object detection system using C++

and the creation of ADTF Filters that perform the task of detection of the

objects of interest and extract the Key Frames using a supervised learning

platform.

The use case is the extraction of frames from video samples that con-

tain Images of Isolators from Power Transmission Lines.

Keywords: Object Detection, Key-Frame Extraction, ADTF, SVM
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1 Introduction

The military and defense sectors were until recently the sole users of UAVs.

Over the years, drones have become lighter and more complex. The con-

trol electronics which were expensive are now being realised through less-

expensive components and even indirectly with smartphones.

The spending on the research and manufacturing of drones is increasing

at a rate of 15-20 % every year[11], the result of which is ever-improving

hardware. Even though hardware for business drones is vital, but as in

different sectors, the software package is what produces the distinction in

several applications. As it becomes financially viable to customise com-

mercial drones, the applications extend to a broad range of niche areas.

The importance and application of drones are expected to rise enormously

in the near future. Today drones have a significant presence in Agriculture,

where they are replacing light manned aircraft for crop dusting. Drones

are being used in the manufacturing sector for maintenance of equipment

that are not easy for a person to manually perform. They are also used in

construction for surveying the progress from different distances and angles.

Drones come in many sizes and with many variations, and the larger, more

powerful drones will soon have the ability to carry larger payloads and

will soon have a presence in logistics. When paired with high-resolution

cameras drones have also found application in aerial surveillance, applied

sciences and multimedia.[26]

With internet bringing people and businesses closer together, network in-

frastructure is growing in every country of the world. Drones will be able

to connect to existing networks and can communicate with one-another

and existing infrastructure, offering a path to an even greater range of

applications.[8]
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1 Introduction

1.1 Motivation

Video based inspection techniques involve users reviewing videos for gain-

ing vital information from the video. Today users are dealing with an ever-

increasing number of videos. Manual video analysis, is a time-consuming

process, even more so when the videos are relatively long. Additionally,

the storage of videos over a duration of time becomes very expensive due

to increasing storage hardware needs. An HD video of size 1920x1080 pix-

els requires 150MB of storage for every 1 minute of footage. A 10 minute

video will therefore consume 1.5GB of storage. Under most circumstances,

uncompressed media has prohibitively large storage and delivery require-

ments, but for some local playback scenarios, the quality level is important

enough to not use compression.

Thus tools are required for efficient and quick video summarization. Video

summarization is an important research topic which aims to create auto-

matically a compact and representative summary of video content in terms

of still images.[4]

One such technique for video summarization is Key-Frame Extraction. A

Key-Frame can be generally defined as am image or frames of a video that

can provide the essential information of a video. This process is usually

performed by comparing the likeness of each consecutive video frame to

consider whether there is a change in the scenary or not. Similar successive

frames are termed as a Shot. The first of which is marked as the keyframe.

Figure 1.1: Video Summarization [17]
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1 Introduction

Cell phones and cameras have built-in software stabilization and in some

more expensive capturing devices, hardware stabilization. However, stabi-

lization is achieved by smoothening the motion between jittery frames. As,

most digital cameras do not have a lot of processing power or memory, the

result of such software smoothening is not always a stable video. Drone

cameras face the same problem of instability as even the most experienced

pilot is effected by changing wind directions, thereby almost always result-

ing in unstable video footage.[29]

The consequence of using such videos for inspection is that normal shot

detection techniques would not be very useful, as the content of the video

can change quickly between one frame to the next. Thus the need for a

video summarization technique arises that is fast and in real-time is able

to detect key-frames.

A Key-Frame can also be defined as the frames that contain our Object

of Interest. So this task can be solved with feature/object detection tech-

niques. Feature points are image intensities which are peculiar and robust

in different views of the same object. These can be repeatedly detected

in different images. Figure 1[17] represents how the storage requirements

reduce significantly when using Key-frame extraction techniques.

1.2 Use Case

An Isolator has two main functions in transmission lines; it must hold the

transmission cable at a fixed distance from the tower and the ground, and

it has to provide insulation between the transmission cable and the ground.

So a failure of an isolator can lead to electrical downtimes and in some cases

severe damage to the lines around the isolator because of short circuiting.

Isolators in power transmission lines are generally more susceptible to dam-

age than the tower or the cables. The towers are firmly planted in the

ground, and the cables have slack to deal with changing wind conditions.

Isolators though are suspended between two objects, so due to changing

loads, changing weather and sometimes vandalism, isolators can fail.
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1 Introduction

An Isolator can fail in two possible ways; electrically or mechanically. A

mechanical failure generally means that the entire electrical functionality of

the isolator is lost. However, in case of electrical failure, the isolators may

still provide the strength and rigidity needed for continued operation of the

line.[2] Electrical failures are caused when a flash-over occurs between the

two ends of the isolator. Flash overs are difficult to contain in high-voltage

(a) Pre-deposit pollution (b) Instant pollution

Figure 1.2: Isolator pollution[23]

transmission lines because even the smallest pollution of the isolator could

cause a flash-over path. Pollutant residue on the isolator together with

atmospheric humidity can provide a conductive layer for leakage current.

Figure 1.2 illustrates the different types of isolator pollution; Pre-deposit

pollution and Instant pollution. Pre-deposit pollution occurs over a period

of time when oils, salts, dirt slowly deposit over the surface of the isolator.

Instant pollution occurs due to bird excrement and flying debris.[23] So in-

spection and maintenance of isolators is absolutely essential for a reliable

power transmission network.
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1 Introduction

Since the late nineteenth century, transmission lines and isolators have

been inspected manually by workers travelling along the line, observing

with binoculars or telescopes on the ground. Since electricity is not usually

generated the same place that it is utilized, most high voltage transmis-

sion lines run for hundreds of kilometres, thereby not only is the process of

inspection time consuming but the observer cannot get a observation in all

desired angles from a point on the ground.[15] Getting a closer look makes

the process more dangerous as it involves workers reaching the isolators

with ladders and cables.

UAV-based automated power line inspection systems offer major advan-

tages compared to conventional human expert-based examination. They

realise automated and safe inspection of electric power distribution sys-

tems. They help greatly reduce costs due to downtimes and losses during

power-down and power-up procedures. They also reduce the number of

man-hours needed for the inspection process, as a drone camera is used

to capture the required details, with lesser effort. In sparsely populated

regions, the usage of drones will enable much faster inspection. Due to the

advantages and the ease of use, several countries in the world are looking

to implement drone based inspection techniques for their transmission grid.

The project Automated Power Line Inspection (APOLI) undertaken by the

Professorship of Computer Engineering at Technische Universität Chem-

nitz aims to develop a vision-based inspection system for electric power

distribution systems. The inspection shall be done with a UAV and shall

focus on damage assessment of isolators, electric power poles, and trans-

mission lines.[1]

The aerial inspection enables damage assessment of poles and lines with

hard or no accessibility and from view-points different from ground. The

application of high-resolution inspection sensors and the possibility of all-

degree analysis provide a time- and cost-saving method which captures

more damages and is more accurate/powerful in relation to ground-based

visual assessment by expensive experts.

The inspection tasks are performed by a robot carrying detection instru-
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1 Introduction

ments either along the transmission line or by recording videos of the trans-

mission lines and reviewing them. The time to review such videos is time-

consuming and brings forward a need to extract the key-frames which can

reduce the human effort needed.

The system allows high-resolution/high-accuracy inspection of all parts of

power distribution systems in operation. This reduces costs due to down-

times and losses during power-down and power-up procedure.

1.3 Outline

Chapter 2 describes the state of art technologies described in research

publications and several internet scientific community websites. The vari-

ous approaches were analysed and compared for their speed, accuracy and

feasibility. Chapter 3 is dedicated to the concept. Reasons are given,

explaining the reasoning behind the choices made in this thesis. Chap-

ter 4 describes the Implementation process and also briefly describes the

Elektronit EB Assist Automotive Data and Time-Triggered Framework.

Chapter 5 discusses the Isolator Detection Application and how it is to

be used. It describes the dataset sizes and summarizes the training and

detection procedures. Chapter 6 discusses the data evaluation techniques

and conditions and their results. Chapter 7 finally describes the conclu-

sions drawn during the course of this research. It also discusses the research

that can be done to make progress in this field of research.
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2 State of the Art

As discussed in the Motivation, key-frames help reduce the storage require-

ments when compared to videos. Key-frames help reduce human time and

effort needed for the inspection process. This chapter discusses the state

of art technologies used for video summarization, and the machine learn-

ing approaches used therein. A small comparison of these state of art

technologies is discussed in the summary.

2.1 Video Summarization

Using videos for information gathering and storage has been on the rise

rapidly over the last two decades. Advancements in video technology have

made it possible to record bulk contents such as news, sports and docu-

mentaries by personal and professional consumers alike. Videos are being

used by the scientific community today for surveillance, inspection, track-

ing and detection. The storage of these videos becomes a challenge when

dealing with a large number of videos, which is inevitable because videos

are recorded periodically over a period of time.

To solve this problem video summarization techniques play an important

role as they help the user quickly navigate, retrieve and browse a long

video sequence. Figure 2.1 represents a hierarchical classification of these

techniques. [3] This section covers the most important of these summa-

rization techniques shown in the hierarchy by their advantages, drawbacks

and methodologies used therein. i.e.; Shot Selection, Cluster-Based Video

Summarization and Feature Based Video Summarization.

2.1.1 Shot Selection

This approach is also called shot transition detection. A shot is defined

as a series of frames that run for an uninterrupted period of time. A shot

15



2 State of the Art

Figure 2.1: Hierarchy of Video Summarization

can be termed as either a Hard shot which are sudden and accompanied

by extensive changes in the visual content, or a Soft shot which are distin-

guished by slow and gradual changes. The period of time is defined by the

user to classify each Shot.[32] There exist several techniques to segment

video into shots. The main approaches are described below-

Shot Boundary Detection Methods - These are the most primitive

approaches to Shot Detection. Successive frames are taken as inputs and

the intensity of pixels are calculated and compared. If the similarity is

found to be more than a certain threshold, the frames are termed as a shot.

The similarity between two frames can be computed by the comparison of

16



2 State of the Art

Figure 2.2: Shot Boundary Detection

the histograms of the color-space of the frames. The color histogram-based

shot boundary detection algorithm is one of the most reliable methods for

shot detection. This can be represented by the equation 2.1 where the

intensity of each color is added over a pre-determined range. If the result

of the equation is more than a threshold B, then the frames are termed

as a shot. These methods are comparatively slow and setting manually

threshold is not the best idea as seen in Figure 2.2.

1

N

∑
r=0

∑
g=0

∑
b=0

(f1(r, g, b)− f2(r, g, b)) (2.1)

Edge Change Ratio - The edge change ratio is calculated by the compar-

ison of edge pixels between two successive frames.The edges are calculated

by the Canny edge detector. A robust measurement is taken by disregard-

ing edge pixels within a certain distance of an edge. (eg. within 6 pixels

distance). Further robustness is added to the calculation by applying the

Hausdorff distance motion compensation.[33] Once the ECR is calculated,

Shots are recognised as isolated peaks as seen in Figure 2.3.

Shot Classification Algorithms - In shot classification algorithms, a

linear classifier is trained using middle-level feature vectors calculated us-

ing different approaches. The size of the region from which individual

features are extracted plays a great role in the performance of shot change

detection. A small region tends to reduce detection in variance with re-
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2 State of the Art

Figure 2.3: Isolated peaks representing shots[12]

spect to motion, while a large region tends to miss transitions between

similar shots.[12] Feature vectors can be calculated using a single frame

pixel, or from an arbitrarily shaped region which can exploit the most ho-

mogeneous regions of a frame. Due to advancements in Artificial Neural

Networks over the last five years, the colour-histograms for the complete

image can be calculated as a whole and fed as feature vectors for classifi-

cation.

2.1.2 Video Summarization Based on Clustering

Clustering is among the most commonly used techniques for video sum-

marization. The approach helps eliminate frames with irregular trends.

Clustering also helps create a shorter summary of a video when compared

to other approaches. The main methods for clustering are partitional, spec-

tral, similar activities based and K-means clustering.

Partitional Clustering - Partitional clustering is also termed as a non-

hierarchical clustering technique. It does not organise data into a nested

sequence of groups, rather it works by generating a single partition of the

data to represent the natural groups present in the data. This technique

works by removing the redundant visual content that exists in video frames.

18



2 State of the Art

The whole video is grouped into clusters such that each cluster represents

frames of similar video content. Starting with an initial partition, objects

are moved from one cluster to the next iteratively till a local minima of

the criteria function is reached. A validity analysis of these clusters is then

performed in order to find the optimal number of clusters for a given video

sequence. Each of these clusters contain frames of similar video content,

and can be concatenated to produce a video summary.[16]

This approach is very effective for videos that contain slow moving shots,

however when there is a rapid change from scene to scene, it fails to gen-

erate a good video summary.

K-Means Clustering - The K-means clustering algorithm works by plac-

ing K points in the space represented by the objects to be clustered. These

points are termed as Centroids. Iteratively,the objects to be clustered as

assigned to each of these centroids. Once all the objects have been as-

signed, the centroids are recalculated using the means of the objects for

each of the k-clusters. This process is repeated till no change in mean is

recorded. This process is visualised in Image 2.4 for k=2 clusters.

Figure 2.4: k-means Algorithm[16]
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2 State of the Art

Using this algorithm, the input video is split into k clusters. The first

frame of each cluster is taken as the representative for that cluster, and

the algorithm is iterated till similar frames are clustered together. The

comparison of frames can be done by using the histogram of colour or

pixel intensity in the frame. Finally the required segments are selected

and inserted into a list to generate a desired summary of the video.

Similar Activities Based Clustering - This approach was developed

with the intention of packing similar activities together more efficiently for

shorter video summaries. An activity is defined as a dynamic object that

appears in multiple frames and defined by a sequence of object masks in

those frames. These activities are further divided into Tubelets which are

of a fixed length(eg. 50 frames) and can overlap with other tubelets. The

creation of tubelets helps compare activities of similar length, eg; the ac-

tion of kicking a ball into the goal in a football game. After the clustering

of these tubelets, overlapping ones are merged together to form a longer

activity.

The features used for clustering are extracted using the SIFT descriptor.

For each object multiple SIFT features are calculated and compared for es-

timating the similarity of the objects. The motion of objects is represented

by a sequence of frame by frame features with the X and Y axial displace-

ment and the radius of the object. These features therefore represent the

object as well as their motion.The similarity between various activities and

the distance between objects are computed. Then a play-time is assigned

to each object within each cluster, followed by a play-time to each cluster.

Desired clusters are then selected for summarization. The spectral cluster-

ing approach is used for clustering of the features, therefore some of the

disadvantages are inherited by this algorithm. Another drawback of using

this approach is that a wrong perception about activity may lead to false

summary.[25]

2.1.3 Feature Based Video Summarization

For the purpose of summarization the frames for a given video are selected

by considering the information content of the frames in that shot. Ev-
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2 State of the Art

ery video contains features based on colour, motion, patterns or sounds.

Feature based video summarization techniques are chosen over the other

approaches when only a certain feature is of interest to the user. The main

approaches used for feature based video summarization are motion based,

colour based, gesture based or object based.

Motion Based Video Summarization - In situations where shot de-

tection techniques fail because there are more than one key-frame making

up the shot, motion based video summarization techniques are very useful.

In many shots, the key frames are identified by stillness-either the camera

stops on a new position or the characters hold gestures to emphasize their

importance. Motion based summarization techniques use a hierarchical

key-frame selection methodology in which first shots are detected, then

classified into several categories. Then key-frame selection algorithms are

applied to each category.

An approach described by Wolf in [31] involves an analysis of the opti-

cal flow to measure the motion within a shot and extraction of key-frames

at the local minima of the motion. The research uses in particular, the

Horn and Schunck’s formula for calculating the optical flow. The sum of

magnitudes of the components of optical flow for each pixel is calculated

as a motion metric using the equation 2.2. Where X and Y represent the

optical flow in the X and Y components of the optical flow at a pixel i,j

in a frame t. An algorithm scans the M(t) vs t curve for every frame t

within a video. Then two local maxima m1 and m2 are identified such that

the value of m2 varies by a percentage N from the value of m1. The local

minima of M(t) is then found in the curve to determine the key-frames.

M(t) =
∑
i

∑
j

|X(i, j, t)|+ |Y (i, j, t)| (2.2)

Motion based approaches work well when there is medium-level motion

in a video. However, these approaches fail when summarizing videos that

contain huge or no motion at all.

Colour Based Key-frame Extraction - The colours within a video

are often considered to be important aspects. Therefore colour based fea-

tures are often used for video summarization. The simplest version of the
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colour based features approach, calculates the colour histogram for each

frame and a probability model is used for identifying different shots within

a video. The occurrence of each shot is found and integrated to give a

meaningful summary for a video.

More complex algorithms involve colour histogram techniques combined

with pattern repetitions to find the shots. The first frame of each shot is

termed as a key-frame and it is compared to other frames by comparing

their colour histograms to find the next key-frame in the shot. These al-

gorithms are easy to implement and use, however the colour histograms

used also account for noise and in videos with lots of motion, or with lots

of noise, the result is not accurate.[35]

Audio Based Video Summarization - Audio based summarization

techniques are very useful in today’s world where online video platforms

are becoming more and more popular. The consumers who want to buy a

particular video or music album might want to watch the highlights first.

The earliest audio based summarization techniques used only MIDI data.

However, these methods cannot be applied to real-world videos where audio

streams are of a higher bitrate and quality. Therefore audio based summa-

rization techniques are combined with visual features. The first step is to

achieve a synchronization between the audio and video, and based on the

important audio features, the corresponding video segments are extracted

to form shots. However this technique doesn’t perform at all when the

audio is missing from a video.[10]

The other way audio can be used is by using a speech recognition soft-

ware to create a collection of all the words used in the video. Then the

frequency of each word is found out to create a summary of a long video.

The complete video is first distributed into similar segments and audio

pause boundary detection is done through temporal analysis of the pauses

between words. Now these segments are ranked based on the number of

occurrences of the most dominant used words in the complete video. A

summary is generated by maximizing the cumulative score of the video

and audio segments. This technique is effective when there are gradual

pauses in speech. However, it fails when the videos are noisy or videos

where there is continuous speech.[7]
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Object Based Video Summarization - Object based video summa-

rization is most often used when the user is interested in objects within a

video. The content change in a video is easy to do as they can be classi-

fied based on the appearance and disappearance of the objects of interest.

These techniques are based on detecting of the objects of interest using

feature detection algorithms and then applying a temporal technique to

extract key-frames.

More advanced methods involve detecting an object of interest by first

training an object detector by annotating the frames with the object of

interest and eliminating frames with no detections. The machine can

be made into a self-improving partially supervised machine learning al-

gorithms where frames with high detection scores are pseudo-labelled as

positive and the training is repeated a second time.[19] Object based ap-

proaches are commonly used in surveillance and inspection systems. The

selection of the feature detection and classification algorithms must be cho-

sen for accuracy as well as speed.

2.2 Feature Description

Feature description, detection and matching are fundamental segments of

different computer vision applications, and they have undergone extensive

research in recent decades. There exists no exhaustive or correct meaning

of what constitutes a feature, and a correct definition regularly relies on

upon the kind of utilization. Given that, a feature is characterized as an

”interesting” portion of a picture, and they are utilized as a beginning stage

for many computer vision based calculations. Since features are utilized as

the beginning stage and fundamental primitives for resulting algorithms,

the overall feature will frequently just be in the same class as its feature

detector. Subsequently, the alluring property for a feature detector is re-

peatability: whether a similar feature will be recognized in at least two

distinct pictures of a similar scene. Feature detection is a low-level picture

preparing operation. It is typically executed as the primary operation on a

picture, and inspects each pixel to check whether there is a feature present

at that pixel. In the event that this is a piece of a larger algorithm, then
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the calculation will ordinarily just inspect the picture in the area of the

features. As an implicit pre-requisite to feature detection, the information

(a) Global Descriptors (b) Local Descriptors

Figure 2.5: Descriptors[14]

in an image is generally smoothed by a Gaussian Kernel in a scale-space

representation and several feature images are computed, often expressed in

terms of local image derivatives operations. Once in a while, when feature

detection is computationally costly and there are time limitations, a higher

level algorithm might be utilized to manage the feature detections, such

that only certain parts of the picture are represented as features.

The fundamental thought is to first distinguish areas of interest (keypoints)

that are covariant to a class of transformations. At that point, for each

detected areas, an invariant component vector descriptor for picture infor-

mation around the detected keypoint is constructed. Feature descriptors

obtained from the picture can be based on second-order statistics, para-

metric models, coefficients gotten from an image transformation, or even a

blend of these measures. Two sorts of feature descriptors can be extracted

from an image representation, global features and local features. Global

features such as colour and surface patterns, depict a picture as a whole

and can be translated as a specific property of the picture including all pix-

els. While, local features plan to identify keypoints or regions of interest

in a picture and depict them. For example, if a local feature calculation

recognizes n keypoints in the picture, there are n vectors depicting each
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one’s shape, pattern or orientation. A depiction of global and local descrip-

tors can be seen in Figure 2.5. The utilization of global colour and texture

features are demonstrated to be very effective for finding comparative pic-

tures in a database, while the local structure oriented features are viewed

as sufficient for object classification or finding similar objects in another

image dataset.[14] The following subsections cover the feature descriptors

most frequently used for computer vision applications today.

2.2.1 Harris Detector

Figure 2.6: Harris Detector Classification[14]

Prior to the Harris Detector, corner detection algorithms defined a cor-

ner as a point with low self similarity. The Morevec algorithm[22] tested

each pixel in an image by considering how similar a patch centred on a

pixel was to nearby overlapping patches. The sum of squared differences

between the pixels of each patch gave a score of inverse similarity. If the

pixel was within a region of uniform intensity, then the nearby patches

appeared similar. If the pixel was on an edge, then nearby patches which

are at an perpendicular to the edge looked different. The corner was iden-

tified by the smallest SSD between the patch and its immediate horizontal,

vertical and diagonal patches. However Morevec pointed out that, one of

the main problems with this operator is that it is not isotropic: if an edge

is present that is not in the direction of the neighbours (horizontal, verti-

cal, or diagonal), then the smallest SSD will be large and the edge will be

incorrectly chosen as an interest point.
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Harris and Stephens researched a joined corner and edge detector to ad-

dress the problems of the Morevec’s descriptor. Acquiring the variation of

the autocorrelation over every single possible orientation, results in a more

rigid detector in terms of detection and repeatability. The 2x2 symmetric

auto-relationship grid utilized for identifying features and depicting their

nearby structures is represented by equation 2.3

M(x, y) =
∑
u,v

w(u, v) ∗
[
I2x(x, y) IxIy(x, y)

IxIy(x, y) I2y (x, y)

]
(2.3)

where Ix and Iy are local image derivatives in the x and y directions re-

spectively, and w(u, v) denotes a weighting window over the area (u, v).

For finding interest points, the eigenvalues of the matrix M are computed

for each pixel. If both eigenvalues are large, this indicates existence of the

corner at that location. Figure 2.6 illustrates how the corners and edges

are classified using the eigenvalues of the matrix M. [13]

2.2.2 SUSAN Detector

The SUSAN detector which is an abbreviation for Smallest Univalue Seg-

ment Assimilating Nucleus was developed by Smith and Brady which in-

stead of using image derivatives to compute corners uses a circular mask

of a fixed radius to every pixel in an image. The centre pixel which is

termed as the nucleus is compared to all other pixels under the mask to

check if they have similar intensity values. Pixels which have the same

intensity are grouped together to form a Univalued Segment Assimilating

Nucleus(USAN). The regions where the number of pixels in the USAN

reaches a local minimum and below a specific threshold value T are cate-

gorized as corners.[28] The comparison function to find the similarities in

the pixels is represented by equation 2.4.

C(r, r0) =

{
1 if |I(r)− I(r0)| ≤ T

0 if |I(r)− I(r0)| > T
(2.4)
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The size of the USAN region is found by equation 2.5.

n(r0) =
∑
c(r(0))

c(r, r0) (2.5)

where r0 is the nucleus’s coordinates and r is the coordinates of any other

points within the mask area. The performance of SUSAN corner detector

mainly depends on the similar comparison function C(r, r0), and not the

value of the threshold set by the user. The algorithm produces a constant

response to edge detection unlike other algorithms such as Canny which

produce multiple responses at almost all the edges. Since no derivative

filters are used, the computations are fast. It is invariant to translation

and rotational changes, however it fails for changing scales.

2.2.3 FAST Detector

The Features from Accelerated Segment Test or FAST Algorithm was de-

veloped by Rosten and Drummond to enable real-time detection by com-

bining an edge and corner detection methods. The algorithm begins by

detecting candidate points by applying a segment test to every image pixel

by considering a circle of 16 pixels around the corner candidate pixel as a

base of computation. If a set of n-contiguous pixels in an area termed, the

Figure 2.7: Harris Detector Classification[14]

Bresenham circle with a radius of r are all brighter than the intensity of

candidate pixel denoted by Ip, added to the threshold value t, Ip + t, or
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all darker than the intensity of candidate pixel minus the threshold value

Ip - t, then p is classified as a corner. A quick test can be used to exclude

a very large number of non-corner points, the test examines only four par-

ticular pixels, such as 1, 5, 9, 13. A corner is found to exist if three of

these test pixels are brighter than Ip + t or darker than Ip - t and the rest

of the pixels are then examined for a final conclusion. Figure 2.7 describes

the process where the highlighted squares are the pixels used in the corner

detection process. The pixel at p is the centre of the candidate corner. The

arc is indicated by the dashed line passing through 12 contiguous pixels

which are brighter than p by a threshold. The best results were achieved

at r=3 and n=9.[14]

For fast matching of features it is important to try and reduce the costs as-

sociated to processing referred to as (O(N2)), and FI represents the feature

point that must be calculated by minimizing the sum of square differences

between the two of the energy into the first few elements. This process

allows for a faster rejection of potential feature matches and allowing for a

lower (O(N2)).[27]

The FAST corner detector is very suitable for real-time video process-

ing applications because of its high-speed performance. However, it is

not invariant to scale changes and not robust to noise as it depends on a

threshold, that needs to be set non-trivially.

2.2.4 Scale Invariant Feature Transform

The Scale Invariant Feature Transform or SIFT introduced by Lowe[20]

detects a number of interest points using a difference of Gaussian opera-

tor.(DOG) The local extremes of the DOG function are selected as points

at which the feature vectors are extracted. Over a number of scales and

over the region surrounding the point of interest, the local orientation of

the image is estimated using the local image properties to provide invari-

ance against rotation.

For each detected point, a descriptor is computed based on local image

information at the characteristic scale. The SIFT descriptor builds a his-

togram of gradient orientations of sample points in a region around the
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keypoint, finds the highest orientation value and any other values that are

within 80 percent of the highest, and uses the orientations as the dominant

orientation of the keypoint. A region of 16x16 pixels around each keypoint

is first selected, and then the image gradients and magnitudes are sampled

to select the level of Gaussian blur for the image. Then, a set of orientation

histograms which contain the samples from a 4x4 sub-region of the original

neighbourhood region with eight orientation bins are created. A Gaussian

Figure 2.8: Calculation of SIFT Features[14]

weighting function with spread of blobs σ, equal to half the region size

is used to assign weight to the magnitude of each sample point and gives

higher weights to gradients closer to the center of the region, which are less

affected by positional changes. A vector is formed containing the values

of all the orientation histograms. Since there are 4x4 histograms with 8

bins, the feature vector has 128 elements for each keypoint. This process of

computing orientation, binning and then weighting by a Gaussian function

is illustrated in Figure 2.8. To compensate for changes in illumination the

feature vector is set to a threshold of 0.2 and then again normalized.

The standard SIFT descriptor is designed carefully to avoid problems due

to boundary effects, orientation and scale. It is compact, expressing the

patch of pixels using a 128 element vector, and is invariant to slight defor-

mations such as those caused by change in perspective. The SIFT vector is

however complicated and of high dimensionality, thereby resulting in larger

computation times.
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2.2.5 Speeded Up Robust Features

The Speeded-Up Robust Features (SURF) detector-descriptor algorithm

developed by Bay et al[5] was designed as an efficient alternative to SIFT

features. The process does away with the Gaussian derivatives and instead

Figure 2.9: Gaussian second order derivatives in the y and xy directions

and their approximations in the same directions[14]

uses 2D filters in which a scale invariant blob detector based on the deter-

minant of a Hessian matrix for both scale selection and locations. Its basic

idea is to approximate second order Gaussian derivatives in an efficient

way with the help of integral images using a set of box filters.

In Figure 2.9 the 9x9 box filters shown are approximations of a Gaus-

sian with σ=1.2 and represent the lowest scale for the calculation of the

blob response maps. The approximations are denoted by Dxx, Dyy and

Dzz. The approximated determinant of Hessian can be expressed as shown

in equation 2.6.

det(Happrox) = DxxDyy − (wDxy)
2 (2.6)

where w is a relative weight for the filter response and it balances the ex-

pression for the Hessians determinant. The blob response in the image is

represented by the approximated determinant of the Hessian. These re-

sponses are stored in a blob response map, and local maxima are detected

and refined using quadratic interpolation. A non-maximum suppression in

a 333 neighbourhood is performed to obtain stable interest points and the

scale of values.

The SURF descriptor begins with a square region centred around the de-

tected interest point and oriented along its main orientation. The size of
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this window is 20s, where s is the scale at which the interest point is de-

tected. The interest region is divided into even smaller 4x4 subregions and

for each subregion the Haar wavelet responses in the x and y directions

are computed with 55 sampled points. The responses are then weighted

with a Gaussian window centred at the interest point to increase the ro-

bustness against geometric deformities and localization errors. A feature

vector v with wavelet responses dx and dy are summed up each sub-region,

as represented in equation 2.7.

v = (
∑

dx,
∑
|dx|,

∑
dy,
∑
|dy|) (2.7)

A feature vector of length 64 is calculated when equation 2.7 is calculated

for all the 4x4 subregions. Normalization is performed to reduce the effects

of illumination changes. The SURF descriptor is much faster than the

SIFT descriptor because it uses a smaller feature vector (64 vs 128). The

problem with SURF is with rotational invariance for 2D, 3D objects as it

does not work when the object is rotated a lot.

2.2.6 Local Binary Patterns

Local Binary Patterns feature the spatial structure of a texture and it is in-

variant to monotonic transformations of features detection, description and

matching the grey-levels. An ordering relationship is encoded by compar-

ing neighbour pixels with the central pixel. It generates an ordered feature

for each pixel by comparing the intensities of a set of two. The feature

responses are marked 1 when the intensity of the neighbour exceeds the

intensity of the central pixel or the feature is marked 0 in the other case.

The co-occurrence of the comparison are saved as a binary string. The

weights from a geometric sequence with a common ratio of 2 are assigned

to the bits according to their indices in the strings. The binary string with

its weighted bits is then transformed by into a decimal valued index. The

descriptor describes the result over the neighbourhood as a binary pattern.

S(gp − gc) =

{
1 if gp ≥ gc

0 if gp < gc
(2.8)

For a pixel c, with g(c) as its intensity is labelled as equation 2.8 where

pixels p belong to a 3x3 neighbourhood with grey levels gp(p = 0 1 2 ..
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7) are summed to corresponding threshold values S(gp - gc) weighted to

a binomial factor of 2k. This is termed as the local binary pattern and is

shown in equation 2.9.

LBP =
7∑

k=0

S(gp − gc).2k (2.9)

The label is computed for each pixel and the labels are sorted into a 256bin

Histogram which gives us a feature detector for the texture. In general us-

age 2N distinct values for the binary pattern by interpreting the differences

in a neighbourhood as an N-bit binary number. The binary patterns are

classified into uniform patterns as they contain at most two bitwise tran-

sitions and non-uniform patterns are the ones that contain more than two

bitwise transitions.

Local binary patterns as a concept proved a success in texture descrip-

tion while being robust to illumination changes and being computationally

efficient. However as LBP is a series of patterns, rather than a numerical

feature therefore preventing the combination of LBP features with other

discriminative ones.[24]

2.2.7 Gradient Location-Orientation Histogram

The GLOH feature descriptor was developed by Mikolajczyk and Schmid

as an extension to the SIFT descriptor. A log-polar locator grid is used

with a principle component analysis to reduce the size of the descriptor.

GLOH uses location bins in its features and these bins are calculated by

Figure 2.10: log-polar bins in a feature[14]
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finding the number of radial bins and the number of angular bins.[21] So if

the number of bins in the radial direction are 3 and number of bins in the

angular direction are 8 will have a total of 17 bins as illustrated in Figure

2.10. The gradient orientations are quantized in 16 bins , therefore giving

us a 272bin histogram. The size of this descriptor is further reduced by

performing a PCA with a covariance matrix estimated on a target images.

The highest 128 eigenvalues are used for description. The GLOH descriptor

performs significantly better with more accuracy than SIFT however it has

a computational overhead compared to SIFT descriptors.

2.3 Machine Learning

Features that are described from a sample image using a description method

are compared to one another to give the prediction and therefore machine

learning is used as a method to devise complex models and algorithms

that can make predictions with lower computation costs and the ability

to classify data not previously sampled. The main approaches in machine

learning are Supervised learning where the machine is fed with input and

output data and the goal is to learn a general rule that maps inputs to

outputs; Unsupervised Learning where no labels are given to the training

data and the machine forms its own pattern through the input data; Re-

inforced Learning where the computer makes decisions based on reaching

a certain goal while receiving feedback on the accuracy of its predictions.

2.3.1 Linear Classification

Linear classifiers are used to classify an object’s features and then identify

whether an object belongs to a certain class or not. An object’s character-

istics are loaded as features to the machine. For a two class classification

problem the inputs are mapped to a higher dimensional feature plane and

then learning a feature plane to successfully separate the dataset. Points

on one side of the hyperplane are termed 0 and points on the other side

are termed 1. This can be seen in Figure 2.11 in which the red line and

the blue line are possible hyperplanes. The green line represents a bad

classifier as it fails to classify the problem.
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Figure 2.11: Binary Classification

Neural Networks - The training of a neural networks signifies the select-

ing a model from a set of allowed models that minimize the cost criteria.

Multi Layer Perceptrons are feed forward neural networks which are typ-

ically composed of several layers of nodes with unidirectional connections

and is trained using a back propagation with the gradient descent method.

The features from the input data are featured onto the perceptrons and

the machine generates an output which is a function of a weight vector and

the inputs.

The weight vector is modified iteratively by minimising the error function

shown in equation 2.10

E(w) =
1

2

N∑
i=1

||y(xi, w)− d2i ||
2

(2.10)

where error is defined on the learning set (xi, di) and N is the size of the

input vector.

w(k + 1) = w(k) + γρ(k) (2.11)

The weight function is represented by the equation 2.11 where w is the

weight, k is the step number and γis the learning rate. ρ(k) represents the

direction of minimization for a step. The problem with neural networks is

that a large training data is required for convergence when compared to

other classifiers.[34]

Linear Discriminant Analysis - The LDA or Fisher’s linear discrim-

inant works by finding a linear combination of features that can be used
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to separate two different classes of data. It is also a way to reduce dimen-

sionality while preserving the class discrimination. The process works by

projecting the input data to a straight line. This method is often used to

reduce the dimensional requirements during mapping.[30]

Support Vector Machines - In machine learning classifying data is com-

mon task. Support Vector Machines (SVM) are supervised learning models

associate with learning algorithms that analyze data used for classification

and regression analysis in machine learning. A support Vector Machine

models the situation by creating a feature space, which is a finite dimen-

sional vector space. Each dimension represents a feature of a object. The

aim of SVM is to train a model that assign a new unseen example in to a

category. This can be achieved by creating a linear partition of the feature

space in to two categories.

The general support vector machine framework includes components such

as regularized linear learning models, convex duality and the associated

dual-kernel representation, theoretical bounds and sparseness of the dual-

kernel representation. The benefit of SVM comes from the fact that they

are not restricted to being linear classifiers. Non-linear decision boundaries

can be achieved utilizing the kernel trick. Formally, in mathematical lan-

guage, SVMs construct linear separating hyperplanes in high-dimensional

vector spaces.
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The problem of Isolator detection from a drone video footage faces the

problem of the video footage being unstable, moreover the background in

each frame of the video can change based on the relative position of the

drone to the horizon. The object itself in the video faces translation, rota-

tion and variable scales based on the dataset procured from drone footage.

Another big problems facing this task is that the isolators that need to be

detected can be of different lengths or radii based on the purpose and in-

sulation ratings. Here we describe the histogram of oriented gradients, its

extension the deformable parts model and the usage of SVM max-margin

object detection.

3.1 Histogram of Oriented Gradients

The HOG feature descriptor introduced by Dalal and Triggs has features

which are based on a combination of SIFT and GLOH. The basic idea

behind this approach is that objects characteristics can be represented by

the distribution of local intensity gradients or edge directions.

The goal is to detect objects under varying illumination and varying scales

so the approach describes how this goal can be met. HOG descriptors are

multi-scale sliding window detectors. The process of extraction of these

HOG features is described below.

3.1.1 Sliding Window Detection

The process begins by dividing the image window into several smaller re-

gions of equal size called cells. The cells are shaped as rectangles, however

even radial shaped cells are also possible.
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Figure 3.1: Sliding Window on an Isolator

A group of cells are collectively called a block and they can be chosen

to fit the size of the training window evenly. A matrix of blocks usually

constitutes the detection window. This detection window is run along the

actual image and the features are extracted. Figure 3.1 shows how the

detection window moves across the image. (1.red, 2.green, 3.blue).

Figure 3.2: Scale-space Pyramid[6]

To make the algorithm invariant to illumination changes the image is nor-

malized for gamma and colour. To make the algorithm invariant to scale

the image is scaled down to form a scale-space pyramid as shown in Fig-

ure 3.2. To each scaled down image the the sliding window is once again
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applied therefore a dense cluster of features are extracted at varying scales

of the same object.

3.1.2 Gradient Computation

- The most common method to compute gradients is by applying a 1-

dimensional centred, point discrete derivative mask in the x and y direc-

tions. The filter kernels are represented in equation 3.1.

M = [−1, 0, 1]and[−1, 0, 1]T (3.1)

Different kernel filters can be used such as the Sobel filter however were

proven to not have a considerable positive effect for the added computation

required. Upon applying the filter a list of orientations is obtains for each

cell which are cast on an orientation based histogram.

3.1.3 Orientation Binning

The pixels within each cell cast a weighted vote for a histogram after the

gradient computation. The histogram channels are spread evenly over 0 to

180o for signed gradients or over 0 to 360o for unsigned orientations. After

attempts at various binning sizes, the number 9 performed better than any

other bin size.

Figure 3.3: Orientation Bins
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So the channel is split further into 9 bins where the bin size is 20o for

signed gradients. The vote weight cast by the cell is determined by the

gradient magnitude or a square of the gradient magnitude or by other

normalization methods. The histogram of 9 bins is shown for illustration

purposes in Figure 3.3.

3.1.4 Contrast Normalization

The image made invariant to contrast and robust to illumination changes

by tiling the detection window by a dense grid of HOG descriptors. The

Figure 3.4: Detection Window Overlapping[6]

window is moved accross the image such that the blocks are selected by

the training window with a 50 percent overlap for each measurement. This

way each cell can contribute twice to the overall descriptor. This process

is illustrated in Figure 3.4. Therefore for each image the window scans,

it scans also the five downscaled images of the pyramid with the contrast

normalization technique.

The orientations for each cell within a block are voted into a histogram of

orientation gradients and therefore a denser feature scan is performed. At

this step the Histogram of Oriented gradients is very similar to the SIFT de-

scriptors, however SIFT descriptors are usually computed at sparse, scale-

invariant key image points and are rotated to align orientation.

39



3 Concept

3.1.5 Block Normalization

Block normalization must be performed so that the range of operation is

known. The speed of calculation can therefore be much faster by knowing

the range and scale of calculations. The Normalization equations shown

in 3.2(L2-norm), 3.3(L1-sqrt) can be used with near similar performance

where vk is the normalized feature vector at k=1,2.

L2− norm : f =
v√

||v||22 + e2
(3.2)

L1− sqrt : f =

√
v

||v||1 + e
(3.3)

3.2 Deformable Part Based Model

The deformable part based model introduced by Felzenszwalb et al.[9] is

seen as an extension to the HOG Features by using a Principle Compo-

nent Analysis(PCA) applied extracts of the HOG features. The resultant

features of 13-dimensions performed nearly on-par with the original 36-

dimensional feature vector. This dimensional reduction leads to more than

60 percent savings in the original computing costs.

Figure 3.5: Star-structured Parts[9]
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The DPM starts by defining a set of star-structured parts which consists

of a root filter that approximately covers an entire object and and n part

higher resolution filters of higher resolution that cover smaller parts of the

object as illustrated in Figure 3.5 with 4 parts and a root. If a pyramid of

scaled space of levels λ= 5 is considered then the root filter is placed at a

location that matches a detection window whose pixels contribute to the

part of the feature map covered by the filter. The part filters are placed

Figure 3.6: Deformable Part Model[9]

at λlevels from the root filter, thereby scanning the feature pyramid twice

at twice the resolution of the features in the root filter. The placement of

the part based model in a space-scale pyramid is illustrated in Figure 3.6.

The part filters are high resolution features because it is essential for ob-

taining high recognition performance. The part filters therefore are used

to capture the finer resolution features that are localized features that are

more accurate than the ones in the root filter. Therefore in the application

of an isolator detector, the root filter detects the outline of the isolator and

the deformable parts check for the repeated ridge based patterns accross

the isolator at varying scales. Figure 3.7 shows how the parts work for two

scales of the same object.
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Figure 3.7: DPM over Isolator Features[9]

A model of an object with n parts is represented in equation 3.4 by an

(n+ 2)− tuple = (F0, P1..Pn, b) (3.4)

Where F0 is the root filter and Pi refers to the part filter number. The

term b is a real valued bias term. Each part model is therefore represented

as shown in equation 3.5

(Fi, vi, di) (3.5)

where Fi is a filter for the ith part, vi is a two-dimensional vector which

specifies an anchor position for the part i relative to the root position, and

di is a four dimensional vector specifying the coefficients of a quadratic

function that defines the deformation cost for each possible placement of

a part relative to the anchor position.

We describe the locations of the filters in a feature pyramid Z to spec-

ify a hypothesis for an object class. The parts are represented by (p0, p1,

p2,. pn). Part pi is represented as in equation 3.6 defines the location of

each filter in the model in a feature pyramid Z.[9]

pi = (xi, yi, li) (3.6)

The level of each part is set as in equation 3.7, l is selected such that the

feature map at that level is computed at twice the resolution of the root
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level.

li = l0 − λ for i > 0 (3.7)

The score of a hypothesis is given by the scores of each filter at their

respective locations (the data term) minus the deformation cost as shown

in equation 3.8.

score(p0, ...., pn) =
n∑
i=0

F ′i .φ(H, pi)−
n∑
i=1

di.φd(dxi, dyi) + b (3.8)

where the displacement of the ith part relative to its anchor position is

shown in equation 3.9

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (3.9)

and the deformation features are represented as in equation 3.10.

φd(dx, dy) = (dx, dy, dx
2, dy2) (3.10)

3.2.1 Detection

The HOG detector computes an image pyramid with HOG features, score

of each window, and a learned linear classifer. The trained classifer is run

across all possible positions in the image pyramid. This sometimes results

in multiple detections and therefore the others are suppressed by a greedy

algorithm such as non-maxima suppression. The matching is done by a

learning algorithm such as SVM.[6]

For the deformable part model the detection phase is similar till the pyra-

mid of hog features is obtained. According to the best possible scores

obtained by placing the parts p0 to pn. High scoring root locations define

detections and the location of the parts which score highly form the full

hypothesis.

To find the best location of the parts as a function of the root location dy-

namic programming and generalized distance transforms(min-convulations)

were used. The resulting method is very efficient, taking O(nk) time once

filter responses are computed, where n is the number of parts in the model

and k is the total number of locations in the feature pyramid.
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Figure 3.8: Detection Process[9]

Let Ri,l equation 3.11 represent an array storing the response for the

i-th model filter in the l-th level in the feature pyramid.

Ri,l(x, y) = F ′i .φ(H, (x, y, l)) (3.11)

Ri,l is a cross relation between the feature Fi and level l of the feature

pyramid. After computing the response we transform the responses of the

part filters to allow for spatial uncertainty.

Di,l(x, y) = maxdx,dy(Ri,l(x+ dx, y + dy)− di.φd(dx, dy)) (3.12)
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This transformation spreads high filer scores to nearby location taking into

account the deformation costs. The value Di,l shown in equation 3.12 is

the maximum contribution of the i-th part makes to the score of the root

location that places the anchor of this part in level l. The transformed array

Di,l can be computed in linear time from the response array Ri,l in linear

time using the generalized distance transform algorithms. The overall root

scores at each level can be expressed by the sum of the root filter response

at that level, plus shifted versions of transformed and subsampled part

responses. This process is illustrated Figure 3.8. After the root location

(x0, y0, y0) we can find the corresponding part locations by selecting the

optimal displacement in Pi,l0 equation 3.13

Pi,l0−λ(2(x0, y0) + vi) (3.13)

3.3 Max-margin Object Detection

Object detection and positioning in an image is an important aspect of

computer vision. The basic training procedure has remained almost the

same. Normally a set of positive and negative image windows comprise

a training set. Then a binary classifier is trained on these images. The

classifier was fed more data through iterations for reaching the optimal de-

tection. In the following training methods, the trained classifier is tested

on images containing no targets of interest and false alarm windows are

extracted and fed as hard negatives into the training set. These approaches

are not efficient as training is performed only on a subset of image windows.

Additionally windows overlapping partially an object cause frequent false

alarms.[18]

If we consider a rectangle area r, we can use it to denote a rectangu-

lar area in the image. R is the total number of rectangular areas scanned

by the window in an image. We must therefore find the set of sliding

window positions which have the largest scores but simultaneously do not

overlap. Normally this is accomplished with a greedy peak sorting algo-

rithm. An ideal learning algorithm would find the window scoring function

which jointly minimizes the number of false alarms in the greedy method

in Algorithm 1.
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Algorithm 1 Object Detection[18]

1: procedure image x(window scoring function f())

2: D:=← all rectangles rεR, such that f(x,r) > 0

3: Sort D such that D1 ≥ D2 ≥ D3 ≥ ...

4: y∗ := {}
5: for i=1 to D do

6: if Didoes not overlap any rectangle in y* then

7: y∗ := y∗ ∪ {Di}
8: end if

9: Return: y*, The detected object positions

For a set of images and associated labels the machine is trained till the

machine is able to predict 100 percent of the training labels. So we have a

convex optimization problem as shown in equation 3.14

min
w

1

2
||w||2 s.t. F (xi, yi) ≥ min

yεY
[F (xi, y) + ∆(y, yi)]∀i (3.14)

where ∆(y, yi) denotes the loss for predicting a labelling of y when yi is

the real label of y. This function is represented in equation 3.15.

∆(y, yi) = Lmiss. (No. of missed detections) +Lfa. ( No. of false alarms )

(3.15)

where Lmiss and Lfa control the formula to achieve high recall and high

precision respectively.

Equation 3.14 which is a hard margin classifier is modified to a soft mar-

gin classifier in equation 3.16 so we can solve the problem of having non

overlapping rectangles.

min
w,ξ

1

2
||w||2 +

C

n

n∑
i=1

ξi

s.t.F (xi, yi) ≥ max
yεY

[F (Zi, y),∆(y, yi)]− ξi ∀ i

ξi ≥ 0 ∀ i

(3.16)
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The max-margin hypothesis is illustrated in Figure 3.9. In the max-margin

equation above, C is the usual support vector machine parameter and it

controls the trade off between trying to fit the training data and obtaining

a large margin. ξi represents the upper bound on the loss incurred by the

training example (xi, yi). A convex upper bound of the average loss per

training image is shown in equation 3.17.

C

n

n∑
i=1

∆(argmaxyεY F (xi, y, yi)) (3.17)

Figure 3.9: Max Margin Hyperplane[18]

This leads to the conclusion that if ξi in Equation 3.16 is minimized to

0, then the detector will produce a positive output for a training example.

The problem of finding the MMOD optimization by using the cutting plane

method is shown in Figure 3.10. We know that a convex function will be

bounded by tangent planes. The algorithm finds the minimum tangent by

finding the intersection of these tangents and iteratively. The green line in

Figure 3.10 represents the new tangent found from the original two tan-

gents. The problem of max margin object detected can be represented by
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the equivalent unconstrained problem shown in Equation 3.18

min
w
J(w) =

1

2
||w||2 +Remp(w) (3.18)

where Remp(w) is a convex function of w is represented by Equation 3.19

C

n

n∑
i=1

max
yεY

[F (xi, y) + ∆(y, yi)− F (xi, yi)] (3.19)

If we consider δRemp denote the subgradient of Remp at a point wt. The

Figure 3.10: Cutting Plane Method[18]

tangent plane to Remp at wt is given by Equation 3.20 where a belongs to

δRemp (wt)

〈w, a〉+ b (3.20)

The bias b can be represented as shown in Equation 3.21

b = Remp(wt)− 〈wt, a〉 (3.21)

With this information a lower bounding approximation is given in equation

3.22 where P is the set of cutting planes.

1

2
||w||2 +Remp ≥

1

2
||w||2 +max(a,b)εP [〈w, a〉+ b] (3.22)

Algorithm 2 shows the routine used to implementing Equations 3.18 to

3.22 The algorithm guarantees convergence to the optimal w* to within
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Algorithm 2 Object Detection[18]

1: procedure

2: Input : ε ≥ 0

3: w0 := 0, t0 := 0P = {}
4: repeat

5: t = t+ 1

6: Compute Plane Tangent to Remp(wt-1)

7: select at εδRemp(wt−1)

8: and bt := Remp(Wt−1)− 〈wt−1, at〉
9: Pt := Pt−1 ∪ {at, bt }

10: Let Kt(w) = 1
2 ||w||

2 +max(ai,bi)εPt
[〈w, ai〉+ bi]

11: wt := argminwKt(w)

12: until 1
2 ||wt||

2 +Rempw(t)−Kt(wt) ≤ ε

13: RETURN: wt

εby terminating the algorithm. Equation 3.23

|J(w∗)− J(wt)| < ε (3.23)

At the 11th step of Algorithm 2 an argmin must be solved. This step is

represented as a quadratic program in Equation 3.24.

min
w,ξ

1

2
||w||2 + ξ

such that ξ ≥ 〈w, ai〉+ bi,∀(ai, bi)εP
(3.24)

The set of variables being normalized w will have many more dimensions

than the number of constraints. Therefore a dual problem solving La-

grangian function is considered. The Lagrangian of the quadratic program

is in Equation 3.25

max
w,ξ,λ

L(w, ξ, λ)

s.t.∇wL(w, ξ, λ) = 0,

∇ξL(w, ξ, λ) = 0,

λi ≥ 0 ∀ i

(3.25)

The Lagrangian is reduced to the following quadratic program in Equation

3.26.
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max
y

λT b− 1

2
λTQλ

such that λi ≥ 0,

|P |∑
i=1

λi = 1

(3.26)

Iteratively a pair of Lagrangian multipliers (λb, λl)are selected which vio-

late the Karush-Kuhn-Tucker (KKT) conditions. The pair is optimized us-

ing the Platt’s sequential minimal optimization to reduce the dual quadratic

problem. The iteration stops when the duality gap falls below a threshold.

Upon solving for λ*, the wt which can be used in step 11 of Algorithm 2

is shown in equation 3.27.

wt = −
|P |∑
i=1

λ∗ai (3.27)

The final stage of the algorithm is the calculation of Remp and an element

of it’s subgradient. If we consider 3.19 as Remp, then an element of the

subgradient is given by equation 3.28

δRemp(w) =
C

n
[
∑
rεy∗i

φ(xi, r)−
∑
rεyi

φ(xi, r)] (3.28)

where y* is represented as

y∗i = argmaxyεY [∆(y, yi) +
∑
rεy

〈w, φ(xi, r)〉] (3.29)

Using this process to maximise margins, it is found that compared to the

original approach shown in Algorithm 1, the optimized procedure would

select a set of parameters which make the new algorithm perform signifi-

cantly better.
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This chapter gives an overview of the technologies and the libraries used

for the implementation of the Concept. A key consideration during the

development process was to use open source libraries for easy portability

and extensibility of the framework. The base language of programming

is C++. Since C++ is a statically typed language, it is generally yields

better performance than dynamically typed languages because the code

is type-checked before it is executed. The performance of Python as a

programming language is found to be significantly slower when compared to

C++. The hardware specifications for the system used for the development

process is; 4-Core 64-bit architecture processor running Windows 10 and

8GB of RAM. The Isolator Detection framework has two main module, the

Figure 4.1: Agile Development Process

training module and detection module. The Agile development process is

used for the implementation such that the core functions are implemented
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first, and then further functions are added iteratively. The iterative agile

development cycle is illustrated in Figure 4.1.

4.1 Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE)

from Microsoft. It supports the development of computer programs with

multiple programming languages. Since Visual Studio includes a code ed-

itor supporting auto code completion as well as code refactoring for faster

development of the code. The integrated debugger works both as a source-

Figure 4.2: Visual Studio IDE

level debugger and a machine-level debugger. Microsoft Visual Studio

Community edition is available free of cost and supports the development

of C and C++ out of the box.

Microsoft Visual C++ is Microsoft’s implementation of the C and C++
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compiler and related language services and particular tools for use with the

Visual Studio IDE. For C++, it takes after the ANSI C++ implementation

alongside several C++11 features. It also supports the C++/CLI speci-

fication to write managed code, as well as mixed-mode code. Microsoft

positions Visual C++ for development in native code or in code that con-

tains both native as well as managed components. A Visual studio solution

can be configured to work with external libraries to use with 3rd party and

open-source APIs.

For easier navigation and control of a project modules, Visual Studio code

editor supports setting bookmarks in code. Other navigational aids include

collapsing code blocks and incremental search, in addition to normal text

search and regex search. Code refactoring is also possible such as param-

eter reordering, variable and method renaming, interface extraction and

encapsulation of class members inside properties. Visual studio features

background compilation, to enable real-time type checking.

4.2 External Libraries

The external libraries used for the development of the framework are the

opencv library and the dlib library. These are explained below.

4.2.1 Opencv

OpenCV is an open source computer vision and machine learning software

library of more than 2500 optimized algorithms in C++, C, Python and

Java. OpenCV is used extensively in real-time vision based applications

and is natively described in C++. This implementation uses OpenCV

version 2.4. OpenCV is licensed by Berkley Software Distribution, and it

allows user to utilize and modify the code according to the requirements.

OpenCV can be used by programmers using a base programming language

such as C++. OpenCV is available for platforms other than Windows

such as Android, OS X, iOS and Linux. This is a very useful function-

ality because the software developed for one platform can be ported to

other platforms as well. The goal of OpenCV is to provide simple to use
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Figure 4.3: OpenCV

computer vision infrastructure that helps people build fairly sophisticated

vision applications quickly. Since computer vision and machine learning

work together in a lot of applications, OpenCV also contains a full general

purpose Machine Learning Library(MLL). This sub library is focused on

statistical pattern recognition and clustering.

4.2.2 Dlib

Dlib is a C++ library that contains machine learning algorithms and other

tools for creating complex software in C++. It is utilized extensively in in-

dustry and academia in a wide range of domains such as embedded systems,

mobile phones and vision-based applications. Dlib has an open source li-

cense therefore allowing the user to use it in any application.

Dlib provides complete documentation for every class and function in API

for faster development. Also, the debugging mode allows for checking the

preconditions for the functions which can help catch the vast majority of

bugs caused by calling functions incorrectly or using objects in an incorrect

manner. The other major advantage of Dlib is that there is no installation

or configuration step needed before usage.

4.3 Isolator Detection Framework

The Isolator Detection Framework is developed in order to demonstrate

the training and detection procedures researched in this master thesis.

It consists of 2 major modules, one for training and one for detection.
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The dataset used for the training consists of several images of isolators

extracted from several videos. The data contains of isolators in several

positions, orientations and scales and in total amount to close to 4500

samples. These two modules are explained in the sections below.

4.3.1 Training Module

The training module is the first of the two modules in the framework. It

is developed for the purposes of training the machine with a training set.

The algorithm for the training module is given in Algorithm 3.

Algorithm 3 Training Module

1: procedure Train(images)

2: Input: user command, ImageList

3: Parse user command

4: Read Input Image List

5: Sort Positive and Negative Samples

6: Set SVM Learning Parameters

7: Set number of processing threads

8: Set Training Window Size

9: CreateTraining Window← Size

10: Scale to multi-scale pyramid

11: Call SVM

12: while (!endof.ImageList) do

13: Load Positive Images

14: Load Negative Images

15: flip Images

16: Create or Modify Images Vector

17: if (user command == t) then

18: while (!100% Detection Rate) do

19: Feature Extraction

20: Train SVM(Image Features)

21: Return: Trained Model

22: if (cross validation == 1) then

23: Print: Confusion Matrix
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Images are fed to the system with annotations describing the location of

the isolator in each image. Figure 4.4 shows the example of a training im-

age with annotations around the isolator. The annotation on the images

can be done by several annotating tools available on the internet. For our

purposes we used Dlib’s annotation tool imglab which generates an xml

file with all annotations.

Figure 4.4: Annotations around Isolators

<--\\Training Data -->

<images>

<image file=’C:\Users\Isolator Dataset\horiso013.jpg’>

<box top=’323’ left=’565’ width=’390’ height=’278’/>

<box top=’729’ left=’266’ width=’275’ height=’173’/>

</image>

</images>

The system expects the name of the xml file, along with a few more options

in the console command, as shown below -

Train-Detector.exe images-list.xml -options

The learning parameters for the SVM are set to achieve high accuracy. For

the purposes of detecting isolators, we found the best values to be C =

1.0, ε= 0.01 and the detection window size to be the default 80x80 pixels.
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The number of processing threads are set to 4 for our 4-core processor.

const double C = get_option(ConIn, "c", 1.0);

const double eps = get_option(ConIn, "eps", 0.01);

const unsigned long target_size = get_option(ConIn,

"target-size", 80*80);

const int threads = get_option(ConIn, "threads", 4);

A training window is created with the specified size and the images are

scaled to a multi-scale pyramid. We have chosen 5 levels. The images are

then flipped so each image can contribute twice to the training. Then on

each image the training window is applied on all possible positions to ex-

tract the features. The SVM is called with the input as the features from

the images labelled positive and negative. The training is performed on

the training data and a trained svm model is generated.

The training of our images were done on different configurations of isola-

tors, the three sets containing isolators of similar type in varying positions.

Figure 4.5: Single Detection
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4.3.2 Detector Module

The second module of the framework is responsible for loading an input

frame of video mark, the location of isolators and save the key-frames. The

procedure for the detection module is given in Algorithm 4.

Algorithm 4 Detector Module

1: procedure Detect(V ideo)

2: input : Video File

3: input : SVM Trained Models

4: read : Video File

5: while !lastframe do

6: load : Frame

7: call : Detect(frame)

8: if detection then

9: draw : Detection

10: save : Save to Hard-Drive

11: end

The algorithm is initiated by running the detector executable. The code

is pre-programmed to load the SVM models from models.txt and a list of

input data from input.txt. This can be overriden by calling the application

with a filename with its path.

IsolatorDetector.exe C:\IsolatorVideos\videoname.type

The SVM is initiated with the trained model and the video file is loaded

into the memory.

Each frame in the video is scanned and its features are extracted and

then scanned by the SVM. Detections are marked with an outlining box.

Frames with detections are saved to a specified output folder. Figures 4.5
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Figure 4.6: Multiple Detections

Figure 4.7: Key-Frames Folder

and 4.6 represent two detected frames representing single and multiple de-

tections. Figure 4.7 shows the Key-Frame folder populated with positive

detected frames.
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This chapter will focus on the experiments performed in order to test the

framework described in the previous chapter. The acquired dataset used

for the training and testing will be explained. The test conditions are

explained first, followed by the results for each test condition.

5.1 Training Evaluation

The data used for this project was acquired from within Technische Univer-

sität Chemnitz ’s database of videos taken from surveillance drones. This

dataset when examined could be categorized into videos that were recorded

from a stable position and those with a lot of instability. Isolator images

were extracted from these videos and appended with a few taken from the

internet. These isolators were then classified into 3 groups based on their

orientation and position. The example for these three types can be seen

in Figure 5.1. The training procedure was performed with 2-fold cross

(a) Horizontal (b) Vertical (c) Low-Light

Figure 5.1: Training Data

60



5 Data Evaluation and Results

validation till a model was generated taking into consideration over and

under-fitting. Tables 1,2,3 illustrate the confusion matrix details for each

training iteration for each model found with a threshold of -0.5.

Test True False True False Precision Recall Fall

Size Positives Positives Negatives Negatives Out

25 2 7 3 13 0.222 0.133 0.70

35 7 6 9 13 0.538 0.35 0.4

45 21 2 13 9 0.913 0.700 0.133

55 39 0 15 1 1 0.975 0

65 49 1 14 1 0.98 0.98 0.067

75 57 2 13 3 0.966 0.95 0.133

100 51 5 35 9 0.911 0.85 0.125

125 65 7 43 10 0.903 0.867 0.14

150 87 7 43 13 0.926 0.87 0.14

Table 5.1: Training Method for Horizontal Isolators

The training for the set of horizontal isolators reaches an optimal value of

Recall and low Fall-Out at 55 test images which can be seen in the graph

in Figure 5.2. The point in the graph where the precision and recall are

Figure 5.2: Precision-Recall Curve - Set 1
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highest is found to be the ideal model in the training process.

The process is repeated for the category of vertical isolators and the pre-

cision,recall graphs are represented in Figure 5.3. The highest values for

precision and recall are found at 275 Test Images. The generated model is

taken as the model of vertical isolators.

Test True False True False Precision Recall Fall

Size Positives Positives Negatives Negatives Out

100 34 5 10 51 0.872 0.40 0.333

150 77 3 7 63 0.963 0.55 0.30

200 123 3 17 57 0.976 0.683 0.15

250 222 2 18 8 0.991 0.965 0.100

275 266 1 4 4 0.996 0.985 0.200

300 276 2 13 9 0.993 0.968 0.133

350 306 2 8 34 0.994 0.900 0.200

Table 5.2: Training Method for Vertical Isolators

Figure 5.3: Precision-Recall Curve - Set 2
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Test True False True False Precision Recall Fall

Size Positives Positives Negatives Negatives Out

100 29 15 35 21 0.659 0.58 0.30

150 90 3 7 50 0.968 0.643 0.30

200 82 16 64 38 0.837 0.683 0.20

250 191 1 4 54 0.995 0.78 0.20

275 208 3 12 52 0.986 0.8 0.20

300 242 3 22 33 0.988 0.88 0.13

350 286 3 7 54 0.990 0.841 0.30

Table 5.3: Training Method for Lowly-illuminated Isolators

Figure 5.4: Precision-Recall Curve Set-3

The same procedure finds the ideal model for lowly illuminated isolators

at 300 Test Images. See graph in Figure 5.4.
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5.2 Test Procedure

To evaluate this procedure we manually choose 100 un-annotated test im-

ages that show different views of the isolators under differing lighting con-

ditions and stability. We then feed the detector with these images and

adjust the threshold value τd of the detection module in order to set the

sensitivity of the detection system. We then measure the precision and

recall for different threshold values.

Values less than -2 and greater than 1 were found to be unusable and

so the tests were bounded to within those values.

Threshold True False True False Precision Recall

τd Positives Positives Negatives Negatives

-1.5 75 22 3 0 0.773 1

-1.25 75 18 7 0 0.806 1

-1 75 15 10 0 0.833 1

-0.75 75 7 18 0 0.914 1

-0.70 75 2 23 0 0.974 1

-0.65 75 0 25 0 1 1

-0.5 74 0 25 0 1 0.986

-0.25 73 0 25 2 1 0.973

0 70 0 25 5 1 0.933

0.25 63 0 25 12 1 0.84

0.5 52 0 25 23 1 0.693

Table 5.4: Measurements with varying τd

The value of -0.65 for the Threshold,τd is found to be the point with the

best precision and recall rating for our detection module.

Once the optimal threshold value has been found. The detection mod-

ule is then run on two different types of video footage. One which is stable

and one which is unstable. For the purposes of detection it is also impera-

tive to have the videos in a progressive format by performing deinterlacing.
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Figure 5.5: Interlacing caused motion artifacts

Figure 5.6: Deinterlaced frames without motion artifacts

Since most video cameras record by the superposition of 2 images to form a

frame, an individual frame can cause motion based artifacts seen in Figure

5.5. Figure 5.6 shows the same isolator frame free of motion artifacts after

deinterlacing has been performed.

5.3 Unstable Video Feed

The goal of the isolator detection framework is to extract the frames that

contain isolators. The algorithm loads the video and three frames are
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selected for each second of the video. These frames are then evaluated for

isolators. For every positive detection, the frame is saved to a designated

location. This set of saved frames are termed as the key-frames.

Video Length Frames with Video Key-Frames

(in minutes) Isolators Type Extracted

1 00:57 75% Stable 60

2 04:01 15% Unstable 47

3 07:14 10% Unstable 72

4 09:22 4% Unstable 24

5 0:42 0% Stable 2

Table 5.5: Key-frames extracted

Table 5.5 represents the key-frames extracted for several videos. It is worth

noting that when presented with unstable videos, the system extracts key-

frames while omitting the parts of the video where no isolators are detected.

This leads to a significant saving in time when compared to manually going

through the entire video.
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A modern power transmission system must stay online in order to pro-

vide uninterrupted electricity. The inspection of power lines and isolators,

though long been a manual process, is now being replaced with drone

based surveillance. Since this technology is still in it’s infancy, the scope

for improvement is quite large. This chapter summarizes the results of the

isolator detector framework and how improvements can be made in the

next stages. In this thesis we presented a framework for isolator detection.

Figure 6.1: Fault Detection

Two different modules were implemented after careful comparison of sev-

eral state of art object detection algorithms. The deformable parts model

is found to provide very good results in terms of detection quality and

elimination of false alarms. Like all object detection algorithms, even this

model is not perfect and several features could be added to the framework

to make it perform better.
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6 Conclusion and Future Work

The framework automatically saves the frames of a video that contain

isolators. The system proves itself robust to varying positions and config-

urations of isolators. The system performs with a lower accuracy when in

low-light situations where only the silhouette of the isolator can be seen,

however simple changes in illumination and scale are dealt with easily.

The extracted key-frames are found to significantly reduce the data the

user needs to analyse, therefore making the inspection process faster and

efficient.

In the future the vision framework can be extended to feature not just

isolators but also transmission towers, power cables and binders. Such

a framework would make the inspection of transmission lines much more

streamlined. For each extracted key-frame the object is scanned for dam-

age and if the damage is greater than a certain threshold, the frame is

marked and saved accordingly. An example sample is shown in Figure 6.1.

Finally, this vision based application can be modified to run on embed-

ded controllers leading to SOCs in drones that manage the tasks of flying,

recording and detection. This means lower power consumption, higher

data throughput if using digital signal processors and most importantly

ease of use.
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