
Squaring the square
New methods for determining the number of perfect square packings

Holger Langenau∗

January 8, 2018

Given a square with integer side length n, we ask for the number of different
ways to divide it into sub-squares, considering only the list of parts. We
enumerate all possible lists and check whether a placement with those squares
is possible. In order to do this, we propose a new algorithm for creating perfect
square packings.

Keywords: Square, Packing, Partition, Backtracking
Mathematics Subject Classification (2000): Primary 52C15;
Secondary 05B40, 90C35

1 Introduction and basic terminology

A perfect partition of an n× n square is a collection of squares with integer side lengths
that can be arranged in such a way that they fill the square and leave no space unoccupied.
We ask how many perfect partitions exist for a given number n, i.e., we are only interested
if for a given n-tuple (pn, . . . , p1), representing a set of p1 1× 1 squares, p2 2× 2 squares,
and so on, fulfilling

∑n
k=1 pkk

2, there exists a placement in such a way that no two squares
overlap and the large square is filled completely, not counting multiple arrangements for
the same partition. These partition numbers make up the sequence A034295 in OEIS
[7], and were known up to n = 16, namely, 1, 2, 3, 7, 11, 31, 57, 148, 312, 754, 1559,
3844, 7893, 17766, 37935, 83667. Figure 1 shows all possible valid partitions for n = 4.
This can easily be verified by hand.
While we can easily enumerate all partitions of n2 into squares, the main problem lies

in determining whether a valid placement of those squares can be found. This problem is
known to be NP-complete, and has been studied for quite a while, see, e.g., [5, 6, 4, 1, 2].
A good algorithm to generate such a placement, if one exists, is the one given by Hougardy
[5], which works also for rectangles and non-perfect packings. Here, we provide a new
algorithm, that, in most of the cases, works a lot faster than the one given by Hougardy,
∗Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany

e-mail: holger.langenau@mathematik.tu-chemnitz.de

1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

(0,0,0,16)

2
1 1
1 1

1 1 1 1
1 1 1 1

(0,0,1,12)

2 2

1 1 1 1
1 1 1 1

(0,0,2,8)

2 2

2
1 1
1 1

(0,0,3,4)

2 2

2 2

(0,0,4,0)

3
1
1
1

1 1 1 1

(0,1,0,7)

4

(1,0,0,0)

Figure 1: Illustration of the possible partitions of a 4 × 4 square. The only feasible
partition missing in this list is (0, 1, 1, 3), but there is no placement with those
squares, since placing a 2 × 2 square next to a 3 × 3 square would require at
least a square of size 5× 5. Thus, this partition is invalid.

Table 1: List of new terms for OEIS sequence A034295
n a(n) n a(n)

17 170165 21 3154006
18 369698 22 6424822
19 743543 23 12629174
20 1566258 24 25652807

at least for square packings. Employing this algorithm, we were able to identify more
terms of the sequence, which are given in Table 1.
We want to fix some terminology which we will need later on. A (feasible) partition of

an n × n square is a set of squares of side length k × k, 1 ≤ k ≤ n in such a way that
the total area of those squares equals n2, the area of the partitioned square. We can
represent a partition as an n-tuple (pn, . . . , p1), of non-negative integers pk, where each
pk stands for the number of squares of size k in this partition. Therefore, we denote by

Fn :=
{
(pn, . . . , p1) ∈ Nn

0 :
n∑

k=1

pkk
2 = n2

}
(1)

the set of all feasible partitions. A partition is called valid, if there exists a placement
{(xi, yi, si)}Ni=1, N =

∑n
k=1 pk, with (see [5])

0 ≤ xi ≤ n− si, 1 ≤ i ≤ N,

0 ≤ yi ≤ n− si, 1 ≤ i ≤ N,

xi + si ≤ xj ∨ xj + sj ≤ xi ∨ yi + si ≤ yj ∨ yj + sj ≤ yi, 1 ≤ i < j ≤ N,

|{i ∈ {1, . . . , N} : si = k}| = pk, 1 ≤ k ≤ n.

2

2
1

2
1

1 1

3
2

2 2

2

3

1

1

1 1

2

1

1

2

1
1

2

3

5

Figure 2: Translating a partition to a network flow. The squares are replaced by arcs
with a weight and length matching the square size and, subsequently, each
level is reduced to a single node. The resulting graph is a network and each
node satisfies Kirchhoff’s rule.

That is, no two squares overlap and all together fit inside the larger square. Given
(1), this is a perfect placement. The set of all valid partitions is denoted by Pn ⊆ Fn.
Therefore, we are interested in the number |Pn|, the cardinality of Pn.

2 Checking whether a given partition is valid

The central problem of the question stated above is to check whether a given partition is
valid, i.e., if there exists a corresponding placement. The algorithms we found so far all
try to create the placement immediately. Here, we present an algorithm which is a two-
stage process. First, we check if some necessary condition can be fulfilled. If this is the
case, we can use the information gathered during this check to determine a placement, if
one exists. This condition has also been considered by Brooks, Smith, Stone, and Tutte
[3]. They observed that a valid placement can be translated to a graph representing
a network. All horizontal borders between two squares become the nodes which are
connected by weighted edges, corresponding to the squares between those borders. If we
consider the weights as electric current, the nodes all fullfil Kirchhoff’s rule. An example
is given in Figure 2.
Since we do not know the placement beforehand, we now have to find an arrangement

of the edges in such a way that we obtain a valid network. Moreover, we do not know

3

whether we need multiple nodes on each level. Therefore, we consider each level as a
single node.
The algorithm works as follows. We start with n + 1 nodes 0, 1, . . . , n, and set their

distance to be d(i, j) = |j− i|. Let node 0 be the source of a network, with initial charge
n. For each square of size s in the partition that is going to be checked, we assign a so-
called ruler. This is an edge-to-be of given length s whose position has to be determined
later on. The length of the ruler also represents the capacity in the flow that we will
generate.
In the node with positive charge that has the smallest index, we try to place a matching

ruler, i.e., it first has to satisfy the condition that the sum of this index and the length
of the ruler are not larger than n, and second that Kirchhoff’s rule must not be violated,
i.e., the capacity of the ruler must not exceed the charge of this node. Due to our model,
we assume that the capacity is always fully used. If in the current step no ruler can be
placed in this way, we backtrace and try with other rulers.
When all rulers are placed, the sink n has charge n and all other nodes have charge 0.

We then check whether there is a placement of squares that corresponds to the generated
flow graph. If this is the case, we are done and have found a valid placement. Otherwise,
we backtrace again and try to find other valid flow graphs. If no such flow graph could
be found or for none of the ones we found there was a valid placement, there is no such
placement and the algorithm terminates with a negative answer.
Algorithm 2.1 gives a recursive implementation of this procedure. Here, p = (pn, . . . , p1)

denotes a partition, k is the size of the square which will be placed, E is the set of edges,
and f is the flow state. A flow state is an (n+1)-tuple (c0, c1, . . . , cn) with

∑n
i=0 ci = n,

where ci denotes the excess charge in node i. We call the entry cn the terminal charge.
We note that the we use the term partition here although it is just a collection of squares.
The map Rk is given by

Rk : Nn
0 → Nn

0 , (pn, . . . , pk+1, pk, pk−1, . . . , p1) 7→ (pn, . . . , pk+1, pk−1, pk−1, . . . , p1),

i.e., it reduces the partition by one square of size k. The function Fk is defined as

Fk : Nn+1
0 → Nn+1

0 , (f0, . . . , fl−1, fl, fl+1, . . . , fl+k−1, fl+k, fl+k+1, . . . , fn)

7→ (f0, . . . , fl−1, fl − k, fl+1, . . . , fl+k−1, fl+k + k, fl+k+1, . . . , fn),

where l = argmin0≤j≤n{fj > 0}. Effectively, this moves a charge of k from node l to
node l + k.
The starting parameters of this algorithm are the partition which we want to check as

p, a flow state f of (n, 0, . . . , 0), i.e., the full charge is in the bottom node, an empty set
of edges E and each k ∈ {1, . . . , n} for which pk > 0, until we get a positive result.

The subroutine CheckNetwork checks whether for the given edges a horizontal
placement of squares exist. This will be described later.

4

Algorithm 2.1 Determining a flow.
1: function GenerateFlow(p, f, k, E)
2: l← argmin0≤j≤n{fj > 0} . Determine leftmost set index in flow
3: if fl < k or l + k > n then . Check whether square fits in this flow
4: return false
5: end if
6: p′ ← Rkp . Take square of size k from partition
7: f ′ ← Fk(f) . Advance flow
8: E′ ← E ∪ {(l, l + k)} . Add edge to set of edges
9: if p′ = (0, . . . , 0) then . All squares have been used

10: if CheckNetwork(E′) then . Try to place the squares
11: return true
12: else
13: return false
14: end if
15: end if
16: for all j ∈ {1 ≤ j ≤ n : p′j > 0} do
17: if GenerateFlow(p′, f ′, j, E′) then
18: return true
19: end if
20: end for
21: return false
22: end function

Although we gave a recursive definition here, we note that in the actual implementation
a stack is used. Since the stack depth coincides with the numbers of edges already
placed, we know the maximal size beforehand, knowing the total number of squares in
the partition.
Starting with the largest fitting square on the current lowest level, we try to advance

the flow. If this is not possible, we backtrace and continue with the next smaller square.
Doing so, we would check every permutation of the squares. In the following, we will
define a number of pruning rules used in this backtracking algorithm.

Pruning Rule I: Limit flow level count

The number of non-zero non-terminal charges, the flow levels, must not exceed the num-
ber of squares left to place, i.e., given a partition p = (pn, . . . , p1) and a flow state
f = (c0, . . . , cn), the following must hold

|{i ∈ {0, . . . , n− 1} : ci > 0}| ≤
n∑

j=1

pj .

By inserting an edge in the network, we reduce the number of squares left by one.
Furthermore, we can reduce at most one charge to zero. In the end the number of flow

5

levels, has to be zero since the whole charge has been transferred to the terminal charge.
If there are more flow levels than squares left, it is not possible anymore to reduce all to
zero.
This check can be done in constant time. On each placement, we just need an update

that is scale invariant.

Pruning Rule II: Failed horizontal placement

After finding a valid flow, we check whether the squares can be arranged horizontally
in such a way that we get a valid placement. Anticipating the method for doing this,
this is done from the bottom up. If such a placement is not possible, there is a highest
level smaller than n up to which this was possible. Since we change the flow only in the
lowest positive charge, all edges placed higher than this highest level can be dropped.
The problem occurred earlier. Therefore, we can backtrace to a state with this level.
Although this effectively solves another NP-hard problem (it is just a reduced form of

the original problem), this requires almost no additional computation, since the check
has to be done anyway.

Pruning Rule III: Lowest level must not be to high

All squares have to be placeable. If there is a square left whose size is larger than the
distance of the lowest level (the smallest index of a positive charge), it is not possible
anymore to place this square, and we have to backtrace. This can be improved a little
bit. Let K be the size of the largest square, L the lowest level, i.e.,

K := argmax
1≤k≤n

{pk > 0}, L := argmin
0≤l≤n−1

{cl > 0}.

The condition above then reads that we backtrace if d := n− L < K. Now, if d = K all
squares of this size have to be placed on this level. Therefore, the total charge on this
level has to be enough for all, in other words

K · pK ≤ cL

must hold. Since we keep track of the largest square and the lowest level at all times, no
search is necessary and we can perform this in constant time.

Pruning Rule IV: Flow defect

Fix some square size u. Next, replace all larger squares by the appropriate amount of
squares of size u that can be packed into them. This is the number of squares that have
to be placed. If an estimate on the number of squares of size u that can be packed is
smaller then we have to backtrace.
This requires a more detailed explanation. For this we go back to the placement of

squares rather than edges in a graph. For each flow state the best configuration to allow
for the most squares of one size to be placed is a stairway. That is, we have plateaus

6

j

j + 1

j + 2

j + 3

j + 4

cj

cj+1

cj+3

Figure 3: Most favorable layout of a flow state.

3 3

3 3

3

3

3 3

3 3

3

3 3

Figure 4: Example for different flow defects. In the left picture we have D3(f) = 2 and
in the right D3(f) = 3. A maximal placement of squares of size 3 is shown.
In the right picture we can place one square more, due to the overhang that is
now possible.

on each level with a width reflecting the charge. Figure 3 gives an idea of the situation.
The flow defect for a unit square size u of a flow state f = (c0, . . . , cn) is given by

Du(f) :=
n−u∑
j=0

(cj modu).

Note that charges to close to the top are not accounted for. This is due to the fact
that no square of size u can be placed higher than the level n − u. The flow defect is a
measure of how good squares of size u can be packed on such a stairway. If Du(f) < u
we could pack towers of such squares on each plateau, independently of all the others,
due to the fact that a tower that is one part over the lower plateau and one part on the
higher plateau can only be as high as the distance of the higher plateau to the top. It
would therefore be more effective to fully pack the tower on the lower plateau. Because
of the condition the individual defects cannot add up. This simplyfies the calculation a
lot. Figure 4 illustrates the problems that occur if the flow defect is not strictly smaller
than the unit square size.
We estimate the maximal number of squares of size u that can be packed for a given

flow state f by

Pu(f) :=

n−u∑
l=0

⌊cl
u

⌋
·
⌊
n− l

u

⌋
.

7

The number of squares that have to be placed, in terms of unit squares of size u for a
given partition p is

Tu(p) :=

n∑
m=1

pm ·
⌊m
u

⌋2
.

Now, if Tu(p) exceeds Pu(f) for any u ≥ 2, we have to backtrack. However, the calcula-
tion, even when utilizing an update, is quite expensive. In our current implementation
only u = 2 is used. This also improves the calculation since we do not have to use division
but a bit shift. Additonally taking higher unit square sizes into account seemed just to
make things worse in terms of the overall computation time.
In the case that D2(f) = 2, we still can apply the above rule, with one correction. In

this case, there are exactly two levels with a defect of 1. Then we can make a overhang
from the higher one of those two (and possibly shift all others, resulting in overhang on
the lower levels), and add the correction term to Pu(f). Thus, this rule becomes less
restrictive and we can apply it more often. Using an update approach, this can be tested
in constant time.

Pruning Rule V: Symmetry breaking

This is the only time we use an heuristic approach. This idea comes from [5]. Since a
valid placement is still valid if we flip top and bottom, we may assume that one prior
picked square is placed in the upper half. Our tests showed the best results for the last
of the third smallest square. This still exhibits a potential for improvement. However,
this check can also be done in constant time.

Checking the horizontal placement

After we have determined a valid flow, we are left with a sequence of squares. On each
level we now have only a fraction of the squares which we have to place. Again, we start
with the largest squares before possibly backtracing. By placing the squares, we generate
a skyline. This is organized as a number of bars that grow.
The placement of each square lifts a part of skyline. A bar is the combination of all

parts of the skyline that are on the same level and connected. If both neighbor bars are
higher, we call this a valley. Figure 5 illustrates this.
Since we began to generate the flow from the bottom up, the squares are placed on

the lowest level, too. Therefore, in each update, we are placing the squares always in a
valley. In order to efficiently handle the updates, the bars are stored in a mixed data
structure of a heap and a list. The heap is used to determine the next valley and the
list preserves the neighbor relation between the bars. The access of the heap is at most
logarithmic, and the access of the list can be done in constant time, since we only need
the information of the left and right neighbor.
Due to the placement in valleys, a variation of the pruning rule from [5] can be used,

namely the Valley Area Check. If the total area of unplaced squares from a higher level
that are not larger than the width of the valley is smaller than the valley area, we cannot
fill the valley with those squares and therefore have to backtrack.

8

2
1 1 1

2

0 1 2 3 4 5 6 7

Figure 5: Example for a skyline containing four bars. The first starting at position 0,
with a width of 2 and a height of 2, the second from 2 width a width of 3 and
a height of 1, and so on. There are two valleys in this picture, one between
positions 2 and 5 with a depth of 1 and one starting from position 7 with a
depth of 2.

If this check succeeds, the partition is valid. If it does not, we return the highest level
we reached back to the flow algorithm.

3 Preliminary checks

There are some partitions that are “obviously” invalid or valid, but do take a very long
time to calculate or are so simple that we do not want to use the algorithm described
above. There are some preliminary checks that we run once before starting the algorithm.

S1: Two largest squares do not fit

If the sum of the sizes of the two largest squares exceeds n, this partition is invalid. We
already did encounter one such example in the introduction: (0, 1, 1, 3).

S2: Number of second largest squares must fit in maximal configuration

If the sizes of the two largest squares are k1 and k2, and if k1 > k2 as well as k1+k2 = n,
the amount of squares of size k2 must not be larger than 2bk1/k2c+1. The largest square
can only be on one border. The maximal configuration would be to pack this into one
corner and pack the squares of size k2 to the two free sides and one in the opposite corner.
Figure 6 gives an example for such a maximal configuration.

S3: Amount of virtual squares must not be to large

This check makes up a little bit for the amount of calculations necessary in Pruning Rule
IV in our flow algorithm. There we retreated to only apply the rule for a unit square size
of 2. Here, we try all sizes, since we only have to do it once and not billions of times.
Using the same notation as we used there, we get simpler expressions for them, since we
do not have to take the flow or the defect into account anymore (we only have the initial

9

5

2

2

2 2 2

1 1

1

1

Figure 6: Maximal configuration for a 7 × 7 square and largest squares of size k1 = 5,
k2 = 2.

3
1 1 1

2
1

1
2

1 0 1 1 1 0Parity:

Figure 7: Example for the parity change by placing squares.

flow). That being said, we have for all u = 2, 3, . . . , n

Pu((n, 0, . . . , 0)) =
⌊n
u

⌋2
,

Tu(p) =
n−u∑
j=2

pj ·
⌊
j

u

⌋2
.

And again, if Tu(p) > Pu((n, 0, . . . , 0)) for any such u, the partition is invalid.

S4: Parity check

The last of the preliminary checks is a little more complicated. Imagine a strip of length
n filled with zeros. We say that placing a square of size k changes the parity on a strip
of length k exactly k times, i.e., every 0 becomes a 1 and vice versa. Figure 7 illustrates
this.
Assume for the moment that n is an even number. Then, after placing all squares, the

parity has to be zero in every column. Since placing an odd square changes the parity,
we have to reverse this effect. This can be done by dividing the set of odd squares into
two sets with the same sum of sizes of the odd squares, i.e., we have to find to partitions

10

p(1) and p(2) with p(1) + p(2) = p and

b(n−1)/2c∑
k=0

(2k + 1)p
(1)
2k+1 =

b(n−1)/2c∑
k=0

(2k + 1)p
(2)
2k+1.

In the case of odd n, the two sums should differ by exactly n. This problem is known as
the bin packing problem. Since this is itself in NP, we confine ourselves to two different
odd sizes only. If there is only one type of odd sized squares, everything is fine and we
start the algorithm. Considering only two different sizes, we can use a naive algorithm
which runs in linear time with respect to the total number of odd squares.
This approach proved rather effective in our tests. For example, the 22× 22 partition

(0, . . . , 0, 2, 0, 7, 15, 14, 1) visited over 2 · 1011 states while searching for a valid flow al-
though no such flow exists. Using this check, we could rule out a lot of invalid partitions.

4 Finding all valid partitions

So far, we have only checked single partitions. However, we are interested in finding
all valid partitions for a given number n. Therefore, we have to be able to generate all
feasible partitions. However, this is quite easy.
Starting with a valid partition, we combine k2 1 × 1 squares to one k × k square, k

from {2, . . . , b√a1c}, and check whether the new partition is valid. If this is the case, we
repeat the process. After no more valid partitions can be generated, we are done. To do
this more systematically, we first define a map Tk by

Tk : F (k)
n := {(pn, . . . , p1) ∈ Fn : p1 ≥ k2} → Fn,

(pn, . . . , pk+1, pk, pk−1, . . . , p2, p1) 7→ (pn, . . . , pk+1, pk + 1, pk−1, . . . , p2, p1 − k2). (2)

This map does exactly what we desribed above. For a given k, if there are enough unit
squares, add a square of size k × k and take k2 unit squares out. The overall sum stays
the same and if we started with a feasible partition, the new partition remains feasible.
Algorithm 4.1 describes how to generate the set Pn. If we do not test whether Tkp is valid
in line 4, and thus do not terminate the generation of feasible partitions, the generated
set will be the full Fn.

Algorithm 4.1 Generate the list of all valid partitions.

1: Pn ← {(0, . . . , 0, n2)}
2: for k = n to 2 do
3: for all p ∈ Pn do
4: while p ∈ F (k)

n and Tkp is valid do
5: Pn ← Pn ∪ {Tkp}
6: p← Tkp
7: end while
8: end for
9: end for

11

(0, 0, 0, 0, 0, 36)

(1, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 11)

(0, 0, 1, 0, 0, 20)

(0, 0, 0, 1, 0, 27)

(0, 0, 0, 2, 0, 18)

(0, 0, 0, 3, 0, 9)

(0, 0, 0, 4, 0, 0)

(0, 0, 1, 0, 1, 16)

(0, 0, 1, 0, 2, 12)

(0, 0, 1, 0, 3, 8)

(0, 0, 1, 0, 4, 4)

(0, 0, 1, 0, 5, 0)

(0, 0, 0, 3, 1, 15)

(0, 0, 0, 2, 1, 14)

(0, 0, 0, 2, 2, 10)

(0, 0, 0, 2, 3, 6)

(0, 0, 0, 1, 1, 23)

(0, 0, 0, 1, 2, 19)

(0, 0, 0, 1, 3, 15)

(0, 0, 0, 1, 4, 11)

(0, 0, 0, 1, 5, 7)

(0, 0, 0, 0, 1, 32)

(0, 0, 0, 0, 2, 28)

(0, 0, 0, 0, 3, 24)

(0, 0, 0, 0, 4, 20)

(0, 0, 0, 0, 5, 16)

(0, 0, 0, 0, 6, 12)

(0, 0, 0, 0, 7, 8)

(0, 0, 0, 0, 8, 4)

(0, 0, 0, 0, 9, 0)

6

5
4

2

3

2

2

2

2

Figure 8: All valid partitions for n = 6, organized in a tree-like structure. The numbers
on the arrows indicate the chain size.

It should be noted that, since we only work on p1, we never generate a partition twice.
Since for a fixed k there is no interaction between the partitions, the loop in line 3 of
the algorithm is very well suited for parallelization, where every processor runs the inner
loop with a given unique partition. For fixed k and p we generate a chain of feasible
partitions. Due to the solution richness of the problem, it is relatively easy to check
whether a partition is valid in contrast to proving that it is invalid. The main reason for
this is that for a valid partition there are usually many placements possible. One can get
them for example by rotation or mirroring, just to name a few approaches. To prove that
no placement can be found, we have to walk the whole tree, except for the parts that
get excluded by the pruning rules. However, the moment we found an invalid partition
in such a chain, we know that we found all valid partitions for this k and p.
The chains provide one more benefit. Since the partitions in such a chain do not differ

that much, we can use the search tree from the previous valid partition up to that point
where the algorithm would have acted differently. We can just use the same stack again.
Another method for finding valid partitions without even running an explicit check

are implicitly valid partitions. For example, if a partition with one 4× 4 square is valid,
also partitions where we replace this square by another 3× 3 square or up to four 2× 2
squares are valid, after filling up with the appropriate amount of unit squares. This is
most easily realized if we save the valid partitions in a tree-like structure. Each node
contains the partitions of a chain. Figure 8 shows the tree of all valid partitions for n = 6.
Not only helps this structure with finding implicitly valid partitions, but it is also very
space efficient, since we only have to store some meta information like the chain length
and size and not any explicit partition. Also, we can start checking chains with some
offset. There are more applications, which we will see later.
While inserting a partition in the tree, we also add all partitions with the above

transformation. With even less effort, all partitions lying on a path are added. Con-

12

sider for example the partition (0, 0, 0, 2, 2, 10). If we add this to the tree the partitions
(0, 0, 0, 2, 1, 14), (0, 0, 0, 2, 0, 18), and (0, 0, 0, 1, 0, 27) are added just because they are on
the path to the position where we want to insert it. By replacing the 3 × 3 squares
one after the other by 2 × 2 squares, we also obtain (0, 0, 0, 1, 3, 15), (0, 0, 0, 1, 2, 19),
(0, 0, 0, 1, 1, 23), (0, 0, 0, 0, 4, 20), (0, 0, 0, 0, 3, 24), and (0, 0, 0, 0, 1, 32), partly also because
of the path.
Now that we already store the results in a tree, it can be accessed quite quickly.

Therefore, we can employ the results of smaller instances during the generation of the
partitions. For example, the (n−1)×(n−1) square in the partition (0, 1, 0, . . . , 0, 2n−1)
can be substituted by all its valid partitions. This alone accounts for almost half of the
valid partitions of the n × n square. To incorporate this, we split the enumeration into
two phases.
First, we only generate partitions with square sizes not smaller than d(n + 1)/2e.

For these sizes we know that there can be only one. This can be seen as finding all
possible borders around a large square. After this, we substitute the largest square by
all corresponding partitions. If n is an even number, we add the partition with four
n/2× n/2 squares and apply the above procedure for each of those squares.
In the last phase, we generate all partitions with chain sizes from b(n − 1)/2c to 2.

The trees are then inserted for each square that is newly generated and thus matches the
chain size.
The tree-like structure comes in handy when substituting the larger squares. Due to

the method of implicitly valid partitions, it suffices to only add the last partition of each
chain.

5 Parallelization

As mentioned above, the whole process of finding new partitons is very suitable for
parallelization. Each base partition together with a given chain size can be run on its
own processor. However, during the calculation it could happen that some partitions
were checked that would be implicitly valid by another new partition. But since the
valid partitions are the more simple problem, we can live with this.
A bigger problem are the invalid partitions. If we find an invalid partition that has,

e.g., six 2×2 squares, we immediately know that the same partition with four of the 2×2
squares replaced by one 4 × 4 square is invalid. More general, all partitions that could
be derived from this partition in much the same way as we generate the partitions, but
with a larger unit square size, are invalid. In a single thread, checks for those partitions
can be avoided quite easily. We just have to mark this in the result tree. However,
with parallelization, it could and will happen that multiple partitions in this group are
checked. At the moment, we give a signal if we found an invalid partition, and all threads
check whether the current partition is a derivate of this invalid partition. If this is the
case, we terminate the calculation. This leaves room for improvement, since most of
the time it requires a large amount of computation power to prove that one partition is
invalid. Even if we can cancel some partitions, it is still a little waste on resources when

13

n Partitions Running time [s]
16 83667 2.7
17 170165 4.8
18 369698 31.1
19 743543 432.6
20 1566258 396.4
21 3154006 2801.9
22 6424822 165720.0

Table 2: Running times for some larger n.

20

25

210

215

220

225

0 5 10 15 20 25

N
o.

of
pa

rt
it
io
ns

n

Figure 9: Number of valid partitions.

they all take a similar amount time.
Moreover, when running multiple threads we lose some determinism. This does not

matter for the final results but makes it harder to reliable measure the number of, e.g.,
visited nodes or totally checked partitions.

6 Results and running times

Using the methods described above, we were able to push the limit of the known partition
numbers a lot further. While these were previously known up to n = 16, we now gave
the results up to n = 24 with reasonable effort. Table 2 lists some of the results together
with the running time. The calculation was done one an Intel Core i5-3470 with four
cores running at 3.2 GHz. In the experiments we ran four threads. The larger numbers
were calculated on another machine, running at least 24 threads. For n = 24 this took
about 18 hours.
With the new results, we now can anticipate a clear trend for the number of valid

partitions. Giving asymptotic formulas for this can be part of future research.

14

7 Conclusion and outlook

In this paper we presented a new algorithm to check whether a perfect partition of a
square can be achieved by a given set of squares. We also had a look on the bigger
picture when we started not to consider the partitions separately anymore, but also
relations between them. Even more, we incorporated results from smaller instances to
quickly find a large number of valid partitions for the larger square.
There are still some open problems. First, we still use a rather naive algorithm for

the bin packing in the preliminary check. We restricted ourselves to only two different
sizes of odd sized squares. Taking more sizes into account requires a more sophisticated
approach.
With each new n we treat, there emerge more complicated partitions. The study of

such partitions led in the past to the parity check. Here we noticed a clear pattern in
the long running invalid partitions. Finding what such partitions have in common is
significant for further lowering the computation time.

Acknowledgments

I thank Christoph Helmberg and his team for the valuable feedback.

References

[1] C. J. Bouwkamp. On the dissection of rectangles into squares. I. Nederl. Akad.
Wetensch., Proc., 49:1176–1188 = Indagationes Math. 8, 724–736 (1946), 1946.

[2] C. J. Bouwkamp. On the dissection of rectangles into squares. II, III. Nederl. Akad.
Wetensch., Proc., 50:58–71, 72–78 = Indagationes Math. 9, 43–56, 57–63 (1947),
1947.

[3] R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte. The dissection of
rectangles into squares. Duke Math. J., 7:312–340, 1940.

[4] Adrianus Johannes Wilhelmus Duijvestijn. Electronic computation of squared rect-
angles. Thesis, Technische Wetenschap aan de Technische Hogeschool te Eindhoven,
Eindhoven, 1962.

[5] Stefan Hougardy. A scale invariant exact algorithm for dense rectangle packing prob-
lems. http://www.or.uni-bonn.de/~hougardy/paper/PerfectRectanglePacking.
pdf, 2011. Accessed: 2018-01-04.

[6] Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis
Y. L. Chin. Packing squares into a square. J. Parallel Distrib. Comput., 10(3):271–
275, 1990.

[7] The on-line encyclopedia of integer sequences, sequence A034395. http://oeis.org/
A034295.

15

http://www.or.uni-bonn.de/~hougardy/paper/PerfectRectanglePacking.pdf
http://www.or.uni-bonn.de/~hougardy/paper/PerfectRectanglePacking.pdf
http://oeis.org/A034295
http://oeis.org/A034295

	Introduction and basic terminology
	Checking whether a given partition is valid
	Preliminary checks
	Finding all valid partitions
	Parallelization
	Results and running times
	Conclusion and outlook

