
Efficient Parallel Monte-Carlo
Simulations for Large-Scale Studies of

Surface Growth Processes

Von der Fakultät für Naturwissenschaften der
Technischen Universität Chemnitz

genehmigte

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt

von

Dipl. Phys. Jeffrey Kelling

geboren am 7. Februar 1987 in Rüdersdorf

Tag der Einreichung 14.06.2017

Gutachter:
Prof. Dr. Sibylle Gemming
Dr. Martin Weigel

Tag der Verteidigung 13.04.2018

Dissertation
Jeffrey Kelling,
Efficient Parallel Monte-Carlo Simulations for Large-Scale Studies of Surface Growth
Processes,
Technische Universität Chemnitz, Faculty of Natural Sciences (2017),
142 pages, 34 figures, 10 tables
Typeset on 13th August 2018

Keywords: lattice Monte Carlo, surface growth, ballistic deposition, physical aging,
Kardar–Parisi–Zhang-equation, lattice gas, parallel processing, domain decomposi-
tion, GPU

Abstract

Lattice Monte Carlo methods are used to investigate far from and out-of-equilibrium
systems, including surface growth, spin systems and solid mixtures. Applications
range from the determination of universal growth or aging behaviors to palpable sys-
tems, where coarsening of nanocomposites or self-organization of functional nanos-
tructures are of interest. Such studies require observations of large systems over long
times scales, to allow structures to grow over orders of magnitude, which necessitates
massively parallel simulations.

This work addresses the problem of parallel processing introducing correlations in
Monte Carlo updates and proposes a virtually correlation-free domain decomposition
scheme to solve it. The effect of correlations on scaling and dynamical properties of
surface growth systems and related lattice gases is investigated further by comparing
results obtained by correlation-free and intrinsically correlated but highly efficient
simulations using a stochastic cellular automaton (SCA). Efficient massively parallel
implementations on graphics processing units (GPUs) were developed, which enable
large-scale simulations leading to unprecedented precision in the final results.

The primary subject of study is the Kardar–Parisi–Zhang (KPZ) surface growth
in (2+1) dimensions, which is simulated using a dimer lattice gas and the restricted
solid-on-solid model (RSOS) model. Using extensive simulations, conjectures regard-
ing growth, autocorrelation and autoresponse properties are tested and new precise
numerical predictions for several universal parameters are made.

Dissertation
Jeffrey Kelling,
Efficient Parallel Monte-Carlo Simulations for Large-Scale Studies of Surface Grow-
th Processes,
Technische Universität Chemnitz, Fakultät für Naturwissenschaften (2017),
142 Seiten, 34 Abbildungen, 10 Tabellen
Gesetzt am 13. August 2018

Stichworte: Gitter-Monte-Carlo-Simulation, Oberfächenwachstum, Teilchenabschei-
dung, Alterung, Kardar–Parisi–Zhang-Gleichung, Gittergas, Paralleles Programm,
Domänenzerlegung, GPU

Zusammenfassung

Gitter-Monte-Carlo-Methoden werden zur Untersuchung von Systemen wie Ober-
flächenwachstum, Spinsystemen oder gemischten Feststoffen verwendet, welche fern
eines Gleichgewichtes bleiben oder zu einem streben. Die Anwendungen reichen von
der Bestimmung universellen Wachstums- und Alterungsverhaltens hin zu konkreten
Systemen, in denen die Reifung von Nanokompositmaterialien oder die Selbstorgani-
sation von funktionalen Nanostrukturen von Interesse sind. In solchen Studien müs-
sen große Systemen über lange Zeiträume betrachtet werden, um Strukturwachstum
über mehrere Größenordnungen zu erlauben. Dies erfordert massivparallele Simula-
tionen.

Diese Arbeit adressiert das Problem, dass parallele Verarbeitung Korrelationen
in Monte-Carlo-Updates verursachen und entwickelt eine praktisch korrelationsfreie
Domänenzerlegungsmethode, um es zu lösen. Der Einfluss von Korrelationen auf
Skalierungs- und dynamische Eigenschaften von Oberflächenwachtums- sowie ver-
wandten Gittergassystemen wird weitergehend durch den Vergleich von Ergebnissen
aus korrelationsfreien und intrinsisch korrelierten Simulationen mit einem stochasti-
schen zellulären Automaten untersucht. Effiziente massiv parallele Implementationen
auf Grafikkarten wurden entwickelt, welche großskalige Simulationen und damit prä-
zedenzlos genaue Ergebnisse ermöglichen.

Das primäre Studienobjekt ist das (2 + 1)-dimensionale Kardar–Parisi–Zhang-
Oberflächenwachstum, welches durch ein Dimer-Gittergas und das Kim-Kosterlitz-
Modell simuliert wird. Durch massive Simulationen werden Thesen über Wachstums-,
Autokorrelations- und Antworteigenschaften getestet und neue, präzise numerische
Vorhersagen zu einigen universellen Parametern getroffen.

Contents

1. Introduction 9
1.1. Motivations and Goals . 10
1.2. Overview . 11

2. Methods and Models 13
2.1. Estimation of Scaling Exponents and Error Margins 13
2.2. From Continuum- to Atomistic Models 16
2.3. Models for Phase Ordering and Nanostructure Evolution 18

2.3.1. The Kinetic Metropolis Lattice Monte-Carlo Method 19
2.3.2. The Potts Model . 19

2.4. The Kardar–Parisi–Zhang and Edwards–Wilkinson Universality Classes 21
2.4.0.1. Physical Aging . 23

2.4.1. The Octahedron Model . 23
2.4.2. The Restricted Solid on Solid Model 25

3. Parallel Implementation: Towards Large-Scale Simulations 27
3.1. Parallel Architectures and Programming Models 29

3.1.1. CPU . 30
3.1.2. GPU . 31
3.1.3. Heterogeneous Parallelism and MPI 33
3.1.4. Bit-Coding of Lattice Sites 34

3.2. Domain Decomposition for Stochastic Lattice Models 34
3.2.1. DD for Asynchronous Updates 35

3.2.1.1. Dead border (DB) 35
3.2.1.2. Double tiling (DT) 37
3.2.1.3. DT DD with random origin (DTr) 37
3.2.1.4. Implementation . 37

3.2.2. Second DD Layer on GPUs 38
3.2.2.1. Single-Hit DT . 39
3.2.2.2. Single-Hit dead border (DB) 39
3.2.2.3. DD Parameters for the Octahedron Model 39

3.2.3. Performance . 40
3.3. Lattice Level DD: Stochastic Cellular Automaton 40

3.3.1. Local Approach for the Octahedron Model 41
3.3.2. Non-Local Approach for the Octahedron Model 41

3.3.2.1. Bit-Vectorized GPU Implementation 41
3.3.3. Performance of SCA Implementations 44

5

Contents

3.4. The Multi-Surface Coding Approach 46
3.4.0.1. Vectorization . 47
3.4.0.2. Scalar Updates . 48
3.4.0.3. Domain Decomposition 49

3.4.1. Implementation: SkyMC . 50
3.4.1.1. 2d Restricted Solid on Solid Model 50
3.4.1.2. 2d and 3d Potts Model 51
3.4.1.3. Sequential CPU Reference 52

3.4.2. SkyMC Benchmarks . 52
3.5. Measurements . 55

3.5.0.1. Measurement Intervals 55
3.5.0.2. Measuring using Heterogeneous Resources 56

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class 57
4.1. Evolution of Surface Roughness . 58

4.1.1. Comparison of Parallel Implementations of the Octahedron
Model . 59
4.1.1.1. The Growth Regime 60
4.1.1.2. Distribution of Interface Heights in the Growth Regime 64
4.1.1.3. KPZ Ansatz for the Growth Regime 65
4.1.1.4. The Steady State 68

4.1.2. Investigations using RSOS . 69
4.1.2.1. The Growth Regime 69
4.1.2.2. The Steady State 72
4.1.2.3. Consistency of Fine-Size Scaling with Respect to DD 75

4.1.3. Results for Growth Phase and Steady State 76
4.2. Autocorrelation Functions . 78

4.2.1. Comparison of DD Methods for RS Dynamics 78
4.2.1.1. Device-Layer DD . 78
4.2.1.2. Block-Layer DD . 80

4.2.2. Autocorrelation Properties under RS Dynamics 83
4.2.3. Autocorrelation Properties under SCA Dynamics 84

4.2.3.1. Autocorrelation of Heights 87
4.2.3.2. Autocorrelation of Slopes 89

4.2.4. Autocorrelation in the SCA Steady State 89
4.2.5. Autocorrelation in the EW Case under SCA 91

4.2.5.1. Autocorrelation of Heights 91
4.2.5.2. Autocorrelations of Slopes 92

4.3. Autoresponse Functions . 94
4.3.1. Autoresponse Properties . 95

4.3.1.1. Autoresponse of Heights 95
4.3.1.2. Autoresponse of Slopes 97
4.3.1.3. Self-Averaging . 97

4.4. Summary . 98

6

Contents

5. Further Topics 101
5.1. Investigations of the Potts Model . 101

5.1.1. Testing Results from the Parallel Implementations 101
5.1.2. Domain Growth in Disordered Potts Models 102

5.2. Local Scale Invariance in KPZ Surface Growth 105

6. Conclusions and Outlook 109

Acknowledgements 114

A. Coding Details 117
A.1. Bit-Coding . 117
A.2. Packing and Unpacking Signed Integers 117
A.3. Random Number Generation . 118

Bibliography 120

List of Figures 133

List of Tables 134

Glossary 135

Acronyms 136

Selbstständigkeitserklärung 138

Curriculum Vitæ 139

List of Publications (Kelling, J.) 140

7

1. Introduction

Monte Carlo (MC) simulations have first been developed in the Manhattan project to
calculate the statistics of neutron flux [1–3] and were later adapted for many problems
in statistical physics [4] and beyond. Kinetic MC simulations are especially useful
for studying the evolution of non-equilibrium systems including nano-structures [5,6]
and surfaces [7]. The transferability of the employed stochastic models’ properties
to various physical systems is provided by scale-invariance and universality of the
defining stochastic processes.

The stochastic microscopic dynamics of particles can give rise to a macroscopic
evolution of system properties and structures when a system is out of equilibrium.
When the resulting kinetics does not depend on the dynamics found in a specific
system, which includes scale-invariance, the process is considered universal. The
notion of universality was first introduced by the discovery, that critical exponents
in quite different systems are equal near second order phase transitions and are less
sensitive to the details of the system the closer they are to the critical point [8].
It was also found to apply in non-equilibrium systems to phase-ordering [9] and
relaxation [10] phenomena as well as interface growth [11]. Such processes unfold at
criticality and exhibit universal dynamical and growth exponents.

Many stochastic processes lead to the formation of regular structures, for exam-
ple, processes of relaxation such as coarsening after phase separation, including Ost-
wald ripening [12] and coarsening after spinodal decomposition [13], or the Plateau–
Rayleigh instability [14, 15], which are based on diffusive dynamics and are driven
by surface tension. These examples can be realized in many different systems, like
liquid or solid mixtures, even the universe as a whole [16], thereby providing graphic
examples of scale-invariant universal processes. More effects can be observed in the
presence of competing driving forces, for instance inverse Ostwald ripening [17, 18]
or the formation of ripples on a surface [19]. Comparable surface patterns can form
at any phase boundary, including solid–solid and vapor–gas or surfaces of solids.

Such far from or out-of equilibrium processes can be studied best in large-scale
atomistic simulations, which require large amounts of computing power. In the past,
the sequential performance of compute units was steadily increasing. This was mainly
driven by the reduction of the size of circuit components in modern integrated elec-
tronics. Smaller components, such as narrower channels in transistors, allow larger
circuits to fit onto small chips, which enables higher integration of electronic devices
and subsequently lowers the production cost of more complex devices. Integrating
more units on a chip, for instance more cores or larger caches for compute devices,
increases performance, not least by shortening signal paths between these resources.
The main advantage of small circuit components is their reduced energy consump-

9

1. Introduction

tion, which is the main limiting factor of the achievable clock frequency and thus of
the performance of individual components.

The famous “Moore’s law” [20], formulated in 1965, states that the number of
transistors on a single chip doubles every 18 months as a result of progress in fabri-
cation technologies. With latest processors being produced using 14 nm fabrication
processes, lithography techniques have already gone far beyond the limits set by
the wavelength of visible light which is achieved by etching structures to smaller
sizes. Producing nanostructures top-down becomes more demanding the smaller the
desired structures are. Current developments in lithography techniques involve UV-
light or electron beams. Furthermore, at the achieved structure sizes, there is little
margin left for further downscaling, since bulk materials become discrete not much
further down (the lattice constant of silicon is about 0.5 nm). New approaches in-
volve stacking components into the third dimension, making production processes
more complex, and thus even more demanding. Processes for the deposition of ma-
terial (i. e. particles) or removal of the same (etching) are stochastic and the smaller
the relevant scales are, the more significant random fluctuations become, which then
need to be controlled.

With the growth of sequential compute power stagnating, parallel compute re-
sources provide the only path forward for simulations. In the case of MC this
paradigm can be difficult to implement, because parallel execution of an algorithm
changes the dynamics of the simulated stochastic process and this artificial dynamics
may lead to artifacts in the result. This is especially troublesome, since simulating
effects of self-organisation is helpful for the development of bottom-up fabrication
techniques for nano- or microstructures used in integrated circuits [21, 22]. At the
same time, such simulations are also used to study the aging of materials, which
is governed by similar processes, for example in porous catalysts [23]. All of these
results could become biased when parallel simulations are used.

1.1. Motivations and Goals

This work is centered around computer experiments based on lattice MC simulations.
One focus lies on the technique itself, with the goal of enabling accurate simulations
which are scalable through parallelization. Molecular dynamics (MD) and methods
relying on the numerical integration of differential equations can be parallelized ex-
actly, because they intrinsically work on vectors of particles or elements, respectively.
For MC algorithms, parallel implementations can only be approximations to their
actually sequential definitions. Thus, the main questions are if and how the artificial
dynamics in parallel simulations affects the kinetics of evolution in stochastic lattice
models. To this end different approaches are compared and a parallel implementa-
tion is presented which can serve as a virtually identical replacement for sequential
simulations. The parallel implementations presented in this work are primarily de-
signed to run on single graphics processing units (GPUs), which provide a better
ratio of compute performance over power consumption than central processing units

10

1.2. Overview

(CPUs). Thereby, using GPUs enables more extensive simulations consuming less
energy.

The other main focus of this work lies on surface growth by ballistic deposition
of particles in the Kardar–Parisi–Zhang (KPZ) universality class. The underlying
stochastic process does not include explicit thermally activated dynamics, which
makes it very sensitive to potentially disturbed dynamics introduced by a parallel
implementation. Thus, while this system is not one that exhibits self-organization,
it provides a better benchmark for parallelization schemes. Furthermore, the model
employed in the presented surface growth simulations is based on an underlying
lattice gas of two particle species, the kinetics of which provide yet another test case.
Results of extensive large-scale simulations, employing the methods developed here,
provide predictions of unprecedented accuracy for scaling and aging properties of
systems in the KPZ and Edwards–Wilkinson (EW) universality classes.

All of the above is also meant to enable MC simulations of atomistic models at
spatio-temporal scales accessed in experiments in solid-state physics, such as the
initially mentioned bottom-up processes for device-fabrication or aging nano- or mi-
crostructures. Here too, trade-offs can be made between computational efficiency
and accuracy of statistics by choosing between the different types of parallel MC
simulations presented here.

1.2. Overview

This work is structured as follows:
In chapter 2 the stochastic models and numerical methods employed in this work

are introduced. Section 2.1 describes numerical methods to deal with simulation re-
sults, which shall serve to illustrate the necessity of the parallel large-scale simulations
for the sake of reliable numerical estimates, rather than just to enable experimental-
scale simulation. The basic ideas of the MC method and the Metropolis algorithm
are introduced in section 2.2. Section 2.3 describes models for phase ordering and
domain growth, focussing on the Potts model. This mainly serves to embed the work
in the larger scope of simulating solid phases, or solid solution, using MC simulations.
Potts model simulations are the subject of section 5.1.

Chapter 4 is dedicated to extensive Monte Carlo studies of the 2 + 1–dimensional
KPZ universality class, with a short excursion into the EW class in section 4.2.5.
The evolution of the surface roughness and steady state properties is investigated
using both the octahedron model and the restricted solid-on-solid model (RSOS)
(section 4.1). The most extensive simulations presented are to investigate physical
aging in the octahedron model, by precisely determining the autocorrelation and
autoresponse functions (sections 4.2 and 4.3).

In both areas, a significant part of the study is dedicated to the analysis of the
effects of parallel implementations on the results obtained. In this context a paral-
lelization method for random-sequential (RS) Monte Carlo updates without measur-
able correlation is developed (sections 3.2 and 4.2.1). Some cases have been identified

11

1. Introduction

where correlated updates using a stochastic cellular automaton (SCA) scheme (sec-
tion 3.3) give correct results and thus enable vastly more efficient simulations. The
developed parallel implementations are described in chapter 3.

With the development and evaluation of parallel implementations for lattice MC
being one focus area of this work, the applicability of the developed methods to
a wide range of problems is important. With this in mind, aside from the work
regarding the KPZ universality class, presented in chapter 4, exploratory studies of
a few further topics have been performed. Chapter 5 presents preliminary results for
two such studies, predominantly with the purpose of demonstrating the potential for
wider applications in the methods described in chapter 3.

Finally, a summary and a list of the main theses of the present work are provided
in chapter 6.

12

2. Methods and Models

This chapter introduces the models considered in this work, the methods used to
obtain numerical results as well as connected challenges. Section 2.1 starts by de-
scribing, in a general manner, the main methods used in this work to derive estimates
of universal exponents in the investigated systems. It illustrates some challenges to-
wards obtaining reliable numerical estimates and thereby motivates the necessity of
highly precise computer-experimental results.

Sections 2.2 and 2.3 remind the reader of the most important ideas behind Monte
Carlo (MC) methods and introduce models for the evolution of nanostructures along-
side the Metropolis algorithm. Finally, section 2.4 introduces the surface growth
systems and models which are investigated in chapter 4, making up the main part
of the present work.

2.1. Estimation of Scaling Exponents and Error Margins

All models investigated in this work are stochastic, thus there is always intrinsic
noise in the simulation. Even directly integrating a stochastic differential equation
numerically would not immediately yield the expectation value for any observable.
The result of a single simulation only represents a single random sample, thus many
independent runs need to be averaged to yield a reliable estimate for the expectation
value of any observable 𝑓 :

⟨𝑓⟩ =
𝑁∑︁

𝑖

𝑓𝑖/𝑁 , (2.1)

where 𝑁 is the number of samples averaged over. The standard error estimator is
given as:

Δ𝑓 =

⎯⎸⎸⎷ 1

𝑁(𝑁 − 1)
·

𝑁∑︁

𝑖

(𝑓𝑖 − ⟨𝑓⟩)2 . (2.2)

If the 𝑓𝑖 are normally distributed, one can derive the usual confidence intervals, but
not all random variables encountered in this work follow a pure normal distribution.

If the expectation value of the observable was the desired result, the estimation of
error margins would not require any further discussion, but none of the final results
to be obtained in this work are simply the expectation values of observables. Most
of the quantities of interest are dynamical properties of an observable which is a

13

2. Methods and Models

function of time 𝑓(𝑡) and, in critical systems, follows a power law (PL) [11,24,25]:

𝑓(𝑡) ∼ 𝑡𝛾 . (2.3)

The exponent 𝛾 is universal for the investigated class of systems and shall be the
quantity of interest here. This form could be fitted to the data obtained from sim-
ulations: ⟨𝑓(𝑡)⟩ ±Δ𝑓(𝑡), where a statistical error Δ𝛾 can be computed. Note that,
equation 2.3 gives only the asymptotic form of 𝑓(𝑡) for 𝑡→∞. The form of 𝑓(𝑡) at
finite times may have other contributions. These include non-universal corrections
which are properties of the specific system under investigation rather than universal
ones. In some universality classes the scaling functions are known to take forms like
𝑓(𝑡) ∼ 𝑔(𝑡)𝛾 , but the exact form of 𝑔(𝑡) is only known for some analytically solved
models.

Corrections to the scaling function can be caused by fixed points of other univer-
sality classes, which are near-by in the sense of renormalization group theory [26].
In many cases, these are known to introduce PL or logarithmic corrections. Thus to
a first order it is a good approach to assume PL corrections. It is often necessary to
determine these corrections empirically, when their origin is not known.

One type of corrections, on the other hand, usually has a quite intuitive origin:
Additive constant corrections, which can be subtracted from the data before further
analysis:

⟨𝑓(𝑡)⟩ =
⟨︀
𝑓 ′(𝑡)

⟩︀
− 𝑜 .

Possible sources of which include discretization or correlations in the model used.
The simplest example is the intrinsic width of the surface in the octahedron model
expressed in the roughness of a flat surface, giving 𝑜 =𝑊flat = 0.25 [27].

For a stochastic model the form of 𝑓(𝑡) may well be very sensitive to the specific
type of dynamics employed in the simulation. In a double logarithmic plot the data
⟨𝑓(𝑡)⟩ may even appear to resemble a perfectly straight line, but when fitting (2.3)
to a different interval of the data, the resulting exponent 𝛾 will change. This can be
quantified by computing the effective exponents at different times 𝑡:

𝛾eff (𝑡 = (𝑡𝑛 − 𝑡𝑚)/2) =
ln (⟨𝑓(𝑡𝑛)⟩)− ln (⟨𝑓(𝑡𝑚)⟩)

ln 𝑡𝑛 − ln 𝑡𝑚
, (2.4)

where 𝑡𝑚 < 𝑡𝑛. If 𝑓(𝑡) followed a pure power-law, 𝛾eff(𝑡) would be constant. Here,
the choice of 𝑡𝑛 and 𝑡𝑚 will ideally not change the result, though in case ⟨𝑓(𝑡)⟩ is
very noisy, a large 𝑡𝑛 − 𝑡𝑚 may be more likely to give a useful curve of effective
exponents. A point-wise error Δ𝛾eff(𝑡) can be computed by Gaussian propagation
of uncertainty, if only as an approximation in case of a non-Gaussian distribution of
𝑓𝑖(𝑡). In principle, 𝛾eff can also be produced from series of PL to overlapping intervals
[𝑡𝑖,∞), which avoids bias due to the choice of 𝑡𝑛 and 𝑡𝑚. Here, a point-wise error
could only be obtained through the fit-error. To distinguish between this definition
and the usual effective exponents, these will be called tail effective exponents in the
following.

14

2.1. Estimation of Scaling Exponents and Error Margins

The asymptotic exponent can then be read off as

𝛾 = 𝛾eff(𝑡→∞) .

The functional form of 𝛾eff(𝑡) is related to the form of 𝑓(𝑡) and needs to be approx-
imated to obtain a meaningful extrapolation for 𝑡 → ∞. Assuming PL corrections,
the first order exponent can be determined from a direct PL fit or by rescaling the
abscissa to linearize the tail of 𝛾eff(𝑡).

The hard part is now to find a proper estimate of the error Δ𝛾 = Δ𝛾eff(𝑡 → ∞).
The least squares fit performed to obtain the extrapolated value provides a measure
of statistical uncertainty for the fit-parameters, which include the asymptotic value
of 𝛾. However, this statistical error is only meaningful if the fitted form actually is a
valid hypothesis describing the data. The suitability of the form may be quantified
by the sum of residuals. However, since the actual functional form of 𝑓(𝑡) is often not
known, there is an infinite space of functions which would have to be tested. Fitting
a PL to the tail can only be viewed as a first approximation. Even then, chosen form
may often not fit to the data for all 𝑡 but only above some cutoff 𝑡 > 𝑡min. This
produces two more sources for uncertainty:

First, the choice of 𝑡min influences the optimal fit parameters, normally outside the
bounds given by the statistical fit error. This suggests, that the statistical error of
the fit parameters is basically meaningless. Formally, that error would decrease and
ultimately vanish for 𝑡min → ∞, but the relative noise Δ𝑓(𝑡)/ ⟨𝑓(𝑡)⟩ increases with
𝑡. This is especially problematic for observables like autocorrelation or -response
functions, which decrease with time such that Δ𝑓(𝑡) & ⟨𝑓(𝑡)⟩ after a time 𝑡*. Ef-
fective exponents calculated according to equation (2.4) become meaningless beyond
𝑡*, thus another 𝑡max < 𝑡* must be chosen, which again influences the fit result.

Secondly, the choice of the model function may be a good first approximation,
but without representatively sampling the whole available function space one cannot
quantify how much the result will change when adding a second or third order.
In many cases it would not even be computationally feasible to add higher orders,
comprising more fit parameters, because of a very limited number of available data
points. For example, in the case of a finite size scaling analysis, the extrapolation is
not done for 𝑡 → ∞ but for 𝐿 → ∞ where all previous arguments hold, replacing 𝑡
by the system size 𝐿.

These sources for uncertainty are more significant than the statistical error of the
single fit and are hard to be quantified in a well-defined manner. In some studies
one and the same observable is obtained from simulations with different values of a
parameter. Often, the asymptotic time evolution of this observable does not depend
on this parameter, based on physical arguments, of which universality is an example.
If this is the case the different exponents obtained for each value of the parameter
can be averaged and the standard deviation or the spread of the values can be used
as an estimate of the error Δ𝛾. The standard error is not used, because the different
estimates are not independent Gaussian random variables.

If in such a case the form of corrections can also be assumed to be indepen-

15

2. Methods and Models

dent of the parameter, the corrections can be better approximated by consistency
arguments: Multiple forms may be used to extrapolate the asymptotic value of a
universal exponent, then the form most likely describing the corrections best is the
one which minimizes the spread of the values obtained for different values of the
parameter. This is attempted for the scaling exponent 𝛽 in the 𝑁 > 1–RSOS model
in section 4.1.2.

These difficulties result from the fact, that the described computer experiments
are more of an exploratory nature when it comes to the finite-time regime. With no
hypothesis about the form of 𝑓(𝑡) available for testing, the numerical points of ⟨𝑓(𝑡)⟩
provide the sole basis from which to derive the asymptotic, 𝑡→∞, behavior. Thus,
the quality of the desired results is limited by the amount of numerical information
available about ⟨𝑓(𝑡)⟩, any attempts of extracting features or extrapolating to regimes
not covered by the simulation results in increased uncertainty. This is the main
reason why simulations need to be extensive: First, the numerical form of ⟨𝑓(𝑡)⟩
must be known with little statistical error, requiring large sample sizes 𝑁 , where
large systems can reduce the number of required samples through self-averaging.
Second, the asymptotic regime must be approached as close as possible. In cases
where 𝑡 is the simulation time in the scaling regime, this does not only necessitate
long simulations, but also simulations of very large systems to avoid artifacts from
a potential crossover into a steady state.

2.2. From Continuum- to Atomistic Models

Very large scale systems can be treated using methods from continuum mechanics,
where separate particles are not considered, only phases spread out continuously in
space. These systems formally contain numbers of particles which are well within
the thermodynamic limit. Examples for continuum models can be found for fluid-
dynamics in the Navier–Stokes equations or the Burgers equation [28], in models of
phase separation, like precipitation [13,29] or spinodal decomposition [30,31] as well
as models for surface growth, like the Kardar–Parisi–Zhang (KPZ) equation [32],
the molecular beam epitaxy (MBE) equation [7, 33], and interface instabilities, like
the Kuramoto–Shivashinsky (KS) equation [34]. Where no analytical solutions are
available, such equation can be integrated numerically. However, when studying
the formation and evolution of nanostructures in solids, and especially on lattices,
structures are of interest which are to small for the continuum limit to be considered
a good approximation. The problem of nucleation is the most prominent example
of this: A cluster forms when single particles nucleate, which cannot be described in
the continuum limit.

Atomistic simulation by solving the equations of motion for many particles (MD)
quickly becomes infeasible when the total number of particles in the system increases.
To bridge this gap, MC methods were introduced [3,35]. They are designed to enable
the investigation of larger systems and longer times than can be achieved using other
atomistic simulations using limited compute power. MC methods are based on simple

16

2.2. From Continuum- to Atomistic Models

rules designed to reproduce the statistical properties of the physical system that is
to be modelled. Discrete MC models can be computationally much less expensive
than directly solving stochastic partial differential equations numerically.

Physical systems are described by a given Hamiltonian which in the absence of
external driving forces is of the form:

𝐻(q) = 𝑇 (q) + 𝑉 (q) ,

where q is a (𝑑 ·𝑁)-vector of all particle coordinates in a 𝑑–dimensional system with
𝑁 particles. 𝑇 (q) and 𝑉 (q) describe the kinetic energy and the potential energy of
the system, respectively. The kinetics of the particle movement can be obtained by
solving the dynamical equation, which can be written as Hamilton’s equations:

𝜕𝑝𝑖
𝜕𝑡

= −𝜕𝐻
𝜕𝑞𝑖

and
𝜕𝑞𝑖
𝜕𝑡

=
𝜕𝐻

𝜕𝑝𝑖
,

where p is (𝑑 ·𝑁)-vector of the momentum components of all particles. The state of
the system can be described by a vector in phase-space (𝑞1, . . . , 𝑞(𝑑·𝑁), 𝑝1, . . . , 𝑝(𝑑·𝑁)).
The equations can be integrated numerically, which is done in MD.

Systems with many particles can be described more efficiently using statistical
mechanics and thermodynamics. With sufficiently many particles, the state-space of
the system can be reduced to its configuration space (𝑞1, . . . , 𝑞(𝑑·𝑁)). The probability
for the system to be in an arbitrary state 𝑞 is given by the Boltzmann-distribution:

𝑃 (q) =
1

𝑍
exp

(︂
−𝐸(q)

𝑘𝐵𝑇

)︂
, (2.5)

where 𝑍 is the partition sum of the system, 𝐸(q) = 𝑉 (q) is internal energy of the
system in state q, 𝑘𝐵 is the Boltzmann constant and 𝑇 denotes the temperature.

To study the evolution of large bulk systems driven by thermal fluctuations, the
Metropolis algorithm [36] was devised which is produces a Markov chain of states
following the distribution (2.5). The algorithm works by starting at a current state
q𝑗 and proposing a randomly chosen movement of a particle, resulting a new state
q𝑗+1. This update is accepted with transition probability depending on the difference
in internal energy between the states Δ𝐸 = 𝐸(q𝑗+1) − 𝐸(q𝑗). The basic idea is
illustrated in figure 2.1. Classically, the Metropolis transition probability is used:

𝑃 (q𝑗 → q𝑗+1) =

{︃
Γ0Γ(q

𝑗 ,q𝑗+1) 𝐸(q𝑗+1) < 𝐸(q𝑗)

Γ0Γ(q
𝑗 ,q𝑗+1) exp

(︁
− Δ𝐸

𝑘𝐵𝑇

)︁
𝐸(q𝑗+1) > 𝐸(q𝑗)

, (2.6)

where Γ0 is the rate at which updates are performed. In simulations, Γ0 is usually
equal to one. In an experimental system it would be on the order of the frequency

17

2. Methods and Models

(a) Molecular Dynamics (b) Lattice Monte-Carlo

Figure 2.1.: Diffusion trajectories of three particles on a square lattice as seen in MD
and lattice Monte-Carlo simulation using the Metropolis algorithm, left and right
panel, respectively: (a) MD models thermal fluctuations (ideally) deterministically.
Particles spend most of their time oscillating at lattice sites, jumps between sites
are rare because they require diffusing particles to obtain high kinetic energy from
collision with matrix particles (not shown, but part of the simulation). (b) In
MC thermal particle movement is not explicitly simulated, but modeled by the
Boltzmann distribution of states (2.5). Only jumps between sites are attempted
in the simulation and accepted with finite probability, according to equation (2.6).

of thermal oscillations (Debye frequency). The rate

Γ(q𝑗 ,q𝑗+1) = exp

(︂
−𝐸barrier(q

𝑗 ,q𝑗+1)

𝑘𝐵𝑇

)︂
(2.7)

can be added to model diffusion barriers. Other transition probabilities are possible,
such as Glauber dynamics [37].

2.3. Models for Phase Ordering and Nanostructure
Evolution

One of the best known example of models the Metropolis algorithm can be applied
to is the Ising model [38] of interacting magnetic moments. When only nearest
neighbor (NN) interactions are taken into account, the Ising system without any
external magnetic field is described by the Hamilton:

𝐻 = −𝐽 ′
NN

∑︁

⟨𝑖𝑗⟩
𝑠𝑖𝑠𝑗 , (2.8)

where 𝐽 ′
NN is the coupling strength between neighboring parallel magnetic moments

and ⟨·, ·⟩ denotes a sum over NN pairs. In this model competitive growth is do-
mains in a ferro, or anti-ferromagnet, by changing the sign in equation (2.8), can be
studied.

18

2.3. Models for Phase Ordering and Nanostructure Evolution

2.3.1. The Kinetic Metropolis Lattice Monte-Carlo Method

While in the original Ising model all proposed updates are spin-flips (non-conservative),
a conservative version was introduced in which spins are exchanged (Kawasaki dy-
namics). [39] In this picture, the two spin-orientations 𝑠𝑖 = ±1

2 can also be viewed
as particles of two different species 𝑐𝑖 ∈ 0, 1, allowing the study of processes of phase
separation and self-organization in bulk-systems. This method is called 3D kinetic
Metropolis lattice Monte Carlo (KLMC) [6, 18, 19, 40] and can be generalized to
include more than two species, by providing a matrix of binding energies between
particles two species 𝑚 and 𝑛: 𝐽𝑚𝑛.

2.3.2. The Potts Model

A special case of the matrix of binding energies is the 𝑞-states Potts model [41,42]:

𝐽𝑚𝑛 = 𝛿𝑚𝑛 , (2.9)

for 0 ≤ 𝑚,𝑛 < 𝑞. For 𝑞 = 2, this model is equivalent to the Ising model with the
transformation 𝑠𝑖 = 2𝑐𝑖 − 1, which gives 𝐽Potts = 4𝐽 Ising. The Potts model can be
mapped to problems like grain growth in crystals [43].

The Ising model shows a continuous, second order transition to an ordered phase
below a critical temperature 𝑇𝑐 in its critical dimension 𝑑 = 2 and above. In the
Potts model this phase transition is of first order, dis-continuous, above a critical
number of states 𝑞𝑐, for example 𝑞𝑑=2

𝑐 > 4 [44] and 𝑞𝑑=3
𝑐 = 3 [45]. In two dimensions,

the critical temperature Potts models are analytically known [41,46]:

𝐾𝑐 = ln(1 +
√
𝑞) with 𝐾 =

𝐽

𝑘𝐵𝑇
, (2.10)

where 𝐾 denotes the dimensionless effective temperature.
In the ordered phase, for all pure Potts models, domain growth can be observed

which follows different growth laws depending on whether the employed dynamics
is conservative or not. In non-conservative Potts models domain growth follows the
Lifshitz–Cahn–Allen law, exhibiting a PL with a growth exponent 𝜑 = 1/2 [47, 48],
while for spinodal decomposition in systems with conserved order parameter the
consensus in literature is, that the Lifshitz–Slyozov law with a scaling exponent 𝜑 =
1/3 [13] is followed asymptotically [49,50]. When concentrations are conserved with
one being sufficiently dominant, precipitation and Ostwald ripening can occur [6,12,
13,29].

Another field of study is the domain growth in the presence of quenched disor-
der [46]. In such systems, the potential term in the Hamiltonian has site-dependent
contributions, where the site dependence is random but fixed for each realization
of an evolving system. Possible types of disorder are, among others: Random field

19

2. Methods and Models

disorder, where a site-dependent external field is applied:

𝐻 = −𝐽NN

∑︁

⟨𝑖𝑗⟩
𝑐𝑖𝑐𝑗 +𝐵𝑖 · 𝑐𝑖

Another type is random bond disorder, where the couplings between sites vary:

𝐻 = −
∑︁

⟨𝑖𝑗⟩
𝐽𝑖𝑗 · 𝑐𝑖𝑐𝑗 ,

here without external field. A commonly investigated version of the latter uses a
bimodal distribution of disordered bonds, where 𝐽𝑖𝑗 ∈ 𝐽0, 𝐽1. This also covers the
case of broken bonds or bond-dilution, where 𝐽0 > 0 and 𝐽1 = 0, or vice versa. In
this case, the critical temperature is shifted. For small fractions of broken 𝑑, the new
critical temperature can be approximated using a mean-field approach, assuming
the missing bonds lead to reduced effective coupling between spins. This yields the
shifted critical temperature:

𝐾𝑐,MF =
𝐾𝑐

1− 𝑑 , (2.11)

where 𝐾𝑐 is the critical temperature of the pure systems, given in equation (2.10).

The presence of disorder can smoothen first order phase transitions to second
order transitions [51] and slows the growth of domains. An open question for many
systems is whether the type growth law is changed in the presence of disorder, or
if the growth law is super universal [52–54]. In the case of valid super-universality
(SU), the form of the growth-law present in a pure system would not change in the
presence of disorder, as long as the disorder does not affect the final state of the
system, e. g. a ferromagnetic system remains ferromagnetic even in the presence of
such disorder. With a growth following a PL, only the exponent may depend on the
disorder parameters.

Some studies found SU growth laws in disordered magnets [55–57]. In random
bond and random field Ising models a crossover to a late time regime with logarithmic
scaling was observed, violating SU [52,58].

Spin glasses, a type of disordered spin systems are also of special interest because
they are the type of problem the quantum annealer device D-Wave is built for [59,60].
A better numerical understanding of these systems can help to pose hard problems
to such a device and test its quantum properties.

To precisely investigate growth laws in a system, the growth needs to be followed
over several orders of magnitude, which requires simulations of large systems. Es-
pecially to distinguish between slow PL growth and logarithmic growth, a system
must be followed over long times. In the case of disordered systems, required to av-
erage over many disorder realizations (independent runs) in addition. Examples for
the applicability of the present work are given in section 5.1, where computational
performance is being analyzed in section 3.4.1.

20

2.4. The Kardar–Parisi–Zhang and Edwards–Wilkinson Universality Classes

2.4. The Kardar–Parisi–Zhang and Edwards–Wilkinson
Universality Classes

The Kardar–Parisi–Zhang (KPZ) equation [32] describes an accepted standard model
for the growth of surfaces under random deposition of particles:

𝜕𝑡ℎ(x, 𝑡) = 𝑣 + 𝜈∇2ℎ(x, 𝑡)⏟ ⏞
surface tension

+ 𝜆[∇ℎ(x, 𝑡)]2⏟ ⏞
loc. growth vel.

+𝜂(x, 𝑡) (2.12)

Here, 𝑣 is the average growth velocity of the surface, which is usually eliminated by
a transformation into the co-moving frame: ℎ + 𝑣𝑡 → 𝑧. The second term models
smoothening of the surface at finite temperatures in a diffusional manner. The
strength of this surface tension is set by the parameter 𝜈. The third term introduces
a spatially varying local growth velocity with an amplitude 𝜆. It is motivated by the
dependence of the height-change induced by the deposition of single particles on the
local slope of the surface.

Randomness in the influx of particles is modeled by a noise term 𝜂(x, 𝑡). The
noise is usually considered as a zero-average and Gaussian, which is how it turns out
naturally in MC simulations. The variance

⟨︀
𝜂(x, 𝑡)𝜂(x′, 𝑡′)

⟩︀
= 2𝐷𝛿𝑑(x− x′)(𝑡− 𝑡′) (2.13)

requiring it to be uncorrelated in both space x and time 𝑡. The variance of the noise
𝜂(x, 𝑡) is defined only to an amplitude 𝐷.

Equation (2.12) in general describes the growth of a 𝑑–dimensional surface into
dimension 𝑑+ 1. In 𝑑 = 1, it resembles the stochastic Burgers equation [28] and as
such represents a generalization to arbitrary dimension. This connection links the
Kardar–Parisi–Zhang (KPZ) model to fluid dynamics and the problem of randomly
stirred fluids [61], where it would describe a velocity profile instead of a surface
height profile. There are further examples of systems which evolve following this
equation. Among them are, in 𝑑 = 1, the propagation of flame fronts [62, 63],
the surface morphology of growing cancer cells [64] and even magnetic flux lines in
superconductors [65]. In 𝑑 = 2, a further example is directed growth of polymers in
random media [66, 67]. Aspects of all these systems belong to the KPZ universality
class, which is defined by equation (2.12). Figure 2.2 shows a two–dimensional
example of a surface structure created by KPZ growth.

An interesting property of a growing surface or interface is its roughness, which is
defined as:

𝑊 (𝐿, 𝑡) =

√︁
⟨ℎ2(x, 𝑡)⟩x − ⟨ℎ(x, 𝑡)⟩2x , (2.14)

21

2. Methods and Models

Figure 2.2.: Illustration of a two–dimensional surface embedded in three–dimensional
space. The colors indicate the height of each point, with red peaks and blue valleys.
The depicted instance represents a KPZ surface in the steady state.

where ⟨ ⟩x denotes an average over all spatial coordinates. This growth process
is expected to follow a PL described by the scale-invariant Family-Vicsek scaling
law [68]:

𝑊 (𝐿, 𝑡) ∼ 𝐿𝛼𝑓(𝑡/𝐿𝑧) , (2.15)

where the scaling law 𝑓(𝑢),

𝑓(𝑢) ∼
{︃
𝑢𝛽 for 𝑢≪ 1

const. for 𝑢≫ 1
(2.16)

is universal for the KPZ class. Here, 𝛼 is the roughness exponent, describing the
stationary state, where the correlation length exceeds the lateral system size 𝐿. The
growth regime is governed by the growth exponent 𝛽. The ratio of these gives the
dynamical exponent 𝑧 = 𝛼/𝛽.

In the case 𝜆 = 0, equation (2.12) turns into a stochastic diffusion equation, called
EW equation [69]. This case shows different universal behavior with 𝑓(𝑢) ∼ log 𝑢
for 𝑢 ≪ 1 and a dynamical exponent 𝑧 = 2. Since solutions to this equation are
known analytically, this class can serve to test implementations of models, where the
parameter 𝜆 can be adjusted accordingly.

Due to the stochastic nature of this problem, all observables are determined as an
example average over multiple independent runs. In numerical studies, large systems
show ideal self-averaging. This means, increasing the volume of the simulated system
by a factor 𝑚 reduces the sample variance by 𝑚 which, at fixed sample size 𝑛, reduces
the standard error by

√
𝑚. This is the same effect as increasing the sample size a

factor 𝑚 and comes at about the same computational cost.
Two different surface growth models will be considered here: The octahedron

model [70] and the restricted solid-on-solid model (RSOS) [71], also known as Kim–
Kosterlitz model. Both models can be generalized for arbitrary dimensions, while
here the focus lies on 2+1 dimensions, which is is the most relevant case in technical
applications.

22

2.4. The Kardar–Parisi–Zhang and Edwards–Wilkinson Universality Classes

2.4.0.1. Physical Aging

Because a growing surface with the roughness scaling introduced above evolves over
time, properties of the system change, which does not happen in equilibrium or
in a steady state. The process of a physical system changing during its evolution
away from some initial condition, here a flat surface, is called physical aging. It
was first observed in glassy systems, but similar effects can also be observed in other
systems, like magnets evolving towards equilibrium and non-equilibrium systems [72].
Physical aging is commonly investigated by analysing the two-time autocorrelation
𝐶(𝑡, 𝑠) and autoresponse 𝑅(𝑡, 𝑠) functions, where aging can be observed in the aging-
regime, at times sufficiently long after the waiting time 𝑠 [72,73]: 𝑡−𝑠≫ 𝑡micro, where
𝑡micro denotes a system dependent microscopic time scale. These observables will be
introduced in sections 4.2, equation (4.18), and 4.3, equation (4.24), respectively.

In surface growth simulations, aging can only be observed in the growth regime,
where dynamical scaling is taking place. In order to study aging of a growing surface
over long times, it is necessary to consider large systems, so that 𝑢 ≪ 1 in equa-
tion (2.16) for all times of interest, i. e. to stay away from the steady state. For
this reason, the studies in this work would not be possible without efficient parallel
implementations of the considered models.

2.4.1. The Octahedron Model

The octahedron model [70, 74] is a generalization of the roof-top model [75, 76] for
1 + 1–dimensional surface growth to higher dimensions. These models restrict the
height differences (slopes) between neighboring lattice sites to 𝜎𝑥/𝑦 = ±1. In 1 + 1
dimensions this can be illustrated (fig. 2.3a) as stacking squares, with one corner
pointing up, where for each square the lower two edges must be supported by upper
edges of squares in the layer below (direct stacking of corner on corner is forbidden).
In the generalization to higher dimensions, hyperoctahedra are stacked the same
way. In [70] it was shown, that the octahedron model in higher dimension does
indeed exhibit KPZ scaling.

The height at each site is measured at the upper corner of the hyperoctahedron
occupying it. No two neighboring sites can have the same height, since a height
difference of 𝜎𝑥/𝑦 = 0 is not allowed. With this restriction, the smoothest possible
surface takes a zig-zag shape and thus exhibits a roughness of 𝑊flat = 0.25.

Figure 2.3b illustrates the octahedron model in 2+1 dimensions, where deposition
or removal of particles on the surface, follow the generalized Kawasaki rules [70,74]:

(︂
−1 1
−1 1

)︂
𝑝

𝑞

(︂
1 −1
1 −1

)︂
, (2.17)

where allowed deposition processes are carried out with probability 𝑝 and removals
with probability 𝑞. In this representation of the update rules, each line corresponds
to one spatial direction. Thus the rules are in general comprised of 𝑑 lines for
a 𝑑 + 1–dimensional surface. In the one–dimensional case, these rules belong to

23

2. Methods and Models

𝑞
𝑝

𝑥

(a) 1 + 1d roof-top model

𝑦

𝑥

𝑝
𝑞

(b) 2 + 1d octahedron model

Figure 2.3.: (a) Illustration of the lattice gas dynamics (white and black balls) in the
1+ 1–dimensional roof-top model and the mapping to deposition (𝑝) and removal
(𝑞) of squares at appropriate lattice sites. (b) Illustration of 𝑝 and 𝑞 processes in
the 2 + 1–dimensional octahedron model. The octahedron surface can be viewed
like an outer product of two roof-top surfaces (roof-top surface⊗ roof-top surface).

an asymmetric exclusion process (ASEP) [75] in a lattice gas. In 𝑑 dimensions,
they correspond to an ASEP of 𝑑-mers, moving along the bisectrix of the Cartesian
coordinate axes.

Commonly, the case of only depositions taking place is investigated (𝑞 = 0 and
0 < 𝑝 ≤ 1, pure KPZ). This corresponds to a totally asymmetric exclusion process
(TASEP), where all particles, or 𝑑-mers, are moving in only one direction. The
case 𝑝 = 𝑞, where effectively no growth is taking place, shows scaling in the EW
universality class. The EW fixed point is unstable in 𝑑 = 1 [26], that is, only points
on the line 𝑝 = 𝑞 exhibit EW scaling. For any 𝑞 ̸= 𝑝, the surface will be attracted
by the KPZ ficed point and roughen asymptotically. The EW fixed point is stable
in 𝑑 > 2 and there is a roughening transition at some value |𝑝− 𝑞|𝑐 > 0. 𝑑 = 2, the
dimension treated in this work, is the lower critical dimension for this transition [26].
Using modified, longer range, update rules the model can be extended to other types
of surface growth, like MBE and KS [77].

In simulations, the noise depends very sensitively on the randomness of the up-
dates. Especially the pure KPZ case is very sensitive to correlations introduced
by the random updates. Thus, this model also presents very sensitive test for the
freedom from correlations in the employed parallel implementation. Mainly auto-
correlation function in the 2 + 1–dimensional dimer-TASEP turn out to be a good
indicator. Hence, a detailed study can provide valuable insight also for parallel im-
plementations of other models which are less sensitive, where correlation may have
more subtle effects.

The model is set in the co-moving frame of the surface. To describe the morphology
of the surface in this reference frame, only the slopes between sites are required, which
can only take two different values each (𝜎𝑥/𝑦 = ±1). Each slope can be encoded in a
single bit, thus for each lattice site only two bits of information need to be stored.

24

2.4. The Kardar–Parisi–Zhang and Edwards–Wilkinson Universality Classes

2.4.2. The Restricted Solid on Solid Model

The RSOS model, or Kim–Kosterlitz model, [71] implements the growth process in
any dimension by stacking of hypercubes. Here, the surface height at each site is equal
to the number of cubes stacked there. Depositions and removals are only allowed
as long as the absolute height difference between neighbors stays below a parameter
𝑁 and are then carried out with probabilities 𝑝 and 𝑞, respectively. It falls into the
same universality classes as the octahedron model, as 𝜆 in equation (2.12) can be
adjusted through 𝑝 and 𝑞 in the same way.

Even though this model does allow NN site of equal height and thus supports
actual flat initial conditions (𝑊 (𝐿, 𝑡 = 0) = 0), the growth process still shows an
intrinsic width, due to discretization noise caused by discrete height differences. [78]

Simulations of the RSOS model are performed in the co-moving frame of the
surface, thus only requires encoding of the slopes between sites. Most commonly,
simulations of this model are performed for 𝑁 = 1 [71, 79, 80] but studies with
1 < 𝑁 . 10 exist [81, 82] and recently [83]. The case 𝑁 > 1 for this model is
sometimes referred to as generalized RSOS. For𝑁 →∞, the model crosses over into a
random deposition model, where the scaling exponent becomes 𝛽rnd.dep. = 1/2 [81].

25

3. Parallel Implementation: Towards
Large-Scale Simulations

All models described in the previous chapter have in common, that they are coarse-
grained in time yet atomistic. Built from simple rules, they are very efficient in
sequential computation. Still, a need for even more efficient computation and uti-
lization of more compute power arises, when the problem size, in terms of system
size or time scales of interest (usually both), becomes large enough. For example, in
the case of 3D kinetic Metropolis lattice Monte Carlo (KLMC) this is the case when
pushing the limits of atomistic simulations to experimental scales which are normally
only within the range of continuum methods. For surface growth models, ever larger
systems and longer times are required to increase the accuracy of estimated values
for some universal growth and aging exponents.

Ways to speed up the Metropolis algorithm have been implemented for a long time,
often to speed up relaxation in the Ising model. Examples are cluster algorithms like
the Swendsen-Wang [84] or the Wolff algorithm [85], which allow flipping whole
clusters of spins, thereby circumventing energy barriers that occur when the cluster
has to be flipped spin-by-spin. Another way are iterative sequential updates [86],
where the lattice sites to be updated are selected in order, which speeds up the
propagation of changes in the system by introducing a preferred direction. The
latter approach breaks the condition of detailed balance, but still satisfies the weaker
balance condition. Both approaches have in common, that they make the system
evolve to the correct equilibrium configuration faster, by changing the kinetics. Such
approaches will not be discussed further, since this work focusses on kinetic models.

Another frequently used approach in Ising model simulations is updating based
on a checkerboard decomposition of the lattice, herein called stochastic cellular au-
tomaton (SCA) [87] dynamics. This technique may also have a detrimental effect on
kinetics, but, depending on parameters, to a lesser extent than the aforementioned
algorithms for fast relaxation. The influence of SCA dynamics on autocorrelation
functions in the octahedron model will be discussed in section 4.2.3. However, by
avoiding random memory accesses, an SCA allows implementations to access memory
more efficiently and can be parallelized or vectorized in a straight-forward manner.
Ever since GPUs have been introduced this has been exploited successfully [88–91]
to speed up simulations.

For kinetic models, ideally, random-sequential (RS) dynamics1 should be used,
where single updates are statistically independent. Only this can ensure that diffu-

1The term “random sequential” is adopted from a study of update procedures for the 1d asymmetric
exclusion process. [92]

27

3. Parallel Implementation: Towards Large-Scale Simulations

sion is correct (unbiased) and updates do not introduce spatio-temporal correlations.
Since single updates are not computationally expensive, only performing very many
of them is, such an algorithm cannot be straightforwardly parallelized. A solution
to this problem is to apply domain decomposition (DD) in such a way that random
updates can be performed simultaneously in non-interacting domains and resulting
correlations are suppressed. This has been done for the KLMC method on GPUs us-
ing Compute unified device architecture (CUDA) as subject of my diploma work [93].

For completeness, an alternative method for kinetic Monte Carlo simulations shall
be mentioned: At low temperatures, or in systems with few frequently moving par-
ticles, the Metropolis algorithm will reject most, even almost all, of the suggested
updates. In such situations, rejection-free algorithms are more efficient. The earliest
example of this class of algorithms is the Bortz–Kalos–Lebowitz (BKL) algorithm,
or 𝑛-fold way. [94] Here, instead of choosing a random update and deciding whether
to accept or reject it, an update is chosen according to the probability of it being
accepted in the Metropolis algorithm and is then carried out with probability one.
Since this requires all possible updates to be evaluated and sorted, single updates
are much more computationally expensive than in the Metropolis algorithm, which
is thus more efficient in situations with many probable updates available.

Rejection-free algorithms can also be parallelized using domain decomposition
(DD), but parallel implementations tend to scale poorly due to the necessity of
keeping updates globally sorted and load-balancing issues. [95, 96] They can be
implemented in a scalable way by implementing them less rigorously or when the
computations required to evaluate updates are sufficiently expensive. [97] A brief
comparison of the performance of a parallel Metropolis implementation and a se-
quential implementation of the waiting time method (WTM) [98] is presented at
the end of section 3.4.2. In principle, it can be assumed that for sufficiently low
temperatures and late stages, for example in coarsening simulations, even a single
CPU rejection-free implementation may be faster than any parallel implementation
of KLMC.

With respect to parallel compute efficiency, continuum methods have the distinct
advantage that they naturally expose a sort of data parallelism: For one time-step
the changes at each point of the system is computed only from a stencil of points
taken from the previous time-step, independently of the changes for all other points.
This, in principle, enables using more compute resources in parallel when the system
size is increased. For MC methods with RS updates, introducing parallel workloads
using DD can incur correlations and change results, which is a core problem attacked
in this work. The aforementioned SCA approach can be implemented in parallel
exactly and efficiently, and it is thus worthwhile considering it for applications where
complete absence of correlations is not required.

In this chapter, first important features of selected current parallel architectures are
introduced in section 3.1, accompanied by a short reiteration of efficient techniques
for encoding of on–lattice data. In section 3.2, a variety of DD schemes for RS
dynamics are described, where, on the implementation side, the focus is put on
the (2 + 1)d octahedron model. Two GPU implementations of SCA dynamics for

28

3.1. Parallel Architectures and Programming Models

the octahedron model are described in section 3.3. Finally, section 3.4 introduces
an alternative method to utilize the fine-grained parallelism of GPUs for stochastic
lattice models.

3.1. Parallel Architectures and Programming Models

The sequential compute power of CPUs has almost not been increased for years. This
is because established ways to increase it have become less feasible to implement.
The most straightforward way to increase single-core performance is to increase the
clock frequency, which increases the rate at which instructions are executed. This
comes with increased power consumption and thus heat which needs to dissipated,
both introduce limiting factors. Other approaches are branch prediction, out-of-order
execution and pipelining, which mostly serve to hide latencies for memory accesses.
Pipelining increases the number of instructions which are executed per clock cycle
by executing multiple instructions partially in parallel by overlapping them, creating
an execution pipeline. These approaches come with a cost in additional transistors
required to implement the logic responsible for optimizing the instruction flow, which
again cost energy.

The latter approach already points towards parallelization as the only feasible way
to increase the compute power available for a calculation. In principle, combining
multiple identical compute units in one machine is quite efficient, since the gain in
compute power scales linearly with the number of compute units and thus energy
consumption. Actually using the combined compute power theoretically made avail-
able this way thus poses a separate problem and the possible parallel speedup 𝑠
is limited by the amount of parallel workload 𝑟par in the algorithm which is to be
implemented in relation to the sequential portion 𝑟seq (Amdahl’s law) [99]:

𝑠 =
1

𝑟seq +
𝑟par
𝑛

, (3.1)

where 𝑛 is the number of processor cores used. The parallel portion 𝑟par can some-
times be increased by changing the algorithm, which, even if it reduces the perfor-
mance of the program on a single core, can lead to higher performance in massively
parallel setup with large 𝑛.

Details of the parallel programming required also depend on the architecture at
hand. In the following, aspects of CPU, GPU and heterogeneous architectures are
described, which are relevant to the MC application considered in this work. The
range of CPUs and GPUs which were used in benchmarks, presented later, are listed
in table 3.1. The numbers of cores per device give an impression of the parallelism
required, but are not directly comparable across architectures in terms of compute
power. The theoretical peak performance of a compute device is usually measured in
floating-point operations per second (FLOPS). This figure is omitted from the table,
because floating point operations only make up a small amount of the computational
load of the MC codes presented here. The number of update attempts per second is

29

3. Parallel Implementation: Towards Large-Scale Simulations

Table 3.1.: Properties of compute devices used for benchmarks. The numbers of
cores given in parenthesis correspond to the total number of virtual cores available
through hyper threading (see section 3.1.1). Numbers given for memory bandwidth
(Bw.) are theoretical peek performances. The thermal design power (TDP) can
provide a rough estimate of the maximum power consumption under load. The
Tesla K80 is a dual-GPU board, of which a single GPU code will only use one
GPU.

Device Cores Mem. Bw. [GB/s] TDP [W] Release
Xeon X5650 6(12) 32 95 Q1’2010
i7-4930K 6(12) 59.7 130 Q3’2013
Tesla C2070 448 144 247 Q3’2010
Tesla K80 (1 GPU) 2496 240 150 Q3’2014
GTX Titan Black 2880 336 250 Q1’2014
GTX Titan X 3072 336.5 250 Q1’2015

a more relevant performance measure for the applications presented here. The table
lists the peak memory bandwidth between main memory and CPU or between global
device memory and GPU, respectively. These peak values are often not achieved in
benchmarks because of throttling under heavy load to limit power consumption and
heat production. This power envelope is given by the TDP of a device, which is the
maximum sustained amount of heat produced by a device and is thus also related
to the power consumption. The actual power consumption can deviate and depends
on computational load and other factors.

3.1.1. CPU

Cluster compute nodes usually contain two or four CPUs, which, today, in turn con-
tain between six and 24 cores each. Thus, current compute nodes consist of twelve
to 96 CPU cores, sharing a common main memory. The fact that the memory can
be accessed by all cores can be best taken advantage of by programs running mul-
tiple threads (multi-threading, shared-memory parallel applications), which execute
parallel tasks relying on common data or on only a logical decomposition of a total
shared dataset. This type of parallelism is straightforward to use, employing, for
example the built-in threading support in C++11 or OpenMP.

In order to reduce latencies when accessing frequently used data, CPUs2 provide
multiple levels of caches. When a datum in main memory is accessed, the CPU will
always load the whole cache line3 containing the requested datum, thus if another

2Only x86 CPUs have been used in this work, but most statements in this section are most likely
also true for other architectures like Power.

3The sizes of cache lines vary and can even be different for different cache levels in the same CPU.
On an i7-4930K, the cache-line size is 64B for all levels.

30

3.1. Parallel Architectures and Programming Models

datum in the same memory region is accessed later, it can be loaded directly from the
cache with no need to wait for the main memory, while the corresponding cache line
remains resident. This means, that memory accesses are more efficient, if successive
addresses are accessed or if random accesses are restricted to a small region in the
address space.

Each core contains a small amount of level-1 (L1) cache of usually 64 kB or 128 kB
on Intel or AMD CPUs, respectively. Often, half of this is reserved for code, half for
data. Additional levels 2 and 3 are shared between multiple cores, thus the total size
of these caches is shared between threads in a multi threaded program or between
simultaneously running processes. Furthermore, modern CPUs are cache coherent,
which means, that if a chunk of memory (cache line) is resident in the cache of
multiple cores, the contents are guaranteed to agree among all caches of all cores.
Enforcing this can lead to severe slowdowns if one core is writing to an address
falling into a cache line which is resident in the cache of another core, for which it
must be invalidated and read again from main memory when required. For example,
this situation would arise when using internal states of random number generators
(RNGs) for different threads which are stored in a single array.

Some CPUs offer hyper threading, which means, that each core contains more than
one set on registers to hold the state of multiple tasks (i. e. threads). This allows the
CPU to quickly switch to another task if the first one is stalling, for example when it
is waiting for a memory transaction to complete. Thus, running more threads than
there are physical cores, up to the hyper threading capability, helps to hide latencies.

Another type of parallelism is vectorization, realized in CPUs by providing vector
registers which can hold vectors of scalar values (32- or 64-bit integers or floating
point values, or others) and corresponding vector instructions which perform an
operation on all scalar elements of these vector simultaneously. This pattern is
called single instruction multiple data (SIMD). Modern compilers try to vectorize
code when instructed to do so, but this only works well with loops the iteration
length of which is known at compile time.

3.1.2. GPU

In a way, GPUs rely on the SIMD pattern in a more flexible form: A GPU contains a
number of vector processors, containing many simple cores, or processing elements4

but only one instruction unit, so that all cores can only execute the same instruction
in parallel. Contrary to SIMD, the control flows of the these processing elements
are allowed to diverge, which leads to sequential execution of different instructions
assigned to the processing elements. This pattern is thus called single instruction
multiple thread (SIMT). A group of 32 SIMT threads thus locked is called a warp.
Apart from the allowed control flow divergence among threads, the main difference
between these concepts is, that each thread can in principle perform random accesses
to memory and has its own independent set of registers, while in SIMD data is han-

4... or CUDA cores (NVIDIA) or Stream Processors (AMD).

31

3. Parallel Implementation: Towards Large-Scale Simulations

dled in fixed vectors (SIMD words), which are loaded in to vector registers crossing
SIMD elements.

It depends on the approach chosen for a specific program, whether (a) SIMT
threads are used more like actual threads or (b) basically like SIMD elements, with
a warp taking the role of a SIMD unit:

(a) In a MC simulation, where sites, jump-directions and types of updates are
chosen randomly or based on a local state, the thread picture is useful. Each
thread may perform updates partially independently, but as many operations
as possible, such as random number generation, should be implemented collec-
tively to avoid unnecessary warp-divergence.

(b) The SIMD picture is a natural fit for operations, operating on vectors of data,
such as integrations or linear algebra operations. However, cellular automata
and SCA versions of MC algorithms do fit this pattern as well.

Each vector processor contains a small amount of fast memory used both as shared
memory and L1 cache5 This is the only memory region on a GPU where random
accesses are efficient. Shared memory can be use to cache data loaded by one thread
which will be required by another thread later. MC algorithms with random site
selection may be implemented in such a way, that a chunk of the simulated system,
which can be entirely held in shared memory, is updated collectively by all threads
in a vector processor (section 3.2). More vectorized code may use shared memory to
exchange data between threads (section 3.3).

The GPU does also provide a larger amount of global memory, which can be
accessed by all vector processors, which currently amounts to up to 12GB on NVIDIA
GPUs. The bandwidth of global memory is much larger than that of the main
memory for the CPU (see table 3.1), it is still smaller when put in relation to the
compute performance of the device. Accesses to global memory work by loading
larger chunks of data than single words, akin to the cache lines on CPU. Ideally, each
warp triggers one transaction of 32 · 4 bytes at consecutive addresses.6 If threads
access global memory randomly, separate transactions of this size are performed
for each thread separately, which constitutes very inefficient use of global memory
bandwidth. In order to allow non-linear an non-coalesced access patterns to global
memory, additional caches exist: A level-2 cache and the read-only caches for texture
and constants. The latter are commonly used for lookup tables.

Accesses to global memory can be ordered by loading consecutive chunks of data
into shared memory, using it as a sketchpad, as mentioned above. Simpler efficient
access patterns for global memory are streaming (section 3.3) or warp-collective
(random) coalesced accesses (section 3.4).

As long as there are sufficient resources, it is possible to run many times as many
threads on a GPU than there are cores. This is also necessary in order to hide

5On current NVIDIA GPUs (since Fermi): 64 kB of memory, of which 48 kB are addressable shared
memory and 16 kB L1 cache, or vice-versa, depending on the programmer’s choice.

6The lowest address should ideally be located at a 128 byte boundary (aligned access).

32

3.1. Parallel Architectures and Programming Models

latencies and achieve high compute throughput. For example, a GTX Titan Black
(NVIDIA Kepler generation) GPU features 15 vector processors, each supporting up
to 2048 threads, yielding a maximum and when achievable, ideal, total number of
30720 resident threads on the device.

Threads on the GPU are grouped into threads blocks, each of which is executed
by a one vector processor. Each vector processor can have multiple resident blocks,
as long as sufficient resources in terms of shared memory, registers and scheduling
capability are available.

Programming Model To a program running on a computer (host), a GPU presents
itself as a compute accelerator to which specific tasks (kernels) can be offloaded. The
main program is being executed on the CPU. Data required for GPU computations
is transfered to the GPU global memory, before it can be used by a kernel on the
device. Data can be transfered from main memory, or directly from a different GPU
on newer devices, which can be useful in multi-GPU applications.

Data transfer from main memory via PCI Express is rather slow (below 8 to
16GB/s), but if lots of transfers are required during a computation, it is possible
to perform transfers while a kernel is being executed on the device, which does not
require the transfer to be complete. Thus time required to transfer data can be
overlapped with computation.

3.1.3. Heterogeneous Parallelism and MPI

Basically any compute node containing GPUs provides more than one CPU core per
GPU. In some cases it can be beneficial to utilize the parallel compute resources on
both GPU and CPU. An example is performing on-the fly analysis on the CPU while
the GPU continues to work on a simulation, as discussed in section 3.5.

Another level comes into play when compute resources installed in multiple physi-
cal nodes are to be used. Separate compute nodes share neither the operating system
nor memory, thus different instances of a program need to run on each node. These
processes can exchange data by sending messages over a network. The standard
protocol used for such communication is the Message Passing Interface (MPI). The
requirement to send data over a network between nodes adds the problem of com-
munication latencies, which is not present in shared-memory parallel programs, but
is similar to the problem of transferring data via PCI Express between a GPU and
main memory.

When one large dataset is to be processed, one way to overlap communication
with computation can be to split the data set into chunks. After transferring the
first chunk, computation on the first chunk can be started, while the next chunk is
being transferred.

33

3. Parallel Implementation: Towards Large-Scale Simulations

3.1.4. Bit-Coding of Lattice Sites

A common property of many stochastic lattice models is, that each lattice site can
only take a small number of different states, thus only little information needs to
be stored per site. The smallest addressable unit of data is one byte, containing
eight bits, which is also the amount of information it can hold. Modern architectures
provide registers holding words of four (32-bit, GPU) or eight (64-bit, CPU) bytes.7

Storing only one or two bits of information, corresponding to two to four states in
any of these units is not an efficient use of resources.

Let 𝑏 be the number of bits required to encode a lattice site. Then, given a word
size 𝑤 in bits, each word can be interpreted as a linear memory region in which 𝑤/𝑏
lattice sites can be stored. Usual 𝑑–dimensional addressing can be used to encode
chunks of a 𝑑–dimensional system, which are as close to a (hyper-)cube as possible.
For example: In 𝑑 = 2, with 𝑏 = 2 and 𝑤 = 32 (GPU) squares of 4 × 4 lattice sites
can be encoded. This allows keeping random memory accesses as local as possible
and caching chunks with as little surface as possible in small memory regions, like
GPU shared memory.

Details of this type of encoding are presented in appendix A.1. This encoding
is called synchronous [100], because it encodes lattice sites of the same system in
one word. Another form of synchronous bit-coding is discussed in section 3.3.2.
It is based on the idea of implementing SCA updates in a bit-vectorized fashion
which is often used in MC simulations of the Ising model [35,101] and has also been
successfully applied to the RSOS model (multi-lattice-site coding in [79]).

A different approach to bit-coding, where sites of different realizations, then sim-
ulated parallel, are encoded in one word [102], may be called asynchronous [100]. A
very recent study of bit-vectorized Ising spin-glass simulations on GPU using this
approach can be found in [100]. Here, asynchronous bit-coding is not employed, but
an application of the general idea to SIMD processing on GPU in section 3.4.

3.2. Domain Decomposition for Stochastic Lattice
Models

Direct parallel implementation of stochastic lattice models like surface growth models
or Metropolis MC methods with random-sequential (RS) dynamics is not possible. In
order to generate a Markov chain of states incremental updates are performed, which
by themselves do not contain independent computations which could be executed in
parallel. This is holds true even for rejection-free methods.

The alternative is to generate and apply many update attempts concurrently,
which creates parallel workload that can be distributed over workers like CPU cores,
i. e. threads or MPI ranks, or multiprocessors or scalar cores of a GPU. To gen-
erate a Markov chain in parallel requires these update attempts to be statistically

7SIMD words are not considered here, since these are vectors of 32-bit or 64-bit scalars. This
means, for example, that a shift operation is applied to each scalar word separately.

34

3.2. Domain Decomposition for Stochastic Lattice Models

independent in the sense that an integrated transition over a time Δ𝑡 of parallel
updates follows the same probability distribution as the integrated transition over
Δ𝑡 of sequential updates. This implies, that a balance condition which is fulfilled by
the sequential algorithm must also be fulfilled by the parallel version. Speaking of
an integrated transition allows for relaxing on detailed balance.

This can in theory be done in a rigorous way (Shim and Amar [96] did this for
the 𝑛-fold way algorithm), but will then require an overwhelming amount of com-
munication, and especially synchronization of workers, and will thus result in poor
parallel scaling. A more practical approach is to use domain decomposition (DD)
to generate domains where workers can perform updates needing to communicate.
Update attempts in these non-interacting domains will be performed asynchronously
for a time 𝑡async which will usually be one Monte Carlo step (MCS), that is one sweep
of the domains (full update). For the time 𝑡async each domain constitutes a smaller
system with fixed boundary conditions (FBC), thus this is only an approximation
to the pure sequential algorithm. The goal in choosing a DD scheme is to minimize
effects of the fixed boundaries on the evolution of the system. For a fixed scheme,
reducing 𝑡async does systematically reduce the effects of this approximation.

3.2.1. DD for Asynchronous Updates

DD schemes shall first be treated generically. When the given problem consists in
distributing simulation lattice among multiple workers which are to perform full
updates asynchronously, the solutions can be formulated independent of the parallel
architecture. In a specific implementation, the role of workers may be taken by
threads or MPI ranks in a multi-CPU setup or thread blocks on GPUs.

3.2.1.1. Dead border (DB)

In the dead border (DB) DD scheme, used by the GPU implementation of the octa-
hedron model in [27, 103], decomposes the system into tiles, where the rim of each
is kept inactive during asynchronous updates (dead border), so that no update of
the site in the active part of a tile would affect or be affected by the state of site
in a neighboring tile. If a border site is chosen for an update attempt the update
is not carried out. After the asynchronous interval 𝑡async, the origin of the tiling is
moved randomly before the next asynchronous updates, displacing the dead borders
so that former inactive border sites may be updated and propagate changes between
formerly separate tiles. Since not all sites are active during a sweep of the lattice, a
time step under DB is a little less than a complete sweep:

1MCS𝐷𝐵 = 1/(𝑁latticesites −𝑁bordersites)MCS (3.2)

In general, such as in KLMC, where each update attempt requires interaction
between the updated site and all its NNs, sites on the rim of tiles in all directions
need to belong to the dead border. In the octahedron model on a square lattice,
where only the links between sites carry state (the slope), only one rim in each

35

3. Parallel Implementation: Towards Large-Scale Simulations

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1′

1′

1′

1′

· · ·
· · ·

...

...

· · ·
· · ·

...

...
(a) dead border (DB)

1

4

2

3

1

4

2

3

1

4

2

3

1

4

2

3

(b) double tiling (DT)

1

4

2

3

1

4

2

3

1

4

2

3

1

4

2

3

1′

4′

2′

3′

· · ·

· · ·

...

...

· · ·

· · ·

...

...

(c) DT DD with random ori-
gin (DTr)

Figure 3.1.: 2d schematics of DD schemas that have been evaluated for parallel
implementations of the (2 + 1)d octahedron model. All schemes can be straight-
forwardly applied in setups of arbitrary dimension. Dark areas indicate regions
being updated concurrently while the light areas are inactive, acting as buffers.
Numbers indicate a (randomized) sequence of synchronous steps in which the asyn-
chronous domain updates are performed. Domains labeled with primed numbers
illustrate a possible randomized decomposition after moving the decomposition
origin: 𝑂 → 𝑂′. Domains calculated based on a random origin will always wrap
around the system (periodic boundary conditions (PBC)), even if PBC are not
used in the simulation. DB ((a)) is displayed for the special case of the octa-
hedron model (and other slope-based surface growth models) where updates can
affect neighboring cells only in positive 𝑥 or 𝑦 direction. In general, all cell edges
would be dead borders.

spatial direction needs to be inactive. This is because, for each direction one slope
is encoded on-site (to the left neighbor), only the other one must be retrieved from
the right neighbor. Thus updating a site on the left rim of a tile will not require
access to the neighboring tile to the left. This also holds for all slope-based surface
growth models on rectangular lattices, including RSOS. Figure 3.1a illustrates DB
DD in 2d.

In the implementation of the octahedron model, each 32-bit word encodes 4 × 4
lattice sites, thus, freely picking a random origin would result in words becoming
shared between neighboring tiles. For reasons of performance, the early implementa-
tion thus restricted movement of the DD origin in such a way, that the borders would
always be located at the edge of 32-bit words. Essentially the origin was moved ran-
domly on a coarse grid with steps of 4×4 lattice sites. This variation will henceforth
be labeled coarse dead border (cDB). DB was also implemented without restriction
of the DD origin to a coarse grid, by increasing the width of the dead boarder to five
lattice sites. This padding ensures that if a word is shared between tiles, the left tile
will not need to write to it, because all lattice sites encoded in this word, belonging
to the left tile, will be inactive and will not have an active neighbor. Properties of

36

3.2. Domain Decomposition for Stochastic Lattice Models

these two variations are discussed in section 4.2.1.

3.2.1.2. Double tiling (DT)

Parallel implementations of KLMC use double tiling (DT) for DD, this scheme is
illustrated in 2d in figure 3.1b. Here, the system is decomposed into tiles, which are
split into two sub-tiles in each spatial direction, creating 2𝑑 sets of non-interacting
domains, where 𝑑 is the dimension. Theses domain sets are updated in a random
order at each MCS, synchronization occurs after completing each sweep of a domain-
set. Sub-tiles do not comprise inactive sites, thus updates of lattice sites on the rim
of a sub-tile will affect sites in neighboring sub-tiles which are at that time inactive.

In DT borders of DD domains always remain at the same place, which enables
higher performance, because, not having to deal with arbitrary decomposition ori-
gins, memory alignment can be controlled and the amount of data that needs to be
exchanged between workers (specifically MPI ranks) is reduced. The disadvantage
is, that it allows errors of the effective FBC approximation to accumulate at the
locations of the domain boundaries. Nevertheless, it has turned out to give results
of sufficient quality for KLMC [93]. Essentially this scheme was also used for a less
rigorous implementation of the 𝑛-fold way algorithm [95].

3.2.1.3. DT DD with random origin (DTr)

In a model where the only source of randomness is the random selection of lattice
sites, it must not be biased. Thus, a DD scheme which allows imbalances in the
site-selection to accumulate at specific places (sub-tile boundaries), however slightly,
cannot be expected to perform well in general. The accumulation can be removed
by randomly moving the decomposition origin like with DB (see figure 3.1c). In the
DT DD with random origin (DTr) scheme restricting the random origin to a coarse
grid is not necessary in any case, since there effectively are dead borders of the same
width as the decomposition domain, which easily provides enough padding to avoid
having words shared between workers. An analysis in section 4.2.1 shows this DD
scheme to be free of correlations to statistical accuracy, this is why it was used in
most of the octahedron-model simulations presented in chapter 4.

3.2.1.4. Implementation

Shared memory implementations, such as multi-threaded CPU code, of these schemes
are rather trivial, since the DD can be implemented logically: It suffices to restrict
the random site selection of each worker to an appropriate region, without physically
moving or copying data. CPU performance will profit if the decomposition domain
easily fits into the L1 cache. Thus, it can be advantageous to decompose the system
into a number of smaller domains, which may exceed the number of worker threads
available.

Using the same approach on a GPU, i. e. storing the system in global device
memory and letting threads take the role of workers, would be very inefficient: Such

37

3. Parallel Implementation: Towards Large-Scale Simulations

an implementation would utilize the available memory bandwidth very inefficiently
due to the non-coalesced memory accesses and would suffer from large latencies. A
alternative approach to essentially this is described in section 3.4. For the current
purpose thread blocks need to be regarded as workers at this level (device-layer).

In GPU code sweeps of domain sets are performed inside a GPU kernel. The
subsequent synchronization takes place when the kernel terminates. To perform a
sweep of an assigned decomposition domain, a thread block loads it into the shared
memory and writes the data back to global memory only after completing the sweep
(see next section). The size of device-layer domains is set to be as large as the amount
of available shared memory per multiprocessor permits, in order to maximize the
number of threads that can be run per block. Another conceivable option would be
to use smaller domains and fit multiple blocks onto a multiprocessor to reach the
same utilization (maximum number of threads per multiprocessor). A block would
only need to encompass one or two warps. This alternative would make less efficient
use of the very limited amount of shared memory, because more memory would be
used by domain borders and thus inactive lattice sites. Using larger domains also
reduces the negative effect of the FBC approximation implied at this level of DD.

In order to use multiple multi-CPU nodes or GPUs, data needs to be exchanged
between these units, which may well be equated with MPI ranks. Any of the above
implementations and DDs may be used, where each rank is only assigned a subset of
all decomposition domains which cover slice of the whole system. Usually, it is most
efficient to distribute ranks in only one spatial dimension, because this minimizes the
number of neighboring ranks each ranks need to exchange data with. The edges of
the ranks’ meta-domains have to be exchanged at each synchronization point. In case
of DT this means communicating the borders and in cases with random DD origin
(DB and DTr) this means communicating the overlap areas induced by the transition
from origin 𝑂 to 𝑂′. As part of the present work, this has been implemented for
KLMC [104], but it will not be elaborated upon.

3.2.2. Second DD Layer on GPUs

On GPUs, thread blocks assume the role of workers in the aforementioned DD
schemes (device-layer). Thus a device-layer domain needs to be updated in par-
allel by a usually large number of threads, where each thread performs updates on
a, consequently small, block-layer domain. In principle, all DD schemes discussed
before (see also figure 3.1), can be applied here, with only one difference: Since block-
layer domains are inevitably small (often only 4× 4 lattice sites), errors introduced
by the FBC approximation would be large when performing a full sweep. Instead,
only single-hit updates are performed by threads, which consist in performing only
one update attempt before synchronization. In this scheme, time does effectively not
progress asynchronously in independent domains (𝑡async ∼ single update attempt ∼
0), since no update depends on a previous update which was not synchronized with
the other workers.

38

3.2. Domain Decomposition for Stochastic Lattice Models

3.2.2.1. Single-Hit DT

Using single-hit DT, each thread is logically assigned a tile of 2𝑑 block-layer domains,
which is called the thread cell (TC). The smallest choice is 2 × 2(×1) words8 This
configuration is written using log2 as TC=1,1. This gives a smallest block-layer
domain of one word or 4×4 lattice sites in the 2d octahedron model. A variant with
random origin was also evaluated.

3.2.2.2. Single-Hit DB

In case of single-hit DB the TC and block-level domain are identical, which allows
for smaller TCs. The smallest possible configuration would be denoted TC=0,0,
containing only one word. Because of the small block-level domains, making the
fraction of border sites rather large, and the lack of asynchronism, single-hit DB is
implemented comprising delayed borders rather than dead ones. Thus, if an update
attempt hits the border of a block-level domain, the thread will wait until the bulk
updates are completed and evaluate the update attempt afterwards. Updates hitting
the corners of domains are applied after that. In this way the number of dead border
sites in equation (3.2) is zero thus sweeps are complete.

Since the decomposition origin is moved without restriction, words are likely to be
shared between neighboring TCs. Atomic operations are therefore used to update
the domain in shared memory.

For the octahedron model, in cases where either 𝑝 > 0 or 𝑞 > 0, which is the
usual case when simulating the KPZ universality class, updates can never be allowed
for two NN sites at the same time, because slopes are restricted to ±1. Thus, in
this case, delayed borders are not required to avoid conflicts between updates and
updates ignoring borders are completely equivalent to updates with delayed borders.
Hence, in the present work, all simulations stated as using DB at block-level are
actually ignoring borders at block-level if only one of 𝑝 and 𝑞 is finite.

3.2.2.3. DD Parameters for the Octahedron Model

Properties of all these methods are analysed in sections 4.1.1 and 4.2.1. The size and
shape of thread cells is given in the notation TC=log2(𝑥),log2(𝑦), where 𝑥 and 𝑦 are
the numbers of words in each direction.

A device-layer domain is updated by a number of threads (T) in a configuration
T=log2(𝑡𝑥),log2(𝑡𝑦). Since each thread is assigned to one thread cell, the size of a
device-layer domain is 2TC+T words or 2TC+T+2,2 lattice sites.9 This notation could
be extended to any number of dimensions, including 3d KLMC, but it is only used
in the context of the 2d octahedron model here.

832-bit words, containing 4× 4 (2d octahedron model) or 4× 4× 2 (KLMC) lattice sites.
9 The expression x,y can be read both as a linear dimension log2 �⃗� = (𝑥, 𝑦) and as a volume
log2 𝑉 = 𝑥+ 𝑦, depending on what is of interest to the reader. Define log2 of a vector element-
wise.

39

3. Parallel Implementation: Towards Large-Scale Simulations

DTrDT DTrDB

10
9.158.9

8

9.7 9.2

up
da

te
s/

ns GTX Titan Black, peak
GTX Titan Black, sustained
Tesla K80 (1GPU), sustained

Figure 3.2.: Performance of the DTr at device level and single-hit DT at block level
(DTrDT) and DTr at device level and single-hit DB at block level (DTrDB) vari-
ations of the RS implementation of the octahedron model on GPU. For K80, the
sustained performance equals the peak performance. Benchmarks were performed
for systems of lateral size 216.

3.2.3. Performance

The implementations for future calculations use DT DD with random origin (DTr)
at device-layer and differ in the type of block-layer DD employed: The two relevant
variations are DTr at device level and single-hit DT at block level (DTrDT) and DTr
at device level and single-hit DB at block level (DTrDB). The performance of these
is presented in figure 3.2. On a GTX Titan Black GPU, the performance drops after
the first ∼ 100MCS, because the device clocks down under load. This leads to a
measured sustained performance which is lower than the peak. The performance on
a Tesla K80 is about constant. The DTrDB variant is consistently slower, by about
ten percent.

The sequential implementation on an i7-4930k CPU delivers 0.055 update attempts
per ns for a system of lateral size 𝐿 = 212, a size where the while system fits into
the L3 cache. The performance is less for larger systems, which do not fit into
L3 cache. Running multiple independent runs on the same device is also likely to
reduce performance. A parallel implementation, using DTr, running twelve threads,
performs 0.28 update attempts per ns. This leads to a speedup factor of about 30
for the GPU code over a single socked CPU.

3.3. Lattice Level DD: Stochastic Cellular Automaton

Parts of this section, including sub-sections 3.3.2 and 3.3.3 have been published as a
conference proceedings paper [105].

The checkerboard–SCA approach achieves a sweep of the lattice (MCS) in a well-
defined and efficient manner by first updating the even lattice sites, then the odd ones.
The sets are defined by the parity of the exclusive or of the coordinates (𝑥⊕ 𝑦) ∧ 1,
analogously to the black and white squares of a checkerboard. Since this eliminates
the process of random site-selection, the updates can be ordered in a way which
results in most efficient, usually linear, memory access patterns.

40

3.3. Lattice Level DD: Stochastic Cellular Automaton

3.3.1. Local Approach for the Octahedron Model

The straightforward way of encoding tiles of 4 × 4 lattice sites in 32-bit words, as
described in section 3.1.4 has the advantage that NN sites, which are required to
perform an update may be found in the same word, making it the encoding of choice
if lattice sites are selected randomly. Based on this encoding, an SCA implementation
has been created which takes advantage of the allowed linear memory access pattern.

In the GPU implementation, four kernel calls are quired per MCS: For each com-
bination of odd/even lattice sites and odd and even chunks of lines. The system is
split into chunks along the 𝑦 direction to avoid write-write conflicts between blocks.
A block is used like and extended SIMD unit, with each thread processing a scalar
element. The system is processed line by line, with the current and the next line
being cached in shared memory. Threads iterate over all active sites in their re-
spective 32-bit words to perform updates. The remaining details are similar to the
implementation described in the next section.

This approach has the advantage of using the same lattice encoding as the RS
implementation, which makes this a good prototype for an SCA implementation
because it can be use in conjunction with analysis codes already in use with the RS
implementation.

3.3.2. Non-Local Approach for the Octahedron Model

For bit-vectorization, the ideal encoding is non-local with respect to the relations
of data in configuration space. Instead the bits are grouped in memory according
to their role. The SCA defines four roles in total, based on two binary properties:
The direction of the slope 𝜎𝑥/𝑦 and the parity of the lattice site (odd/even). This
grouping is illustrated in the right-hand panel of figure 3.3: All slopes with the same
role are stored at consecutive addresses in memory, allowing vectorization with any
word size not larger than half the size of the simulation cell 𝑋/2.

3.3.2.1. Bit-Vectorized GPU Implementation

The kernel of the bit-vectorized GPU implementation is summarized in pseudo-code
in figure 3.4. Care must be taken regarding the parity of rows with respect to the
considered sub-lattice (line 3.4.2): All slopes belonging to sites in odd rows are
perfectly aligned and no shifting is required. In even rows the 𝜎𝑥+ slopes, stored at
the NN site in 𝑥 direction, are shifted by one bit in memory (compare figure 3.3,
left).

The implementation treats consecutive words processed by threads of the same
block as one effective SIMD word, with a maximum effective size of 𝑤eff,max =
𝑤 ×𝑚𝑎𝑥𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘, where 𝑤 is the word size in bits, which is 32 on GPU,
giving 𝑤eff,max = 215. This SIMD-word size can be adjusted to span the simulation
cell, as long as the lateral size does not exceed 𝑋 = 216. Larger simulations are
rarely required, thus the kernel displayed in figure 3.4 assumes the effective SIMD
word to span the system. The work assigned to thread blocks is distributed along the

41

3. Parallel Implementation: Towards Large-Scale Simulations

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓
↓

↓

↓

↓

↓
↓

↓
↓

↓

↓

↓
↓

↓
↓

↓

↓

↓
↓

↓
↓

↓

↓

↓

↓

↓
↓

↓

↓

↓

↓

↓

↓

local encoding: 4× 4 sites per 32-bit word

↓
↓

↓ ↓ ↓

↓ ↓ ↓

↓ ↓ ↓ ↓

...
...

...
...

↓
↓

↓ ↓ ↓
↓ ↓ ↓

↓ ↓ ↓ ↓
...

...
...

...

↓
↓

↓ ↓ ↓

↓ ↓ ↓

↓ ↓ ↓ ↓

...
...

...
...

↓
↓

↓ ↓ ↓
↓ ↓ ↓

↓ ↓ ↓ ↓
...

...
...

...

non-local encoding

Figure 3.3.: Comparison of direct, local bit-coding (left) and non-local encoding
suitable for vectorization. Black and white areas represent even and odd lattice
sites, respectively. Arrows represent slopes connecting neighbors in the indicated
direction. Red dashed frames show the correspondence between locally and non-
locally encoded slope information. Solid frames indicate data stored in a 32-bit
word.

𝑦 direction. Buffer regions between blocks or global atomics are not employed since,
as long as all blocks update the same sublattice, the non-locality of the encoding of
on-site slopes avoids write conflicts in global memory.

Each thread updates 32 lattice sites simultaneously. The corresponding slopes �⃗�𝑥+

are placed in a buffer in shared memory (�⃗�shared𝑥+) to facilitate block-wide rotation
when updating even rows. The correct set of �⃗�𝑥+ slopes is compiled in the lines
following 3.4.8. An xor-mask 𝑚 encoding the Kawasaki exchanges to be carried
out is used to apply updates in parallel. Again, �⃗�𝑥+ needs to be treated separately
in even rows: The update mask is applied in parts to the corresponding data in
shared memory. Atomics could be used to apply 𝑚, in order to remove the need for
synchronization in line 3.4.21, but this was found to yield lower performance.

The update mask 𝑚 in line 3.4.14 is generated according to the Kawasaki rules in
equation (2.17), which can be implemented by the following relations:

𝑚𝑝 = 𝜉𝑝 ∧ ¬(�⃗�𝑥− ∨ �⃗�𝑦−) ∧ �⃗�𝑥+ ∧ �⃗�𝑦+ (3.3)

𝑚𝑞 = 𝜉𝑞 ∧ ¬(�⃗�𝑥+ ∨ �⃗�𝑦+) ∧ �⃗�𝑥− ∧ �⃗�𝑦− (3.4)
𝑚 = 𝑚𝑝 ⊕𝑚𝑞 , (3.5)

where 𝜉𝑟 denotes a word of random bits set with probability 𝑟. If 𝑞 = 0, the calcu-
lation of 𝑚𝑞 can be omitted and 𝑚 = 𝑚𝑝.

Generation of 𝜉0.5 is trivial and fastest, provided a good pseudo-random number

42

Require: 𝑋 × 𝑌 ◁ system size
Require: 𝑤 ◁ word size in bits
Require: �⃗� ◁ bit-vector of slopes, one word
Require: �⃗�0/1

𝑥/𝑦− [𝑋/𝑤/2, 𝑌] ◁ 4 arrays of slopes (𝑥/𝑦, even/odd)

1: for 𝑦 ∈ 𝑏𝑙𝑜𝑐𝑘𝐵𝑜𝑢𝑛𝑑𝑠 do
2: 𝑝𝑎𝑟row ← 𝑝𝑎𝑟lat ⊗ parity(𝑦)
3: 𝑥𝑤 ← 𝑡𝑖𝑑 ◁ index of slope-vector in 𝑥

4: �⃗�𝑥/𝑦− ← �⃗�𝑝𝑎𝑟lat
𝑥/𝑦− [𝑥𝑤, 𝑦]

5: �⃗�𝑦+ ← �⃗�¬𝑝𝑎𝑟lat
𝑦− [𝑥𝑤, 𝑦 + 1] ◁ NN 𝑦

6: �⃗�𝑥+ ← �⃗�¬𝑝𝑎𝑟lat
𝑥− [𝑥𝑤, 𝑦] ◁ NN 𝑥

7: �⃗�shrd𝑥+ [𝑡𝑖𝑑]← �⃗�𝑥+ ◁ shared buffer for rotation

8: if ¬𝑝𝑎𝑟row then ◁ rotate SIMD word by one bit:
9: synchronizeThreads

10: �⃗�𝑥+ ← shiftRight(�⃗�𝑥+ , 1)
11: �⃗�𝑥+ ← �⃗�𝑥+ ∨ shiftLeft(�⃗�shrd𝑥+ [𝑡𝑖𝑑 + 1], 𝑤 − 1)
12: end if

13: ◁ compute xor mask for update:
14: 𝑚← updateMask(�⃗�𝑥− , �⃗�𝑦− , �⃗�𝑥+ , �⃗�𝑦+ , 𝑝, 𝑞)

15: ◁ apply mask:
16: �⃗�𝑝𝑎𝑟lat

𝑥/𝑦− [𝑥𝑤, 𝑦]← 𝑚⊕ �⃗�𝑝𝑎𝑟lat
𝑥/𝑦− [𝑥𝑤, 𝑦]

17: �⃗�¬𝑝𝑎𝑟lat
𝑦− [𝑥𝑤, 𝑦 + 1]← 𝑚⊕ �⃗�¬𝑝𝑎𝑟lat

𝑦− [𝑥𝑤, 𝑦 + 1]

18: if ¬𝑝𝑎𝑟row then
19: ◁ apply mask to NN 𝑥 slopes, except LSB:
20: �⃗�shrd𝑥+ [𝑡𝑖𝑑]← �⃗�shrd𝑥+ [𝑡𝑖𝑑]⊕ shiftLeft(𝑚, 1)
21: synchronizeThreads
22: ◁ apply mask to LSB of next NN 𝑥 slopes:
23: �⃗�shrd𝑥+ [𝑡𝑖𝑑 + 1]← �⃗�shrd𝑥+ [𝑡𝑖𝑑]⊕ shftRight(𝑚,𝑤 − 1)
24: synchronizeThreads
25: �⃗�¬𝑝𝑎𝑟lat

𝑥+ [𝑥𝑤, 𝑦]← �⃗�shrd𝑥+ [𝑡𝑖𝑑]
26: else
27: �⃗�¬𝑝𝑎𝑟lat

𝑥+ [𝑥𝑤, 𝑦]← 𝑚⊕ �⃗�𝑥+

28: end if

29: end for

Figure 3.4.: Bit-vectorized GPU kernel using non-local encoding to update one sub-
lattice with given parity (𝑝𝑎𝑟lat = (𝑥 ⊕ 𝑦) ∧ 1). It is executed for each sublattice
in order to complete one MCS. PBC apply for all coordinates, including indexes
in the shared memory buffer �⃗�shrd𝑥+ []. 𝑡id is a short-hand for the thread ID within
the thread block. The above directly applies if the thread block (=̂ SIMD word)
spans the system in 𝑥 direction. Statements involving �⃗�𝑥/𝑦− represent two separate
operations on �⃗�𝑥− and �⃗�𝑦− . Load and store operations for parameters and states
of random number generators happen before respectively after the presented loop
and are omitted for brevity. See text for details.

3. Parallel Implementation: Towards Large-Scale Simulations

generator with all bits following a uniform distribution is employed. For an arbitrary
𝑟, it is necessary to generate 𝜉𝑟 sequentially using 𝑤 random numbers. All 𝑤 = 32
random bits need to be generated. Generating only those random bits which are
required for the actually possible updates in a way which minimizes warp-divergence,
does not improve performance. Even then the implementation is considerably faster
than a non-vectorized version using local encoding.

With the effective SIMD word spanning the simulation cell in one direction, the
implementation utilizes global memory perfectly efficiently: All accesses are coalesced
and all bits read are required to perform updates. To handle even larger systems
(𝑋 ≥ 217), the kernel needs to be changed. The word index 𝑥𝑤, initialized in
line 3.4.3, is iterated with a stride equaling the number of threads per block. The
procedure remains unchanged for odd rows, where no slopes need to be shifted. For
even rows, the shared buffer �⃗�shared𝑥+ holds two SIMD words. �⃗�𝑥+ slopes need to be
shifted between neighboring SIMD words, thus the whole of a second SIMD word is
cached to ensure keeping global memory accesses coalesced. The buffer is used in
a wrap-around fashion (�⃗�shared𝑥+ [𝑥𝑤 mod 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒]) and the first word �⃗�𝑥+ [0] is
cached in shared memory separately in order to apply PBCs without having to read
the data from global memory twice.

Good quality pseudo-random numbers are crucial in this implementation, espe-
cially in the optimized case 𝑟 = 0.5. While in some cases adequate for Monte-Carlo
methods, a linear congruential generator (LCG) is insufficient here: Correlations
would severely influence results and produce accumulating errors since the SCA
updating procedure is itself correlated and is to be decorrelated by the random ac-
ceptance of updates in the first place. Also, LCGs do usually not provide good
randomness of single bits. The TinyMT [106], used in this work (see section A.3)
yields good results in the present implementation.

For performance comparisons, a multi-threaded CPU implementation using a word
size 𝑤 = 64 bit was created for the case 𝑝 = 0.5, 𝑞 = 0. The usage of SIMD instruc-
tions through the vector extensions of GCC [107] did not increase performance. This
may be because some operations, like bit shifts across a whole SIMD word, require
more operations than with scalar commands, which compensates the performance
gain due to vectorization.

3.3.3. Performance of SCA Implementations

Tests of the CPU implementation were performed by running the maximum number
of hardware threads provided by the hyper-threading capabilities of the platform
(12). This increases the performance by less than one percent over running only one
thread per physical core (6) for the bit-vectorized implementation. This suggests that
the performance of the bit-vectorized implementation on CPU is not significantly
limited by memory latency. The gain is about 20% for the local implementation.

The achieved performance of different implementations is presented in figure 3.5
as the number of update attempts performed per nanosecond. In the course of one
MCS, each slope needs to be touched twice, translating into two write and two read

44

3.3. Lattice Level DD: Stochastic Cellular Automaton

Int
el i7-4

930
K

GTX Titan
Black

K80
(1 GPU)

GTX Titan
X

0.6
16 11 23

50
34

69

16

229

151

234220

up
da

te
s/

ns local 𝑝 = 0.95

BV 𝑝 = 0.95

BV 𝑝 = 0.5

... 𝐿 = 217

0

100

200

300

ne
t

G
B

/s

Figure 3.5.: Benchmark results of various SCA implementations of the octahedron
model on Kepler (GTX Titan Black, K80) and Maxwell (GTX Titan X) generation
NVIDIA GPUs and on an Intel i7-4930K CPU. The benchmarks on GPUs were
performed for systems of lateral size 𝐿 = 𝑋 = 𝑌 = 216 (except for the cyan bar,
where 𝐿 = 217, see text). Benchmarks on CPU used a lateral size of 𝐿 = 214

lattice sites. All presented benchmarks were performed for 𝑞 = 0, 𝑝 as given in
the legend. The right axis translates the rate of performed updates into the net
bandwidth required to read and write the processed data, excluding any overhead.

accesses to each slope per MCS in the ideal case. This is illustrated by the right
axis of the plot associating the performance with the ideally required bandwidth.
For 𝑝 = 0.5, 𝑞 = 0, the bit-vectorized implementation performs about 229 updates
per nanosecond on a GTX Titan Black GPU, which requires 229 GB/s of slope
data to be transferred between global device memory and the GPU. The NVIDIA
Profiler nvprof reports an achieved memory bandwidth of about the same value,
since the memory transfers required to load and store states and parameters of
random number generators negligible. This bandwidth is lower than the maximum
bandwidth listed for the device in table 3.1, but it is equal to the bandwidth reported
by the bandwithTest utility from the CUDA SDK for pure device-to-device memory
copy. At the same time nvprof reports low to medium utilization of arithmetic units.
Thus the code is clearly memory-bound.

When the lateral system size is increased to 𝑋 = 217, the effective SIMD word does
no longer span the simulation cell and memory accesses cannot be done as efficiently
anymore. However, the resulting drop in performance remains below 5% (cyan bar).

In the case of arbitrary 𝑝, the generation of correctly distributed random bits be-
comes more expensive. The benchmarks for 𝑝 = 0.95 (green bars in figure 3.5) show
a performance reduced by a factor of four to five, which is still faster than the local
implementation for the same case (red bars). Since memory access patterns of the
bit-vectorized implementation remain unchanged between the cases 𝑝 = 0.50 and
arbitrary 𝑝, the decrease in performance can only stem from the increased compu-
tational load of random number generation, which does not require branches. This
means, that the implementation turns from memory-bandwidth-bound to compute
bound. Specific choices for the probabilities, which are the sums or differences of

45

3. Parallel Implementation: Towards Large-Scale Simulations

fractions 1/2𝑖 can be generated at lower computational cost than arbitrary ones,
since they can be generated from less than 32 random numbers using the logical
“and” and “or” operations.

The newer GTX Titan X (Maxwell-generation) GPU provides a significant speedup
over Titan Black for arbitrary 𝑝, due to increased compute power, but only a marginal
gain in the case 𝑝 = 0.5, since the available memory bandwidth is almost the same.

The values listed for TDP in table 3.1 may not be perfectly comparable across
vendors, but can provide a rough estimate of the power consumption of the device in
a steady state under load. The actual power consumption during the benchmarking
was not measured. Comparing performance and TDP for the Kepler-generation
cards, one can conclude that the lower clocked, compute GPU K80 is more energy
efficient running the presented implementations than the gaming card.

The case 𝑝 = 𝑞 = 0.5 was also tested, but not separately optimized, because
simulations of this case are of less scientific interest since it falls into the analytically-
solved Edwards–Wilkinson universality class. However, evaluating additional 𝑞 = 0.5
updates does not significantly affect performance since memory bandwidth remains
the main limiting factor.

3.4. The Multi-Surface Coding Approach

The chief disadvantages of the two-layered DD approach described in section 3.2.2
originate from the need to cache chunks of the simulated system in a small amount
of fast, local memory, to avoid random accesses to slow global memory. This works,
as long as the memory required per lattice site does not exceed about two bits. The
need to cache is removed in the SCA approach by throwing out random site-selection,
among other things, allowing to store more information per lattice site. Neither of
these approaches will work when significantly more than one bit of information is
encoded per lattice site and random site-selection is desired. Implementing the RSOS
model with 𝑁 > 1 or the Potts model with random-bond disorder or 𝑞 > 4 cannot
be done using the two-layered DD approach because any reasonably sized domain
would take up too much memory to be cached in local memory. There may be no
efficient way to solve this problem on GPU in general.

These two approaches described above focus on simulating large systems over long
time scales. They are less efficient at simulating small systems, since the parallel
workload created is not enough to completely occupy a GPU below a certain system
size, which depends on the algorithm and the device. When small systems are of
interest, usually a large number of samples is required. This is the case, for example,
when performing finite-size scaling, since the region of interest is reached sooner and
one can scale over a larger range when starting at a smaller system size. Averaging
over many small systems is also preferable over few large runs in cases where self-
averaging is not present or weak. Large systems do no provide self-averaging over
disorder realizations and self-averaging was found to be weak for response functions
in the Ising Model [108].

46

3.4. The Multi-Surface Coding Approach

The multi-surface coding (MS) approach takes advantage of the fact that multiple
realizations of the same simulation are to be run and vectorizes over realizations
instead of parallelizing the simulation. This is usually done for models with a small
number of states (few bits per lattice site) and thus employing bit-vectorization as
described in section 3.3.2. For example, it has been done for 𝑁 = 1 RSOS [109]
and previously for the 3d Ising model [110] on 64-bit CPUs, but the technique traces
back to Ito and Kanada [102]. It has also been used for the exchange MC method,
or parallel annealing, relevant for spin glasses. [111] In the present context, however,
this method will only serve as a role model: Bit-vectorization is only appropriate
when the number of possible states a lattice site can take is small (. 4) while here
the goal is to efficiently handle at least one byte of information per lattice site.

Since caching of domains in local memory is not possible under these conditions,
random accesses to global memory must be made efficient. All threads of a warp
should access data within the same 128 byte region of global memory, ideally at a 128
byte offset (coalescing, see section 3.1). The MS approach allows treating these 128
byte chunks as effective SIMD-words: With a warp size of 32 threads, the SIMD-word
is a vector of 32 four-byte scalars, where each scalar value could encode information
from one system (layer) of a stack of 32 systems (multi-surface). The properties of
the scalars will be discussed later, with the specific applications in mind.

3.4.0.1. Vectorization

Vectorizing MC updates over realizations is done by selecting a shared random coor-
dinate for the whole warp. Information belonging to this coordinate in all layers of the
multi-surface is stored in the same vector, which can be loaded by the threads in one
128-byte transaction (coalesced load). The same holds when accessing NN positions.
Each thread will then process, that is perform a MC update on, its corresponding
element. Since the updates in all layers follow the same rules, warp-divergence will
be a minor problem. Of course, this also means that a part of the dynamics, i. e. the
random site-selection, will be the same for all realizations. Since averaging over 32
copies of identical results is pointless, it must be ensured, that the kinetics in all
layers is decorrelated by other means.

Random Initial Conditions Using independent initial conditions, all realizations
are independent of each other at the start of the simulation, but if identical noise
was applied to all of them, they would not form an uncorrelated sample at late
times. However, in cases where the evolution of separate systems with different
initial conditions is of interest and where the average evolution is of no concern,
one may not need to implement other measures. In such cases, having the same, or
similar, dynamics act on all realizations may not pose a problem, or may even be
strictly required (such as in response calculations). This only hints at applications
of the method which were not considered in the present work.

47

3. Parallel Implementation: Towards Large-Scale Simulations

Secondary Noise MC methods using probabilistic updates, like the Metropolis,
Glauber or Heat-Bath methods introduce additional noise when evaluating update
conditions. In the present implementation, each thread has access to its own in-
dependent RNG, thus evaluation of update condition will be independent for each
realization. In conjunction with random initial conditions, this should suffice to
produce independent samples.

Random Masking The surface growth models considered in the present work al-
ways start out from flat initial conditions and do not introduce noise other than
by random site selection. Here, the decorrelation can be achieved only updating a
random fraction 𝑝 of the realizations in a multi-surface with each update attempt.
This is similar to the way noise is introduced in the SCA approach (section 3.3), only
here it only acts on the ensemble, but effectively not on single realizations.

Mixing of Multi-Surfaces Another way to decorrelate realizations arises when sim-
ulating more than one multi-surface at once, producing an even larger sample. This
is indeed the case in the present implementation in order to maximize device occupa-
tion. Since NVIDIA GPUs can only schedule 16 block per multi processor and thus
full occupation can only be achieved when running at least 64 threads (two warps)
per block, the code will usually only run at maximum efficiency on these devices if
at least two multi-surfaces are treated simultaneously.10Since there is no reason to
coalesce memory accesses across warps, the random site selection is independent for
all warps, which thus sample independent multi-surfaces. It would be possible to
decorrelate realizations by shuffling them between multi-surfaces during the course
of the simulation.

3.4.0.2. Scalar Updates

It has been discussed, how a vector of lattice points belonging to different realiza-
tions of a simulation can be updated efficiently, while still obtaining a sufficiently
uncorrelated sample. With the SIMD size of 32 and the corresponding SIMD-word-
size of 128 bytes, mentioned above, each scalar operation commands 32 bits of data.
The goal stated initially was only to have eight bits available per lattice site, which
means, that even more complex simulations can be performed using the technique
described above than were anticipated, using 32-bit to encode information of one
lattice site.

The present applications of this code do not require this much information per
lattice site. Currently, the required information can be encoded in about one quarter
of each scalar There are two ways in which the remaining memory, and at the same
time bandwidth, can be used:

10This is only a concern in cases where the number of threads that can be run per block is not
limited by the number of available registers but only by the maximum number of threads allowed
per block.

48

3.4. The Multi-Surface Coding Approach

One way is to encode multiple lattice sites, as described in section 3.1.4, except
that here each “spin” uses one byte of memory. In this way each scalar can encode a
patch of four (𝑑 = 1) or 2× 2 (𝑑 ≥ 2) lattice sites. This could add memory locality
when accessing the NN positions of the selected site, but it would be too small to be
treated as a DD cell to perform a whole MC sweep.

A better way is to treat the 32-bit word as another vector lattice sites belonging
to four realizations, which increases the number of realizations per multi-surface
to 𝑠MS = 128. The advantage of this method is that in this way each thread
performs four update attempts for every lattice site loaded instead of one. The
quadrupled computational load per unit of data will help hide latencies of memory
accesses. Since GPUs usually offer a high ratio of compute power over global mem-
ory bandwidth, compute-intensive codes can yield better performance than memory-
bandwidth-heavy ones. Maximizing the computational load in this way may even
yield compute-bound codes for usually not very compute intensive applications.

3.4.0.3. Domain Decomposition

As initially mentioned, application of the MS method serves to eliminate the need
for caching DD domains locally for random sampling. Thus MS replaces the second
level of DD described in section 3.2.2. Since a single GPU thread does not provide
sufficient compute power to perform long simulations on reasonably large systems,
DD is still employed to distribute work on replicas among blocks.

The purpose of distributing workload among blocks is twofold:

1. Blocks can be scheduled on different physical multiprocessors, thus using the
first layer of physical parallelism on GPUs.

2. In order to maximize device occupancy, more blocks are run than multiproces-
sors are available. This serves to optimally hide memory latencies by providing
several completely independent workloads to each multi-processor.

Based on experience with various types of DD for the octahedron model, presented
in sections 4.1.1 and 4.2.1, DT DD with random origin (DTr) is employed here.

Balanced Workload Distribution Contrary to the two-layered approach in sec-
tion 3.2, the size of DD tiles is not restricted by the size of shared memory per
multiprocessor, hence it can be chosen freely. If the choice is not restricted by needs
of the calculation, the tile sizes may be optimized to maximize device utilization.
The optimal number of tiles, a multiple of the number of multiprocessors, will often
not divide the lateral system size. However, a non-uniform partition of the system
into this optimal number tiles can always be generated.

Let the desired number of tiles be 𝒯 =
∏︀𝑑

𝑙=1 𝒯 𝑙, where 𝒯 𝑙 ∈ N denotes the
number of tiles in dimension 𝑙 and 𝑑 is the number of dimensions. Ideally 𝒯 𝑙 = 𝑑

√
𝒯 ,

an approximation to which, satisfying 𝒯 𝑙 ∈ N ∀𝑙, can be found using an iterative

49

3. Parallel Implementation: Towards Large-Scale Simulations

algorithm. Let further the lateral system sizes be denoted by 𝐿𝑙, then the lateral
tile-sizes are given as:

𝑡𝑙𝑖𝑙 =

⌊︂
𝐿𝑙

𝒯 𝑙

⌋︂
+

{︃
1 if 𝑖𝑙 < 𝐿𝑙 mod 𝒯 𝑙

0 if 𝑖𝑙 ≥ 𝐿𝑙 mod 𝒯 𝑙
, (3.6)

where 𝑖𝑙 ∈ [0, 𝒯 𝑙) is the tile index in dimension 𝑙 and the brackets ⌊ ⌋ denote rounding
downwards to the nearest integer. In general, the tiles will then be non-cubic and
the lateral sizes of some tiles have to be larger by one lattice site to distribute the
remainder of the system, after uniform partitioning.

Limitations While this approach can provide high total performance only a fraction
of this (< 1/128) is available for each single realization. This limits both system
size and achievable simulation time in practice (see next section). Another severe
restriction is due to the high memory requirement of at least 128 bytes per lattice site.
Even using a K80 or K40 GPU with 12GB of global memory, the lateral system size
is limited to 𝐿 < 10000 in 2 or 𝐿 < 460 in 3 dimensions. Both limitations, however,
could be overcome by adding multi-GPU capability. Since DD is already in place,
this would just be a matter of distributing tiles over multiple devices and exchanging
border information.

3.4.1. Implementation: SkyMC

The above description of the method does also pretty closely describe the present
CUDA implementation of the core of the framework called “SkyMC”. Obviously, the
above description is also very abstract in that it does not pinpoint the implemented
algorithm, the dimension nor what is actually encoded at each lattice point. This
does resemble the actual program, since it is pretty much written in this abstract
fashion using templates in C++ [112].

When it comes to the method as well as its implementation, these details do not
matter. The SkyMC engine provides a way to implement MC simulations on a rect-
angular lattice in 𝑑 ∈ N using the MS technique as described above on GPU or CPU.
The restriction to rectangular lattices stems from the way PBCs are currently im-
plemented. However, any lattice, or graph, which can be mapped onto a rectangular
lattice can be treated with little effort.

The properties and performance of the implementations for RSOS and the Potts
model shall be discussed briefly in the following. In terms of encoding, both use one
byte per lattice site, for an effective multi-surface size of 𝑠MS = 128.

3.4.1.1. 2d Restricted Solid on Solid Model

In RSOS, like in the octahedron model, the information required at each lattice site
is the height difference to all NN sites. Since this property is antisymmetric for a
NN pair, it is sufficient to store only 𝑑 height differences per lattice site and retrieve

50

3.4. The Multi-Surface Coding Approach

the remaining ones from the appropriate neighbors. RSOS has been implemented in
2d only, thus two height differences are stored as two four-bit signed integers (See
appendix A.2).

All RSOS runs performed in this work, started from flat initial conditions. The
implementation employs random masking to produce independent samples within
the multi-surface, as introduced for the N=1 RSOS Model in [109]. Two variations
of the implementation exist:

1. Each realization has a change 𝑝 to be updated. This requires one additional
random number per update attempt. It also leads to a mild form of warp di-
vergence, because some threads may choose to update all four of their assigned
realizations while other may skip all four.

2. Fixing 𝑝 = 0.5 allows employing pairwise masking: Choose one out of each
pair of two realizations to update. Since each thread is responsible for four
realizations, thus two pairs, it is ensured that all threads will perform exactly
two update attempts per iteration, thereby eliminating warp divergence. This
is also more efficient in the use of random numbers, since only two random bits
are required by each thread per iteration to flip a coin on both pairs.

Variant 2 is considerably faster and thus used in all applications.

3.4.1.2. 2d and 3d Potts Model

The 𝑞-state Potts model was implemented for 𝑑 ≤ 7 on (hyper-)square lattices, but
testing has only been done in two and three dimensions. Each lattice site needs to
hold information about the spin species 0 ≤ 𝜎 < 𝑞 occupying the site. Quenched
disorder was implemented in the form of a bimodal distribution of random bonds.
Thus 𝑑 bits per site are required to encode the bond-disorder, information about the
remaining 𝑑 bonds is retrieved from appropriate NN sites. Using eight bits per site,
this leaves 8− 𝑑 bits to encode 𝜎, hence restricting 𝑞 ≤ 28−𝑑.

For the decorrelation of realizations, the code relies on the randomness of initial
conditions and secondary noise introduced by evaluating Metropolis update con-
ditions. This turned out to be sufficient for non-conserved dynamics, which is of
primary interest in section 5.1. Calculations with quenched disorder profit from the
MS approach due to the property that averaging over at least 128 disorder realiza-
tions can be done based on a single run.

Kawasaki Dynamics Conserved dynamics has been implemented by way of Kawasaki
exchanges [113]. Since in this case, not only the site-selection must be random but
also the jump-direction, a direct implementation would again lead to non-coalesced
memory accesses to the NN sites of the final position, since it varies across threads.
Instead, the implementation generates the same jump direction for Kawasaki ex-
changes for all replicas in a given warp, but still relies solely on random initial
conditions and secondary noise for the decorrelation of replicas.

51

3. Parallel Implementation: Towards Large-Scale Simulations

Example results are presented in section 5.1.2.
In order to better ensure statistical independence of realizations, this implementa-

tion may profit from additional mixing of multi-surfaces in order to avoid correlation
of diffusion processes across replicas while still using this efficient approach to im-
plementing Kawasaki dynamics to avoid decoalescence within the MS approach.

3.4.1.3. Sequential CPU Reference

Based on the same memory layout described above, sequential CPU implementations
of the presented models were created for reference. A CPU implementation is not
required to update multi-surfaces of multiples of 32 scalars, but using multi-surfaces
increases the number of cache-hits.

Since each scalar represents another vector of lattice sites belonging to four in-
dependent realizations, the implementations each contain an inner loop with fixed
range of four over the sub-layers. This loop can be automatically vectorized by
the compiler using 128 bit vector registers. This works especially well for the Potts
models implementations since the sub-layers are not masked, contrary to the RSOS
code.

The Potts model implementations can use four way vectorization very efficiently,
resulting in a speedup of almost 4× over a non-vectorized version. This is likely to
make this implementation more efficient than any conventional (not multi-surface)
Metropolis implementation on CPU, despite being not much optimized otherwise.

3.4.2. SkyMC Benchmarks

Figure 3.6a lists the performance of the presented codes based on the SkyMC engine.
For RSOS simulation with 𝑁 ≤ 7, the achieved performance of RS simulations is
even higher than that of the bit-coded implementation of the octahedron model where
height-differences are restricted to ±1. However, in the multi-surface approach on
GPU, the performance is spread over 𝑠MS = 256 independent realizations, thus if
simulations of very large systems over long times are required, a bit-coded simulation
may still be preferable for low height-restrictions 𝑁 ≤ 1. Profiling on a Tesla K80
shows that this variant is compute-bound (full utilization of arithmetic units) at a
global memory throughput usage of ∼ 66GB/s (load + store, each contributes half).

For the Potts model implementation, two as well as three–dimensional simulations
were considered. Both show about the same performance. The tests with Kawasaki
dynamics showed the code running about 10% faster for 3d compared to 2d systems.
This points to remaining optimization potential for the 2d case, since the 3d case is
computationally slightly more complex and should therefore be slower to compute.

These benchmarks shall only provide rough estimates for performance. The ac-
tual performance can depend on many factors, like system size, simulation time
between measurements, total simulation time, even the room temperature during
the measurement, since the device may be forced to adjust its clock frequency under

52

3.4. The Multi-Surface Coding Approach

Octa
he

dro
n

RSO
S

Pott
s

Pott
s,

Kaw
asa

ki

9

11

7

4

up
da

te
s/

ns
Bit-Coded

SkyMC

(a) Benchmarks on GTX Titan Black

100 102 104 106 108

10−10

10−6

10−2

𝑡sim[MCS]

𝑡 r
u
n
[s
]

SkyMC Xeon X5650
SkyMC Xeon X5650 (vec)
WTM Xeon X5650

SkyMC Tesla C2070
SkyMC GTX Titan Black

(b) SkyMC/Metropolis vs WTM

Figure 3.6.: Left(a) Performance of SkyMC codes, when processing 𝑠MS = 256 inde-
pendent realizations, on GTX Titan Black. Performance of the bit-coded octahe-
dron model implementation, for a single realization, (section 3.2.3,) is given for
reference. octahedron and RSOS performance was measured for 2+1–dimensional
systems. For the Potts model two and three–dimensional runs where measured,
showing about the same performance. Right(b) Required computation time 𝑡run
as plotted function of physical simulation time 𝑡sim for disordered Potts model sim-
ulations with 𝑞 = 8, bond dilution 𝑑 = 0.2 and effective temperature 𝐾 = 3𝐾𝑐,MF

(see text for details). Comparison is made with a contributed [114] waiting time
method (WTM) simulation on CPU. Curves for SkyMC are linear functions, since
the performance is independent of the simulation state.

heavy computational load or high ambient temperature. The provided values are
time-averages from runs over 10 kMCS.

The presented implementation is not optimized for any specific case: It can handle
Potts models for 𝑞 ≤ 64 and 𝑞 ≤ 32 in 2d and 3d, respectively, with bimodal bond
disorder delivering about the same performance. Naturally, special cases could be
implemented more efficiently, for example the pure case, without disorder, but this
was not done since the Potts model serves primarily as a proof of concept in this
work.

The SkyMC engine provides much more flexibility than bit-coded approaches, at at
least the same overall performance. The problem with spreading the processing power
over many realizations could be compensated by adding multi-GPU capability. With
DD already implemented and competitive single-GPU performance, the groundwork
for this is already laid.

Rejection-free algorithms At the beginning of of this chapter, rejection-free al-
gorithms have been mentioned. These algorithms become more efficient the fewer
Metropolis updates are accepted. Thus they are especially efficient at low tempera-

53

3. Parallel Implementation: Towards Large-Scale Simulations

tures and should become more efficient than any Metropolis simulations at sufficiently
late times during coarsening.

A rather recent example from this family of algorithms is the aforementioned
waiting time method (WTM) [98], where each degree of freedom, e. g. each spin, in
the system is assigned an expected waiting time until its next update. Each update
is always carried-out on the degree of freedom with the lowest waiting-time which
advances the global simulation time by accordingly, before new waiting times for the
updated site and the neighbors it interacts with are calculated. Figure 3.6b shows
a performance comparison between Metropolis and a sequential implementation a
generalized version of the WTM [114]. The simulation time of WTM () is rescaled
to match the evolution of a metropolis systems.

The considered system is a non-conservative 𝑞 = 8 state Potts model with bond-
dilution, where each bond is broken with a probability 𝑑 = 0.2 in the initial condition
(quenched disorder). The effective temperature of the system lies rather deep in the
ordered regime with 𝐾 = 3𝐾𝑐,MF, where 𝐾𝑐,MF = 𝐾𝑐/(1−𝑑) which is the mean-field
approximation for the critical effective temperature of the system. The considered
system is 2d with a lateral size 𝐿 = 128 (𝐿 = 512 on GTX Titan Black ()).

At early times, starting from random initial conditions (quench from infinite tem-
perature), the WTM performs worse than a sequential Metropolis implementation,
due to a high demand for book-keeping with updates being likely to be accepted
and thus not advancing simulation time a lot. At later times, the book-keeping
overhead is overcompensated because it helps to bypass high rejection rates by car-
rying out rare events which advance simulation time significantly. The performance
of the Metropolis algorithm does not change during the evolution of the systems,
because each update attempt advances the simulation time by a constant amount,
disregarding whether it is accepted.

Since the CPU simulations in this test were run on an older model (Xeon X5650),
figure 3.6b includes a plot of the performance on a GPU released at about the same
time (Tesla C2070, ()), where the code delivers about four times less performance
than on the more modern GTX Titan Black.

In this specific example is evident that, even though the efficiency of the WTM
increases over time, a crossover point with the GPU will not be reached on a relevant
timescale. This can be attributed to the quenched disorder in the simulation, which
makes the system relax much more slowly and causes many sites to retain high
acceptance probabilities for update attempts even at late times. This case serves
as an example, that cases do exist, where massively parallel implementations of
the Metropolis algorithm can outperform rejection-free algorithms, which cannot be
parallelized as efficiently. However, this finding does not mean, that rejection-free
algorithms are obsolete: For example in systems without disorder, crossover points
are more likely to be found at moderate times.

Figure 3.6b shows two curves for the sequential Metropolis CPU code, where the
faster version () is the result of auto-vectorization by the compiler, which is only
possible because of the multi-surface approach.

54

3.5. Measurements

3.5. Measurements

To derive any information from simulations, observables of the system under inves-
tigation have to calculated or measured. Observables of interest may be the rough-
ness (2.14) of surfaces or the magnetisation or the degree of phase ordering in phase
separating systems as well as two-point functions, like the autocorrelation (4.17) or
autoresponse (4.24). In large scale studies, like the surface growth simulations of the
octahedron model presented in this work with 𝑉 = 232 or even 234 lattice sites, it
is usually not feasible to store the configuration of the simulated system after each
designated measurement interval for later analysis. Instead, the desired observables
have to be computed on the fly while the simulation is running.

3.5.0.1. Measurement Intervals

One possible choice for measurement intervals is a constant number of MCS, which
is a good choice for sampling within a steady state. Another good choice in a steady
state would be random intervals with constant mean. However, this does fit well to
the nature of scaling problems, wherein the kinetics slows down with time. Thus a
fixed interval length can lead to undersampling at early times and oversampling at
late times.

A better choice is to increase measurement intervals over the course of a simulation.
All surface growth simulations in this work take measurements at times

𝑡𝑖+1 = ⌈(𝑡𝑖 + 10) · e𝑚⌉ , with 𝑡0 = 0 , (3.7)

where the parameter 𝑚 > 0 adjusts the time between measurements; the most com-
mon choice in this work is 𝑚 = 0.001. The brackets ⌈ ⌉ denote rounding upwards to
the next integer. In order to average many scaling runs, it is imperative to measure at
exactly the same times in all simulations, where a recursive rule can cause problems
when simulations are interrupted and continued or additional measurements at wait-
ing times for autocorrelation or autoresponse measurements are added. Rule (3.7)
was used in related simulations over a long time [27] and was never abolished to keep
sequences compatible.

A better rule with a logarithmic scale would be:

𝑦 = ⌊log10(𝑡𝑖) · ̃︀𝑚⌉ (3.8a)

𝑡𝑖+1 =

⎧
⎪⎨
⎪⎩

10𝑦/̃︀𝑚 if 10𝑦/̃︀𝑚 > 𝑡𝑖

10(𝑦+1)/̃︀𝑚 if 10𝑦/̃︀𝑚 ≤ 𝑡𝑖 ≤ 10(𝑦+1)/̃︀𝑚
𝑡𝑖 + 1 otherwise

(3.8b)

This rule reproduces the same sequence irrespective of the initial value 𝑡0. The
parameter ̃︀𝑚 is the number of samples to be taken per decade. The first condition
in equation (3.8b) would be obsolete mathematically if one rounded down (⌊ ⌋) in
equation (3.8a), instead of rounding to the nearest integer (⌊ ⌉). However, in that

55

3. Parallel Implementation: Towards Large-Scale Simulations

case the expressions would be less stable against floating-point errors in numerical
calculations.

3.5.0.2. Measuring using Heterogeneous Resources

In the GPU implementations presented in this chapter, all the computational load
for the actual simulation is on the GPU, letting all CPU resources stay mostly idle.
Thus, the algorithms for taking measurements are executed in parallel with the
simulation running on GPU. The implementations of the measurement algorithms
are multithreaded, to utilise multiple CPU cores which are usually available per
GPU. In this way the codes developed and used in this work make use of the full
heterogeneous parallel environment provided by CPUs and GPUs installed in the
same machine.

Offloading measurements to the CPU is only efficient as long the CPU is able to
complete this work before the GPU completes the next interval of the simulation.
When measurements are very frequent, such as at early times during a scaling run,
this condition may not be met, which makes pausing the simulation and running the
analysis on the GPU preferable. This problem is very prevalent in simulations using
the non-local SCA implementation presented in section 3.3.2.

A good solution is a dynamic load balancing approach, where a measurement is
offloaded to the CPU if it is currently idle, but performed on the GPU, if the CPU
is still busy performing the previous measurement. This has only been implemented
for Potts model simulations in SkyMC.

56

4. Monte-Carlo Investigation of the
Kardar–Parisi–Zhang Universality
Class

Parts of sections 4.1.1 and 4.2 have been adapted into a submitted manuscript [115]
and a preprint [116].

The various massively parallel simulation approaches presented in the previous
chapter enable large-scale simulations leading to new insights about surface growth.
The primary goals of this chapter are twofold: First, to test the impact of these
implementations on dynamical growth properties and secondly, to provide more pre-
cise numerical estimates of universal exponents and, to a small extent, of scaling
forms. The first goal is divided into two parts, relating to RS and SCA dynamics,
respectively. The former is to be benchmarked against really sequential simulations
as reference, which they should ideally reproduce closely. The SCA dynamics is
then benchmarked against RS simulations to discern the impact of the controllable
correlation it introduces.

Simulations and results for scaling properties of the (2 + 1)𝑑 KPZ universality
class are presented and discussed in section 4.1. The section closes with a summary
because some results are required as a basis for the following sections. Dynami-
cal properties for instance aging related to autocorrelation and autoresponse in the
growth regime are investigated in sections 4.2 and 4.3, respectively.

In (1+1) dimensions, many properties of the KPZ equation (2.12) can be calculated
analytically. Even though surface growth is a non-equilibrium process there is a
fluctuation-dissipation relation (FDR) present in (1 + 1)𝑑 [61, 117]:

𝑇𝜒(𝑡, 𝑠; 𝑟) = −𝜕2𝑟𝐶(𝑡, 𝑠; 𝑟) (4.1)

where 𝜒 and 𝐶 are the autoresponse and autocorrelation functions, respectively. 𝑟
is the spatial coordinate, which will be integrated over later to arrive at equations
for the two functions, equation (4.17) and (4.24), respectively. 𝑡 and 𝑠 denote the
simulation time and waiting time, respectively. This relation is a result of time-
reversal symmetry being present in the (1 + 1)𝑑 KPZ universality class.

This FDR fixes the dynamical and the roughness exponents in (1+1)𝑑 to 𝑧1𝑑 = 3/2
and 𝛼1𝑑 = 1/2, respectively. Due to the definition of the dynamical exponent, the
growth exponent is then given as 𝛽1𝑑 = 𝛼/𝑧 = 1/3. Similar results were not obtained
analytically in the (2 + 1)𝑑-case, primarily because the strong-coupling KPZ regime
is not accessible for perturbational methods.

Aging in growing KPZ systems in (1 + 1)𝑑 has been studied recently [118]. From

57

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

the FDR, the relations 𝜆𝐶 = 𝜆𝑅 and

1 + 𝑎 = 𝑏+ 2/𝑧 (4.2)

were found and confirmed by simulation results, where 𝑎 and 𝑏 are the aging expo-
nents for autocorrelation and response, respectively. No such relation is expected
to hold in higher dimensions, such as in the (2 + 1)𝑑 case discussed in sections 4.2
and 4.3. However, this topic will be revisited in section 4.4, where this chapter is
summarized.

4.1. Evolution of Surface Roughness

In two dimensions, as well as in higher dimensions, not much is known analytically
about the scaling behavior of the KPZ equation (2.12). One relation which must be
fulfilled in all dimensions is the scaling relation based on the Galilean symmetry [61]:

2 = 𝛼+ 𝑧 = 𝛼 (1 + 1/𝛽) (4.3)

This equation relates the roughness exponent to the dynamical or the growth expo-
nent and thus allows one to check numerically obtained estimates for consistency.

Based on restricted solid-on-solid model (RSOS) simulations in various dimensions,
Kim and Kosterlitz (KK) conjectured general forms for the universal exponents for
all 𝑑 ∈ N: [71]

𝛽(𝑑) = 1/(𝑑+ 2)

𝛼(𝑑) = 2/(𝑑+ 3) (4.4)

and consequently

𝑧(𝑑) = 2(𝑑+ 2)/(𝑑+ 3)

The KK conjecture has been tested in multiple studies studies of surface growth
models [27, 79, 119, 120] which found smaller growth and roughness exponents than
conjectured. In a very recent study based on RSOS simulations for various height
restrictions 𝑁 in (2+1)𝑑, Kim concluded that the conjecture had only been violated
in earlier studies solely because of too strong restrictions of the height differences be-
tween NN sites [83]. An example are large-scale studies of the octahedron model [27],
where Δℎ = ±1. This proposition is tested in section 4.1.2.

Apart from the exponents, the shapes of the rescaled width and height distributions
of the interface Ψ𝐿(𝜙𝐿) were shown to be universal in KPZ models [121,122]. Here,
𝐿 refers to the system size, to which the distributions are sensitive in the steady
state. 𝜙𝐿 denotes the interface observable in question: Width 𝑊 2 or height ℎ. The
non-rescaled probability distributions are denoted by 𝑃𝐿(𝜙𝐿). Without rescaling,

58

4.1. Evolution of Surface Roughness

the moments are defined as:

Φ𝑛
𝐿[𝜙𝐿] =

∞∫︁

0

(𝜙𝐿 − ⟨𝜙𝐿⟩)𝑛 𝑃𝐿(𝜙𝐿) d𝜙𝐿 , (4.5)

Two standard measures of the shape, the skewness

𝑆𝐿[𝜙𝐿] = ⟨Φ3
𝐿[𝜙𝐿]⟩/⟨Φ2

𝐿[𝜙𝐿]⟩3/2 (4.6)

and the kurtosis

𝑄𝐿[𝜙𝐿] = ⟨Φ4
𝐿[𝜙𝐿]⟩/⟨Φ2

𝐿[𝜙𝐿]⟩2 − 3 , (4.7)

are usually calculated, often in the steady state. Both measures are invariant under
the rescaling required to produce the universal form and are thus universal them-
selves. The universal, rescaled forms are:

Ψ𝐿[𝑊
2(𝐿)] = ⟨𝑊 2(𝐿)⟩𝑃𝐿(𝑊

2(𝐿)/⟨𝑊 2(𝐿)⟩) (4.8)

for the width and

Ψ𝐿[ℎ𝐿(𝑟)] = 𝐿𝛼𝑃𝐿(ℎ𝐿(𝑟)/𝐿
𝛼) (4.9)

for the surface height. Note, that ⟨ℎ𝐿⟩ ≡ Φ0
𝐿[ℎ𝐿] ≡ 0 in the co-moving frame of the

surface.
In the following, first scaling in the (2+1)𝑑 octahedron model and the dependence

upon different site-selection dynamics is discussed (section 4.1.1). Simulations of the
(2 + 1)𝑑 RSOS model including 𝑁 > 1 are presented in section 4.1.2 to address the
issue raised by Kim [83]. The final results for universal KPZ scaling exponents in
(2 + 1) dimensions are summarized and discussed in section 4.1.3.

4.1.1. Comparison of Parallel Implementations of the Octahedron
Model

When an algorithm is implemented in an approximate way, such as using DD to
retain RS dynamics, or is basically replaced by another, such as SCA, the result
of the new implementation needs to be checked for statistical accuracy explicitly.
The ideal way to do this would be to compare with exact results, but no analytical
solutions for 2d KPZ are available. A method used before, in [27,103], is to compare
with results produced by the original, that is the sequential CPU, implementation.
This, however, does only allow for strong conclusions up to the accuracy of the result
that can be produced with the original, sequential implementation, while the point
of using a more efficient algorithm is to obtain more precise results. Many physical
systems can be well approximated linearly in the vicinity of a known point. Thus, if

59

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

the results of the new algorithm agree with those of the original one up to the latter
one’s accuracy, it is in general a good first assumption, that no major deviations
occur, when going beyond that by just one further digit.

Since asynchronous updates using DD necessarily introduce approximations with
respect to the real RS algorithm, the following questions arise:

∙ Of what order of magnitude are the intrinsic errors? Can this be controlled?

∙ Do deviations only affect non-universal properties?

The primary free parameter of DD is the size of decomposition domains. The aspect
ratio of domains turns out to be of secondary importance. Answers to these questions
can be found by performing a convergence study for the primary parameter and
checking for self-consistency of results produced by the new algorithm with different
DD parameters.

4.1.1.1. The Growth Regime

Random Sequential Dynamics Considering the roughness scaling of the KPZ sur-
face, one immediately finds a non-universal quantity which is sensitive to DD. The
left plot in figure 4.1 shows only the non-universal part of the surface roughening
under different DD schemes, by dividing the scaling function by the universal PL.
All curves will eventually approach a constant value when they cross over to the
asymptotic power-law. This non-universal roughness coefficient clearly depends on
the configuration of DD domains and is related to the amplitude of the noise (2.13)
which is left as a free parameter in the in the KPZ equation (2.12). In the simulation,
the noise is produced by random site selection. When domain decomposition is in-
troduced the variance of the rate at which each site is selected for updates decreases
with the size of the smallest decomposition domains. In other words, the system is
sampled more smoothly with fine DD, which slightly inhibits the roughening of the
surface, even when updates are uncorrelated. The plot shows, that the roughness
produced by the GPU implementation evolves with a different constant factor than
that of the sequential code, which does not use DD. The apparent ordering of the
roughness coefficient by the volume of block-layer domains is consistent with the
hypothesis of an implementation-dependent noise amplitude 𝐷.

The plot contains two lines () with the same configuration of block-layer do-
mains (TC=2,2), but the volume of device-layer domains differs by a factor of four:
T=5,4 vs. T=4,3. Still, both curves are almost identical, which suggests that the
influence of DD at device-layer on site-selection noise is negligible in the presence of
a second layer with smaller domains. In this section, at device-layer only DTr will
be considered for its correlation properties, which are discussed in section 4.2.1.

The most striking difference between single-hit DT-based schemes at block-layer
(DTrDT, DTr at device level and single-hit DTr at block level (DTrDTr)) and the
sequential code (CPU) is the local minimum which DT shows for small TC. This

60

4.1. Evolution of Surface Roughness

0 1,000 2,000 3,000 4,000

0.495

0.500

0.505

𝑡[MCS]

𝑊
/
𝑡𝛽

CPU
TC=1,1
TC=2,1
TC=2,2
TC=3,2

1 3 5

0

1

log10(𝑡)
lo
g
1
0
(𝑊

)

10−5 10−4 10−3 10−2

0.238

0.239

0.240

0.241

0.242

0.243

1/𝑡

𝛽
eff

DTrDT DTrDB
TC=1,1 TC=1,1
TC=2,1 TC=2,2
TC=3,2

Figure 4.1.: Left: Scaling functions under RS dynamics divided by the universal
power scaling PL as a measure of the amplitude of site selection noise. Colors
correspond to TC configurations. Line styles indicate DD scheme: () DTr at
device level and single-hit DT at block level (DTrDT), () DTr at device level
and single-hit DTr at block level (DTrDTr) and () DTr at device level and
single-hit DB at block level (DTrDB). Two lines () (DTrDT) show configu-
rations TC=2,2 T=5,4 and TC=2,2 T=4,3 (see text for details). Inset: Plot of
the roughness scaling. Right: Effective exponents for selected DD configurations.
System sizes are 𝐿 = 217 others 𝐿 = 216. Sample sizes are: 𝑛 ≥ 85, 𝑛 ≥ 396,
𝑛 ≥ 89, 𝑛 ≥ 1107 and 𝑛 ≥ 708. Propagated 1𝜎 error bars are attached to the
effective exponents, merging into an error-corridor at late times due to the dense
placing of points.

is also not present using single-hit DB at block-layer (DTrDB) which seems to con-
verge monotonously toward the asymptotic value from above, like the sequential
implementation does.

Considering that the lateral sizes of block-layer domains using DT correspond
only to half TC, while they are identical for DB, uncovers another detail about
DT: The block-layer domains of DTrDT, TC=2,2 (in figure 4.1, left) have the
same size as those of DTrDB, TC=1,1 (). Thus, since the block-layer domains
are the smallest DD units in both cases, the roughness coefficients of these curves
should be comparable. Instead, the roughness coefficient of DTrDT, TC=2,2 is closer
to that of DTrDB, TC=2,2 (), which has the same TC, but a fourfold larger
block-layer domain. This suggests, that the site selection noise under single-hit DT
is governed by the size of the TC, rather than that of the block-layer domains,
although not perfectly. This can be made intuitively plausible by considering, that,
for each update attempt, a thread effectively selects a site at TC-scope, with no
a priori restriction to a block-layer domain. This way, single-hit updates neglect
borders between block-layer domains within a TC.

This does not hold for single-hit DT with very small TCs where the roughness co-
efficient shows a minimum at early times and tends towards a larger value than

61

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

expected based on this hypothesis (compare DTrDT, TC=1,1 () or DTrDTr,
TC=1,1 () and DTrDB, TC=1,1 ()). This finding suggests, that single-hit
DT introduces some additional, correlated noise which is strong enough to be seen
for small TC, while single-hit DB does not.

The right panel in figure 4.1 shows effective scaling exponents for a selected set
of DD configurations. All curves suggest the same asymptotic value for 𝛽 to a
better accuracy than the most precise GPU results published in [27]. The simu-
lations differ only in corrections to scaling. Most notably, the effective exponents
from DTrDB runs show a plateau over almost two decades, suggesting that no sig-
nificant corrections are present at late times. Averaging these plateaus (i. e. ex-
trapolating to infinity with a constant), yields estimates for the scaling exponent
of 𝛽DTrDB,TC=1,1 = 0.241 46(1) and 𝛽DTrDB,TC=2,2 = 0.241 39(1). The assumption of
two different scaling exponents would place the calculations with different DD cell
sizes in different universality classes. This is much less likely than small corrections
being present, which have just been ignored by assuming the plateau to be constant.
Taking unknown corrections into account a unified estimate of 𝛽 = 0.2414(2) seems
appropriate. This error margin is of about the same size as the 1𝜎-error bars attached
to the effective exponents at late times.

The effective exponents of DTrDT simulations using large TC=3,2 do also suggest
reduced corrections and agree with this estimate. Since DTrDB offers low corrections
already at smaller TC it is the superior method regarding scaling properties.

100 101 102 103 104 105 106

100

101

𝑡 · 𝑝 e𝑝

𝑊

𝑝 = 0.0625 𝑝 = 0.125

𝑝 = 0.25 𝑝 = 0.40

𝑝 = 0.50

𝑝 = 0.60

𝑝 = 0.80

𝑝 = 0.95

10−6 10−5 10−4 10−3 10−2

0.236

0.238

0.240

0.242

1/̃︀𝑡

𝛽
eff DTrDB, TC=2,2

SCA, 𝑝 = 0.50, 𝐿 = 217

SCA, 𝑝 = 0.95, 𝐿 = 216

SCA, 𝑝 = 0.75, 𝐿 = 216

SCA, 𝑝 = 0.50, 𝐿 = 216

Figure 4.2.: Left: Width-scaling plot under SCA dynamics. Curves are collapsed
over 𝑝 by rescaling time as ̃︀𝑡 = 𝑡 · 𝑝 e𝑝. Scaling under RS dynamics is shown for
comparison (, DTrDB, TC=2,2). Right: Effective scaling exponents under SCA
dynamics for 𝑝 = 0.95 (𝑛 ≥ 2254), 𝑝 = 0.75 (𝑛 ≥ 6430) and 𝑝 = 0.5 (𝑛 ≥ 373,
𝑛 ≥ 3062). RS data is shown for comparison (). Propagated 1𝜎 error bars are
attached to the effective exponents, merging into an error-corridor at late times
due to the dense placing of points.

62

4.1. Evolution of Surface Roughness

Stochastic cellular automaton Figure 4.2 displays scaling data obtained from SCA
simulations. Here, the update probability 𝑝 > 0 governs simulation results, assuming
𝑞 = 0. If 𝑝 < 1, on average only a fraction 𝑝 of lattice sites will be updated during one
sweep. This suggests that the simulation time is being rescaled linearly with 𝑝, which
is true for RS dynamics. However, in case of SCA such a linear relation cannot hold,
since at 𝑝 = 1 no roughening would occur at all. Instead, with flat initial conditions,
the system would oscillate between two flat states. To find the dependence of the
time scale under SCA on 𝑝, the linear ansatz needs to be extended with a non-linear
factor. Empirically, for 𝑝 ≤ 0.95, the non-linear part seems to be well approximated
by an exponential. The form

̃︀𝑡(𝑝) = 𝑡 · 𝑝 e𝑝 (4.10)

yields a reasonable collapse of the scaling functions, as shown in the left panel of
figure 4.2, which displays data from DTrDB RS runs for comparison.

The right panel of figure 4.2 shows effective scaling exponents from SCA sim-
ulations at 𝑝 = 0.5 and 0.95, where time has been rescaled according to equa-
tion (4.10). Like in the RS case, there is a plateau spanning almost two decades in
the 𝐿 = 216 datasets, suggesting significantly different scaling exponents depending
on 𝑝: 𝛽𝑝=0.95 = 0.240 79(1) and 𝛽𝑝=0.5 = 0.241 22(1). While the latter falls within
the error margin of the value derived from RS runs, the former does not. The spread
of these values Δ𝛽SCA = 0.000 43(2), which is marginally significant even though
corrections have not been considered. The effective exponents for SCA runs with
𝑝 = 0.75 show some intermediate behavior: While they are close to 𝛽eff,𝑝=0.5(1/̃︀𝑡) for
1/̃︀𝑡 & 1× 10−4, they tend downward after that, approaching 𝛽eff,𝑝=0.95(1/̃︀𝑡).

The possibility, that SCA simulations may exhibit different growth exponents de-
pending on 𝑝 < 1 may raise doubts about them correctly modelling KPZ surface
growth. If this is the case, then the asymptotic scaling exponents under SCA dy-
namics may differ from the actual KPZ value and converge only in the RS-limit
𝑝→ 1/𝑉 .

The plots also show the effective exponents decreasing at late times. Such behavior
may be attributed to the onset of the steady state, which seems unlikely to be the case
here: The steady state should not be reached until about one decade after the end
of the displayed plot. This can be estimated from a finite size scaling collapse as can
be found in [27,74] or from figure 4.5 (left). Another explanation might be a possible
building-up of blockades in the dimer lattice-gas due to the correlated updates, which
start to move through the system as waves, and slow down the growth of surface
roughness. This effect would be assumed to depend on 𝑝 and to be independent of
system size, although for smaller systems real finite size effects may set in before this
phenomenon could be observed. The presented data shows, that it does scale with 𝑝,
since the visible kink appears at about at the same rescaled time ̃︀𝑡 ≈ 1.7× 105MCS
in all SCA runs at size 𝐿 = 216, except for 𝑝 = 0.75. This feature may be hidden by
the much longer downwards slope in 𝛽eff,𝑝=0.75(1/̃︀𝑡), providing no reason to assume
that the case 𝑝 = 0.75 does not share the underlying phenomenon with the others.

Another, although less likely, hypothesis is that this is actually a sign of more

63

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

101 102 103 104 105 106
0.1

0.2

0.3

0.4

̃︀𝑡 [MCS]

C
um

ul
an

t
R

at
io

−𝑆(̃︀𝑡), 𝐿 = 212

−𝑆(̃︀𝑡), 𝐿 = 216

−𝑆∞ = 0.426 596

𝑄(̃︀𝑡), 𝐿 = 216

𝑄∞ = 0.350 619

101 102 103 104 105 106

10−5

10−4

10−3

10−2

10−1

∼ ̃︀𝑡−0.6

̃︀𝑡 [MCS]

C
or

r.
to

C
um

ul
an

t
R

at
io

⃒⃒
𝑆(̃︀𝑡) − 𝑆∞

⃒⃒
, 𝐿 = 212

⃒⃒
𝑆(̃︀𝑡) − 𝑆∞

⃒⃒
, 𝐿 = 216

⃒⃒
𝑄(̃︀𝑡) − 𝑄∞

⃒⃒
, 𝐿 = 216

Figure 4.3.: Skewness 𝑆 () and kurtosis 𝑄 () of the distribution of interface heights
in the growth regime. The data belongs to the set of SCA runs with 𝑝 = 0.75,
𝐿 = 216 (𝑛 ≥ 6430, compare figure 4.2). The skewness for a smaller dataset for
𝐿 = 212 (𝑛 ≥ 45) is included to illustrate finite-size behavior. Left: Cumulant
ratios as functions of time. The horizontal lines show the obtained fit parameters
for the asymptotic values, to guide the eye. See text for proper values with error
estimates. Right: Finite-time and finite-size corrections to the asymptotic values
of the cumulant ratios.

complex corrections, which may include oscillations at late times, allowing for the
correct universal exponent to be reached asymptotically for all 𝑝.

An, as of yet inconclusive, attempt has been made to check if the observed veering-
down is a finite-size effect: The presented dataset () for 𝐿 = 217, 𝑝 = 0.5 does not
seem to veer down like its 𝐿 = 216-equivalent, but is oscillating. The oscillation
may be noise within the statistical error. The presence of a kink can be excluded
up to a 1𝜎-error, which is a weak indication of a finite-size effect. Conclusive data
would require highly accurate, and thus expensive calculations at different system
sizes. These have not been performed because the presented high-quality datasets
are primarily the basis of the SCA aging studies presented in section 4.2.3, where
studying one system size with high precision suffices.

4.1.1.2. Distribution of Interface Heights in the Growth Regime

For the SCA dataset with 𝑝 = 0.75 (), the first seven moments of the height distri-
bution have been calculated in order to obtain information about the shape of the
distribution of interface heights. Figure 4.3 shows the time-evolution of the cumulant
ratios 𝑆 and 𝑄, defined by equations (4.6) and (4.7). Both values approach their
respective asymptotic values for the growth regime following a PL, but move away
again at late times. The values 𝑆∞ and 𝑄∞ can be determined by performing a fit
of the form

𝑅(𝑡) = 𝑅∞ + 𝑏𝑅 · ̃︀𝑡𝑐𝑅 ,

64

4.1. Evolution of Surface Roughness

where 𝑅 is a placeholder for 𝑆 or 𝑄. Considering the interval 200 ≤ ̃︀𝑡 ≤ 200 000MCS
for the fit, excludes both the strong oscillations at early times and the departure at
later times. This yields 𝑆heights,growth = −0.427(2) and 𝑄heights,growth = 0.351(3).
Both absolute values are in good agreement with literature values [123, 124] for the
KPZ universality class. The sign of 𝑆 depends on the choice 𝑝 ≷ 𝑞 in the simulations,
which determines the sign of the parameter 𝜆 in the KPZ equation (2.12).

The right panel of figure 4.3 shows the corrections to these asymptotic values at
early and late times. The error estimates given above originate from this representa-
tion: The error is assumed to be on the order of the closest approach of the numerical
data to the asymptotic value. The exponents for the approach of the cumulant ratios
at finite times the asymptotic values are 𝑐𝑆 ≈ −0.54 and 𝑐𝑄 ≈ −0.60. The value
𝑐𝑅 ≈ −0.6 also holds for a number of other dimensionless cumulant rations, which
were calculated, but are not displayed here.

After the closest approach to the asymptotic values in the growth regime, 𝑆(̃︀𝑡)
and 𝑄(̃︀𝑡), both, move in the direction of their respective values in the steady state:
𝑆heights,steady ≈ 0.26 and 𝑄heights,steady ≈ 0.13 [109, 125, 126]. The shape of the
distribution of surface heights changing in this way is an indication of finite-size
effects becoming relevant at ̃︀𝑡fs ≈ 3× 105MCS. This coincides with the time at
which the kink1 in 𝛽eff(̃︀𝑡) is observed for SCA runs at 𝐿 = 216 in figure 4.2, right.
Hence it becomes clear, that this change in 𝛽eff is caused by finite-size effects. In the
figure, the finite size behavior of the skewness is illustrated by a similar plot for a
smaller system size 𝐿 = 212, where the steady state is reached at ̃︀𝑡 < 4× 105MCS.

4.1.1.3. KPZ Ansatz for the Growth Regime

Analytical and numerical investigations of KPZ models in 1+1 dimensions found that
finite-time corrections to ℎ(𝑡) took the form ∼ 𝑡−𝛽 for the interface height [127–129]:

ℎ(𝑡) = sign(𝜆) · (Γ𝑡)𝛽𝜒+ 𝜉 + 𝜁𝑡−𝛽 ,

where 𝜆, Γ, 𝜉 and 𝜁 are model-dependent parameters and 𝜒 is a universal ran-
dom variable distributed following the Gaussian orthogonal ensemble (GOE), in the
present case of a flat geometry. The KPZ ansatz hypothesis states, that a generalisa-
tion of this form should also hold in higher dimensions [124], leading to the following
ansatz for the effective growth exponent:

𝛽eff = 𝛽 +

𝑁∑︁

𝑛=1

𝑐𝑛𝑡
−𝑛𝛽 , (4.11)

1 The kink is observed at ̃︀𝑡′ ≈ 1.7× 105 MCS, roughness values at two different times contribute
in the calculation of 𝛽eff(̃︀𝑡′): ̃︀𝑡1 ≈ 2× 104 MCS and ̃︀𝑡2 ≈ 3.2× 105 MCS & 𝑡fs.

65

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

0 0.2 0.4 0.6 0.8 1

·10−2

0.238

0.239

0.240

0.241

0.242

1/̃︀𝑡

𝛽
eff

DTrDB, TC=1,1

𝛽1 = 0.2421(1)

𝛽2 = 0.2414(1)

𝛽3 = 0.2412(1)

−5 −4 −3
0.2405

0.2410

0.2415

0.2420

(a) RS: DTrDB, TC=1,1

0 0.2 0.4 0.6 0.8 1

·10−2

0.238

0.240

1/̃︀𝑡

𝛽
eff

SCA, 𝑝 = 0.5

𝛽1 = 0.2416(1)

𝛽2 = 0.2411(1)

𝛽3 = 0.2411(1)

−5 −4 −3

0.2405

0.2410

0.2415

(b) SCA: 𝑝 = 0.5

0 0.2 0.4 0.6 0.8 1

·10−2

0.236

0.238

0.240

1/̃︀𝑡

𝛽
eff

SCA, 𝑝 = 0.75

𝛽1 = 0.2415(1)

𝛽2 = 0.2410(1)

𝛽3 = 0.2409(1)

−5 −4 −3
0.2400

0.2405

0.2410

0.2415

(c) SCA: 𝑝 = 0.75

0 0.2 0.4 0.6 0.8 1

·10−2

0.236

0.238

0.240

1/̃︀𝑡

𝛽
eff
SCA, 𝑝 = 0.95

𝛽1 = 0.2412(1)

𝛽2 = 0.2409(1)

𝛽3 = 0.2408(1)

−5 −4 −3
0.2395

0.2400

0.2405

0.2410

(d) SCA: 𝑝 = 0.95

Figure 4.4.: Effective exponents 𝛽eff for roughness growth with KPZ ansatz fits using
the form (4.12) to orders one through three. The resulting asymptotic values for 𝛽
are given in the legends accompanied by the uncertainty of the fit parameter. The
insets show a zoom to the late-time region 1× 10−5 ≤ 1/̃︀𝑡 ≤ 3× 10−3, cutting-off
before the kink visible in figure 4.2, right. The 1/̃︀𝑡 axes are scaled logarithmically
using base 10 and are labeled only with the exponents to improve readability.
Panel (a) shows the RS dataset using DTrDB with TC=1,1. Fits were performed
in the interval 1× 10−5 ≤ 1/̃︀𝑡 ≤ 1× 10−2. Panel (b)-(d) show SCA datasets with
𝑝 = 0.5, 0.75 and 0.95, respectively. The fits were restricted to the interval shown
in the inset. See the captions of figures 4.1 and 4.2 for sample sizes.

66

4.1. Evolution of Surface Roughness

with non-universal parameters 𝑐𝑛 and 𝑁 . Higher moments of the height ⟨ℎ𝑛⟩ show
corrections ∼ 𝑡−𝑛𝛽 , accordingly, and thus ∼ 𝑡−2𝛽 for the roughness, prescribing:

𝛽eff,𝑊 = 𝛽 +
𝑁∑︁

𝑛=1

𝑐𝑛𝑡
−2𝑛𝛽 (4.12)

In the 2 + 1–dimensional RSOS model, the dominant corrections to the roughness
growth were found to be of order ∼ 𝑡−4𝛽 [124], which motivates including more than
just the leading orders in these forms. Ideally, such a model would fit the data well
as soon as all relevant orders are included. Adding more terms should not improve
the fit quality then. However, with noisy data, adding more free parameters in this
way, can result in over fitting, if not in convergence-problems.

Figure 4.4 shows fits of equation (4.12) to previously introduced datasets, see figure
and corresponding caption for details. It is immediately apparent, that model (4.12)
with 𝑁 = 1 does not describe the presented data, the 𝑛 = 2-term is required, same
as for the RSOS model.

In case of RS simulations, the model appears to fit reasonably well rather early
times ̃︀𝑡 ≥ 100. SCA runs on the other hand show strong oscillations at early times,
which are beyond the type of model suggested by the KPZ ansatz. Still, the model
fits a late time regime in the interval 1× 10−5 ≤ 1/̃︀𝑡 ≤ 3× 10−3. The case 𝑝 = 0.75
poses an exception here, due to its non-monotonous characteristics in the apparent
cross-over from 𝑝 = 0.5-like to 𝑝 = 0.95-like behavior.

A more quantitative view is provided by table 4.1, which lists the reduced sums
of residuals 𝜒red to judge the agreement between model and data. Equation (4.12)
describes all datasets best, if two terms ∼ ̃︀𝑡−2𝛽 and ∼ ̃︀𝑡−4𝛽 (𝑁 = 2) are included,
except SCA, 𝑝 = 0.75, which requires more free parameters to approximate its more
complicated form at late times.

Where the KPZ ansatz does indeed apply, fits of the more general models (4.11)
should not show increased agreement with the data. The table shows them to be
less consistent with respect to the resulting estimates for 𝛽. They provide the best
description of the data with only the term ∼ ̃︀𝑡−2𝛽 but one or two additional odd
terms present (𝑁 = 2, 3). The best fits resulting from models (4.12) are consistently
better than those of (4.11), across all datasets, which justifies discarding the latter
class of models and thereby supports the KPZ ansatz hypothesis.

To obtain estimates for 𝛽 for each dataset, the best-fit value is used. The spread
of values for 𝛽 for higher values of 𝑁 , provides an estimate of the potential for
over fitting present in the model, which may also be a reasonable error estimate for
a small confidence interval of 1𝜎. For simulations with RS dynamics, this yields
𝛽 = 0.2414(2), which is remarkably identical to the previous estimate found in
section 4.1.1.1, based on an average of the late-time plateau exhibited by 𝛽eff .

The estimates obtained this way may be less reliable for SCA datasets, because
here the model can only fit a fraction of the available time series which must exclude
the initial oscillations. It can be noted, that the estimate 𝛽𝑝=0.5 = 0.2411(2) is

67

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

Table 4.1.: Fit parameter 𝛽 for the extrapolation of 𝛽eff using the KPZ ansatz in
the most general form (4.11) and in the form more suitable to describe corrections
to roughness-scaling, equation (4.12), both with maximum orders one through
six. Error margins given are uncertainties of the fit parameters, not actual error
estimates for 𝛽. The reduced sums of residuals 𝜒red are given to judge the quality
of the fits. For each dataset, the value of 𝜒red closest to one, which indicates the
best agreement achieved between data and model, is underlined.

RS SCA
DTrDB, TC=1,1 DTrDB, TC=2,2 𝑝 = 0.5 𝑝 = 0.75 𝑝 = 0.95

𝑁 𝛽 𝜒red 𝛽 𝜒red 𝛽 𝜒red 𝛽 𝜒red 𝛽 𝜒red

equation (4.11)
1 0.2430(1) 10.04 0.2433(1) 9.24 0.2420(1) 7.03 0.2419(1) 8.63 0.2418(1) 3.15

2 0.2396(1) 1.82 0.2396(1) 1.29 0.2403(1) 1.62 0.2400(1) 1.31 0.2403(1) 0.51

3 0.2411(1) 0.79 0.2408(1) 0.55 0.2414(1) 0.64 0.2404(1) 1.18 0.2401(1) 0.49

4 0.2421(2) 0.67 0.2421(1) 0.32 0.2414(1) 0.64 0.2385(1) 0.63 0.2403(2) 0.48

5 0.2386(3) 0.47 0.2409(2) 0.28 0.2388(3) 0.51 0.2394(3) 0.61 0.2399(5) 0.48

6 0.2377(8) 0.47 0.2403(5) 0.28 0.2333(9) 0.45 0.2420(7) 0.59 0.2485(8) 0.40

equation (4.12)
1 0.2421(1) 7.28 0.2422(1) 6.27 0.2416(1) 5.22 0.2415(1) 6.54 0.2412(1) 1.76

2 0.2414(1) 1.16 0.2414(1) 1.10 0.2411(1) 0.65 0.2410(1) 1.72 0.2409(1) 0.81

3 0.2412(1) 0.65 0.2412(1) 0.33 0.2411(1) 0.64 0.2409(1) 1.51 0.2408(1) 0.52

4 0.2413(1) 0.53 0.2412(1) 0.29 0.2412(1) 0.59 0.2407(1) 0.86 0.2407(1) 0.50

5 0.2412(1) 0.51 0.2412(1) 0.28 0.2412(1) 0.59 0.2406(1) 0.68 0.2405(1) 0.41

6 0.2412(1) 0.51 0.2412(1) 0.28 0.2411(1) 0.57 0.2403(1) 0.50 0.2407(1) 0.38

basically the same as the one previously obtained. For large 𝑝 the estimate 𝛽𝑝=0.95 =
0.2409(4) now agrees with the previous one as well as, marginally, with the one for
RS runs. However, this result is obtained because the model predicts the effective
exponents for move upwards for ̃︀𝑡 → ∞. This prediction should be regarded with
care, since it remains unclear how far the KPZ ansatz remains valid for large 𝑝→ 1.
For 𝑝 = 0.75, it appears prudent to refrain from making an estimate because the
model does not actually describe the data well.

4.1.1.4. The Steady State

Finite size scaling in the octahedron model is as such not a subject of the present
study, thus dependencies on DD were not studied in detail. It is conceivable, that
the above arguments regarding the noise amplitude do apply here, too, but, based
on the observations presented above, the effect can be expected to be rather small.
This still implies, that when performing a finite-size study, the size of domains needs
to be kept constant across all simulations (all 𝐿). Large samples for small system
sizes are required for this effect to be quantified, which was not attempted for the
octahedron model.

The best estimate of the roughness exponent from octahedron model calculations
therefore remains 𝛼 = 0.393(3) [27]. Using the above estimate 𝛽 = 0.2414(2), yields

68

4.1. Evolution of Surface Roughness

10−6 10−4 10−2 100 102

10−3

10−2

10−1

𝑡/𝐿𝑧

𝑊
2
/
𝐿
2
𝛼

100 101

10−4

10−3

10−2

10−1

100

𝑊 2/
⟨︀
𝑊 2

⟩︀

Ψ
𝐿

SCA DTrDT

𝐿 = 10

𝐿 = 11

𝐿 = 12 𝐿 = 12

𝐿 = 13 𝐿 = 13

Figure 4.5.: Left: Scaling collapse into the steady state of data from SCA (𝑝 =
0.95, 𝑞 = 0, solid lines) and DTrDT (dash-dotted lines) simulations. SCA in-
troduces non-universal corrections to scaling. Points in the steady state (𝑡 >
2MMCS) are averaged over Δ𝑡 = 50 kMCS. Key in right panel applies. Right:
The universal scaling function Ψ𝐿 is identical for SCA and RS dynamics.

a dynamical exponent 𝑧 = 1.63(2). A scaling data collapse into the steady state
based on these parameters is shown in the left panel of figure 4.5. Dashed curves
represent RS simulations using DTrDT, TC=2,1, solid lines SCA with 𝑝 = 0.95, 𝑞 = 0.
Both sets collapse well separately. The difference in the growth regime is due to the
modified timescale in SCA simulations (the time axis in the plot is not rescaled to
compensate). Apparently, SCA dynamics leads to the reduced stationary width.

The presented data is only averaged over few (8 - 13) samples, but the simulations
are long and do thus reach far into the steady state. Averaging over time in the
steady state allows computing the width distribution 𝑃𝐿(𝑊

2(𝐿)) rather precisely.
The universal scaling function of the width Ψ𝐿(𝑊

2(𝐿)), equation (4.8), is plotted for
both RS and SCA dynamics in the right panel of figure 4.5. Even though

⟨︀
𝑊 2

SCA

⟩︀
𝐿
<⟨︀

𝑊 2
RS

⟩︀
𝐿
, the distributions turn out identical independently of the employed type of

dynamics. This is evidence that the octahedron model under SCA does fall in the
KPZ universality class.

4.1.2. Investigations using RSOS

A modified version of this section has been published as an article [130].

4.1.2.1. The Growth Regime

Roughening of 2 + 1–dimensional RSOS surfaces was studied for restriction param-
eters 𝑁 = 1, 3, 5, 7, starting from flat initial conditions. To obtain estimates for the
exponent 𝛽, the growth of surfaces was followed up to 𝑡 = 1× 105MCS, which is well
before saturation becomes an issue at the investigated system sizes 𝐿 = 4096, 8192
and 9605. The largest system size was bounded by memory constraints, filling up

69

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

101 102 103 104 105

100

101

102

𝑡[MCS]

𝑊
2

𝑁 = 7

𝑁 = 5

𝑁 = 3

𝑁 = 1

0 0.1 0.2 0.3
0.230

0.240

0.250

0.260

1/ 4
√
𝑡

𝛽
eff

𝛽7 = 0.2408(2)

𝛽5 = 0.2400(1)

𝛽3 = 0.2406(1)

𝛽1 = 0.2423(2)

Figure 4.6.: Left: Squared roughness (𝑊 2) of RSOS surfaces of size 𝑉 = 40962 (256
realizations) in the scaling regime (error-bars are smaller than symbols). Right:
Local slope analysis of roughness scaling of RSOS surfaces of size 𝑉 = 81922 (128
realizations), straight lines are linear fits to the tail (𝑡 ≥ 1260MCS), extrapolat-
ing to 𝑡 → ∞, assuming 4

√
𝑡 corrections. Error bars are propagated 1𝜎–errors,

uncertainties given for 𝛽𝑁 are pure fit errors. The black dashed line is the power-
law extrapolation for 𝑁 = 1. The dashed lines corresponding in color to the
respective plots for 𝑁 > 1 are fits of the form (4.13). All PL fits were performed
for 𝑡 ≥ 148MCS. Both figures show 𝑁 = 1, 3, 5, 7 (bottom to top).

12GB on an NVIDIA K40 GPU with some memory to spare for RNG states. Results
were averaged over 𝑛 = 768, 128 and 128 realizations, respectively, where the latter
two correspond to only one MS run.

Growth of the surface roughness follows apparently the same, clear, power-law
for all considered 𝑁 (figure 4.6, left). Local slope plots (figure 4.6, right) show an
effective growth exponent 𝛽eff ≈ 0.25 for 𝑁 = 5, 7 at 𝑡 ≈ 1000MCS (𝑡−1/4 ≈ 0.18),
which is in agreement with the results of Kim [83]. At later times the effective growth
exponent decreases for all 𝑁 > 1, which is followed over two orders of magnitude in
figure 4.6. It can also be observed, that the maximum value 𝛽eff increases with 𝑁 .
This suggests that the system is attracted to the fixed point of a random deposition
model (𝑁 →∞), where 𝛽rnd.dep. = 1/2 [81]. The behavior of the system is controlled
by the finite value of 𝑁 only at large-enough times.

Assuming independence of 𝛽 from the restriction parameter 𝑁 , it follows that the
asymptotic estimates 𝛽𝑁 should be the same for all 𝑁 . Linear extrapolation to infin-
ity, using corrections of the form ∼ 4

√
𝑡minimizes the variance of 𝛽𝑁 for 𝑁 > 1, which

justifies this choice for the extrapolation. For completeness, it should be stated, that
about the same minimal variance can be reached assuming logarithmic corrections
of the form ln(𝑡)2.2(3), which also yields the same extrapolation results within the
error margin. The power-law corrections allow better linear fits to the tails.

Table 4.2 lists the obtained estimates for 𝛽 for the considered system sizes. Esti-
mates for different 𝑁 > 1 are practically identical and are thus averaged to give a

70

4.1. Evolution of Surface Roughness

common value. The case 𝑁 = 1 is listed separately, due to the different corrections
to scaling. For 𝑁 = 1, 𝛽eff can be best extrapolated by a power-law fit with exponent
𝑥 = 0.9(2). This is in good agreement with the results of [131], where 𝑥 ≃ 0.96 ≃ 4𝛽
is reported, based on the KPZ ansatz hypothesis. Since at the same time a PL tail
with 𝑥 ≃ 0.25 ≈ 𝛽 was found for 𝑁 > 1, this motivates testing PL corrections with
exponents 𝑥𝑖 = 𝑚 · 𝛽. Thus the two PLs found for 𝑁 = 1 and 𝑁 > 1 were combined
into the form:

𝛽eff(1/𝑡) = 𝛽 + 𝑎1/𝑡
4𝛽 + 𝑎2/𝑡

𝛽 , (4.13)

where 𝑎𝑖 are free parameters. The respective PL fits for all 𝑁 were performed for
𝑡 ≥ 148MCS, showing good agreement with most of the growth region. See dashed
lines in Fig. 4.6, right panel.

Effective scaling exponents 𝛽eff in the case 𝑁 > 1 exhibit corrections which are
stronger and of different form than those for 𝑁 = 1, as one can observe in figure 4.6.
Furthermore, the present data suggests a possible oscillating convergence of 𝛽eff
for 𝑁 > 1 as reported in reference [132] in simulations of the ballistic deposition
model (BD). Extrapolations based on the form (4.13), while in good agreement with
the observed region, are prone to over-fitting where they can not cover all present
corrections. The values for 𝛽𝑁>1 are thus underestimated, if the effective exponents
do indeed show oscillating convergence.

The estimates show no clear dependence on system size, thus it can be safely
assumed that all simulations are well within the scaling regime and do not suffer
from finite-size effects. All estimates agree with the previous estimate from the
octahedron model 𝛽 = 0.2415(15) [27] within the margin of error. Most notably this
is also the case for the estimates for 𝑁 > 1. Overall, the presented data supports
the estimate 𝛽 = 0.241(1).

Since all three curves in figure 4.6 (right) correspond to the same system size and
have the same sample size, the figure shows, that the signal-to-noise ratio (S/N) in
the simulation data increases with 𝑁 . For 𝑁 = 7, the S/N is lower by a factor of
∼ 3.6 compared to 𝑁 = 1 and by a factor of about ∼ 2.5 compared with respect to
𝑁 = 3. This relative decrease of noise may be caused by a kind of self-averaging,
since systems with larger allowed height differences 𝑁 accommodate more surface
information at the same system size than smaller ones. It might pay to exploit this
property by choosing larger 𝑁 in studies of universal properties: While simulations
for small 𝑁 can be implemented more efficiently, a given level of accuracy can be

Table 4.2.: Estimates for the growth exponent 𝛽. Values in parenthesis are fit errors
for 𝑁 = 1 and 1𝜎 error estimates for 𝑁 > 1.

𝐿 4096 8192 9605
𝛽1 (PL) 0.2412(1) 0.2418(1) 0.2415(1)
𝛽𝑁>1 (lin.) 0.2404(3) 0.2405(3) 0.2410(3)
𝛽𝑁>1 (4.13) 0.2395(3) 0.2394(3) 0.2399(2)

71

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

0 5 · 10−2 0.1 0.15

0.390

0.400

0.410

1/
√
𝐿

𝛼
eff

𝛼7 = 0.386(2)

𝛼5 = 0.386(1)

𝛼3 = 0.386(1)

𝛼1 = 0.391(1)

0 10 20 30 40 50

0.384

0.386

0.388

0.390

0.392

𝑡start/𝑡steady*

𝛼

𝛼7 𝛼5

𝛼3 𝛼1

Figure 4.7.: Left: Local slopes of finite-size scaling analysis of RSOS with 𝑁 =
1, 3, 5, 7. Error bars are propagated 1𝜎 errors. Straight lines are linear fits to
extrapolate to infinity, uncertainties given for 𝛼𝑁 are pure fit errors. Steady-state
data taken for 𝑡 > 𝑡start = 50𝑡steady* (see text). Right: Dependence of extrapolated
𝛼 on 𝑡start is weak. Both figures: Sample sizes are at least 1024-2048 realizations
and ≥ 8192 realizations for 𝐿 ≤ 64. All system sizes taken into account for finite-
size scaling are listed in figure 4.8, where the considered timescales can also be
read off.

reached with fewer runs using large 𝑁 .

4.1.2.2. The Steady State

The roughness exponent 𝛼 was determined using a finite-size scaling analysis taking
into account the saturation roughness of system sizes between 𝐿 = 64 and 𝐿 =
512. In order to keep the noise amplitude constant, all calculations presented in the
following used DD domain sizes of 8× 8 lattice sites.

To determine the saturation roughness 𝑊 (𝐿, 𝑡→∞) for each system size, values
for 𝑡 ≥ 𝑡start of all available samples were averaged. In order to check whether the
averaged values belong to the steady state and not to a transition phase, 𝑡start was
varied with respect to the apparent onset times of the steady-state 𝑡steady* , which
was defined by the relation

𝑎𝑁 · 𝐿𝛼 = 𝑏𝑁 · 𝑡𝛽steady* (4.14)

This is just a rough estimate of the point where the power law of the growth phase
reaches the average roughness in the steady state. The numerical parameters 𝑎𝑁
and 𝑏𝑁 where obtained by fitting to small systems.

Direct fitting of the scaling form

𝑊sat(𝐿) ∼ 𝐿𝛼, (4.15)

72

4.1. Evolution of Surface Roughness

on the data for all simulated system sizes 32 ≤ 𝐿 ≤ 512 yields the following estimates
for 𝑡start = 50𝑡steady* :

𝛼fit =

⎧
⎪⎪⎨
⎪⎪⎩

0.392(1) 0.392(5) N=1
0.401(2) 0.400(4) N=3
0.402(2) 0.401(4) N=5
0.402(2) N=7

Here, the given errors are rounded-up fit errors. The second column shows Kim’s
estimates [83] for comparison. Values for all 𝑡start ≥ 2𝑡steady* fall inside the given
error margins, although there is a slight increase in the estimates as 𝑡start increases.
These direct fits match perfectly the results obtained from sequential Monte Carlo
simulations in [83].

However, if the first point at 𝐿 = 32 is excluded, the estimates become significantly
lower, pointing to strong corrections which can be seen in the effective exponents
presented in figure 4.7. There is a clear tendency for 𝛼eff to decrease with increasing
system system size for 𝑁 > 1. The approach to 𝐿→∞ is nonlinear but the number
of points is insufficient for PL extrapolations to produce consistent estimates. In
order to allow linear extrapolation, the data displayed in the plot has been linearized
assuming a scaling variable

√
𝐿. Extrapolation to asymptotically large systems then

yields:

𝛼 =

{︃
0.391(1) 𝑁 = 1

0.386(1) 𝑁 > 1

Corrections to finite-size scaling (4.15) at 𝑁 = 1 are small, explaining the good
agreement between local slope analysis and direct fit. The present data does not
reach far into the steady state, which might cause a slight difference between the
estimates for 𝑁 = 1 and 𝑁 > 1 as well as disagreement with a recent study [133]
for 𝑁 = 1, which found 𝛼 = 0.3869(4) by performing the analysis at far later times.
There is also further uncertainty in the extrapolation to 𝐿→∞ itself, which is not
accounted for by the fit errors.

The observation of stronger corrections for larger allowed height differences 𝑁 is
consistent with a recent analysis of the BD. [132] The study found that corrections
to scaling, for both 𝛼 and 𝛽 are reduced when the BD surface is smoothened by
binning the surface positions before analysis, thereby decreasing the height differ-
ences between neighboring sites. Binning of the surface did not change the universal
behavior, it only decreased non-universal corrections. The corrections produced an
oscillatory approach to the asymptotic values of the exponents, which can explain
why the extrapolations of 𝛼eff (figure 4.7) and 𝛽eff (figure 4.6) for 𝑁 > 1 turn out
lower than those for 𝑁 = 1.

All presented estimates are in the range 𝛼 = 0.389(4), which clearly excludes
𝛼 = 2/5 for 𝑁 ≤ 7.

Using the estimates for 𝛼 and 𝛽 obtained above, a good finite-size scaling collapse
can be obtained for 𝑁 > 1, even a perfectly looking one for 𝑁 = 1, see figure 4.8,

73

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

L=32, L=64, L=128, L=192,
L=256, L=384, L=512

10−4 10−2 100 102 104

10−2

10−1

100

𝑡/𝐿𝑧

𝑊
2
/
𝐿
2
𝛼

10−4 10−2 100 102 104

10−2

10−1

100

𝑡/𝐿𝑧

𝑊
2
/𝐿

2
𝛼

10−4 10−2 100 102 104

𝑡/𝐿𝑧

10−4 10−2 100 102 104

𝑡/𝐿𝑧

Figure 4.8.: Collapse of RSOS squared roughness into the steady state for 𝑁 =
1, 3, 5, 7 (from bottom to top). The left figure shows a perfect collapse for 𝑁 > 1,
using 𝛼 = 0.4 and 𝛽 = 0.25 (𝑧 = 𝛼/𝛽 = 1.6). The right figure shows a collapse
using 𝛼 = 0.389 and 𝛽 = 0.241 (𝑧 ≈ 1.61). The collapse looks perfect for 𝑁 = 1
and good, but not perfect, for 𝑁 > 1.

right. However, the collapse for 𝑁 > 1 is imperfect for the growth phase whereas a
perfect one can be achieved assuming the values suggested by Kim and Kosterlitz [71]
(figure 4.8, left). The latter observation can be indicates the strong corrections to
scaling (figure 4.6, right) and the corrections to the roughness exponent (figure 4.7,
left): Effective exponents for early times and small systems do agree with the con-
jecture of [71] and indeed the mostly strongly outlying curves in figure 4.8, right, do
belong to the smaller systems investigated.

To characterize the shape of the universal rescaled width and height distribu-
tions of the interface 𝑃𝐿(𝜙), the standard measures skewness 𝑆[𝜙] (4.6) and kurtosis
𝑄[𝜙] (4.7) have been calculated in the steady state.

The obtained values for the width-distribution 𝑃𝐿(𝑊
2(𝐿)) show no significant

dependence on 𝑁 nor 𝐿, our best results are 𝑆 = 1.70(1) and 𝑄 = 5.38(4), in good
agreement with those of [134].

For the distribution of surface heights, a weak correlation with the system size
can be observed in Fig. 4.9. Heights were averaged in the steady state starting at
different times 𝑡start > 𝑡steady* (indicated by different symbols in the figure), but no
dependence can be observed. Our results 𝑆ℎ = 0.270(5) and 𝑄ℎ = 0.15(1) are in
agreement with the ranges given in [125] and especially with the values 𝑆ℎ = 0.26(1)
and 𝑄ℎ = 0.134(15) reported in references [109, 126]. Thus, the cumulant values
obtained for all 𝑁 are in agreement with those published for the KPZ universality
class, within the margin of error.

74

4.1. Evolution of Surface Roughness

0.00 0.01 0.02 0.03

0.26

0.27

0.28

0.29

1/𝐿

𝑆
ℎ

𝑁 = 1

𝑁 = 7

0.00 0.01 0.02 0.03
0.10

0.12

0.14

0.16

0.18

1/𝐿

𝑄
ℎ

𝑁 = 1

𝑁 = 7

Figure 4.9.: Skewness 𝑆ℎ (left) and kurtosis 𝑄ℎ (right) of the height distribution
in the steady state plotted over the inverse lateral system size. Values are plot-
ted only for 𝑁 = 1 and 𝑁 = 7 for the sake of clarity. The straight lines are
linear fits, included to guide the eye. Different symbols indicate different ratios
𝑡start/𝑡steady* ≥ 2. A key is not provided for the symbols, because there is no
correlation with this parameter.

4.1.2.3. Consistency of Fine-Size Scaling with Respect to DD

For comparison, additional finite-size scaling studies using DD domains of 16 × 16
and 6(+1) × 10(+1) lattice sites were performed. The notation used to describe
the latter indicates that, because the system cannot be divided into domains with
a lateral size of six (or ten) lattice sites without remainder, a subset of domains
have a larger lateral size to compensate, leading to an irregular tiling of the system.
This configuration results from dividing the system into multiples of 5 × 3 tiles, in
order to achieve optimal load balancing on NVIDIA GTX Titan Black GPUs. In
both cases the smallest considered system is 𝐿 = 64, because for smaller systems
these domain sizes would become comparable to the system size. Another test was
done using domains containing only 3(+1) × 5(+1) lattices sites, which turned out
to be too small to give correct results, as expressed by a failing data collapse. This
decomposition is thus not considered in the following discussion.

Differences in the results between the considered DD configurations are not sig-
nificant in data collapses nor in finite-size scaling fits. The most sensitive quantity
is the effective roughness exponent, presented in figure 4.10. In these tests sample
sizes are smaller than for the data presented above, making extrapolations less re-
liable. Still, all estimates derived from this data are consistent with the estimate
𝛼 = 0.389(4) given above. Even the irregular, non-square, configuration does not
deviate, although the steady state roughnesses might contain small systematic errors.

75

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

0 5 · 10−2 0.1 0.15

0.390

0.400

0.410

1/
√
𝐿

𝛼
eff

domains 6(+1)× 10(+1)

𝛼7 = 0.387(2)

𝛼5 = 0.388(2)

𝛼3 = 0.387(2)

𝛼1 = 0.390(2)

0 5 · 10−2 0.1 0.15

0.390

0.400

0.410

1/
√
𝐿

𝛼
eff

domains 16× 16

𝛼7 = 0.386(4)

𝛼5 = 0.388(2)

𝛼3 = 0.387(4)

𝛼1 = 0.386(2)

Figure 4.10.: Local slopes of finite-size scaling analysis of RSOS with 𝑁 = 1, 3, 5, 7.
Error bars are propagated 1𝜎 errors. Straight lines are linear fits to extrapolate to
infinity, uncertainties given for 𝛼𝑁 are pure fit errors. Steady-state data is taken
for 𝑡 > 𝑡start = 50𝑡steady* (see text). Left: DD domains containing 6(+1)× 10(+1)
sites. Sample sizes are at least 512 realizations. For 𝑁 = 5, 7 and sizes 𝐿 = 64
and 128, 16384 respectively 8192 realizations are included. Right: DD domains
containing 16 × 16 sites. For 𝐿 = 512 the sample contains 256 realizations, for
other system sizes at least 512 samples are included.

4.1.3. Results for Growth Phase and Steady State

Using extensive simulations of the octahedron model a new, more precise estimate
for the scaling exponent of the KPZ universality class was obtained. Complementary
simulations of the RSOS model for 𝑁 ≤ 7 have shown these estimates to also hold
for 𝑁 > 1, thereby providing evidence against the KK conjecture [71] also for 𝑁 > 1.

The estimates for universal exponents are summarized in table 4.3. The best
estimate for the scaling exponent is the one obtained from parallel RS simulations.
A question mark is placed on the correctness of the 𝛽 estimates under SCA dynamics
at the obtained level of accuracy, where a weak dependency of 𝛽 on 𝑝 cannot be
excluded numerically. They are thus not included in this discussion of the final
results. However all estimates, including the SCA values, lie well within the margins
of error of estimates found in recent literature [67, 135], and the earliest estimate
based on GPU simulations 𝛽 = 0.2415(15) [27].

The estimate for the roughness exponent 𝛼 obtained from RS simulations of the
𝑁 = 1 RSOS model is in agreement with earlier estimates within 𝑁 = 1 RSOS
𝛼 = 0.393(3) by Parisi et. al. [109] and within the octahedron model [27] (listed in
table 4.3). However, this value shows marginal disagreement with the more recent
detailed study of finite-size scaling in 𝑁 = 1 RSOS by Pagnani and Parisi [133]
(𝛼 = 0.3869(4)).

Inserting the best estimate for the scaling exponent 𝛽 = 0.2414(2) and the recent

76

4.1. Evolution of Surface Roughness

estimate by Pagnani and Parisi into the scaling law in equation (4.3) reveals that
Galilean symmetry would be broken by more than twice the standard error. Since
the studies presented in this work are focussed on the KPZ scaling regime, no pre-
cise estimates of the roughness exponent can be derived from a finite-size scaling
analysis. The best prediction can be derived from the obtained value for 𝛽 and the
above scaling relation, yielding 𝛼 = 0.3889(3). This is in agreement with the unified
estimate from the RSOS study and marginally allowed according to the study in [27].
This indirect estimate for 𝛼 claims the same level of accuracy as the most precise
direct estimate 𝛼 = 0.3869(4) [133]. These results disagree by five error margins,
supporting a possible violation of the Galilei symmetry by KPZ, which was proposed
to exist in by [136]. This prediction, regarding either 𝛼 or a violation of the Galilean
symmetry, remains to be tested directly by a more extensive finite-size scaling study
using RS dynamics, because the study in [133] was based on SCA simulations. A MS
code, as used for the presented RSOS simulations can proof an advantage in such an
endeavour, but a study based on SCA simulations would also be interesting, if the
influence of 𝑝 was also quantified.

The best estimates from the present study are summarized in the bottom line of
table 4.3, they are used in all further considerations.

Table 4.3.: Summary of estimates for KPZ universal exponents. The listed best
estimate for 𝛼 was calculated from the best estimate for 𝛽 via the relation due to
the Galilean symmetry.

Model 𝛼 𝛽 𝑧 𝛼+ 𝑧
!
= 2

octahedron [27] 0.393(4) 0.2414(2) 1.63(2) 2.02(3)
RSOS 𝑁 = 1 0.391(2) 0.2415(3) 1.61(2) 2.01(2)
RSOS 𝑁 > 1 0.386(2) 0.2407(6) 1.60(2) 1.99(2)
RSOS 0.389(4) 0.241(1) 1.61(3) 2.00(3)
RSOS 𝑁 = 1 [133] 0.3869(4) (0.2414(2)) 1.603(3) 1.990(4)
best 0.3889(3) 0.2414(2) 1.611(3) 2

77

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

4.2. Autocorrelation Functions

The autocorrelation function is defined as:

𝐶(𝑡, 𝑠) = ⟨𝜑(𝑡, r)𝜑(𝑠, r)⟩ − ⟨𝜑(𝑡, r)⟩ ⟨𝜑(𝑠, r)⟩ (4.16)

∼ 𝑠−𝑏(𝑡/𝑠)−𝜆𝐶,h,s/𝑧 , (4.17)

where 𝑠 is the waiting time, at which a snapshot is taken which is correlated with
the system state at later times 𝑡 ≥ 𝑠. The function 𝜑 denotes the observable the
autocorrelation of which is being measured. In this section, 𝜑 will take the form of
the surface height ℎ(𝑡, r) or the slopes, respectively the lattice gas variables of the
octahedron model, 𝑠(𝑡, r). In case if 𝜑 ≡ ℎ, for 𝑡 = 𝑠, the following holds:

𝐶(𝑠, 𝑠) = ⟨ℎ(𝑠, r)ℎ(𝑠, r)⟩ − ⟨ℎ(𝑠, r)⟩ ⟨ℎ(𝑠, r)⟩
=

⟨︀
ℎ2(𝑠, r)

⟩︀
− ⟨ℎ(𝑠, r)⟩2

=𝑊 2(𝐿→∞, 𝑠) ∼ 𝑠−𝑏 · 𝑓𝐶(1) .

The latter proportionality points to the following relation, which must hold for the
correlation function of heights at least at 𝐿→∞ and 𝑠→∞:

𝑏 = −2𝛽 , (4.18)

with 𝛽 = 0.2414(2).
The autocorrelation exponent in (1 + 1) dimensions was analytically shown to be

𝜆1d𝐶,heights = 1 [137, 138]. Later Kallabis and Krug conjectured, that this finding can
be generalized as 𝜆𝐶,heights = 𝑑, where 𝑑 is the dimension of the interface [139].

4.2.1. Comparison of DD Methods for RS Dynamics

4.2.1.1. Device-Layer DD

In the aging study published in [103] it was found, that the GPU implementation
of the octahedron model with RS dynamics used therein exhibits an asymptotic au-
tocorrelation function deviating from the sequential CPU reference implementation.
This parallel implementation uses coarse dead border (cDB), where the DD origin is
only moved on a coarse grid with 4× 4 lattice-site units, see section 3.2.1, page 36.
Figure 4.11 compares autocorrelation functions of both heights and slopes resulting
when cDB is employed at device-layer with other schemes and sequential simulation
results. For the slopes (right panel) one clearly observes convergence of the auto-
correlation function to a finite value. The autocorrelation of heights under cDB can
also be seen to deviate from the PL laid-out by the sequential reference. A finite
asymptotic limit has not been reached in any of these simulations due to the short
time-scale considered.

Intuitively, a finite asymptotic value for the autocorrelation function could mean

78

4.2. Autocorrelation Functions

101 101.5 102

10−3

10−2

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 cDB 𝑠 = 100

cDB 𝑠 = 30

DTr 𝑠 = 100

CPU 𝑠 = 30

100 101 102
10−6

10−3

100

𝑛 = 200

𝑡/𝑠

𝐶
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

0
.7
6

cDB

DB

DTr

CPU

Figure 4.11.: Autocorrelations under RS dynamics with different device-layer DDs.
Left: Autocorrelation of heights (data from [103]). The system sizes are 𝐿 =
215, 𝐿 = 216 and 𝐿 = 213 in the cDB, the DTr and the sequential (CPU) runs,
respectively. Sample sizes are: 𝑛 = 696, 𝑛 = 830, 𝑛 ≥ 71 and 𝑛 = 4367.
Right: Autocorrelation of slopes for different types of device-layer DD compared
to a sequential simulation at 𝐿 = 213. All sample sizes are 𝑛 = 200, so noise
levels can be compared visually. The presented parallel runs use single-hit DT at
block-layer.

that there is some pattern imprinted on the system during its evolution. When the
DD origin is only shifted on a coarse grid, only lattice sites which lie on edges of
this coarse grid can become borders. These sites are thus updated less frequently
than the remaining sites, which never become border-sites. Hereby, two types sites
are defined in the system evolving at different rates. Since these borders are only a
single lattice site wide and device-layer domains are very large, the effect of this is
apparently too small to be observed in the kinetics of surface roughening or steady
state properties. It is, however, strong enough to imprint a persistent pattern onto
the surface, which can be observed in the autocorrelation functions.

A straight-forward way to solve this problem, would be to not shift the DD origin
on a coarse grid but allow arbitrary coordinates, which does indeed eliminate the
observed correlations. For the present bit-coded implementation, unrestricted DB
requires borders which are five inactive lattice sites wide. Moving the origin freely
ensures that all lattice sites are updated with the same frequency, when sufficiently
long times are considered. Ideally, border sites are only inactive for one asynchronous
update sweep at a time (𝑡async). But, after moving the DD origin randomly, the old
and the new borders will necessarily intersect at a grid of points, which are then in-
active for 2𝑡async. Due to the wide borders, these intersections cover patches of 5× 5
lattice sites. Thus, the wide borders are producing locally varying update frequen-
cies at short time scales. This manifests as additional noise in the autocorrelation
functions and possibly other observables.

All curves presented in the right panel of figure 4.11 are averaged over the same

79

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

number 𝑛 = 200 of runs. At late times (𝑡/𝑠 > 30) autocorrelation signals have
decayed below the noise-level of the respective sample, so the variance can be com-
pared. Reducing 𝑡async decreases adverse effects of DD borders and thus also the
additional noise caused by wide borders. The data shown for DB stems from simu-
lation using 𝑡async = 0.5MCS. Even larger noise is observed for 𝑡async = 1MCS.

This study shows double tiling (DT) DD with random origin (DTr) to be superior
to the other presented schemes: It appears to neither introduce correlation nor addi-
tional noise, compared with a sequential simulation. It has only the disadvantage of
using smaller active domains for asynchronous update sweeps, but this influence is
negligible for the large domain sizes usually used at device-layer and it serves to keep
update frequencies homogeneous. For this reason it may even be preferable over DB
with a border-width of one lattice site, since intersections of thin borders could still
cause tiny imbalances. Using DT without randomly moving the DD origin results in
similar correlations as exhibited by cDB.

All parallel RS surface growth simulations in this work, apart from examples pre-
sented above, used DTr at device-layer.

4.2.1.2. Block-Layer DD

Since at block-layer only single-hit updates are performed there is little potential
for block-layer domain borders to have strong adverse effects on simulations results.
However, since the type of block-layer DD does affect the corrections to scaling, as
shown in section 4.1.1, an investigation of the effects on the autocorrelation functions
in RS simulations shall be presented here.

The observed changes in autocorrelation functions with block-layer DD are so
small, that they could not be resolved by most sequential simulations. At the same
time sequential and parallel simulations may differ by small corrections, not affecting
any universal properties, which was already illustrated in section 4.1.1 as well. Thus,
even if a small difference between parallel and sequential results could be resolved,
it would be unclear if this was a cause for concern. For these reasons, comparisons
with sequential simulations would not be constructive at this point.

In simulations using DD, the size and shape of domains remain free parameters,
where the exact sequential behavior corresponds to the limit of infinite domain size.
This view suggests checks for self-consistency as a viable method for this analysis.

Figure 4.12a shows autocorrelation functions for heights when using DTrDT for
different block-layer domain configurations. Different TC configurations appear to
show a trend in the autocorrelation functions at late times:

TC=1,1 > TC=2,1 > TC=2,2 & TC=3,2 ≈ TC=4,1

This trend does only depend on the volume of block-layer domains, but not on lateral
dimensions, which is counter-intuitive, since if this effect arose from a correlation
caused by the single-hit updates going into domains of the same set at the same
time, some length-scale based on the smaller lateral domain size should dominate.

80

4.2. Autocorrelation Functions

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=1,1

TC=2,1

TC=2,2

TC=3,2

TC=4,1

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=1,1

TC=2,1

TC=2,2

TC=3,2

TC=4,1

(a) AC of heights vs. TC (DTrDT)

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=1,1

𝑠 = 100

𝑠 = 500

𝑠 = 1000

TC=3,2

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=1,1

𝑠 = 100

𝑠 = 500

𝑠 = 1000

TC=3,2

(b) AC of heights vs. 𝑠 (DTrDT)

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=2,2,T=4,3

TC=2,2,T=5,4

TC=3,1,T=4,3

TC=1,3,T=4,3

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=2,2,T=4,3

TC=2,2,T=5,4

TC=3,1,T=4,3

TC=1,3,T=4,3

(c) AC of heights (DTrDT)

0 0.2 0.4 0.6
−5

−4

−3

−2

𝑠/𝑡

−
𝜆
𝐶
,s
lo
p
es
,e
ff
/
𝑧

TC=1,1 𝑠 = 1000

TC=2,2 TC=3,2

0 1 2

−5

0

log10(𝑡/𝑠) lo
g
1
0

(︁ 𝐶
s
(𝑡
,
𝑠
)
·𝑠

0
.7

6
)︁

(d) AC of slopes (DTrDT)

Figure 4.12.: This figure presents the effects of different TC configurations on RS
autocorrelation (AC) results when using DT for DD at block-layer (DTrDT). (a):
Comparison of different TC volumes and shapes for waiting time 𝑠 = 100. (b):
Comparison of different waiting times 𝑠 for the smallest configuration TC=1,1 vs.
𝑠 = 100 for the largest considered configuration TC=3,2. (c): Comparison of dif-
ferent TC aspect ratios at fixed volume and different device-layer domain sizes
for fixed TC for 𝑠 = 100. The other panels do not list device-layer domain sizes
(T=x,y–figures) because no dependence can be observed. (d) Comparison of auto-
correlation (AC) of slopes for different TC configurations at 𝑠 = 100 and, for the
smallest configuration TC=1,1, 𝑠 = 1000.
The system size for TC=2,1 is 𝐿 = 217, all other system sizes are 𝐿 = 216.
Sample sizes vary: 𝑛TC=1,1 ≥ 38;𝑛TC=2,1 ≥ 120;𝑛TC=2,2,T4,3 ≥ 71;𝑛TC=2,2,T5,4 ≥
20;𝑛TC=3,1 & 𝑛TC=1,3 ≥ 78;𝑛TC=3,2 ≥ 28 and 𝑛TC=4,1 ≥ 30. Statistical 1𝜎-errors are
below 5× 10−4 for all data points.

81

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

For the most part, the differences are barely significant, but a discrepancy between
the configuration with the smallest volume block-layer domains, TC=1,1, and the
rest can clearly be observed. If lateral cell dimensions dominated, the configuration
TC=4,1 would be expected to give more similar results, instead it much better agrees
with TC=3,2, which features block-layer domains with the same volume (𝑉TC=4,1 =
𝑉TC=3,2 = 16 · 25 = 256 lattice sites).

The hypothesis of sole dependence on block-layer domain volume is supported by
the comparisons in figure 4.12c: All presented curves are based on simulations with
the same domain volume, but the aspect ratios vary, with no significant difference
in the autocorrelation functions. The figure also shows two plots with the same TC
configuration but different sizes of the device-layer domains. The lack of a significant
difference between these curves (and) suggests that changing the size of
device-layer domains does at least not change the autocorrelation functions enough
to explain the difference observed in figure 4.12a.

Figure 4.12b shows results for TC=1,1 for waiting times 𝑠 ∈ {100, 500, 1000} in
comparison with results obtained using large domains TC=3,2 at 𝑠 = 100. Notably,
in the TC=1,1-simulation, the autocorrelation function for 𝑠 = 100 does not collapse
with the other two 𝑠/𝑡 ≥ 30. Instead, the latter agree with the displayed TC=3,2-
simulation for 𝑠 = 100, suggesting, that the observed influence of the block-layer
domain size is largest at early times during the evolution, close to the flat initial
condition. The stronger dependence on 𝑠 for configurations with smaller thread
cells, could point to some oscillation modulated onto the aging of the system by
small thread cells. Under this assumption, the asymptotic exponent 𝜆𝑐 should still
be the correct one even for small TC, but it would show for much later times or only
at time scales longer than the length of the oscillation.

Contrary to the above observations for the autocorrelation of heights, the au-
tocorrelation of slopes is identical in all these simulations. This is illustrated in
figure 4.12d by overlaying the effective exponents 𝜆𝐶,slopes,eff/𝑧, corresponding to the
autocorrelation functions of the slopes shown in the inset.

It is probable that the disagreement on the exact form of the autocorrelation
function between simulations with different block-layer domain sizes under DTrDT
is only caused an by additional correction which becomes larger for small cells. Thus
it it would be possible to extract the correct universal KPZ autocorrelation and
aging exponents from any of the simulations compared here, asymptotically. Still,
keeping corrections stable in parallel simulations would be advantageous for two
reasons: First, as extrapolating the correct universal exponents with corrections of
unknown form present is problematic, one should avoid introducing an additional,
TC-dependent correction. Second, the complete form of the autocorrelation functions
under RS dynamics may be of interest in later studies.

The reason DTrDT produces some small correlated noise may be found in the grid-
like site-selection pattern at block-layer, where the coordinates for collective update
attempts are restricted to the selected set of active domains, which resembles a grid.
This grid-pattern cannot be eliminated by randomly moving the DD origin at the
block-layer after each collective update (DTrDTr). In section 4.1.1 an observation

82

4.2. Autocorrelation Functions

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=3,2 DTrDT

TC=1,1 DTrDB

TC=2,2 DTrDB

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=3,2 DTrDT

TC=1,1 DTrDB

TC=2,2 DTrDB

0.2 0.4 0.6 0.8

−1.25

−1.2

−1.15

−1.1

√︀
𝑠/𝑡

−
𝜆
𝐶
,h
ei
g
h
ts
,e
ff
/
𝑧

𝑠 = 100 TC=1,1

𝑠 = 1000 TC=1,1

𝑠 = 100 TC=2,2

𝑠 = 1000 TC=2,2

Figure 4.13.: Comparison of autocorrelation results in RS simulations using DB for
DD at block-layer (DTrDB). Left: Autocorrelation functions for different TC sizes
for waiting time 𝑠 = 100. Results using DTrDT with TC configuration TC=3,2 are
given for comparison. Right: Local slope analysis of DTrDB results for 𝑠 = 100 and
1000. All system sizes are 𝐿 = 216. Samples sizes are: 𝑛TC=1,1 ≥ 1044;𝑛TC=2,2 ≥
708 and (DTrDT) 𝑛TC=3,2 ≥ 28. Samples sizes of DTrDB runs are much larger
because these stem from production runs which where used to extract final results.

is presented, that DTrDTr does not substantially improve on the results obtained
using DTrDT, which is why it was not investigated in further detail.

The grid can be eliminated by turning back the DB scheme, in a single-hit vari-
ant, for DD of the block-layer (DTrDB). Figure 4.13 shows autocorrelation data for
surface heights from DTrDB simulations using TC=1,1 and TC=2,2. Here, the au-
tocorrelation functions are in perfect agreement. The right panel shows local slope
analyses for autocorrelation functions with waiting times 𝑠 = 100 and 1000 from
these simulations, which also agree almost perfectly. The data presented for DTrDB
is taken from production runs, which are further analyzed in the next section. The
curves are much smoother because of the larger sample size afforded.

The left panel of figure 4.13 also shows a curve from DTrDT simulations with
TC=3,2 for comparison. A good agreement cannot be denied, suggesting, that at
this block-layer domain size, the DTrDT simulations are sufficiently converged with
respect to the autocorrelation of heights. Since there is no significant dependence of
the autocorrelation functions on the TC configuration when using DTrDB, the most
efficient choice of DD for a simulation is DTrDB with TC=1,1.

4.2.2. Autocorrelation Properties under RS Dynamics

Final results for autocorrelation functions are displayed in figure 4.14. There is no
significant difference in the scaling laws for different waiting times 𝑠, which makes
a near-perfect collapse of the 𝐶heights(𝑡, 𝑠) for different waiting times possible. The
presented collapse (figure 4.14a) is achieved respecting relation (4.18). However, the
best collapse is achieved for 𝑏heights = −0.469(3), which is caused by corrections to

83

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

scaling being strong at early times, where 𝛽eff(𝑡) is smaller than the asymptotic value
(see figures 4.1 or 4.6) causing different aging.

The asymptotic tail of effective exponents are linearised assuming corrections of
the form

√︀
𝑠/𝑡, as displayed in figure 4.14b. The exponent should in principle be

independent of 𝑠, but corrections may differ, affecting extrapolation results. The
extrapolated exponents are plotted over 𝑠 in figure 4.14c. The plot appears to follow
a rough trend for 𝑠→∞, but it does not lend itself for a clean fit. However, a PL-fit
to the combined set of points displayed would give an extrapolated value for the
exponent of 𝜆𝐶,heights,𝑠→∞/𝑧 ≈ 1.21. A weighted average of all points is dominated
by small waiting times due to the smaller fit errors in the local slope extrapolations.
Such an average would support an estimate of 𝜆𝐶,heights/𝑧 = 1.256(15).

As an attempt to resolve this discrepancy, a different type of local slope analysis
is presented in figure 4.14d, using tail effective exponents, as defined in section 2.1
(page 14). These effective exponents can be expected to converge more monotoni-
cally to the asymptotic exponent, because the tail of the autocorrelation function is
included for all 𝑡min and only increases in weight as 𝑡min increases. In figure 4.14d
the curves for different 𝑠 approach the asymptotic exponents more linearly but with
strong oscillations. However, all curves seem to oscillate around a common mean,
which is not the case in figure 4.14b. A single linear fit to the combination of all
curves, yields an averaged extrapolation of ̃︀𝜆𝐶,heights/𝑧 = 1.23(3), suggesting, that
the estimates presented before are under- and overestimates, respectively. The given
error margin takes the uncertainty due to the actually unknown corrections into ac-
count. This yields a corresponding autocorrelation exponent 𝜆𝐶,heights = 1.98(5).
Figure 4.14 mostly shows data for simulations using DTrDB, TC=1,1; the above es-
timates are also compatible with results obtained using TC=2,2; as evidenced by
figure 4.14c.

The autocorrelation functions of the surface slopes in these systems are presented
in figure 4.15. Here again, the functions for different waiting times collapse nearly
perfectly, this time for 𝑏slopes = 0.76(2).

Since the autocorrelation functions for slopes decay much more rapidly than for
heights, the signal-to-noise ratio in the present sample is insufficient for a reliable
extrapolation of the asymptotic exponent from effective exponents. A weighted aver-
age of direct PL fits for 4 ≤ 𝑡/𝑠 ≤ 90 yields 𝜆𝐶,slopes/𝑧 = 2.312(2). However, effective
exponents show a downwards curvature as 𝑡/𝑠→∞, suggesting an asymptotic value
closer to 𝜆𝐶,slopes,eff/𝑧 = 2.39(2).

4.2.3. Autocorrelation Properties under SCA Dynamics

Stochastic cellular automaton (SCA) updates differ from RS updates in that they are
spatially correlated, where the strength of the correlation is determined by the update
probability 𝑝 < 1. In the calculations presented here, 𝑝 corresponds to the deposition
probability, while the probability of removal 𝑞 is set to zero, for the simulation to
stay in the pure KPZ class. Figures 4.16 and 4.17 show autocorrelation functions
for height variables and surface slopes, respectively, measured in SCA simulations at

84

4.2. Autocorrelation Functions

100 101 102 103

10−4

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

(a) RS AC of heights

0 0.2 0.4
−1.4

−1.3

−1.2

−1.1

−1

√︀
𝑠/𝑡

−
𝜆
𝐶
,h
ei
g
h
ts
,e
ff
/𝑧

𝜆𝐶,h,𝑠=30/𝑧 = 1.2630(6)

𝜆𝐶,h,𝑠=100/𝑧 = 1.2593(5)

𝜆𝐶,h,𝑠=500/𝑧 = 1.2418(9)

𝜆𝐶,h,𝑠=1000/𝑧 = 1.2536(13)

(b) AC effective exponents

0 1 2 3

·10−2

−1.26

−1.25

−1.24

1/𝑠

−
𝜆
𝐶
,h
ei
g
h
ts
/𝑧

TC=2,2

TC=1,1

(c) AC exponents

0 5 · 10−2 0.1 0.15 0.2

−1.25

−1.2

−1.15

𝑠/𝑡min

−
𝜆
𝐶
,h
ei
g
h
ts
,e
ff
/𝑧

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

𝜆𝐶,h/𝑧 = 1.23(3)

(d) AC tail effective exponents

Figure 4.14.: Autocorrelation results from RS calculations using DTrDB with TC=1,1.
System size 𝐿 = 216, 𝑛 ≥ 1044 realizations for 𝑠 > 30 and 𝑛 ≥ 473 for 𝑠 = 30. (a)
Collapsed autocorrelation functions for waiting times 𝑠 = 30, 100, 500, 1000. (b)
Corresponding local slope analysis and extrapolations assuming corrections of the
form

√︀
𝑠/𝑡, as drawn. Linear fit was performed for

√︀
𝑠/𝑡 ∈ [0.1, 0.3]. Stated errors

are pure fit-errors, see text for actual error margins. (c) Exponents 𝜆𝐶,h/𝑧(𝑠) as
obtained in panel (b), corresponding values obtained in DTrDB TC=2,2 simula-
tions are displayed additionally (). (d) Tail effective exponents corresponding to
panel (a) obtained from PL fits for intervals 𝑡 ≥ 𝑡min with successively increasing
𝑡min. A linear fit to the combination of all curves is displayed ().

85

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

100 101 102

10−6

10−4

10−2

100

𝑡/𝑠

𝐶
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

0
.7
6

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

0 0.2 0.4 0.6
−3

−2.5

−2

−1.5

−2.312

𝑠/𝑡

−
𝜆
𝐶
,s
lo
p
es
,e
ff
/
𝑧

𝜆𝐶,s,𝑠=30/𝑧 = 2.392(6)

𝜆𝐶,s,𝑠=100/𝑧 = 2.387(7)

Figure 4.15.: Autocorrelation results from RS calculations using DTrDB with TC=1,1,
same simulation as in figure 4.14. Left: Collapsed autocorrelation functions for
waiting times 𝑠 = 30, 100, 500, 1000. Right: Local slope analysis for 𝑠 = 30, 100.
Linear extrapolations are shown, assuming corrections of the form 𝑠/𝑡, as drawn.
The fit was applied in the interval 𝑡/𝑠 ∈ [6.25, 50]. The horizontal line () marks
the value obtained from direct PL fits.

𝑝 = 0.95 as well as for 𝑝 = 0.5.

The most apparent property of SCA autocorrelation functions, both of heights and
slopes, is the finite asymptotic value (figures 4.16a and 4.17a, respectively). This
limiting value, henceforth denoted by 𝑜, depends exponentially on 𝑝, thus it can be
regarded as a direct manifestation of the correlation imprinted onto the surface by
the SCA update pattern. The limit is independent of the system size and only shows
a marginal dependence on the waiting time 𝑠 manifesting in a slight decrease of 𝑜
with increasing 𝑠. The cause of this remains unclear.

One exception can be seen in figure 4.17a for case (𝑝 = 0.5, 𝑠 = 30), which exhibits
a significantly lower limit than the other autocorrelation functions for 𝑝 = 0.5. It
can be hypothesized that this difference is caused by a perturbation introduced in
the form of the flat initial condition, which at the waiting time 𝑠 is superposed with
the growth state of the KPZ surface. As such a perturbation can be expected to
decay as

𝑓𝜒(𝑡) ∼ 𝑡−𝜆𝑅/𝑧, (4.19)

where 𝜆𝑅 denotes the autoresponse exponent, the shift of the autocorrelation limit
would decay in the same fashion with 𝑠. More simulations for small 𝑠 would be
required to test this hypothesis.

The autocorrelation limit 𝑜 for each function was determined using a linear ex-
trapolation of the function’s tail to infinity as a first approximation. Subtracting
the appropriate limit from each curve reveals a PL approach to this constant. To
obtain a refined value for 𝑜, the governing exponent 𝜉 is read off the data, allowing

86

4.2. Autocorrelation Functions

Table 4.4.: Autocorrelation limits for SCA dynamics for different deposition rates
𝑝 and 𝑞 = 0, as functions of the waiting time 𝑠. Given errors are fit errors,
which are below the given number of digits for the slopes values. The value for
𝑜slopes,𝑝=0.95(𝑠→∞) is the steady state value, explained in section 4.2.4.

𝑠/MCS 𝑜heights 𝑜slopes
𝑝 = 0.5 𝑝 = 0.95 𝑝 = 0.5 𝑝 = 0.95

30 0.003 20(3) 0.055 398(8) 0.012 871 0.221 623
100 0.003 31(5) 0.055 20(3) 0.014 286 0.219 827
500 0.0031(2) 0.054 57(8) 0.013 944 0.218 547
1000 0.0035(3) 0.0548(2) 0.013 903 0.218 330
→∞ 0.218 00(5)

a subsequent fit of the tail of the form:

𝑓(𝑡) = 𝑜+ 𝑐 · 𝑡−𝜉, (4.20)

where 𝑜 and 𝑐 are free parameters. The corrected exponent 𝜉′ → 𝜆𝐶/𝑧 can then
be read off after subtracting the refined 𝑜. These iterations yield self-consistent
estimates for 𝑜 and the autocorrelation exponent 𝜆𝐶 . This procedure is more prone
to statistical error for small 𝑡/𝑠 since the considered function is further away from
the asymptotic constant 𝑜, allowing noise in the tail to influence the extrapolated
value more strongly. Table 4.4 lists calculated SCA autocorrelation limits.

Autocorrelation limits 𝑜 for a range of 𝑝, could also be determined from the small
survey study presented in figure 4.2, left, comprising much smaller sample sizes than
the results presented in detail in the following. This data suggests an exponential
dependence 𝑜(𝑝) ∼ exp(𝜈𝑝) with a similar, or possibly the same, value for the pa-
rameter 𝜈 for both slopes and heights. However, these autocorrelation measurements
all used the same waiting time 𝑠, not taking into account 𝑝-dependent time-scale.
Thus the actual waiting times ̃︀𝑠 decrease with 𝑝, which makes the fit performed on
the 𝑜(𝑝) across these runs unsuitable to determine a reliable value for 𝜈.

4.2.3.1. Autocorrelation of Heights

Figure 4.16b shows SCA autocorrelation functions for heights, corrected by sub-
tracting the limiting autocorrelation 𝑜heights. A nearly perfect data collapse can be
achieved using the value same value for 𝑏heights as determined for RS simulations.
The RS autocorrelation function, displayed for comparison, shows behavior identical
to its SCA counterparts.

Local slope analyses of the corrected autocorrelation functions are displayed in
figures 4.16c and 4.16d for 𝑝 = 0.95 and 𝑝 = 0.5, respectively. Assuming corrections
of the form

√︀
𝑠/𝑡, allows for a linear extrapolation of the asymptotic autocorrelation

exponent. Only for 𝑠 = 30 and 100 at 𝑝 = 0.95 𝑜 can be determined reliably, the
determined exponents for larger 𝑠 may be influenced by an incorrect limit 𝑜. Thus,

87

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

100 101 102 103 104 105

10−2

10−1

100

101

𝑝 = 0.95

𝑝 = 0.5

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

(a) raw autocorrelation function

100 101 102 103 104
10−6

10−5

10−4

10−3

10−2

10−1

𝑡/𝑠

(𝐶
h
(𝑡
,𝑠
)
−
𝑜)
·𝑠

−
0
.4
8
2
8

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

DTrDB,
𝑠 = 100

(b) corrected autocorrelation function

0 0.2 0.4
−1.4

−1.3

−1.2

−1.1

−1

√︀
𝑠/𝑡

−
𝜆
𝐶
,h
ei
g
h
ts
,e
ff
/𝑧

𝜆𝐶,h,𝑠=30/𝑧 = 1.2591(7)

𝜆𝐶,h,𝑠=100/𝑧 = 1.2613(6)

𝜆𝐶,h,𝑠=500/𝑧 = 1.2430(8)

𝜆𝐶,h,𝑠=1000/𝑧 = 1.2434(9)

(c) effective exponents 𝑝 = 0.95

0 0.2 0.4
−1.4

−1.3

−1.2

−1.1

−1

√︀
𝑠/𝑡

−
𝜆
𝐶
,h
ei
g
h
ts
,e
ff
/𝑧

𝜆𝐶,h,𝑠=30/𝑧 = 1.2582(6)

𝜆𝐶,h,𝑠=100/𝑧 = 1.2404(12)

𝜆𝐶,h,𝑠=500/𝑧 = 1.2375(8)

𝜆𝐶,h,𝑠=1000/𝑧 = 1.2408(4)

(d) effective exponents 𝑝 = 0.5

Figure 4.16.: Autocorrelation of heights from SCA calculations. Error bars have been
omitted for clarity. The visible noise is a good indication for 1𝜎 error. Panels (a)
and (b) show datasets with 𝑝 = 0.5 (3062 realizations, 𝑡 ≤ 1.4MMCS) and 𝑝 = 0.95
(3062 realizations, 𝑡 ≤ 400 kMCS), curves from bottom to top. Lateral system size
is 𝐿 = 216. (a): Raw autocorrelation functions showing saturation depending on
𝑝. (b): Collapsed autocorrelation functions, corrected by the saturation offset 𝑜
(see text). Plots for 𝑝 = 0.5 and 𝑝 = 0.95 corresponding to the same 𝑠 use the
same colors, where the bottom set of plots corresponds to 𝑝 = 0.5. Colors are less
saturated for the plots for 𝑝 = 0.5, to distinguish them at late times. Data form a
DTrDB run for 𝑠 = 100 is displayed for comparison (). The bottom panels (c)
and (d), show the local slope analysis corresponding to the 𝑝 = 0.95 and 𝑝 = 0.5
data sets, respectively. Extrapolations assume corrections of the form

√︀
𝑠/𝑡, as

drawn. Printed error margins are pure fit-errors.

88

4.2. Autocorrelation Functions

only the extrapolations based on small 𝑠 are considered for a weighted average.
This yields the estimates 𝜆𝐶,heights/𝑧 = 1.26(1) and 𝜆𝐶,heights = 2.01(2) for the
autocorrelation exponent. These values are in excellent agreement with the value
obtained above from a local slope analysis of RS calculations for small 𝑠.

The increasing effective exponents at late times in figure 4.16d (𝑝 = 0.5) for 𝑠 =
30, 100 and 500 are very unlikely to point towards a crossover into a different late-
time regime. They are more likely random artifacts of the estimation procedure for
𝑜, caused by the low signal-to noise ratio at very late times. Ultimately the presented
data constitutes strong evidence, that the autocorrelation of height variables in SCA
simulations is identical to the one observed in RS calculations, up to constant 𝑜heights.

4.2.3.2. Autocorrelation of Slopes

The picture turns out quite different for the slope variables. Figure 4.17b shows
a working data collapse for both SCA data sets using the same value 𝑏slopes as
determined from RS calculations. However, the asymptotic PL approach to 𝑜heights
is quite different.

The dataset for 𝑝 = 0.95 clearly exhibits a different exponent than is observed in
RS simulations. Again, only the effective exponents (figure 4.17c) for 𝑠 = 30 and
100 shall be considered, because of the better signal-to-noise ratio. A direct linear
extrapolation for 𝑠/𝑡→ 0 yields an estimate of 𝜆𝐶,slopes,SCA/𝑧 = 0.75(2).

For 𝑝 = 0.5, a transition from the power-law that is observed in RS simulations
to the one determined above is clearly visible. Linear extrapolation of the tail in
figure 4.17d yields 𝜆𝐶,slopes,SCA/𝑧 (see figure), in good agreement with the corre-
sponding RS results. This leads to the conclusion, that the autocorrelation function
under SCA dynamics takes the form:

𝑓𝐶,SCA(𝑡/𝑠, 𝑝) ∼ 𝑐1 · (𝑡/𝑠)−𝜆𝐶,slopes/𝑧 + 𝑐2 · (𝑡/𝑠)−𝜆𝐶,slopes,SCA/𝑧 (4.21)

4.2.4. Autocorrelation in the SCA Steady State

The autocorrelation functions in the steady state have not been explicitly investigated
in this work, since no aging can be expected to be present after the growth regime.
However, based on available SCA simulations in the steady state, some observations
can be made.

Due to the broadening of the roughness distribution in the steady state with system
size, no self-averaging of height-related variables is present for large systems. This
can be observed to transfer to the autocorrelation of heights: Among the available
datasets (𝐿 = 212 and 𝐿 = 213, 𝑝 = 0.95), the one for smaller systems exhibits
the lower variance. However, for the autocorrelation of slopes perfect self-averaging
appears to be present.

Because the simulations were designed to sample the roughness distribution over
long times deep into the steady state, not to sample evolution at short timescales of
Δ𝑡 . 1 kMCS, the available data is not well suited to precisely determine the exact

89

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

100 101 102 103 104 105
10−2

10−1

𝑝 = 0.95

𝑝 = 0.5

𝑡/𝑠

𝐶
sl
o
p
es
(𝑡
,𝑠
)

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

(a) raw autocorrelation function

100 101 102 103 104

10−6

10−4

10−2

100

𝑡/𝑠

(𝐶
s(
𝑡,
𝑠)
−
𝑜)
·𝑠

0
.7
6

𝑠 = 30 𝑠 = 100

𝑠 = 500 𝑠 = 1000

DTrDB,
𝑠 = 100

(b) corrected autocorrelation function

0 0.2 0.4 0.6
−2.5

−2

−1.5

−1

𝑠/𝑡

−
𝜆
𝐶
,s
lo
p
es
,e
ff
/𝑧

𝜆𝐶,s,𝑠=30/𝑧 = 0.745(3)

𝜆𝐶,s,𝑠=100/𝑧 = 0.746(2)

𝜆𝐶,s,𝑠=500/𝑧 = 0.801(2)

𝜆𝐶,s,𝑠=1000/𝑧 = 0.830(2)

(c) effective exponents 𝑝 = 0.95

0 0.2 0.4 0.6
−3

−2

−1

−2.312

−0.78

𝑠/𝑡

−
𝜆
𝐶
,s
lo
p
es
,e
ff
/𝑧

𝜆𝐶,s,𝑠=30/𝑧 = 0.765(3)

𝜆𝐶,s,𝑠=100/𝑧 = 0.764(4)

(d) effective exponents 𝑝 = 0.5

Figure 4.17.: Results from SCA calculations for the autocorrelation of slopes. Error
bars have been omitted for clarity. The visible noise is a good indication for
1𝜎 error. Panels (a) and (b) show datasets with 𝑝 = 0.5 and 𝑝 = 0.95, curves
from bottom to top. Data are taken from the same runs as in figure 4.16. (a):
Raw autocorrelation functions showing saturation depending on 𝑝. (b): Collapsed
autocorrelation functions, corrected by the saturation offset 𝑜 (see text). Data
form a DTrDB run for 𝑠 = 100 is displayed for comparison (). The bottom
panels (c) and (d), show the local slope analysis corresponding to the 𝑝 = 0.95
and 𝑝 = 0.5 datasets, respectively. Extrapolations assume corrections of the form
𝑠/𝑡, as drawn. Printed error margins are pure fit-errors. Horizontal lines () in
panel (d) mark the asymptotic esponents for RS updates and SCA at 𝑝 = 0.95,
from bottom to top.

90

4.2. Autocorrelation Functions

form of the tail. Apart from this, an oscillation around zero is to be expected for
non-correlated (RS) updates. Since in SCA simulations a constant correction 𝑜 is
observed, the correlations should oscillate around the finite value 𝑜 instead, if the
correction was caused by an intrinsic correlation in the SCA dynamics.

Indeed, the autocorrelation of slopes is oscillating around 𝑜slopes,steady = 0.218 00(5).
Assuming no aging in the steady state, this value should be identical to the limiting
autocorrelation in the growth regime for 𝑠→∞ (listed as such in table 4.4). In line
with equation (4.19), good agreement with the expression

𝑜slopes(𝑠)− 𝑜slopes,steady = 𝑐𝑜 · 𝑠−𝜆′
𝑅,slopes/𝑧 (4.22)

is found with 𝑐0 = 0.031(5) and 𝜆′𝑅,slopes/𝑧 = 0.63(4) ≈ 1/𝑧.
For a two–dimensional driven lattice gas with exclusion, a PL decay of the auto-

correlation was found [140]. The slopes of the octahedron model also constitute a
driven lattice gas; only the system is not driven along a lattice direction but along
the diagonal and particles are only allowed to jump in pairs, giving rise to different
exclusion rules. The available data is insufficient to clearly distinguish whether the
tail is exponential or a PL.2

For the autocorrelation of heights, due to small sample size and the lack of self
averaging in the present simulations, the limiting value can only be obtained as
𝑜heights,steady = 0(5), which does not allow for any conclusions. However visual
inspection of the tail suggests exponential decay rather than a PL, which would
suggest a similar behavior as found in 1d [141–143].

4.2.5. Autocorrelation in the EW Case under SCA

4.2.5.1. Autocorrelation of Heights

As mentioned in section 2.4.1, the octahedron model falls in the universality class
of the analytically solved EW equation, if 𝑝 = 𝑞 > 0. In 2 + 1 dimensions, the
autocorrelation function takes the form [144]:

𝐶heights = 𝑐0 ln

(︂
𝑡+ 𝑠

𝑡− 𝑠

)︂
, (4.23)

where 𝑐0 is a model-dependent constant. This function approaches 0 for 𝑡 ≫ 𝑠 like
a PL with exponent 𝜆𝐶,h,EW/𝑧EW = 1, where 𝑧EW = 2.

In the previous sections it was shown, that the autocorrelation function 𝑝 > 0,
𝑞 = 0 (KPZ case) approached 0 asymptotically only in simulations with RS dynam-
ics, while under SCA dynamics a finite value is approached asymptotically. When
𝑝 = 𝑞 (EW case) the spatially correlated updates of the SCA do not affect the auto-
correlation function for the heights in this way. Instead, equation (4.23) is reproduced
also for late times, as illustrated in figure 4.18. The small deviation for very early

2An exponential fit exp(−𝜉(𝑡 − 𝑠)), yields 𝜉 = 0.000 19(2) with a variance of residuals 𝑉 = 0.09.
A PL (𝑡− 𝑠)𝜁 yields 𝜁 = 0.79(3) at 𝑉 = 0.04. Both fits have 48 degrees of freedom.

91

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

0

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

100 101 102 103 104
0.8

0.9

1

1.1

1.2

𝑡/𝑠

⟨𝐶
h
(𝑡
,𝑠
)⟩
/[

eq
.(

4.
23

)] 𝑠 = 30 𝑠 = 100

𝑠 = 500 𝑠 = 1000

Figure 4.18.: Autocorrelation functions of heights under SCA dynamics with 𝑝 = 0.5.
Sample size is 𝑛SCA = 5919. Error bars are omitted for clarity. The magnitude
of fluctuations can be seen from the visible fluctuations in the plots. Right: Data
divided by fit of the exact form in equation (4.23) to the interval 10 < 𝑡/𝑠.

times can be observed in RS runs too and is most likely caused by a perturbation
introduced by the flat initial conditions considered in the simulation.

The best fit values for 𝑐0 for all waiting times 𝑠 are ≈ 0.152. The fit values increase
slightly with 𝑠. The exact value of 𝑐0 for the octahedron model is likely to be found
in the limit 𝑠→∞.

This does not only show the correctness of the SCA and RS implementations
for the roughening kinetics down to a very small margin. The EW autocorrelation
functions obtained from SCA provide an example of a system where correlations
introduced by SCA do not affect the long time behavior.

Note, that, even though the aging exponent in the left panel of figure 4.18 is
𝑏EW
heights = 0, physical aging is still taking place. This is indicated by the scale of the

ordinate being 𝑡/𝑠 instead of 𝑡 − 𝑠, the latter being the scale to be applied when a
system is not aging, for example in a steady state.

4.2.5.2. Autocorrelations of Slopes

In RS simulations, the tail of 𝐶slopes(𝑡, 𝑠) does not decay with a single PL, as can
be observed in the left panel of figure 4.19. The pronounced curvature in the log-
log plot makes the form logarithmic. Assuming a logarithmic tail leads to the form
∼ log𝑥(𝑡/𝑠), with 𝑥 ≈ 4. This is illustrated in the right panel of the figure, where
the inverse of 𝐶slopes(𝑡, 𝑠) is plotted on a log-linear scale, where logarithmic decay
appears linear. The exponent 𝑥 ≈ 4 is compensated by additional rescaling of the
abscissa. However, the effective exponents (inset of the left panel) suggest a PL with
exponent 𝜆EW

𝐶,slopes/𝑧EW = 0.7(20). The two hypotheses about the form the tail under
RS dynamics are tested using fits, which are presented in the right panel. The PL
form appears to be better at describing the late-time portion of the data.

92

4.2. Autocorrelation Functions

100 101 102

10−6

10−4

10−2

100

𝑡/𝑠

𝐶
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

1
.1

𝑠 = 30 𝑠 = 100
𝑝 = 1/2
𝑝 = 1/32
DTrDB

−3 −2 −1

−3

−2

−1

0

log10(𝑠/𝑡)

𝜆
𝐶
,s
lo
p
es
,e
ff
/𝑧

E
W

100 101 102 103
0

5

10

15

20

𝑡/𝑠

(︀ 𝐶
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

1
.1
)︀ −

1
/
4 SCA, 𝑝 = 1/32, 𝑠 = 960

DTrDB, 𝑠 = 30

DTrDB, 𝑠 = 100

∼ log(𝑡/𝑠 − 1)4

∼ (𝑡/𝑠)3/4

100 101 102 103
0

5

10

15

20

𝑡/𝑠

(︀ 𝐶
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

1
.1
)︀ −

1
/
4 SCA, 𝑝 = 1/32, 𝑠 = 960

DTrDB, 𝑠 = 30

DTrDB, 𝑠 = 100

∼ log(𝑡/𝑠 − 1)4

∼ (𝑡/𝑠)3/4

Figure 4.19.: Autocorrelation functions of slopes under SCA (,) and RS ()
dynamics. Sample sizes are 𝑛 = 5919, 𝑛 = 147 and 𝑛 = 2101, for both
𝑠 = 30 and 𝑠 = 100. For SCA, 𝑝 = 1/32, the simulation time is rescaled to
collapse the curves, following: 𝑡 = 𝑝 · 𝑡, analogously for 𝑠. No rescaling is applied
to the other plots: 𝑡 = 𝑡. Error bars are omitted for clarity. The magnitude of
fluctuations can be seen from the visible fluctuations in the plots. The inset in
the left panel shows the effective autocorrelation exponents 𝜆𝐶,slopes,eff/𝑧EW for
DTrDB and SCA, 𝑝 = 1/2, both for 𝑠 = 30 and with 1𝜎 error bars. Right: Plot
of inverse data from RS and SCA, 𝑝 = 1/32, simulations on log-linear scale and to
show the logarithmic tail. The abscissa is additionally rescaled by a power 1/4 to
linearise the tail according the log-tail hypothesis. See text for details. Two fits to
the tail of the DTrDB dataset with 𝑠 = 30 are included: One follows the log-tail
hypothesis, the other a PL with exponent 𝜆/𝑧EW = 3/4.

While SCA dynamics seems to perfectly reproduce the expected autocorrelation
function for the surface heights, the evolution of the underlying lattice gas is changed.
In the SCA simulations with 𝑝 = 0.5, which were presented in the previous section,
the autocorrelation of slopes clearly exhibits a PL tail with 𝜆SCA,0.5

𝐶,slopes/𝑧EW ≈ 2 (fig-
ure 4.19, left). In this case, no finite asymptotic correlation seems to be present,
which is in contrast to the observations in the KPZ case, but which fits the assump-
tion of correlations introduced by SCA site-selection cancelling in the EW case. The
changed form of the tail may be caused by some part of the lattice gas kinetics,
which slows decorrelation under RS dynamics, being suppressed by SCA dynamics.

In the limit where 𝑝→ 0 and 𝑞 → 0, SCA dynamics must necessarily approach RS
dynamics. This is indeed the case here, as evidenced by data from SCA simulations at
𝑝 = 1/32 included in figure 4.19. The simulation time in these simulations is rescaled
linearly with as 𝑡 = 𝑝 · 𝑡 to achieve the collapse with data from RS simulations,
presented in the figure. This is an approximation to the rescaled time ̃︀𝑡 defined in
equation (4.10) for small 𝑝. In the RS case, the simulation time scales linearly with
the value of 𝑝 = 𝑞 ≤ 1. The observation of linear scaling under SCA dynamics with
𝑝 = 1/32 also suggests, that assuming SCA dynamics to have reached the RS limit

93

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

at this value of 𝑝 is a good approximation.
The aging exponent obtained from the presented simulations is 𝑏EW

slopes = 1.1(2).
This value holds for both RS and SCA dynamics, but breaks down for very small
values of 𝑠. The independence of the aging behavior from the dynamics is not
surprising because the growth law of the surface heights, and thus the evolution of
the system, remains unaffected, too.

These observations about the autocorrelation in this type of symmetric exclusion
process of dimers in a two–dimensional lattice gas merit further investigation. Results
for this system are not yet available in the literature. However, the EW universality
class is not within the scope of this work. Within the scope of this work, these
results provide an additional example of the manifold ways, in which stochastic
lattice models can be affected by SCA site-selection dynamics, or remain unaffected
in case of EW surface growth.

4.3. Autoresponse Functions

Autoresponse calculations were carried out by simulating two systems in parallel:
An unperturbed system 𝐴 and a perturbed system 𝐵. System 𝐴 is simulated as a
KPZ system with uniform deposition and detachment rates 𝑝𝐴 and 𝑞𝐴, respectively.
The perturbation in system 𝐵 is introduced by simulating it with quenched disorder
manifesting as lattice site-dependent rates 𝑝𝐵(𝑖) and 𝑞𝐵(𝑖) up to a waiting time 𝑠,
after which 𝑝𝐵 = 𝑝𝐴 and 𝑞𝐵 = 𝑞𝐴.

The site dependent probabilities are implemented as a bimodal distribution, such
each lattice site is assigned a pair of local probabilities (𝑝±𝐵, 𝑞

±
𝐵). The disorder states

+ and − are equally distributed and the strength of the disorder is defined by a
parameter 𝜀, such that:

𝑝±𝐵 =

{︃
𝑝𝐴 ± 𝜀/2 if 𝑝±𝐵 ∈ [0, 1]

1− 𝜀/2± 𝜀/2 otherwise

𝑞±𝐵 = 𝑝𝐴 + 𝑞𝐴 − 𝑝±𝐵

For the simulations presented in [103] (labeled CPU*) and in one SCA (labeled
SCA*) simulation presented in the following section, the update probabilities were
chosen such that 𝑝𝐴 + 𝑞𝐴 = 1 with 𝑞𝐴 > 0 in order to guarantee more symmetric
disorder. As long as 𝑞𝐴 is small, the system is believed to remain in KPZ universality,
when approaching 𝑞 ∼ 0.5 the system would cross over to EW universality.

The quantity of interest is the asymptotic behavior of the time-integrated response
function:

𝜒(𝑡, 𝑠) =

𝑠∫︁

0

d𝑢𝑅(𝑡, 𝑢) =
1

𝐿2

𝐿2∑︁

𝑖

⟨
𝜓𝐵
𝑖 (𝑡, 𝑠)− 𝜓𝐴

𝑖 (𝑡, 𝑠)

𝜀

⟩
= 𝑠−𝑎𝑓𝜒(𝑡/𝑠) , (4.24)

94

4.3. Autoresponse Functions

100 101 102
10−4

10−3

10−2

10−1

100

101

𝑡/𝑠

𝜒
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

0
.2
6

SCA, 𝑠 = 30
SCA, 𝑠 = 100
SCA*, 𝑠 = 100

CPU*, 𝑠 = 30
DTrDB, 𝑠 = 30
DTrDB, 𝑠 = 100

0 0.1 0.2 0.3 0.4 0.5
−1.4

−1.3

−1.2

−1.1

𝑠/𝑡

−
𝜆
𝑅
,h
ei
g
h
ts
,e
ff
/𝑧

𝜆𝑅,hCPU*/𝑧 = 1.260(7)

𝜆𝑅,hSCA/𝑧 = 1.243(2)

𝜆𝑅,hSCA/𝑧 = 1.256(3)

𝜆𝑅,hSCA*/𝑧 = 1.258(6)

Figure 4.20.: Results for the autoresponse of heights, comparing variations of both
RS and SCA simulations. Left: Collapsed autoresponse functions. Right: Cor-
responding local slope analyzes with PL fits for extrapolation of the asymptotic
exponent. The extrapolation of DTrDB () was omitted because the late-time
regime is too noisy. An extrapolation, which is in agreement with the remaining
values can be obtained by fitting only up to 𝑡/𝑠 = 20 (𝑠/𝑡 = 0.05). CPU* was
published in [103]. System and Sample sizes are: 𝐿CPU* = 213, 𝑛CPU* ≥ 39083
realizations, all others 𝐿 = 216 with 𝑛DTrDB,𝑠=30 ≥ 830, 𝑛DTrDB,𝑠=100 ≥ 629,
𝑛SCA,𝑠=30 ≥ 23849, 𝑛SCA,𝑠=100 ≥ 12012 and 𝑛SCA*,𝑠=100 ≥ 1390 realizations.

where 𝜓𝐴,𝐵
𝑖 (𝑡) are local observables of the unperturbed and perturbed systems, re-

spectively. 𝑎 is the aging exponent for the autoresponse, for which no relation to the
other exponents of the 2 + 1–dimensional KPZ class is known, whichis also due to
the lack of an applicable FDR.

Asymptotically, the scaling function is expected to decay as 𝑓𝜒(𝑡/𝑠) ∼ (𝑡/𝑠)−𝜆𝑅/𝑧.
In order to obtain the response behaviour in the KPZ universality class, the height-
functions ℎ𝐴,𝐵

𝑖 (𝑡) are used in these places and the exponent 𝜆𝑅,height/𝑧 can be read
off. Inserting the field of slopes as 𝜓𝐴,𝐵

𝑖 (𝑡) gives the autocorrelation properties of the
underlying dimer lattice gas.

4.3.1. Autoresponse Properties

Results from this section and section 5.2 have been published as an article [145].

4.3.1.1. Autoresponse of Heights

Results from various autoresponse calculations are summarized in figure 4.20 (see
figure caption for details). No difference in the autoresponse exponent and only
a marginal difference in the corrections to effective exponents is evident, between
random-sequential (RS) (CPU*, DTrDB) and stochastic cellular automaton (SCA)

95

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

simulations. The most notable difference is a constant factor (2.08(1))3 in the au-
toresponse function 𝜒heights(𝑠, 𝑡), which can be attributed to the rescaling of the time
observed for SCA simulations in section 4.1.1 (𝑡SCA = 𝜈𝑡RS): While RS and SCA re-
sults do collapse using an aging PL 𝑠𝑎, as prescribed by the r.h.s. of equation (4.24),
a prefactor 𝜈−𝑎 will remain between 𝜒RS and 𝜒SCA.

The value of the aging exponent is often determined by performing a manual
collapse of the available datasets for different waiting times 𝑠. For RS simulations,
the value 𝑎coll.

RS = 0.30(1) was determined this way and published in [103]. For the
SCA simulations presented in figure 4.20, left, the value 𝑎coll.

SCA = 0.26(1) shows the
best collapse. However, this method requires visual inspection of plots to determine
for which value of 𝑎coll. the data collapse works best, which is prone to bias and
underestimation of the attached error margins.

Numerical computation of the aging exponent involves point-wise division of au-
tocorrelation functions for different waiting times:

𝜒h(𝑡, 𝑠1)

𝜒h(𝑡, 𝑠2)
=
𝑠𝑎1𝑓𝜒h

(𝑡/𝑠1)

𝑠𝑎2𝑓𝜒h
(𝑡/𝑠2)

(𝑡/𝑠1=𝑡/𝑠2)
=

(︂
𝑠1
𝑠2

)︂𝑎

Numerical values ⟨𝜒(𝑡, 𝑠)⟩ are only available for discrete points 𝑡. Interpolation is
required to compute these ratios at arbitrary 𝑡/𝑠. The simplest option is linear
interpolation, which can also be performed on a double-logarithmic scale, which
reduces systematic interpolations errors when interpolating points following a PL.
The present method yields 𝑎SCA = 0.24(2), for the SCA simulations with 𝑞 = 0, and
𝑎DTrDB = 0.27(2), for our new RS simulations with 𝑝 = 1, 𝑞 = 0. For comparison,
we calculated 𝑎RS = 0.25(4) from the data published in [103], based on RS CPU and
GPU simulations. From the present data, no significant difference between the aging
exponents in RS and SCA simulations can be observed. The difference in 𝛽 observed
for theses types of dynamics found in section 4.1.1 does suggest a difference in the
aging exponents, which, however, would likely be too small to be resolved by this
aging study.

The near-identity of SCA and RS results is in strong contrast to the observations
about the respective autocorrelation properties, but can be intuitively understood:
For any autoresponse run, two simulations are performed which are identical up to
a small perturbation by disorder in one simulation. When the autoresponse to the
disorder is calculated, all other perturbations to KPZ–universality, which are present
in both simulations, are bound to cancel. Due to this property of the response
functions, SCA simulations can serve as a near perfect replacement for less efficient
RS simulations when calculating response properties.

Table 4.5 lists the estimates for the autoresponse exponent 𝜆𝑅,heights. There is
agreement across both the considered waiting times and RS and SCA dynamics.

A local slope analysis, based on tail effective exponents, as performed for the
autocorrelation functions in section 4.2.2 does only work well for the dataset with
the most samples (SCA, 𝑠 = 30). The tail effective exponents from the CPU*

3Calculated as the ratio of PL fits to the curves SCA(𝑠 = 100) and CPU* in figure 4.20.

96

4.3. Autoresponse Functions

Table 4.5.: Estimates for the autoresponse of heights exponent 𝜆𝑅,heights, assuming
𝑧 = 1.611(3), obtained in section 4.1. Sample and system sizes are listed below
figure 4.20. Error estimates are derived from fit errors and the error on 𝑧.

CPU* [103] SCA SCA SCA*
𝑝 = 0.98, 𝑞 = 0.02 𝑝 = 0.95, 𝑞 = 0 𝑝 = 0.95, 𝑞 = 0.05

𝑠 = 30 𝑠 = 30 𝑠 = 100 𝑠 = 100

𝜆𝑅,h/𝑧 1.26(1) 1.25(1) 1.26(2) 1.26(2)
𝜆𝑅,h 2.03(2) 2.00(2) 2.02(4) 2.03(4)
𝜆tail𝑅,h/𝑧 1.25(3) 1.23(2)
𝜆tail𝑅,h 2.01(5) 1.98(4)

dataset exhibit strong fluctuations. The remaining datasets contain too much noise
for consistent PL fits to the tails to be obtained. The exponents 𝜆tail𝑅,h/𝑧 obtained
from this analysis are also listed in table 4.5 do not agree with the ones obtained
from the classical local slope analysis. This discrepancy cannot be resolved without
knowing the corrections to scaling. To account for this uncertainty, it seems prudent
to make a unified estimate: 𝜆𝑅,h/𝑧 = 1.24(2).

4.3.1.2. Autoresponse of Slopes

The autoresponse signal of slopes, or lattice gas variables, is very weak and decays
fast, hindering investigations based on the present data. Figure 4.21 shows the
autoresponse function of slopes for two SCA datasets, the remaining datasets are too
noisy to extract exponents and are thus not displayed. Based on the same argument
made for the autoresponse of heights, there is likely no significant difference between
autoresponse properties under SCA and under RS dynamics.

Even the SCA datasets contain too much noise to make a local slope analysis feasi-
ble. Exponents can be extracted by fitting a PL of the form 𝑐𝑅 ·(𝑡/𝑠)−𝜆𝑅,s/𝑧, yielding
a unified estimate of 𝜆𝑅,s = 4.5(2). Taking into account additional uncertainty from
the choice of the considered interval as well as the fact that a direct PL fit would
ignore possible corrections, a larger error margin should be assumed, even for a 1𝜎
confidence interval.

4.3.1.3. Self-Averaging

To determine autoresponse properties large system sizes up to 𝐿 = 216 have been
used to exclude finite-size effects, like for all other simulations of the growth phase.
Table 4.6 lists a figure of merit (FOM) for the S/N which is normalized by the
computational effort due to system size (see table caption for details). A low FOM
indicates a high S/N. Values being equal across different system sizes indicate the
presence of perfect self-averaging in larger systems, thus using larger systems for
autoresponse calculations effectively comes at no additional cost.

97

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

The FOM for SCA simulations is larger than that for RS simulations by a factor
of about 1.2. Assuming a Gaussian distribution, one can estimate that SCA samples
need to be about 1.44 times larger to reach the same statistical significance as RS
samples. For the SCA simulations presented in this section, the local implementation
of SCA for the octahedron model presented in section 3.3.1 was used, which is about
1.5 times faster than DTrDB. A speedup could be achieved by using the non-local
implementation detailed in section 3.3.2. Thus, SCA dynamics can serve to vastly
speed up the calculation of autoresponse functions in surface growth models.

It remains unclear why the CPU* runs from reference [103] show a particularly
low level of noise. The same S/N is not reproduced by smaller test samples using
the current version of the code. The only apparently relevant change was fixing a
normalization error in the computation of the autoresponse functions, which should
not affect the S/N. Reproducing the old results was not possible within the scope
of this work, since obtaining an equally large sample size is computationally very
expensive.

4.4. Summary

Since SCA had originally been employed only for bit-vectorized implementations,
the update probabilities 𝑝 = 0.5, 𝑞 = 0 also were the natural choice and no study
on the dependence of results on 𝑝 were published. Such dependencies turned out
rather subtle, except for the case of the autocorrelation of slopes. The extensive
simulations of the octahedron model under SCA dynamics presented here, provide
the first detailed study of surface growth and aging under this type of dynamics,
which is accompanied by sufficiently precise data for RS dynamics for comparison.
It is conclusively shown, that the autocorrelation of slopes is governed by two separate
PLs under SCA dynamics, one of which is the PL present under RS dynamics, where

100 100.5 101

10−4

10−2

100

102

𝑡/𝑠

𝜒
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

1

SCA, 𝑠 = 30

𝜆𝑅,sSCA/𝑧 = 2.8(1)

SCA, 𝑠 = 100

𝜆𝑅,sSCA/𝑧 = 3.0(2)

Figure 4.21.: Collapsed autoresponse functions of slopes from SCA simulations. Data
extracted from datasets listed in figure 4.20. Given errors are fit errors.

98

4.4. Summary

Table 4.6.: Figure of merit for the signal to noise-ratio in the autoresponse-of-heights
data. The value is based on the sample standard deviation multiplied by the lateral
system size to show the effect of self-averaging due to system size. The values are
constant in time, thus are shown averaged over time and the standard deviation of
the series is given in brackets as a confidence interval for the variance. The values
for SCA are additionally divided by the ratio of SCA and RS autoresponse signals
(2.08(1))3 to improve comparability.

𝐿 SCA CPU* [103] CPU DTrDB
𝑠 = 30 𝑠 = 100 𝑠 = 30 𝑠 = 30 𝑠 = 100 𝑠 = 100

212 178(5) 64(2) 146(8) 262(16)
213 64(2)
216 175(4) 278(7) 231(19)

the crossover between these two depends on 𝑝.
The asymptotic autocorelation functions for the slopes of an EW surface were

also shown to be different for RS and SCA dynamics. Under RS dynamics, strong
corrections at early times, leading up to an asymptic PL with 𝜆EW

𝑐,slopes/𝑧 ≈ 0.7 have
been calculated for the first time. Finite-time corrections under SCA danymics are
smaller, while an asymptotic PL with the exponent 𝜆SCA,0.5

𝐶,slopes/𝑧EW ≈ 2 was deter-
mined. Contrary to the observations in KPZ case, SCA dynamics does not lead to
finite asymptotic value here, neigher for the slopes nor for the heights. This causes
the form of the autocorrelation function of heights to agree the analytical solution
for the EW universality class.

Table 4.7 summarises the obtained autocorrelation and autoresponse exponents
for the KPZ universality class, and the modified values under SCA dynamics. The
autocorrelation exponents of heights agree with the conjecture 𝜆𝐶 = 𝑑(= 2) by
Kallabis and Krug [139] within the assumed margin of error, for both RS and SCA
dynamics. The computed estimates for 𝜆/𝑧 are given for reference. It should be
noted, that using the estimate for 𝜆𝐶 published in [27] this would be marginally
excluded.

The present results suggest for the relation 𝜆𝐶 = 𝜆𝑅 to hold. This would be a nec-

Table 4.7.: Summary of KPZ autocorrelation and -response exponents. Assuming
𝑧 = 1.611(3). Estimates for SCA autocorrelation exponents include only small 𝑠.

𝜆𝐶,heights 𝜆𝐶,slopes 𝜆𝑅,heights 𝜆𝑅,slopes

RS 1.98(5) 3.8(2) 2.00(5) N/A
SCA 2.01(2) 1.25(2) 1.98(4) 4.5(4)

𝜆𝐶,heights/𝑧 𝜆𝐶,slopes/𝑧 𝜆𝑅,heights/𝑧 𝜆𝑅,slopes/𝑧

RS 1.23(3) 2.35(10) 1.24(3) N/A
SCA 1.26(1) 0.78(4) 1.24(2) 2.8(2)

99

4. Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class

Table 4.8.: Summary of KPZ aging exponents. Blank cells indicate identical predic-
tions for RS and SCA.

𝑏heights 𝑏slopes 𝑎heights
RS −0.4828(4) 0.76(2) 0.27(3)
SCA 0.24(2)

essary condition for a FDR to hold in this system. Of course for out-of-equilibrium
problems, such as surface growth, the existence of a FDR is not necessarily to be
expected. Table 4.8 lists aging exponents obtained for autocorrelation and autore-
sponse from data collapses over 𝑠. They are not equal. Furthermore the relation
between aging exponents, found in 1𝑑, equation (4.2), does clearly not apply here:

1 + 𝑎 = 2 (𝛽 + 𝛽/𝛼)

1.30(1) ̸= 1.724(3)

While this shows, that the FDR (4.1) does not hold in (2+1) dimensions, the equality
of 𝜆𝐶 and 𝜆𝑅 hints at the possible existence of another generalized version, which
may yet be found.

Based on the data primarily generated for aging studies, estimates for the scaling
exponent 𝛽 can be made to unprecedented accuracy, the final results being summa-
rized in table 4.3. Here too, the accuracy of the present SCA simulations is large
enough to pose the question, if surface growth under SCA dynamics deviate subtly
from KPZ scaling universality.

However this question will be answered, it was shown that SCA scaling exponents
are identical to KPZ at least up to three digits and that there is very good agreement
in the steady state distribution (figure 4.5). This may allow using SCA dynamics for
example to search for an upper critical dimension, which is advantageous, because es-
pecially in higher dimensions, the SCA algorithm would provide a large performance
advantage over RS updates.

100

5. Further Topics

This work has been in part about the development of fast and efficient MC codes
on GPUs and analysis the statistical properties of which. In so far it is supposed
to provide possibilities to investigate further problems in non-equilibrium systems.
Two topics which were only explored briefly and which can be investigated using the
programs presented in chapter 3, shall be briefly presented in this chapter together
with preliminary results.

5.1. Investigations of the Potts Model

GPUs are best suited for problems which are computationally dense, where all el-
ements of the solution need to be computed explicitly or all MC updates must be
attempted. Optimizations taking advantage of the sparsity of a problem can often
not be implemented in any efficient way on GPUs, or sometimes even other paral-
lel architectures. An example for this are continuous-time MC methods [94–96, 98],
which require a large amount of bookkeeping for each sequential update to be per-
formed.

In Ising or Potts models, the early stages of phase separation present a dense
problem, where optimisations trying to make use of sparsity are ineffective. Systems
which additionally contain quenched disorder, may relax too slowly for sufficient
sparsity to occur even at late times (see section 3.4.2). This is why another applica-
tion of the SkyMC code (section 3.4), apart from studies of RSOS models presented
in section 4.1.2, is the study of domain growth specifically in disordered Potts models.
This outlook is presented in this section.

5.1.1. Testing Results from the Parallel Implementations

It is clear, that Metropolis updates are far less sensitive to correlations introduced
by DD than MC updates in surface growth models. Nevertheless, some evidence of
the correctness of the parallel implementation of the Metropolis algorithm for non-
conservative Potts models shall be presented. Figure 5.1 shows plots of the average
domain size 𝑅 growing during coarsening after a quench from infinite temperature
in non-conserved Potts models on a square lattice for different lateral systems sizes
and 𝑞. Here, the average domain size is defined as the average length of domains in
both 𝑥 and 𝑦 direction [146].

The results of the GPU implementation and a sequential CPU implementations
are identical. All simulations show PL growth with an exponent 1/2 in the growth
phase between the initial quench and the finite-size region, commensurate with the

101

5. Further Topics

100 101 102 103 104 105

101

102

𝑡[MCS]

av
er

ag
e

do
m

ai
n

si
ze
𝑅

[𝑎
]

𝑞 = 2

𝐿 = 128, GPU

𝐿 = 512, GPU

𝐿 = 128, CPU

𝐿 = 512, CPU

100 101 102 103 104 105

𝑡[MCS]

𝑞 = 6

𝐿 = 128, GPU

𝐿 = 512, GPU

𝐿 = 128, CPU

𝐿 = 512, CPU

Figure 5.1.: Average domain size 𝑅 in pure Potts models over simulation time in
GPU (solid) and CPU (dashed) simulations. Simulations cells contain a square
lattice with lateral sizes 𝐿 = 128 and 512. Effective temperature is 𝐾 = 1.67𝐾𝑐.
Left: 𝑞 = 2 (Ising), Right: 𝑞 = 6. Error bars are not shown, because they would
be less than two line-widths in size. The solid, cyan lines represent PLs ∼ 𝑡1/2.

Lifshitz–Cahn–Allen law [47, 48], which is expected for spinodal decomposition in
non-conservative systems.

In the presented case of the non-conserved Potts model, the average domain size
reaches the systems size in equilibrium. The averaged curves in figure 5.1 show
very slow, apparently logarithmic, growth just before reaching the maximum size.
However, in this regime most of averaged realizations have already equilibrated. A
few are frozen into meta-stable stripe patterns [147] which decay very slowly, causing
the logarithmic growth of the ensemble average.

Direct comparisons of this type become more time-consuming with Kawasaki dy-
namics and in systems with quenched disorder because the coarsening kinetics is
much slower in such systems. However, short simulations have shown no differences
between GPU and CPU results at least for early stages of coarsening. Only rough
tests of the critical temperature have been performed. It has been shown earlier,
that DD, even a more correlated type than used in the present code, does not alter
the critical temperature of Ising systems [93].

5.1.2. Domain Growth in Disordered Potts Models

The main goal of future investigations of disordered Potts models could be deciding
the question about super-universality (SU), which was introduced at the end of
section 2.3.2. Ultimately, this question revolves around the type of the asymptotic
growth law in disordered systems. It is clear that the growth slows down with
stronger disorder, leading at least to a smaller growth exponent [148,149]. It remains

102

5.1. Investigations of the Potts Model

unclear whether, or under which conditions, the PL form holds asymptotically, with
an exponent depending on temperature and disorder parameters [56], or the growth
crosses over to a logarithmic growth law asymptotically [58].

To distinguish numerically between a PL with a small exponent and logarithmic
growth is hard, because this distinction can only be made when the growth is followed
of multiple orders of magnitude in both time and domain size. Even in the case of an
asymptotic PL, thus a finite asymptotic growth exponent 𝜃, the effective exponents
𝜃eff may approach 𝜃 slowly, necessitating extrapolation of 𝜃eff(𝑡) to 𝑡→∞.

Some simulations of the systems with bond-dilution have been performed. In
such systems the strength of the disorder is characterized by the fraction of broken
bonds 𝑑 < 0.5, which must be below the percolation threshold for the system to
stay ferromagnetic. To be able to compare effects of changing disorder and reduce
temperature effects, one can choose simulations temperatures for different disorder
strengths relative to the mean-field critical temperature, equation (2.11) 𝐾𝑐,MF(𝑑).

Results of very long runs for bond-diluted Potts models are shown in figure 5.2.
For the case 𝑞 = 8, the inset in panel 5.2a suggests an asymptotically finite exponent
𝜃 for both investigated disorder strength, this exponent decreases as 𝑑 increases.
The apparent lack of a crossover to a logarithmic growth law in this systems seems
to supports the SU hypothesis. On the other hand, in the case 𝑞 = 2, 𝜃eff(𝑡) in
panel 5.2c show a super-linear decay as 𝑡 → ∞, which could indicate a crossover to
logarithmic growth, asymptotically. Comparing the doubly logarithmic plots of the
domain size, it is apparent, that the curve for 𝑞 = 2 (figure 5.2c) is distinctly less
straight, suggesting slower-than-PL growth, thereby contradicting SU for this model.

The 1/𝑡 axes in the 𝜃eff -plots (figures 5.2a and 5.2c) are rescaled by an exponent
1/4 to stretch the late time region of the plot. This rescaling does also linearize the
tail for 𝑞 = 8 to some extent, pointing to a possible leading order correction with a
similar exponent. Another way to compensate correction to the growth law has been
suggested in reference [148]: Plotting 1/𝜃eff against the domain size. This is shown,
correspondingly, in figures 5.2b and 5.2d, where after strong fluctuations during the
initial stages of domain formation and coarsening, 𝜃eff decays rather linearly. For
𝑞 = 8, 1/𝜃eff appears almost constant, possibly indicating convergence to a finite
value. No sings of convergence can be observed for 𝑞 = 2. This is no proof of
logarithmic growth, however.

The function 1/𝜃eff(𝑡) in figure 5.2d, does not appear to feature any discontinuities
or kinks in late stages of coarsening. This suggests, that the growth laws presented
for 𝑞 = 2 do no suffer from finite-size effects, thereby excluding them as the cause of
the steep decay of 𝜃eff at late times which is observed in figure 5.2c.

These two examples already show contradicting results regarding SU, prompting
the immediate question, whether the presented 𝑞 = 2 case does indeed cross-over to
logarithmic growth. If this is the case, the next question may be whether in the case
𝑞 = 2 broken-bond disorder is affecting the equilibrium state of the system, making
it relevant, even below the percolation threshold, thus causing the breaking of SU in
the presented simulations.

Performing the simulation in figure 5.2a using a single GTX Titan Black GPU

103

5. Further Topics

101 103 105 107 109
100

101

102

109

𝑡[MCS]

av
er

ag
e

do
m

ai
n

si
ze
𝑅

[𝑎
]

𝑑 = 0.2

𝑑 = 0.3

0

0.10

0.20

1/𝑡1/4

𝜃 e
ff

(a) 𝑞 = 8

0 10 20 30 40

5

10

15

𝑅 [𝑎]

1/
𝜃 e

ff

𝑑 = 0.2

𝑑 = 0.3

(b) 𝑞 = 8

101 103 105 107 109

101

102

103

109

𝑡[MCS]

av
er

ag
e

do
m

ai
n

si
ze
𝑅

[𝑎
]

𝑑 = 0.2

𝑑 = 0.3

0

0.15

0.20

1/𝑡1/4

𝜃 e
ff

(c) 𝑞 = 2

0 50 100 150 200

4

6

8

𝑅 [𝑎]

1
/𝜃

e
ff

𝑑 = 0.2

𝑑 = 0.3

(d) 𝑞 = 2

Figure 5.2.: Domain growth in a bond-diluted 𝑞 = 8, (a) and (b), and 𝑞 = 2, (c)
and (d), Potts models, with lateral sizes 𝐿 = 512 and 2048, respectively. The
effective temperatures are 𝐾 = 3𝐾𝑐,MF (see text) and broken bond fractions are
both 𝑑 = 0.2 and 0.3. The samples consist of 𝑁 = 256 realizations (one MS run).
(a),(c): Domain growth against time. The maxima of the 𝑅-scale correspond to the
respective lateral system size. Inset: Effective growth exponents for 𝑡 > 24MCS.
Error bars are omitted for clarity. (b),(d): Inverse effective exponents against
average domain size, as found in [148]. The interval with lower point density in
the black plots is caused by omitting 95% of the available points starting at this
time to simplify displaying the plot. Error bars are only displayed for few points.

104

5.2. Local Scale Invariance in KPZ Surface Growth

took more than four months. To effectively investigate the effect of lower temperates,
further away from the critical point, simulations of this scale may be necessary. For
simulations of systems with other, weaker types of disorder and thus faster growth,
shorter runs, around 1× 108MCS, may also be sufficient, but larger systems need
to be simulated to avoid finite-size effects. In any case to effectively continue this
research, enabling the present SkyMC code to make use of multiple GPUs would be
helpful.

5.2. Local Scale Invariance in KPZ Surface Growth

Results from this section and section 4.3.1 have been published as an article [145].
In chapter 4 a careful study of the asymptotic properties has been presented. For

the roughness scaling, the autocorrelation and the autoresponse, the quality of the
available data would allow a very precise calculation of effective exponents. Yet, the
estimates of the asymptotic autocorrelation and -response exponents, summarized
in section 4.4, carry much larger error margins, due to the form of corrections being
uncertain. A next step in KPZ aging studies should thus be to determine the full
scaling forms.

It was proposed, that two-point functions, like autocorrelation and autoresponse,
for non-equilibrium systems showing scale-invariance can be predicted using an ansatz
called local scale-invariance (LSI) [150, 151]. LSI was numerically found to to apply
in both pure and disordered two–dimensional Potts models [152, 153] and reaction-
diffusion models [72, 73, 154]. Aging properties of diffusive, exactly solvable models
with 𝑧 = 2, mean-field like models, which exhibit long-range interactions [155], as
well equilibrium interface models like EW [69] and Acetri [156,157] are also described
by LSI.

For the time-integrated autoresponse in the KPZ class, defined in equation (4.24),

𝜒(𝑡, 𝑠) = 𝑠−𝑎𝑓𝜒(𝑡/𝑠) , (5.1)

LSI predicts the scaling function 𝑓𝜒(𝑡/𝑠) to take the form:

𝑓𝜒,LSI(𝑡/𝑠) = 𝐴0(𝑡/𝑠)
−𝜆𝑅/𝑧 (1− 𝑠/𝑡)−1−𝑎′ , (5.2)

where 𝐴0 is a free parameter and 𝑎′ is expected to be another universal exponent,
like the aging exponent 𝑎, for non-equilibrium systems. A different form, adding
logarithmic corrections was proposed recently in [151]:

𝑓𝜒,L2LSI = (𝑡/𝑠)1−𝜆𝑅/𝑧
[︁
𝐴0

(︁
1− (1− 𝑠/𝑡)−𝑎′

)︁

+ (1− 𝑠/𝑡)−𝑎′ ·
(︀
𝐴1 ln(1− 𝑠/𝑡) +𝐴2 ln

2(1− 𝑠/𝑡)
)︀]︁

, (5.3)

105

5. Further Topics

100 101 102
0.8

0.9

1

1.1

1.2

𝑡/𝑠

⟨𝜒
h
⟩(
𝑡,
𝑠)
/
(𝑠

−
𝑎
𝑓 𝜒

,L
J
L
S
I)

𝑠 = 30

𝑓
L0LSI

𝑓
L1LSI

𝑓
L2LSI

𝑓
L3LSI

100 101 102

𝑡/𝑠

𝑠 = 100

𝑓
L0LSI

𝑓
L1LSI

𝑓
L2LSI

𝑓
L3LSI

Figure 5.3.: Plots of equation (5.5) for SCA autoresponse calculations with 𝑝 = 0.95
and 𝑞 = 0. Sample sizes are 𝑛SCA,𝑠=30 = 23849 for 𝑠 = 30 (left) and 𝑛SCA,𝑠=100 =
12012 for 𝑠 = 100 (right). Only the interval 1 ≤ 𝑡/𝑠 ≤ 10 was considered for best
fits. See figure 4.20 for the response functions ⟨𝜒heights⟩ (𝑡/𝑠).

where the sum of logarithmic terms to second order results from the assumption,
that the field 𝜑 is replaced by a duplet and the scaling dimensions of the system
must be represented, not as scalars, but as 2×2 matrices. The scaling function (5.3)
resembles a form, which contains the first two lowest order correction terms of a
logarithmic series to (5.2):

𝑓𝜒,LJLSI = (𝑡/𝑠)1−𝜆𝑅/𝑧
[︁
𝐴0

(︁
1− (1− 𝑠/𝑡)−𝑎′

)︁

+ (1− 𝑠/𝑡)−𝑎′ ·
𝐽∑︁

𝑗>0

𝐴𝑗 ln
𝑗(1− 𝑠/𝑡)

⎤
⎦ , (5.4)

Such a series, when used for fitting, would thus be expected to break off after 𝐽 =
2. However, the assumption of triplets for 𝜑, or beyond, would also give physical
meaning to some terms with 𝑗 ≥ 3. Thus these terms being relevant to describe
the data would point to the necessity of higher orders in the extension of LSI. In
reference [151] numerical data was presented, suggesting that this theory applies to
1 + 1-dimensional KPZ.

Only the asymptotic behavior, described by the exponent 𝜆𝑅,heights/𝑧 = 1.98(4)
was determined in section 4.3.1, but the data available from SCA simulations is
actually sufficient to test the L2LSI-theory. Figure 5.3 shows plots of the ratio of
data and best fit. This is a visual representation of how well forms for 𝐽 ∈ [0, 3]

106

5.2. Local Scale Invariance in KPZ Surface Growth

Table 5.1.: Parameters for best fits of 𝑓𝜒,LJLSI forms to KPZ autoresponse functions
for 1 ≤ 𝑡/𝑠 ≤ 200. Values for 𝜆𝑅,h/𝑧 in parenthesis result from fits considering
𝑞 ≤ 𝑡/𝑠 ≤ 10, as presented in figure 5.3. Error margins are not given, because the
method employed for fitting does not provide meaningful estimates.

𝜆𝑅,h/𝑧 𝑎′ 𝐴0 𝐴1 𝐴2 𝐴3

𝑠 = 30

𝑓L0LSI 1.164 (1.167) 0.016 38.833
𝑓L1LSI 1.164 (1.144) 0.023 35.085 0.187
𝑓L2LSI 1.224 (1.219) 0.501 4.938 1.772 −0.431
𝑓L3LSI 1.224 (1.224) 0.505 4.790 1.716 −0.422 −0.004

𝑠 = 100

𝑓L0LSI 1.186 (1.191) 0.006 102.584
𝑓L1LSI 1.165 (1.142) 0.100 14.444 0.844
𝑓L2LSI 1.230 (1.224) 0.490 5.544 2.019 −0.472
𝑓L3LSI 1.230 (1.233) 0.475 5.506 1.914 −0.437 −0.008

describe the data:

⟨𝜒heights⟩ (𝑡/𝑠)
𝑠−𝑎𝑓𝜒,LJLSI(𝑡/𝑠)

!
= 1 for 𝑡/𝑠 > 1 . (5.5)

The non-linear fits for 𝐽 > 0 do not converge using the classical least-squares
Levenberg–Marquardt algorithm [158, 159]. To obtain the parameters presented in
table 5.1, the Nelder-Mead method [160] was employed, which does not provide
statistical error estimates for the fit parameters. Judging by the multitude of local
minima a fit can end up in, depending on the initial guesses, and the connected
variation in parameter values, the accuracy of the tabulated parameters should be
assumed to be no better than 20%, except for the values of 𝜆𝑅,h/𝑧 which vary by
less than 5%.

It is apparent from figure 5.3 that the uncorrected LSI form fails to describe the
asymptotic behavior 𝜒heights, giving a 𝜆𝑅,h/𝑧 ≈ 1.17. So does the logarithmic form
with 𝐽 = 1. The form with 𝐽 = 2, which is predicted by the theory yields much better
fits, with 𝜆𝑅,h/𝑧 ≈ 1.22, which agrees with the asymptotic value obtained earlier.
Furthermore, this value is in good agreement with the value determined from tail
effective exponents (table 4.5, 𝜆tail𝑅,h/𝑧 = 1.23(2)). The parameter fits presented in
table 5.1 take into account the observed time interval 1 ≤ 𝑡/𝑠 ≤ 200. When the fit is
limited to the interval 1 ≤ 𝑡/𝑠 ≤ 10, the results for 𝜆𝑅,h (values in parenthesis) do not
change significantly. This means, that the 𝑓𝜒,L2LSI form describes the corrections,
affecting the autoresponse function at early times, well enough to determine the
correct asymptotic autoresponse exponent just using early-time data.

The form with 𝐽 = 3 shows marginally better agreement with the data in figure 5.3.
In fits to the whole observed time interval, the amplitude 𝐴3 of the added third-order
term is severely suppressed (table 5.1). Adding another fit parameter, a slightly
better fit is to be expected. The small absolute value of 𝐴3 in relation to 𝐴2 suggests,
that the third order does not carry physical meaning, supporting the L2LSI theory.

107

5. Further Topics

For both 𝐽 = 2 and 3, the values of the coefficients 𝐴𝑗 are similar for all waiting
times. This should be the case, since the aging is described by the 𝑠−𝑎 term in
equation (5.1) alone and 𝑓𝜒(𝑡/𝑠) should not depend on 𝑠 explicitly.

For the autocorrelation functions in the KPZ model, no form for 𝑓𝐶,L2LSI has been
proposed yet. One would assume L2LSI to hold for the autocorrelation too, if it
holds for the autoresponse, but this remains to be tested.

108

6. Conclusions and Outlook

This work centered primarily around the efficient and correct execution of lattice
Monte-Carlo simulations in general and dynamical properties of surface growth mod-
els in the Kardar–Parisi–Zhang (KPZ) universality class in particular. Large-scale
simulations require parallel processing and are most efficient, both in terms of energy
consumption and computation time, when using massively parallel accelerators like
GPUs. In this work an implementation of parallel random-sequential (RS) simula-
tions, which exceeds the performance of actual sequential simulations by more than
two orders of magnitude, has been improved to eliminate any measurable correla-
tions with significantly reducing performance. This is an important step, given that
most stochastic models of physical systems of assume uncorrelated noise. The widely
used approach of sampling lattice sites in a checkerboard pattern (stochastic cellular
automaton (SCA)), which can be implemented much more efficiently than RS, was
also implemented in this work for GPUs and the effects of its intrinsic correlations
have been investigated.

Figure 6.1 illustrates the relations between a part of the results of this work on
KPZ surface growth.

(a) It was shown, that when correlations are eliminated finite-time corrections to
the roughness growth, which can be observed in the effective growth exponents
𝛽eff , are reduced. Smaller corrections reduce uncertainties when extrapolating
asymptotic exponents.

(b) The produced high precision data provides evidence for the KPZ ansatz hy-
pothesis and support a new estimate for the universal KPZ growth exponent
𝛽 with unprecedented precision.

(c) An extension to the restricted solid-on-solid model (RSOS) model provides
evidence, that the prediction 𝛽 < 1/4 also holds for surfaces which are locally
rougher (i. e. slopes between neighboring lattice sites are larger). This result
disproved the last claim of the Kim–Kosterlitz hypothesis.

(d) Extensive simulations using SCA dynamics unveiled possible differences in the
scaling behavior of with respect to RS dynamics and the update probability,
which are, however, too small have been observable in any previous studies
found in literature.

(e) The efficient implementation of SCA dynamics allowed to follow the surface
growth for large systems (𝐿 = 216) over six orders of magnitude. High quality
data for the evolution of the distribution of interface heights made finite-size

109

6. Conclusions and Outlook

effects observable more than ten times before than the visible onset of the
steady state.

(f),(g) The new virtually correlation-free RS simulations allowed determining the
auto-correlation properties of the KPZ surface with increased accuracy and
confirmed the Kallabis–Krug conjecture, that 𝜆𝐶 = 𝑑, for the investigated case
𝑑 = 2.

(h),(i) Autocorrelation functions have been shown to saturate to a finite asymptotic
value under SCA dynamics. For the interface heights, this finite value was
found to be approached following the correct power law (PL) form.

(j),(k) The slopes, or lattice-gas variables, have been shown to react more sensitively
to correlations, resulting in a larger saturation autocorrelation 𝑜. Also, the RS
behavior is not recovered after subtracting 𝑜, instead a crossover to a slower
PL decay was observed.

For comparison, the autocorrelation in the analytically solved Edwards–Wilkinson
(EW) class was simulated as well. The known form for the autocorrelation of interface
heights was found to be correctly reproduced even under SCA dynamics and no
finite asymptotic autocorrelation was observed for heights nor slopes. However, the
asymptotic autocorrelation of the latter was again found to be different under SCA
dynamics, leading to the conclusion,

(l) that SCA dynamics affects the autocorrelation properties of lattices gases more
strongly than that of integrated quantities such as surface heights. It may even
affect presumably universal exponents of the lattice gas, while those for the
interface remain unaffected.

Finally, the autoresponse of KPZ interfaces has been studied, yielding more precise
estimates of the autoresponse and related aging exponents.

(m) The autoresponse exponent 𝜆𝑅 was found to be likely equal to the autocorre-
lation exponent 𝜆𝐶 . Thus, despite the inequality of the corresponding aging
exponents and fact, that the growing surface remains far from equilibrium at all
times, there may be an, as of yet unknown, generalized fluctuation-dissipation
relation (FDR) connecting correlation and response.

(n) The high precision data obtained from extensive SCA simulations allowed for
a successful test of the autoresponse scaling forms predicted by local scale-
invariance with logarithmic extensions (L2LSI), thereby numerically supporting
this hypothesis.

The computational methods developed here have also been shown to be readily
extensible to further studies of Potts models, disordered systems and beyond.

110

10−5 10−4 10−3 10−2

0.238

0.239

0.240

0.241

0.242

0.243

1/𝑡

𝛽
e
ff

DTrDT DTrDB
TC=1,1 TC=1,1
TC=2,1 TC=2,2
TC=3,2

𝛽eff RS
figure 4.1, right

(a)

0 0.2 0.4 0.6 0.8 1

·10−2

0.238

0.239

0.240

0.241

0.242

1/̃︀𝑡

𝛽
eff

DTrDB, TC=1,1

𝛽1 = 0.2421(1)

𝛽2 = 0.2414(1)

𝛽3 = 0.2412(1)

−5 −4 −3
0.2405

0.2410

0.2415

0.2420

𝛽eff , KPZ ansatz
figure 4.4a

(b)
0 0.1 0.2 0.3

0.230

0.240

0.250

0.260

1/ 4
√
𝑡

𝛽
eff

𝛽7 = 0.2408(2)

𝛽5 = 0.2400(1)

𝛽3 = 0.2406(1)

𝛽1 = 0.2423(2)

𝛽eff RSOS model
figure 4.6, left

(c)

100 101 102 103 104 105 106

100

101

𝑡 · 𝑝 e𝑝

𝑊

𝑝 = 0.0625 𝑝 = 0.125

𝑝 = 0.25 𝑝 = 0.40

𝑝 = 0.50

𝑝 = 0.60

𝑝 = 0.80

𝑝 = 0.95

width SCA
figure 4.2, left

(d)

101 102 103 104 105 106

10−5

10−4

10−3

10−2

10−1

∼ ̃︀𝑡−0.6

̃︀𝑡 [MCS]

C
or

r.
to

C
um

ul
an

t
R

at
io

⃒⃒
𝑆(̃︀𝑡) − 𝑆∞

⃒⃒
, 𝐿 = 212

⃒⃒
𝑆(̃︀𝑡) − 𝑆∞

⃒⃒
, 𝐿 = 216

⃒⃒
𝑄(̃︀𝑡) − 𝑄∞

⃒⃒
, 𝐿 = 216

height-distrib.
figure 4.3, left

(e)

100 101 102
10−6

10−3

100

𝑛 = 200

𝑡/𝑠

𝐶
sl
o
p
es
(𝑡
,𝑠
)
·𝑠

0
.7
6

cDB

DB

DTr

CPU

AC(slopes) RS
figure 4.11, right

(f)

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=3,2 DTrDT

TC=1,1 DTrDB

TC=2,2 DTrDB

100 101 102

10−3

10−2

10−1

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)
·𝑠

−
0
.4
8
2
8 TC=3,2 DTrDT

TC=1,1 DTrDB

TC=2,2 DTrDB

AC(heights) RS
figure 4.13, left

(g)

100 101 102 103 104 105

10−2

10−1

100

101

𝑝 = 0.95

𝑝 = 0.5

𝑡/𝑠

𝐶
h
ei
g
h
ts
(𝑡
,𝑠
)

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

SCA AC(heights)
figure 4.16a

(h)

100 101 102 103 104
10−6

10−5

10−4

10−3

10−2

10−1

𝑡/𝑠

(𝐶
h
(𝑡
,𝑠
)
−
𝑜)
·𝑠

−
0
.4
8
2
8

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

DTrDB,
𝑠 = 100

figure 4.16b

(i)

100 101 102 103 104 105
10−2

10−1

𝑝 = 0.95

𝑝 = 0.5

𝑡/𝑠

𝐶
sl
o
p
es
(𝑡
,𝑠
)

𝑠 = 30

𝑠 = 100

𝑠 = 500

𝑠 = 1000

SCA AC(slopes)
figure 4.17a

(j)

100 101 102 103 104

10−6

10−4

10−2

100

𝑡/𝑠

(𝐶
s(
𝑡,
𝑠)
−
𝑜)
·𝑠

0
.7
6

𝑠 = 30 𝑠 = 100

𝑠 = 500 𝑠 = 1000

DTrDB,
𝑠 = 100

figure 4.17b

(k)

R
ou

gh
n
es

s
S
ca

li
n
g

A
u
to

co
rr

el
at

io
n

Figure 6.1.: Overview of selected results regarding KPZ surface growth. Unless
stated otherwise, all displayed data belong to the octahedron model or the un-
derlying dimer lattice gas. The displayed figures are reproductions out of earlier
chapters, please see respective figure captions for details.

6. Conclusions and Outlook

Outlook

It was shown, that there are significant differences between RS and SCA simulations,
especially for lattice gases. An important technical difference is also present in that
the performance of SCA simulations is about 20 times higher. Since SCA cannot
replace RS simulations to study certain aspects of surface growth and lattice gas
dynamics, this severely limits the size of studies, and thus the numerical precision,
which is feasible by comparison. The MS (section 3.4) approach offers a way to in-
crease the performance of RS simulations. In principle, the bit-vectorization enabled
by non-local encoding and deterministic site-selection making SCA simulations very
efficient could be applied to RS simulations too, by combining it with the MS ap-
proach. This would allow RS simulations at almost the performance of SCA runs.
The catch is, that, this would require the simultaneous simulation of 1024 systems
due to the properties of current GPU architecture. RS simulations are especially
important when dynamical properties out-of-equilibrium and far from the steady
state are of interest. This requires large system, such as have been used in this work.
Assuming a lateral system size of 𝐿 = 216, 1024 realizations would require 1TB of
memory, which realize any performance gain, must be GPU memory.

Such an endeavour would obviously require multi-GPU support in SkyMC, which
is also not very hard to implement. Given about 8GB of available global memory
per GPU, 128 K40 GPU would be required to hold the simulation state. This is
an amount of devices actually available at major sites. The payoff form performing
simulations of this scale would be, that a single run of about 24 hours would produce
a sample almost half the size the largest SCA studies presented in this work, but
virtually correlation-free.

Even with fewer computational resources, such a MS would be a powerful tool
to perform simulations of smaller systems in the steady state, giving access to a
class of problem which have only been addressed parenthetically in this work. This
could enable the study of autocorrelation and response functions of KPZ surfaced
in the steady state. This is of interest because there even appears to be some dis-
agreement about the exact form of the autocorrelation in the one–dimensional case
(compare references [142] and [143]). Since the precise value for the growth exponent
𝛽 is marginally incompatible with the roughness exponent 𝛼 calculated in a recent
study [133] in which SCA dynamics was used1, an extensive finite-size scaling study
using RS would also be of interest. A new direct estimate agreeing with [133] rather
than the value required by the Galilean symmetry would be evidence for a small
violation of the latter by KPZ. The observation (e), that finite-size effects can also
be observed in the changing shape of the height-distribution orders of magnitude
before the system crosses over into the steady state, maybe used to make much large
systems accessible to a finite-size scaling study.

Determining the autocorrelation function under SCA dynamics in the steady state
for different update probabilities 𝑝 could help to understand the origin of the finite

1This is not completely clear form the paper, but was communicated by G. Parisi directly.

112

saturation value 𝑜 for both interface heights and lattice gas variables. Using the
steady state for such a study would allow a more reliable determination of the de-
pendence of 𝑜 on 𝑝, because the waiting time 𝑠, as an additional free parameter,
is removed from the equation. The dependence of 𝑜 on 𝑠 can then be determined
separately in the growth regime.

The brief study of the EW case (l) also showed how little is understood about the
dynamical properties of lattice gases under the checkerboard updates of SCA, even
though SCA dynamics is employed quite frequently in literature. Here, a compara-
tive study of the KPZ and EW cases under both RS and SCA dynamics would be
interesting. For one, to learn why the autocorrelation does actually saturate under
SCA dynamics in the first case but not in the latter. On the other hand, to check
how the different exponents observed under both types of site-selection dynamics
are related. A large-scale study of the EW case under RS dynamics, using the MS
implementation of the octahedron model motivated initially, could be performed to
determine the autocorrelation exponent for the slopes more precisely.

113

Acknowledgements

I want to thank everyone who supported me during my studies. First and foremost
my supervisor Sibylle Gemming, who enabled me to pursue the research presented
in this thesis, and my collaborator Géza Ódor who always had many suggestions and
open ears for my questions. This research grew out of a side project to my diploma
work, which was supervised by Karl-Heinz Heinig, whom I would like to thank too,
also for his general suggestions. Furthermore, I would like to thank Malte Henkel,
Uwe Täuber, Giorgio Parisi and Herbert Spohn for very helpful discussions about
surface growth and universality.

I thank Martin Weigel for inviting me to stay at Coventry University and our
continued work together. In this context, I acknowledge partial funding of this
research stay by the Erasmus+ program via the Leonardo-Büro Sachsen.

I am grateful for the support by the International Helmholtz Research School
for Nanoelectronic Networks (IHRS NanoNet) and my thesis advisory committee:
Artur Erbe, Jörg Schuster, Peter Zahn and Sibylle Gemming, whom I hopefully, did
not disappoint too much by not writing about molecular transport. I would also like
to thank my other colleagues at HZDR and in NANONET for support and useful
discussions.

Not least, I would like to especially thank my family and friends for their support
in all non-science matters.

115

A. Coding Details

In this section, logical operations are used, denote by ∧ (and), ∨ (or), ¬ (not) and
⊕ (exclusive or), which shall be defined bit-wise. The operators ≫ and ≪ denote
bit-shifts to the right and left, respectively, where the new bits shifted into the word
taking the value 0.

A.1. Bit-Coding

Let 𝑏 be the number bits required to encode a lattice site and 𝑤 the word-size in
bits. A lattice site 𝑠 stored in a word 𝑊 at offset 𝑜 can then be accessed by

𝑠 = (𝑊 ≫ 𝑜) ∧ (𝑏− 1) .

Writing back arbitrary information requires two first get the corresponding bits in
the target word in a defined state (here 0), and then writing the payload:

𝑊 =𝑊 ∧ ([¬(𝑏− 1)]≪ 𝑜)

𝑊 =𝑊 ∨ (𝑠≪ 𝑜)

However, in models with small numbers of states per site, is is rarely required to
write arbitrary data. The most common operation is flipping of bits:

𝑊 =𝑊 ⊕ (1≪ 𝑜)

A.2. Packing and Unpacking Signed Integers

The smallest integer size available on modern computers is eight-bit. When consid-
ering unsigned integers, it is simple to see how sufficiently small values can be stored
using a smaller number of bits and be retrieved and used:

𝑎 ∧ (2𝑛 − 1) = 𝑎 0 < 𝑎 < 2𝑛 (A.1)

This relation does not apply to negative numbers, which, interpreted as unsigned
integers, are encoded by very large positive numbers. Still, truncation of this form
does conserve all information stored in a signed integer as long as |𝑎| < 2𝑛/2. The

117

A. Coding Details

following relation allows unpacking of signed integers truncated to length 𝑛:

𝑎𝑚 = 𝑎𝑛 ∨ [(0𝑚 − [𝑎𝑛 ≫ (𝑛− 1)]) ∧ (¬[2𝑛 − 1])] , (A.2)

Where 𝑚 > 𝑛 is the number of bits the integer is inflated to. Subscripts denote a
number encoded in the respective number of bits.

However, direct encoding of signed integers is not efficient due to the rather com-
plex calculations required for unpacking. It is significantly more efficient to store
𝑎𝑛 = 𝑎𝑚 + 2𝑛/2, where all valid values −2𝑛/2 < 𝑎𝑚 < 2𝑛/2 − 1 become positive.
This severely simplifies the unpack step to be: 𝑎𝑚 = 𝑎𝑛 − 2𝑛/2. The impact on the
overall performance of the GPU implmentation of RSOS (see section 3.4.1) is about
10% on a GTX Titan Black GPU.

A.3. Random Number Generation

Random numbers for MC simulations are obtained using a PRNG, which is a nu-
merical function generating a sequence of numbers which are random in the sense,
that they are not correlated. A PRNG has an internal state, which changes as
pseudo-random numbers are generated, and some numerical parameters defining the
sequence of number generated. The internal state in seeded at the beginning of a
simulation with a numerical value, which is random and with overwhelming prob-
ability different for each simulation. The seed used for each simulations is logged,
which in principle makes the simulation reproducible.

A simple and often used type of PRNG is the linear congruential generator (LCG),
which generates a sequence of numbers according to:

𝑥𝑖+1 = (𝑎 · 𝑥𝑖 + 𝑐) mod 𝑚 , (A.3)

where 𝑎, 𝑐 and 𝑚 are parameters determining the sequence and the generated random
number also takes the role of the internal state.

In a parallel MC code, many workers require independent random numbers simul-
taneously. Using an LCG, it is not possible to chose different parameters for each
worker to get different sequences, because the quality of the random numbers very
sensitively depends on this choice. It is however possible, to use only one sufficiently
long sequence and assign disjunct subsequences to each worker. [161]

One of the best quality PRNGs is the Mersenne Twister [162], which holds an
internal state containing about 15 kB of data, providing sequence with a period of
219937 − 1. A fast implementation of it [163] is used in sequential single-CPU codes,
including the host-side of GPU codes, presented in this work. However, the internal
state is too large to be efficiently integrated with MC simulations on GPU. However,
efficient stand-alone implementations on GPU are available. [164]

The presented parallel MC codes, both for GPU and CPU, use a small version
of the Mersenne Twister, called TinyMT [106], which was developed by the same
authors as the original Mersenne Twister. Each CPU or SIMT thread maintains its

118

A.3. Random Number Generation

own, randomly seeded, TinyMT state of 128 bits and a polynomial of 96 bits, which
defines the generated sequence. The polynomials of all threads are independent of
each other.

119

Bibliography

[1] Metropolis, N. The Beginning of the Mont Carlo Method. Los Alamos Sci.
125–130 (1987).

[2] Ulam, S., Richtmyer, R. D. & von Neumann, J. Statistical methods in neutron
diffusion. Tech. Rep. LAMS-551, Los Alamos Scientific Laboratory (1947).

[3] Metropolis, N. & Ulam, S. M. The Monte Carlo Method. J. Am. Stat. Assoc.
44, 335–341 (1949).

[4] Newman, M. E. J. & Barkema, G. T. Monte Carlo Methods in Statistical
Physics (Oxford University Press, 1999), 2002 edn.

[5] Borodin, V., Heinig, K. & Reiss, S. Self-organization kinetics in finite precipi-
tate ensembles during coarsening. Phys. Rev.B 56, 5332 (1997).

[6] Strobel, M. Modeling and Computer Simulation of Ion Beam Synthesis of
Nanostructures. Ph.D. thesis, TU-Dresden (1999).

[7] Krug, J. Origins of scale invariance in growth processes. Adv. Phys. 46, 139–
282 (1997).

[8] Kadanoff, L. P. et al. Static Phenomena Near Critical Points: Theory and
Experiment. Rev. Mod. Phys. 39, 395–431 (1967).

[9] Binder, K. & Stauffer, D. Theory for the Slowing Down of the Relaxation and
Spinodal Decomposition of Binary Mixtures. Phys. Rev. Lett. 33, 1006–1009
(1974).

[10] Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena.
Rev. Mod. Phys. 49, 435–479 (1977).

[11] Ódor, G. Universality classes in nonequilibrium lattice systems. Rev. Mod.
Phys. 76, 663–724 (2004).

[12] Ostwald, W. Über die vermeintliche Isomerie des roten und gelben Quecksil-
beroxyds und die Oberflächenspannung fester Körper. Ztschr. Phys. Chem.
34, 495–503 (1900).

[13] Lifshitz, I. & Slyozov, V. The kinetics of precipitation from supersaturated
solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

121

Bibliography

[14] Plateau, J. A. F. Statique expérimentale et théorique des liquides soumis aux
seules forces moléculaires (Gauthiers-Villars, 1873).

[15] Rayleigh, J. W. S. On the Instability of Jets. Proc. London Math. Soc. 10
(1879).

[16] Boyanovsky, D., de Vega, H. & Schwarz, D. Phase Transitions in the Early
and Present Universe. Annu. Rev. Nucl. Part. Sci. 56, 441–500 (2006).

[17] Heinig, K.-H., Müller, T., Schmidt, B., Strobel, M. & Möller, W. Interfaces
under ion irradiation: growth and taming of nanostructures. Appl. Phys. A
77, 17–25 (2003).

[18] Müller, T. Low Energy Ion Beam Synthesis of Si Nanocrystals for Nonvolatile
Memories - Modeling and Process Simulations. Ph.D. thesis, TU-Dresden
(2005).

[19] Liedke, B. Ion beam processing of surfaces and interfaces - Modeling and atom-
istic simulations. Ph.D. thesis, TU-Dresden (2011).

[20] Moore, G. E. Cramming more components onto integrated circuits. Electronics
38 (1965).

[21] Müller, T. et al. Multi-dot floating-gates for nonvolatile semiconductor mem-
ories: Their ion beam synthesis and morphology. Appl. Phys. Lett. 85, 2373
(2004).

[22] Heinig, K.-H., Turan, R. et al. Rainbow Energy project description (2010).
BMBF and TÜBITAK project by HZDR, METU and industry partners.

[23] Tai, M. C. et al. Thermal Stability of Nanoporous Raney Gold Catalyst. Metals
5, 1197 (2015).

[24] Ódor, G. Universality in Nonequilibrium Lattice Systems (World Scientific,
2008).

[25] Landau, L., Lifšic, E., Sykes, H. & Kearsley, M. Statistical Physics. Course of
Theoretical Physics (Elsevier Science & Technology, 1980).

[26] Täuber, U. C. Critical Dynamics (Cambridge University Press, 2014). Cam-
bridge Books Online.

[27] Kelling, J. & Ódor, G. Extremely large-scale simulation of a Kardar-Parisi-
Zhang model using graphics cards. Phys. Rev. E 84, 061150 (2011).

[28] Burgers, J. M. The nonlinear diffusion equation : asymptotic solutions and sta-
tistical problems (Dordrecht-Holland ; Boston : D. Reidel Pub. Co, 1974). First
published in 1973 under title: Statistical problems connected with asymptotic
solutions of the one-dimensional nonlinear diffusion equation.

122

Bibliography

[29] Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-
Reifung). Ztschr. Elektrochemie 65, 581–591 (1961).

[30] Cahn, J. W. & Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial
Free Energy. J. Chem. Phys. 28, 258–267 (1958).

[31] Cahn, J. W. On spinodal decomposition. Acta Metall. 9, 795–801 (1961).

[32] Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic Scaling of Growing Interfaces.
Phys. Rev. Lett. 56, 889–892 (1986).

[33] Sun, T., Guo, H. & Grant, M. Dynamics of driven interfaces with a conserva-
tion law. Phys. Rev. A 40, 6763–6766 (1989).

[34] Rost, M. & Krug, J. Anisotropic Kuramoto-Sivashinsky Equation for Surface
Growth and Erosion. Phys. Rev. Lett. 75, 3894–3897 (1995).

[35] Landau, D. & Binder, K. A guide to Monte Carlo Simulations in Statistical
Physics (Cambridge, 2005), second edn.

[36] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller,
E. Equation of state calculations by fast computing machines. J. Chem. Phys.
21, 1087–1092 (1953).

[37] Glauber, R. J. Time-Dependent Statistics of the Ising Model. J. Math. Phys.
4, 294–307 (1963).

[38] Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31,
253–258 (1925).

[39] Kawasaki, K. Diffusion Constants near the Critical Point for Time-Dependent
Ising Models. I. Phys. Rev. 145, 224–230 (1966).

[40] Röntzsch, L. Shape Evolution of Nanostructures by Thermal and Ion Beam
Processing. Ph.D. thesis, TU-Dresden (2007).

[41] Potts, R. B. Some generalized order-disorder transformations. Math. Proc.
Camb. Philos. Soc. 48, 106–109 (1952).

[42] Wu, F. Y. The Potts model. Rev. Mod. Phys. 54, 235–268 (1982).

[43] Anderson, M., Srolovitz, D., Grest, G. & Sahni, P. Computer simulation of
grain growth—I. Kinetics. Acta Metall. 32, 783–791 (1984).

[44] Baxter, R. J. Potts model at the critical temperature. J. Phys. C Solid State
Phys. 6, L445 (1973).

[45] Bazavov, A., Berg, B. A. & Dubey, S. Phase transition properties of 3D Potts
models. Nucl. Phys. B 802, 421–434 (2008).

123

Bibliography

[46] Chatelain, C. Random and Out-of-Equilibrium Potts models. Habilitation
à diriger des recherches, Université de Lorraine (2012). URL https://tel.
archives-ouvertes.fr/tel-00959733.

[47] Lifshitz, L. Kinetics of Ordering During Second-Order Phase Transitions. So-
viet Physics JETP-USSR 15, 939–942 (1962).

[48] Allen, S. M. & Cahn, J. W. A microscopic theory for antiphase boundary
motion and its application to antiphase domain coarsening. Acta Metall. 27,
1085–1095 (1979).

[49] Majumder, S. & Das, S. K. Diffusive domain coarsening: Early time dynamics
and finite-size effects. Phys. Rev. E 84, 021110 (2011).

[50] Majumder, S. & Das, S. K. Effects of Density Conservation and Hydrodynamics
on Aging in Nonequilibrium Processes. Phys. Rev. Lett. 111, 055503 (2013).

[51] Cardy, J. Proceedings of the 20th IUPAP International Conference on Sta-
tistical Physics Quenched randomness at first-order transitions. Phys. A Stat.
Mech. Appl. 263, 215–221 (1999).

[52] Lippiello, E., Mukherjee, A., Puri, S. & Zannetti, M. Scaling behavior of
response functions in the coarsening dynamics of disordered ferromagnets. EPL
90, 46006 (2010).

[53] Fisher, D. S. & Huse, D. A. Nonequilibrium dynamics of spin glasses. Phys.
Rev. B 38, 373–385 (1988).

[54] Cugliandolo, L. F. Topics in coarsening phenomena. Phys. A Stat. Mech. Appl.
389, 4360–4373 (2010). Proceedings of the 12th International Summer School
on Fundamental Problems in Statistical Physics.

[55] Paul, R., Puri, S. & Rieger, H. Domain growth in random magnets. EPL 68,
881 (2004).

[56] Paul, R., Puri, S. & Rieger, H. Domain growth in Ising systems with quenched
disorder. Phys. Rev. E 71, 061109 (2005).

[57] Henkel, M. & Pleimling, M. Superuniversality in phase-ordering disordered
ferromagnets. Phys. Rev. B 78, 224419 (2008).

[58] Corberi, F., Lippiello, E., Mukherjee, A., Puri, S. & Zannetti, M. Crossover in
growth law and violation of superuniversality in the random-field Ising model.
Phys. Rev. E 85, 021141 (2012).

[59] Harris, R. et al. Experimental investigation of an eight-qubit unit cell in a
superconducting optimization processor. Phys. Rev. B 82, 024511 (2010).

124

https://tel.archives-ouvertes.fr/tel-00959733
https://tel.archives-ouvertes.fr/tel-00959733

Bibliography

[60] Katzgraber, H. G., Hamze, F. & Andrist, R. S. Glassy Chimeras Could Be
Blind to Quantum Speedup: Designing Better Benchmarks for Quantum An-
nealing Machines. Phys. Rev. X 4, 021008 (2014).

[61] Forster, D., Nelson, D. R. & Stephen, M. J. Large-distance and long-time
properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977).

[62] Zhang, J., Zhang, Y.-C., Alstrøm, P. & Levinsen, M. Modeling forest fire by
a paper-burning experiment, a realization of the interface growth mechanism.
Phys. A Stat. Mech. Appl. 189, 383–389 (1992).

[63] Landau, D. P. & Family, F. (eds.) Kinetics of Aggregation and Gelation (Else-
vier, Amsterdam, 1984).

[64] Huergo, M. A. C., Pasquale, M. A., González, P. H., Bolzán, A. E. & Arvia,
A. J. Growth dynamics of cancer cell colonies and their comparison with
noncancerous cells. Phys. Rev. E 85, 011918 (2012).

[65] Hwa, T. Nonequilibrium dynamics of driven line liquids. Phys. Rev. Lett. 69,
1552–1555 (1992).

[66] Kardar, M. Replica Bethe ansatz studies of two-dimensional interfaces with
quenched random impurities. Nucl. Phys. B 290, 582–602 (1987).

[67] Halpin-Healy, T. & Palasantzas, G. Universal correlators and distributions as
experimental signatures of (2 + 1)-dimensional Kardar-Parisi-Zhang growth.
EPL 105, 50001 (2014).

[68] Family, F. & Vicsek, T. Scaling of the active zone in the Eden process on
percolation networks and the ballistic deposition model. J. Phys. A 18, L75
(1985).

[69] Edwards, S. F. & Wilkinson, D. R. The Surface Statistics of a Granular Ag-
gregate. Proc. R. Soc. London, Ser. A 381, 17–31 (1982).

[70] Ódor, G., Liedke, B. & Heinig, K.-H. Directed 𝑑-mer diffusion describing the
Kardar-Parisi-Zhang-type surface growth. Phys. Rev. E 81, 031112 (2010).

[71] Kim, J. M. & Kosterlitz, J. M. Growth in a restricted solid-on-solid model.
Phys. Rev. Lett. 62, 2289–2292 (1989).

[72] Henkel, M. Ageing, dynamical scaling and its extensions in many-particle
systems without detailed balance. J. Phys. Condens. Matter 19, 065101 (2007).

[73] Ódor, G. Local scale invariance in the parity conserving non-equilibrium kinetic
Ising model. J. Stat. Mech. 2006, L11002 (2006).

[74] Ódor, G., Liedke, B. & Heinig, K.-H. Mapping of 2+1 dimensional KPZ growth
onto driven lattice gas model of dimers. Phys. Rev. E 79, 021125 (2009).

125

Bibliography

[75] Plischke, M., Rácz, Z. & Liu, D. Time-reversal invariance and universality of
two-dimensional growth models. Phys. Rev. B 35, 3485–3495 (1987).

[76] Meakin, P., Ramanlal, P., Sander, L. M. & Ball, R. C. Ballistic deposition on
surfaces. Phys. Rev. A 34, 5091–5103 (1986).

[77] Ódor, G., Liedke, B. & Heinig, K.-H. Surface pattern formation and scaling
described by conserved lattice gases. Phys. Rev. E 81, 051114 (2010).

[78] Alves, S. G. & Ferreira, S. C. Scaling, cumulant ratios, and height distribution
of ballistic deposition in 3 + 1 and 4 + 1 dimensions. Phys. Rev. E 93, 052131
(2016).

[79] Pagnani, A. & Parisi, G. Multisurface coding simulations of the restricted
solid-on-solid model in four dimensions. Phys. Rev. E 87, 010102 (2013).

[80] Hosseinabadi, S., Movahed, S. M. S., Rajabpour, M. A. & Allaei, S. M. V.
Dynamical and geometrical exponents of self-affine rough surfaces on regular
and random lattices. J. Stat. Mech. 2014, P12023 (2014).

[81] Kim, J. M., Kosterlitz, J. M. & Ala-Nissila, T. Surface growth and crossover
behaviour in a restricted solid-on-solid model. J. Phys. A 24, 5569 (1991).

[82] Alves, S. G., Oliveira, T. J. & Ferreira, S. C. Universality of fluctuations in the
Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension.
Phys. Rev. E 90, 020103 (2014).

[83] Kim, J. M. Restricted solid-on-solid model in d = 2 + 1 dimension with various
restriction parameters N. J. Korean Phys. Soc. 67, 1529–1532 (2015).

[84] Swendsen, R. H. & Wang, J.-S. Nonuniversal critical dynamics in Monte Carlo
simulations. Phys. Rev. Lett. 58, 86–88 (1987).

[85] Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett.
62, 361 (1989).

[86] Ren, RC and Orkoulas, G. Acceleration of Markov chain Monte Carlo simula-
tions through sequential updating. J. Chem. Phys. 124 (2006).

[87] Wolfram, S. A new kind of science, vol. 1 (Wolfram Media Champaign, IL,
2002).

[88] Preis, T. et al. GPU accelerated Monte Carlo simulation of the 2D and 3D
Ising model. J. Comp. Phys. 228, 4468–4477 (2009).

[89] Weigel, M. Performance potential for simulating spin models on GPU. J.
Comp. Phys. 231, 3064–3082 (2012).

126

Bibliography

[90] Block, B., Virnau, P. & Preis, T. Multi-GPU accelerated multi-spin Monte
Carlo simulations of the 2D Ising model. Comp. Phys. Comm. 181, 1549–1556
(2010).

[91] Kelling, J., Ódor, G., Nagy, M. F., Schulz, H. & Heinig, K. Comparison of
different parallel implementations of the 2+1-dimensional KPZ model and the
3-dimensional KMC model. Eur. Phys. J.: Spec. Top. 210, 175–187 (2012).
10.1140/epjst/e2012-01645-8.

[92] Rajewsky, N., Santen, L., Schadschneider, A. & Schreckenberg, M. The Asym-
metric Exclusion Process: Comparison of Update Procedures. J. Stat. Phys.
92, 151–194 (1998).

[93] Kelling, J. Kinetic Monte Carlo Simulations on Self-organization of Nanos-
tructures Accelerated by Massive Parallelization. Master’s thesis, TU-Dresden
(2012).

[94] Bortz, A. B., Kalos, M. H. & Lebowitz, J. L. A new algorithm for Monte Carlo
simulations of Ising spin systems. J. Comp. Phys. 17, 10–18 (1975).

[95] Shim, Y. & Amar, J. Semirigorous synchronous sublattice algorithm for parallel
kinetic Monte Carlo simulations of thin film growth. Phys. Rev. B 71, 125432
(2005).

[96] Shim, Y. & Amar, J. Rigorous synchronous relaxation algorithm for parallel
kinetic Monte Carlo simulations of thin film growth. Phys. Rev. B 71, 115436
(2005).

[97] Plimpton, S. et al. Crossing the Mesoscale No-Man’s Land via Parallel Kinetic
Monte Carlo. Tech. Rep., Sandia National Laboratories (2009). URL http:
//www.sandia.gov/~sjplimp/kmc.html.

[98] Dall, J. & Sibani, P. Faster Monte Carlo simulations at low temperatures. The
waiting time method. Comput. Phys. Commun. 141, 260–267 (2001).

[99] Amdahl, G. M. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), 483–485 (ACM, New York,
NY, USA, 1967). URL http://doi.acm.org/10.1145/1465482.1465560.

[100] Lulli, M., Bernaschi, M. & Parisi, G. Highly optimized simulations on single-
and multi-GPU systems of the 3D Ising spin glass model. Comput. Phys.
Commun. 196, 290–303 (2015).

[101] Creutz, M., Jacobs, L. & Rebbi, C. Monte Carlo study of Abelian lattice gauge
theories. Phys. Rev. D 20, 1915–1922 (1979).

[102] Ito, N. & Kanada, Y. An effective algorithm for the Monte Carlo simulation
of the Ising model on a vector processor. Supercomputer 3 (1988).

127

http://www.sandia.gov/~sjplimp/kmc.html
http://www.sandia.gov/~sjplimp/kmc.html
http://doi.acm.org/10.1145/1465482.1465560

Bibliography

[103] Ódor, G., Kelling, J. & Gemming, S. Aging of the (2+1)-dimensional Kardar-
Parisi-Zhang model. Phys. Rev. E 89, 032146 (2014).

[104] Kelling, J., Heinig, K.-H. & Gemming, S. GPU-based Atomistic Simulations on
spatio-temporal experimental Scales. GPU Technology Conference (NVIDIA,
2014). URL http://on-demand.gputechconf.com/gtc/2014/poster/pdf/
P4154_kinetic_monte-carlo_phenomena_cellular.pdf.

[105] Kelling, J., Ódor, G. & Gemming, S. Bit-Vectorized GPU Implementation of
a Stochastic Cellular Automaton Model for Surface Growth. In 2016 IEEE
International Conference on Intelligent Engineering Systems, 2016. INES ’16
(IEEE, 2016). URL https://doi.org/10.1109/INES.2016.7555127.

[106] TinyMT. URL http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/
TINYMT/index.html.

[107] GCC Vector extensions Documtation. URL https://gcc.gnu.org/
onlinedocs/gcc/Vector-Extensions.html.

[108] Ferrenberg, A., Landau, D. & Binder, K. Statistical and systematic errors in
Monte Carlo sampling. J. Stat. Phys. 63, 867–882 (1991).

[109] Marinari, E., Pagnani, A. & Parisi, G. Critical exponents of the KPZ equation
via multi-surface coding numerical simulations. J. Phys. A 33, 8181 (2000).

[110] Rieger, H. Fast vectorized algorithm for the Monte Carlo simulation of the
random field Ising model. J. Stat. Phys. 70, 1063–1073 (1993).

[111] Hukushima, K. & Nemoto, K. Exchange Monte Carlo Method and Application
to Spin Glass Simulations. J. Phys. Soc. Jpn. 65, 1604–1608 (1996).

[112] Stroustrup, B. The C++ Programming Language (Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000), 3rd edn.

[113] Kawasaki, K. Diffusion Constants near the Critical Point for Time-Dependent
Ising Models. III. Self-Diffusion Constant. Phys. Rev. 150, 285–290 (1966).

[114] Elçi, E. M. (2016). Private communication.

[115] Kelling, J., Odor, G. & Gemming, S. Dynamical universality classes of simple
growth and lattice gas models. ArXiv e-prints (2017). 1701.03638.

[116] Kelling, J., Ódor, G. & Gemming, S. Suppressing correlations in massively
parallel simulations of lattice models. Computer Physics Communications 220,
205–211 (2017).

[117] Deker, U. & Haake, F. Fluctuation-dissipation theorems for classical processes.
Phys. Rev. A 11, 2043–2056 (1975).

128

http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4154_kinetic_monte-carlo_phenomena_cellular.pdf
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4154_kinetic_monte-carlo_phenomena_cellular.pdf
https://doi.org/10.1109/INES.2016.7555127
http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/TINYMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/TINYMT/index.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1701.03638

Bibliography

[118] Henkel, M., Noh, J. D. & Pleimling, M. Phenomenology of aging in the Kardar-
Parisi-Zhang equation. Phys. Rev. E 85, 030102 (2012).

[119] Forrest, B. M. & Tang, L.-H. Surface roughening in a hypercube-stacking
model. Phys. Rev. Lett. 64, 1405–1408 (1990).

[120] Schwartz, M. & Perlsman, E. Upper critical dimension of the Kardar-Parisi-
Zhang equation. Phys. Rev. E 85, 050103 (2012).

[121] Marinari, E., Pagnani, A., Parisi, G. & Rácz, Z. Width distributions and the
upper critical dimension of Kardar-Parisi-Zhang interfaces. Phys. Rev. E 65,
026136 (2002).

[122] Foltin, G., Oerding, K., Rácz, Z., Workman, R. L. & Zia, R. K. P. Width
distribution for random-walk interfaces. Phys. Rev. E 50, R639–R642 (1994).

[123] Halpin-Healy, T. (2+1)-Dimensional Directed Polymer in a Random Medium:
Scaling Phenomena and Universal Distributions. Phys. Rev. Lett. 109, 170602
(2012).

[124] Oliveira, T. J., Alves, S. G. & Ferreira, S. C. Kardar-Parisi-Zhang universality
class in (2 + 1) dimensions: Universal geometry-dependent distributions and
finite-time corrections. Phys. Rev. E 87, 040102 (2013).

[125] Paiva, T. & Aarão Reis, F. Height and roughness distributions in thin films
with Kardar–Parisi–Zhang scaling. Surf. Sci. 601, 419–424 (2007).

[126] Aarão Reis, F. D. A. Universality in two-dimensional Kardar-Parisi-Zhang
growth. Phys. Rev. E 69, 021610 (2004).

[127] Ferrari, P. L. & Frings, R. Finite Time Corrections in KPZ Growth Models.
J. Stat. Phys. 144, 1123 (2011).

[128] Sasamoto, T. & Spohn, H. One-Dimensional Kardar-Parisi-Zhang Equation:
An Exact Solution and its Universality. Phys. Rev. Lett. 104, 230602 (2010).

[129] Alves, S. G., Oliveira, T. J. & Ferreira, S. C. Non-universal parameters, correc-
tions and universality in Kardar–Parisi–Zhang growth. J. Stat. Mech. 2013,
P05007 (2013).

[130] Kelling, J., Ódor, G. & Gemming, S. Universality of (2+1)-dimensional re-
stricted solid-on-solid models. Phys. Rev. E 94, 022107 (2016).

[131] Oliveira, T. J., Alves, S. G. & Ferreira, S. C. Kardar-Parisi-Zhang universality
class in (2 + 1) dimensions: Universal geometry-dependent distributions and
finite-time corrections. Phys. Rev. E 87, 040102 (2013).

[132] Alves, S. G., Oliveira, T. J. & Ferreira, S. C. Origins of scaling corrections in
ballistic growth models. Phys. Rev. E 90, 052405 (2014).

129

Bibliography

[133] Pagnani, A. & Parisi, G. Numerical estimate of the Kardar-Parisi-Zhang uni-
versality class in (2+1) dimensions. Phys. Rev. E 92, 010101 (2015).

[134] Aarão Reis, F. D. A. Numerical study of roughness distributions in nonlinear
models of interface growth. Phys. Rev. E 72, 032601 (2005).

[135] Rodrigues, E. A., Mello, B. A. & Oliveira, F. A. Growth exponents of the
etching model in high dimensions. J. Phys. A 48, 035001 (2015).

[136] Wio, H. S., Revelli, J. A., Deza, R. R., Escudero, C. & de la Lama, M. S.
KPZ equation: Galilean-invariance violation, consistency, and fluctuation-
dissipation issues in real-space discretization. EPL 89, 40008 (2010).

[137] Krech, M. Short-time scaling behavior of growing interfaces. Phys. Rev. E 55,
668–679 (1997).

[138] Krech, M. Erratum: Short-time scaling behavior of growing interfaces [Phys.
Rev. E 55 , 668 (1997)]. Phys. Rev. E 56, 1285–1285 (1997).

[139] Kallabis, H. & Krug, J. Persistence of Kardar-Parisi-Zhang interfaces. EPL
45, 20 (1999).

[140] Daquila, G. L. & Täuber, U. C. Slow relaxation and aging kinetics for the
driven lattice gas. Phys. Rev. E 83, 051107 (2011).

[141] Schwartz, M. & Edwards, S. Stretched exponential in non-linear stochastic
field theories . Phys. A Stat. Mech. Appl. 312, 363–368 (2002).

[142] Prähofer, M. & Spohn, H. Exact Scaling Functions for One-Dimensional Sta-
tionary KPZ Growth. J. Stat. Phys. 115, 255–279 (2004). cond-mat/0212519.

[143] Katzav, E. & Schwartz, M. Numerical evidence for stretched exponential relax-
ations in the Kardar-Parisi-Zhang equation. Phys. Rev. E 69, 052603 (2004).

[144] Röthlein, A., Baumann, F. & Pleimling, M. Symmetry-based determination
of space-time functions in nonequilibrium growth processes. Phys. Rev. E 74,
061604 (2006).

[145] Kelling, J., Odor, G. & Gemming, S. Local scale-invariance of the 2+1 dimen-
sional Kardar–Parisi–Zhang model. J. Phys. A 50, 12LT01 (2017).

[146] Das, S. K. & Puri, S. Dynamics of phase separation in multicomponent mix-
tures. Phys. Rev. E 65, 026141 (2002).

[147] Blanchard, T. & Picco, M. Frozen into stripes: Fate of the critical Ising model
after a quench. Phys. Rev. E 88, 032131 (2013).

[148] Corberi, F., Lippiello, E., Mukherjee, A., Puri, S. & Zannetti, M. Growth law
and superuniversality in the coarsening of disordered ferromagnets. J. Stat.
Mech. 2011, P03016 (2011).

130

cond-mat/0212519

Bibliography

[149] Corberi, F., Lippiello, E., Mukherjee, A., Puri, S. & Zannetti, M. Scaling in
the aging dynamics of the site-diluted Ising model. Phys. Rev. E 88, 042129
(2013).

[150] Henkel, M., Pleimling, M., Godrèche, C. & Luck, J.-M. Aging, Phase Ordering,
and Conformal Invariance. Phys. Rev. Lett. 87, 265701 (2001).

[151] Henkel, M. On logarithmic extensions of local scale-invariance. Nucl. Phys. B
869, 282–302 (2013).

[152] Lorenz, E. & Janke, W. Numerical tests of local scale invariance in ageing
q-state Potts models. EPL 77, 10003 (2007).

[153] Henkel, M. & Pleimling, M. Ageing in disordered magnets and local scale
invariance. EPL 76, 561 (2006).

[154] Enss, T., Henkel, M., Picone, A. & Schollwöck, U. Ageing phenomena without
detailed balance: the contact process. J. Phys. A 37, 10479 (2004).

[155] Henkel, M. & Pleimling, M. Non-Equilibrium Phase Transitions: Volume 2:
Ageing and Dynamical Scaling Far from Equilibrium. Theoretical and Mathe-
matical Physics (Springer Netherlands, 2010).

[156] Henkel, M. & Durang, X. Spherical model of growing interfaces. J. Stat. Mech.
2015, P05022 (2015).

[157] Henkel, M. Dynamical Symmetries and Causality in Non-Equilibrium Phase
Transitions. Symmetry 7, 2108 (2015).

[158] Levenberg, K. A method for the solution of certain non-linear problems in
least squares. Q. J. Appl. Math. II, 164–168 (1944).

[159] Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

[160] Nelder, J. A. & Mead, R. A Simplex Method for Function Minimization.
Comput. J. 7, 308–313 (1965).

[161] Manssen, M., Weigel, M. & Hartmann, A. Random number generators for
massively parallel simulations on GPU. Eur. Phys. J.: Spec. Top. 210, 53–71
(2012). 10.1140/epjst/e2012-01637-8.

[162] Matsumoto, M. & Nishimura, T. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. TOMACS 8, 3–
30 (1998).

[163] Saito, M. & Matsumoto, M. A PRNG Specialized in Double Precision Float-
ing Point Numbers Using an Affine Transition, 589–602 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009). URL http://dx.doi.org/10.1007/
978-3-642-04107-5_38.

131

http://dx.doi.org/10.1007/978-3-642-04107-5_38
http://dx.doi.org/10.1007/978-3-642-04107-5_38

Bibliography

[164] Barash, L. & Shchur, L. PRAND: {GPU} accelerated parallel random number
generation library: Using most reliable algorithms and applying parallelism
of modern {GPUs} and {CPUs}. Comput. Phys. Commun. 185, 1343–1353
(2014).

[165] NVIDIA. NVIDIA CUDA Programming Guide, 8.0 edn. (2016). URL http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

132

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

List of Figures

2.1. Molecular dynamics vs lattice Monte-Carlo 18
2.2. Illustration of a two–dimensional surface 22
2.3. Schematics for roof-top and octahedron model. 24

3.1. DD schematics . 36
3.2. RS octahedron model benchmarks 40
3.3. Comparison of local and non-local encoding of the octahedron model. 42
3.4. Non-local SCA implementation of the octahedron model. 43
3.5. SCA octahedron model benchmarks 45
3.6. SkyMC Benchmarks . 53

4.1. KPZ state roughness growth under RS dynamics 61
4.2. KPZ state roughness growth under SCA dynamics 62
4.3. KPZ growth phase height distribution 64
4.4. KPZ ansatz: RS vs. SCA . 66
4.5. KPZ steady state width distribution 69
4.6. Roughness (𝑊 2) of an RSOS surface in the scaling regieme. 70
4.7. RSOS steady-state finite-size scaling. 72
4.8. RSOS scaling/steady-state collapse 74
4.9. RSOS height distribution in the steady-state 75
4.10. RSOS steady-state finite-size scaling, DD self-consitency. 76
4.11. KPZ autocorreclations with different device-layer DDs for RS. 79
4.12. Overview of RS Autocorrelation results using DTrDT. 81
4.13. Overview of RS Autocorrelation results using DTrDB. 83
4.14. Autocorreclation results for heights from RS calculations. 85
4.15. Autocorreclation results for slopes from RS calculations. 86
4.16. Autocorreclation results for heights of SCA calculations. 88
4.17. Autocorreclation results for slopes of SCA calculations. 90
4.18. EW autocorrelation of heights . 92
4.19. EW autocorrelation of slopes . 93
4.20. KPZ autoresponse of heights . 95
4.21. KPZ autoresponse of slopes . 98

5.1. Domain growth in pure Potts models: CPU vs. GPU 102
5.2. Domain growth in bond-diluted Potts models 104
5.3. KPZ autoresponse of heights vs. LJLSI 106

6.1. Overview of KPZ results . 111

133

List of Tables

3.1. Compute devices used for benchmarks. 30

4.1. KPZ ansatz: fit parameters for the octahedron model 68
4.2. Estimates for scaling exponent 𝛽 for RSOS. 71
4.3. Summary of estimates for KPZ universal exponents 77
4.4. SCA autocorrelation limits 𝑜 . 87
4.5. Estimates for the autoresponse of heights exponent. 97
4.6. Sample standard deviation of autoresponse of heights data. 99
4.7. Summary of KPZ autocorrelation and -response exponents. 99
4.8. Summary of KPZ aging exponents. 100

5.1. Fit parameters for LJLSI of KPZ autoresponse of heights 107

134

Glossary

CUDA NVIDIA’s proprietary low-level Application Programming Interface (API)
and C/C++-dialect for GPGPU programming [165]. 28

MPI Message Passing Interface. An API for interprocess communication, both for
shared memory systems and clusters. 33

SIMD Execution paradigm in vector processing: A vector instruction performs the
same operation on all elements (scalar integer or floating point number) of a
vector (SIMD-word). SIMD instruction sets on x86 CPUs are (various versions
of) MMX, 3d-Now!, SSE, AVX. 31

SIMT SIMD-like paradigm used on GPUs, where instead of exposing vector instruc-
tions to the programmer or relying on automatic vectorization by the compiler,
each element of the elements of SIMD vectors are presented as threads which
execute instructions in lock-step. 31

warp SIMT unit of 32 threads on NVIDIA GPUs. The equivalent on AMD GPUs
is called wavefront, containing 64 threads. 31

135

Acronyms

AC autocorrelation. 81

API Application Programming Interface. 135

ASEP asymmetric exclusion process. 24

BD ballistic deposition model. 71

BKL Bortz–Kalos–Lebowitz. 28

cDB coarse dead border. 36, 78

CPU central processing unit. 6, 10

CUDA Compute unified device architecture. 28, Glossary: CUDA

DB dead border. 5, 35, 36

DD domain decomposition. 28, 35

DT double tiling. 36, 37, 80

DTr DT DD with random origin. 5, 36, 37, 80

DTrDB DTr at device level and single-hit DB at block level. 40

DTrDT DTr at device level and single-hit DT at block level. 40

DTrDTr DTr at device level and single-hit DTr at block level. 60, 61

EW Edwards–Wilkinson. 6, 11, 110

FBC fixed boundary conditions. 35

FDR fluctuation-dissipation relation. 57, 110

FOM figure of merit. 97

GOE Gaussian orthogonal ensemble. 65

GPU graphics processing unit. 2, 10

KK Kim–Kosterlitz. 22, 25

136

Acronyms

KLMC 3D kinetic Metropolis lattice Monte Carlo. 19, 27

KPZ Kardar–Parisi–Zhang. 2, 11, 16, 21, 109

KS Kuramoto–Shivashinsky. 16

LCG linear congruential generator. 44, 118

LSB least significant bit. 43

LSI local scale-invariance. 105

MBE molecular beam epitaxy. 16

MC Monte Carlo. 9, 13

MCS Monte Carlo step. 35

MD molecular dynamics. 10

MPI Message Passing Interface. 33, Glossary: MPI

MS multi-surface coding. 47

NN nearest neighbor. 18

PBC periodic boundary conditions. 36

PL power law. 14, 110

RNG random number generator. 31

RS random-sequential. 6, 11, 27, 34, 109

RSOS restricted solid-on-solid model. 2, 11, 58, 109

S/N signal-to-noise ratio. 71

SCA stochastic cellular automaton. 2, 5, 6, 12, 27, 109

SIMD single instruction multiple data. 31, Glossary: SIMD

SIMT single instruction multiple thread. 31, Glossary: SIMT

SU super-universality. 20, 102

TASEP totally asymmetric exclusion process. 24

TC thread cell. 39

TDP thermal design power. 30

WTM waiting time method. 28

137

Selbstständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung
der angegebenen Literatur und Hilfsmittel angefertigt habe. Die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die
Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form
einer anderen Prüfungsbehörde vorgelegt.

Diese Arbeit wurde am Helmholtz–Zentrum Dresden–Rossendorf e. V. unter wissen-
schaftlicher Betreuung von Prof. Dr. Sibylle Gemming.

Dresden, 13. August 2018

Jeffrey Kelling

138

Curriculum Vitæ

Jeffrey Kelling
born 7th February 1987 in Rüdersdorf, Germany
Helmholtz-Zentrum Dresden–Rossendorf, Department of Information Services and
Computing, Computational Science

Work Experience (2009 – present)

03/2016 – present Scientist at Helmholtz-Zentrum Dresden–Rossendorf
(HZDR), Department of Computational Science

05/2012 – 02/2016 Scientist at HZDR, Institute for Ion beam physics, Non-
Equilibrium Thermodynamics

06/2012 – 04/2013 Scientist at TU-Chemnitz, Institute of Physics, Theorie un-
geordneter Systeme

10/2009 – 02/2012 Tutoring, TU-Dresden, Programming for Physicists
09/2009 – 04/2011 student assistant at HZDR

Education (2000 – 2012)

2012 – 2018 PhD studies, physics, TU-Chemnitz, International Helmholtz
Research School for Nanoelectronic Networks (IHRS
NanoNet)

2011 – 2012 Diplomathesis at Helmholtz-Zentrum Dresden–Rossendorf /
TU-Dresden: Kinetic Monte Carlo Simulations on Self-
organization of Nanostructures Accelerated by Massive Par-
allelization

2006 – 2012 study of physics (Diplom), TU-Dresden
2000 – 2006 Carl Bechstein Gymnasium Erkner, Abitur

Schools, Stays Abroad
11/2015 – 01/2016 Applied Mathematics Research Centre, Coventry University,

Coventry, United Kingdom
03/2014 IFF spring school: Computing Solids: Models, Ab-initio

Methods and Supercomputing, Forschungszentrum Jülich,
Jülich, Germany

08/2013 Institute of Technical Physics and Materials Science, Centre
for Energy Research, Budapest, Hungary

10/2012 cecam school: Response treatment for the dynamical prop-
erties of materials with the ABINIT package, ETH Zürich,
Zurich, Switzerland

139

List of Publications (Kelling, J.)

Journal and Proceedings Articles
2018 Kelling, J., Ódor, G., Gemming, S.: Dynamical universality classes of

simple growth and lattice gas models, Journal of Physics A 51, 035003,
(2018) https://arxiv.org/abs/1701.03638

2017 Kelling, J., Ódor, G., Gemming, S.: Suppressing correlations in massively
parallel simulations of lattice models, Computer Physics Communications
220, 205-211 (2017) http://arxiv.org/abs/1705.01022

2017 Kelling, J., Ódor, G., Gemming, S.: Local scale-invariance of the 2+1 di-
mensional Kardar–Parisi–Zhang model, Journal of Physics A 50, 12LT01
(2017) https://arxiv.org/abs/1609.05795

2017 Kelling, J., Zahn P., Schuster J., Gemming, S.: Elastic and piezoresistive
properties of nickel carbides from first principles, Physical Review B 95,
024113 (2017) https://arxiv.org/abs/1604.00328

2016 Kelling, J., Ódor, G., Gemming, S.: Bit-Vectorized GPU Implementation
of a Stochastic Cellular Automaton Model for Surface Growth, IEEE In-
ternational Conference on Intelligent Engineering Systems (2016) https:
//arxiv.org/abs/1606.00310

2016 Kelling, J., Ódor, G., Gemming, S.: Universality of (2+1)-dimensional
restricted solid-on-solid models, Physical Review E 94, 022107 (2016)
https://arxiv.org/abs/1605.02620

2014 Ódor, G., Kelling, J., Gemming, S.: Aging of the (2+1)-dimensional
Kardar-Parisi-Zhang model, Physical Review E 89, 032146 (2014)
https://arxiv.org/abs/1312.6029

2012 Kelling, J., Ódor, G., Ferenc Nagy, M., Schulz, H., Heinig, K.-H.: Com-
parison of different parallel implementations of the 2+1-dimensional
KPZ model and the 3-dimensional KMC model, The European Physi-
cal Journal - Special Topics 210, 175-187 (2012) https://arxiv.org/
abs/1204.5072

2012 Ódor, G., Liedke, B., Heinig, K.-H., Kelling, J.: Ripples and dots gener-
ated by lattice gases, Applied Surface Science 258(9), 4186-4190 (2012)

2011 Kelling, J., Ódor, G.: Extremely large-scale simulation of a Kardar–
Parisi–Zhang model using graphics cards, Physical Review E 84, 061150
(2011) https://arxiv.org/abs/1110.6745

140

https://arxiv.org/abs/1701.03638
http://arxiv.org/abs/1705.01022
https://arxiv.org/abs/1609.05795
https://arxiv.org/abs/1604.00328
https://arxiv.org/abs/1606.00310
https://arxiv.org/abs/1606.00310
https://arxiv.org/abs/1605.02620
https://arxiv.org/abs/1312.6029
https://arxiv.org/abs/1204.5072
https://arxiv.org/abs/1204.5072
https://arxiv.org/abs/1110.6745

Invited Talks
10/2017 Kelling, J., Heinig, K.-H., Weigel, M., Gemming, S. GPU-

Accelerated Kinetic Lattice Monte Carlo for Experimental-Scale Studies
TYC@Imperial, London, England

09/2016 Kelling, J., Ódor, G., Heinig, K. H., Weigel, M., Gemming, S. Pushing
the Limits of Lattice Monte-Carlo Simulations using GPUs Perspectives
of GPU computing in Science, Rome, Italy

05/2015 Kelling, J. C++11/14 features relevant in GPGPU APIs GPU-Day
2015—The Future of Many-Core Computing in Science, Budapest, Hun-
gary:

05/2015 Kelling, J., Ódor, G., Heinig, K.-H., Gemming, S. Efficient Large Scale
Simulation of Stochastic Lattice Models on GPUs GPU Day 2015—The
Future of Many-Core Computing in Science, Budapest, Hungary

Talks
10/2017 Kelling, J., Heinig, K.-H., Weigel, M., Gemming, S. GPU-Accelerated

Kinetic Lattice Monte Carlo for Experimental-Scale Studies MRS Fall
Meeting, Boston, USA

05/2017 Kelling, J., Weigel, M., Ódor, G., Gemming, S. Efficient Correlation-Free
Many-States Lattice Monte Carlo on GPUs GTC, San Jose, CA, USA

09/2016 Kelling, J., Heinig, K.-H., Gemming, S. Experimental-Scale Kinetic Lat-
tice Monte-Carlo Studies on GPU E-MRS Fall Meeting, Warsaw, Poland

07/2016 Kelling, J., Ódor, G., Gemming, S. Aging In The (2 + 1)–Dimensional
Kardar–Parisi–Zhang Model Under Various Dimer Lattice-Gas Dy-
namics Stat’Phys 26—Statistical Physics Conference Satellite Non-
equilibrium dynamics in classical and quantum systems: From quenches
to slow relaxations, Pont-à-Mousson, France

09/2015 Kelling, J., Sendler, T., Erbe, A., Gemming, S. Electronic Transport
through Au-contacted, Thiol-terminated, PEEB NanoNet Workshop, Ra-
then, Germany

03/2015 Kelling, J., Heinig, K.-H., Gemming, S. Investigating Spinodal Decompo-
sition and Coarsening using Massively Parallel Kinetic Metropolis Lattice
Monte-Carlo Simulations MECO40, Esztergom, Hungary

05/2013 Kelling, J., Heinig, K.-H. Performing kinetic lattice Monte-Carlo sim-
ulations of far-from-equilibrium processes on GPUs 2nd International
Symposium “Computer Simulations on GPU”, Freudenstadt, Germany

Posters
04/2016 Kelling, J., Ódor, G., Gemming, S. Non-Local Lattice Encoding for Bit-

Vectorized Cellular Automata GPU Implementations GTC, San Jose,
CA, USA

03/2016 Kelling, J., Ódor, G., Gemming, S. Aging Universality Classes in Sur-
face Growth Models DPG Sping Meeting, Sektion Kondensierte Materie,
Dresden, Germany

141

List of Publications (Kelling, J.)

02/2016 Kelling, J., Ódor, G., Gemming, S. Aging in the (2 + 1)–Dimensional
Kardar–Parisi–Zhang Model under Various Dimer Lattice-Gas Dynamics
MECO41, Vienna, Austria

09/2015 Kelling, J., Sendler, T., Erbe, A., Gemming, S. Electronic Transport
through Au-contacted PEEB NanoNet Workshop, Rathen, Germany

03/2015 Schulz, H., Kelling, J., Ódor, G., Ódor, G., Ferenc, Nagy, M. Simulation
of Surface Growth and Lattices Gases Using GPUs GTC, San Jose, CA,
USA and MECO40, Esztergom, Hungary

03/2015 Kelling, J., Ódor, G., Gemming, S. Handling Domain Decomposition in
Massively Parallel Implementations of Stochastic Lattice Models GTC,
San Jose, CA, USA and MECO40, Esztergom, Hungary

03/2015 Kelling, J., Kerbusch, J., Erbe, A., Dietsche, R., Ganteför, G., Scheer, E.,
Zahn, P., Gemming, S. Transport Calculations for Si4 Clusters with Gold
single Atom Contacts DPG Sping Meeting, Sektion Kondensierte Ma-
terie, Berlin, Germany

09/2014 Kelling, J., Gemming, S. Electronic Transport through Au-contacted
PEEB NanoNet Workshop, Rathen, Germany

04/2014 Kelling, J., Zahn, P., Gemming, S. Elastic Properties of Nickel Carbides
DPG Sping Meeting, Sektion Kondensierte Materie, Dresden, Germany

04/2014 Kelling, J., Heinig, K.-H., Gemming, S. GPU-based Atomistic Simula-
tions on spatio-temporal experimental Scales GTC, San Jose, CA, USA

10/2013 Kelling, J., Gemming, S. Ab-initio investigation of carbides and of CNT
junctions at finite temperature and under stress NanoNet Workshop,
Rossendorf, Germany

03/2013 Ódor, G., Schulz, H., Kelling, J., Heinig, K.-H., Máté Ferenc, N. Ex-
tremely Large Scale Simulation of Surface Growth and Lattice Gases
GTC, San Jose, CA, USA

03/2013 Kelling, J., Heinig, K.-H. Large Scale Atomistic Simulations on Nanos-
tructure Evolution DPG Sping Meeting, Sektion Kondensierte Materie,
Dresden, Germany

10/2012 Kelling, J., Heinig, K.-H. Large Scale Atomistic Simulations on Nanos-
tructure Evolution Workshop Response Treatment for the Dynamical
Properties of Materials with the ABINIT Package, Zürich, Switzerland

142

	Introduction
	Motivations and Goals
	Overview

	Methods and Models
	Estimation of Scaling Exponents and Error Margins
	From Continuum- to Atomistic Models
	Models for Phase Ordering and Nanostructure Evolution
	The Kinetic Metropolis Lattice Monte-Carlo Method
	The Potts Model

	The Kardar–Parisi–Zhang and Edwards–Wilkinson Universality Classes
	Physical Aging
	The Octahedron Model
	The Restricted Solid on Solid Model

	Parallel Implementation: Towards Large-Scale Simulations
	Parallel Architectures and Programming Models
	CPU
	GPU
	Heterogeneous Parallelism and MPI
	Bit-Coding of Lattice Sites

	Domain Decomposition for Stochastic Lattice Models
	dd for Asynchronous Updates
	db
	dt
	dtr
	Implementation

	Second DD Layer on GPUs
	Single-Hit dt
	Single-Hit db
	dd Parameters for the Octahedron Model

	Performance

	Lattice Level DD: Stochastic Cellular Automaton
	Local Approach for the Octahedron Model
	Non-Local Approach for the Octahedron Model
	Bit-Vectorized GPU Implementation

	Performance of sca Implementations

	The Multi-Surface Coding Approach
	Vectorization
	Scalar Updates
	Domain Decomposition

	Implementation: SkyMC
	2d Restricted Solid on Solid Model
	2d and 3d Potts Model
	Sequential cpu Reference

	SkyMC Benchmarks

	Measurements
	Measurement Intervals
	Measuring using Heterogeneous Resources

	Monte-Carlo Investigation of the Kardar–Parisi–Zhang Universality Class
	Evolution of Surface Roughness
	Comparison of Parallel Implementations of the Octahedron Model
	The Growth Regime
	Distribution of Interface Heights in the Growth Regime
	KPZ Ansatz for the Growth Regime
	The Steady State

	Investigations using RSOS
	The Growth Regime
	The Steady State
	Consistency of Fine-Size Scaling with Respect to dd

	Results for Growth Phase and Steady State

	Autocorrelation Functions
	Comparison of dd Methods for rs Dynamics
	Device-Layer dd
	Block-Layer dd

	Autocorrelation Properties under rs Dynamics
	Autocorrelation Properties under sca Dynamics
	Autocorrelation of Heights
	Autocorrelation of Slopes

	Autocorrelation in the sca Steady State
	Autocorrelation in the ew Case under sca
	Autocorrelation of Heights
	Autocorrelations of Slopes

	Autoresponse Functions
	Autoresponse Properties
	Autoresponse of Heights
	Autoresponse of Slopes
	Self-Averaging

	Summary

	Further Topics
	Investigations of the Potts Model
	Testing Results from the Parallel Implementations
	Domain Growth in Disordered Potts Models

	Local Scale Invariance in KPZ Surface Growth

	Conclusions and Outlook
	Acknowledgements
	Coding Details
	Bit-Coding
	Packing and Unpacking Signed Integers
	Random Number Generation

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Selbstständigkeitserklärung
	Curriculum Vitæ
	List of Publications (Kelling, J.)

