
MASTER THESIS

On-Board Memory Extension on

Reconfigurable Integrated Circuits using
External DDR3 Memory

Submitted by

Bhaveen Lodaya
(353988)

for the fulfilment of the academic degree

MASTER OF SCIENCE IN AUTOMOTIVE SOFTWARE ENGINEERING

TECHNISCHE UNIVERSITÄT CHEMNITZ

Supervisor:

Prof. Dr. Wolfram Hardt
Department of Computer Science,

Technische Universität Chemnitz, Germany.

Advisor:

Dipl.-Ing. Stephan Blokzyl
Department of Computer Science,

Technische Universität Chemnitz, Germany.

Acknowledgement

I would like to extend my sincere gratitude to all the people who were involved in
helping me make this master thesis a success.

I am very thankful to Prof. Dr. Wolfram Hardt for providing me with an oppor-
tunity to work on master thesis under his professorship.

A special gratitude I give to my advisor and mentor, Dipl.-Ing. Stephan Blokzyl,
whose contribution in the form of his involvement in long discussions, experienced
suggestions, constant encouragement and guidance has helped me get through my
problems and difficulties.

Furthermore, I would also like to acknowledge the help provided by the other staff
members of the Computer Science department by providing me with the tools,
equipment and a quiet and peaceful place to work.

I take this opportunity to express my appreciation to my family and friends who
have provided me with continuous moral support during the course of the thesis.

iii

Abstract

User-programmable, integrated circuits (ICs) e.g. Field Programmable Gate Ar-
rays (FPGAs) are increasingly popular for embedded, high-performance data ex-
ploitation. They combine the parallelization capability and processing power of
application specific integrated circuits (ASICs) with the flexibility, scalability and
adaptability of software-based processing solutions. FPGAs provide powerful pro-
cessing resources due to an optimal adaptation to the target application and a
well-balanced ratio of performance, efficiency and parallelization.

One drawback of FPGA-based data exploitation is the limited memory capacity of
reconfigurable integrated circuits. Large-scale Digital Signal Processor (DSP) FP-
GAs provide approximately 4MB on-board random access memory (RAM) which
is not sufficient to buffer the broadband sensor and result data. Hence, additional
external memory is connected to the FPGA to increase on-board storage capaci-
ties.

External memory devices like double data rate three synchronous dynamic ran-
dom access memories (DDR3-SDRAM) provide very fast and wide bandwidth
interfaces that represent a bottleneck when used in highly parallelized processing
architectures. Independent processing modules are demanding concurrent read
and write access.

Within the master thesis, a concept for the integration of an external DDR3-
SDRAM into an FPGA-based parallelized processing architecture is developed
and implemented. The solution realizes time division multiple access (TDMA) to
the external memory and virtual, low-latency memory extension to the on-board
buffer capabilities. The integration of the external RAM does not change the way
how on-board buffers are used (control, data-flow).

iv

Contents

Acknowledgement iii

Abstract iv

List of Abbreviations viii

List of Figures x

List of Tables xi

1. Introduction 1
1.1. Motivation . 1
1.2. Structure of the master thesis report 3

2. State of the Art 4
2.1. Memory management to support multitasking on FPGA-based sys-

tems . 4
2.1.1. Virtual addressing . 4
2.1.2. Dynamic memory allocation 5
2.1.3. Priority based scheduled memory access 6

2.2. Memory management abstraction for self-reconfigurable video pro-
cessing . 7
2.2.1. Arbiter . 8
2.2.2. Instruction decoder . 10
2.2.3. Address translator . 10

2.3. FPGA design for DDR3 memory 10
2.4. Caching techniques in x86 processors 12
2.5. Feature requirements for the on-board memory extension 13

3. Concept, Design and Implementation 15
3.1. Single-channel data-flow manager 15
3.2. Multi-channel data-flow manager 17

3.2.1. Super-scalar approach . 18
3.2.2. Super-scalar approach with individual WRITE 2 18
3.2.3. Super-scalar approach with common WRITE 2 19

3.3. Common WRITE 2 FIFO . 20

v

3.4. Data-flow controller . 21
3.4.1. Data-flow controller master 21
3.4.2. Data-flow controller slave . 22

3.5. Memory interface generator controller 24
3.6. Generic multiplexer . 27

4. Realization 29
4.1. Hardware . 29

4.1.1. Virtex-6 . 29
4.1.2. HiTech Global development board 29
4.1.3. DDR3 SDRAM . 31

4.2. Toolchain . 31
4.2.1. Xilinx integrated software environment 31
4.2.2. Integrated software environment simulator 31
4.2.3. Core generator . 32

4.3. Intellectual property core . 32
4.3.1. First in first out buffer . 32
4.3.2. Asymmetric FIFO . 34
4.3.3. Memory interface generator 38

5. Evaluation and Validation 44
5.1. Test scenarios . 44
5.2. Data-flow manager tester . 45
5.3. RS232 debugger . 47
5.4. Fast processing module . 47
5.5. Slow processing module . 48
5.6. UART controller . 49
5.7. Resource utilization . 52
5.8. Timing characteristics . 52

6. Conclusion 54
6.1. Problem in the current work . 55
6.2. Future work . 55

Bibliography 57

Appendices 60

A. Configuration parameters 61
A.1. Common configuration parameters 61
A.2. Configuration parameters for MIG generation 61
A.3. Configuration parameters for WRITE 0 generation 61
A.4. Configuration parameters for WRITE 1 generation 62
A.5. Configuration parameters for READ 1 generation 63

vi

A.6. Configuration parameters for READ 0 generation 63
A.7. Configuration parameters for common WRITE 2 generation 64
A.8. Configuration parameters for I/P & O/P buffer generation 65
A.9. Steps to configure the Data-flow manager and make it compatible

to HiTech Global development board 65

vii

List of Abbreviations

Abbreviation Full form
ALU Arithmetic and Logic Unit
AMBA Advanced Microcontroller Bus Architecture
ARM Acorn RISC Machine
ASIC Application Specific Integrated Circuit
AXI Advanced Extensible Interface
C-Link Camera Link
CPU Central Processing Unit
DDR3 Double Data Rate 3
DFC Data-f low Controller
DFM Data-f low Manager
DRAM Dynamic RAM
DSP Digital Signal Processor
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
HDL Hardware Description Language
IC Integrated Circuit
I2C Inter-integrated Circuit
IP Intellectual Property
ISE Integrated Synthesis Environment
ISim ISE Simulator
LUT Lookup Table
MIG Memory Interface Generator
MMU Memory Management Unit
OS Operating System
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RPU Reconfigurable Processing Unit
SDRAM Synchronous DRAM
SRAM Static RAM
TDMA Time Division Multiple Aaccess
TIFF Tagged Image File Format
UART Universal Asynchronous Receiver

Transmitter
USB Universal Serial Bus

viii

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
WRR Weighted Round-Robin

ix

List of Figures

2.1. Mapping virtual address to the physical address using a page table . 5
2.2. Allocation and de-allocation of memory pages 6
2.3. Multiplexed access to one physical memory 6
2.4. Frame grabber structure . 8
2.5. Architecture of memory controller 9
2.6. Two systems memory arbiter block diagram 11
2.7. Memory hierarchy . 13

3.1. Single-channel data-flow manager 16
3.2. Architecture for super-scalar multi-channel data-flow manager . . . 18
3.3. Architecture for super-scalar multi-channel data-flow manager with

individual WRITE 2 . 19
3.4. Architecture for super-scalar multi-channel data-flow manager with

common WRITE 2 . 20
3.5. Finite state machine for data-flow controller master 22
3.6. Finite state machine for data-flow controller slave 23
3.7. Finite state machine for memory interface generator controller . . . 25

4.1. HiTech Global HTG-V6-PCIE Development Board 30
4.2. Native interface FIFO signal diagram 33
4.3. 1:4 Aspect ratio FIFO data ordering 34
4.4. 1:4 Aspect ratio FIFO status flag behaviour 35
4.5. 4:1 Aspect ratio FIFO data ordering 35
4.6. 4:1 Aspect ratio FIFO status flag behaviour 36
4.7. User interface Virtex-6 FPGA memory interface solution 39
4.8. Memory interface generator command timing diagram 40
4.9. Memory interface generator write timing diagram 40
4.10. Memory interface generator write data with respect to command

time events . 41
4.11. Memory interface generator write data in burst mode BL8 42
4.12. Memory interface generator read timing diagram 43

5.1. Architecture of the data-flow manager tester 46
5.2. Fast processing module . 48
5.3. Slow processing module . 49
5.4. UART controller . 51

x

List of Tables

3.1. Port width and memory location width of buffers 15
3.2. Virtual address range for the multiple channels 27

4.1. Interface signals of FIFO with independent clock 34
4.2. Write flags update latency due to a write operation 36
4.3. Read flags update latency due to a read operation 36
4.4. Write flags update latency due to a read operation 37
4.5. Read flags update latency due to a write operation 37
4.6. Memory interface generator user interface signals 39

5.1. Resource utilization of data-flow manager on Virtex-6 XC6VLX240T 52
5.2. Timing characteristics of data-flow manager on Virtex-6 XC6VLX240T 53

xi

1. Introduction

1.1. Motivation

FPGAs are user-programmable integrated circuits which are extensively being
used along with the traditional microprocessors in various fields of applications.
FPGAs contain an array of logic blocks, lookup tables (LUT), etc. which are used
to implement complex functional blocks. It can be used to implement a hard-
ware functional block with a single purpose (like ASIC) and also have the added
feature of re-programmability (like Microprocessor). FPGA combines the main
advantages of both ASIC and Microprocessor.

The main advantage of a FPGA based system is its ability to perform the task at a
high speed and efficiency. Hardware parallelism is the reason that a FPGA is able
to achieve faster speeds and better efficiency thereby achieving higher throughput.

The advantages that FPGAs have over other types of data processing units are:

1. They are efficient at parallel data processing. This is a major advantage
of FPGA over other reconfigurable ICs like Microprocessors which process
data sequentially.

2. They are capable of processing large size of data at high speeds. Unlike
Microprocessors, those are limited to data processing equivalent to its arith-
metic and logic unit (ALU) size (e.g. 8bit, 16bit, 32bit, 64bit).

3. They are reliable. Since, FPGAs are configured using hardware description
language (HDL), a developer has a complete control, up to the gate level
which helps in designing time critical and reliable systems.

4. They have a variety of interface options like UART, I2C, USB, Ethernet,
etc. due to which FPGAs can be interfaced with different kinds of electronic
devices.

5. They have a broad range of applications. FPGAs are being used in wide ar-
eas like Aerospace and Defence, Medical Electronics, Scientific Instruments,
Consumer Electronics, Security Systems, Image Processing, Automotive sec-
tor, etc.

1

FPGAs also include some kind of data storage in the form of memory blocks which
are used to temporarily buffer the data being processed and push the data from
one functional block to another as and when required.

When FPGAs are used for high volume data processing (e.g. the data paralleliza-
tion mentioned in the research article [SB12]), the amount of data required to
be buffered is in the order of few MBs. The amount of memory available on the
FPGA is around 2.5MB (combination of the block RAM and distributed RAM on
Virtex-6 XC6VLX240T [Vir15]).

This shows that the amount of memory resources available on-board is very less
as compared to the data required to be stored in the memory. This is one of the
major disadvantages when using FPGA for high volume data processing.

Also, in real world applications when multiple functional entities are combined
together to make a bigger entity and work together, the entire system might not
yield the expected speed and throughput. One of the problems that the system
designers face is where the systems combined together have a difference in the
data processing speeds at an individual level.

For example, if there are two entities which are working together to achieve a
particular task and the first entity has twice as higher speed of data processing
as the second entity. In such a case, the first entity has to wait for the second
entity to complete its processing before it can move onto the processing of the
next available data input.

Asynchronous buffers (First In First Out - FIFO) are used to handle such prob-
lems. Asynchronous FIFOs reduce the amount of the stalling time and thereby
reducing the latency of the overall system [Tal14]. But, the amount of FIFOs that
can be implemented on an FPGA is also limited by the amount of on-board mem-
ory available. These problems further increase when there are multiple instances
of such logic blocks which require high amount of data storage.

Within the scope of this master thesis a method has been proposed to increase
the on-board memory with the help of external DDR3 SDRAM with an effort to
reduce the overall latency of the system and a smooth functioning of all the logic
blocks connected to one another.

2

1.2. Structure of the master thesis report

Chapter 2: Provides information about the state of the art which consists of
different methods proposed by other researchers to solve the problem similar to
the one mentioned above. It describes the idea of creating an arbiter so as to
facilitate the flow of data from 2 separate entities to an external RAM. One of the
methods presents a concept of a new SDRAM controller designed from scratch
without the use of any already available memory controllers provided by Xilinx.
Data caching techniques found in the modern processors are also considered to be
an idea for the development the solution for this master thesis.

Chapter 3: Describes the concept involved behind the development of base so-
lution for the memory management module i.e. Data Flow Manager (DFM). It
also contains different approaches designed in order to improve the DFM and the
reason behind selection of a particular approach and its implementation. The ar-
chitecture of the DFM and all the modules required to develop the final entity are
also described and explained in this chapter.

Chapter 4: Gives an overview of the hardware and tool chain used to realize
the whole system. It explains in brief all the pre-built logic blocks (Intellectual
Property Core - IPCore) used in order to implement the DFM.

Chapter 5: Involves the test environment created to evaluate and validate the
system function. The architecture of the environment and the structure of all the
modules used to create this environment are explained in brief. This chapter also
includes the different test scenarios used to verify the working of the system and
different results observed and discusses these results in detail.

Chapter 6: Concludes the master thesis, points out the shortcomings of the
design. Recommendations for the removal of these shortcoming and bugs are ex-
plained and ideas for the future improvements of this topic are proposed.

3

2. State of the Art

2.1. Memory management to support multitasking
on FPGA-based systems

Klaus Danne of University of Paderborn ”introduced a concept of Memory Man-
agement Unit (MMU). MMU is designed in a way that is is capable to handle
the concurrent operations of multiple tasks to banks of a single external RAM” in
research article [Dan04a]. MMU is used to store the state of the currently ongoing
task to be able to handle the interrupt from a new task.

The development of a MMU is required to provide abstraction and resource man-
agement for the tasks, which are normally provided by the Operating System
(OS). In normal case of a computer microprocessor and the OS, the memory man-
agement is done with the help of support from the OS and dedicated MMU of the
processor. However, in case of the FPGA, MMU is not a dedicated unit but a
module created on the FPGA itself to handle the memory management.

The features required for the MMU are [Dan04a]:

1. virtual addressing

2. management of the external dedicated RAM

3. memory caching not needed

4. resolution of the task conflicts when multiple tasks require to access the same
memory bank

5. access to the multiple memory banks in parallel

6. tasks are supposed to handle the memory access delays

2.1.1. Virtual addressing

The virtual addressing is required to make the memory addressing independent
of the other tasks that are running. Therefore, every task gets a memory slice
address starting from 0x00. . . 0 and ends at a value depending upon the size of the
memory slice. If all the information regarding the tasks is available beforehand

4

then the virtual address can be converted to the physical address. This virtual
addressing is required, as the number of tasks is not known at the design time.

Figure 2.1.: Mapping virtual address to the physical address using a page table
[Dan04a]

To implement the address translation at runtime, information regarding the ad-
dress mapping is needed to be stored in the MMU. Figure 2.1 show an example
of the address mapping technique. Here, the page table information is stored in
the MMU. The high-word of the virtual address along with the task ID is used to
address the page table and the output of the page table is used as the high-word
of the physical address. The low-word of the virtual address is used directly as the
low-word of the physical address. The width of the higher part of the word and
the lower part of the work depend completely on the value of the chosen page size.
Due to such an easy virtual address mapping technique the page size is limited to
be a power of two.

There are two additional features of using such a simple method [Dan04a]:

1. Memory protection: Due to presence of the page table, the MMU is aware
if a particular task is trying to access a memory location outside its address
bounds. This helps in avoiding errors created due to faulty tasks.

2. Inter task communication: Inter task communication is possible via ac-
cess to the same physical memory locations. This can be done by setting the
page table entry to same value for two different tasks. Additional handshake
signal mechanisms have to be implemented to avoid both the tasks trying
to read the same memory location at the same time.

2.1.2. Dynamic memory allocation

Dynamic memory management is required when new tasks enter a system. MMU
allows a task to allocate or de-allocate memory dynamically at runtime with the

5

help of ‘requestPage(taskID)’ function and ‘releasePage(taskID)’ function. Figure
2.2 shows the function snippet along with the free page stack, which stores the
information regarding the allocated or de-allocated pages.

Figure 2.2.: Allocation and de-allocation of memory pages [Dan04a]

2.1.3. Priority based scheduled memory access

As discussed previously, inter task communication is possible via the access to the
same physical memory location. For this to happen, the address and data bus of
the memory have to be multiplexed. Figure 2.3 show the physical architecture of
this mechanism.

Figure 2.3.: Multiplexed access to one physical memory [Dan04a]

A control signal is used to manipulate the access given to memory for a particular
task. If a single task requests access then the MMU switches the multiplexers
so that the task is able to complete its write/read operation. If multiple tasks
require access to the memory at the same time, a priority based scheduling of the
memory access is done to guarantee error free operation that is well within its
timing constraints.

6

2.2. Memory management abstraction for
self-reconfigurable video processing

Kurt Franz Ackermann of Darmstadt University of Technology ”presents a concept
for an SDRAM controller targeting video processing platforms with dynamically
reconfigurable processing units (RPUs)” in research article [AHIG09]. Multiple
modules present on the FPGA for the task of video processing require the data to
be stored and read from the external DDR3 SDRAM.

Figure 2.4 represents the Frame grabber structure and the data flow required for
the reconfigurable video processing platform. The Camera-Link (C-Link) acts as
an interface between the frame grabber and the camera. The frame received from
the C-Link is first written to the external RAM via the memory controller. Here,
the memory controller acts as the main communication centre for all the different
modules. There are n different RPUs which work on the video frames buffered in
the memory. There is Gigabit Ethernet interface which connects the whole system
to the computer. When all the RPUs complete processing the data, the result is
then transferred to the computer via the Ethernet. This whole cycle then repeats
for the next video frame.

The memory controller developed for the task requires being complex so that it is
capable to provide data to all the random data requests generated by the complex
video processing algorithms. Also, the complexity of the controller increases as
the RAM clients are unaware of the data organization in the memory.

The proposed memory controller architecture is presented in the figure 2.5. The
functionality provided by the memory controller is [AHIG09]:

1. Support for multiple RAM clients

2. Priority arbitration

3. Support for read/write data bursts

4. Memory partitioning

5. Frame-based ring-buffers

6. Support for variable frame dimensions

7. Support for high-level addressing

8. Providing high-level status information

7

Figure 2.4.: Frame grabber structure [AHIG09]

2.2.1. Arbiter

The main advantage of the FPGA based system is ability of its different modules
to work in parallel with respect to each other. In such a case, there is possibility of
these different modules (RPUs) request data from the RAM at the same time. An
arbiter needs to be implemented which can take care of the requests and satisfy
the quality of the system.

The arbiter works on a weighted round-robin (WRR) algorithm which provides
the RPUs with the chance to complete its data operation depending upon the
clients’ priorities.

8

Figure 2.5.: Architecture of memory controller [AHIG09]

9

2.2.2. Instruction decoder

The Instruction decoder works on the commands received from the different clients.
It decodes the instructions like ”create-new-frame, unlock, end-of-frame” [AHIG09]
and does the required pre-processing for the instructions. The decoder acts as a
bridge between the arbiter and the address translator. Its allow the valid instruc-
tions for the address translation while invalid instructions generate appropriate
error codes which are sent back to the arbiter.

2.2.3. Address translator

The Address translator handles the job of the maintaining the data in the physical
RAM in suitable memory structures. It provides the required abstraction of the
memory to the clients. The data addressed by the clients is in the units of pixels,
lines and frames. Address translator partitions the data to avoid data corruption.
The partitions are organized as frame ring-buffers which give access to the latest
frames given by the clients.

2.3. FPGA design for DDR3 memory

Laura Fischer and Yura Pyatnychko of Worcester Polytechnic Institute ”presents
a memory arbiter system capable of sanctioning two systems to interact with a
single DDR3 SDRAM memory” in their bachelor thesis [FP12]. The DDR3 mem-
ory controller developed by Xilinx supports communication between one system
and memory. In real word FPGA-based applications, there are chances of more
than one systems trying to communicate with the memory. If two such systems
try to communicate with the memory simultaneously, there is a possibility of data
corruption in case of data writing and false data reception in case of reading.
Hence, a traffic controller which keeps check on such multiple simultaneous re-
quests and provides the response in a manner such that it avoids the data cor-
ruption is required. The arbiter not only avoids the requests collision but also
maintains their order to ensure the data available in the memory is up-to-date.
The requirements for such memory arbiter are listed as follows [FP12]:

1. Arbiter should take into consideration the memory’s refresh rate

2. Arbiter must maintain the requests from the two systems in order

3. Arbiter must keep a check on the amount of time a system uses the memory

10

Figure 2.6.: Two systems memory arbiter block diagram [FP12]

11

The figure 2.6 contains the design of two systems connected to the memory via
an Arbiter block. The arbiter contains all the necessary FIFOs required to buffer
the read and write commands and the write data before they are transferred to
the memory controller. There are two address FIFOs to store the addresses of the
read and write commands. There is a 64-to-512 FIFO which is used to store the
data to be written to the memory. A 512-to-64 FIFO is also available to store the
data read back from the memory. The arbiter uses two signals: ”other sys switch”
and ”this sys switch” which check the current system that is using the memory
controller and limits the other one from using it. There are two copies of arbiter
running simultaneously with in accordance to each other. The inter communica-
tion of these two arbiter blocks allows the two systems to maintain an error free
data communication with the common external memory module.

2.4. Caching techniques in x86 processors

The Central Processing Unit (CPU) of a computer runs at a higher clock speed as
compared to that of a memory module. The speed at which the data is provided
to the CPU from the RAM creates a bottleneck in the operation. To avoid such
bottlenecks and to hide the memory access latencies from the CPU the concept of
data caching came into existence.

Caching consists of storing the most frequently used data in a memory as near
to the CPU as possible. This cache memory is much faster as compared to the
RAM. Along with being faster, this cache is also expensive and hence available
in smaller quantities in comparison to that of a RAM. At the system reset, the
cache is completely empty. At the first request, the data is read from the main
memory and passed on to the CPU. A copy of this data is also maintained in the
cache for further use. The initial read from the main memory costs high latency
but it cannot be avoided. But all subsequent accesses to the same data are met
with minimum latency possible as the data is already present in the cache memory.

Since the amount of cache is very small and is not capable of incorporating lot
of data, a new level of cache is introduced which is slower than the previous cache
but bigger in size as compared to the previous cache. The cache nearer to the
CPU is called level 1 (L1) cache and the cache between L1 and the RAM is called
level 2 (L2) cache.

L1 and L2 caches are available on the CPU chip itself and that is the reason why
their size is very limited. To overcome the size limitations, the motherboards on
which the CPU is connected also contain a level 3 (L3) cache. This leads to a
memory hierarchy.

12

Figure 2.7.: Memory hierarchy [Hei15]

Figure 2.7 show the memory hierarchy found in the modern day computer. The
size of the cache memories for the Intel’s Sky Lake Micro-architecture is as follows
[Ark]:

1. L1 Cache (Instruction) – 64KB per core

2. L1 Cache (Data) – 64KB per core

3. L2 Cache – 256KB per core

4. L3 Cache – 8192KB shared

2.5. Feature requirements for the on-board memory
extension

In the previous sections of this chapter, different ideas regarding the implementa-
tion of the memory controller to increase the amount of memory available on-board
with the help of external RAM have been discussed. There are different advan-
tages and disadvantages of these methods with respect to the solution required for
the problem mentioned in the chapter 1.

13

Based on the ideas and concepts used above, the features required or the concepts
that can possibly be useful for the development of the memory extension are:

1. Virtual addressing: So that the different clients are not dependent on one
another for the addressing.

2. Memory partitioning: To divide the memory equally between different clients.

3. Data caching: To satisfy data requests immediately whenever possible.

4. Scheduling algorithm: To ensure that every client gets a chance for data
operation without collision with respect to another.

5. Memory protection: To ensure data written to a particular memory partition
belongs to the same client.

6. Strict data ordering: To maintain data order when data appears in a long
continuous stream.

7. Scalable architecture: To incorporate the variable number of clients.

14

3. Concept, Design and
Implementation

As discussed in the previous chapter, an entity which reflects the working similar
to that of the caching technique in case of computer processors needs to be imple-
mented for the FPGA. Along with the low latency data-flow it also needs to be
capable of implementing data-flow not only from one input entity to one output
entity but it needs to be capable of managing the data-flow from multiple input
entities to corresponding output entities.

Data-flow manager (DFM) is the solution to our problems which has the facility
to transfer data from multiple input sources to the corresponding destinations di-
rectly if destination is ready to accept the data or via the external RAM as and
when required.

3.1. Single-channel data-flow manager

The figure 3.1 portrays the architecture of a single channel DFM. WRITE 0 and
READ 0 denote the level 0 buffers and WRITE 1 and READ 1 denote the level 1
buffers. The input and output data widths of each buffer are as mentioned in the
table 3.1.

Buffer
Input data
width (bits)

Output data
width (bits)

Memory location
size (bits)

WRITE 0 8 64 64
READ 0 64 8 64
WRITE 1 64 512 512
READ 1 512 64 512

Table 3.1.: Port width and memory location width of buffers

15

Figure 3.1.: Single-channel data-flow manager

16

Here the data-flow occurs via two different paths:

1. From WRITE 0 to READ 0 directly.

2. From WRITE 0 to READ 0 via WRITE 1,DDR3 SDRAM and READ 1.

The data is directly transferred from WRITE 0 to READ 0 if there is free memory
location in the READ 0 buffer and there is no data present in any other buffers or
external RAM. When the buffer READ 0 runs full then the data from WRITE 0
is transferred to WRITE 1 and it follows the second data path mentioned above.

The decision regarding the path that the data will flow through is being taken by
Data Flow Controller (DFC). DFC keeps track of the empty and full signals of all
the buffers and also on signals from the Memory Interface Generator Controller
(MIGC) which helps in deciding if there is empty memory location in READ 0
and absence of data at any other buffer level or in RAM so as to allow a direct
data transfer from WRITE 0 to READ 0 or not.

DFC not only makes the decision but also provides all the necessary signals to all
the others entities which are required to initiate the data transfer.

The job of the MIGC is to read data from the WRITE 1 and generate appropriate
write address required to write the data to RAM and provides this information
along with write command and enable signals to the Memory Interface Generator
(MIG). It also checks if there is empty memory location in READ 1 and generates
appropriate read address. It provides the read address, read command and enable
signal to MIG so as to initiate a read from the RAM. The data read from the
RAM is then written to READ 1.

MIG is an Intellectual Property Core (IPCore) provided by Xilinx which helps
in easy data write/read to/from external DDR3 SDRAM. Chapter 4 contains
detailed information regarding the working of the MIG.

3.2. Multi-channel data-flow manager

Working of multi-channel DFM is such that local data transfers occur in each and
every channel in parallel with respect to one another. Whenever the READ 0 of
any channel gets full, there arises a need for the data to be stored in RAM. This
data is first transferred to the next level WRITE 1 buffer. Now there are multiple
WRITE 1 buffers which expect to write the data to RAM. A basic round robin
manner is used where each and every channel gets a chance to write data to the
RAM. Similarly, reading from RAM also happens in a round robin manner. There
are few variations to a multi-channel DFM which are mentioned below which help

17

us in achieving the desired goal of low latency data-flow along with limited amount
of on-board resource usage.

3.2.1. Super-scalar approach

Figure 3.2 depicts the very basic and logical version to implement a multi-channel
DFM from a single-channel DFM. Here, the multiple channels are created by the
replication of the modules present in the single channel without any extra data
buffers.

The advantage to this design is that it is very easy to implement with minor mod-
ifications to the data-flow controlling modules.

Due to round robin manner, each and every channel gets less number of chances
for data transfer to RAM. Hence, the possibility of the buffers on the write side
running full increases. This is a major disadvantage to this approach and this
problem keeps increasing in direct proportion to the increase in the number of
channels.

Figure 3.2.: Architecture for super-scalar multi-channel data-flow manager

3.2.2. Super-scalar approach with individual WRITE 2

Figure 3.3 represents the next approach towards the development of multi-channel
DFM. To reduce the risk of write buffers running full an extra level of write buffer

18

has been introduced. WRITE 2 buffer has both input and output data width of
512bits.Addition of extra level of buffer increases the amount of data that can be
stored on the write side thereby reducing the pressure of data transfer to the RAM.

This approach overcomes the problem mentioned in the previous approach but it
gives rise to another problem. It increases the amount of on-board memory usage
which is already limited.

Figure 3.3.: Architecture for super-scalar multi-channel data-flow manager with
individual WRITE 2

3.2.3. Super-scalar approach with common WRITE 2

Figure 3.4 describes the final approach which is a trade-off between the previous
two approaches. The input data to all the channels comes from different sources
and is incoming at different rate. Therefore, the channels where the input is con-
nected to a source with low data rate might not have a risk of write buffers running
full. Hence, instead of connecting WRITE 2 buffer to all the channels, there is
only need to attach these level 2 buffers to only required channels. But for this to
be possible there has to be prior information about the data rate of all the sources.

In absence of the data rate information a generalized WRITE 2 buffer has to be
implemented. Hence, a common WRITE 2 buffer is used which is shared by all the
channels and its memory locations will be in majority occupied by the channels

19

with a high data rate input.

This approach not only reduces the risk of buffers running full but also keeps a
control over the amount of on-board resources used. Hence, this approach has
been chosen to develop the multi-channel DFM. Also, the multi-channel DFM is
designed in a generic way such that the user can choose the number of channels
from a range of 1 to 32.

Figure 3.4.: Architecture for super-scalar multi-channel data-flow manager with
common WRITE 2

3.3. Common WRITE 2 FIFO

The common write buffer has both input port and output port width of 517bits.
The lower 512bits of the buffer location is filled with the data received from the
WRITE 1 buffer of the channel. The higher 5bits are used to store the id of the
channel from where the data is received from. The Xilinx FIFO IPCore is used to
create all the buffers. The core generator does not directly provide an option to
modify the data width of the ports. Hence, the number of bits for the channel id
is limited to 5bits which limits the maximum number of channels possible to 32.

20

3.4. Data-flow controller

As discussed in the section 3.1, DFC is the main component which handles the
job of decision making for the data path selection. In case of a single-channel
DFM a single DFC is present which communicates with all the other components.
But when the numbers of channels increase, as in case of the multi-channel DFM,
there comes into existence multiple DFCs which need to communicate with a sin-
gle MIGC.

To make it easier for data synchronization between multiple channels and to avoid
increasing the complexity of the DFC to incorporate the status of other channels,
DFC is split into two parts: DFC Master and DFC Slave.

DFC Slave now plays the same role as the DFC in the case of single-channel DFM
except for handling the data transfer between WRITE 1 to WRITE 2 and be-
tween MIGC and READ 1.

DFC Master handles the round robin iteration of all the channels and data trans-
fer from the WRITE 1 to WRITE 2 as and when required. On the other hand,
MIGC iterates through the READ 1 and provides the data to the read buffer as
the need arises.

3.4.1. Data-flow controller master

Data Flow Controller Master is designed as per the state machine in the figure
3.5. The main job of DFC Master is to transfer data from the WRITE 1 of each
channel to common WRITE 2 in a round robin manner.

The DFC Master checks the empty signal (CHNL W 1 EMP) of WRITE 1 buffer
of the current channel, full signal (W 2 FULL) of WRITE 2 and full signal coming
from MIGC (MIG CNTLR CHNL RAM FULL) for the memory slice dedicated
for the current channel and decides whether to initiate the data transfer or not.
Then it increments the channel id and repeats the same for the next channel. DFC
Master gives the appropriate read enable signal, write enable signal and select line
for the multiplexer and confirms the data transfer.

The data width of the output from WRITE 1 is 512bits and the data width of
the input to WRITE 2 is 517bits. The 5bits of current channel id not only acts
as the select line for the mux but also serve as the higher 5bits of the data input
to the WRITE 2.The channel id stored along with the data in the WRITE 2 is
used by MIGC to calculate the appropriate memory location address for the write
operation.

21

Figure 3.5.: Finite state machine for data-flow controller master

3.4.2. Data-flow controller slave

Data Flow Controller Slave is designed as per the state machine in the figure 3.6.
The main job of DFC Slave is to handle the local data transfer. The local data
transfer comprises of 3 data transfer operations which are:

1. Data flow from WRITE 0 to READ 0

Initially, after the system reset, there is no data available in any of the
buffers. In this case, there is no need for data to be stored to the RAM as
there is enough space in the READ 0 buffer. Hence, direct transfer of data
from WRITE 0 to READ 0 occurs.

Since, the memory location size of both the buffers is same only one free
location in READ 0 is required to initiate the data transfer. Hence, the full
signal (R 0 FULL) of READ 0 and empty signal (W 0 EMP) of WRITE 0
are used to make the decision.

LCL DATA IN RAM is a signal driven by empty signals of the current chan-
nel WRITE 1, current channel READ 1, common WRITE 2 and data avail-
able in RAM signal (GBL DATA IN RAM) of the current channel memory
slice from MIGC. LCL DATA IN RAM signal assures that no data is present
at any other location.

2. Data flow from WRITE 0 to WRITE 1

Only after READ 0 runs full, there arises a need to transfer the data to
RAM. To achieve this, at first, data should be transferred from WRITE 0

22

Figure 3.6.: Finite state machine for data-flow controller slave

to WRITE 1.

Memory location size of WRITE 0 is 64bits while that of WRITE 1 is
512bits. Data stored in 8 memory locations from WRITE 0 needs to be
transferred to WRITE 1. Hence, instead of empty signal (W 0 EMP), pro-
grammable empty signal (W 0 PROG EMP) is used which assures there are
at least 8 memory locations filled in WRITE 0.

23

W R is a signal which stores the information about the next operation to
be performed and keep alternating between write and read. The operation
between WRITE 0 and READ 0 has the highest priority and the other two
operations are given equal priority so as to confirm that the data written
to the WRITE 0 reaches RAM via WRITE 1 and data read from RAM to
READ 1 is read by READ 0.

The extra wait states are required to give time to the FIFOs to update its
full, programmable full, empty and programmable empty signals. Detailed
information regarding the FIFOs is mentioned in chapter 4.

3. Data flow from READ 1 to READ 0

In this operation, memory location size of READ 1 is 512bits and that
of READ 0 is 64 bits. Hence, data once read from READ 1 has to oc-
cupy 8 memory locations in READ 0. Hence, the programmable full signal
(R 0 PROG FULL) of READ 0 is used instead of full signal (R 0 FULL).

3.5. Memory interface generator controller

Memory Interface Generator Controller (MIGC) is designed using the finite state
machine mentioned in figure 3.7. The objective of MIGC is to handle the read
and write requests to the Memory Interface Generator (MIG).

RAM INIT denotes the PHY INIT DONE signal coming from the MIG. This is
the most important signal which is being used by all the finite state machines.
RAM INIT indicated that the external RAM has been successfully calibrated.
Hence, no operation should be carried out until the RAM INIT signal is asserted.

MIG RDY is the second most important signal after the signal RAM INIT. The
process of writing to the RAM or reading from the RAM should not move forward
unless the MIG is ready to handle requests. Write and read operations are given
equal priority. At the end of any one of the operation, the chance is given for the
other operation to execute. The conditions for the state transitioning are defined
in such a way that the above mentioned rule is followed.

Write operation starts if there is any data present in the common WRITE 2 buffer
and MIG is ready to process the data and that the write bus of the MIG is
also available. These conditions are verified by the empty signal (W 2 EMP) of
WRITE 2, MIG RDY and MIG WDF RDY. The 512bit data is read from the
WRITE 2.

24

Figure 3.7.: Finite state machine for memory interface generator controller

25

During this time, the address for the write memory location is also calculated and
given along with the write command. MIG ADDR and MIG CMD denote the
address bus and the command bus while MIG EN is the signal which is given to
indicate the MIG that valid address, command and data is present on the input
ports.

For read operation, a round robin manner is implemented. MIGC checks the full
signal (CHNL R 1 FULL) of READ 1 of each channel one after the other and
decides if there is free memory location for a data to be read from the RAM and
written to the READ 1 buffer of the current channel. Depending upon the channel
id the read address is calculated and given along with the read command and en-
able signal. During write operation 512bits data is split into two words of 256bits
and then written. Similar to the write operation, data read from the RAM is also
available in two words of 256bits each. The data is indicated by a valid signal
(MIG RD DATA VALID) while the last word is indicated by the read end signal
(MIG RD DATA END).

The address calculation for both write and read operation is based on the write
pointer, read pointer and data count. These 3 values are maintained and stored
for each and every channel in an array of composite data type. Also depending
on these values and operations, full signal (CHNL RAM FULL) and empty signal
(CHNL RAM EMP) are available which are used by other modules as a deciding
factor for their operations.

There are two generics defined for the MIGC and a constant value used for setting
different vector sizes. They are as follows:

1. NO OF CHANNELS: This generic helps to indicate the entity about
the total number of channels generated. The channel id starts from 0
to NO OF CHANNELS-1. For example, in case NO OF CHANNELS is
set to 4, the channels have id from 0 to 3. The minimum value that
NO OF CHANNELS can have is 1 while the maximum value is 32.

2. DATA DEPTH: DATA DEPTH indicates the number of memory loca-
tions of the external memory module reserved for a particular channel. The
value set here should be a power of 2. The depth set here is used for all the
channels irrespective of their need. The user should ensure that the product
of DATA DEPTH, NO OF CHANNELS and memory location width should
be less than or equal to the maximum size of the RAM.

3. VECTOR WIDTH: It is a constant that is calculated from the value of the
DATA DEPTH. VECTOR WIDTH indicates the number of bits required to
address all the memory locations for the set DATA DEPTH. For example, if
the DATA DEPTH is set to 8 memory locations then the VECTOR WIDTH
calculated is 3bits.

26

The composite data type used for the storage of the address pointers and the data
count is as shown below.

type channel_info is

record

chnl_write_ptr : std_logic_vector (VECTOR_WIDTH-1 downto 0);

chnl_read_ptr : std_logic_vector (VECTOR_WIDTH-1 downto 0);

chnl_data_count : std_logic_vector (VECTOR_WIDTH-1 downto 0);

end record;

The write pointer and the read pointer work in sync with each other with the help
of the data count to avoid over writing or reading of garbage data. The pointers
are standard logic vectors which reset to zero when incremented at its highest
values. This feature becomes an advantage in creating cyclic pointers. The whole
memory slice for a particular channel can be used in a cyclic manner without any
extra effort in maintaining the addresses.

The calculation for the read or write addresses are done based on the corresponding
pointer value and the channel value. For example, in case of number if channels
is 4 and data depth is 8, the channel id is 2bits long while the channel pointers
for write and read are 3bits long. The virtual addresses are channel id and the
pointer value concatenated with channel id being the higher bits. Due to this the
virtual addresses for the 4 channels are as shown in the table 3.2.

Channel ID Start Address End Address
Channel 0 00000 00111
Channel 1 01000 01111
Channel 2 10000 10111
Channel 3 11000 11111

Table 3.2.: Virtual address range for the multiple channels

These virtual addresses are then converted to physical address by multiplication
with 8. This multiplication is necessary as the MIG is set to be used in burst
mode BL8.

3.6. Generic multiplexer

Multiplexers are generally used to select one of the inputs and pass it forward
depending on the value of the select lines. To select the data output from one of
the WRITE 1 buffer of each channel and pass it on as the input to the common
WRITE 2 buffer a need for a multiplexer arises.

27

In the case of a DFM where the number of channels can vary, a generic multiplexer
needed to be created. Under normal circumstances when talking about a generic
entity the freedom that a developer/user has that he can manipulate the data
width of the ports.

In this scenario, the data width of the ports remain the same (i.e. 512bits) but the
number of ports itself varies depending on the number of channels. To implement
such a functionality, a different type of multiplexer is created where the number
of input port is only one 1 quantity but its data width increases in accordance to
the increase in the number of channels.

Instead of selecting a particular input from multiple inputs depending on the se-
lect lines, here a particular section out of the whole input port is selected and
presented at the output port.

28

4. Realization

This section contains the description of the Virtex-6 FPGA and the Evaluation
board utilized for the realization, evaluation and validation. The Xilinx Integrated
Software Environment (ISE) was used for design and ISE Simulator (ISim) was
used for validation in simulation.

4.1. Hardware

4.1.1. Virtex-6

”Virtex-6 FPGAs are re-programmable integrated circuits designed for the applica-
tion specific platforms. Virtex-6 FPGAs contain hardware components that enable
designers to innovate different products” [Vir15]. Virtex-6 These features assist
logic designers to build the high-performance functionality into a FPGA-based
system. They are an alternative to ASIC. Virtex-6 FPGAs are best utilized for
”high-performance logic designs, signal processing, and time-critical embedded sys-
tems” [Vir15].

The Virtex-6 FPGA (XC6VLX240T) is used to implement the Data Flow Man-
ager. It contains 241,152 Logic Cells. There are 37,680 Configurable Logic Block
Slices. The total amount of on-board RAM is separated into Distributed RAM
and Block RAM. The maximum amount of Distributed RAM available is 3,650Kb
while the maximum amount of Block RAM is 14,976Kb. Total number of I/O
pins is 720 which are distributed in 18 I/O banks. There are 24 GTX low-power
transceivers which are used to create different interfaces so as to be able to com-
municate with the FPGA [Vir15].

4.1.2. HiTech Global development board

HiTech Global development board (HTG-V5-PCIE) contains Virtex-6 FPGA on-
board. It also includes a 1GB DDR3 small outline dual in-line memory module
(SODIMM), which is used an external memory module for the DFM.

Communication mechanisms available on-board are GTX ports, PCI Express, Eth-
ernet, SFP Interface, USB, USB to UART bridge.

29

There are three different clock sources which are available on-board. The first
clock is a 100MHz oscillator which is being used by the DFM and the external
DDR3 RAM. There is a clock socket which can be used to connect external oscilla-
tors. There is a third super clock which ”provides variety of low-jitter differential
clock through crystals and a frequency synthesizer [Xilc].

Figure 4.1 contains the image of the development used. There are different input
and output ports on the board that are connected to different push buttons or DIP
switches and few LEDs. The push buttons are used to provide the necessary start-
ing signals and the different output statuses are verified with the help of the LEDs.

USB to UART Bridge is used to connect the board to the computer through which
the data is passed from one and received from the other end. The detailed descrip-
tion of the working of the UART as a means to send and receive data is mentioned
in the chapter 5.

Figure 4.1.: HiTech Global HTG-V6-PCIE Development Board [Xilc]

30

4.1.3. DDR3 SDRAM

SRAM and DRAM are two major types of RAM that are available today. SRAMs
are bigger, faster and much more expensive than DRAMs. Hence, SRAM are
utilized where there is requirement of high speed memories and DRAM are used
where the amount of data to be stored is higher in quantity. We not only require
memory with higher capacity but also a memory which is able to provide the re-
quested data at faster rates. Hence, the modern version of synchronous DRAM
i.e. DDR3 SDRAM is used for our purpose.

DDR3 SDRAM is a most widely use DRAM which has a high bandwidth interface.
Data rate of DDR3 RAM is approximately twice as compared to DDR2 RAM. It
has improved access latencies. It is able to provide better performance than its
predecessors. The gap between the data rates of SRAM and DRAM is reducing
as the technology behind the making of the RAM is developing. The amount of
energy utilized by this RAM is also much less leading to its popularity among
the mobile computing platforms and low power applications like use in embedded
systems along with microprocessors and FPGAs.

4.2. Toolchain

4.2.1. Xilinx integrated software environment

Xilinx integrated software environment (ISE) is software developed by Xilinx for
synthesis of Hardware Description Language (HDL) designs. With the help of ISE,
developers attain the capability to synthesize their designs and perform different
kinds of analysis and simulation of the design.

ISE is capable of creating dense logic circuit which helps in accommodating bigger
systems on a single FPGA chip thereby reducing the overall cost of the project.
The designs created by ISE are also much faster and have lower latencies compared
to other similar tools [Xil16].

4.2.2. Integrated software environment simulator

Integrated software environment simulator (ISim) is simulation software available
along with Xilinx ISE. It helps the developer to verify the intended working of the
design on a computer without the need of a hardware device. It helps in under-
standing the logical behaviour and timing behaviour. It heavily reduces the time
required for analysis, testing and verification. It’s one of the key features is that

31

it supports both VHDL and Verilog [Xilb].

4.2.3. Core generator

Xilinx Core Generator is a tool which helps in reducing the design time of systems
by giving access to the pre-designed IPs. It contains a catalogue with IPs for dif-
ferent types of domains like Automotive, Communication & Networking, Digital
Signal Processing, Embedded Processing, Memories & Storage Elements, Video &
Image Processing, etc.

System developers can make bigger and more complex systems with the use of
these readily available design blocks. This not only saves time and money but
also makes the system much more efficient [Xila].

4.3. Intellectual property core

4.3.1. First in first out buffer

”The FIFO Generator core is an IPCore developed by Xilinx. It provides the
complete function of a first-in first-out memory queue. It can be used in any ap-
plication that require storage and retrieval of data with high-performance designs.
The core provides an enhanced solution for all FIFO configurations with minimum
resource usage” [Fif12].

The Xilinx FIFO Generator core has two types of FIFO interfaces: Native and
AXI4. The interface used in this thesis is native interface. There are multiple
customization options which help in creating a high performance FIFO.

FIFO can be configured to have data width from 1 to 1024bits and data depth up
to 4,194,304 words. The input and output ports of the FIFO can be symmetric
or asymmetric. The ratio between the input and output ports can be set to any
value between 1:1, 1:2, 2:1, 1:4, 4:1, 1:8 and 8:1 [Fif12].

The kinds of FIFOs used in the DFM are with the ratios 1:1, 1:8 and 8:1. Write
and read characteristics of asymmetric FIFOs is different from that of symmetric
FIFOs. Some of these characteristics are mentioned in the following sections.

Figure 4.2 shows the Native Interface FIFOs Signal Diagram. It contains all the
possible signals that are related to the FIFO.

32

Figure 4.2.: Native interface FIFO signal diagram [Fif12]

The table 4.1 consists of the description of all the important ports related to the
FIFO.

Name Type Description
RST Input Asynchronous reset
WR CLK Input Synchronous clock with the read signals
RD CLK Input Synchronous clock with the write signals
DIN [N:0] Input Data input to the FIFO

WR EN Input
Write enable for data on DIN to be written into
the FIFO

RD EN Input
Read enable for data to be read from FIFO via
DOUT

DOUT [N:0] Output Data output from the FIFO
FULL Output FIFO is completely filled
ALMOST FULL Output Only one more data can be written to the FIFO
PROG FULL Output FIFO is filled up to or more than the threshold
WR ACK Output Previous write to the FIFO was successful
OVERFLOW Output Previous write was unsuccessful as the FIFO is full
EMPTY Output FIFO is completely empty
ALMOST EMPTY Output Only one more data can be read from the FIFO

33

PROG EMPTY Output FIFO is empty up to or beyond the threshold
VALID Output Data available at DOUT is valid

UNDERFLOW Output
Previous read was unsuccessful as the FIFO is
empty

WR DATA COUNT
[C:0]

Output Count of the data written to the FIFO

RD DATA COUNT
[C:0]

Output Count of the data that can be read from the FIFO

Table 4.1.: Interface signals of FIFO with independent clock [Fif12]

4.3.2. Asymmetric FIFO

Asymmetric FIFOs can only be implemented with independent clocks and block
RAM. ”For FIFOs with asymmetric aspect ratios, the full and empty flags are in-
active until a complete word has been written or read. The FIFO does not sanction
access to partial words” [Fif12].

Figure 4.3 shows the operation of a FIFO with aspect ratio of 1:4 (write width=2,
read width=8). For a 1:4 FIFO, 4 write operations need to be performed before a
single read operation can be performed. Here, 4 2bit data is written one after the
another in order 01, 00, 11 and 10. The memory location gets filled up from most
significant bit(MSB) to least significant bit(LSB). Now, when a read operation is
performed, the data read is 01 00 11 10 or 4E.

Figure 4.3.: 1:4 Aspect ratio FIFO data ordering [Fif12]

Figure 4.4 shows the transitions of different signals related to the write and read
operations explaining the working of the 1:4 FIFO.

34

Figure 4.4.: 1:4 Aspect ratio FIFO status flag behaviour [Fif12]

Figure 4.5 shows the example of a FIFO with aspect ratio of 4:1(write width=8,
read width=2). Here a single write operation is performed with the data 11 00 01 11
or C7. When the first read operation is executed, the data from the MSB is re-
ceived first i.e. 11. This is followed by 00, 01 and 11 for the consecutive read
operations.

Figure 4.5.: 4:1 Aspect ratio FIFO data ordering [Fif12]

Figure 4.6 shows the transitions of different signals related to the write and read
operations explaining the working of the 4:1 FIFO.

The latencies of the different status flags vary as compared to its counterpart in

35

Figure 4.6.: 4:1 Aspect ratio FIFO status flag behaviour [Fif12]

case of symmetric aspect ratios. The tables below contain the exact latencies
for different scenarios with respect to the read clock (RD CLK) and write clock
(WR CLK).

Signal Latency
FULL 0
ALMOST FULL 0
PROG FULL 1 WR CLK
WR ACK 0
OVERFLOW 0
WR DATA COUNT 1 WR CLK

Table 4.2.: Write flags update latency due to a write operation [Fif12]

Signal Latency
EMPTY 0
ALMOST EMPTY 0
PROG EMPTY 1 RD CLK
VALID 0
UNDERFLOW 0
RD DATA COUNT 1 RD CLK

Table 4.3.: Read flags update latency due to a read operation [Fif12]

36

Signal Latency
FULL 1 RD CLK + 4 WR CLK (+ 1 WR CLK)
ALMOST FULL 1 RD CLK + 4 WR CLK (+ 1 WR CLK)
PROG FULL 1 RD CLK + 5 WR CLK (+ 1 WR CLK)
WR ACK N/A
OVERFLOW N/A
WR DATA COUNT 1 RD CLK + 4 WR CLK (+ 1 WR CLK)

Table 4.4.: Write flags update latency due to a read operation [Fif12]

• The crossing clock domain logic in independent clock FIFOs introduces a
WR CLK uncertainty to the latency calculation.

• Write handshaking signals are not affected by a read operation.

Signal Latency
EMPTY 1 WR CLK + 4 RD CLK (+ 1 RD CLK)
ALMOST EMPTY 1 WR CLK + 4 RD CLK (+ 1 RD CLK)
PROG EMPTY 1 WR CLK + 5 RD CLK (+ 1 RD CLK)
VALID N/A
UNDERFLOW N/A
RD DATA COUNT 1 WR CLK + 4 RD CLK (+ 1 RD CLK)

Table 4.5.: Read flags update latency due to a write operation [Fif12]

• The crossing clock domain logic in independent clock FIFOs introduces a
RD CLK uncertainty to the latency calculation.

• Read handshaking signals are not affected write operation.

The actual FIFO depth is also one of the characteristics of the FIFO which is
different in case of asymmetric FIFOs as compared to a symmetric FIFO. The
actual depth of the FIFO depends on the 3 factors [Fif12]:

1. Common Clock or Independent Clock.

2. Standard or First Word Fall Through (FWFT)

3. Symmetric or Asymmetric Aspect Ratio

In case of the asymmetric FIFOs used in the DFM the actual depths of the FIFO
is calculated as [Fif12]:

1. actual write depth = gui write depth – 1

37

2. actual read depth = gui read depth – 1

Due to this change in the characteristic, the possible total data written to a 1:8
FIFO is different than the possible total data read. Hence, to keep a balance
instead of full signal (W FULL), programmable full signal (W PROG FULL) is
used in the finite state machines for the decision making.

4.3.3. Memory interface generator

Memory interface generator (MIG) is a pre-built logic block, available as an IP-
Core for use by the system designers. The version of the generated MIG is 3.92.
The main task of the MIG is to be a mediator for the user design and the RAM. It
translates and routes the appropriate commands and data between the user design
and the RAM. MIG contains three different types of interfaces namely AXI4 Slave
Interface, Native Interface and User Interface.

AXI4 Slave Interface: Advanced extensible interface (AXI) is a protocol intro-
duced by ARM Advanced Microcontroller Bus Architecture(AMBA), now adopted
by Xilinx as a protocol for its IP cores from Spartan-6 and Virtex-6 series onwards
[Mig13].

Native Interface: Native interface gives a much higher degree of control over
the communication between the user design and the RAM. It is an interface used
by advanced users to achieve the most efficiency out of the system. Many commu-
nications are carried out in parallel and data may be returned out of order. It’s
the designer’s job to reorder the data [Mig13].

User Interface: User interface is the simplest interface which can be used for
data transfer between the user design and the RAM. The table 4.6 consists of all
the ports related to the user interface of MIG.

Name Type Description
rst Input Active high reset
clk Input Clock
phy init done Output Signal indicating the RAM is calibrated
app addr Input Address for the current request
app cmd Input Command for the request (Read: 001, Write: 000)
app en Input Enable for the beginning of the request
app rdy Output Signal indicating MIG is ready for further requests
app rd data Output Data to the user design
app rd data end Output Indicates the last read cycle
app rd data valid Output Read data available is valid

38

app wdf data Input Data from the user design
app wdf end Input Indicates the last write cycle
app wdf wren Input Enable signal for Write data
app wdf rdy Output Signal indicating MIG is ready for write request

Table 4.6.: Memory interface generator user interface signals [Mig13]

The figure 4.7 represents the MIG in User Interface mode [Mig13].

Figure 4.7.: User interface Virtex-6 FPGA memory interface solution [Mig13]

4.3.3.1. Command Path

Figure 4.8 shows the timing diagram for the signal transitions for sending a com-
mand to the MIG. The app en signal is asserted to indicate a valid command.
The appropriate command and the address are written to the corresponding buses
along with the app en signal. But the command is only registered after the app rdy
signal gets high. The developer needs to hold the values to the app cmd, app addr
and app en until the app rdy signal is asserted.

39

Figure 4.8.: Memory interface generator command timing diagram [Mig13]

4.3.3.2. Write Operation

Similar to Command Path, the write data also depends on enable signal (app wdf wren)
and the ready signal (app wdf rdy). The data for the MIG in burst mode BL8
is written in two words. The app wdf rdy should be held high along with the
app wdf wren signal for both the words. The second data word is indicated by
app wdf end signal.

Figure 4.9.: Memory interface generator write timing diagram [Mig13]

The writing of data to the write bus can be in 3 time events as shown in figure

40

4.10. The write data can be given along with the command as shown in event
1. It can also be given before the command as shown in event 2. The data can
be given after the command but in this case the difference between the command
and first data word should not be more than 2 clock cycles. This is depicted in
event 3 of the figure.

Figure 4.10.: Memory interface generator write data with respect to command
time events [Mig13]

4.3.3.3. Write Burst Mode

The MIG has the feature of writing data in the burst mode. For BL8, 8 continuous
write commands can be given to the MIG one after the other consecutively. The
data on the write bus should be in the same order as the commands and the
addresses. Here, the difference between the write data and the command can be
more than 2 clock cycles. Figure 4.11 portrays the timing diagram for the burst
mode.

41

Figure 4.11.: Memory interface generator write data in burst mode BL8 [Mig13]

42

4.3.3.4. Read Operation

After a read command is issued, the MIG indicate the read data with the asser-
tion of the read data valid signal (app rd data valid). The data received from
the MIG is also in two data words. The second valid word is indicated by the
app rd data end signal. Figure 4.12 shows the timing diagram for the read oper-
ation.

Figure 4.12.: Memory interface generator read timing diagram [Mig13]

43

5. Evaluation and Validation

5.1. Test scenarios

To evaluate and validate the function of the DFM different test are supposed to be
conducted. The objective of these tests is to verify that the data fed to the input
of the DFM is received successfully at the output. The data received is verified to
be in the proper order. The following test scenarios help in verifying the different
work conditions of the DFM.

1. Direct data path from WRITE 0 to READ 0 for one channel.

For this test, the amount of data stream given at the input is just long enough
such that most of the data directly flows from the WRITE 0 to READ 0.
In no way should the READ 0 buffer run full to avoid the data going from
WRITE 0 to WRITE 1. This process is repeated multiple times with time
gaps in between. Repeated data stream helps in verifying that in normal
working case if the data stream at the input is available in bursts then the
DFM is able to route the data properly through the direct path always if
no data is present in any of the other buffers or the external memory module.

2. Data path from WRITE 0 to READ 0 via the external RAM for one channel.

The data stream given as the input to test this scenario is very long. The
data flows through all the buffers and the external RAM. The objective of
this test scenario is to verify that the data path has no leaks and all the data
that is written to the external RAM is also read from the RAM and received
at the output. The same process is repeated multiple times with variable
data stream length and with time gaps in between. The long data stream
length verifies the data path via the RAM while the short data streams in
between helps to regression test the working of the DFM already tested in
the first test scenario.

3. Working of simultaneous multiple channels.

For this test, the number of channels is set to 2. The data stream is fed
to the input ports of both the channels and the output received is verified.
The main objective of this test is to verify the working of multiple channels

44

in parallel with respect to one another. This also verifies the round robin
working of the DFC Master and the MIGC. The output verifies that all the
channels get the chance to write its data to the external RAM and read the
data from it. The data is then sent in variable stream lengths and in variable
channel order and the data received is verified.

To test the above mentioned scenarios a test environment is created. This test
environment helps in sending variable data stream via the USB to UART Bridge
on the development board and receiving the output data which can be verified on
the computer.

5.2. Data-flow manager tester

The figure 5.1 shows the basic architecture of test environment used to evaluate
and validate the functioning of the DFM. Since the DFM has a feature to have
variable channels from a range of 1 to 32, a similar architecture for the test envi-
ronment is necessary so as to incorporate the working of the entire system.

Data flow manager tester (DFMT) is an entity which has the same feature to
increase its number of data feeding and receiving channels in the range of 1 to
32. The test environment is designed in such a way that it receives its input data
from the computer through a UART interface and the processed data is sent back
through the same interface.

RS232 debugger is a module which receives the serial data from the computer
and buffers it. This data is read and depending on the channel id this data is
passed on to the input buffer (I/P FIFO) of the fast processing module (FPM)
of that particular channel with the help of the UART controller. This process is
repeatedly done with different channel ids and all the input buffers are filled. All
the FPMs start processing when the user gives a signal with a push button on the
development board.

The empty signals of all the buffers from the first channel are connected to the
LEDs. The statuses of the LEDs indicate whether data has been written to the
buffer or not. When the complete processing of the data is complete, the output
is stored in the output buffer (O/P FIFO) of the corresponding channel.

Now the read command along with the channel id is given to the DFMT via the
computer. Depending on the channel id, UART controller reads the data from
the corresponding O/P FIFO and passes it onto the RS232 debugger which then
transmits it to the computer.

45

Figure 5.1.: Architecture of the data-flow manager tester

46

The data transmission and reception on the computer is handled with the use of
any software which can interact with the RS232 port of the computer. The sample
syntaxes of the commands used to send the data and receive are as follows:

• WRITE Command

{write_cmd} {channel_id} {data_length} {data_byte_stream}

0x57 0x01 0x05 0xaa 0xbb 0xcc 0xdd 0xee

• READ Command

{read_cmd} {channel_id}

0x52 0x01

5.3. RS232 debugger

The RS232 debugger is an entity which helps in converting the serial data received
on the RXD port to the data format that is understood by the different entities
of the test environment. RS232 debugger received the data sent to it from the
serial port of the computer and then stores it in a reception buffer. This data
can then be read from the buffer and used for further testing. Similarly, there
is a buffer for storing the transmission data. The data to be sent out is stored
in the transmission buffer. This data is then read by the RS232 debugger and
then converted to the appropriate form that is recognizable by the computer and
transmitted via the TXD port.

5.4. Fast processing module

Figure 5.2 portrays the finite state machine used to develop the entity of fast
processing module (FPM). This state machine is simple and just does the job of
reading the data from the I/P FIFO, buffering it for one clock cycle and then
passes it out to the DFM. At the start point of DFM this data is written to the
WRITE 0 buffer and then further processed.

The state machine starts its processing only at the push of a button by the user.
It also keeps a check on the empty signal (IP FIFO EMP) of the I/P FIFO and
full signal (DFM CHNL FULL) of the WRITE 0 buffer of the particular channel
available as a port of the DFM itself to assure proper data transfer and avoid any
data overflow.

47

Figure 5.2.: Fast processing module

5.5. Slow processing module

Figure 5.3 describes the finite state machine used to develop slow processing mod-
ule (SPM). This state machine is also very similar to the state machine for FPM.
The job of SPM is to read the data from the READ 0 of the corresponding channel
and buffer it for 2 clock cycles before passing it on to the O/P FIFO. It uses empty
signal (DFM CHNL EMP) of READ 0 of DFM and full signal (OP FIFO FULL)
of O/P FIFO to initiate the data transfer.

48

Figure 5.3.: Slow processing module

5.6. UART controller

The UART controller is developed based on the finite state machine in the figure
5.4. The UART controller is responsible for reading the data from the receiving
buffer of the RS232 debugger. The data bytes read are processed according to the
write and read commands mentioned earlier.

UART controller passes on the data to the appropriate channel depending on the

49

channel id present in the subsequent byte of the write command. UART controller
also controls the multiplexer which reads the data from O/P FIFO of all the chan-
nels and writes it to the transmitting buffer of the RS232 debugger.

The receiving buffer of the RS232 debugger is in a first word fall through mode.
The main signal available from the RS232 apart from the data is AVAIL signal
which helps in determining if valid data is available at the data out port of the
RS232. AVAIL signal is the most important signal. Major state transitions occur
only on the presence of the AVAIL signal or the system waits in the corresponding
wait state.

The data bytes received one by one are matched to the commands at first. If
the data byte received is 0x57 (WRITE CMD) or 0x52 (READ CMD) then only
we move ahead with the next byte. In case of mismatch the new data byte is
again compared to the commands. This process goes on until a valid command
is received. This command is buffered. The next data byte after the command is
always supposed to be the channel id. The information regarding the total number
of channels (NO OF CHANNELS) is provided as a generic to the state machine.
For NO OF CHANNELS value equal to Ń,́ the channel id ranges from 0 to N-1.
This data is used to verify if the channel id received is a valid channel id or not.

If a valid read command is received along with a valid channel id, then the UART
controller provides the read enable signal to the O/P FIFO of the correspond-
ing channel and reads all the data and writes it to the transmitting buffer of the
RS232. This operation keeps repeating till either O/P FIFO is empty or the trans-
mitting buffer is full.

If a valid write command is received along with a valid channel id, then the next
byte received is used as the DATA LENGTH for the amount of data present in
the subsequent bytes. This is used in a counter so as to read the amount of
data mentioned in the DATA LENGTH. Depending on the limitation of 8bits,
the maximum amount of data possible in a single command is limited to 255. The
appropriate empty and full signals were used to assure that there are no chances
of data underflow or overflow.

50

Figure 5.4.: UART controller

51

5.7. Resource utilization

Since the number of channels of the DFM can be configured, the resource utiliza-
tion of the DFM will vary with respect to the change in the number of channels.
The amount of resources used to implement the DFM increase with the increase
in number of channels. With respect to the data in the table 5.1, the utilization of
the Slice Registers and LUTs increases gradually with the increase in the number
of channels. On the other hand, the usage of Bonded Input Output Blocks (IOBs)
and RAM blocks increases at a higher rate with respect to the number of channels.

Due to the high time consumption in the synthesis of the DFM, it is not feasible to
synthesize the DFM for higher number of channels. For 5 channels the amount of
block RAM used is approximately 50% of the available on the FPGA. The actual
data processing entities also require the on-board memory in low quantities. To
allow the DFM in blocking the 50% of the resource for itself also does not seem
a feasible. Hence, it can be estimated that the maximum number of channels
practically should be around 5. To increase the number of channels, complete
information regarding the other entities is required and only then can a decision
be made to increase the number of channels. The resource utilization of the FPGA
with respect to the number of channels is as shown in the table 5.1.

Number of Channels
Resources 1 2 3 4 5
Slice
Registers

12327 (4%) 12684 (4%) 13028 (4%) 13371 (4%) 13717 (4%)

Lookup
Tables

8057 (5%) 8455 (5%) 8352 (5%) 8683 (5%) 10195 (6%)

Bonded
IOB

143 (19%) 163 (22%) 183 (25%) 203 (28%) 223 (30%)

36Kb
RAM

54 (12%) 90 (21%) 126 (30%) 162 (38%) 198 (47%)

18Kb
RAM

1 (1%) 1(1%) 1(1%) 1 (1%) 1 (1%)

Table 5.1.: Resource utilization of data-flow manager on Virtex-6 XC6VLX240T

5.8. Timing characteristics

The timing characteristics of the FPGA-based system are also one of the major
information which helps in deciding the efficiency of the system. The table 5.2
contains the information regarding the timing characteristics of the system with
respect to the number of channels.

52

Number of Channels
Parameters 1 2 3 4 5
Minimum
Period (ns)

9.015 8.183 9.586 10.16 8.382

Maximum
Frequency
(MHz)

110.926 122.205 104.319 98.425 119.303

Table 5.2.: Timing characteristics of data-flow manager on Virtex-6 XC6VLX240T

53

6. Conclusion

FPGAs have a very unique property when compared to other data processing units
like Microprocessors or ASICs. FPGA has the data processing efficiency equiva-
lent to that of ASIC as the development on a FPGA is also application specific.
FPGAs also have the ability to be reprogrammed similar to a microprocessor.
Hence, FPGAs are utilized in various fields of application.

FPGAs are used in the field of high volume data processing like image or video
data exploitation. The amount of memory required to store the data is high. The
limited on-board memory of an FPGA is unable to provide the required space.
There have been researches in the field of FPGA with an objective to increase the
amount of memory with the help of external memory modules.

This master thesis proposes an idea to create a memory controller which can han-
dle the data flow between multiple modules and a single external DDR3 SDRAM
module. The Data Flow Manager (DFM) is introduced which helps in buffering
the 8bit image data received from one image processing entity and then passing
it on to the another entity whenever required.

The DFM is designed in a way that it has the capability to handle multiple pairs
(data sender, data receiver) of data processing modules which can be configured
before the synthesis. A test environment is developed known as the Data Flow
Manager Tester (DFMT) helps in the functional testing of the DFM. The func-
tions of the DFM is tested for 2 channels.

From the section 5.7, it is clear that the amount of on-board resources consumed
by the DFM increases to approximately 50% when the number of channels is
equal to 5. Implementation of DFM for more channels has to be done only under
the condition where the resource utilizations of all the other modules are known.
The configuration for the internal blocks can be tweaked to reduce the resource
consumption and increase the usable number of channels without affecting the
working of other data processing entities.

54

6.1. Problem in the current work

The data-flow manager in its current configuration and state contains shortcoming
and problems. These problems need to be addressed and solved in order to increase
the reliability and the efficiency in terms of resource consumption. The current
problems in the data-flow manager are:

1. The amount of resources consumed is more due to limit in the data depth
selection of the FIFO generator.

2. The hard coded 5bits of channel id leads to unwanted blank space when the
number of channels is less.

3. DFM is designed with a particular 8bit data input and output. In this case,
the DFM cannot be said to be generic.

4. Equal priorities have been given to the read and write operations in the
finite state machine for memory interface generator controller. The priority
should be handled depending on the data rate of the channel.

5. The buffer sizes of the RS232 debugger limits the complete data read from
the DFM in one read command. This leads to a single byte data loss when
the next read command is issued to the same channel.

6.2. Future work

The data-flow manager developed satisfies the requirements mentioned in the sec-
tion 2.5. But there are certain shortcomings and problems which lead to future
room for improvements. Suggestions to solve the problems and to improvise the
data-flow manager are mentioned below:

1. Optimize the code further to reduce the resource consumption and resolve
any bugs which lead to data loss.

2. Create a better FIFO component (instead of using the FIFO IPCore) with
asymmetric feature and no limitations to the data depth selection.

3. Add a data width generic in the FIFO which can be programmatically set
by the higher module in the hierarchy to avoid the problem of fixed vector
size for channel id.

4. Create generic data width for the input and output ports of the DFM to
incorporate greater variety of data processing modules.

55

5. Create a priority generic in the memory interface generator controller which
can be configured before synthesis to help balance the data flow load on both
the read and write operations.

6. Optimize the design further by changing the FIFO IPCore with intelligent
other buffer modules.

56

Bibliography

[AHIG09] Kurt Franz Ackermann, Burghard Hoffmann, Leandro Soares Indru-
siak, and Manfred Glesner. Providing memory management abstrac-
tion for self-reconfigurable video processing platforms. International
Journal of Reconfigurable Computing, 2009:1–15, 2009.

[Ark] ARK | Your Source for Intel R© Product Specifications.

[CHM] Eric S. Chung, James C. Hoe, and Ken Mai. Coram: An in-fabric
memory architecture for fpga-based computing.

[Clo] Clock Domain Crossing.

[CXZC14] Ying Chen, Wanpeng Xu, Rongsheng Zhao, and Xiangning Chen.
Design of a hardware/software FPGA-based driver system for a large
area high resolution CCD image sensor. Photonic Sens, 4(3):274–280,
jul 2014.

[Dan04a] Klaus Danne. Memory Management to Support Multitasking on
FPGA Based Systems. In In Proceedings of the International Con-
ference on Reconfigurable Computing and FPGAs (ReCon, page 21,
2004.

[Dan04b] Klaus Danne. Operating systems for fpga based computers and their
memory management. In In ARCS 2004 Organic and Pervasive Com-
puting, Workshop Proceedings, volume P-41 of GI-Edition Lecture.
Köllen Verlag, 2004.

[Fif12] LogiCORE IP FIFO Generator v9.3 Product Guide, December 2012.

[For] Peter Forret. 12 Megapixel camera | toolstud.io.

[FP12] Laura Fischer and Yura Pyatnychko. FPGA Design for DDR3 Mem-
ory. Bachelor Thesis, Worcester Polytechnic Institute, Worcester,
Massachusetts, USA, March 2012.

[Fpg] fpga4fun.com - Crossing clock domains.

[HdCLE03] S. Heithecker, A. do Carmo Lucas, and R. Ernst. A mixed qos sdram
controller for fpga-based high-end image processing. In Signal Process-
ing Systems, 2003. SIPS 2003. IEEE Workshop on, pages 322–327,
Aug 2003.

57

[HE05] S. Heithecker and R. Ernst. Traffic shaping for an fpga based sdram
controller with complex qos requirements. In Proceedings. 42nd De-
sign Automation Conference, 2005., pages 575–578, June 2005.

[Hei15] Gernot Heiser. How to steal encryption keys: Your cloud is not as
secure as you may think!, April 2015.

[HP11] John C. Hoffman and Marios S. Pattichis. A high-speed dynamic
partial reconfiguration controller using direct memory access through
a multiport memory controller and overclocking with active feedback.
International Journal of Reconfigurable Computing, 2011:1–10, 2011.

[JJDD14] Jain, Amit Jain, Divyanshu, and Tejas Dave. Synchronizer techniques
for multi-clock domain SoCs & FPGAs, September 2014.

[Joh09] Jeff Johnson. Generating Clock Domain Crossing FIFOs | FPGA
Developer, September 2009.

[Mig13] Virtex-6 FPGA Memory Interface Solutions User Guide, March 2013.

[OB14] Zvi Or-Bach. FPGAs as ASIC Alternatives: Past & Future | EE
Times, April 2014.

[SB12] Wolfram Hardt Stephan Blokzyl, Matthias Vodel. A hardware acceler-
ated real-time image processing concept for high-resolution eo sensors.
In Proceedings of the 61. Deutscher Luft- und Raumfahrtkongress,
Berlin, Germany, September 2012. Deutsche Gesellschaft für Luft-
und Raumfahrt.

[TAJZ15] Kevin R. Townsend, Osama G. Attia, Phillip H. Jones, and Joseph
Zambreno. A scalable unsegmented multiport memory for FPGA-
based systems. International Journal of Reconfigurable Computing,
2015:1–12, 2015.

[Tal14] Deepak Kumar Tala. Interfacing Two Clock Domains, February 2014.

[VB13] Wim Vanderbauwhede and Khaled Benkrid, editors. High-
Performance Computing Using FPGAs. Springer Science Business
Media, 2013.

[Vir15] Virtex-6 Family Overview Product Specification, August 2015.

[WK01] G. Wigley and D. Kearney. The first real operating system for recon-
figurable computers. In Computer Systems Architecture Conference,
2001. ACSAC 2001. Proceedings. 6th Australasian, pages 130–137,
2001.

[Xila] Xilinx CORE Generator System.

58

[Xilb] Xilinx ISE Simulator (ISim).

[Xilc] Xilinx Virtex-6 PCI Express Gen 2, USB 3.0, SFP+ board.

[Xil16] Xilinx ISE, September 2016. Page Version ID: 739203946.

[ZCL06] Zude Zhou, Songlin Cheng, and Quan Liu. Application of ddr con-
troller for high-speed data acquisition board. In First International
Conference on Innovative Computing, Information and Control - Vol-
ume I (ICICIC’06), volume 2, pages 611–614, Aug 2006.

59

Appendices

60

A. Configuration parameters

A.1. Common configuration parameters

• FPGA family: Virtex-6

• Device: XC6VLX240T

• Package: FF1175

• Speed Grade: -2

A.2. Configuration parameters for MIG generation

• Name: mig 3 92

• Version: 3.92

• Frequency: 400MHz (Max possible 533 MHz)

• Memory Type: SODIMM

• Memory Part: MT4JSF12864HZ-1G4

• Data Width: 64

• Burst Length: 8-Fixed

• Burst Type: Sequential

• Memory Address Mapping: Row+Bank+Column

• System Clock: Single-Ended

A.3. Configuration parameters for WRITE 0
generation

• Name: fifo w lvl 0 8 64

• Version: 9.3

61

• Interface Type: Native

• Read/Write Clock Domains: Independent Clock

• Memory Type: Block RAM

• Read Mode: Standard FIFO

• Write Width: 8

• Read Width: 64

• Write Depth: 128

• Read Depth: 16

• Optional Flags: ALMOST FULL, ALMOST EMPTY (Unused)

• Handshaking: WR ACK, OVERFLOW, VALID, UNDERFLOW (Unused)

• Reset Type: Asynchronous

• PROG FULL Threshold: 120

• PROG EMPTY Threshold: 8

A.4. Configuration parameters for WRITE 1
generation

• Name: fifo w lvl 1 64 512

• Version: 9.3

• Interface Type: Native

• Read/Write Clock Domains: Independent Clock

• Memory Type: Block RAM

• Read Mode: Standard FIFO

• Write Width: 64

• Read Width: 512

• Write Depth: 128

• Read Depth: 16

62

• Optional Flags: ALMOST FULL, ALMOST EMPTY (Unused)

• Handshaking: WR ACK, OVERFLOW, VALID, UNDERFLOW (Unused)

• Reset Type: Asynchronous

• PROG FULL Threshold: 120

A.5. Configuration parameters for READ 1
generation

• Name: fifo r lvl 1 512 64

• Version: 9.3

• Interface Type: Native

• Read/Write Clock Domains: Independent Clock

• Memory Type: Block RAM

• Read Mode: Standard FIFO

• Write Width: 512

• Read Width: 64

• Write Depth: 16

• Read Depth: 128

• Optional Flags: ALMOST FULL, ALMOST EMPTY (Unused)

• Handshaking: WR ACK, OVERFLOW, VALID, UNDERFLOW (Unused)

• Reset Type: Asynchronous

A.6. Configuration parameters for READ 0
generation

• Name: fifo r lvl 0 64 8

• Version: 9.3

• Interface Type: Native

• Read/Write Clock Domains: Independent Clock

63

• Memory Type: Block RAM

• Read Mode: Standard FIFO

• Write Width: 64

• Read Width: 8

• Write Depth: 16

• Read Depth: 128

• Optional Flags: ALMOST FULL, ALMOST EMPTY (Unused)

• Handshaking: WR ACK, OVERFLOW, VALID, UNDERFLOW (Unused)

• Reset Type: Asynchronous

• PROG FULL Threshold: 8

A.7. Configuration parameters for common
WRITE 2 generation

• Name: fifo write main

• Version: 9.3

• Interface Type: Native

• Read/Write Clock Domains: Common Clock

• Memory Type: Block RAM

• Read Mode: Standard FIFO

• Write/Read Width: 517

• Write/Read Depth: 256

• Optional Flags: ALMOST FULL, ALMOST EMPTY (Unused)

• Handshaking: WR ACK, OVERFLOW, VALID, UNDERFLOW (Unused)

• Reset Type: Asynchronous

64

A.8. Configuration parameters for I/P & O/P buffer
generation

• Name: fifo test

• Version: 9.3

• Interface Type: Native

• Read/Write Clock Domains: Common Clock

• Memory Type: Block RAM

• Read Mode: Standard FIFO

• Write/Read Width: 8

• Write/Read Depth: 512

• Optional Flags: ALMOST FULL, ALMOST EMPTY (Unused)

• Handshaking: WR ACK, OVERFLOW, VALID, UNDERFLOW (Used and
active high)

• Reset Type: Asynchronous

A.9. Steps to configure the Data-flow manager and
make it compatible to HiTech Global
development board

1. Generate all the IP Cores according to the configuration parameters men-
tioned above.

2. Changes to ”src\data flow manager.vhd”

• Remove ”clk ref” from the ”mig 3 92” component declaration and in-
stantiation.

• Assign ”mig 3 92” generic ”CLKFBOUT MULT F” a value of 16.

• Assign ”mig 3 92” generic ”CLKOUT DIVIDE” a value of 2.

3. Changes to ”ip\mig 3 92\mig 3 92\user design\rtl\ip top\mig 3 92.vhd”

• Remove ”clk ref” port.

• Change constant ”SYSCLK PERIOD” value to 2*tCK*nCK PER CLK.

65

• Change the ”clk ref” mapping in ”iodelay ctrl” instantiation from ”clk ref”
to ”clk”.

• Add input port ”pll lock” to component ”iodelay ctrl”.

• Add output port ”lock” to component ”infrastructure”.

• Add signal ”mmcm lock” of type ”std logic” and connect to ”pll lock”
and ”lock” mentioned above.

4. Changes to ”ip\mig 3 92\mig 3 92\user design\rtl\ip top\iodelay ctrl.vhd”

• Add input port ”pll lock”

• Assign ”clk ref” to ”clk ref bufg”.

• Assign ”sys rst act hi or (not pll lock)” to ”rst tmp idelay” instead of
”sys rst act hi”.

• Remove the following code

diff_clk_ref: if (INPUT_CLK_TYPE = "DIFFERENTIAL") generate

u_ibufg_clk_ref : IBUFGDS

generic map (

DIFF_TERM => TRUE,

IBUF_LOW_PWR => FALSE

)

port map (

I => clk_ref_p,

IB => clk_ref_n,

O => clk_ref_ibufg

);

end generate diff_clk_ref;

se_clk_ref: if (INPUT_CLK_TYPE = "SINGLE_ENDED") generate

u_ibufg_clk_ref : IBUFG

generic map (

IBUF_LOW_PWR => FALSE

)

port map (

I => clk_ref,

O => clk_ref_ibufg

);

end generate se_clk_ref;

u_bufg_clk_ref : BUFG

port map (

O => clk_ref_bufg,

I => clk_ref_ibufg

66

);

5. Changes to ”ip\mig 3 92\mig 3 92\user design\rtl\ip top\infrastructure.vhd”

• Add output port ”lock”.

• Assignment ”pll lock” to ”lock”.

• Divide current value of constant ”CLKIN1 PERIOD” by 2.

constant CLKIN1_PERIOD : real

:= real((CLKFBOUT_MULT_F * CLK_PERIOD))/

real(DIVCLK_DIVIDE * CLKOUT_DIVIDE * nCK_PER_CLK * 1000);

constant CLKIN1_PERIOD : real

:= real((CLKFBOUT_MULT_F * CLK_PERIOD))/

real(2* DIVCLK_DIVIDE * CLKOUT_DIVIDE * nCK_PER_CLK * 1000);

67

Studentenservice – Zentrales Prüfungsamt
Selbstständigkeitserklärung

Name:

Vorname:

geb. am:

Matr.-Nr.:

Bitte beachten:

1. Bitte binden Sie dieses Blatt am Ende Ihrer Arbeit ein.

Selbstständigkeitserklärung*

Ich erkläre gegenüber der Technischen Universität Chemnitz, dass ich die vorliegende
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen
sind, habe ich als solche kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch bei keinem anderen Prüfer als Prüfungsleistung eingereicht und ist
auch noch nicht veröffentlicht.

Datum: ……………………………………. Unterschrift: ………………………………………………………………………

 d
* Statement of Authorship

I hereby certify to the Technische Universität Chemnitz that this thesis is all my own work and uses no external material other
than that acknowledged in the text.

This work contains no plagiarism and all sentences or passages directly quoted from other people’s work or including content
derived from such work have been specifically credited to the authors and sources.

This paper has neither been submitted in the same or a similar form to any other examiner nor for the award of any other
degree, nor has it previously been published.

	Acknowledgement
	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Structure of the master thesis report

	State of the Art
	Memory management to support multitasking on FPGA-based systems
	Virtual addressing
	Dynamic memory allocation
	Priority based scheduled memory access

	Memory management abstraction for self-reconfigurable video processing
	Arbiter
	Instruction decoder
	Address translator

	FPGA design for DDR3 memory
	Caching techniques in x86 processors
	Feature requirements for the on-board memory extension

	Concept, Design and Implementation
	Single-channel data-flow manager
	Multi-channel data-flow manager
	Super-scalar approach
	Super-scalar approach with individual WRITE_2
	Super-scalar approach with common WRITE_2

	Common WRITE_2 FIFO
	Data-flow controller
	Data-flow controller master
	Data-flow controller slave

	Memory interface generator controller
	Generic multiplexer

	Realization
	Hardware
	Virtex-6
	HiTech Global development board
	DDR3 SDRAM

	Toolchain
	Xilinx integrated software environment
	Integrated software environment simulator
	Core generator

	Intellectual property core
	First in first out buffer
	Asymmetric FIFO
	Memory interface generator

	Evaluation and Validation
	Test scenarios
	Data-flow manager tester
	RS232 debugger
	Fast processing module
	Slow processing module
	UART controller
	Resource utilization
	Timing characteristics

	Conclusion
	Problem in the current work
	Future work

	Bibliography
	Appendices
	Configuration parameters
	Common configuration parameters
	Configuration parameters for MIG generation
	Configuration parameters for WRITE_0 generation
	Configuration parameters for WRITE_1 generation
	Configuration parameters for READ_1 generation
	Configuration parameters for READ_0 generation
	Configuration parameters for common WRITE_2 generation
	Configuration parameters for I/P & O/P buffer generation
	Steps to configure the Data-flow manager and make it compatible to HiTech Global development board

