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Learning of Central Pattern
Generator Coordination in Robot
Drawing
Payam Atoofi, Fred H. Hamker and John Nassour*

Artificial Intelligence, Computer Science, Chemnitz University of Technology, Chemnitz, Germany

How do robots learn to perform motor tasks in a specific condition and apply what

they have learned in a new condition? This paper proposes a framework for motor

coordination acquisition of a robot drawing straight lines within a part of the workspace.

Then, it addresses transferring the acquired coordination into another area of the

workspace while performing the same task. Motor patterns are generated by a Central

Pattern Generator (CPG) model. The motor coordination for a given task is acquired by

using a multi-objective optimization method that adjusts the CPGs’ parameters involved

in the coordination. To transfer the acquired motor coordination to the whole workspace

we employed (1) a Self-Organizing Map that represents the end-effector coordination in

the Cartesian space, and (2) an estimation method based on Inverse Distance Weighting

that estimates the motor program parameters for each SOM neuron. After learning, the

robot generalizes the acquired motor program along the SOM network. It is able therefore

to draw lines from any point in the 2D workspace and with different orientations. Aside

from the obvious distinctiveness of the proposed framework from those based on inverse

kinematics typically leading to a point-to-point drawing, our approach also permits of

transferring the motor program throughout the workspace.

Keywords: robot learning, motor coordination, coordination transfer, central pattern generator, robot drawing

1. INTRODUCTION

The capacity of applying previously acquired skills in a new context is referred to as transfer of
learning, e.g., the potential advantage of using the experience from a previously performed motor
task to learn a new motor task. The transfer may happen between different tasks or between
different contexts. The transfer of motor tasks in robotics is an essential alternative to learning
from scratch when facing a new task or facing a new context. However, how could robots generalize
their motor program? How are motor skills represented? Lashley (1951) introduced the concept of
a motor program as the sequence of movements that can be prepared in advance and executed
without feedback. The idea of a motor program was later described by Keele (1968) as a structured
combination of muscle commands before the movement sequence starts, which can produce
a sequence of movements regardless of feedback. One of the evidences for a motor program’s
existence in humans is a control structure, such as Central Pattern Generators (CPG) (Morris
et al., 1994; Summers and Anson, 2009). CPG neurons, located in the spinal cord of vertebrates,
are responsible for locomotion (Brown, 1911; Shik et al., 1966). In vertebrates the spinal cord could
generate movements without sensory feedback, but it also receives input from different areas of the
brain within a hierarchical structure (Jahn et al., 2008). Motor neurons of the peripheral nervous
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system receive input from the central nervous system and
drive muscles. In turn, muscles act in coordination to produce
movements. In robotics, movements are generated through a
model-based approach or are acquired by means of model-free
algorithms (Bertram et al., 2006; Schaal, 2006; Saegusa et al.,
2009; Ijspeert et al., 2013; Siciliano and Khatib, 2016), each
of which has its own challenges and benefits. Due to the way
our task is defined, the aforementioned approaches used in
drawing, writing or similar armmotions shall be briefly reviewed
here. Singh et al. uses a robot’s inverse kinematics model for
a point-to-point drawing scenario (Singh et al., 2015; Singh
and Nandi, 2016). In their work, the absence of the concept
of the motor program would result in the inability to transfer
the produced movements into a new context. Pastor et al.
(2009) provides an approach for learning motor skills based
on human demonstration. The robot movement is produced
by learning non-linear differential equations in task space, then
a velocity-based inverse kinematics model is used to calculate
the movement parameters in the joint space. The movement is
generalized with respect to the goal position that is explicitly
expressed in the dynamic equations. In their work the motor
coordination is implicitly encoded by the inverse kinematic
model, i.e. no coordination parameters are explicitly used to
control the motion in the joint space. In Pastor et al. (2009)
and Singh and Nandi (2016), a kinematic model is essential to
produce a movement. A model-free approach however requires
gathering data and extracting necessary information by a robot
experiment, or by a robot demonstration, e.g., imitation learning.
Tan et al. (2012) proposed a model-free algorithm for a robot to
learn writing by imitation. Motor patterns are generated based
on Dynamic Movement Primitives (DMPs). Since a semantic
knowledge learning approach has been applied to associate a
motion to a drawn pattern (numbers: 0–9), generalization is not
possible in order to draw a new pattern which is not previously
demonstrated. Mochizuki et al. (2013) has employed a Multiple
Timescales Recurrent Neural Network (MTRNN) that generates
the next action according to the current joint angle and the
next end-effector position. MTRNN is first trained through
body-babbling to associate the arm dynamics to the end-effector
dynamics. The network is retrained afterwards to produce basic
shapes (triangle, rectangle, and circle) that were demonstrated
by a human. However, the motion is generated as a sequence of
small movements instead of a single motor pattern in the joint
space for drawing one line in the task space, which results in a
less smooth drawing. Calinon et al. (2007) generalized the robot’s
task trajectory, acquired by demonstration, using a probabilistic
method, Gaussian Mixture Regression, and a dimensionality
reduction technique (PCA). A generalized joint trajectory is
produced based on the expected end-effector position, joints
positions, and object distance over time. Saegusa et al. (2009)
developed an internal model for reaching for a robot’s arm
through an exploration algorithm called motor-babbling-based
sensory motor learning . The coordination is expressed by a
function called “confidence” that measures the reliability of state
prediction and the motor command, where the high value of the
confidence points to a reliable knowledge of state dynamics. The
state-action association is not generalized along the workspace,

instead, the robot performs an exploration phase first then an
off-line learning phase.

We here present an approach of how the motor coordination
is transferred to a new context when executing a motor task by a
humanoid robot. Drawing has been chosen as the robot’s task,
however, this work can be extended to any task that involves
coordination. Movements are generated by a central pattern
generator model that can produce rhythmic and discrete motor
patterns, Multi-LayeredMulti-Pattern Central Pattern Generator
(MLMP-CPG) (Nassour et al., 2014). In addition to its advantage
of being supported in the biological domain, as compared to
DMPs, the MLMP-CPG’s multi-layer separation also provides
us with the opportunity to control coordination parameters
without influencing the nature of the generated pattern. Motor
coordination is composed of a spatial and a temporal part within
the CPG model. A NAO humanoid robot initially learns to draw
lines with 8 different directions from the same starting position
inside the workspace. The acquired motor coordination is then
transferred using self-organizing map (SOM) to other starting
positions in the workspace. The robot is finally able to reproduce
any visually presented pattern by extracting the straight lines
and drawing them inside the reachable workspace. Each line is
drawn by a single CPG pattern generated at each joint, unlike
inverse kinematics methods that perform the task by connecting
a sequence of points.

The computational model MLMP-CPG is briefly introduced
in section 2. Section 3 shows the acquisition of motor
coordination parameters for drawing lines with 8 different
directions and with different lengths performed by the robot’s
arm with two degrees of freedom. This has been achieved by a
multi-objective optimization. Section 4 describes the proposed
framework to transfer motor coordination within the reachable
workspace and contains the main numerical results. The
experiment on the real robot is presented in section 5. A
conclusion is provided in section 6.

2. MOVEMENT GENERATION

To produce movements, the central pattern generator model
(MLMP-CPG) proposed by Nassour et al. (2014) has been used
in Debnath et al. (2014). This CPG model has three layers:
rhythm-generation layer (RG), pattern-formation layer (PF), and
motorneuron layer (MN), see Figure 1. Extensor and flexor
neurons in the rhythm-generator layer are expressed by (1) to (5):

τm
dV

dt
= −(fast(V , σf )+ q− iinj), (1)

τs
dq

dt
= −q+ q∞(V), (2)

τm < τs, (3)

fast(V , σf ) = V − Af tanh((σf /Af )V), (4)

q∞(V) = σs(V − Es), (5)
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FIGURE 1 | An illustration of the learning algorithm in combination with the Central Pattern Generator. Plateau patterns are selected at the Rhythm Generation layer

(RG), other patterns can also be generated such as quiescent, oscillation, and almost oscillation (Rowat and Selverston, 1997). The temporal coordination is specified

by the injected currents in RG neurons, while the spatial coordination is determined by the slope αPF of the sigmoid activation function in the Pattern Formation layer

(PF). A Self-Organizing Feature Map (SOFM) represents the workspace, and, furthermore, coordination parameters (α*
ShoulderRoll

,α∗
ElbowRoll

) are associated to

each of its neurons, where they are used to coordinate a line drawing action from any given starting point of the workspace. The motor coordination acquisition is done

by applying a multi-objective genetic algorithm, whose result is used later for the transfer algorithm in the learning of motor coordination. As shown in the learning of

motor coordination block, the estimation of the coordination parameters is done either by Inverse Distance Weighting (IDW) interpolation or nearest SOM neuron.
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where V is the membrane potential, and represents the RG
neuron output. q and q∞ are the slow current and its steady
state value, respectively. Af determines the width of the N
shape of the current-voltage curve. τm and τs are time constants.
iinj is the injected current, and it is equal to −1 or +1 for
both directions of movement (clockwise or counterclockwise).
σs and σf represent the conductances for potassium and calcium
currents, respectively. Es is the reversal potential. With different
values of cell parameters, four patterns are generated: quiescence,
almost an oscillator, oscillations, and plateau. These patterns are
illustrated for the schematic RG neurons in Figure 1. Since this
paper addresses a line drawing task, we only use the plateau
pattern. Other patterns can be used when the task space involves
more complex movements. Pattern formation neurons (PFE,
PFF) receive input from rhythm generation neurons. Their
activation function is expressed by (6):

PF =
1

1+ eα0·α(ψ0−wRG→PF·V)
, (6)

where α0 = 1 is the slope of the sigmoid, ψ0 = 0 defines
the center point. α represents the descending control from
the high-level controller that modulates the activation of the
pattern formation neuron PF, which is shown in Figure 1 as αPF .
wRG→PF is the weight of the synaptic connection between RG and
PF neurons. Each PF neuron projects to the correspondingmotor
neuron (MN). The activation function of each extensor and flexor
motor neuron is expressed by (7):

MN =
1

1+ eξ (β−(wPF→MN·PF+w·S)/2)
, (7)

where, ξ = 5 and β = 0.5 are the slope and threshold of the
sigmoid activation function, respectively whose values were set
empirically. wPF→MN is the weight of the synaptic connection
between PF and MN neurons. S is the proprioceptive sensory
feedback, w is its corresponding weight. In the current study
w is set to 0, because no sensory feedback is considered at the
motorneuron level.

Patterns generated at each joint are coordinated by descending
control signals. The temporal coordination between joints occurs
by the injected current iinj, i.e., the activation at the rhythm
generation layer of each CPG. The spatial coordination is done by
specifying the slope of the sigmoid activation function, through
α, in the pattern formation layer, see Figure 1.

3. MOTOR COORDINATION ACQUISITION
FOR DRAWING

To obtain a proper motor coordination while learning to perform
a task, an error signal needs to be introduced and minimized
through a trial and error process. In case of learning to draw lines
from different starting positions and with different attributes,
the error could be defined as a vector of two error signals, e.g.,
errors in the angle and length of the line of the performed trial.
Therefore, the optimization process of drawing a line from a
given starting position is considered as a multi-objective task,

where the error signals of the angle and length are the two
objectives to be minimized. The problem consists in finding the
coordination parameters that satisfy both objectives. However,
the objectives might be conflicting and a trade-off becomes
substantial to satisfy one objective against another. As a pattern
generator, the CPG model presented in section 2 has been used.
The manipulation of all the CPG parameters of each layer would
result in a large action space, yet keeping certain parameters
constant will allow us to cover only those actions reasonable
for the defined task. Parameters at the rhythm generation layer
that select the nature of the pattern were initiated to generate
a plateau pattern at each joint (Shoulder-Roll and Elbow-Roll).
Coordination parameters between robot’s joints are represented
by a set of CPG parameters (αPF and iinj) for each joint,
representing spatial- and temporal coordination, respectively.
A coordinated movement corresponds to the proper selection
of parameters αPF in the pattern-formation layer (spatial
coordination) and iinj in rhythm-generation layer (temporal
coordination). In order to draw a line in task-space with two
degrees of freedom in joint space, both joints need to start their
motion simultaneously. However, they can be in phase or in
opposite phase. Therefore, only the direction of the injected
current would be of concern. Thus, both coordination parameters
(αPF and iinj) are merged and represented as a single parameter
signed-alpha, α∗:

|α∗| = αPF,

sgn(α∗) = sgn(iinj).
(8)

The method of choice should be suitable to optimize a
function with two objectives. Another criterion of choosing
an optimization method is knowing whether the derivative
information of the function is available. Based on the above
mentioned criteria a multi-objective genetic algorithm was used
to solve the optimization problem (Haupt and Haupt, 2004;
Konak et al., 2006). The goal is to find appropriate coordination
parameters (α∗) in each CPG for drawing lines. The optimization
toolbox in MATLAB provides us with the multi-objective genetic
algorithm, gamultiobj, which was opted and used with its default
parameters, i.e., crossover function, crossover fraction, distance
measure of individuals, mutation function, size of the population,
etc.. The number of variables is 2 for α∗SR and α∗ER. The objectives
(f1, and f2) are given in (9):

f1 =

∣

∣

∣

∣

θ − θd

180

∣

∣

∣

∣

, f2 =

∣

∣

∣

∣

l− ld

100

∣

∣

∣

∣

, (9)

where θ and l are the angle and the length of a drawn line,
respectively. θd and ld are the desired values. When a joint
reaches a mechanical limit before the end of the action, the
trajectory resulted from such motion would not be a straight
or close to a straight line. Therefore, the individual in the
population that represents the action will be given significantly
high values for f1 and f2. Due to the large number of
iterations, the optimization process was run in simulation. We
used a kinematic model of NAO robot’s left arm. Figure 2

illustrates the acquired motor coordination in drawing lines
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FIGURE 2 | Motor coordination to draw lines with eight desired angles (0, 45, 90, 135, 180,−135,−90,−45) using a multi-objective Genetic Algorithm. (A–C) show

the resulting drawing from the optimization at two different arm initial positions with a line length of 15mm. (B,D) show the coordination parameters of the black lines in

(A,C) that resulted from the optimization process. Each point represents parameters (α and iinj) of a spatio-temporal coordination for a drawn line. The horizontal axis

represents the coordination parameters for the Shoulder Roll (SR), the vertical axis for the Elbow Roll (ER). (E–H) represent the resulting optimization for a line length of

25mm. Although there exists no linear mapping from a point on Cartesian workspace and its coordination parameters to a different point (and its coordination

parameters), (A–D), there is however a linear relation between coordination parameters of lines drawn from one point with similar angle but with different lengths,

(B,F,D,H). In (G), due to the starting position being close to the boundary of the workspace, it can be seen that for the line with angle 135◦ and length of 25mm our

method settled for the coordination parameters with a length smaller than the desired, hence (H) not being the scaled version of (D).

FIGURE 3 | NAO humanoid robot drawing lines for the obtained motor coordination (motor coordination parameters from Figures 2F,H). The robot draws eight

desired lines at each of the two initial positions.
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with eight desired angles (0, 45, 90, 135, 180,−135,−90,−45◦)
and two desired lengths (1.5, 2.5cm), from two different
starting positions in the workspace. Figures 2A,C,E,G show
the optimized drawing patterns in task space. Final solutions
are in black. Figures 2B,D,F,H show the corresponding motor
coordination parameters of those drawn in black. Figure 3 shows
the robot drawing 8 lines from the two initial positions previously
presented in Figures 2F,H. Results presented in Figure 2 show
that the coordination parameters for drawing lines with same
lengths from different initial positions cannot be scaled linearly
along the workspace.

4. MOTOR COORDINATION TRANSFER

How can the coordination parameters be transferred from one
starting position to another without learning from scratch? How
can one obtain a representation for the motor coordination of the
line drawing task over the workspace? We address the problem
of transfer of motor coordination by employing an interpolation
algorithm that uses previously acquired coordination parameters
for an action in several arm configurations to estimate the
coordination parameters for the same action in a new not-
previously-experienced arm configuration. We also use a SOM
to represent the coordination parameters over the workspace.

4.1. Representing Motor Coordination Over
the Workspace
The initial arm position influences the motor program of
drawing. Moreover, if two arm configurations are close to
each other in joint space, their corresponding motor programs

FIGURE 4 | Error in eight desired angles for three selected samples during the

training. Each sample corresponds to a point in the workspace. Blue lines

show the optimization for the 2nd random starting position, red lines for the

50th, and green lines for the 100th randomly selected sample. Through

iteration, using (12), the error is reduced to reach an acceptable margin.

for a specific action, including coordination parameters, will
also be close to each other. Hence, a Self-Organizing Map
(SOM) was employed to represent the Cartesian workspace,
while preserving the neighborhood of similar parameters in
the coordination space, i.e., α∗. Therefore, each neuron in the
map represents the end-effector position which corresponds to
an arm configuration and the associated motor coordination
parameters. The SOM is an unsupervised learning technique
for obtaining a neighborhood topology based on competitive
learning (Kohonen, 1982). The update formula for a neuron v
with its associated weight wv(s) is expressed in (10):

wv(s+ 1) = wv(s)+ h(u, v, s).γ (s).(n(t)− wv(s)), (10)

where s is the step index, t is the index of training sample, u
is the index of the winner for the input vector n(t), γ (s) is a
learning coefficient, which decreases monotonically, h is the
Gaussian neighborhood function which provides the distance of
the neuron u from the neuron v in step s. Each SOM neuron,
which represents an area in the workspace, is associated with a
motor coordination vector of signed-alphas, which was obtained
by a weighted mean over all of the coordination parameters
(signed-alpha vectors) of the data in a cluster represented by that
neuron. The arm starting positions were selected randomly in the
workspace with 1cm distance from the boundaries to allow the
robot to draw lines in all directions (with at least 1cm length).

Figure 1 illustrates the transfer algorithm. An initial
coordination for a given point in the workspace is provided by
the multi-objective genetic algorithm. Then, the estimation of
the coordination parameters is based on either Inverse Distance
Weighting (IDW) interpolation or nearest SOM neuron. The
estimation algorithm provides a set of proper α∗ vectors for
the desired action at a newly visited starting position p (shown
with cross), where the α∗ parameters for different actions are
shown in coordination-space (the 8 green circles representing
the coordination for drawing the 8 desired lines, with horizontal
axis for the Shoulder Roll and vertical axis for the Elbow Roll).
If the starting position is surrounded by previously trained
neurons, with coordination parameters associated to them, an
interpolation using IDW will be used, whereas for other starting
positions, the coordination parameters from the nearest trained
SOM neuron will be transferred.

4.2. Interpolation by Inverse Distance
Weighting
We applied an interpolation based on Inverse Distance
Weighting (IDW) (Shepard, 1968). The idea is to find the
set of spatiotemporal parameters that produces the least error
in drawing the desired lines from a new starting point in
the workspace. For a random arm starting position p, three
surrounding neurons (if existed) k, l, and m are involved in
the interpolation process (Figure 1) to estimate the coordination
parameters for the point p (distance-based IDW):

αp
∗ =

∑

i = k,l,m

wi · αi
∗

∑

i = k,l,m

wi

,wi =
1

d(p, i)
, (11)
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where d(p, i) is the Euclidean distance between the point p and a
neuron i.

We used “point in triangle test.” One of the triangle vertices is
the closest SOM neuron to the point “p.” The other two neurons
are selected from the neighbors of the first vertex, but only the
two which would encompass the point “p” as well as form a
triangle with the smallest area. If the point p is not surrounded
by three neurons (Figure 1), only the closest neuron will be
considered to estimate the coordination parameters at that point.
The resulting estimated coordination vector at point p is used
as the 1st trial on the robot/simulation. Therefore, eight lines

with possibly different direction other than the desired ones
will be drawn based on the estimation for eight desired lines.
The angular errors of the drawn lines are used in another IDW
process, angle-based, that optimizes the coordination parameters
needed to draw the 8 desired lines at point p:

α∗(θ) =

∑

i = b,a

wi(θ)αi
∗

∑

i = b,a

wi(θ)
,wi(θ) =

1
∣

∣e(θ , θi)
∣

∣

, (12)

FIGURE 5 | The absolute error of early estimation (initial error) decreases with increasing samples for each desired line angle. Each sample represents a randomly

selected arm configuration in the 2D workspace. The moving average, black line, in each figure further illustrates this effect.
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where b and a are the indices of the drawn lines with the closest
angles (the line before and the line after) to the desired angle
with positive and negative errors. e is the difference between the
desired angle and the current angle i, whose absolute value would
be used as the criterion of success. The angle-based IDW iteration
of trials will continue until the 8 drawn lines become close to the
desired lines with an acceptable error of 1◦ for each line, where
the optimization process terminates. The resulting coordination
parameters are therefore associated to the point p, which will
ultimately change the associated coordination parameters of a
neuron representing a cluster, in which point p lies. It has been
pointed out that the starting values for the optimization has
been obtained from the very first estimation (early estimation)
of coordination parameters and their corresponding initial errors
resulted from the action. Hence, the initial error ought to be ever
reducing throughout the training of the SOM network.

4.3. Results
All the methods explained in this section so far require at least
one initial position with its coordination parameters available,
that is why the coordination parameters of the very first initial
position (1st sample) is given by a multi-objective GA. Having
a point in the workspace, whose coordination parameters to
draw the eight desired lines are found by GA, allows the second
initial position (2nd sample), which is chosen randomly on
the workspace, to use the IDW for the optimization of its
coordination parameters. Figure 4 shows the initial error values
for three randomly generated samples (points) in the workspace.
Lines with eight desired angles have been optimized using IDW
to reduce the error resulted from the early estimated coordination
parameters. It can be seen that the estimated coordination
parameters for drawing a line with 0◦ resulted in an initial
error of 35◦ in drawing that line from a starting position of
the end effector at the 2nd randomly selected point in the
workspace, while the error is about 6◦ for the 50th randomly
selected point in the workspace. The significant error reduction
in early estimation over samples is due to the training of the
SOM network, enabling its neurons to represent clusters of
samples of previously experienced points in the workspace.
To better capture the effect of the amount of samples on the
error of early estimation (or initial error, the error resulted
from the first estimated coordination parameters before the
optimization process begins), Figure 5 shows the absolute error
of the estimation algorithm over the samples. At the start, the
error was high for most of the drawn lines. The decreasing
trend of the errors along the number of samples is shown by
the moving average, the black lines. After enough number of
samples, the absolute errors are minimized (the average of the
absolute errors of all the eight drawn lines becomes about 1◦ in
Figure 6), which is a direct result of the SOM neurons scattering
in the workspace, where each neuron represents a cluster of
samples, and holds coordination parameters for drawing eight
lines with 8 desired angles. If a sample has a considerably high
error, caused by an inaccurate interpolation, it will influence
the moving average noticeably, as it can be seen in Figure 5

for the error of angle with 0◦. Figure 6 shows the average of
total error of eight angles drawn at each trial, where the moving

average, black line, shows the descending behavior in the error.
Blue dots show the average error for eight desired lines of those
trials with starting points in Cartesian workspace that are not
surrounded by trained SOM neurons, therefore, selecting the
initial coordination parameters from the nearest SOM neuron.
Red dots show the average of the error (for eight lines) of the trials
with starting points located in an area surrounded by trained
SOM neurons, where the coordination paramters are estimated
via IDW of the surrounding SOM neurons, using (11). At the
early stages of learning, the coordination parameters for drawing
lines from a newly selected point in the workspace is often
initialized only by the coordination parameters of the nearest
trained neuron, since not many of the neurons are trained.
Whereas, it is initialized by IDW of the surrounding neurons at
late stages of learning.

5. ROBOT EXPERIMENT

To show the effectiveness of the proposed generalization
technique over a two dimensional workspace, we introduced
drawing patterns consisting of simple shapes that can be
reconstructed by only straight lines. First, the robot extracts
the straight lines’ features, e.g., the position of a starting
point, the angle, and the length of each line. Second, the
robot runs an interpolation method based on the straight
line’s starting point in the workspace, by the selection of the
neurons in the SOMnetwork surrounding that point. A distance-
based IDW (Equation 11) will be employed to estimate the
coordination parameters α∗ for drawing eight lines based on
the coordination parameters of the surrounding neurons. If

FIGURE 6 | The average of absolute initial errors of all desired angles are

shown for all trials. The initial errors were shown separately for each angle

before in Figure 5. Depending on the the starting point (sample) the

coordination parameters were provided either by the closest trained neuron to

the sample, in blue, or by an estimation using IDW (11) among the surrounding

neurons, in red.
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the angle of the presented line was not in the list of eight
desired angles (0, 45, 90, 135, 180,−135,−90,−45◦), an angle-
based IDW (Equation 12) will be run to find an estimate
of coordination parameters. To find the motor coordination
parameters of a line with a length other than the learned line
length (1.5cm), a coefficient λ will be used that linearly maps α∗

for the learned line length into new coordination parameters α∗

for a new length. λ is a varying coefficient related to the ratio of
the length of the desired line (ln) to the length of the line whose

coordination parameters are available (la), λ ∝ ln
la
.

5.1. Image Processing
A line segmentation and an image transformation method
has been employed to extract image features. After getting an
image from the robot’s bottom camera (Figure 7B), the four
blue squares in the image will be detected by filtering out the
range of colors not used in the squares, then converting the
image to a binary image, and finally measuring the properties
of different regions of the binary image (Figure 7C). Since the
images captured by the camera are within a workspace, where
the normal of the plane of the workspace is not perpendicular
to the camera view, the angles, and the lengths of the lines in
the image are not the real angles and lengths with respect to
the robot’s world frame (Figure 7A). Therefore, we performed an
image homography transformation (Corke, 2017). Considering
this is a planar projective transformation (homography), it will be
a linear transformation and can be represented as follows:
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, (13)

where x, y and x′, y′ are the coordinates in the camera view and
its projection to another plane, respectively. The four points that
are needed to solve the system of elements of the projection
matrix has been chosen as the four blue rectangular corners of a
rectangle placed on the workspace, see Figure 7A. Figures 7B–D
show the captured image, the image processing required for the
homography transformation and its result.

To avoid taking the varying width of the pattern into account,
and to focus on the shape of the pattern rather than the thickness
(sketch drawing of lines) a morphological operation, “a thinning
algorithm” (Lam et al., 1992), has been used, see Figures 7E,F.
In the segmentation phase, segments are found by extracting
junctions based on Kovesi (2000). Straight lines are extracted
afterwards from each segment by following the changes in slope
throughout the segment.

5.2. Line Length Calculation
The line length (lline) is obtained by calculating the line
projections (lrealworldx , lrealworldy ) on the x- and y-axis. We calculate
the relation of the length of the line with respect to the
width/length of the rectangle in the image space. Given the actual
width and length of the rectangle in the real world, we obtain the
length of the line by (14):

lrealworldx =
limx
limrec

× lrealworldrec ,

lrealworldy =
limy

wim
rec

× wrealworld
rec ,

lline =

√

(lrealworldy )
2
+ (lrealworldx )

2
,

(14)

FIGURE 7 | Result of image processing, transformation and line segmentation. (A) Depicts the reference source which is printed on a paper and is placed in front of

the camera, where all the 4 blue rectangles are inside the camera view. (B) Is the caputred image by NAO’s bottom camera. (C) Shows the result of image processing

to detect the 4 blue corners necessary for the image transformation (Homography). Having the coordinates of the 4 blue corners creating an irregular quadrilateral, the

captured image can be projected to a plane where these corners create a rectangle, whose result is shown in (D). (E,F) are the results of image processing and line

segmentation after transformation.
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where, limx and limy are the projections of the line on the x- and

y-axis, respectively in image space, calculated in pixel. limrec and
wim
rec are the length and the width of the rectangle in image space,

calculated in pixel. lrealworldrec andwrealworld
rec are the length andwidth

of the rectangle in the Cartesian space.

5.3. Mapping From Image Space to
Joint-Space
For a given point within the reachable workspace in the image
space, we need to find joint angles that move the arm to that
point. This mapping between the image space and the joint
space is essential to determine the initial position of the arm
for drawing a line from a given position in the image space. To
solve the mapping there are two main approaches, the first is

by using the kinematic model of the robot (model-based), while
the second is by learning the mapping, e.g., by a neural network
(model-free). We adopted the latter where no kinematic model
is required. To associate image space with joint space we collect
a training set by moving the left arm within the 2D workspace,
where a marker with a fixed distance from the end-effector is
attached to the arm. The value of Shoulder Roll and Elbow Roll
joints were measured and associated to themarker position in the
image. To generalize the association for the non-visited points in
the workspace we fed the training set to a two-input/two-output
multilayer perceptron neural network (MLP) that has one small
hidden layer (six neurons). The network’s training function
was selected as Bayesian Regularization algorithm to maximize
the log likelihood or to minimize the Mean Squared Error
(MSE). The transfer function for hidden layers were selected as

FIGURE 8 | NAO draws letters A, X, Y, and Z that consist of only straight lines. A video is available on: https://www.tu-chemnitz.de/informatik/KI/edu/robotik/videos/

TMCRDT.mp4.
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hyperbolic tangent “tanh” and the transfer function for output
layer was linear function [f (x) = x]. After the network has
learned the association, each starting position in the image
space will be mapped with an acceptable error into an arm
configuration that moves the end-effector to that starting point.

5.4. Drawing Multiple Lines
Figure 8 shows the robot drawing different presented shapes
consisting of only straight lines. The white board is manually
positioned in front of the robot in such a way that the four blue
markers are inside the reachable workspace so that the robot
is able to reach any point within the rectangle. It is worth
mentioning that the workspace was fixed in front of the robot
in a way that its normal is parallel to the z-axis of base frame
in torso. A routine as a preliminary to the start of the action
would ensure that the hand loosen its grip for the pen to slide
toward the white board until it reaches the board before holding
it firmly again. Letters “A,” “X,” “Y,” and “Z” are presented to the
robot. First, the robot extracts the lines in each letter (without
any semantic learning). Each line will be labeled with a starting
position, a length, and an angle. Coordination parameters to
draw a line with a given angle and length at that starting position
are estimated based on the trained SOM. With the help of the
MLP by having a mapping from image space to joint space, the
arm’s initial position (joint angles for shoulder roll and elbow
roll) is calculated. At this initial position, then, the robot performs
an action using the CPG coordinated patterns to draw a straight
line. Afterwards, the arm is moved to a new starting position to
draw another line.

6. CONCLUSION

We proposed a framework to learn the motor coordination of
the CPG patterns with respect to the arm’s initial position in

the workspace. The spatio-temporal coordination is represented
by two parameters in the central pattern generator model,
which are generalized throughout the workspace by employing
an inverse distance weighting algorithm that interpolates the
coordination space for previously visited initial arm positions.
The resulting motor program was used to draw lines from
different starting points in the workspace. The IDW method
optimizes only one objective, angle of a line, which requires
at least two starting samples of lines with the same length. In
this paper, parameters that define the nature of the generated
pattern (plateau, quiescent, oscillator, almost an oscillator) are
not involved in the transfer process. The modularity of the motor
program simplifies the transfer problem by only emphasizing
the role of the involved modules such as the spatio-temporal
coordination modules in the generalization of a given task over
the workspace. This simplification requires the modules defining
the nature of the action to remain unchanged. Unlike previously
proposed algorithms for robot drawing, each line in the task
space is represented by only one action in the joint space, which
explains the smoothness of the obtained drawing. The proposed
drawing scenario is supported by studies on scribbling stage
of drawing during the human development (Gardner, 1982;
Quaglia et al., 2015), which also inspired the animation studies
in computer graphics (Noris et al., 2012). In this study, plateau
patterns are used at the joint space to draw straight lines at
the task space. However, an extension to draw more complex
patterns will be possible by involving other CPG patterns such
as quiescent, oscillatory, etc. to allow drawing shapes not only
consisting of straight lines.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

REFERENCES

Bertram, D., Kuffner, J., Dillmann, R., and Asfour, T. (2006). “An integrated

approach to inverse kinematics and path planning for redundant

manipulators,” in IEEE International Conference on Robotics and Automation

(Orlando, FL), 1874–1879.

Brown, G. T. (1911). The intrinsic factors in the act of progression in the mammal.

Proc. R. Soc. Lond. 84, 308–319.

Calinon, S., Guenter, F., and Billard, A. (2007). On learning, representing, and

generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybernet. Part

B 37, 286–298. doi: 10.1109/TSMCB.2006.886952

Corke, P. (2017). Robotics, Vision and Control: Fundamental Algorithms in

Matlab R©. Berlin; Heidelberg: Springer.

Debnath, S., Nassour, J., and Cheng, G. (2014). “Learning diverse motor patterns

with a single multi-layered multi-pattern CPG for a humanoid robot,” in

14th IEEE-RAS International Conference on Humanoid Robots (Humanoids)

(Madrid), 1016–1021.

Gardner, H. (1982). Artful Scribbles: The Significance of Children’s Drawings.

Boston, MA: Harper Colophon Books.

Haupt, R. L., and Haupt, S. E. (2004). Practical Genetic Algorithms. Hoboken, NJ:

John Wiley & Sons.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).

Dynamical movement primitives: learning attractor models for motor

behaviors. Neural Comput. 25, 328–373. doi: 10.1162/NECO_a_00393

Jahn, K., Deutschländer, A., Stephan, T., Kalla, R., Hüfner, K., Wagner,

J., et al. (2008). Supraspinal locomotor control in quadrupeds and

humans. Progr. Brain Res. 171, 353–362. doi: 10.1016/S0079-6123(08)

00652-3

Keele, S.W. (1968). Movement control in skilledmotor performance. Psychol. Bull.

70:387.

Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biol. Cybern. 43, 59–69.

Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-

objective optimization using genetic algorithms: a tutorial.

Reliabil. Eng. Syst. Saf. 91, 992–1007. doi: 10.1016/j.ress.2005.

11.018

Kovesi, P. D. (2000). MATLAB and Octave Functions for Computer Vision and

Image Processing. Available online at: http://www.peterkovesi.com/matlabfns/

Lam, L., Lee, S.-W., and Suen, C. Y. (1992). Thinning methodologies-a

comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885.

Lashley, K. S. (1951). The Problem of Serial Order in Behavior. Cambridge, MA:

Harvard University.

Mochizuki, K., Nishide, S., Okuno, H. G., and Ogata, T. (2013). “Developmental

human-robot imitation learning of drawing with a neuro dynamical system,”

in 2013 IEEE International Conference on Systems, Man, and Cybernetics

(Manchester), 2336–2341.

Morris, M. E., Summers, J. J., Matyas, T. A., and Iansek, R. (1994). Current status

of the motor program. Phys. Ther. 74, 738–748.

Frontiers in Neurorobotics | www.frontiersin.org 11 July 2018 | Volume 12 | Article 44

https://doi.org/10.1109/TSMCB.2006.886952
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1016/S0079-6123(08)00652-3
https://doi.org/10.1016/j.ress.2005.11.018
http://www.peterkovesi.com/matlabfns/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Atoofi et al. Motor Coordination in Robot Drawing

Nassour, J., Hénaff, P., Benouezdou, F., and Cheng, G. (2014). Multi-layered

multi-pattern cpg for adaptive locomotion of humanoid robots. Biol. Cybern.

108, 291–303. doi: 10.1007/s00422-014-0592-8

Noris, G., Sykora, D., Shamir, A., Coros, S., Whited, B., Simmons, M., et al.

(2012). Smart scribbles for sketch segmentation. Comput. Graph. Forum 31,

2516–2527. doi: 10.1111/j.1467-8659.2012.03224.x

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). “Learning

and generalization of motor skills by learning from demonstration,” in

2009 IEEE International Conference on Robotics and Automation (Kobe),

763–768.

Quaglia, R., Longobardi, C., and Iotti, N. (2015). Reconsidering

the scribbling stage of drawing: a new perspective on toddlers’

representational processes. Front. Psychol. 6:1227. doi: 10.3389/fpsyg.

2015.01227

Rowat, P. F., and Selverston, A. I. (1997). Oscillatory mechanisms in pairs of

neurons connected with fast inhibitory synapses. J. Comput. Neurosci. 4,

103–127.

Saegusa, R., Metta, G., Sandini, G., and Sakka, S. (2009). “Active motor babbling

for sensorimotor learning,” in 2008 IEEE International Conference on Robotics

and Biomimetics (Bangkok), 794–799.

Schaal, S. (2006). “Dynamic movement primitives-a framework for motor control

in humans and humanoid robotics,” in The International Symposium on

Adaptive Motion of Animals and Machines (Kyoto), 261–280.

Shepard, D. (1968). “A two-dimensional interpolation function for irregularly-

spaced data,” in Proceedings of the 1968 23rd ACM National Conference

(New York, NY), 517–524.

Shik, M. L., Severin, F. V., and Orlovskĭi, G. N. (1966). Control of walking and
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