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Abstract

The virtualization technology has many excellent features beneficial for today’s high-performance
computing (HPC). It enables more flexible and effective utilization of the computing resources.
However, a major barrier for its wide acceptance in HPC domain lies in the relative large perfor-
mance loss for workloads. Of the major performance-influencing factors, memory management
subsystem for virtual machines is a potential source of performance loss.

Many efforts have been invested in seeking the solutions to reduce the performance overhead in
guest memory address translation process. This work contributes two novel solutions - “DPMS”
and“STDP”. Both of them are presented conceptually and implemented partially for a hypervisor
- KVM. The benchmark results for DPMS show that the performance for a number of workloads
that are sensitive to paging methods can be more or less improved through the adoption of this
solution. STDP illustrates that it is feasible to reduce the performance overhead in the second-
dimension paging for those workloads that cannot make good use of the TLB.





Zusammenfassung

Virtualisierungstechnologie verfügt über viele hervorragende Eigenschaften, die für das heutige
Hochleistungsrechnen von Vorteil sind. Es ermöglicht eine flexiblere und effektivere Nutzung der
Rechenressourcen. Ein Haupthindernis für Akzeptanz in der HPC-Domäne liegt jedoch in dem
relativ großen Leistungsverlust für Workloads. Von den wichtigsten leistungsbeeinflussenden
Faktoren ist das Speicherverwaltung-Subsystem für virtuelle Maschinen eine potenzielle Quelle
der Leistungsverluste.

Es wurden viele Anstrengungen unternommen, um Lösungen zu finden, die den Leistungsaufwand
beim Konvertieren von Gastspeicheradressen reduzieren. Diese Arbeit liefert zwei neue Lösungen

”
DPMS“ und

”
STDP“. Beide werden konzeptionell vorgestellt und teilweise für einen Hyper-

visor - KVM - implementiert. Die Benchmark-Ergebnisse für DPMS zeigen, dass die Leistung
für eine Reihe von pagingverfahren-spezifischen Workloads durch die Einführung dieser Lösung
mehr oder weniger verbessert werden kann. STDP veranschaulicht, dass es möglich ist, den
Leistungsaufwand im zweidimensionale Paging für diejenigen Workloads zu reduzieren, die die
von dem TLB anbietende Vorteile nicht gut ausnutzen können.
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This chapter provides the background, describes the problem, the contributions and the outline
of this thesis. First, high performance computing (HPC) is briefly introduced with the focus on
its major concerns. Then, the system virtualization technology is introduced to address such
concerns posed in the evolution of HPC. However, the adoption of this virtualization technology
in HPC has also problems, of which the performance loss is the major one. This thesis focuses
on the performance loss in guest memory address translation and attempts to work out solutions
for this problem.

1.1 Background

1.1.1 HPC and its Major Concerns

High performance computing has been around for a few decades. This is a branch of computing
that tackles the most complex and challenging problems arisen in science and engineering. By
solving fundamental research problems with HPC, human makes scientific discoveries and pushes
forward the frontier of knowledge. As a powerful tool for research and production, HPC makes
use of the cutting-edge hardware, therefore represents the most high-end computing technology.
Breakthroughs achieved in HPC may also benefit other branches of the computing community.
In this sense, HPC is a key area and has potential significance for computing as well as a broad
range of science and technology.

From a technical perspective, the transformation from monolithic mainframes to cluster-based
supercomputers is a major breakthrough in the development of HPC system. While this enables
more flexible way of construction, a scalable performance and a lower investment for the facility,
the growing model for the HPC systems is increasingly meeting serious challenges. Generally,
challenges may be posed by the following concerns about an HPC system:

Performance

Intrinsically, the performance of a computer is generally understood as the speed achievable by
the computer in accomplishing tasks. For a workload with fixed amount of task, performance can
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be indicated by the execution time. The longer the execution time is, the lower the performance
will be, hence the relation 1,

performance = 1/execution time

Performance is not only a major concern in computing, but also the key driving force behind
the advance in computer architecture [1] and the primary target for computer design. A great
deal of efforts are dedicated to the study of performance in computer architecture.

Depending on the purpose of research, the performance of a computer can be measured for the
whole system, such as the LINPACK results for a supercomputer or for an individual component.
The result can be either an absolute figure indicating the performance of a given hardware and
software or a ratio for comparing the influence due to different systems or different configurations
for the same system.

From a system engineering point of view, performance is a non-functional quality but depends
on many functional qualities. According to Dongarra et al., “the performance of a computer is
a complicated issue, a function of many interrelated quantities” [2]. These factors embrace a
broad range of issues in hardware and software, including:

The frequency of processor cores, the size, level of caches, the size, level, and associativity of
TLBs, the frequency, size of memory chips, the bandwidth and latency of the network card, the
frequency of memory bus and PCI bus, the volume and speed of storages, the size of the program,
the programming language and algorithm the program applies, the compiler’s capability for
code generation and optimization, the static and dynamic libraries, the operating system, the
organization and architecture of the computer or computing system and so on.

The overall performance of an application is determined by the interaction between the entire
instructions and the underlying hardware.

As a result of the enhancements in circuit and architecture technology, processor, memory and
I/O devices saw unprecedented increase in speed and capacity. Figure 1.1 depicts the evolution of
processors in the past few decades. Alongside with the decrease in process and in power (energy
consumption per time unit) is the exponential increase in clock speed (frequency), number of
transistors per die, and speed of instruction execution (performance). Since the flourishing of
microprocessor and the integrated circuit (IC) industry, these trends accord with a famous “rule
of thumb” - the Moore’s law, which predicts that the number of components per integrated
circuit doubles approximately every two years. According to Intel’s former executive, David
House, the processor chip’s performance would double every eighteen months, as a resultant of
both the increased number of transistors, and the enhanced speed of them [3]. The prediction
proved fairly accurate during the past decades. However, in the recent decade, the shrinking of
transistor size is almost approaching the atom scale, posing physical barrier for further shrinking.

While there are discussions about the effectiveness of the Moore’s law as the general roadmap
for semiconductor industry in the future [5], processor has begun to follow the multi-core ap-
proach to continue growing its performance by adopting spatial redundancy of the hardware.
Although the clock speed comes to a stagnation, the theoretical performance can still be scaled
by the number of cores. This becomes the main reason why the Moore’s law still holds true in a
multi-core era. Such an architectural change has a fundamental impact on the way of processor
utilization. To make effective use of the parallel hardware, software have to be developed in a
parallel and multi-core approach, instead of the traditional sequential and uni-core approach.
The actual performance and effective utilization lie in the scalability of the software across cores.

From a system point of view, not only the processor, but also the other computer components,
as well as the architecture innovations have contributed to the performance growth. In addition
to the multi-core technology, the following architectural technologies also push forward the
overall performance [1]:

1In practice, other notations such as the number of floating-point operations per second (FLOPS), or millions
of instructions per second (MIPS) are also used.
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Figure 1.1 Evolution of the processors [4]

• Pipelining and super-pipelining
• Multiple levels of cache memory
• RISC architectures
• Multiple execution units (single data, multiple instruction)
• ISA extension (to take advantage of single instruction, multiple data)

In the recent decade, additional novel technologies continued boosting the overall performance
of the computer and computing system, including [1]:

• Multithreading (super-/hyper-threading to exploit the thread level parallelism)
• Speculation and prediction mechanism (to take the advantage of idle execution units)
• Hardware accelerating (inside and outside the processor chip)
• Vector and array processing
• Large-scale parallel and distributed computing

Figure 1.2 illustrates the performance growth of the most powerful computing systems in the
world, the top 500 supercomputers, since the flourishing of HPC industry. The performance of
the top one system has seen a growing from tens of GFLOPS to tens of PFLOPS, and is looking
forward to EFLOPS (exascale2) era.

Power Consumption and Efficiency

Despite the steady technical advances in processor and architecture, the expansion in dimension
still remains as a major source of performance growing. While large-scale parallel and distributed
system emerge as the popular computing architecture and the power consumption per proces-
sor (core) is decreasing, the power consumed by the whole system is still tremendous. Power
consumption and power efficiency become increasingly a concern since a decade ago. Nowadays
they are emerging as the critical limiting factors for high performance computing.

2exa is a prefix denoting a factor of 1018.
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Figure 1.2 Growth of the supercomputer performance [6]

Supercomputers or HPC clusters consume energy not only for computing, but also for cooling
to prevent the hazard of excessive heating. Power supply and budget add heavy burden to the
computing industry. Such a developing model is unhealthy and unsustainable in the long run.
Figure 1.3(a) depicts the evolution of the top 10 fastest supercomputers among the top 500
list since an early age from total performance, total number of cores, and total power aspects.
These had undergone rapid growth and currently reached magnitudes unimaginable in daily life.
While the total performance is approaching exascale by using tens of millions of cores, the total
power is amounting to hundred Megawatts (106 Watts), roughly 0.44% of the installed electrical
capacity in the world’s currently largest hydro-electrical power station3.

Figure 1.3(b), on the other hand, depicts the efficiency aspects in the same course. Efficiency
refers to the ratio of output and input. The power efficiency, core (hardware) efficiency, as
well as the “power draw per core” are compared over a relatively long period of time. Power
efficiency measures the number of floating-point operations per watt, which has reached at a
level of 2.8966 GFLOPS for the top 10 supercomputers. It is about 31.61% of the currently most
power-efficient system (NVIDIA DGX-1, 9.4621 GFLOPS [8]). “Power draw per core” measures
power consumption per processing unit (core) and indicates the current technical status for
energy saving in processor design and manufacture. In the past decade, this has been reduced
to a level of 6.81% than at the early age (7.05 W/core in June, 2006, 0.48 W/core in November,
2016). This contributed enormously to curb the drastic growth of power demands for the entire
computing industry over the past decade.

3Three Gorges Dam, currently the largest hydro-electric power station, and the largest power producing body
ever built, has an installed electrical capacity of 22,500 Megawatts [7].
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Figure 1.3 Performance, power, scale of supercomputers (a) total amount, (b) efficiency [6]

Hardware Utilization and Efficiency

Figure 1.3(b) also depicts the core (hardware) efficiency, which has increased by a magnitude of
two orders since the initial stage of high-performance computing industry. As this is the average
of all types of the concerned processing units, it represents the general growing trend of the HPC
technology. In the recent years, the core (hardware) efficiency reached a plateau after climbing
a slope, implying that the performance is roughly proportional to the number of cores (the scale
of computing system). To limit the computing system within a reasonable scale, the strategy is
to increase the “performance per unit chip area”.
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Another concern is the hardware utilization. Since long ago, computer, especially the servers
in large data centers are plagued with the underutilization problem, which prevents the effective
use of the resources and lowers the profits in production. The server farm in a data center, for
example, may suffer huge profit loss due to insufficient utilization of resources. Owners of such
infrastructures are in a dilemma. As reliable service providers, they are expected to maintain
higher availability of their services, at best 100% of the time without any downtime. On the
other hand, the influx of workloads may fluctuate from time to time, thus is unpredictable. The
workload may be distributed unevenly among servers, which creates load imbalance from server
to server. The consequence is that even the underutilized or idle servers had to stay powered on,
with less or no productivity at all. Studies indicate that a typical server is estimated to have 8%
to 30% of its uptime for running applications on average, with the rest portion of time simply
wasted by running idly (Gartner Group)[9]. Similar thing occurs in companies with production
servers. It is estimated that on average 15% of the full-time servers in such companies perform
no useful tasks [10], leading to a huge waste of both hardware and energy worldwide.

In high-performance computing, underutilization problem seems not to be acute as that in case
of servers of data centers. This is probably due to the fact that HPC has much smaller user groups
that generate dedicated tasks in a more homogeneous way. However, since the supercomputer
carries a huge permanent investment but has much shorter life-span than normal servers, its
utilization tends to be calculated by the unit of “node hour”. Idle and underloaded states of the
system simply mean lower production, lower economic efficiency, and add the cost per-unit of
service the system provides. In this sense, higher utilization of the hardware resources means
cost saving and economy promotion for high-performance computing.

1.1.2 System Virtualization

Overview of Virtualization

In computer science, a virtual object is a concept used to refer to a kind of logical entity created
on the basis of the real physical entity. According to the definition by Popek and Goldberg,
“a virtual machine is taken to be an efficient, isolated duplicate of the real machine.” [11]
Virtualization refers to the act of creating a virtual (rather than actual) entity, such as virtual
computer hardware platforms, storage devices, and computer network resources [12]. Its purpose
is to extend or replace an existing interface to mimic the behavior of another system [13].

In practice, virtualization may occur at several different levels in accordance with the abstrac-
tion layers in the architecture of a computer, such as hardware level (ISA), operating system level
(ABI) and library level (API) [14]. System virtualization is the virtualization at the hardware
level. The entity to virtualize is the entire hardware of a computer.

One effect that system virtualization creates for computer architecture is illustrated by Figure
1.4. Virtualization enables the decoupling between the OS and the hardware, as well as that
between the applications and the OS. These are the bases for almost all other features.

Although the concept of virtualization and especially of virtual machines were in the focus of
computer scientists and engineers in the recent two decades, their origins go back to the first
generation of computers in the 1960s [15]. Due to the prohibitive-high prices and a centralized,
non-interactive way of using the mainframe computers, the expensive computing resource tended
to suffer from underutilization problem. A variety of time-sharing, multi-tasking, multi-user
systems were created to boost the resource utilization and ease the use. Virtual machine comes as
a more advanced variant of that technology. System resource can be partitioned into independent
fine grains and assigned to multiple users running multiple tasks in an encapsulated, isolated way.
This is an excellent feature, which makes virtual machine quite useful for boosting the computer
system resource utilization. Furthermore, more benefits are also brought by virtualization for
computing, including:

6



1.1 Background

Physical Hardware

Operating System

Applications

(a)

Physical Hardware

Virtualization Layer

OS

APP

OS

APP

OS

APP

OS

APP

(b)

Figure 1.4 System virtualization (a) traditional architecture, (b) virtual architecture

Virtualization’s Benefits

• Better customization The nature of encapsulation and isolation permit customizable exe-
cution environment for the user applications.

• Higher scalability Physical servers can be set up easily by rapid and dynamic provision.
Deploying a new virtual machine is as easy as copying a file. The whole computing system
becomes much more scalable by adding or removing virtual machine guests.

• Higher flexibility Workload on a physical machine can be migrated, check-pointed, resumed.
Even the virtual machines can be reconfigured dynamically. New workloads can be deployed
more quicly and conveniently than on physical machines.

• Higher security As workloads in one virtual machine are encapsulated and isolated in a
single execution environment, malicious attack or accidental mishap in one virtual machine
cannot propagated to other virtual machines or bring down the whole physical machine.

• Less hardware and energy cost The same amount of task performed by a number of virtual
machines results to a reduced amount of physical hardware as well as power consumption.

• Less deployment effort Physical servers can be quickly loaded by standardized virtual
machine image (VM provisioning).

Virtualization’s Limitations

Despite the potential benefits and competitiveness virtualization brings for computing, the adop-
tion of virtualization for computing has also problems. Taking the data center, where the virtual-
ization technology is widely adopted, as an example, the whole system is inevitably complicated
due to the presence of a virtualization layer.

A system consisted of both physical and virtual infrastructures also pose great challenge to
the hardware and maintainer. According to a number of representative articles [16, 17, 18] by IT
professionals, analysts and vendors, the major challenges faced by data centers are the following:

• VM sprawling Originally the use of virtual machine were intended to reduce the number
of physical servers in data center. However, probably due to the convenience and low cost of
deploying virtual servers, benefits are eroded by the overgrown virtual servers in the course
of poorly planned VM life cycle and placement. Storages may be depleted quickly by many
less-used VM images. Network switches get saturated by the unplanned overwhelming data
traffic floods among virtual servers. Network becomes complexed and too often dynamically
reconfigured by the virtual network switches. Troubleshooting becomes harder in multiple-
layer virtual environments. The physical servers will be overburdened by carelessly launched
migration and consolidation. Consistent security policy is more difficult to be enforced in an
infrastructure composed of physical and virtual servers.
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• Physical and geographical restrictions For the VM migration and server consolidation,
virtual environment places more restrictions on hardware. For example, server hardware for
migration purpose should have some special features such as identical PCI and NIC supports.
A data center is expected to situate within a maximum distance to the neighboring one as
the source or destination for migration. So sufficient bandwidth and latency can be ensured.

• Lack of standard and interoperability among vendors of hypervisors For data cen-
ters, hypervisors play the central role. Although VMware platform is still dominating the
x86 server virtualization, it is increasingly common to find out data centers based on other
hypervisors such as Citrix XenServer [19], Red Hat KVM [20], or Microsoft Hyper-V [21].
Various vendors apply their own management tools for task and resource controlling. But few
of them take care of the interoperability with products from other vendors. Instead they nor-
mally come up with features which may not be available for hypervisors from other vendors.
Maintainers need more efforts to get used to different platforms.

• Lack of freedom to move between x86 processors Although the two major x86-based
processor vendors - Intel and AMD share the same ISA, the implementations of the ISA have
subtle differences, which leads to different behavior for a few instructions. Furthermore, each
of them had also come up with their own virtualization extensions. The hypervisor developers
need to provide vendor-specific solutions for both Intel and AMD processors. While this poses
no problem for VM “cold” migration, it does so for VM life migration.

• Vulnerability at storage and network switches A data center is a large array of servers.
The SAN (storage area network) and network switches bear the stress of data flow among a
large number of physical and virtual servers. This makes them easy to get stuck or congested
by data floods. Centralized components like the storage and network are by nature vulnerable
to the high I/O traffic throughput.

• Obscured virtual server security To maintain the illusion of transparency for end-users, all
physical and virtual servers need to have their identifications somewhat merged in a cloud en-
vironment. Therefore, the entities and environments become more dynamic, fluid and volatile.
The boundary for security in the infrastructure may be blurred. Not only the physical layer,
but also the virtual layer needs to be patched when necessary.

• Software license impact For the data centers running commercial hypervisors, the license
could be an important consideration. Not only for the huge amount of charge, but also for the
strong impact on the virtual infrastructure delivered by the license terms and pricing models.
Taking the VMware product, vSphere4, as an example [22]. The vSphere version 4 license
charge is based on a combination of physical processor cores, sockets, and physical memory
volume installed on the server, with 1 socket, 6 cores, and 256 GB memory as the standard
charging level. In contrast, the version 5 standard changed to a pricing model based on virtual
rather than physical memory and allows a total of only 24 GB to allocate to all VMs, and
up to 8 VCPUs per VM. While the former version encourages “scale-up”, running as many
VM guests as possible on a system with fewer sockets but more memory, the latter penalizes
this way by “scale-out”, purchasing more physical servers each with far less physical memory.
A single move in license terms has actually led to a three times higher price than previously.
This has driven many of the VMware customers to abandon the vSphere and turn to Citrix
XenServer or Microsoft Hyper-V.

• Degradation of the performance Last but not least, virtualization may suffer more or
less native performance. By empirical research in early years [23], a rough estimation of the
performance for the major components in a virtual execution environment is: CPU 96-97%,
Network 70-90%, and Disk 40-70% of the native performance. Although this estimation is
made over a decade ago and may not reflect the current status, large performance loss is still
not uncommon for virtualization.

4VMware vSphere is a softwares package, including vSphere client, vCenter server and ESXi hypervisor.
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1.1.3 Exploit Virtualization in HPC

The concerns mentioned in Section 1.1.1 exist commonly in the computing community, especially
where large-scale IT infrastructures are used. High performance computing is not an exception.
As the hardware facility is expanding, problems such as the resource underutilization, excessive
power draw, and system management are posing increasingly as challenges for the HPC systems.
The adoption of virtualization technology enables the HPC to abstract, pool and automate the
resources so as to overcome such challenges due to the rigid physical limits in the HPC systems.

This makes sense especially considering that HPC is increasingly demanded by new groups
of users other than research area. As a result, HPC systems are growing more commercial and
more business-oriented. In such situation, business agility and enhanced security become urgent
issues to deal with multiple non-trusted users. Virtualization’s benefits for computing lie in:

Customizable Execution Environment

The virtualization technology’s competence is basically rooted in its capability of reducing the
strong dependency between the system software (OS) and the underlying physical hardware, as
well as the strong dependency between the user application software and the system software.

Physical hardware, precisely the processor, is characterized by its ISA, the interface with the
software. The software targeted at a given hardware platform must comply with the form of
hardware’s ISA. Similarly, an OS is characterized by its system calls, the interface with user
applications. Applications need to comply with the system calls of the given OS for execution.
These dependencies are known as tight coupling. Constrained by this, a server can be installed
with a single OS only, thus bound to run application software only for the same type of OS and
processor architecture. Such a bound leads to the “one server, one application” model.

Adoption of virtualization on the server platform has effectively broken these tight couplings
and fundamentally changed this model. By inserting the hypervisor – an indirection layer
between OS and hardware, a server (physical machine) acquires the capability of running multiple
OSes (virtual machines) concurrently. Each of these virtual machines is isolated from each other
and encapsulated as an independent execution environment. By deploying virtual HPC clusters
in the supercomputer environment, the software stack for execution environment may achieve
higher capability to be reconfigured or customized on demand of the users.

System Resource Utilization Enhancing

The “one server, one application” model constrains the service providers to put a single workload
on a server for reliability and quality of service (QoS) reasons. Server is equipped with abundant
computing resources for running multiple tasks. By multiplexing the computing resources among
a reasonable number of virtual machines guests, the physical server gets sufficient tasks to stay
busier and more productive. Each VM guest may be dedicated to a specific service as if it were
a physical server.

The number of guests is known as density. Too small density brings quite limited increase in
utilization. While too large density may saturate the physical server and degrade the quality
of services in guests. A properly chosen density keeps the server reasonably loaded, meanwhile
does not necessarily incur visible damage to the quality of service in each guest. By virtualizing
physical server, productivity of the computing resource can be increased by exploiting idle time.

Power and Hardware Efficiency Enhancing

With virtualization of the computing resources, physical nodes in a supercomputer (HPC cluster)
may be used by loading a number of VM guests as the virtual computing nodes. More than
one applications are allowed to run concurrently in the single host. Due to decoupling, a virtual
node is not bound to any physical node. An execution environment presents itself as a file stored

9



1 Introduction

in hard disk or in memory, which is fairly easy to move from physical node to physical node
via interconnect network, either by copying a static file on a disk (static migration) or a file
on a disk together with the image in memory (dynamic migration). Load balance is achieved
by migrating virtual nodes from overloaded physical nodes to underloaded physical nodes while
power can be saved by migrating those sparsely spreading virtual nodes to fewer physical nodes,
and powering off the rest (known as the VM consolidation). Both the hardware and power are
utilized more productively, which enhances their efficiencies compared to physical case.

1.2 Problem Description

Traditionally, virtualization technology is not oriented to workloads that are resource-intensive.
Hypervisor is optimized mainly for the domains where workloads have moderate and predictable
demand for resources.

Among the barriers for adopting virtualization in HPC, performance loss is a major consid-
eration [24, 25, 26, 27]. Among factors that incur performance loss of the HPC workload due to
virtualization, memory address translation is a potential bottleneck [28], especially for workloads
that are memory-intensive and exhibit unusual run-time behaviors. In dealing with the diverse
HPC workloads, the currently adopted two standard solutions, shadow paging and nested paging
for translating the VM guest memory address have the following limitations: 1) guest work-
loads are treated in the same way, despite their various characteristics and significantly different
run-time behaviors in memory-accessing; 2) the default memory address translation way is not
optimal when performance comes as the top priority.

Due to these limitations, the guest memory virtulization may not be optimized to yield non-
negligible performance loss for a given workload in the guest. Research [29] indicates up to 40%
of performance degradation for the memory intensive workloads (Passmark Memory) in the
XenServer 5.5 HVM environment.

The goals of this work are: 1) To investigate the performance loss of typical HPC workload in
virtualized execution environment due to guest memory virtualization; 2) To work out solutions
to improve the performance of the typical HPC workload in virtualized execution environment.

1.3 Thesis Contribution to the Current Research

This research presents two solutions to work around the limitations for virtualizing the guest
memory address translation. Namely, they are DPMS (dynamic paging method switching) and
STDP (simplified two-dimensional paging), as elaborated below:

1. DPMS Overcomes the first limitation stated in Section 1.2. With this, the hypervisors can
adjust its paging method for translating the guest memory address based on the decision made
during the running of the guest applications. DPMS brings a new feature to the hypervisors,
which enables hypervisors to react to the ever-changing behaviors exhibited by the running
workload with an adaption to the optimal paging method. Workloads with different character-
istics can be handled differently based on their run-time behavior in memory accessing. In this
approach, the performance of the diverse HPC workloads, especially those memory-intensive
workloads will be benefited.

2. STDP Overcomes the second limitation stated in Section 1.2. STDP is variant of the tra-
ditional TDP. As the bulk of the TDP overhead lies in traversing page tables in the second-
dimension, to reduce the overall page-table walking overhead, a fundamental way is to adopt
fewer level page tables in the second-dimension. STDP is therefore prompted as an innovation
of the current TDP supported by both the hypervisor and the hardware processor. Without
considering the TLB, STDP is able to reduce 40% to 60% of the paging overhead in the second
dimension, which is a big advantage compared with the current TDP.
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1.4 Outline of the Thesis

In a broad view, the thesis contribution is presented by the last row of Figure 1.5, which depicts
the road map for the evolution of the system virtualization technology. Till now, the technology
for virtualizing each component of a physical computer has undergone a few generations.

A fact identified is that in each generation, virtualization losts a part of virtualization in its
essence. In other words, except for a few core functions which make virtualization “virtual”, a
significant portion of the functionality has been taken over by the bare-metal hardware. From the
software-based pure emulation to the binary translation, to native execution of the instructions
with occasional binary translation, from the software-based pure emulation to para-virtualized
VirtIO to physical device pass-through, the performance for both the processor and I/O device
virtualization gain impressive progress.

Interpretation
Binary

Translation
Threaded BT

Native
Execution
plus BT

Software
pure

Emulation

Virtual I/O
Physical
Device

Pass-through

Pass-through
plus SR-IOV

Software
pure

Emulation

Shadow
Page Table

Extended
or Nested

Page Table

DPMS
and STDP

Processor

I/O Devices

Memory

BT: binary translation; SR-IOV: single-root input/output virtualization

Figure 1.5 Problem domain on the road map of virtualization’s evolution

In contrast, the potential breakthrough for memory virtualization occurs with the adoption
of nested paging. However, despite the advantage over shadow paging, nested paging has also
drawback. In this sense, the current nested paging serves as an alternative, but not yet an entire
replacement of shadow paging. What is the next generation technique for memory virtualization
parallel with the breakthroughs for both processor and I/O device virtualization?

For these reasons, the major efforts of this work are dedicated to memory virtualization, with
a focus on how to improve the current solutions for such a narrow topic in the big picture. These
efforts lead to the contributions mentioned above.

1.4 Outline of the Thesis

The thesis is organized like this: Chapter 1 presents the background and describes the research
problem. Chapter 2 reviews the current related work in this area. Chapter 3 is engaged in
seeking the performance drawbacks with a series of benchmarks on different testing platforms.
Based on these results, Chapter 4 proposes two solutions for improving the hypervisors for HPC
workloads. Chapter 5 works out an implementation for the proposed ideas based on a concrete
hypervisor, QEMU-KVM. With the purpose of verifying the feasibility, Chapter 6 presents the
results for a series of functional testing and performance benchmark. In Chapter 7, parallel with
the major contributions in guest memory virtualization, efforts on the performance loss due to
the processor and I/O virtualization are also mentioned. And finally, in Chapter 8, benchmark,
design and implementation are concluded.
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1 Introduction

The thesis is outlined by a sequence of concrete questions below:

1. What is the current situation for using virtualization technology in HPC area?
2. What impact does virtualization deliver to the performance of HPC execution environment?
3. Which virtual execution environment may serve as an ideal platform for this research?
4. Which applications can be used to characterize HPC workload?
5. Which component of the virtualized system incurs acute performance issues?
6. What strategies, or measures can be proposed to remedy this?
7. How to implement these strategies in the context of a concrete hypervisor?
8. What is the effect of these proposed solutions?
9. How can these solutions be applied in related area?

10. What limitations do the new solutions have, and what can be done for further progress?

Figure 1.6 shows how the chapters are related with these questions.
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Figure 1.6 Outline of the thesis
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Chapter 2 Related Work
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This chapter sketches the topography and frontiers of the research area by exploring the related
works. Section 2.1 reviews the current status for system virtualization technology. Section
2.2 examines how virtualization technology is utilized, and to what extent it has influenced the
development of HPC. Section 2.3 surveys the efforts that are dedicated to the performance aspect
of the memory virtualization in both the traditional and the virtualized execution environments.
It particularly focuses on achievements and limitations for the major contributions in improving
the virtualization of the guest memory address translation process. Finally, Section 2.4 draws a
summary of the reviewed related work, which presents a clear view of the current work, and the
context to this thesis.

2.1 System Virtualization

System virtualization [14] provides the capability of creating multiple execution environments
(OS plus user applications) simultaneously on a single set of physical hardware. Corresponding
to the implementation of virtualization layer, hypervisors1 roughly fall into two types: type-1
and type-2 [30], as Figure 2.1(a) (c) depicts, respectively. At the time when the trend for virtu-
alization took off, type-2 hypervisors were the most popular form, mainly due to the convenience
of turning the underlying physical machine into a virtual machine by installing the type-2 hy-
pervisor on the available OS. However, type-2 hypervisors have a few downsides, primarily in
performance, which is the reason for the emerging of type-1 hypervisors. This type of hypervi-
sors runs on the bare-metal hardware as an OS, rather than as an application in the user-space.
Therefore it can assume full control over the physical hardware and ensure higher performance,
availability and security than the type-2 hypervisors.

Regardless of the hypervisor type, the execution environment presented by the virtualization
layer is a virtual machine for the guest OS and the applications running inside. Figure 2.1(b)
depicts this effect, a virtual machine that hides details of the real execution environment. The
difference is almost unperceivable by the guest.

As the engine of virtual machines, the hypervisor abstracts and multiplexes the physical hard-
ware among guests. The hypervisor is a piece of software to create virtualization by presenting
an illusion to the guest OS atop, as if they were running in a bare-metal hardware environment.
Controlled by the hypervisor, multiple guest operating systems can coexist and execute simul-
taneously to exploit the same physical hardware by hosting their own applications. Determined

1Hypervisor is also known as the virtual machine monitor (VMM). They are often used interchangeably.
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by the nature of each individual component, a computer applies a number of virtualization tech-
niques. The virtualization techniques for the major components are examined below:

Applications

Hardware

Virtual Machine

Guest

VMM

Host

Guest

VMM

Host

OS

Host Operating System

Hardware

OS

Applications

OS

Applications

(b)(a) (c)

Type−2 VMM

Type−1 VMM

Figure 2.1 Stack layout of the virtual machine [14]

Processor: In the host, the processor is the central part and the primary target to virtualize.
By nature, a processor is a device sharable in a temporal way among its tasks. In the traditional
physical machine, a processor is utilized by running a specific task within a period of time
(time slice). To support virtualization, processor can be virtualized by a number of approaches.
Originally virtualization takes the form of emulation [31], which is able to run an unmodified OS
and applications targeted to an architecture other than that of the underlying physical processor.
The emulation belongs to virtualization in a broad sense, but is significantly different from the
current virtualization approaches in many aspects. To run the software for non-native ISAs,
the instruction interpretation and binary translation approaches are adopted. In emulations of
these kinds, the physical processor is actually not emulated at the circuit or micro-architecture
levels, but at the ISA level. The instructions of the source software are unable to execute on
the underlying (target) platform. These approaches enable the semantic to be extracted from
the source software and be reconstructed for the target ISA. Thus the software can execute on
the target platform. Emulation is the most intuitive form of virtualization. The major problem
is the poor performance due to code expansion2[32]. On average, a ratio of 1:10 is expected by
using a typical emulator or interpreter without caching [33]. With caching, it has ranged from
1:100 with the software simulators in the 1970s to 1:4 in 1990s [34].

Emulation is mainly used to address the cross-ISA problems between software and hardware.
In the narrow sense of virtualization, however, the source and target ISAs are of the same, which
permits simpler and more efficient ways for processor virtualization. Instead of the instruction
interpretation and binary translation, efforts were made to execute the instructions of the source
software directly on the target platform. As one of the primary targets for system virtualization,
the “x86-based processor” has a few drawbacks in its ISA. This is because some instructions
behave differently in virtual and physical environments. These include privileged instructions,
behavior-sensitive instructions, as well as control-sensitive instructions [35].

According to the classic virtualization condition3 proposed by Popek and Goldberg [14],
x86-based ISA violates it, thus cannot be virtualized without additional efforts. Breakthrough
is first achieved by VMware Workstation (a VMware type-2 hypervisor), which compensates the
ISA drawbacks by a complex software functionality, the dynamic binary translation (DBT) [35].
By scanning and fixing the afore-mentioned three types of nocuous instructions at run-time, the

2code expansion is measured by the ratio of instructions in source ISA and target ISA, respectively.
3Theorem 1 For any conventional third-generation computer, an effective VMM may be constructed if the set

of sensitive instructions for that computer is a subset of the set of privileged instructions.
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2.1 System Virtualization

DBT lets the majority of source (guest) instructions directly run on the physical processor. Xen
[36], a popular type-1 hypervisor, exploits paravirtualization [37] to overcome the drawbacks of
x86-based ISA. The guest OS needs a slight modification to replace the nocuous instructions
with the pre-defined secure routines (hypercalls) before execution. The paravirtualization occurs
statically, thus yields higher performance and requires to access the source code of the guest OS.

Both DBT and paravirtualization are software-based virtualization approaches to compensate
the hardware drawback of the x86-based ISA. A hypervisor gets bloated and complicated after
incorporating these functionalities. The modern x86-based processor vendors realized this and
finally come up with processors with hardware-based virtualization solutions (hardware-assisted
virtualization extensions) [37], such as Intel vt-x and AMD-V for processor virtualization. These
extensions are patches to fix the ISA drawbacks of their processors. The extensions differ slightly
from vendor to vendor, but are similar in a newly introduced processor mode, the guest mode
(root and non-root) and several instructions. In guest mode, the execution of nocuous instruction
yields identical results in virtual as in physical machine (classic virtualization). The additional
instructions control the operation of virtual machines. Hardware extensions for virtualization
permit simpler and more efficient hypervisors and needs no modification to the code of guest OS.

Memory: The memory is a typical device spatially sharable among tasks [38, 39]. It is already
virtualized by virtual memory in the physical machine. Benefits of virtual memory include: 1)
The address space used for programming (logical address space) is totally decoupled from the
real address space for execution (physical address space), which greatly eased programming; 2)
Processes run in isolated memory areas and have no interference with each other; 3) Fine-grain
memory block, pages can be used as a basic unit for allocation and security-checking, which not
only enables memory-swapping for conceptually using larger memory than physically available,
but also enhances memory protection [40]. From logical to physical addresses, the mapping is
performed through the memory management unit (MMU) by referring to the page tables created
by the operating system. With virtual memory, a process sees a contiguous and flat memory
space exclusively owned by itself. Virtual memory has for long been a key function supported
by the major microprocessors and operating systems.

. .  .. .  .

Process 1 Process 2

OS Page Table

virtual memory

physical memory

Figure 2.2 Memory address translation in physical machines

On top of the hypervisor, each guest machine is an entity for resource allocation and execution.
The main memory of a physical machine is shared by multiple guests. As the operating system
does for the processes or tasks, the hypervisor has to provide each guest a view of the contiguous
and flat memory space, with zero as the starting address. By this, it mimics the physical machine
as true as possible for the unmodified guest OS and applications. The hypervisor introduces a
concept called guest physical address [41] to fill the gap between guest virtual address and host
physical address. Therefore, the guest OS and applications work just as in a physical machine,
leaving the mapping from guest physical address to host physical address to the hypervisor or to
the host OS. This implies that a guest memory access involves three mapping steps across four
address spaces. Figure 2.2 and 2.3 depict the memory address translation in physical and virtual
machines, respectively. The current hypervisors adopt mainly two approaches to accomplish this
task, which are known as shadow paging and nested paging4 [41].

4is used for brevity to denote the AMD NPT (nested page table) and Intel EPT (extended page table) solutions.
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Figure 2.3 Memory address translation in virtual machines

As a software-based solution, shadow paging uses shadow page tables (SPT) for mapping the
guest virtual address to host physical address. The SPTs are a set of page tables similar to the
guest page tables controlled by hypervisor. A key hardware feature shadow paging depends on is
the privilege-level protection mechanism [42] enforced by the processor’s MMU. The hypervisor
sets the write-protection bit in the corresponding control register (cr0 in x86 / x86-64) [44, 47]
for the host physical memory mapped to the guest. If pages containing the guest page table are
attempted to be modified (written), a general exception [44, 45] is triggered by the processor,
which in turn causes the guest to suspend its execution and give control to the hypervisor or
host OS kernel (known as vmexit). By this, the hypervisor or host OS kernel can modify the
affected page table entry on behalf of the guest OS.

Nested paging, also known as TDP (two-dimensional paging) [41], belongs to hardware-assisted
virtualization techniques. Considering that the major overhead under shadow paging is incurred
by vmexit due to the maintenance of SPT, processor vendors shipped facilities for guest page
mapping in newer generations of processor. The AMD NPT (nested page table) [46] and Intel
EPT (extended page table) [47] are two implementations of nested paging. The main purpose
is to reduce the hypervisor’s intervention to the guest execution by maintaining the page tables
for mapping from guest physical to host physical addresses. This is an extension to the mapping
from guest virtual to guest physical addresses by using the guest page tables. The mapping from
the guest physical to host physical address occurs in each mapping from guest virtual to host
physical address, as if they were interleaved or nested as the second dimension of paging.

The key functions performed by the hardware facilities for nested paging include 1) enable/dis-
able the nested paging mode in the processor; 2) set/clear the corresponding bits in the bitmap
for triggering exceptions when cr3 is loaded, stored or TLB entries are invalidated; 3) trigger the
exception when page faults occur in nested page tables. With these functions, the hypervisor’s
intervention for handling the guest paging faults can be significantly by-passed.

Both shadow paging and nested paging are indirection layers between guest virtual address
and host physical address, with the intention to present the guest an illusion of the physical
machine. By that the guest OS can run without any modification. However, if it is possible
or necessary to modify the guest OS (probably for higher performance) in the way that host
physical address can be directly used by the guest for memory access, such indirection layers are
not needed any more. This is what the Xen hypervisor has practiced with its para-virtualization
of memory (also known as direct paging). By maintaining the so-called P2M table and M2P
table [48, 49, 50] by itself, the Xen para-virtualized MMU can write the guest page table entries
with the corresponding host physical addresses [51].
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I/O: I/O is the most complex part to virtualize due to various types and natures of I/O devices.
Generally, I/O devices can be divided into four catagories by the nature of sharing, namely, the
dedicated devices, the spatially partitioned devices, the temporally multiplexed devices, and the
spooled devices [14]. A dedicated device can be assigned to and owned by a guest OS in a long
period of time without being virtualized. However, since the guest runs at a lower privilege than
the hypervisor, interrupts and acknowledgments to the interrupts still need to be routed via the
hypervisor. After source and destination are checked and validated, the signals are queued up
for injection into the targeted guest in an appropriate moment. Display, keyboard and mouse,
which are important for desktop virtualization belong to this catagory.

The spatially partitioned device, such as a hard disk can be virtualized similarly as a memory.
The disk may be partitioned and assigned to the guests. Each partition serves as a physical
hard disk for the attached guest. A key aspect is the remapping of an I/O request [52] from the
guest OS. A request, for example, for writing to a particular region of the virtual disk (identified
by cylinder, track and section) must be redirected by the hypervisor to the real region of the
physical disk. The result of the operation and the status of the virtual disk are maintained by
the hypervisor and reflected in the guests.

A typical temporally multiplexed I/O device is the network interface card (NIC). In physical
machines, the NIC queues up data and requests from multiple processes, sends them as instructed
(send), saves incoming data from outside and forwards them to the targeted processes (receive).
By its nature, the NIC is similar to a processor which can be dedicated to a task in a fine grain
of time. In virtual machines, a single NIC can serve multiple guests if the hypervisor presents
each guest a virtual duplicate of the NIC. A guest’s request to its virtual NIC is intercepted and
converted by the hypervisor by replacing the pseudo port number with the real one. Controlled
by the hypervisor, a NIC may queue up data and requests from multiple processes of multiple
guests, send them and return the results to the attached guests. The NIC receives and sorts the
incoming data, converts and routes them to the corresponding guests and processes [14].

Spooled devices tend to be standalone and are shared by more users. A printer, for example,
may perform printing tasks from any interconnected users on either physical or virtual machines.
However, the requests from a guest must be intercepted and remapped by the hypervisor.

For virtualizing the server’s I/O, the major interest lies on the hard disk and network interface.
The virtualization of these devices has experienced emulation, para-virtualization (Virt-I/O),
and device pass-through, with steady growing performance. The choice for a scenario tends to
be a tradeoff among performance, functionality and flexibility of the solution [53].

2.2 Virtualization in HPC

The excellent feature virtualization exhibited in cloud computing has also attracted the attention
of high-performance computing. However, substantial differences exist between the facilities for
HPC and cloud computing. Traditionally, HPC is engaged in scientific problems and employs
supercomputers which take the form of tightly-coupled processors in a single cabinet, known as
MPP (massively parallel processors). Otherwise a cluster is used, which is a group of coopera-
tive high-end, homogeneous computers concerted via efficient interconnection in a close range.
Although these are large-scale IT facilities comparable with the data centers in dimension and
costs, the problems solved by supercomputer tend to be large, complex, diverse, compute- and
resources-intensive [59, 60]. The solution of these problems depends on the cooperation of multi-
ple processing units. The pressure for high performance is not only beared by each participating
computing nodes, but also by the network. Guided by the “performance first” principle, the use
of virtualization is seen as a harm to the performance, thus not advocated in the main-stream
HPC. Very few HPC applications run in virtual execution environment [24, 61].

To understand the intrinsic differences between the HPC and cloud workloads, a number of
application domains from typical HPC domains are surveyed (Sources: [62, 63, 64, 65]).
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Huge Data Processing

In the past few decades, HPC has grwon unprecedentedly and contributed enormously to the
social life. A major driving force is the demand for processing a huge amount of data from a wide
range of sources. The data explosion in many areas has finally resulted to a new application area,
the HPDA (High Performance Data Analysis) to represent the confluence of Big Data Analysis
and HPC. Weather forecasting is one of such areas in which supercomputers play an important
role, especially as the weather and climate have an immediate impact on the human society and
touch deeply upon the daily life of each individual [66, 67]. In recent years the weather has
exhibited a global abnormal change reflected by more occurrences of extreme weathers, such
as El Niño, La Niña, globally severe drought and extremely unevenly distributed rainfall. This
leads to unexpected natural disasters in all spheres of human’s life. Accurate predictions of
a tornado’s movement, heavy rainfall or severe drought may diminish property loss and save
millions of lives across vast areas.

However, the increased accuracy is based on the increased amount of data gathered from land,
air, ocean and satellites. The pressure for processing such data is extremely huge. This is where
massive parallel computing may contribute its strength.

Furthermore, climate modeling, fraud detection, and risk analysis are also application domains
that generate huge amounts of data [62].

Complex Process Simulation

HPC’s strength also lies in its capability in solving process simulation and optimization problems
faster than previously [68].

Being restricted by disarmament treaty and defense budget, or alarmed by the huge impact
on environment, nuclear weapon tests are crucial nowadays. The nuclear physicists resort to
supercomputer to simulate the explosion numerically. The key aspect for simulation is to trace
the reaction chains occurred in molecule or atom scale during the real nuclear explosion within
millisecond, which can be simulated by multiple variables. The more variables are traced, the
more accurate the simulation is. This results in the amount of input and output data that is
beyond the capability of powerful computers [69].

Nuclear reaction is not the only complex process. In physics and astronomy a typical research
is to study the behavior of the system composed of a large number of bodies. Such systems range
from particles, atoms, molecules to stars and galaxies. A common aspect is their movement and
interaction under the influence of physical forces, such as gravity or electromagnetism. The
N-Body Problem aims to investigate the dynamics and evolution of such systems. Each body
moves to a new position, which in turn exerts influence to the acceleration and velocity of the
body itself. Considering the number of moving bodies, the number of variables to be traced and
calculated for a single time step quickly goes beyond imagination. Even a three-body system
like the earth-moon-sun is complex enough to study by normal calculation, not to mention a
system containing more bodies. In reality, such problems are so common that nowadays quite a
lot of supercomputers are dedicated to perform tasks for molecular dynamic modelling.

Other areas involving complex processes simulation and optimization may also include chem-
istry, solid, fluid and material dynamics as well as thermal hydraulics. With the huge computing
power, simulation is used to explore many complex systems that were impossible to study in the
labs [70].

Exhaustive Searching

For certain theoretical researching, a common problem is to find optimal or approximated solu-
tion in a possibility space. Since the overall cost is proportional to the number of solutions, even
if the cost for a single search is small, the complexity grows rapidly as the size of the problem
increases. The typical usage may include cracking the encrypted ciphers in cryptanalysis [71, 72]
and analysis of the genome in biology [73].
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Taking the cryptanalysis as an example, the possibility space tends to be formidably huge and
denies any cracking effort in normal speeds. The massive parallelism delivered by supercomputer
makes it feasible to search through parts of or even through the whole space. A supercomputer
equipped with ten thousand processors, for instance, can try ten million passwords per second
[74]. This significantly reduced the time and increases the chance to crack a password. In general,
though, this kind of searching is still too expensive and only feasible for limited problem scales.
A better practice is to reduce the searching space to a manageable size by using some heuristics.

In summary, all the enumerated applications are large in problem size, thus may benefit from
the processor speed, homogeneity, fast interconnections and parallel file systems. In comparison
with the wide deployment of virtual machines in cloud data centers, the interest for virtualiza-
tion in HPC is mainly focused on providing HPC services by using resources and constructing
supercomputers in a cloud environment.

A famous example is the FutureGrid [75] project at Indiana University launched in 2009 till
2013, which is a geographically distributed, high-performance test-bed for developing innovative
approaches for grid, cloud, and parallel computing. FutureGrid is composed of a group of HPC
resources connected by a high-speed network. It allows to be accessed as a traditional HPC
cluster, a computational grid, or a highly configurable cloud infrastructure, respectively.

In 2011, Amazon, one of the market leaders in e-commerce and cloud computing, announced
the world’s fastest “non-existent” supercomputer [76], which is spun up atop of the Amazon
cloud, EC2 (Elastic Compute Cloud), and ranks 41 in the Top500 list at that time.

By December 1, 2014, a computational service platform called Virtual Supercomputer has
been released by the European developer of HPC system software, Massive Solution. The Virtual
Supercomputer service platform adopts KVM as the hypervisor and InfiniBand exclusively as
the protocol for interconnect, management and storage networks [77].

Although many supercomputer vendors and experts claimed that cloud services can’t match
the requirements of HPC workloads compared with the dedicated HPC clusters, these systems
demonstrated the potential to construct virtual HPC clusters in the existing cloud environment.
Considering the large investment and long term for building up a dedicated HPC cluster, a
virtual cluster in the cloud is an alternative affordable by ordinary HPC users. It also showed the
possibility to narrow the performance gap between Amazon cloud and dedicated supercomputers.

Besides the“HPC in cloud”, another approach for HPC to exploit the virtualization technology
is to launch virtual machine guests on the computing nodes of a traditional supercomputer. For
this purpose, the hypervisors and operating systems for HTC tend to incur too much performance
loss and are too exhaustive in resource consumption. Thin, lightweight hypervisors and operating
systems ensure simpler implementations and less performance loss at the cost of functionality.
A research on this was launched by the Sandia National Laboratories in collaboration with New
Mexico University and Northwestern University [78]. The two universities had a lightweight
hypervisor, Palacios, specially developed for HPC, and the Sandia had a lightweight operating
system kernel, Kitten. They were combined to create a virtual execution environment on a
supercomputer. Experiments showed that for the benchmark programs, the performance loss was
less than 5% on a scale of 50 nodes, and remains at the same level for thousands of processors in
a dedicated supercomputer. The project is not only helpful in improving the resource utilization
and reducing power consumption, but also in creating virtual execution environments for the
development of system software stacks used by the upcoming exascale computing.

According to the authors, the Palacios-Kitten combination has achieved the goals desired by
researchers on adopting virtualization in HPC. This is so far the first attempt to use specially
crafted lightweight hypervisor and OS kernel for deploying the VM-contained workloads in a
large scale on a real supercomputer platform. The benchmark demonstrates the feasibility to
adopt virtualization in HPC. The value of their work lies not only on the idea to use lightweight
hypervisor and OS kernel for HPC, but also on the idea of symbiotic virtualization5 [79].

5Symbiotic virtualization is an approach to system virtualization in which a guest OS targets the native hardware
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The limitations are: 1) The result is yielded for the HPCCG benchmark. Each computing
node runs a single VM instance. The diverse HPC workloads and environment configurations are
not fully investigated; 2) Palacios and Kitten lack functional maturity [80]. They are currently
mainly for research.

Actually, the first limitation is mainly due to the difficulty in HPC performance study. Differ-
ent user applications have to be tested on different hardware with different hypervisors to under-
stand the limitations of existing virtualization technologies [80]. The authors of [80] pointed out
that while KVM provides more stable and predictable results, Palacios is better on fine-grained
tests, but tends to show abnormal performance degradation on other tests.

While virtualization poses the same challenges for cloud and HPC, the major barrier is the
performance loss for HPC due to virtualization. The benchmark results in [81, 82] show that the
performance of HPC workloads tend to be more sensitive to virtual than to physical execution
environments. Considering that the HPC workload is diverse, the performance is more workload-
dependent in virtual execution environments. This makes it hard to evaluate the performance
of a given virtual execution environment6. Since the benchmark result reflects the performance
of the whole system, it is also difficult to evaluate the performance of the subsystems.
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Figure 2.4 Normalized performance of NAS in typical virtual environments

Figure 2.4 reveals the performance of an HPC workload with a few commonly used hypervisors,
namely VirtualBox, QEMU-KVM, VMware ESXi5 Server, and Xen (Paravirtualization).

The benchmark applications are from the NAS Parallel Benchmarks (NPB) [83]. What the
figure illustrates is not only the performance loss of HPC workloads generally for those virtual
environments, but also the nature that the performance loss is workload-dependent. Further-
more, hypervisors yield different performances. Among them, Xen and VMware ESXi Server are
more efficient than QEMU-KVM and VirtualBox. This is most likely due to the particular opti-
mization techniques adopted by their own developers, such as the hypercalls for guest-hypervisor
interaction for Xen-Para, and some unknown modification to the VMware ESXi Server as its
commercial competitiveness. In contrast, QEMU-KVM is still a young open-source hypervisor.
VirtualBox is more user-friendly but not server-oriented.

interface as in full system virtualization, but also optionally exposes a software interface that can be used by
a hypervisor, if present, to increase performance and functionality.

6Performance of a virtual execution environment is evaluated by the performance of workload.
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2.3 Performance for Memory Virtualization

So far, the performance for processor virtualization is well studied [84]. Another potential source
of performance loss is memory virtualization, or the guest address translation. As the authors of
[85] believed, one of the main bottlenecks of virtualization systems is “the reduced performance
of the memory system”, although it may be critical only for a narrow class of problems.

Fundamentally, performance loss of the memory system is suffered not only in virtual machine,
but also in the physical machine. The increasingly widening speed gap between processor and
memory is the main reason. In virtualization, such performance loss is further complicated by
the presence of an indirection layer – the hypervisor.

Before AMD and Intel’s MMU caches were introduced, many efforts were focused on reducing
the TLB misses and speeding up the software TLB miss handling. Two entirely software-based
solutions were proposed to decrease TLB penalties by [86]. The first solution is prefetching TLB
entries on the IPC path7. This decreases kernel TLB miss penalties by about 50%. The second
one uses a large software cache to provide fast path access to entries upon a TLB miss. The hit
rates achieved range from 90% to nearly 100%. This software cache can be used by the software
page fault handler and manages entries in physical memory to avoid cascading TLB misses that
are incurred by reading page table entries in virtual memory space.

PTPC (page table pointer cache) [87] is proposed to replace the TLBs that cache the pointers
to pages of page table entries rather than to page table entries. PTPC traps and handles most
TLB misses in hardware usually with only a single memory access. Since the PTPC misses are
filled by software, PTPC is easy to implement in hardware. Furthermore, as a PTPC refers to
an entire page of page table entries rather than page table entries, a small PTPC covers large
address space and achieve high TLB hit rates. The combined use of TLB and a small PTPC
can perform significantly better than TLB alone. Meanwhile, the flexibility by using small and
fixed size pages and standard TLBs can be preserved.

Specific to the chip multi-core processor (CMP), it [88, 89] shows that TLB misses have huge
impact on the system performance, and 30% to 95% of the total TLB misses are redundant and
predictable misses for multi-thread parallel applications. The results are valuable for novel TLB
designs in favor of inter-core cooperation through either hierarchically shared TLBs or inter-core
TLB prediction mechanisms.

Shared last-level (SLL) TLBs [90] are proposed analogous to shared last-level caches in CMP.
It maximizes the caching efficiency of TLBs by sharing limited physical resources among cores.
The benchmark results show that SLL TLBs not only eliminates a considerable number of the
system-wide TLB misses for parallel workloads, but also does similar or even better for sequential
workloads. Due to these strengths, SLL TLBs are promising for CMPs.

Synergistic TLB [91] is proposed as a mechanism to improve system performance by organizing
TLBs in a manner that suits page access characteristics prevalent in CMPs. The design is based
on the considerations of organizing TLBs with capacity sharing, translation replication and
migration. It exhibits the potential to eliminate a large portion of the TLB misses and speedup
both the multiprogrammed SPEC 2006 and multi-threaded PARSEC workloads.

In the TLB entry prefetching aspect, a novel pre-fetch mechanism distance prefetching [92] is
proposed to capture patterns in the reference behavior in a small address space. This is based
on a detailed comparison between different prefetching mechanisms, arbitrary stride prefetching,
and markov prefetching that were previously proposed for caches and TLB entries. The distance
prefetching is an architecturally independent pre-fetching technique based on access patterns
and inter-core cooperations, and focuses on reducing the cost of handling a TLB miss.

Besides the efforts to diminish the occurrence of TLB misses and to reduce the cost of handling
TLB misses, works are also engaged in designing efficient forms of page table. Hashed page table
[93], cluster page table [94], guarded page table [95] etc. are all variants of the page tables used by

7IPC - instruction prefetching cache
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default. The intention is to take advantage of a specific feature, or nature in memory allocation,
caching or an extreme case of the virtual address space.

As more hardware-assisted memory virtualization techniques become available, virtualization
is increasingly popular. Memory virtualization has gradually been a focus. AMD’s PWC (page
walk cache) caches most of the upper level page table entries in page tables of both the guests
and hypervisor. Based on the PWC, a guest-physical-to-host-physical translation cache – Nested
TLB (NTLB) is proposed [96]. A hit in the NTLB allows the two-dimensional page table walk
to reuse the previously entries thus skip the corresponding page table walk on the hypervisor’s
page tables. If each access to the guest’s page table hits in the NTLB, the number of accesses
to the PWC and the memory hierarchy are the same as in the native execution.

The design space for MMU caches is explored [97] to speed up the virtual-to-physical address
translation for processors with radix tree structured page tables. It shows that the most effective
MMU caches within this space are translation caches that store partial translations for skipping
a few page walk steps.

Inspired by the nested paging, two paging schemes are proposed and evaluated to reduce the
overhead of nested paging for virtualized systems [98]. The first scheme is the nested paging with
flat nested page tables. It reduces the number of memory references at the cost of a slight change
on the hardware. The second scheme is the speculative inverted shadow paging, backed by non-
speculative flat nested page tables. It enables a direct translation with a single memory reference
for common cases, and eliminates the cost for page table synchronization. Both schemes proved
effectiveness to improve the performance for the state-of-the-art page table walk hardware.

The cons and pros for both the two standard approaches, shadow paging and nested paging
are found in performance study. As each of them has its strengths and weaknesses when dealing
with workloads, neither can be replaced by the other. A better approach is to exploit their
strengths according to the nature of the running workload. This is the origin of the basic idea
– dynamic switching of paging methods.

Basically, the idea of dynamic switching of paging methods is not new. The first appearance
seems to be in [99]. The authors argued that nested paging is better for database-oriented
applications since it eliminates a large number of vmexit events. Shadow paging is better for
compute-intensive workloads that incur limited activities in the guest kernel space. The authors
pointed out that the type of workload could be automatically detected by QEMU-KVM at run-
time. Based on Xen and Palacios, two implementations are worked out [100, 101], respectively.
Although different hypervisors, policies and mechanisms are applied in their implementations,
each of them have shown that the dynamic switching of paging methods is able to yield on-par
or better-than-the-best performance yielded by shadow paging and nested paging.

A recent advance for dynamic switching of paging methods contributed by [103] views shadow
paging and nested paging as two extreme cases for guest memory virtualization. Based on the
observation that the updating frequency tends to vary considerably at different levels of page
tables, the authors proposed agile paging. It switches between the two paging methods dynam-
ically for a single address translation. Benchmark results showed that agile paging outperforms
the best of shadow paging and nested paging. Agile paging requires a slight change not only to
the hypervisor, but also to the processor.

The trends for improving the memory virtualization can be summarized as the following:

1. Switching the paging method dynamically based on the performance data sampled from PMCs
without modifying the hardware, represented by [100, 101, 102];

2. Switching the paging method dynamically during a single translation with a slight modification
to both the hypervisor and the hardware, represented by agile paging [103];

3. With modifications to hardware, the standard two-level TDP paging scheme is replaced by
other schemes, represented by [104] and [105].
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In the third case, the first proposes a hashed page table for the second-dimension page tables.
The second proposes a shift from paging to segmentation for the guest memory virtualization,
which leads to near-zero translation and better-than-native performance. This is based on the
feasibility to map large memory chunks in a process’s virtual address space by using segmentation
and only the remained small regions by using paging. While both approaches are reasonable,
they lack true hardware support, thus are not practicable with the current available hardware.

The above trends reveal that: 1) With modification to the hardware, both dynamic switching
and two-dimensional paging can be done in a more radical way, leading to better-than-the-best
of the current performance; 2) Such hardware modifications are not supported by any of the
current processors; 3) When dynamic switching is done in a conservative way (implies slow pace
for switching), the performance is generally comparable with the best of the current performance,
but less likely to outperform the best of the current performance; 4) For any better-than-the-best
of the current performance, modifications to the hardware are necessary and almost inevitable.

2.4 Summary

This chapter reviews the efforts directly or indirectly related with the topic of this thesis. As the
central research object, system virtualization technologies are examined in the evolution of the
techniques to virtualize the major components of the computer system. Then, the focus is moved
to the application of the system virtualization in HPC and the major problems illustrated by a
few well-known projects. Furthermore, the efforts for improving the performance of the memory
address translation system in both the physical and the virtual execution environments are
enumerated. All these form the foundation on which the efforts in this research are undertaken.
With this chapter, Questions 1 and 2 in Section 1.4 are answered.
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Chapter 3 A Study of the Performance Loss
for Memory Virtualization
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This chapter investigates the performance loss due to the virtualization of the guest memory
address translation. The starting point is to examine the deployment pattern of the typical HPC
workloads in virtual execution environments. Limitations of the current memory virtualization
solutions are revealed by a group of the typical benchmark applications on the selected platforms.

Section 3.1 introduces the two basic patterns for deploying HPC workloads, namely the intra-
node and the inter-node, and their respective impact on the overall system performance. The
suitability of the selected benchmark applications for the intra-pattern are discussed in Section
3.2. Section 3.3 specifies the benchmark platforms used for investigating the performance loss.
These workloads and platforms are also used for the functional testing and performance evalu-
ation of the implementations proposed by this thesis. In Section 3.4, the performance losses for
the intra-node pattern are analyzed. Section 3.5 summarizes this chapter.

3.1 HPC Workload Deployment Patterns

To harness the massive parallelism of a supercomputer, the HPC workload is normally deployed
across multiple computing nodes, at the cost of performance loss incurred by the communication
over network across nodes. Although the execution in a single node is free from such overhead,
workloads in HPC are rarely small enough to fit into the memory of a single node. Therefore,
two basic patterns exist for deploying HPC workloads in a cluster-based supercomputer. This is
the case for homogeneous computing nodes1. For heterogeneous computing nodes, variants may
be derived by combining the two basic patterns with various strategies for resource allocation
in each single node.

The intra-node pattern is applied not only to run a whole workload if it fits onto a single node,
but also to run a part of a large-scale workload across multiple nodes. The processors, memory,
storage I/O devices, and buses bear great impact on the performance in this case.

1homogeneous means a computing node built up with same type of processors, opposite to heterogeneous, which
means computing node comprising different types of processors, such as CPU+GPGPU, CPU+FPGA hybrids.
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The inter-node pattern applies to large-scale workloads that run across nodes. For this pattern,
the bandwidth and latency of the network are the major influencing factors.

HPC workloads may leverage different levels of parallelism by applying a mix of programming
models supported by the programming language extensions, tools and libraries. Pthread (POSIX
thread API), OpenMP, CUDA, OpenCL, Intel MKL, AMD ACML, MPI and PVM are such
examples. Among them, MPI and PVM are mainly inter-node oriented, thus have the potential
to exploit the computing power of multiple nodes. The others are exclusively intra-node oriented,
thus are mainly used to exploit the parallelism of multi-cores and multi-threads in a single node.
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Figure 3.1 Typical HPC system architecture and the constitution of performance loss [106]

Figure 3.1 depicts the intra-node and inter-node patterns as well as the make-up of the overall
performance loss in a typical HPC system. The computing node may have chip-multiprocessors
(CMP), symmetric multiprocessors (SMP), NUMA, or heterogeneous architecture. Figure 3.1(a)
depicts the homogeneous architecture, including CMP and SMP. The intra-node communication
occurs via the processor-memory buses and I/O buses. Processor-memory buses are short and
generally high-speed. I/O buses connect various I/O devices, thus are lengthy and slower than
processor-memory buses. Currently, the mainstream I/O bus technologies mainly include PCI-
Express (PCIe), Intel QuickPath Interconnect (QPI), and AMD HyperTransport (HT).

In contrast, the inter-node communication occurs over longer-distance physical network path
consisting of switches, routers and cables, thus are generally more expensive.

The bandwidth and latency for the two patterns bear strong impact on the HPC workload’s
performance. According to a few studies ([106, 107]), the bandwidth and latency for inter-node
and intra-node patterns are in the same order of magnitude. The intra-node latency grows
when the processor gets busy. The inter-node cost depends on the number of switch hops [106],
which can be reduced by network offloading [108]. For well-scalable workloads, less time is spent
for process synchronization, therefore the performance loss over inter-node is almost negligible.
Otherwise, the inter-node latency may increase the overall latency by 10% at worst [106].

Figure 3.1(b) shows the make-up of the overall performance loss. Lmem, Ltx, Lrx, Lcable, and
Lswitch stand for the performance loss incurred by memory access (including memory read, write
and paging operations), outgoing, incoming data transfer (send and receive), cable and switch,
respectively.

Performance analysis of the virtualized HPC workloads focuses on both the inter-node and
intra-node patterns, represented by message-passing and memory-sharing parallel approaches.
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HPC covers a wide range of professional application areas, thus the HPC workload is extremely
diverse in resource demanding and run-time behavior. So far, quite few HPC-oriented benchmark
suites are both diverse in workload stress and characteristic. To study the performance for the
two deployment patterns, different types of HPC workload are needed.

3.2 Benchmark Selection for Intra-node Pattern

For the intra-node pattern, any workload that stresses the physical hardware is an ideal choice.
A common practice is to adopt the multithreaded applications, with which processors, memory
and storage may be put under different stress levels of stress by tuning parameters, such as the
number of processes, threads, and the size of input data. HPC applications using Pthread, Java
thread, OpenMP, or MPI can be applied as tools for benchmarking.

For the inter-node pattern, as the workload needs to exploit the node-level parallelism (NLP)
and stress the network between the participating nodes, MPI-based applications are used. The
choice of benchmark applications is discussed below in detail.

Table 3.1 lists a number of benchmark suites typically used for performance research. They
have different characters such as the type of parallelism, type of workloads, diversity, purpose,
and the orientation to HPC. Among them, only SPEC CPU2006, SPEC OMP2001 and SPLASH-
2 are diverse and focused on HPC. However, the first two are commercial software, which are not
freely available for research. Considering the diversity and orientation to HPC, the choices for
HPC benchmark are rather small. SPLASH-2, BioPerf, and PARSEC-3.0 are such candidates.

Table 3.1: A set of typical benchmark suites for performance research

Benchmark
Suite Name

Number of
Application

Type of
Parallelism

Emerging
Workload

Diverse
HPC

focused
Purpose

SPEC CPU2006 29 C, C++, Fortran No Yes Yes Commercial
SPEC OMP2001 11 OpenMP No Yes Yes Commercial
SPLASH-2 14 OpenMP [109] No Yes Yes Research

ALPBench 5 Pthread, ILP [110] Yes No No Research
BioBench 7 ILP [111] No No Yes Research
BioParallel 5 No No Yes Research
BioPerf 10 No Yes Yes Research

MediaBench II 12 ILP [112] No No No Research
NU-Minebench 2.0 15 No No No Research
PhysicsBench 8 Yes No No Research

PARSEC 2.1 13 Pthread Yes Yes No Research
PARSEC 3.0 25 + 2 Pthread Yes Yes Yes Research
NAS PB 11 MPI, OpenMP No No Yes Research

Except the entries for BioPerf, PARSER 3.0, and NAS PB, other data are from [113]
PARSEC 3.0 merged SPLASH-2 with PAESEC-2.1, thus is HPC-focused at least for its SPLASH-2 part.
Emerging workload means those workloads which are likely to become important in the near future yet not much commonly
applied nowadays.

The choice of PARSEC benchmark suite (both v2.1 and v3.0) has a few reasons. First, despite
the fact that the applications included in PARSEC-2.1 were not chosen with a special orientation
to HPC, they still represent a form of utilization for a HPC cluster (or Supercomputer) [114].
Second, most of the HPC applications (no matter if they are packed into a benchmark suite) are
based on MPI and execute mainly on distributed-memory systems. To benchmark a single node,
it does not matter too much whether the benchmark programs are specially oriented to HPC.
Given the system composed of the hardware and hypervisor, the performance bottlenecks exist
independently of any benchmark programs. Non-HPC workload may also be capable of exposing
the performance drawbacks of the system for HPC workloads. Last but not least, the PARSEC
benchmark suite includes emerging workloads in recognition, mining and synthesis (RMS) and
system applications which mimic the large-scale multi-threaded commercial programs.
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RMS deals with the processing of huge data by specialized algorithms in several key areas such
as artificial intelligence (AI) and virtual reality (VR) [115]. The algorithms involves clustering/
classification, Bayesian network, Markov model, decision trees, neural networks, probabilistic
networks, linear/non-linear stochastic, and time series models [116, 117]. Therefore, workloads
of this type tend to exhibit not only intensive computation, but also intensive memory and I/O
transactions. These exposes more performance drawbacks by loading the computing system with
different stress.

Revealed by characterization testing, this benchmark suite covers a wide spectrum of working
sets, locality, data sharing, synchronization as well as off-chip traffic [118]. In a word, PARSEC
benchmark suite is chosen for its workload diversity and ease of use rather than its orientation to
HPC. In the latest PARSEC-3.0 release, the SPLASH-2 benchmark suite gets integrated into the
PARSEC package. By this approach, while the workload is increasingly diverse, two originally
separate benchmark suites are brought under the same roof for management and execution.

There had been a number of research results [118, 119] on the two collections of programs, deal-
ing with the fundamental properties of each suite, and a quantitative comparison between them
[120] in various aspects. According to these, programs in the two suites exhibited fundamentally
different characteristics, largely due to the different scopes at the time of their creation.

SPLASH was composed before chip-multiprocessors came as the mainstream, with the focus
on HPC and graphic processing where performance has a higher priority than other aspects. The
composition of the whole suite reflects the major focus in that condition. In contrast, PARSEC
emerges in an era the CMP has been the de-facto standard not only for the HPC and graphic
processing, but also broadly for general-purpose computing areas, represented by the emerging
workloads. Consequently, the suite is composed with more applications from these areas. While
maintaining the workload diversity, new trends and technical innovations are also reflected.

Eventually, the significant difference between them and a need to update the SPLASH-2 have
prompted an overhaul of the SPLASH-2 and its merging into the PARSEC benchmark suite.
The combined suite is benefited from both the diversity reflected by the two suites and the new
trends represented by the emerging workloads in the former versions of PARSEC releases.

Depending on the purpose, a benchmark suite can be used to measure the impacts of different
factors on the performance for a computing system, such as cache size, cache miss, work set size,
spatial locality, temporal locality, load balance, and off-chip traffic. In-depth analysis has been
presented by [118, 119] when characterizing SPLASH-2 and PARSEC benchmark suites.

For the merits discussed above, PARSEC-3.0 is used as the benchmark to study the perfor-
mance of HPC workloads for the intra-node pattern.
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3.3 Benchmark Platform

Due to the slight difference in the implementations of the instruction set [121], the two major
variants of the x86 architecture, Intel and AMD processors, are known to be not completely
compatible for a few instructions and operations. Such incompatibility extends to the function
of virtualization. Both the two vendors have their extensions for virtualization. A consequence as
mentioned in Section 1.1 is that the VM-migration between Intel and AMD platforms can not be
done quite freely. When developing an operating system or a hypervisor for x86 ISA, two separate
implementations had to be worked out to deal with the minor differences in instructions2.

It is noticeable that for the same benchmark workload, performance in the environments with
nearly identical software configuration may vary considerably from one platform to another. By
adopting processors of different families, micro-architectures and vendors, the impact due to
different processor is highlighted, and the benchmark results gains a more general sense. For
this reason, two types of Intel processors and an AMD processor are used. Figure 3.2 illustrates
the main configuration of these platforms.
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Figure 3.2 Testing platforms

3.3.1 Intel Platform

Intel CoreTM i7-6700K (Skylake)

This platform is equipped with an Intel CoreTM i7-6700K processor on Intel Z170-Pro mainboard.
The Core i7-6700K chip is a high-end processor for desktop or server, and belongs to the initial
batch of Skylake release. Due to the hyper-threading feature in the Core i7 family, the i7-6700
processor is able to present two virtual processor cores for each physical processor core, therefore
makes a total of 8 cores for the system. It has a default clock speed of 4.0 GHz and a turbo speed
of 4.2 GHz. Another key aspect is the memory hierarchy it utilizes. As Figure 3.2(a) illustrated,
the i7-6700 supports up to two memory channels, hence is capable to accommodate two pairs of
memory modules. In terms of computer architecture, each pair of the memory modules occupies
a matching bank of the memory channel. With a capacity of 16 GB PCB (printed circuit board)
stick installed in each slot on the main board, the processor is capable of accessing to as large
as 64 GB DIMM (dual-in-line memory module) DDR4 in total.

The normal caches include: 4x32 KB 8-way set associative level 1 instruction caches, 4x32
KB 8-way set associative level 1 data caches, 4x256 KB 4-way set associative level 2 caches, and
8 MB 16-way set associative shared level 3 caches; The TLB caches include: 4 entries of 4-way

2Actually, the difference is incurred by concrete circuits, rather than by the instruction set architecture.
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set associative level 1 data TLB for 1-GB pages, 64 entries of 4-way set associative level 1 data
TLB for 4-KB pages, 64 entries of 8-way set associative level 1 instruction TLB for 4-KB pages,
64-byte line size of 4-way set associative level 2 TLB for 1-MB pages, 1536 entries of 6-way
associative level 2 shared TLB for 4-KB / 2-MB pages, and 16 entries of 4-way associative level
2 TLB for 1-GB pages [122].

For virtualizaton, i7-6700K has the following features: VT-x / Virtualization technology, VT-x
EPT / Virtualization for extended page tables, and VT-d / Virtualization for directed I/O.

Intel Xeon E5-1620 (Ivy Bridge-E)

This platform has an Intel Xeon E5-1620 processor on Supermicro X9SRA/X9SRA-3 mainboard.
The processor belongs to one of the Intel Xeon series product line based on the Ivy Bridge micro-
architecture, and targeted at the server, workstation segment. The hyper-threading feature has
enabled the quad-cores to present a doubled number of virtual cores. For a single physical core,
the default and turbo clock speeds are 3.70 GHz and 3.90 GHz, respectively. Since this processor
has four memory channels, four pairs of memory modules are supported. However, only half of
the total slots are installed. Each PCB stick (DIMM DDR3) has a capacity of 8 GB. The total
volume amounts to 32 GB.

The normal caches include: 4x32 KB 8-way set associative level 1 instruction caches, 4x32 KB
8-way set associative level 1 data caches, 4x256 KB 8-way set associative level 2 caches, and 10
MB 20-way set associative shared level 3 caches [123]. TLB caches include: 32 entries of 4-way
set associative level 0 TLB for 2-MB / 4-MB pages, 64 entries of 4-way set associative level 1
data TLB for 4-KB pages, 64 entries of 4-way set associative level instruction TLB for 4-KB
pages, 64-byte line size of 4-way set associative level 2 TLB for 1-MB pages, and 512 entries of
4-way set associative shared level 2 TLB for 4-KB pages [124].

The extension for virtualization support includes the following features: VT-x / Virtualization
technology, VT-x EPT / Virtualization for extended page tables, and VT-d / Virtualization for
directed I/O.

3.3.2 AMD Platform

AMD FXtm-8150 (Bulldozer)

The AMD platform is equipped with an FXtm-8150 processor on the MSI 970A-G46 Sockel
AM3+ mainboard. The FX-8150 belongs to the AMD FX-series family. which was designed as
a rival for the Intel Core-series counterparts (mainly the Sandy Bridge and Ivy Bridge micro-
architectures) in the high-end desktop PC segment. The micro-architecture was Bulldozer upon
initial release and the successor - Piledriver later. Unlike many Intel 8-core processors, which
are presented based on the quad cores by using hyper-threading, one of the amazing aspects of
FX-8150 is that it is a true 8 physical core processor, without taking advantage of the hyper-
threading.

The FX-8150 processor has a single memory controller and double memory channels, and each
channels accommodates a pair of DIMMs. On this platform, half the number of memory slots
are installed with DIMMs, which leads to a 16 GB memory addressing space for the processor.
On the cache side, there are 4x64 KB 2-way set associative shared level 1 instruction cache, 8x16
KB 4-way set associative level 1 data cache, 4x2 MB 16-way set associative shared exclusive level
2 cache, and 8 MB 64-way set associative shared level 3 cache [125]. TLB caches are organized
as two levels. The level 1 iTLB contains 72 entries shared by a variety of page-sizes - 2x24 entries
for 4-KB pages, and 24 for 2MB or 1GB pages. The level 2 iTLB contains 512 entries of 4-way
associative cache-lines for 4KB-pages [126].

The extension for virtualization is AMD-V, featured with SVM (secure virtual machine) tech-
nology, RVI (rapid virtualization indexing, formerly called nested page table) for guest memory
virtualization, and AMD-Vi (formerly called IOMMU) for I/O virtualization.
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3.3.3 System Software

All the above platforms have identical system software, with Ubuntu 14.04.4 LTS (Trusty Tahr)
as the OS, and the customized (due to the modification to KVM) Linux 4.4.13 as the OS kernel.
The C-compiler is GCC version 4.8.4. To make the guest nearly the same as the host, the same
operating system and compiler are installed on the guest and host.

3.4 Performance for Memory Paging

As mentioned in Section 2.1, the memory virtualization or paging in a VM guest is implemented
mainly in two approaches, the shadow paging and the nested paging. According to the benchmark
in intra-node pattern, memory virtualization poses as a potential bottleneck in a few cases.
Figures 3.3 (a) and (b) compare the normalized performances between the shadow paging and
the nested paging with a page size of 4 KB. Figures 3.3 (c) and (d) compare the performances
between the shadow paging and the nested paging with a page size of 2 MB. Both of them have
been executed on platform 3 (see Section 3.3).
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(a) shadow paging with page size of 4 KB
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(b) nested paging with page size of 4 KB
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(c) shadow paging with page size of 2 MB
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(d) nested paging with page size of 2 MB

Figure 3.3 The normalized performances of shadow paging and nested paging (The vertical axis
stands for the performance ratio between shadow paging and nested paging)

The results can be interpreted as the following: 1) For most of the selected benchmark work-
loads, the shadow paging and the nested paging suffer less than 10% of the native performance;
2) Both the shadow paging and the nested paging may suffer large percent of the native per-
formance for certain workloads. But generally, the shadow paging suffers more than the nested
paging ; 3) Larger page table (2 MB) benefits the performance for most of the workloads; 4)
Both the shadow paging and the nested paging have their strength and weakness. Neither is
guaranteed to serve a workload ideally. Similar case occurs even for larger page tables.
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Table 3.2: Performance comparison between the shadow paging and the nested paging

Workloads SPT(4KB) NPT(4KB) SPT(2MB) NPT(2MB)
canneal 0.974 0.813 0.976 0.917
dedup 0.461 0.815 0.474 0.900
facesim 0.949 0.942 0.952 0.948
streamcluster 0.984 0.902 0.988 0.961
vips 0.901 0.931 0.863 0.954
x264 0.749 0.767 0.783 0.782

For an easier comparison, Table 3.2 illustrates the most interesting part of the above results.
Workloads such as dedup and vips benefit from adopting the nested paging, with the performance
gain ranging from 3% to 43%. Conversely, canneal and streamcluster suffers more in the
nested paging ranging from 2% to 16%.

These results are obtained by benchmarking only on a single platform and for a single thread.
To gain more general insight, more platforms and more threads are adopted. The benchmark
suite, PARSEC 3.0 (with 12 more applications) is executed on the above mentioned platforms for
1, 2 and 4 threads, respectively. Figures 3.4a, 3.4b and 3.5a present the performance comparison
between the nested paging and the native case. In contrast, Figure 3.5b, 3.6a and 3.6b present
the performance comparison between the shadow paging and the nested paging. The following
results are identified:

• A small percent of the total workloads suffer large percent of the native performance by using
nested paging ; (e.g. P1: 4%; P2: 16%; P3: 12%;)

• Workloads suffering heavily may vary from one platform to another (See C1 in Table 3.3);
• The performance of a specific application may vary with a different number of threads (See

C2 in Table 3.3);

These figures provide the view of direct comparisons of the performances yielded by the shadow
paging and the nested paging. The identified facts are listed below:

• Generally, the shadow paging yields on-par performance with the nested paging. P1: 88% of
the total workloads run nearly at the same speeds in both the shadow paging and the nested
paging, with less than 1% difference; P2: 72% of the total workloads yield above 97% of the
nested paging performance under shadow paging ; P3: 84% of the total workloads yield above
97% of the nested paging performance under the shadow paging);

• The shadow paging is significantly slower than nested paging for a certain workloads (See C3
in Table 3.3);

• The shadow paging outperforms the nested paging for a few workloads (See C4 in Table 3.3);
• The shadow paging ’s superiority over the nested paging occurs more commonly with multi-

threading (See C5 in Table 3.3);
• The superiority of a paging method over the other is platform-dependent. For example, fft

exhibits opposite behaviors on P1 and P2, but quite little bias on P3 (See C6 in Table 3.3).

With the increased number of benchmark applications, testing platforms, and threads, quite
similar observations are made. Based on these observations, the 25 applications can be classified
as the following:

Workloads preferring to Nested Paging (TDP-inlined)

This group includes canneal (P3), bodytrack (P2,P3), dedup (P1,P2,P3), vips (P1,P2,P3),
water_nsquared (P2), fft (P1), x264 (P2). A common aspect of these workloads is that nested
paging yields better performances for them. They prefer nested paging.
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Table 3.3: Summary of the results observed in benchmark

workload
Platform 1 Platform 2 Platform 3

nt=1 nt=2 nt=4 nt=1 nt=2 nt=4 nt=1 nt=2 nt=4

barnes 19.76%
canneal 14.49%
dedup 22.65% 10.73%
fft 10.03%
lu_ncb 9.61% 10.97%
radix 10.65%

dedup 77.35% 90.11% 70.95% 98.19% 90.09% 78.29% 89.27% 80.68% 68.03%
ferret 99.87% 99.57% 79.64%
lu_cb 99.55% 99.35% 76.69%
spl_raytrace 100.00% 96.67% 81.97%
swaption 99.37% 98.99% 76.52%

canneal 81.50%
dedup 74.57% 63.06% 53.30%
fft 90.13%
vips 87.54% 89.13%
water_nsquared 93.56%

barnes 103.83%
fft 107.77%
fmm 101.73%
lu_ncb 102.17%
radix 107.28% 106.58%

bodytrack 105.56%
canneal 103.92%
fluidanimate 106.53%
lu_cb 102.09% 102.09%
radix 108.66% 102.97% 103.47%
spl_raytrace 116.62%
streamcluster 110.07%
vips 114.99%
water_spatial 113.71%
x264 117.66%

fft 90.13% 107.77% 98.67%
x264 95.79% 101.71%

C1

C2

C3

C4

C5

C6

1. nt stands for the number of threads;
2. C1 entries are the normalized performance loss in percentage;
3. C2 entries are the normalized performances in percentage;
4. C3, C4, C5, C6 entries are the ratio of performances between shadow and nested paging;

Workloads preferring to Shadow Paging (SPT-inclined)

This group embraces barnes (P1,P3), fft (P2,P3), lu_ncb (P2), radix (P2), fmm (P3), radix
(P2,P3), x264 (P1,P3). They exhibit better performance for shadow paging than nested paging.
Their favor shadow paging. In that case, performance gain ranging from 1.73% (fmm on P2) to
7.77% (fft on P2) can be obtained.

Workloads not too sensitive to Paging Method

This group includes blackscholes, facesim, ferret, fluidanimate, freqmine, raytrace,
swaptions, fmm, ocean_cp, radiosity, and volrend. They are not too sensitive to particular
a paging method.

In summary, a conclusion is that both the two paging methods have their strength and weak-
ness, regardless of the testing platform, benchmark application and page size.
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Figure 3.4 Normalized performance of PARSEC 3.0 in KVM with 1, 2, and 4 threads on
(a) Platform 1 (Intel Core i7-6700K), (b) Platform 2 (Intel Xeon e5-1620-v2)
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Figure 3.5 Normalized performance and comparison on Platform 3 (AMD FX-8150) (a) Nor-
malized performance for NPT, (b) Performance comparison between SPT and NPT
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Figure 3.6 Performance comparison between SPT and EPT
(a) Platform 1 (Intel Core i7-6700K), (b) Platform 2 (Intel Xeon e5-1620-v2)

36



3.4 Performance for Memory Paging

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b
la

c
k
s
c
h
o
le

s

b
o
d
y
tr

a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

fa
c
e
s
im

fe
rr

e
t

fl
u
id

a
n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
c
e

s
tr

e
a
m

c
lu

s
te

r

s
w

a
p
ti
o
n
s

v
ip

s

x
2
6
4

b
a
rn

e
s ff
t

fm
m

lu
_
c
b

lu
_
n
c
b

o
c
e
a
n
_
c
p

ra
d
io

s
it
y

ra
d
ix

s
p
l_

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r_
n
s
q
u
a
re

d

w
a
te

r_
s
p
a
ti
a
l

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e
 o

f 
P

A
R

S
E

C
-3

.0
 (

E
P

T
/n

a
ti
v
e
) nt=1 nt=2 nt=4

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b
la

c
k
s
c
h
o
le

s

b
o
d
y
tr

a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

fa
c
e
s
im

fe
rr

e
t

fl
u
id

a
n
im

a
te

fr
e
q
m

in
e

ra
y
tr

a
c
e

s
tr

e
a
m

c
lu

s
te

r

s
w

a
p
ti
o
n
s

v
ip

s

x
2
6
4

b
a
rn

e
s ff
t

fm
m

lu
_
c
b

lu
_
n
c
b

o
c
e
a
n
_
c
p

ra
d
io

s
it
y

ra
d
ix

s
p
l_

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r_
n
s
q
u
a
re

d

w
a
te

r_
s
p
a
ti
a
l

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e
 o

f 
P

A
R

S
E

C
-3

.0
 (

S
P

T
/E

P
T

) nt=1 nt=2 nt=4

(b)

Figure 3.7 Performance comparison with the page table size of 1 GB on Platform 2 (Intel Xeon
e5-1620-v2) (a) between EPT and native (b) between SPT and EPT
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3.5 Summary

This chapter answers Questions 3, 4 and 5 stated in Section 1.4. By the nature and the demand
for resources, HPC workloads are classified into multi-threaded type running in the intra-node
pattern and multi-process type running in the inter-node pattern. The benchmark applications
are discussed and selected for the intra-node pattern. Due to its diverse workloads and ease of
use, PARSEC-3.0 is selected. To yield more generic benchmark results, three testing platforms
are specified. Their features are similar but not the same. The results revealed the limitations
encountered by the current solutions for virtualizing the guest memory address translation.
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In Chapter 3, the performance loss for a bunch of typical real-world workloads are measured
and evaluated for the intra-node patterns in a virtual cluster. The benchmark results indicate
that both techniques for memory virtualization have their strength and weakness when dealing
with the diverse workloads. Neither guarantees to handle all workloads equally well.

This chapter presents two generic ideas as remedies to this performance drawback in memory
virtualization and the paging translation. One is DPMS (dynamic paging method switching),
which aims to make the best use of the two paging methods based on a run-time analyzing of
the performance data of the running workload. The other is STDP (simplified two-dimensional
paging), which attempts to reduce the cost of traversing the nested page tables by adopting a
new paging scheme.

In Section 4.1 the benchmark results is reflected, these two solutions for memory virtualization
in virtual machine guests are reviewed and the ideas are proposedd. Section 4.2 presents DPMS.
From the overall design to the functional units, each aspect of the design is elaborated with an
emphasis on its independence from the implementation on a concrete hypervisor. Section 4.3
is dedicated to STDP, with a focus on its feasibility to reduce the paging cost by restructuring
the paging scheme for both software and hardware. Due to the lack of appropriate hardware
support, the discussion is based on the assumption that this functionality may be supported
in future by hardware, thus the software side is focused. Section 4.4 is a brief summary of the
innovation reflected by both ideas.
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4.1 Reflections and Solutions

An observation from the benchmark results is that two approaches are possible to remedy the
performance drawback in the currently used paging techniques.

• Make the best use of the shadow paging and the nested paging ;
• Modify the structure used by the more promising current solution.

These prompt the core ideas for a contribution to this topic, namely, dynamic paging method
switching, and simplified two-dimensional paging with large page tables. Both ideas are described
briefly and explained in further detail.

4.1.1 Dynamic Paging Method Switching

This idea is inspired by the observation that both shadow paging and nested paging have strength
and weakness, which remains even when large page tables are used. The current hypervisors
adhere to the static configuration of the paging method when the physical host is booted up. A
consequence is that during the execution of the guest, the guest workloads cannot exploit the
benefits of both the shadow paging and nested paging. The diverse nature and run-time behavior
of the workload, which may incur large differences in performance has not been used by the
hypervisors. In the attempt towards a cleverer hypervisor, the “footprint” of a workload should
be used to aid the creation of a more favorable environment for the running workload. With the
support of dynamic paging method switching, the hypervisor becomes capable of capturing the
run-time traits of the workload, and acting accordingly by adjusting the paging method. In this
approach, the workload may exploit the benefits of the two paging methods and yield higher
performance than in the cases where the paging method is statically configured.

4.1.2 STDP with Large Page Table

Unlike the dynamic paging method switching, STDP represents the efforts in an entirely differ-
ent dimension. The objective is not to exploit two paging methods, but to modify the more
promising paging method in a way that the negative side is significantly diminished if not en-
tirely eliminated. The benchmark results indicate that the more promising option is the nested
paging. Due to the overall advantage towards its predecessor, this solution has the potential to
be realized more efficient. The performance overhead of nested paging lies in the traversing of
the two-dimensional page tables. Thus the performance of a workload is largely determined by
the reusability of the TLB entries. If the workload is not able to reuse the TLB entries well,
TLB misses may occur frequently and forces the processor to do expensive traversing frequently.

This is the scenario where huge page (2MB) or large page (1GB) can contribute their strengths.
A TLB entry that covers 4KB of memory, covers 2MB or 1GB when larger page is used. The
enlarged coverage of TLB entries may reduce the TLB misses and do benefits to the performance
at certain cost. While the enlarged page size lowers the caching stress for TLB, there are a few
downsides. First, the hypervisor still tracks the usage of each memory page. In cases of memory
shortage, it frees memory by swapping out the less often used pages. The same occurs also to
huge pages or large pages as to 4KB pages, but the cost is significantly higher to swap out 2MB
or 1GB than 4KB. If a large page is only accessed in a random and sparse way, the benefit may
be offset by the swapping cost.

Fragmentation of the memory is another downside with large page size. After many repeated
allocations, contiguous physical memory is fragmented into pieces of various size. Inside a unit
of allocation, there are external and internal fragmentations. The former indicates that the total
memory size is big enough to satisfy a memory allocation request. However, it is not contiguous,
thus difficult to be used by a process. The latter implies that the memory size assigned to a
process is more than sufficient, so that some portions cannot be used by any process. Huge page
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and large page are mainly bothered by the internal fragmentation problem. The idea of STDP
is proposed to overcome these downsides. The following merits may justify an implementation:

• Two steps may be saved for a single mapping from the guest physical to host physical address;
• STDP is free from the heavy swapping cost and fragmentation suffered by using the huge and

large page, therefore, the merits of using normal page size (4KB) in the guest are preserved.

4.2 DPMS - Dynamic Paging Method Switching

As described in Section 4.1.1, the current practice is to determine the paging method before the
guest execution. The limitation is that it may incur more overhead than the other if the current
paging method is not suitable for the workload.

Supposing that the paging method could be changed in response to the ever-changing behavior
of the running workload, the overhead may be minimized. DPMS is designed for combining the
strength of both shadow paging and nested paging at run-time. The purpose is to periodically
adjust the paging method based on the sampled performance data for the workload. As Figure
4.1 depicted, four basic function blocks are necessary for this design, namely, Performance Data
Sampling, Data Processing, Decision Making and Paging Method Switching. The subsequent
subsections are dedicated to the details for each function.

start
Performance

Data Sampling
Data Processing Decision Making stop?

No

Yes

Paging Method
Switching

switching?

No
Yes

end

Figure 4.1 High-level design of DPMS

4.2.1 Performance Data Sampling

DPMS, in the view of cybernetics, is a self-adaptive system that constantly reacts to the changes
occurring to itself by adjusting its behavior, which leads to further changes it reacts to without
external interventions. The change is an event triggered by the variation of the performance of
the running workload at the run-time. As a reaction, the paging method will be periodically
determined if a switching to its alternative can benefit the performance. Depending on the result
of a calculation and comparison, the paging method is changed or not changed. In such a closed
signaling loop, the sampled performance data is used as the feedback for further decisions and
actions in the system. Performance data is used to denote the raw unprocessed data.

Performance metric refers to the output by processing the performance data. It represents a
specific aspect of the performance and reflects how well a program interacts with the underlying
execution environment.

Chapter 3 has discussed the limitations of both the shadow paging and the nested paging. To
partially overcome these limitations by DPMS, the first step is to check whether the current
paging method is still suitable for the workload.

As for the shadow paging, performance loss is directly incurred by the vmexit due to the page
fault in shadow page table. The occurrence of this event is considered to be the major indicator
to the performance. For the nested paging, since a complete traversing of the page tables could
be five times (24:5) more expensive than in the physical machine, the performance mainly suffers
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when traversing the multi-level nested page tables in the case of TLB-miss. TMR (TLB-miss
rate) come as the main indicator. Meanwhile, the IPC (instruction per cycle), which indicates
the overall speed of program execution, can be used to evaluate the effectiveness of the adopted
action. In summary, the performance metrics to be calculated are:

• PFR - ratio of vmexit due to the page fault in the shadow page tables to the overall vmexit
• TMR - ratio of instructions incurring TLB-miss to the overall executed (retired) instructions
• IPC - ratio of instruction number to the clock cycle number

To calculate the above performance metrics, the following data need to be sampled:

npf – number of the vmexits due to page fault in the shadow paging within a sampling period
nvmexit – number of overall vmexit due to any reason within a sampling period
ntm – TLB-miss number within a sampling period, including d-TLB and i-TLB
nret – number of retired instruction within a sampling period
ncycle – number of clock cycles within a sampling period

of which npf and nvmexit are normally statistics monitored in the context of a hypervisor software,
hence obtainable simply by reading from both variables. The remaining, on the other hand, are
events related to hardware and therefore gathered by sampling from the performance monitoring
counters on the processor or logical processor.

4.2.2 Data Processing

With the raw data sampled from either software or hardware, the following performance metrics
can be calculated by the formulas:

cur tmr =
C · ntm

nret
, cur pfr =

C · npf

nvmexit
, cur ipc =

C · nret

ncycle
(4.1)

where C is a coefficient of the quotients to prevent too much floating-point precision loss during
the division of two integers. It scales the numerator to an appropriate order of magnitude before
the division. For convenience, C could be a power of ten, depending on the value of data as well
as the required quotient precision.

In practice, Data Processing serves as the preparation for Decision Making, therefore is entirely
determined by the requirements of the latter. Without knowing the data needed for Decision
Making, no further details about the rules or algorithm can be laid down except for one thing.
As DPMS is based on a predictive model, which relies on the comparison between the current
and previous values of the concerned performance metrics, a number of historical data needs to
be stored for further use. These data are expected to be updated incrementally by replacing the
oldest value with the current one. The ring buffer comes as an ideal choice to store such data.
Figure 4.2 depicts the ring buffer for this.

The current element in the queue is pointed to by a variable and filled with either the current
value of the metric, or the result of a comparison. All values in the queue may be evaluated by
summing them up with a weight for each value. While the oldest value is overwritten, it must
also be subtracted from the total value. Further details of the Data Processing will be presented
in the implementation of DPMS for a concrete hypervisor.

4.2.3 Decision Making

Decision Making is an important part of DPMS. It reflects the intent of the workload based on
calculations and comparisons. This is a critical proccess, as it does not only has a strong impact
on the overall performance, but also determines whether the use of DPMS is worthwhile.
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Ring Buffer

Head

Tail

Figure 4.2 Ring buffer update

The purpose of Decision Making is to instruct a switching to the more suitable paging method
for the current workload based on an analysis of the run-time data. The chosen paging method
is expected to make the running workload more efficient by eliminating vmexits or making better
reuse of the TLB. These are also the criteria to test the effectiveness of Decision Making.
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cur pm <- tdp

cur pm <- spt

cur pm: the current paging method

Figure 4.3 Flow chart of a basic algorithm for Decision Making

Depending on the choices of various factors for performance, the algorithm for making decision
can be complex. But the principle is simple, making adjustments as soon as the paging method
does not suit the workload any more. The input data is a key aspect to establish the correlation
between the desired paging method and the sampled performance data. As an example, Figure
4.3 depicts the flow chart of a basic algorithm for making decisions based on PFR, TMR and
IPC. In this logic, the first thing is to check which paging method is currently used. This is done
by checking a global variable in the hypervisor’s context. If nested paging is disabled, PFR and
IPC are the two metrics to observe. The shadow paging is preferred when PFR is rising and
meanwhile IPC is falling, otherwise no change is needed. If the nested paging is enabled, TMR
and IPC are the metrics to observed. The shadow paging is desired if TMR is rising while IPC
is falling, otherwise no change is needed.

The logic is simplified for making decision. In practice, however, this may not be much useful,
since the correlation between the desired paging method and the sampled performance data may
not be so straightforward. More factors tend to be involved. The flow chart is mainly based on
three considerations: 1) Sufficient sensitivity, which means that the logic should be triggered as
quickly as possible to react to the performance data; 2) Sufficient stability, to avoid unnecessary
switching (jitter or oscillation) incurred by the misprediction; 3) Simplicity, ensuring a quick
response to the changing-behavior of the workload and low cost for DPMS itself.

4.2.4 Switching Mechanism

With DPMS, the paging method is expected to adjust dynamically to react to the ever-changing
workload. Compared to the conventional way that configures the paging method once and for all
before the execution of the guest, the run-time reconfiguration of the paging method is desired
by the workload. This adds complexity and probably overhead to the current hypervisor.
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However, it is worthwhile due to the possible performance gain. As the central part of DPMS,
the paging method switching involved mainly the following aspects:

1. Which part of the hypervisor is suitable for adjusting the paging method?
2. How to notify the hypervisor of a paging method switching desired by the workload?
3. How to ensure a smooth transition between the two paging methods?
4. How to reconfigure for the chosen paging method?
5. How to avoid oscillation or minimize its impact on the performance?

Depending on the concrete implementation of a software, answers to these questions may vary
from one hypervisor to another. However, more or less they have something in common. A few
general principles are worked out to aid the implementation of a specific hypervisor software for
specific hardware.

To signal the intent on the paging method switching, a wise practice is to take advantage of the
vmexit whenever it occurs. In other words, only do it when really necessary. This ensures that
the guest execution will not be interrupted due to the intent of switching the paging method and
incur as little overhead as possible. Figure 4.4 depicts the occasion when or where the paging
method switching should occur with this consideration. DPMS takes any opportunity during a
vmexit due to any reason rather than forcing vmexit for it own purpose. In any hypervisor for
any architecture there is such occasions to perform it.

Paging Method
Switching

switching? Guest OS run

Exit Handling

No
Yes

vmentry

vmexit

Figure 4.4 Occasion for PM switching in the execution flow

By comparing the current and the expected paging methods, the intent to switch the paging
method is checked by the hypervisor. If different is expected, a flag is set to signal this intent,
and the corresponding action is taken before the next vmentry. Otherwise nothing changes. In
this way the hypervisor knowns the intent of the guest workload and takes appropriate action if
necessary.

The third and fourth questions are closely related with each other. A transition from one
paging method to the other involves reconfiguring certain parts of the hypervisor and the pro-
cessor. On the software side, the major thing affected is the page tables (the root of page tables
as well). On the hardware side, it is the operating mode of the processor regarding to the paging
method. A smooth transition is only possible when the processor’s MMU (memory management
unit) makes use of the selected page tables and calls the page fault handler accordingly.

In principle, different strategies exist for switching between the two types of page tables. For
example, to retain or to destroy the current page tables before switching. However, considering
that the two types of page tables have different stability and way of maintenance, not all strate-
gies are guaranteed to work. As the shadow page tables are more volatile than the nested page
table, they may contain inconsistent entries when returning from its alternative. On the other
hand, the nested page tables are not burdened with maintaining the consistency with the guest
page tables. So even the entry changes, it occurs in a much slower pace than the shadow page
tables. Therefore, a reasonable choice is to retain the nested page tables, rebuild the shadow
page tables when switching from the nested paging to the shadow paging, but to discard the
shadow page tables and restore the nested page tables in the reverse process.
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Figure 4.5 Basic operations for Paging Method Switching

Naturally, an alternative way is to retain the shadow page tables and keep them synchronized
with the guest page tables under nested paging. So the efforts for rebuilding the shadow page
tables can be saved at each time. However, new effort must be taken in tracking the modifications
in the guest page tables and updating the shadow page tables accordingly. This not only incurs
overhead, but also adds complexity to the hypervisor. Figure 4.5 depicts the control flow for
switching the paging method.

Nowadays, HPC is dominated by the x86-based architecture. The idea of DPMS is focused on
this architecture. However, its applicability is not limited to x86-based architectures. The HPC
history has witnessed the rising and fall of several dominant processor architectures. On the
road to exa-scale computing, the adoption of energy efficient technologies has been a trend in
HPC. ARM processor, for example, is expected to contribute its strength in this aspect. MIPS,
PowerPC, UltraSPARC also take slight shares in the total installations of HPC system.

The applicability of DPMS on the non-x86-based architectures is a little complex. A few ISAs,
such as the recent ARM, and PowerPC, have built in mechanisms similar to shadow paging
and nested paging, which is known as Stage-2 MMU in ARM for performing nested paging.
Shadow page tables are created by referring to the SLB (segment lookaside buffer) and HTAB
(Hashed page TaBles) on PowerPC [127]. To the best of our knowledge, for these architectures,
hardware-assited memory virtualization mechanism has not been reported yet. Generally, the
virtualization technology for such processor architectures is far from mature compared with that
for the x86-based architecture, probably due to the less demand in production. Nevertheless, at
least for ARM processor, DPMS is applicable.
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4.3 STDP - Simplified Two-Dimensional Paging

The Simplified-TDP with Large Page Table (STDP for short) is another approach to diminish
the performance loss for memory virtualization. Unlike DPMS, whose operation is a mix of the
TDP and SPT, STDP is merely a variant of the standard TDP (nested paging), with the idea
to enhance it by simplifying the internal paging structures. Therefore, not only the overhead
incurred by the vmexit due to the need of synchronizing the shadow page tables can been avoided,
but also the cost for traversing the multi-level nested page tables can be considerably reduced.

Such a modification requires a co-design of software and hardware, and to creation the function
in true hardware is beyond the hypervisor researcher’s scope. A possible solution is to use a full
system emulator. At present, the idea merely serves as a prototype to study the feasibility of
adopting the new paging scheme by the processor for a better support to memory virtualization.

TDP Root Level 4 Level 3 Level 2 Level 1 Address

(a) Traditional TDP (b) STDP

TDP Root

Level 2 Level 1 Address

Figure 4.6 High-level Design of STDP

Figure 4.6(b) is an overview of the STDP design, in comparison with the traditional paging
scheme adopted by the nested page table walking in Figure 4.6(a). The STDP transforms the
four-level page table tree into a two-level “fat” page table tree at the software level.

The STDP consists of two parts: the software part with the restructured nested page tables
and the hardware part with the adaptive MMU for nested paging. Both are discussed below.

4.3.1 Revisiting the Current Paging Scheme

Shadow paging is a software-based solution for memory virtualization. As Figure 2.3 depicts, the
major infrastructure is a group of shadow page tables under the control of the hypervisor. To
perform the translation from the GVA (guest virtual address) to HPA (host physical address),
the shadow paging combines the three intermediate steps for each GVA→HPA into a single entry
by a series of address mapping in the hypervisor. In this way, the shadow page tables are filled
gradually with the ultimate host physical address for the corresponding entries in the guest page
tables. If a page fault occurs in the guest for any reason, the shadow page table entries must be
freshly filled or updated at the time when control is returned to the hypervisor.

However, since this kind of shadow pages is a software infrastructure of the hypervisor and
must be maintained as consistent as possible with the guest page table, the processor had to
switch constantly from the guest (non-root) to the host (root) mode to update the shadow table
pages. During this period of time, a considerable number of CPU cycles may have been wasted.

As a more recent solution, the nested paging allows the GVA→GPA translation be retained in
the guest, while assigns the task for translating the GPA→HPA to the processor. The expensive
vmexit due to the guest page fault is unnecessary. Nevertheless, the weaknesses of nested paging
are also obvious. For performance reason, the nested paging relies on the reusability of TLB
entries. Since the TLB contains a number of the most recently accessed GPA→HPA mappings,
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it is likely that these entries are still useful in future. In this manner more time can be saved
for traversing the page table in subsequent operations. If the TLB miss occurs, multi-level page
tables must be travesed to fetch the data from the memory. Due to this nature, the TLB may
not be quite helpful in saving more efforts for page table walking when a running workload is
not good at taking advantage of the TLB entries. Therefore the performance gain may more or
less be offset by the loss suffered in walking the nested page tables.

Since neither the shadow paging nor the nested paging is guaranteed to handle a given workload
equally well, one may wonder if any better solution exist. Within the framework of the current
technology, this is difficult if not impossible. The performance of each solution depends largely
on the ability to reuse the cached results of the previous page table walking. Is shadow paging
an ideal solution for this? Shadow page tables cannot be maintained without interrupting the
guest execution and returning to the hypervisor’s context. Actually, to reduce the occurrence of
page faults in the guest is the only way for better performance. However, this kind of memory
access behavior tends to be workload-specific thus is beyond the control of the hypervisor. The
nested paging, though also suffers, has the promise to improve the performance if it can be more
capable to take the advantage of TLB entries, or mitigate the cost for traversing the nested page
tables. While the former suggests the use of a larger TLB, the latter is the focus of this section.

Sign Extend PGD PUD PMD PTE Offset

16 9 9 9 9 12

(b) long mode

PD PT Offset

10 10 12

(a) legacy mode

Figure 4.7 Breakdown of the logical address for x86-64

Assumably for the sake of tradition and simplicity, the same paging scheme has been adopted
for x86-64 architecture and the nested page table walking. As depicted in Figure 4.7(b), the 64
bits of a logical address is partitioned into six parts, namely, Sign Extend, PGD, PUD, PMD,
PTE and offset. The Sign Extend indicates the canonical [128] and is currently not used. Except
the 12-bit Offset, the remaining four parts are 9-bit long, and each serves as an index to the
entry of a page table at the lower level. To translate an address in this format by the hardware
MMU, the page tables on the software side also need to be organized in this 4-level hierarchy.
Since each entry for a page table takes 8-bytes, a 4KB-page contains 29 entries. An hierarchy
formed by these page tables is an N -ary tree structure [129], where N is 1024 in 32-bit (legacy)
mode, and 512 in 64-bit (long) or 32-bit PAE modes.

In the legacy mode, as depicted in Figure 4.7(a), two levels of paging are applied, the overhead
may not be obvious. However, the overhead grows proportionally to the level. Given that the
time for a single memory access is constant, the time for searching in a 4-level tree structure
is about twice as that in 2-level tree structure. Even though, it does not matter too much for
paging in a physical machine, but dose in a virtual machine. The basic reason is that for a
virtual machine, if the nested paging is used, the cost difference between 4-level and 2-level page
tables can be magnified by a factor of 5 in the worst case due to the same 4-level paging scheme
in the second dimension.

So far, the nested paging has simply adopted the same schemes as that in long and PAE modes
for traversing the two-dimensional page tables, regardless of which paging scheme is applied by
the guest. This have been done probably for two reasons. First, it may have been convenient
for the MMU to walk the nested page tables in exactly the same paging scheme as in the guest.
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The perfect compatibility between the host and guest paging modes helps to avoid further
complexity in both the hypervisor (software) and the processor. Second, multi-level page tables
is more favored over a single-level page table for reasons of memory saving and higher efficiency
of memory utilization. On the other hand, to the nature of a tree structure, the deeper a tree
is, the more expensive the traversing will be. From a performance point of view, a multi-level
paging scheme is worse than a few-level paging scheme.

Specifically, for the worst case of the 4-level paging scheme, a TLB miss may occur each time.
A single GVA→GPA translation costs 24 times of memory accesses in all the page tables, which
is prohibitively expensive compared to five times in the physical machine. However, in Figure
3.3(c)(d) and Figure 3.7(a)(b) it can be seen that workloads are incapable of making good use
of TLB exist (dedup:10.0%, x264:21.8% on P3; dedup:9.37%, barnes:5.35% on P2), even if huge
or large pages are applied. Is it possible for the nested paging to adopt a paging scheme with
fewer levels? If so, how many levels are reasonable for the nested page table walk?

In fact, during a GVA→GPA→HPA translation, the two sets of page tables traversed by the
MMU are independent. Just as the long or the PAE mode (scheme) have been chosen by the
nested paging to support the guest paging, the hypervisor is free to adopt any paging scheme
for traversing the page tables in the second dimension without having to maintain this kind of
compatibility [104]. The only limiting factor is the processor’s capability of switching between
different paging schemes when traversing the nested page tables and the guest page tables.

Theoretically, the paging scheme for the nested paging has a variety of choices, ranging from
the single-level lookup tables to the multi-level hierarchical ones. In practice, it is usually a
trade-off between the memory utilization and the performance. Currently, the 4-level scheme
keeps a balance for most of the 64-bit operating systems. Therefore, it is simply adopted by
the nested paging. An advantage is that this does not add complexity to the processor when
traversing the guest and nested page tables. However, considering that the 4-level paging scheme
yields 24-times memory access in the worst case, this can be a potential source of overhead for
a number of workloads common in the real world. It is not an ideal choice for the nested paging.
The task is to find a new balance between the memory utilization and the performance based on
the priority, which drives the paging scheme to move in the direction towards a simpler structure
with fewer levels. A new balance means that the paging needs fewer memory access at the cost
of higher memory consumption for keeping the page tables. The hypervisor also has an influence
in this respect. A few possible candidates are: 1-level, 2-level, and 3-level paging schemes.

The 1-level scheme uses a huge linear array indexed by the virtual addresses 1 and yields the
page frame number for each associated virtual address with a single look-up. While this agility
is advantageous to the performance, the extremely huge memory consumption for saving the
entries in an 1-to-1 manner is a problem. As the array can be huge, this scheme is extremely
wasteful. Even a large chunk of the virtual address range is unused for paging, the corresponding
entries must still be reserved in the array, with the pointers to pages being null. For the currently
used largest virtual address space, [0, 248− 1], 248−12 page table entries (248−21 page tables) are
needed. These may take 248−12+3 = 512 GB memory space, roughly 1/29 ≈0.2% of the maximal
memory space of 256 TB for the current x86-64. Another issue is that such a scheme demands
a huge memory space both virtually and physically contiguous.

The currently used 36 bits by indices can also be split evenly into three levels, with each level
indexing to 236/3=4K entries contained in eight 4KB-pages. The total amount of memory space
can also be (20 + 212 + 224) · 23+12 ≈512 GB, almost the same as consumed in the 1-level or
4-level paging scheme. Nevertheless, the mapping is 1-to-many, and most of the entries may not
be used or filled at once for a given time. The actual consumption is quite likely much lower
than the approximate limit. The unfavorable things are: 1) five memory accesses may be saved
in the second- dimensional walking – not quite striking compared to the default 4-level scheme;
2) Much effort is needed to adapt the data structures and functions in a hypervisor.

1more precisely, the page frame number in the guest physical address space
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In one word, the lost-gain ratio does not take a stand in favor of this solution. Therefore, only
the 2-level scheme is left. Similar to the other schemes, it consumes maximal about (20 + 218) ·
29+12 ≈512 GB memory space, but the actual size may lie between the size of 3-level scheme
and 1-level scheme. Compared with the 4-level scheme, 10 memory accesses can be eliminated
when traversing the second-dimensional page tables, which means a 10/24 ≈40% decrease in
performance loss. Furthermore, although the data structures and functions are also affected by
such a change, the adaption may be relatively easy due to the “double”-relationship between the
indices in the new and old schemes. The infrastructure of the current hypervisor software may
be better reused. For these merits, this form of 2-level paging scheme is actually the optimal
choice not only among the possible three, but also for the trade-off between the performance
and the efficiency of memory utilization. With this scheme, the cost for traversing the second-
dimensional page tables will be reduced by about 40% in theory. Even a workload is by nature
not cooperative with the TLB, a page table walk does not hurt the performance too much.
Figure 4.8(a) depicts the basic form of the 2-level paging scheme, where the lower 48 bits of an
address is partitioned into three parts - PHD, PLD and the offset.

In a modified version, as shown in Figure 4.8(b), with the combination of the first level index
“PLD” and the offset, a huge page form for the 2-level paging scheme can be yielded, which will
further eliminate 5 more times for memory access, and reduce the cost for traversing the second-
dimensional page tables by 60%, compared with the basic form. Meanwhile, only 218 · 23 = 2
MB memory space is needed for the page tables of a guest with 4 GB memory.

Sign Extend PHD PLD Offset

16 18 18 12

(a) Basic form

Sign Extend PHD Offset

16 18 30

(b) Huge page form

Figure 4.8 The 2-level paging scheme for TDP

As a summary of the above discussion, Figure 4.9 depicts a comparison of the four paging
schemes. The performance gain and memory utilization efficiency serve as two criteria for this.
The performance gain can be roughly estimated by the times of the traversing a scheme saves
compared to the default 4-level scheme. For simplicity, other performance influencing factors,
such as the cache size, cache effect are not taken into consideration. The 1-level and 4-level
schemes can be viewed as two extreme cases among the practically useful schemes. By trading
off the two intrinsically conflicting criteria, the 2-level scheme is considered optimal, thus chosen
as the paging scheme for STDP.

The choice of paging schemes is not a new topic, but it has a fundamental impact on the design
of hardware, operating systems, compiler, user application, as well as application libraries. Since
the advent of the x86-64 architecture, a major breakthrough in the Linux-kernel development is
the release and gradual merging of the four-level page table patches [130] into the linux-2.6.10
series at the beginning of 2005, which symbolizes fundamental changes of the operating system
kernel together with the enhanced processor hardware. “Now x86-64 users can have a virtual
address space covering 128 TB of memory, which really should last them for a little while.”
[130]. After that, the 4-level paging scheme has almost been taken as the standard for software
development and computer architecture. Until recently, with the release of the patch for five-level
page tables [131], another fundamental change is drawing near to the paging scheme. Although
the hardware support is not yet shipped by any processor vendor, the implication of “a little
while” has been estimated as 12 years between the two events.

49



4 DPMS - Dynamic Paging Method Switching and STDP - Simplified Two Dimensional Paging

P
er

fo
rm

a
n
ce

g
a
in

Memory utilization efficiency

1-level

2-level

3-level
4-level

100%0%

Figure 4.9 Balance between performance and memory utilization efficiency

This example demonstrates that fundamental change occurs rarely, but does occur at a certain
moment with the advance of the current technology and the deepening of knowledge. Till now, a
fundamental change to the paging scheme in the second-dimensional page tables has not occurred
yet. But there is a reason to believe that hardware support to this capability will be available
for the future processors.
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Figure 4.10 Restructured page table

4.3.2 Restructured Page Table

As Figure 4.10 depicts, the term “restructured page table” gives a general impression of the tree
formed by new page tables for the 2-level paging scheme, which leads to a tree dwindled in depth
but expanded in width. Only two levels of page tables are involved, and the page table at each
level contains 218 entries. These are enlarged page tables. Each of them occupies 218 ·23 =2 MB
memory space. For a modern hypervisor, it should not be a problem to allocate the memory
chunk of this size continuous both virtually and physically in kernel space. Based on the TDP
Root, the 18-bit part “PHD” serves as an index of the entry for the page table at the first level.
Similarly, the 18-bit part “PLD” is used to locate the page frame needed by the GVP→GPA as
the intermediate result or the page frame number for producing the HPA as the ultimate result.

4.3.3 Page Fault Handling in TDP

It is necessary to gain a clear understanding of the page fault handling in the nested paging to
create the STDP on hardware side. The fundamental distinction between the nested paging and
shadow paging lies in their ways to create, utilize and maintain the page tables.
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Figure 4.11 provides an overview of their operations. As the name implies, shadow page tables
are a“shadow”, or an equivalent of the guest page tables owned by the hypervisor. Therefore, the
shadow and guest page tables are equal in serving as lookup tables for guest address translation.
However, due to the need of maintaining an illusion, the guest page tables contain no real physical
address, thus can not be used for paging directly. This task is performed by the shadow page
tables in the hypervisor. By marking the pages occupied by the guest as “write-protected”2, the
hypervisor is informed upon a vmexit about the attempts to modify these pages. This gives it a
chance to update the shadow page tables correspondingly. In this way, the shadow page tables
are gradually filled and traversed by the MMU when a guest virtual address is translated.
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Figure 4.11 Overview of the SPT and TDP mechanisms

To be precise, the nested page table contains mappings from the guest physical to the host
physical page frame numbers. It does not serve as a “shadow” or an equivalent of the guest page
table, but as one step in the whole translation path. From guest virtual to host physical address,
the translation is done by traversing both the guest and nested page tables in an alternative
manner. Without considering the TLB’s role, each mapping in the guest page table is interleaved
with four mappings in the TDP page table, as depicted by Figure 4.12(a) in more detail. If the
TLB is used with the nested paging, and the desired entry is cached, a significant number of
walks in this dimension can be saved. Otherwise, both the guest and TDP page tables are
walked by the physical MMU alternatively. While the guest page tables are maintained by the
guest OS, the nested page tables are still by the hypervisor. A page fault in former does not
have to trigger a page fault and a vmexit in the latter. As a result, the vmexits caused by the
faults in the guest page tables are effectively reduced to null.

To deal with page faults in the second dimension, both Intel EPT and AMD NPT specify a
few conditions under which a vmexit occurs. Taking Intel EPT as an example, accesses using
guest physical address may cause a vmexit due to the EPT misconfiguration, EPT violation,
and page modification log-full events. EPT misconfiguration occurs when translating a guest
physical address, if the logical processor encounters an EPT paging-structure entry that contains
an unsupported value. EPT violation occurs when no EPT misconfiguration occurs but the EPT
paging structure entries deny an access using the guest physical address due to other reasons.
A page modification log full event occurs when the logical processor determines a need to create
a page-modification log entry but the current log is full [195]. These events follow dedicated
exception handlers rather than the one responsible for handling a wide range of events causing
vmexit. AMD NPT does this similarly. It is this kind of separation that ensures an updated
page table in the second dimension, while leaving the guest run as peacefully as possible.

2This is done by setting the bit CR0.WP in the hypervisor.
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On the hardware side, there are detailed descriptions [195, 196] of the translation from the
guest virtual to guest physical to host physical addresses. However, hardly no further detail
can be found on how physical processor, more precisely, the physical MMU traverses both kinds
of page tables. This is understandable, since few users or researchers need to deal with it at
this level within the framework of the current hardware. From the fact that the shadow page
tables are traversed by the physical MMU when the guest is in shadow paging, it can be deduced
that when the nested paging is used, the physical MMU must switch between the guest and the
nested page tables. For each step of the mapping, when a guest physical address is obtained, it
is used to produce the mapping in host physical address space by either referring to the TLB or
traversing the second-dimensional page tables if TLB misses. The complete procedure and its
cost for a GVA→HPA translation by traversing the page tables are summarized in Table 4.1.

Table 4.1: A complete procedure and the cost for a GVA→HPA translation

In TDP Tables In Guest Page Tables
GPT Root 4
PML4E 4 1
PDPTE 4 1
PDE 4 1
PTE 4 1
Ultimate HPA 1

The translation procedure begins with the translation of the GPT (guest page table) root,
and ends with the generation of the ultimate HPA. Except the GPT root, the translation for
each of the other levels involves one memory access in the guest page tables and four memory
accesses in the TDP tables; therefore, the physical MMU must traverse the guest page tables
and TDP tables alternatively, with the CR3 register, root of MMU, being loaded in the following
order: nCR3→nCR3→nCR3→nCR3→gCR3→nCR3→...3

4.3.4 Adaptive Hardware MMU

With the conventional scheme, paging keeps consistent in both guest and the second-dimensional
page tables. Unfortunately, this holds no longer true in STDP case. The physical MMU is unable
to interpret the guest physical address correctly to find the entry of the restructured page table
in the second dimension. In other words, the current physical MMU does not support the new
paging scheme for TDP. An adaptive MMU with two crucial qualities is needed to do it correctly:

• Interprets a 64-bit GVA as PGD|PUD|PMD|PTE|Offset, but a 64-bit GPA as PHD|PLD|Offset
• Detects the type of traversed page table, and adapts itself to handle it correspondingly

4.4 Summary

For improving the memory virtualization, this chapter has proposed two concepts - DPMS
and STDP. DPMS is a pure software solution that applies a strategy to make the hypervisor
more adaptive and more intelligent towards the changing workload without changing the paging
methods themselves. In contrast, the second solution “STDP” means to achieve the same goal
by taking another way – to restructure the page tables used by the nested paging, which is more
promising among the currently used two standard paging approaches to virtualize the memory
in a virtual machine guest. DPMS represents a solutions from a macro perspectives, while STDP
represents a solution from a micro perspective. With the proposal of DPMS and STDP, Question
6 in Section 1.4 is answered.

3Although nCR3 belongs to the vocabulary of AMD NPT, for convenience, it is used here in a broader sense to
denote the root of the TDP tables, not limited to AMD NPT.
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Figure 4.12 Two TDP schemes

53





Chapter 5 Implementation

Contents

5.1 QEMU-KVM Hypervisor Analysis . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 About QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 About KVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Parameter Study for DPMS . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 DPMS on QEMU-KVM for x86-64 . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Performance Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Switching Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.5 Repetitive Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.6 PMC Mechanism in QEMU-KVM Context . . . . . . . . . . . . . . . 80

5.3.7 DPMS for Multi-Core Processor . . . . . . . . . . . . . . . . . . . . . . 81

5.4 STDP on QEMU-KVM for x86-64 . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Restructured Page Table . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.2 Adaptive MMU for TDP . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

This chapter presents a concrete implementation of the proposed concepts in the prior chapter.
The implementation is based on QEMU-KVM. Section 5.1 provides a general introduction to
the components of QEMU and KVM, respectively. In order to provide the necessary information
for subsequent implementation, further benchmarks and analysis are launched in Section 5.2.

Section 5.3 presents a detailed analysis on how to implement the components of DPMS and
integrate them into the given hypervisor’s context. In Section 5.4, discussion is dedicated to
the implementation of STDP, focusing mainly on the software rather than hardware side due to
the temporary lack of technical support for the latter. The hardware side is described to show
that the two parts can work together as a whole. Finally, in Section 5.5, the implementations
of DPMS and STDP for QEMU-KVM are summarized.

5.1 QEMU-KVM Hypervisor Analysis

In the enterprise virtualization world today, hypervisors such as the VMware ESX/ESXi Server,
Microsoft Hyper-V, Citrix Xen/XenServer and Red Hat QEMU-KVM are undoubtedly the major
players. The former two are commercial software that have grown mature over years. The latter
two, on the contrary, are relatively young, but free for research and even production. Compared
with their pioneers, QEMU and KVM are new to the hypervisor family. However, they are
playing increasingly important roles in today’s open-source virtualization. The reasons are: 1)
KVM is an integral part of the current base Linux kernel and is able to transform the Linux
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kernel into a hypervisor without intrusion, which is superior to other standalone hypervisors and
has helped it to win more and more popularity among industry; 2) some of the RHEL-based
Linux distributions have already included QEMU and libvirt as standard packages released for
system virtualization. Therefore, the combination of QEMU and KVM is chosen as the platform
for testing innovative ideas. Let’s have a look inside the QEMU-KVM hypervisor.

5.1.1 About QEMU

As far as computer system emulation and virtualization are concerned, probably no other soft-
ware is more influential than QEMU. It is a versatile open source machine emulator and virtu-
alizer [201] created by Fabrice Bellard in 2003. The capability to virtualize the entire computer
system merely by means of software distinguishes QEMU from the typical hypervisors for system
virtualization. Based on the dynamic binary translation, QEMU allows an OS to run without
any modification. Furthermore, an excellent feature is its ability to emulate dozens of proces-
sor architectures and various peripheral devices, which makes QEMU quite useful for acquiring
the desired software development environment in the absence of the target hardware. Over a
decade’s of development and testing has forged QEMU a mature and valuable software in deal-
ing with processor and device emulation. Therefore, some other hypervisor developers simply
take advantage of this convenience by reusing more or less emulation function of QEMU and
integrating it into their own code base. In this sense, the hardware emulation technology built
in QEMU has a profound influence to the whole open-source virtualization.

QEMU grew out of a PC emulator and ran initially by using the dynamic binary translation
as its unique “accelerator”1. Emulated platforms can be created to suite the need of an operating
system or the user applications compiled for a processor architecture other than the underlying
host has. As aforementioned, emulation offers more flexibility at the cost of performance. Unless
hardware emulation is really needed, more efficient ways exist for running the guest, especially
when the guest and host are targeted at the same processor architecture. In this case, QEMU is
ideally used to emulate only a part of the system, I/O devices, while leaving the processors to be
managed by a hypervisor. It is more or less reused by KVM, Xen and VirtualBox. For QEMU,
these are more efficient alternative accelerators that take advantage of the hardware-assisted
virtualization technology. For one of these hypervisors, QEMU serves as the I/O device emulator.
In addition to be a hardware emulator, QEMU also provides user-space API virtualization, which
enables an application to run on an OS with different ABI other than the one it has targeted
at compiling time. By emulating the ABI layer, the system calls applications needed during the
run-time, an execution environment is created for a user-space application.

Device Model

QEMU’s talent roots in its multi-functional design. While not being written in an object-oriented
programming language, QEMU still exhibited much flavor of the object-oriented design patterns.
Dozens of processor architectures, countless devices, and the objects derived from them, the large
set of entities and their entangled relationships had potentially complicated the implementation
and maintenance of this software. A key issue was how to represent, organize and manage these
entities efficiently. Unfortunately, things were not in a satisfying condition at the beginning. As
Figure 5.1 depicts, prior to v0.11, no device model had ever been adopted. Devices behaved as
ad-hoc2, which means that numerous devices are managed in numerous approaches. It could be
a formidable task to deal with a large number of devices. A turning point was reached in 2009
with the turnout of version 0.11, which embraced a new device model - QDev, aiming to unify
and simplify the representation of numerous different devices. QDev straightens out QEMU by
abstracting and organizing various devices as a hierarchical tree structure with a single-root.

1In the context of QEMU, “accelerator” is used, referring to the mechanism with which the guest code is executed
2ad-hoc means a solution designed for specific purpose, not intended to be adaptable to other purposes
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However, it is not enough in the sense of a well-designed software. QDev underwent a series of
further transformations and in 2012 led to QOM - an almost new device model based on QDev.
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Figure 5.1 Evolution of the QEMU Device Model [197]

As listed in Table 5.1, QDev and QOM are similar in that both are object-oriented, and present
unified interfaces to the users. However, more sense lies in their differences. As the two kinds
of entity - device and bus are adopted in QDev, the major drawback is the confusion created
by the entangled relationship between them. Consequently, to avoid the multiple inheritance
problem, the rule “each device should have a DeviceState associated with it” does not hold true
if a device includes a separate QDev representation referring to a non-DeviceState object [198].

These downsides can be worked around by relying on the “has-a” relationship instead of the
“is-a” in inheritance. Guided by this, a multitude of changes [198] were applied to QDev and
later leads to QOM, in which the concept “ObjectClass” is exclusively treated as the origin for
most of the entities in the system. Since both device and bus share the same origin and uniform
representation in QOM, the notion of device-bus connection is replaced by a variety of device-
device connections. From ad-hoc to QDEV to QOM, each step involves a level of abstraction
and generalization, with the goal to forge the APIs as general as possible to handle a wide
range of devices and configurations. Based on a more fully object-oriented model, the QOM,
QEMU acquired further capability of taking advantage of the object-oriented features, such as
inheritance (single inheritance plus interfaces), class-based polymorphic objects, prototype-based
polymorphic properties, object enumeration, and the factory model for object creation [199].

Figure 5.2 provides an overview of the hierarchy formed by the entities in QOM. Most of
these entities are organized according to the nature or behavior into different branches as a tree
structure. Except the one at the top and those at the end of each branch, all other entities have
a parent, brothers and children. Once a device is implemented, it automatically inherits all the
properties from its parent. The siblings share but can override these properties to suit their own
needs. In addition, a few entities in QEMU do not share ObjectClass as their ancestor and are
out of the tree, either because they are by nature not devices, or merely for auxiliary purposes.
QemuOpt, Visitor, TypeInfo and Property are such examples.

Undoubtedly, QOM has delivered a fundamental impact on the QEMU’s software architecture.
An immediate result is that the notion “Device” becomes a dominant factor in many aspects
of QEMU. For example, an important task of a hardware emulator is to create, register and
initialize the emulated devices. The common interface in QOM performs this quickly and neatly.
QEMU devices are divided into four major types - BLOCK, MACHINE3, QAPI4 and QOM,
corresponding to the block device, the main board, API for QMP (QEMU Machine Protocol)
and the QOM device, respectively. A hash table is used to sort the registered devices. As Figure
5.3 illustrates, the hash table - init_type_list is a global variable, with double linked nodes,
where the essential thing for devices - callback functions are preserved. At the bottom of the call

3Conceptually has been replaced by OPT in the latest QEMU versions, but is still used here for clarity.
4It is actually not registered in the context of current QEMU.
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Table 5.1: A brief comparison of the QDev and QOM [200, 201, 202]

Aspects QDev QOM

Device Relationship

entity: device, bus; represented by DeviceS-
tate, BusState; the two share nothing in com-
mon; device has properties, bus has no; device-
bus-device relation; device has 0 or more buses

entity: device; represented by ObjectClass and
Object; share Object as the common thing; de-
vice has properties; two forms of relationship:
device composition, device backlinks; one de-
vice composition, zero or more backlinks

Namespace three: device, bus, and property namespaces two: device and property namespaces

Hierarchical Form

multiple devices for a child bus; all devices
share a single parent bus; all buses share a sin-
gle parent device; a strict tree with its level
alternatively for bus and device levels; root:
SysBus

no explicit notion of parents; bus may be a
backlink to the child device; child device may
have a backlink to a bus; with device back-
link, device composition forms multiple di-
rected graphs, or else a multi-rooted strict tree

Device Namespace
contain names of QDev; allow device but no
bus to be anonymous; property namespace lo-
cal to device; not refer to any child devices

each device has a unique name; bus treated
as a device; device name independent of path-
names, can be an opaque blob; relationship
treated as named a property

Device Properties

bound to classes and map directly to elements
of the device structure; strongly typed; set and
parsed from a string type; settable only during
construction; read-only afterwards; can not be
hooked by using set or get methods

bound to devices; implemented by closures
provided by device; accessed and modified by
using Visitor through native C type variables;
created without properties; set and get after
initialization; support realize/unrealize; prop-
erties locked when initialized

ObjectClass

MachineClass BusClass Object TypeImpl InterfaceClass DeviceClass

DeviceState MachineState

PCIDevice CPUState

X86CPU

BusState BusChild

ISABus PCIBus

PCIBridge

PCMachineState
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Figure 5.2 Hierarchy formed by the entities in QOM

stack, devices are all managed by manipulating the nodes within the hash table - inserting nodes
upon registration, removing nodes upon de-registration, and traversing the lists while searching.

MODULE INIT QOM

MODULE INIT QAPI

MODULE INIT MACHINE

MODULE INIT BLOCK

init type list

*tqh last

*tqh first

ModuleTypeList
ModuleEntry

node

*init()

*tqh prev

*tqh next

Figure 5.3 Hash table used for managing the emulated devices

Since each of the four types represents a particular kind of devices, QEMU has employed
multiple levels of wrapper, with whose uses detail is gradually concealed and common properties
are extracted for a set of unified interfaces. These include mainly a chain of macros and functions,
from the most general form at the bottom to the most concrete forms at the top of the call stack.
Listing 1 depicts the definitions of the most elementary operations for device management and
implies the chain formed by these operations. As soon as macro is concerned, a particular one is
the module_init, which is a wrapper of register_module_init modified by the GCC attribute
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- constructor. In GCC, the use of constructor and destructor attributes assigns a higher
priority to the functions (initializer and finalizer) they modified to control the order of execution
relative to the main(). In this case, it ensures an execution of the macro module_init before
main() of QEMU, in order to register the devices and create the necessary emulated hardware,
such as the virtual processors in the context of QEMU. Devices are registered by filling the
callbacks into corresponding nodes of the hash table, and initialized by executing those callbacks.

Listing 1 Common interfaces for device registration and initialization

static void init_types(void)

{

static int inited;

int i;

if (inited) {

return;

}

for (i = 0; i < MODULE_INIT_MAX; i++) {

QTAILQ_INIT(&init_type_list[i]);

}

inited = 1;

}

static ModuleTypeList *find_type(module_init_type

type)

{

ModuleTypeList *l;

init_types();

l = &init_type_list[type];

return l;

}

void register_module_init(void (*fn)(void),

module_init_type type)

{

ModuleEntry *e;

ModuleTypeList *l;

e = g_malloc0(sizeof(*e));

e->init = fn;

l = find_type(type);

QTAILQ_INSERT_TAIL(l, e, node);

}

void module_call_init(module_init_type type)

{

ModuleTypeList *l;

ModuleEntry *e;

l = find_type(type);

QTAILQ_FOREACH(e, l, node) {

e->init();

}

}

/* This should not be used directly. Use block_init etc. instead. */

#define module_init(function, type) \

static void __attribute__((constructor)) do_qemu_init_ ## function(void) { \

register_module_init(function, type); \

}

#define block_init(function) module_init(function, MODULE_INIT_BLOCK)

#define machine_init(function) module_init(function, MODULE_INIT_MACHINE)

#define qapi_init(function) module_init(function, MODULE_INIT_QAPI)

#define type_init(function) module_init(function, MODULE_INIT_QOM)

Main Components

QEMU maintains a large code base to emulate a wide range of peripheral devices and dozens of
ISAs. Furthermore, the code base keeps on growing as new features are added for more flexibility
and portability. Nevertheless, the main components still remain relatively stable, which include:

• TCG (tiny code generator): TCG is the central component for emulating processors of different
ISAs. It is actually a combination of de-compiler and compiler. First, the de-compiler extracts
the semantics from the binary code of source ISA and represents them by means of intermediate
code. The compiler generates the binary code for the target ISA from the intermediate code.

• Soft-MMU (Software-controlled MMU): To the guest, Soft-MMU serves as an emulated (phys-
ical) hardware MMU that performs the GVA→HVA mapping. Furthermore, it also maps the
guest virtual address to the registered I/O device callbacks.

• Device Emulation: It does not refer to any individual component, but designates a large set
of the commonly adopted emulation units in QEMU, from PS/2 mouse and keyboard to VGA
card, from the USB hub, USB controller to PCI bridge, serial ports, and the entire chip-sets
on the main board.
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5.1.2 About KVM

KVM, the kernel-based virtual machine, is a software component providing system virtualization
function based on the Linux kernel. Unlike a full-fledged hypervisor, KVM is merely an extension
to the functionality of the conventional Linux kernel. It exists as a module that is dynamically
loadable into the execution context created by other modules and the code permanently compiled
into the kernel. In such a manner, while endowed the Linux kernel the capability of running as
a hypervisor, KVM maintains its relative independence from the rest parts of the kernel, which
is beneficial not only for keeping the hypervisor simpler and more reliable, but also for achieving
more flexibility in code reuse and maintenance. As a result, the Linux kernel infrastructure can
be utilized not only as the basis of a general-purpose operating system for user applications, but
also as the major component of a hypervisor for virtual machine guests.

Although hypervisor and operating system are different kinds of system software, they share
some similarity in managing the system resources, and no clear demarcation exists between them.
Actually, hypervisor is a special-purpose operating system, which services virtual machine guests
instead of normal tasks. For this reason, it may save huge efforts if the components of a mature
operating system can be reused in an appropriated form for virtualization. KVM was created
with this motivation. Being backed by the Linux kernel, KVM has implemented only a number
of core functions, and fulfills its duty by cooperating with the rest of the kernel. Table 5.2 serves
as a brief summary of the major functions implemented by KVM.

Table 5.2: Major Functions implemented by KVM

Function Related Source File Brief Description
KVM system driver kvm main.c open, control and close the device /dev/kvm

VM guest driver x86.c APIs for operating the virtualized hardware of a guest

VCPU driver x86.c, svm.c, vmx.c
APIs for operating the virtualized processor of a guest,
including the vendor-specific VT-hardware part

CPUID emulation cpuid.c, cpuid.h emualte the CPUID function for VCPU

Virtual MMU

mmu.c, mmu.h,
paging tmpl.h,
kvm cache regs.h
coalesced mmio.c
coalesced mmio.h
async pf.c, async pf.h

support for GVA->HPA and I/O device memory mapping,
including a few solutions for performance, such as interrupt
coalescing and asynchronous page fault handling

Instruction emulation emulate.c
emulate a number of particular instructions that cannot be
natively executed, mainly for the MMIO-related instructions

Timer emulation i8254.c emulate the interval timer chip - Intel 8254 PIT
Interrupt controller
emulation

i8259.c, ioapic.c,
lapic.c, irq comm.c

emulate a variety of the interrupt controllers, such as the
Intel 8259 PIC, APIC, IO-APIC and the local APIC

Device pass-through
assigned-dev.c,
iommu.c,
vfio.c, vfio.h

support for passing I/O devices from host to guest, mainly
dealing with interrupts (INTX, IRQ, MSI, MSI-X) and the
I/O-deviced mapped memory

PMU emulation
pmu.c, pmu.h
pmu amd.c
pmu intel.c

support for Performance Monitoring Unit in VCPU, including
the vendor-specific features

I/O event message
eventfd.c, irq.c, irq.h,
irqchip

support for sending and receiving messages to and from the
host kernel space

Guest Creation and Execution

Compared with other standalone hypervisors, such as Xen, VMware ESXi Server, or VirtualBox,
KVM is tiny. In addition to the functions listed above, the remaining functionality is provided by
Linux kernel and a modified version of QEMU5. As an open-source software, QEMU was adopted
to support KVM mainly for two purposes. First of all, it provided a user interface that is able to
communicate with the KVM driver in the kernel-space and control the execution of the virtual
machine guests by sending corresponding commands to a virtual device, /dev/kvm by means of
ioctl. Second, the huge power to emulate a wide range of peripheral devices happens to be the

5Since version 1.3.0, the previous QEMU branch for KVM is completely merged into the QEMU code base.
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very thing KVM wanted. Figure 5.4 depicts the architecture of the whole hypervisor composed
by QEMU and the Linux kernel with KVM module. QEMU is started either by a command-line
or graphical user interface as a normal user application. Meanwhile the configuration parameters
of a guest are also passed to QEMU. As soon as QEMU enters into the main(), the parameters
are recognized and sorted by the command parser. The devices which had been registered in
the context of constructors are initialized by using these parameters.

I/O devices Memory Processors Storages

Kernel scheduler Device drivers /dev/kvm

host kernel mode

Guest
Memory

VCPU VCPUQ
E

M
U

I/
O

QEMU - the
VM launcher

Normal
Linux Task

Normal
Linux Task

ioctl(kvm,)

host user mode guest mode

Virtual Machine

Guest Memory

user-space

kernel-space

vmentry

vmexit

Figure 5.4 QEMU and KVM as a whole hypervisor

After a series of well designed preparation, the execution enters into the main_loop(). If the
essential thing is extracted from the lengthy details, the skeleton can be depicted by Listing 2.

Listing 2 Skeleton for the guest execution

int main()

{

open("/dev/kvm")

ioctl(KVM_CREATE_VM)

ioctl(KVM_CREATE_VCPU)

for (;;) {

ioctl(KVM_RUN)

switch (exit_reason) {

case KVM_EXIT_IO: /* ... */

case KVM_EXIT_HLT: /* ... */

...

}

}
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5.2 Parameter Study for DPMS

Section 4.2 has presented the concepts to design the functional units of DPMS from a hypervisor-
independent point of view. As the two units - Data Processing and Decision Making are more
dependent on the choice of input data, a question must be answered before the implementation of
them, namely, how is the optimal paging method correlated with the performance data collected
from the PMCs? By analyzing the run-time performance data, this section attempts to answer
this key question, and make preparation for implementing the whole design of DPMS.

The analysis is practically to mimic the hypervisor’s possible reaction to the sampled data.
Instead of being fed into DPMS for decision making, the data is redirected to a syslog file in
the Linux kernel (/var/log/syslog). For each tested workload, data items specified in Section
4.2.1 are logged in this approach, with a sampling frequency of 1 Hz. Table 5.3 lists some of the
performance metrics calculated from these raw data from a global view, including: 1) IPC, 2)
PF, 3) vmexit, 4) PFR, 5) TLBM, 6) TMR, as well as 7) ratio of TLBM for NPT and SPT, 8)
ratio of TMR for NPT and SPT. Among these, PF and vmexit are the average occurrences per
second, IPC, PFR, TLBM and TMR are the global mean values in the statistical sense, which
are different from the corresponding instant values calculated on the fly.

In addition to the global statistic view, the data are also analyzed from a real-time perspective.
The variation of instant IPC, PFR, and TMR values during the execution of each workload are
plotted and smoothed in Figure 5.6 5.7, 5.8 and 5.9 by applying the approximate mean value 6.

For the sake of observation, the workloads in Table 5.3 are marked by different colors according
to their nature regarding the paging method. From the results exhibited in Figure 3.6a and 3.6b,
dedup, vips and fft are marked as TDP-inclined, while barnes as SPT-inclined for Platform
1 (P1); dedup, streamcluster, vips, x264 and water_nsquared are marked as TDP-inclined,
while fft, lu_ncb, radix as SPT-inclined for Platform 2 (P2).

By comparing the corresponding statistics between the nested paging and shadow paging, it is
easy to identify some of the obvious correlations between the performance data and the applied
paging method.

First, the (global and instant) IPC can really reflect the execution speed of a workload, which
proved true for the majority of the PM-sensitive workloads. However, for many other workloads,
this may not be the case. Examples are facesim, freqmine, lu_cb, lu_ncb and radiosity for
P1, and blackscholes, bodytrack, canneal, facesim, ferret, freqmine, lu_cb, lu_ncb and
radiosity for P2. These illustrate that those workloads which differ significantly in global IPC
values may yield quite similar performance in the shadow paging and nested paging. Considering
the possible negative impact on the reliability of this metric due to so many exceptions, IPC is
excluded as a factor for decision making.

Second, most of the TDP-inclined workloads exhibit durable high PFR in SPT. Examples are
bodytrack (P2: 44.76%), dedup (P1: 29.89%, P2: 47.51%), vips (P1: 22.31%, P2: 47.10%), fft
(P1: 52.49%). However, the root cause lies on the PF and vmexit, which spike to extraordinary
high level – one or two orders of magnitude higher than average values.

Figure 5.5a and 5.5b compared the occurrences of page fault and vmexit for all the workloads.
Both platforms showed significantly huge figures for the TDP-inclined workloads than the others.
It coincides with the results of the performance benchmark, and clearly revealed the dominant
causes for the heavier performance loss for shadow paging and nested paging. On the other hand,
PFR - which has ever been adopted as a major condition for paging method switching cannot
identify this characteristic, as the corresponding values in Table 5.3 reflect.

6To better illustrate the different behaviors under TDP and SPT, the subfigures in Figure 5.6, 5.7, 5.8 and 5.9
are arranged compactly, which makes the legends too small to read. For this reason, they are specified here.
In Figure 5.6 and 5.7, red: Instruction per Cycle, blue: approximated Instruction per Cycle, black: Page fault
vmexit rate, purple: approximated Page fault vmexit rate. In Figure 5.8 and 5.9, red: TLB miss rate, blue:
approximated TLB miss rate.
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This fact suggests that higher occurrences of page faults and vmexit are sufficient and neces-
sary conditions for inferring a workload to be TDP-inclined. They are more effective than PFR
in identifying the TDP-inclined workloads. Furthermore, the adoption of them also helps the
hypervisor to avoid division operations in kernel space.

Another aspect is to determine the conditions for switching to the shadow paging. Nevertheless,
the statistics provide quite limited clue to how the performance of a SPT-inclined workload is
influenced by the corresponding performance metrics. Among all items, only TLBM and TMR
have established some positive connections with the relative lower performance for fft on P2
with the nested paging.

The nested paging and shadow paging are independent solutions. Although their performance
can be compared each other, they are irrelevant. Low performance yielded by one of them does
not necessarily indicate high performance yielded by its alternative. However, if the workload
hits the weakness of a paging method, a switching to its alternative may bring benefits by
avoiding such a case. Figure 5.8 and 5.9 illustrate the TLB miss rates under the nested paging
for each workload and each platform. The sporadic zigzags are smoothed by an approximated
curve to show the overall trend of TMR. The figures revealed at least the following facts:

• For most of the workloads, TMR falls in a range of [10−6, 10−3], with only a few exceptions
out of this region (above 10−3 normally at the beginning of execution).

• A number of workloads yield TMR significantly lower than 10−3 during the majority of run-
time, such as facesim (P1: 10−4, P2: 10−4), volrend (P1: 10−6, P2: 10−5), raytrace (P1:
10−4), freqmine (P2: 10−5), water_nsquared (P1: 10−5, P2: 10−6).

• The TMR exhibited by the SPT-inclined workloads is a little confused. For example, barnes
(P1: around 10−3), radix (P2: around 10−3), fft (P2: within [10−5, 10−4]), and lu_ncb (P2:
within [10−4, 10−3]).

These facts imply that higher TMR is neither a sufficient nor a necessary condition for inferring
that a workload is SPT-inclined. However, in spite of such ambiguity of TMR, one thing is clear
– workloads yielding TMRs less than a magnitude of 10−5 suffer less likely large performance loss
with nested paging. Examples are volrend (P1: 10−6, P2: 10−5), ferret (P1: 10−5), freqmine
(P2: 10−5), and water_nsquared (P1: 10−5, P2: 10−6).

On the other hand, workloads yielding TMRs higher than a magnitude of 10−5 are quite likely
to suffer more performance loss with the nested paging than the shadow paging. Meanwhile, it is
noticable that both page fault and vmexit for the SPT-inclined workloads occur less frequently
with the nested paging. Examples are: barnes on P1 (PF: 16.08, ranking 12/25, vmexit: 876.74,
ranking 10/25), fft on P2 (PF: 0.09, ranking 7/25, vmexit: 22.42, ranking 10/25), lu_ncb on
P2 (PF: 0.01, ranking 2/25, vmexit: 25.52, ranking 5/25), radix on P2 (PF: 0.09, ranking 7/25,
vmexit: 75.77, ranking 11/25). All the figures are at least one magnitude lower than those
yielded by workloads which proved not SPT-inclined.

As a summary of the discussion, the rules for different types of workloads are the following:

For SPT-to-TDP Switching: For a switching from the shadow paging to the nested pag-
ing, PF and vmexit are much relevant. When the occurrences of durable large values of the two
are observed, the nested paging should be switched to. In this case, if TMR grows rapidly, the
shadow paging can be switched back.
For TDP-to-SPT Switching For a switching from the nested paging to the shadow paging,
TMR, PF and vmexit are much relevant. When the occurrence of durable large values of TMR,
and meanwhile low occurrences of PF and vmexit are observed, the paging should be performed
by shadow paging. In this case, if PF and vmexit spike to a significantly high level, the nested
paging can be switched back.
For No-Switching Among others, the conditions for switching are not triggered, therefore, the
paging method can remain as it is.
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5.2 Parameter Study for DPMS
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Figure 5.5 Occurrences of page fault and vmexit for PARSEC-3.0 workload on
(a) Platform 1 (Intel Core i7-6700K), (b) Platform 2 (Intel Xeon e5-1620-v2)
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Figure 5.6 PFR and IPC for PARSEC-3.0 Benchmark Suite on Platform 2
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Figure 5.7 PFR and IPC for PARSEC-3.0 Benchmark Suite on Platform 2
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Figure 5.8 TLB Miss Rate for PARSEC-3.0 Benchmark Suite on Platform 1
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Figure 5.9 TLB Miss Rate for PARSEC-3.0 Benchmark Suite on Platform 2
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5.3 DPMS on QEMU-KVM for x86-64

5.3.1 Performance Data Sampling

Performance metrics are related with some specific OS kernel activities, such as task scheduling,
interrupt handling and context switch, or hardware events, such as the instruction fetching, cache
missing, branch miss-prediction and pipeline stall. As nowadays there is a rapidly growing need
to analyze and tune the performance, software and hardware tools are becoming commonplace.
Software tools are portable, but relatively intrusive, inefficient, and also incapable of measuring
the hardware events. In contrast, hardware tools are less intrusive, efficient, capable of measuring
a rich set of events of the hardware, especially the processor at the cost of a certain portability due
to the difference in hardware architecture. To provide direct support for performance monitoring,
the modern processor builds a set of special-purpose registers, the PMC (performance monitor
counter) inside.

Since Pentium processors, PMC has entered into the x86 architecture as a set of MSRs (model-
specific registers), aiming to monitor a number of events by selecting the appropriate parameters.
Over a few generations, the PMC function has been enriched by an increasing number of selection
events and a variety of control events, together with a division between the events specific
to and independent of the micro-architecture, which are referred to as architectural and non-
architectural events. Architectural events can be monitored on almost any processor regardless of
its micro-architecture, therefore are more widely used for performance research. The associated
hardware facility includes a finite number of performance-event counter MSRs and performance-
event selector MSRs, of which the latter must be configured with the selected events and some
other bits before the former begins counting.

As PMC is well documented in the system development manuals [196, 203] by specific processor
vendors, it suffices to mention only the related parts for brevity. In Intel x86-64, the performance-
event counter and selector MSRs are known as IA32_PMCx and IA32_PERFEVTSELx , respectively.
Figure 5.10 depicts the bits layout of the performance-event selector MSRs, followed by a brief
explanation of each field. Bits 0 through 7 contain the value of the selected performance event,
and bits 8 through 15 the corresponding mask for the event (can be understood as a criterion
for the validity of the event). Bits 16 and 17 indicate the privilege level at which the selected
event is to be counted - PL 0 in OS kernel space, or PL 1, PL 2, PL 3 in user space. Bit 22 is the
switch of the counter. When set, performance counter begins to count, or else it does nothing.
Finally, bits 24 through 31 contain the counter mask, which controls how the specific event is to
be counted, with the counter being incremented each cycle by the event count associated with
multiple occurrences when it is zeroed out. Otherwise it is incremented by one or zero, depend-
ing on the comparison result between this mask and the occurrences of the event in a single cycle.
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Figure 5.10 Bit field layout of IA32_PERFEVTSELx MSR [203]
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The architectural feature is reflected by the following aspects [203]:

• Bit field layout of IA32_PERFEVTSELx MSRs is consistent across processor micro-architecture
• Addresses of IA32_PERFEVTSELx MSRs remain the same across processor micro-architecture
• Addresses of IA32_PMCx MSRs remain the same across processor micro-architecture
• Each logical processor owns a set of IA32_PERFEVTSELx MSRs and IA32_PMCx MSRs. The

configuration facilities and counters are not shared between logical processors on the same
physical processor core

In addition, both IA32_PERFEVTSELx MSRs and IA32_PMCx MSRs are arranged consecutively,
with 0x186 and 0xc1 as the starting addresses, respectively. The number of counters available in
a logical processor, the number of bits in the counter, and the number of supported performance
monitoring events are all enumerated by the CPUID functions invoked by software.

To use a counter, the first step is to configure its associated selector by writing the event code
and a proper mask into the selector MSR pointed by its address. Then it is cleared. The counter
begins immediately to count the occurrence of the selected event when the EN field (bit 22) of
the selector is set, and stops when EN is cleared, leaving a number in the counter to be read.
This indicates the occurrences of the specified event. For practical use, however, the result for a
single-shot counting is far from sufficient. What is normally expected by a user is a data stream,
obtained in a continually repeating process to monitor the ever-changing behavior. Therefore,
the counter usually undergoes a sequence of operations repeatedly: cleared, turned on, count,
turned off, cropped, cleared and so on ... Listing 3(b)(c)(d) illustrate how the basic operations
are realized for starting, stopping as well as cropping PMCs.

Table 5.4: Allocation and configuration of PMC MSRs

Event Selector address Counter address Event Code Mask
i-TLB miss 0x186 0xc1 0x85 (0x01ull << 8) | (0x03ull << 16)
d-TLB miss 0x187 0xc2 0x49 (0x01ull << 8) | (0x03ull << 16)
clock cycle 0x188 0xc3 0x3c (0x00ull << 8) | (0x03ull << 16)
retired instructions 0x189 0xc4 0xc0 (0x01ull << 8) | (0x03ull << 16)

The hardware-related performance data proposed in the prior chapter is sampled in the above
manner. For this, the performance-event selectors are configured with the parameters specified
in Table 5.4. By revoking the function for cropping periodically, a stream of performance data is
sampled in an arbitrary period of time, which outputs ntm, nret and ncycle mentioned previously.
The other two, npf and nvmexit, are software-related, therefore are sampled from the context of
KVM. More specifically, the structure - vcpu->stat contains a number of statistics regarding
the status of the virtual processors (cores), including pf_fixed and exists which serve as
accumulators for the occurrences of fixed page faults and vmexits, respectively. More precisely,
pf_fixed counts the number of fixed shadow page table entry (PTE) maps – not exactly the
event occurs to the guest page table. However, as the shadow page table update is incurred
by the updates in the guest page tables, pf_fixed serves as an approximate indicator to the
number of fixed page faults in the guest page tables, thus is simply treated as npf .

Listing 3(e) illustrates a data structure used by DPMS for saving the performance data, the
calculated results, as well as a few heuristic data used for other purposes.

So far, the functions for manipulating the PMCs have been defined. The next problem is
to get them run. While this is straightforward for uniprocessors, things are complex for multi-
core processors. A multi-core processor owns a multiple of identical but independent processing
units in the form of cores or logical processors, including the units for performance monitor and
hardware-assisted virtualization.

The problem boils down to: how many PMUs are needed for sampling the performance data
per VM guest. The answer is: only one. Although each core owns a set of VMCB/VMCS and even
MMU, all the cores that run the same guest are bound to use only a single set of shadow page
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Listing 3 Functions and a data structure used by DPMS

#define IA32_PMC0 0xc1 /* Performance Event Selecter 0 */

#define IA32_PERFEVTSEL0 0x186

#define ITLB_MASK ((0x01ULL << 8) | (0x03ULL << 16))

#define MISSED_ITLB 0x85

#define EventRegisterLow0 MISSED_ITLB | (ITLB_MASK & (~(1ULL << 22)))

(a) Macros used in functions for manipulating the performance monitor counters

static void pmu_init_launch(void *ignored)

{

uint64_t evt_sel;

uint64_t evt_msr, cnt_msr;

/* set counter 0 for ITLB */

evt_msr = IA32_PERFEVTSEL0;

evt_sel = EventRegisterLow0;

cnt_msr = IA32_PMC0;

wrmsrl(evt_msr, evt_sel);

wrmsrl(cnt_msr, 0);

evt_sel |= 1 << 22;

wrmsrl(evt_msr, evt_sel);

... ...

}

(b) Function to start the PMCs

static void pmu_get_counter_launch(void *info)

{

uint64_t evt_sel;

uint64_t evt_msr, cnt_msr;

struct pmc_val_t *pv;

pv = (struct pmc_val_t *)info;

/* get and reset counter 0 for ITLB */

cnt_msr = IA32_PMC0;

rdmsrl(cnt_msr, pv->itmis);

evt_msr = IA32_PERFEVTSEL0;

evt_sel = EventRegisterLow0;

wrmsrl(evt_msr, evt_sel);

wrmsrl(cnt_msr, 0);

evt_sel |= 1 << 22;

wrmsrl(evt_msr, evt_sel);

... ...

}

(c) Function to crop the PMCs

struct pmc_val_t {

unsigned long itmis;

unsigned long dtmis;

unsigned long instr;

unsigned long cycle;

unsigned long pf_fixed_last;

unsigned long pf_fixed;

unsigned long exits_last;

unsigned long exits;

unsigned long cur_pff;

unsigned long cur_ext;

unsigned long cur_tmr;

struct {

unsigned long flag_tmr;

int flag_pff_spt;

int flag_ext_spt;

int flag_pff_tdp;

int flag_ext_tdp;

} his[10];

unsigned long sum_tmr;

int sum_flag_pff_spt;

int sum_flag_ext_spt;

int sum_flag_pff_tdp;

int sum_flag_ext_tdp;

int sum_flag_tmr;

unsigned long num;

int paging_method;

int need_switch;

int pm_ready;

int first_time;

hpa_t root_hpa[4];

};

(e) Structure used by the DPMS

sampled data

results

heuristic data

data sampling

static void pmu_stop_launch(void *ignored)

{

uint64_t evt_sel;

uint64_t evt_msr, cnt_msr;

/* set counter 0 for ITLB */

evt_msr = IA32_PERFEVTSEL0;

evt_sel = EventRegisterLow0;

cnt_msr = IA32_PMC0;

wrmsrl(evt_msr, evt_sel);

wrmsrl(cnt_msr, 0);

evt_sel |= 0 << 22;

wrmsrl(evt_msr, evt_sel);

... ...

}

(d) Function to stop the PMCs

tables for address translation at a moment, no matter how many there are, and which paging
method they are using. Limited by this fact, cores are not allowed to choose their own paging

72



5.3 DPMS on QEMU-KVM for x86-64

Listing 4 Functions and a data structure used by DPMS (Continued)

int pmu_counters_crop(int mask, struct pmc_val_t *pmc_val_info)

{

struct cpumask cpumask;

int cpuid = 0;

cpumask_clear(&cpumask);

for (; mask; cpuid++, mask = mask >> 1) {

if (mask & 1)

cpumask_set_cpu(cpuid, &cpumask);

}

on_each_cpu_mask(&cpumask, pmu_get_counter_launch, pmc_val_info, 1);

return 0;

}

(f) Launch a PMC function on multi-core processor

method, but have to adhere to the same way. Therefore, a single set of PMU suffices to sample
the performance data for all cores 7. The core on which the PMU resides is elected as the leader
among all others.

As an example, Listing 4(f) depicts how a function defined for cropping the PMCs is launched
on a multi-core processor, although only one core is needed in reality.

5.3.2 Data Processing

Listing 3(e) depicts the data structure, pmc_val_t, which is introduced specific for DPMS. The
purpose is rather straightforward. For example, to store the hardware-related performance data
sampled from the PMCs and, more importantly, to keep the result after processing the raw data,
and heuristic information that is critical for subsequent operations.

Section 5.2 has mentioned that the PF and vmexit for TDP-inclined workloads tend to exhibit
a durable unusual high value under the shadow paging. For workload-detecting at run-time, these
provide the ideal inputs. A strategy is to set thresholds, and for each metrics determine whether
the current value is higher than the corresponding threshold. Depending on the comparison, it
scores 1 or 0. Scores are kept in a ring buffer until the buffer is full. On the other hand, the
SPT-inclined workloads may be detected by checking the combination of TMR, PF and vmexit.
For this purpose, two members are introduced to the structure, pmc_val_t to count the bottom
values of the PF and vmexit for the nested paging. Depending on the comparison between the
current values of the two and their bottom thresholds, flag_pff_tdp and flag_ext_tdp score 1
if the result is less than or else 0. Listing 5 shows the implementation of the logic and procedure.

5.3.3 Decision Making

The decision is based on the sum of the currently kept scores. If the sum is higher than a certain
percent of the maximum value (length of the ring buffer), it suggests that the workload is very
likely suffering from frequent page faults and vmexits. Therefore, the nested paging is preferred
at this moment. The threshold for each metric, and the percentage are empirical values, which
can be obtained by benchmark or learned by the machine. Do it by means of machine learning
is left as the future work.

The percentage is applied to ensure that the majority of the recent PF and vmexit values are
higher than the pre-determined thresholds, meanwhile leaving a certain degree of freedom for
the sequence of occurrence (order is unimportant). Under nested paging, similar procedure is
followed with the comparison result of TMR as the major criterion. In addition, as TMR has
ambiguity for heavy performance loss, PF and vmexit are also monitored, but with the bottom
thresholds to guard against some falsified cases (high TMR but little performance loss).

7There are micro-kernel hypervisors for embedded platform, which use separate page tables for each core.
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Listing 5 Calculation of the performance metrics

void data_proc(struct pmc_val_t *pmc, struct kvm_vcpu_stat *stat)

{

int pos;

pmc->cur_tmr = (pmc->itmis + pmc->dtmis) * 1000 * 1000 * 1000 / pmc->instr;

pmc->cur_pff = pmc->pf_fixed;

pmc->cur_ext = pmc->exits;

pos = pmc->num % 10;

if (pmc->num > 9) {

pmc->sum_flag_tmr -= pmc->his[pos].flag_tmr;

pmc->sum_flag_pff_spt -= pmc->his[pos].flag_pff_spt;

pmc->sum_flag_ext_spt -= pmc->his[pos].flag_ext_spt;

pmc->sum_flag_pff_tdp -= pmc->his[pos].flag_pff_tdp;

pmc->sum_flag_ext_tdp -= pmc->his[pos].flag_ext_tdp;

}

pmc->his[pos].flag_tmr = pmc->cur_tmr > TMR_THRESHOLD ? 1 : 0;

pmc->his[pos].flag_pff_spt = pmc->cur_pff > PFF_SPT ? 1 : 0;

pmc->his[pos].flag_ext_spt = pmc->cur_ext > EXT_SPT ? 1 : 0;

pmc->his[pos].flag_pff_tdp = pmc->cur_pff < PFF_TDP ? 1 : 0;

pmc->his[pos].flag_ext_tdp = pmc->cur_ext < EXT_TDP ? 1 : 0;

pmc->sum_flag_tmr += pmc->his[pos].flag_tmr;

pmc->sum_flag_pff_spt += pmc->his[pos].flag_pff_spt;

pmc->sum_flag_ext_spt += pmc->his[pos].flag_ext_spt;

pmc->sum_flag_pff_tdp += pmc->his[pos].flag_pff_tdp;

pmc->sum_flag_ext_tdp += pmc->his[pos].flag_ext_tdp;

/* always sum the 10 recent metric values */

pmc->num++;

}

The current status is determined by querying paging_method in the structure of pmc_val_t,
which is assigned the value of tdp_enabled, one of the global variables in the KVM context
to control the use of hardware-assisted virtualization facility. In the conventional distributions
of KVM, this is assigned with either 1 or 0 when the kernel is booting up, depending on the
processor identification (CPUID) and BIOS (basic input and output system). Listing 6 illustrates
the implementation of the above logic.

5.3.4 Switching Mechanism

The major tasks for switching mechanism has been sketched by the five questions in Subsection
4.1.4. However, those questions have only been answered halfway due to the lack of a hypervisor’s
implementation details. Should these details be clear, it is in a position to turn the general ideas
into reality. Having made a general impression on the architecture of QEMU-KVM, more effort
is still needed to get a clear understanding on how it works and related with the proposed ideas.

Figure 5.11 depicts the execution path of QEMU-KVM hypervisor when creating and running
a guest. Execution is kicked off by starting QEMU in host user-space. As described previously,
prior to main(), devices are already registered by some constructors. main() in QEMU does a
lot of initialization for the devices and emulated hardware (such as the chipset and main board)
to prepare for the startup of guest. During this process, control flow is guided to a specific point,
where one callback of a device is triggered off, a chain of callbacks is also triggered off, leading
eventually to the creation of various devices, including the VCPUs.

Compared with other devices which are emulated by a single dedicated QEMU I/O thread,
the VCPU is a little different. Each VCPU is created as a “File” by QEMU, but attached by a
kernel thread in kernel space. All VCPUs are forked out by the function - qemu_thread_create
at the end of the call chain in user space. As the name suggests, it creates the required number
of VCPUs by calling the POSIX API - pthread_create, with qemu_kvm_cpu_thread_fn as the
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Listing 6 Decision making logic for the optimized data processing

void paging_mode_decide(struct kvm *kvm)

{

struct pmc_val_t *pmc;

struct kvm_vcpu_stat *stat;

static int cur_num;

pmc = &kvm->arch.pmc;

stat = &kvm->vcpus[0]->stat;

cur_num = (pmc->num < 10) ? pmc->num : 10;

if (pmc->num <= 10)

goto ret;

switch (kvm->vcpus[0]->arch.mmu.direct_map) {

case PM_EPT:

if ((pmc->sum_flag_tmr > 6) && (pmc->sum_flag_pff_tdp > 6)

&& (pmc->sum_flag_ext_tdp > 6))

{

pmc->paging_method = PM_SPT;

pmc->need_switch = 1;

}

break;

case PM_SPT:

if ((pmc->sum_flag_pff_spt > 6) && (pmc->sum_flag_ext_spt > 6)) {

pmc->paging_method = PM_EPT;

pmc->need_switch = 1;

}

break;

default:

break;

}

ret:

return;

}

routine to be executed. The latter interacts directly with the KVM device (/dev/kvm) in kernel
space via a sequence of the device-specific function - ioctl (input-output control) to set up and
initialize the data structure needed by VCPUs.

Although qemu_kvm_cpu_thread_fn is not the interface between QEMU and KVM, it contains
the functions - kvm_init_vcpu that directly communicates with the KVM device to initiate
VCPUs and kvm_cpu_exec to execute it, during which the guest code is entered and executed.
From the host user mode to host kernel mode to guest mode, control is passed gradually from
outside to inside, with each transfer as a step further towards the ultimate goal - guest execution.

Due to the insufficient privilege, a guest needs to suspend its execution and return control to
the host when certain events are encountered, such as the exceptions, errors, faults, and inter-
rupts while acquires control again and resumes its execution after the hypervisor’s intervention.
These are known as vmexit and vmentry, respectively. Depending on the reason for vmexit, it
can be sufficient to handle the event in host kernel space before the guest resumes. Otherwise it
exits further to the host user space to get the I/O operation performed by QEMU’s iothread.
Therefore, the guest execution is “embedded” into a nested loop, with the inner one in host
kernel space and the outer one in host user space. In view of the guest, a vmexit is lightweight if
it falls only in the inner loop, or else heavyweight if it extends to the outer loop. A heavyweight
vmexit involves context switch (transition to QEMU).

According to the statistics [204], 93% of the total vmexit in the early version of KVM (KVM-
18) is lightweight triggered by the fault in shadow page table, and the rest by I/O and signal
processing. Although currently no statistics has shown how these figures are for the latest version
of KVM and QEMU, one thing is clear: paging fault remains always lightweight and should be
handled in host kernel space. Based on this fact, the answer to the first question is, paging
method switching must occur in vcpu_enter_guest inside the inner loop to be more efficient
and sensitive to the changing workload.
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Figure 5.11 Execution path of the QEMU-KVM hypervisor

vcpu_enter_guest is the function containing the vendor-specific code for hardware-assistant
virtualization extension - kvm_x86_ops->run, which launches the guest directly on the physical
processors. Before that, the condition of the guest, more precisely, VCPUs, needs to be checked.
The condition represents the overall status the guest has reached before the first execution or
since the last exit from execution. A hypervisor maintains them properly on behalf of the guest.
In the context of vcpu_enter_guest, a large portion of code is dedicated to handle dozens of
requests raised during or after the guest execution, which may include time bookkeeping, clock
updating, MMU8 synchronization, TLB flushing, triple fault handling, interrupt handling, page
fault handling and so on.

All these events are signaled by a bitmap - requests in the VCPU, with each bit representing
an event. On the other hand, since no reconfiguration can be done when the guest is still running,
and the hypervisor obtains control only after a vmexit, the inner function - vmx/svm_vcpu_run in
the execution path comes therefore as the optimal place to decide whether to switch the current
paging method. The decision is made based on a comparison of the previous and current optimal
paging methods hinted by Decision Making. Nothing needs to be done if the two are identical,
or else a flag, need_switch in the pmc structure is set when a request for MMU reloading is set
in the request bitmap.

As soon as vcpu_enter_guest is entered next time, the bitmap gets checked. need_switch is
used to tell whether the request for MMU reloading is the intent to switch the paging method, or
to do something else9. Even if the MMU must be reloaded, the task is deferred to the function
kvm_mmu_reload for a better reuse of the existing code and let the request for other reasons
unaffected. In this way, the hypervisor is notified of the request for paging method switching
intended by the running workload without much modification in the current hypervisors. The
related code sections are shown in Listing 7(a) and (b).

In the current hypervisor, kvm_mmu_reload is called to reload the MMU after the previous
one had be unloaded for a certain reason. For this implementation, it is slightly modified to add
the new function without much impact on the original code. The virtual MMU contains mainly

8Refers exactly to the emulated MMU - SPT/TDP-associated callbacks in this context.
9There are many other reasons that require the reloading of MMU.
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a tree of page tables whose entries store the PFNs (physical page frame number) of the referred
virtual address. The starting address of the root table serves as the entrance of MMU, known as
the root. Originally, the function calls kvm_mmu_load if the root is still invalid10. kvm_mmu_load
allocates a page and links it to the page table tree as the root page, followed by a shadow page
synchronization11. Finally, the root is saved by the MMU structure in each VCPU. To minimize
the impact of modification, the MMU unloading and loading due to paging method switching
are arranged in this function, without messing up with the switchings due to other reasons.

Listing 7 Notification of the request for paging method switching

static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)

{

... ...

int pre_pm, cur_pm;

pre_pm = vcpu->kvm->arch.pmc.paging_method;

... ...

cur_pm = vcpu->kvm->arch.pmc.paging_method;

if (cur_pm != pre_pm) { /* if any change in paging method */

vcpu->kvm->arch.pmc.need_switch = 1;

kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_MMU_RELOAD);

}

}

(a) Request signalled

static int vcpu_enter_guest(struct kvm_vcpu *vcpu)

{

... ...

if (vcpu->requests) {

if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {

if (!vcpu->kvm->arch.pmc.need_switch)

kvm_mmu_unload(vcpu);

... ...

r = kvm_mmu_reload(vcpu);

... ...

}

(b) Request checked

static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)

{

int need_switch;

int direct_map;

need_switch = vcpu->kvm->arch.pmc.need_switch;

direct_map = vcpu->arch.mmu.direct_map;

if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))

if (!need_switch)

return 0;

if (need_switch && direct_map && !vcpu->vcpu_id) {

vcpu->kvm->arch.pmc.need_switch = 0;

kvm_x86_ops->tdp_to_spt(vcpu);

return 0;

}

else if (need_switch && !direct_map && !vcpu->vcpu_id) {

vcpu->kvm->arch.pmc.need_switch = 0;

kvm_x86_ops->spt_to_tdp(vcpu);

return 0;

}

return kvm_mmu_load(vcpu);

}

(c) Switching launched

switch to SPT

switch to TDP

10In KVM, an address is valid if it is not -1, represented by a sequence of 1’s in binary
11Eventually performed by mmu_sync_children, which marks sync and write-protect of its children pages
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Since a switching may occur either from the shadow paging to nested paging, or reversely, the
appropriate conditions are constantly checked for the due operation. In either case, the current
configuration for paging, which is reflected by the variable direct_map in the MMU of each
VCPU is the first condition. The nested paging is in use if the variable is set, or else it is the
shadow paging. Next, the flag need_switch is checked to see whether the request is posed for
paging method switching. Finally, considering that a multi-core virtual processor is running on
a multi-core physical processor, a reconfiguration such as the paging method which tends to
affect the state of the machine should be performed only once, usually by a “leader”, VCPU0 in
this case, among all cores. Therefore, the vcpu_id is the third condition to be checked.

If the combination of conditions for the branch is true, the corresponding function is called.
As their names imply, tdp_to_spt and spt_to_tdp are the two functions performing the paging
method switching operations. What they achieve are the reverse effect. It deals with annulling
the configuration of the current paging method and then configure the chosen one. In fact, the
shadow paging and nested paging are similar in that both of them serve as the alternative or
complement towards the original page tables in the guest. For this reason, the nested paging is
able to seamlessly fit into the original framework exclusively for shadow paging. The advantage is
that most of the software infrastructure is reused by the new design. In theory, a root page table
and the associated page fault handling mechanism are sufficient for a workable virtual MMU
to support the guest. That is exactly what the mentioned two functions should accomplish.
However, in practice, they are different in behavior.

One major difference is that the configuration of the nested paging involves not only software,
but also hardware. To anull the configuration of the nested paging, the related hardware must also
be taken care of. The related hardware is known as VMCS (virtual machine control structure)
for Intel processor, and VMCB (virtual machine control block) for AMD processor. The nested
paging ’s operation relies on the hardware in the following aspects:

• The VMCB or VMCS hardware contains the appropriate information to create or recover the
state of the physical processor for the guest execution, including dozens of system registers

• Root of shadow/nested page tables gets loaded into the MMU when the guest is running
• The paging status of the processor, a bit implies whether the nested paging is enabled

With those in mind, the task each function must perform is clear. The tdp_to_spt invalidates
the nested page tables, prepares a set of shadow page tables, clears the TDP-enabled bit in the
VMCB or VMCS hardware, and returns for further execution. In contrast, the spt_to_tdp

does just the reverse. It invalidates the shadow page tables, prepares a set of the nested page
tables, reconfigures the VMCB or VMCS hardware, finally sets the TDP-enabled bit to inform
the processor of a state change in paging method, and proceeds to run the guest. The two sets
of page tables work independently in their own cycles, respectively. In this case, an optimization
is to allocates memory for both of them in the hypervisor’s context. However, compared with
the multiple sets of process-specific shadow page tables in a single guest, only a single set of the
nested page table is available. That means, the nested page table is actually much more stable
and permanent in nature than shadow page tables. Consequently, the former could be retained
even during the domination of the latter, and reused next time as soon as the nested paging
regains control. Due to the volatility of its content, this is not the case for the shadow paging.

For this reason, the nested page tables are left with its root saved in the pmc structure and
retrieved when nested paging is resumed, but the shadow page tables are simply destroyed with
nothing being saved and restored. The hardware configuration involves a few aspects, such as the
exception bitmap, in which the PF_VECTOR is set or cleared to enable or disable vmexit due to
page faults in guest. The TDP-enabled bit is indicated by SECONDARY_EXEC_ENABLE_EPT in the
SECONDARY_VM_EXEC_CONTROL region of the VMCS, and nested_ctl in the control region of
the VMCB. To summarize the discussion and description, the code for launching paging method
switching is listed above in Listing 7(c), but the definition of the switching functions, as well as
the entire patch for the DPMS implementation, can be found at https://github.com/zhayu.
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Till now, question 3 and 4 were already answered with the above passages. Since the last
question deals with the convergence of the algorithm for decision making, it could be more
appropriate to be discussed in Chapter 6.

The major aspects of design and implementation were described above. However, a few critical
detail issues, which are closely related with the implementation have not yet been covered. These
include the following aspects:

• Repetitive mechanism that ensures a periodical output of performance data and fulfillment of
the due operations for paging method switching

• Integration of the performance monitoring mechanism into the QEMU-KVM context
• Synchronization of the DPMS in an execution environment with multi-core processor
• Optimize algorithms for making decision of the paging method

For each aspect, a subsection is dedicated to discuss the problems and corresponding measures.

5.3.5 Repetitive Mechanism

In Linux kernel, a bunch of APIs was created for the purpose of repetitive work deferral and
periodic timer scheduling. Among them, a critical issue is the timing, which provides the time
base and accounting the time for the whole system. A commonly used timing source is the jiffies
based on a global variable and counts the number of ticks occurred since the moment when the
system was started up. Although how the ticks are counted depends on the specific hardware, a
basic approach is by means of the interrupt in the processor. In kernel jiffies is used to deliver
both the absolute time, and calculate the time-out value for a timer, which is frequently needed
for many different purposes [205].

According to the ticking granularity, there are the standard and high resolution timers, which
take a tick of jiffies (1 to 4 ms) and nanosecond as the basic ticking unit, respectively. A standard
timer is less accurate than a high resolution timer, but is already sufficient for a considerable
number of the current applications. DPMS is also no exception. A standard timer in the Linux
kernel is defined by the timer_list structure, mainly containing a pointer to a list of timers, the
value for expiration, a user-definable callback function, a pointer to a region as the parameters
of the callback, and a few optional variables for various uses. Linux kernel provides a group of
APIs to create, initialize and control this timer, of which the commonly used types are:

• void init_timer(struct timer_list *timer);
• void setup_timer(struct timer_list *timer,

void (*function)(unsigned long), unsigned long data);
• void mod_timer(struct timer_list *timer, unsigned long expires);
• void del_timer(struct timer_list *timer);

The API names are self-explanatory. Nevertheless, something still deserves to be mentioned.
First, a timer can be initialized by either init_timer or setup_timer. With the latter, the timer
can be set up without extra efforts, while with the former, the call routine and its parameters
need to be assigned explicitly. In fact, the latter is merely a macro wrapper of the former for
more convenience. The choice is pretty a matter of one’s preference. In addition, if the latter
is used, a caveat is that type-casting is needed when passing the user-provided parameters from
an upper-level function. A pointer of the user-defined type needs to be type-cast into unsigned

long. Inside the callback, however, parameters are unpacked by performing the reverse type-
casting. Finally, mod_timer is used to advance the timer by increasing a specific number of jiffies
to the expired moment to ensures that the timer will go off again in another cycle. del_timer,
opposite to init_timer, removes the timer from the observed list, thus the timer’s associated
event will not be handled any more.
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So far, the repetitive mechanism has been introduced. The next step is to apply it in DPMS
and let the desired tasks periodically repeat itself. As the DPMS is a“machine-wide”mechanism,
a guest needs only one set of the infrastructure. A possible choice is to include the previously
mentioned pmc structure and a timer in the kvm or kvm_arch structure. The latter is chosen since
it is better to maintain the DPMS-related infrastructure as centrally as possible to minimize the
impact of modification on the original code12. In the context of a guest, they are effectively
serving as global variables accessible anywhere when dealing with the same guest.

The topmost functions for PMC control are declared as pmc_start and pmc_stop, respectively.
The former is used to start the PMCs on a specific core (normally Core 0), and do initialization
work necessary for performance data sampling as soon as the guest has been booted up, such
as creating the timer and initializing the pmc instance. The other one, conversely, is used to
remove the timer and stops the PMCs when the guest is about to go down. The most interesting
part, data sampling function, is fulfilled by the callback routine of the timer. Furthermore, Data
Processing, Decision Making, and“timer renewal”are all encapsulated in this function. Similarly,
the APIs defined for PMC control also form a call chain, as illustrated in Figure 5.12(a,b,c).

pmc start

setup timer

pmu counter init

pmc init launcher

mod timer

(a) PMC and timer starting

timer routine

pmu counters crop

data process

add timer

page mode decide

pmu get counter launcher

(b) PMC sampling and timer renewal

pmc stop

del timer sync

pmu counter stop

pmu stop launcher

(c) PMC and timer stopping

Figure 5.12 Call chains formed by the APIs for PMCs control

5.3.6 PMC Mechanism in QEMU-KVM Context

For a workable DPMS, it is necessary to integrate the PMC mechanism into the QEMU-KVM
context and let the performance monitoring counters be controlled automatically when needed.
The target is that the PMCs are started as soon as the guest enters into execution, sample data
afterwards, and are stopped as the guest is shutdown.

Naturally, a more flexible approach is to let the user decide when to start and stop this func-
tion by issuing commands from user-space. However, as it involves modifying not only KVM,
but also QEMU, for simplicity, it is better to be left as a further work, and focus first on the
core task – to merge the PMC mechanism into the current KVM context. Although the startup
process of the QEMU-KVM hypervisor has already been briefly described in Figure 5.11, it
drops little hint on this as only the guest’s VCPUs are illustrated there. A similar situation
is faced when deciding where the timer, as well as the pmc structure should be. Hinted by the
fact that the DPMS is a “machine-wide” mechanism, and a guest needs only a single set of this
facility, they were appended into kvm_arch, a “machine-wide” data structure. Comparably, as
the PMC mechanism is a part of the DPMS, it also belongs to the “machine-wide” operation
which in KVM context corresponds to those functions performing guest creation, initialization,
and destruction. Figure 5.13 depicts the cascading call chain formed by them and the way PMC
mechanism is integrated in the hypervisor.

12In kvm_arch modification is already there to introduce another hash table for storing SPT and TDP separately.

80



5.3 DPMS on QEMU-KVM for x86-64

kvm init

kvm dev

kvm chardev ops

kvm dev ioctl

kvm dev ioctl create vm

kvm create vm

kvm arch init vm

pmc start

kvm vm ioctl

register
call

from QEMU context

(a) Call chain for pmc_start

kvm init

kvm device release kvm vcpu release

kvm vm fops

kvm vm release

kvm put vm

kvm destroy vm

kvm arch destroy vm

pmc stop

(b) Call chain for pmc_stop

Figure 5.13 Cascading call chain where PMC mechanism is integrated in

Being consistent with Linux kernel in coding style, KVM also adopted the callback feature
when dealing with file system operations. Three basic entities of KVM, the char device, the VM
guest instance, and the VCPU are all implemented and operated based on the file system. There-
fore, KVM device drivers fall into three categories, namely, the hypervisor-device (/dev/kvm)
oriented, VM guest oriented, and VCPU oriented drivers. As shown in Figure 5.13, these KVM
drivers are organized as callbacks of the related devices, registered once during device initializa-
tion, and triggered off under specific conditions. As the device-oriented driver, kvm_dev_ioctl
is assigned to a callback of the KVM char device, and registered by kvm_init, which is always
and only called when the KVM modules are being loaded. Similarly, kvm_vm_release serves as
a callback of the VM-oriented driver and is registered by the same function.

Once all drivers are registered, they may be invoked by different callers. Figure 5.13(a) depicts
that for the call chain headed by kvm_dev_ioctl, besides at the first time being triggered when
loading KVM modules, it is also called during guest creation by QEMU through the ioctl with
command KVM_CREATE_VCPU. As for the call chain in Figure 5.13(b), the kvm_put_vm function,
which eventually turns off the PMCs, has three callers, but the PMC finalization is normally
performed by the branch headed by kvm_vcpu_release after the guest has been gracefully
shutdown, or unexpectedly terminated for various reasons. In this way, the PMC mechanism is
integrated into the KVM context and ensured an automatic control by the hypervisor itself.

5.3.7 DPMS for Multi-Core Processor

In Section 5.2.1, a multi-core processor has already been concerned when dealing with the choice
of PMU. In principle, PMCs on any core may serve as a source of performance data. However,
considering that the paging method is only determined per machine rather than per core, one
source suffices for this. The behavior of a workload may be non-uniform, so different core may
demand different paging method. It cannot be handled with by the current nested paging. In
other words, the multi-core feature has little influence on the Performance Data Sampling and
Data Processing. What really matters is whether and how can the paging method be switched
synchronously on all cores. A guest enters into execution only when its VCPUs had been
scheduled on different physical processors or cores, which implies that for a single guest at the
same time, there are as many execution contexts as the number of physical processors or cores
that are running VCPUs. Thus, the vmexit and vmentry for one VCPU on one core are performed
independently unless task is synchronized. In fact, the vmexit occurs non-synchronously due to
the different instructions being executed at that moment. However, since the paging method
switching requires that all VCPUs to be suspended so that the hypervisor has the chance to
adjust itself, it involves the synchronization and interrupting the running VCPUs among the
multiple cores.
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5.4 STDP on QEMU-KVM for x86-64

Based on the analysis of the performance limitations associated with the four-level paging scheme
for the nested paging, Section 4.3 proposes a two-level paging scheme among all possible choices.
To study the feasibility and effectiveness of such a solution, a further step is to implement it for
a specific hypervisor. This section focuses on the implementation for QEMU-KVM on x86-64.

As mentioned previously, the nested paging reuses the data structures and most of the functions
for the shadow paging. Figure 5.14 provides an overview of the data structures for shadow page
tables in KVM, of which kvm_mmu_page is the basic unit which glues all the concerned parts
together. In this structure, the shadow page tables, a pageful of 64-bit sptes (shadow page table
entries) is pointed at by spt, and the attributes of this table such as paging mode, dirty and
access bits, level etc. are indicated by the corresponding bits in role.

The page pointed to by spt has its page->private pointing back at the shadow page structure.
sptes in spt point at either leaf pages, or lower-level shadow pages [206]. As the sptes contained
in a shadow page could be either one level of the PML4, PDP, PD and PT, pte_parents provides
the reverse mapping for the pte/ptes pointing at the current page’s spt. Bit 0 of parent_ptes
is used to tell the difference from one to many. 0 indicates that only one spte is pointing at this
page, so let parent_ptes point at this spte, and 1 means that multiple sptes are pointing at
this page, so let the parent_ptes&∼0x1 point at a data structure containing those sptes.
kvm_mmu_page also maintains a minimal set of data to mark the current status and keep the

sptes updated. unsync indicates whether the translations in the current page are still consistent
with the translations in the guest page tables. Inconsistency is incurred when the translation has
been modified before the TLB is flushed, which has been read by the guest. unsync_children

counts the sptes in the page pointing at pages that are unsync or have unsynchronized children.
unsync_child_bitmap is a bitmap indicating which sptes in spt point (directly or indirectly)
at the pages that may be unsynchronized.
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kvm->arch.mmu page hash

Figure 5.14 Data structure shared by the shadow paging and the nested paging

Multiple kvm_mmu_page instances are linked by an hlist_node structure headed by hlist_head,
which form the elements in the hash list - mmu_page_hash contained in kvm->arch. Meanwhile
it is also linked to either the list - active_mmu_pages or zapped_obsolete_pages in kvm->arch,
depending on the current status of the entries it contains.
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The above description reveals which parts are affected by the new implementation of nested
paging. First of all, with less page levels, the tree structure formed by page tables is shrunken in
height, but expanded in width (the number of entries a table contains). The page tables, which
contain the address translations for guest memory pages are the major aspect involved. Multiple
increase in the number of page table entries means multiple increase in memory demand for this
kind of page tables.

Since the functions come along with the original paging scheme proved effective and mature
during the evolving of the KVM, the central task is to adapt them to the new paging scheme.

5.4.1 Restructured Page Table

In Linux kernel, three basic functions, namely, vmalloc(), kmalloc() and __get_free_pages()

are used to allocate large chunk of memory. vmalloc() is used to allocate memory continuous
only in virtual address, which is relatively easier to obtain, but not ideal for performance. The
second and third allocate memory chunk continuous in both virtual and physical addresses.
However, due to the size limitation for memory allocation, they tend to frustrate the attempts
for huge and continuous memory chunk. Furthermore, kmalloc() fails easily for large memory
allocation, especially in a low-memory case [207]. The amount of memory __get_free_pages()

can allocate is also limited within 2MAX ORDER−1, where MAX_ORDER is 11 in the current Linux
kernel for x86 architecture, implying that at most 4MB memory can be obtained in the hypervisor
for each allocation. In this condition, a single-level page table is neither practicable nor affordable
from a perspective of the balance between resource and performance. Even in practice, a more
reasonable choice is also the two-level page tables.

Compared with the four-level paging scheme, a philosophy behind the two-level paging scheme
is to reduce the paging level by expanding the volume of page tables. Although this involves only
assigning larger chunk of memory to spt for a kvm_mmu_page instance, it demands a fundamental
change to the entire infrastructure. As the enlarged page table contains 218 entries, or 29 of the
4KB-size pages, which claim a total of 29 meta-data for all the conventional size pages it contains.
A major problem is how to maintain the one-to-one mapping between a page table and its meta
data in the kvm_mmu_page instance for the new scheme.

For this purpose, a new structure, page_entity is introduced. As illustrated in Figure 5.15,
page_entity plays a similar role for the new scheme as kvm_mmu_page for the original scheme.
More importantly, it contains a pointer to a region of 2MB – sufficient to accommodate the
218 page table entries, or 29 normal 4KB page tables. In order to reuse the exiting code and
minimize the impact, it is better to retain the original form for managing the page table in the
new scheme, which means that the page table entries are grouped in 29 4KB-page tables and
maintained by their meta data as previously.

The page_entity holds an array of 29 original kvm_mmu_page to trace the 29 pages, with the
structure and link almost unmodified except a new member - idx marking the index of this
meta data in the aforesaid array. *spt is also retained for compatibility with the shadow pag-
ing. The instances of page_entity are linked by a list page_entity_list13. level and index

indicate the level of a page_entity instance, and the position at that level. PFN can be found
by locating the page_entity instance by PHD, and then the page table by PLD.

The major operations affected by the above changes in that data structure are the following:

• Large page table (2MB in size) allocation and deallocation in host physical memory
• Calculation of a page table entry’s index in the normal table
• Normal page table (4KB in size) allocation and deallocation from the hash list of page tables

13A normal list rather than a hash table is used simply because currently the number of page_entity instances
is quite limited (5 instances for a guest with 4GB RAM), and searching overhead does not matter too much.
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Figure 5.15 Data structure for the restructured page tables

In KVM, the 4KB-page tables are continuous memory regions and pre-allocated by the function
mmu_topup_memory_caches for future use. Similarly, as in the new scheme 29 4KB page tables
are merged into a larger chunk of 2MB, memory chunk of this size also needs to be pre-allocated;
therefore, functions are defined to allocate and free them as kernel objects belonged to the VCPU
of the guest 14. __get_free_pages() and free_pages() are the functions performing these
tasks, respectively. However, since the total sptes in such a huge table controls a region of 1GB
for the guest physical memory, it is unlikely to be reclaimed as freely as a 4KB page table during
the lifetime of a guest.

For the new paging scheme, the index of an spte in the page table is frequently used (such as
in a reverse mapping), but the calculation in a normal 4KB-page table becomes non-trivial since
the direct acyclic graph structure in the original scheme has somewhat changed. The calculation,
which was once performed by the code path:

sp = page_header(__pa(spte)); index = spte - sp->spt;

follows a new path:

sp = page_header(__pa(spte));

pe = container_of(sp, struct page_entity, sp[sp->idx]);

index = spte - (pe->spt + (sp->idx << 9));

As previously mentioned, the reason is that in the original scheme, the page pointed at by spt

has its page->private pointing back at the kvm_mmu_page structure. In the new scheme, spt
has been the common base for 218 sptes it contains. The starting address of its nearest normal
page table (4KB) is needed for obtaining the index of the spte. Therefore, if the corresponding
kvm_mmu_page structure is set pointed at by this normal page table’s page->private when first
allocated, the needed address can be simply deduced by using sp->idx as shown in the path. But
the first step is to obtain the page_entity it is associated with by using a macro container_of

in Linux kernel.

14Such caches are a part of the architecture in the VCPU of KVM guest.

84



5.4 STDP on QEMU-KVM for x86-64

A more difficult part is the page fault handling in the hypervisor. In the conventional scheme,
all page faults are handled by the function “tdp_page_fault”. The major task it performs is to
figure out the level of page table a faulting address falls into, compute the host physical address,
and fill it into the corresponding entry of the page table. The last step performed by the function
“__direct_map” is the core task for the page fault handling.

__direct_map is in a loop of maximum four repetitions, traversing from the root of the shadow
page tables down to the page table of the fault level. During the loop, any missing spte on this
path is filled, and a kvm_mmu_page instance is allocated at the next level pointed by the newly
filled spte. If a kvm_mmu_page instance is obtained by the function “kvm_mmu_get_page”, it gets
linked to the page table acyclic graph by filling its address into an upper-level spte.
kvm_mmu_get_page obtains a kvm_mmu_page instance either by retrieving one from the hash

table “kvm->arch.mmu_page_hash”, or by freshly allocating if no one has ever been found there.
The same logic is followed to obtain an instance of page_entity. When a faulting address falls
into a region not yet covered by any page_entity in the current page_entity_list, a new
instance must be allocated. The corresponding meta data also needs to be deduced from the
available parameters. The two concerned are the index of this page_entity and that of the
kvm_mmu_page instance associated with the page table. They are calculated in a way as below:

pe->index = (role.level == 2)? -1 : SHADOW_PT_INDEX(gaddr, 2);

sp->index = SHADOW_PT_INDEX(gaddr, 1) >> 9;

where the macro is defined as:

#define PT64_INDEX(address, level)\

(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS * 2) - 1))

#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

Last but not least, the normal page table’s page->private is set as the following:

base = pe->spt + (sp->index << 9);

set_page_private(virt_to_page(base), (unsigned long)sp);

The patch about the software part of STDP will be found at https://github.com/zhayu.

5.4.2 Adaptive MMU for TDP

Now the software part of STDP has been implemented, whose task is to create and maintain the
nested page tables in the second dimension. Nevertheless, it does not work without the support
from hardware side. The processor’s MMU is unaware of such a change in the paging structure
thus can not make correct use of these page tables for address translation. A particular difficulty
is the lack of hardware support for this function. The common practice is naturally to create the
customized hardware by using a hardware description language and a developing board (such
as FPGA) and get it integrated into the environment. However, this is beyond the scope and
capability of the hypervisor researcher. An alternative is to create it by an software emulator,
which tends to offer the user a certain degree of freedom to customize the targeting hardware
and bring it under one’s own control. This subsection focuses on an analysis and explore the
possibility in this respect.

Currently the x86-64 architecture supports only a walk-length of 4 in the second dimension for
all paging modes of the guest OS. If the adaptive physical MMU is implemented, a walk-length
of 2 can be supported in the second dimension, meaning that at most 2 paging structure entries
need to be accessed to translate a guest physical address. 48-bits of a 64-bit GPA are effectively
used by being partitioned into a PHD|PLD|offset format by the logical processor to traverse the
paging structures in the second dimension. The paging procedure is described below.

The 2MB-aligned level-2 table is located at the physical address specified by bits 51:22 of the
root for the second-dimension page table (EPTP in VMCS, or CR3 in VMCB). It contains 218

64-bit entries. The entry is selected by using the physical address as depicted in Figure 5.16(a).
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5 Implementation

An entry of level-2 table is selected by PHD (bits 47:30) and controls a region of 1GB of the
guest physical address space. The format is specified by Table 5.5.

Reserved and cleared root(51:32)

PHDroot(31:21)

63 3252 51

21 2031 3 2 1 0

0 0 0

(a) Bit format of GPA used for locating the level-2 page table entry

Reserved and cleared l2pte(51:32)

PLDl2pte(31:21)

63 3252 51

21 2031 3 2 1 0

0 0 0

(b) Bit format of GPA used for locating the level-1 page table entry

Reserved and cleared l1pte(51:32)

gpa(11:0)l1pte(31:12)

63 3252 51

12 1131 0
(c) Bit format of HPA computed in the second dimension

Figure 5.16 Bit formats used by the paging process in STDP

Table 5.5: Format of the entry in level-2 table in the second dimension

Bits Specification
0 Read access, indicates the read privilege for the 1GB region controlled by this entry
1 Write access, indicates the write privilege for the 1GB region controlled by this entry
2 Execute access, indicates the privilege for fetching instructions from the 1GB region controlled by this entry

7:3 Reserved and cleared
8 Access flag, indicates whether the 1GB region controlled by this entry has been accessed by any software
9 Ignored

10
Execute access for user mode linear address, indicates the privilege for fetching instructions by user-mode
address from the 1GB region controlled by this entry

11 Ignored
(N-1):21 Physical address of the 2MB-aligned level-1 page table pointed at by this entry

51:N Reserved and cleared
63:52 Ignored

The 2MB-aligned level-1 table is located at the physical address specified by bits 51:12 of
the level-2 page table entry (l2pte for convenience). It contains 218 64-bit entries. The entry is
selected by using the physical address as depicted in Figure 5.16(b). An entry of level-1 table
(the last level) is indexed by PLD (bits 29:12) and maps a region of 4KB page in the guest
physical address space. The format is specified by Table 5.6. Finally, the host physical address
is computed in a format shown in Figure 5.16(c).

With this scheme, GPA is translated into HPA by accessing the memory only three times
in the second dimension, which can save at least 40% efforts compared to the conventional
TDP scheme. While minimizing the interference by the hypervisor, it avoids the high overhead
associated with the multi-level nested page table walking.

For software, especially the OS or hypervisor researchers, a common problem could be the lack
of true hardware when developing the functions that rely on currently non-existing hardware.
One may design and implement the hardware themselves using the reconfigurable developing
board, however, it adds more challenge, diverts the focus of the software developer, and increases
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Table 5.6: Format of the entry in level-1 table in the second dimension

Bits Specification
0 Read access, indicates the read privilege for the 4KB region controlled by this entry
1 Write access, indicates the write privilege for the 4KB region controlled by this entry
2 Execute access, indicates the privilege for fetching instructions from the 4KB region controlled by this entry

5:3 Memory type for the 4KB page controlled by this entry
6 Ignore PAT memory type for the 4KB page controlled by this entry
7 Ignored
8 Access flag, indicates whether the 4KB region controlled by this entry has been accessed by any software
9 Ignored

10
Execute access for user mode linear address, indicates the privilege for fetching instructions by user-mode
address from the 4KB region controlled by this entry

11 Ignored
(N-1):12 Physical address of the 4KB-aligned page pointed at by this entry

51:N Reserved and cleared
62:52 Ignored

63 Used for suppressing the “convertible virtualization exception”

the risk of failure. To address this problem, researchers have come up with the means to create
the target hardware execution environment by using software, which is known as a full system
simulation or emulation15. Although numerous simulator software exist, very few of them are
able to simulate the system to the circuit level. Two commonly used software are QEMU and
Wind River Simics [208, 209, 210]. As an emulator, QEMU emulation has the ability to present
the target hardware platform for system software developing.

In recent years, an increasing number of processor features such as the Intel VMX, EPT and
AMD SVM, NPT, are added to the its CPU model for nested virtualization. It means that those
features merely present when nested virtualization is enabled. There has also been discussion
adding such support for pure emulation purpose, yet this is not yet available. On the other
hand, as a commercial software, Simics is more mature in this respect. Not only Intel VT-x, but
also EPT can be emulated since the recent version of Simics. Even so, as the modification of
the MMU behavior involves the access to the source code of the Simics CPU core model, which
is not open for the normal users, the current Simics is not the right tool for accomplishing this
task on x86-64 platform. However, Simics do provides such possibility for modifying the MMU’s
behavior, but for an old UltraSPARC16. In other words, although it is non-trivial to modify the
MMU, the major barrier does not lie in the technology.

5.5 Summary

Based on the QEMU-KVM hypervisor, the proposed ideas - DPMS and STDP are implemented
on the software side. For DPMS, most of the functional units are implemented and integrated
with the other parts of KVM. A unsolved problem is the switching in case of multi-core processor,
which makes more sense than merely for a single-core processor. Furthermore, the question –
How fast the sampling and switching should be, will be discussed further in the next chapter.

For STDP, the software part has been fully implemented, which involves an adaption of data
structures and functions for the proposed paging scheme. However, as the proposed adaption also
involves hardware, limited by the capability and current technical status, neither the proposed
physical hardware nor the hardware emulator has been created or made available. Even so, from
a technical perspective, it is practicable for the processor vendors to implement this proposal.
With these implementations, Question 7 in Section 1.4 is answered.

15The two indeed have a few subtle distinctions, but are still used interchangeably probably for convention.
16Informed by the communication with Dr. Robert Guenzel - a Simics expert in WindRiver.
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In this chapter, the feasibility and effectiveness of the proposed design for improving the perfor-
mance of memory management system virtualization are tested in a series of experiments. Due
to the lack of a practically workable implementation, currently the testing cannot be done for
STDP. Therefore, the first design - DPMS is the target for the tests.

Section 6.1 specifies the objective and motivation of these experiments, which are elaborated
in Section 6.2 in more detail. Section 6.3 presents the results of the corresponding tests and a
discussion about these results. Finally, the tests of the design and the evaluation of the results
are summarized in Section 6.4.

6.1 Objective

From the software engineering point of view, software testing is the process of executing a given
program or system with the intent of finding errors [211]. It is also the process of evaluating the
attributes and capability exhibited by the program or system and decide whether they meet the
requirements stipulated at the beginning of design. Due to the human’s limited ability to manage
complexity of a system, as well as the dynamic nature of software, testing cannot be exhaustive,
and bugs can never be completely eliminated. The testings involved in this experiment are also
no exceptions. After a series of testings, many design flaws and coding errors have been spotted
and fixed, still missing a few undiscovered or unsolved. And the ultimate purpose is to determine
and demonstrate that the proposed designs

1. can be implemented
2. the implementation meets the requirements for the design, and
3. the implementation is superior to the original one in the concerned respect, and makes sense

in solving the encountered problems
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In fact, the above mentioned aspects boil down to two different issues of a new design, namely, the
functional testing and the performance testing, which are typically used in software engineering
to improve the quality of a software product. As a logical product, software is intangible, the
quality is invisible and cannot be measured directly. However, just as Figure 6.1 illustrates, the
quality of software is determined largely by three sets of factors - exterior, interior and future
quality, each of which represents a dimension in the software quality space [212]. A well-designed
testing always tries to cover as many factors as possible in this space. Depending on the type of
the product, a testing may lay different importance on these factors. For a full-fledged, especially
commercial software, all these factors could be taken into consideration, and the testing tends
to be involved all through the process from design to delivery.
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Figure 6.1 Typical quality factors involved in software engineering [212]

DPMS has two top priorities, functional correctness and efficiency (performance). Most of
the other factors, in contrast, are beyond the scope of this dissertation thus left out for brevity.
Therefore, among many aspects, the test will primarily focus on the following points of the
proposed design and its implementation:

1. Does DPMS switch the paging method for guest workloads in different cases?
2. Does DPMS outperform the conventional static approaches?
3. How much speedup can it bring for the normal workloads?
4. Can the selected workloads benefit from the use of DPMS?
5. What kind of workload will most likely benefit?

6.2 Testing Design

To answer the above questions, tests are designed with two focuses - function and performance.
First, the correctness of DPMS, including the Performance Data Sampling, Decision Making
and Paging Method Switching will be tested with the hypervisor being initially configured with
the shadow paging and nested paging, respectively. On conditions that all these function work
properly and fulfill their tasks as expected, the focus of the testing will be shifted to a higher
level - the performance, with the purpose of evaluating the efficiency of the proposed design
and implementation. The following two subsections are dedicated to the basic thoughts when
performing these kinds of tests.
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6.2.1 Functional Correctness Test

Performance Data Sampling

The test focuses on whether the PMCs can be enabled, disabled, and performance data can be
sampled periodically from the hardware PMCs as well as the counters in the hypervisor software.
By inserting a few debug information (wrapped up by printk()) to the source, and directing the
output into a log-file (/var/log/dmesg, or /var/log/syslog) of the Linux kernel, the activity
of DPMS can be brought under close watch.

Decision Making

This test stresses on how reasonable and sensible the decision for a paging method can be made
based on the observed performance data. The term “reasonable” indicates that the choice of the
paging method reflects the intrinsic demand of the workload and is in favor of a higher run-time
performance, while the term“sensible” is used to describe the promptness as the decision is made
after the data has been sampled and processed.

If the correctness for Performance Data Sampling indicates that PMC-related operations can
be performed properly as expected, the same word for Decision Making is richer in its meaning.
Thus the reasonability and sensibility come as the two indicators of the correctness for Decision
Making1. In practice, the two metrics are neither visible nor measurable in a micro perspective.
Nevertheless, they can be reflected by their impact on the performance of the workload in a
macro perspective. The resultant of reasonability and sensibility is the performance gain or loss
against that without the use of DPMS. By analyzing the predictive result of the workload whose
preference is already known in the previous benchmarks, the reasonability and sensibility can
be evaluated as a whole in a general form.

Paging Method Switching

As the core of DPMS, this part is in charge of accomplishing the intent of the running workload,
therefore has an immediate impact on the performance and determines whether the total effort
is worthwhile for the performance gain. In this case, functional correctness should be defined as
the consistency between the reconfiguration of a dynamically switched-in paging method and the
initial configuration without the use of DPMS. In other word, a correctly performed switching
ensures an almost identical configuration for the paging method as if the configuration is done
from the very beginning. In practice, however, this tends to be a quite rigid requirement due to
the hassle of the hardware-specific features. A full restoration of the configuration is practically
neither possible nor necessary. To take a step backwards, a compromised standard is a partially
restored, yet workable configuration for the concerned paging method. The test attempts to find
out whether the paging method switching works under this condition, and if not, what hinders.

Considering that the hypervisor can be booted up with the nested paging feature either enabled
or disabled, the test needs to cover the switching in four cases, namely 1) SPT to TDP, initially
with SPT; 2) TDP to SPT, initially with SPT; 3) SPT to TDP, initially with TDP; and 4) TDP
to SPT, initially with TDP. Figure 6.2 depicts these cases in which the hypervisor is initially
configured with SPT and TDP, respectively.

1Though another factor - the stability can be equally important due to its immediate impact on performance, it
belongs more to the nature of performance than to the functional correctness. To be strictly, sensibility has
to do with both functional correctness and performance, thus should be involved as the former is concerned.
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SPT TDP

spt to tdp()

tdp to spt()

(a) Initially with SPT

SPT TDP

tdp to spt()

spt to tdp()

(b) Initially with TDP

Figure 6.2 Switching in four cases

6.2.2 Performance Test

Provided that all the above function correctly, the testing enters into performance stage, through
which the essential value of the whole design and implementation are evaluated. The performance
testing means to find answers to, and is therefore guided by the questions 2 to 5 in Section 6.1.

First of all, the primary intention, or value of DPMS lies in the expectation that this system is
helpful for the workloads, which exhibit strong inclinations to a particular paging method in the
conventional static approaches to avoid large performance loss by dynamically adapting to their
favorite ones at run-time. In an ideal case, DPMS is supposed to exhibit the quality of suiting
their needs, no matter with which paging method the hypervisor has entered into execution.

Accordingly, the testing is about the comparison of the performance yielded in an environment
with, and that in an environment without the use of DPMS. To illustrate the effect DPMS brings
about, the same benchmark applications are used, which have been discussed in Section 3.3 and
are used to seek the performance drawback of the hypervisor. The effect is considered positive if
the performances of these workloads yielded in an environment with the use of DPMS is higher
than those yielded without the use of DPMS, or else negative.

When it comes to the speedup - a direct indicator of DPMS’s usefulness, one fact is that it is
not only closely related with the execution environment, but to a large extent also depends on the
workload. The speedup is calculated for each benchmark application based on the comparison
suggested above, with the intention to demonstrate the capability of DPMS when dealing with
workloads, especially those which have a bias towards the paging method.

Although from an empirical point of view, the ideal benchmark applications are those having
a bias towards the paging method, the real-world workloads can be diverse, therefore are not
limited to this small set. These are inexhaustible. If the workloads is diversified by making the
benchmark applications more representative, the conclusion will be more convincing. For this
reason, a number of other applications, which showed no bias towards paging method are also
involved in the testing.

The last question deals with the scope of application for DPMS. From the results accumulated
in the above testings, it naturally comes to a position to identify the cases in which DPMS’s use
is recommended, or on the contrary, not necessary.
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6.3 Test and Benchmark Results of DPMS

6.3.1 Performance Data Sampling

The Performance Data Sampling function has been tested on the three platforms. The results
show that this function works as expected on all these platforms. PMCs can be turned on upon
the starting of a guest, sampled periodically by the hypervisor, and turned off as the guest is shut
down. This clearly demonstrates that the call chain in Figure 5.13 can be triggered correctly
from the top to the bottom level, therefore is suitable for serving the DPMS.

One problem is that the PMCs cannot be turned off in the cases where the guest execution
is terminated unexpectedly, for example, crashed due to a certain reason, because the due path
which performs the task has no chance to be called in this situation. As a result, these PMCs get
out of control unless the host is not rebooted. In fact, it has no negative impact on the function,
as when the guest is started again, PMCs on another core will be used by the hypervisor. The
only negative side is that PMCs are not guaranteed to be turned off gracefully in this case.

6.3.2 Dynamic Paging Method Switching

Dynamic Paging Method Switching function has been tested on the above three platforms. The
results show that the dynamic switching works as expected on the two Intel platforms, but on the
AMD platform the switching immediately causes a reboot of the guest rather than a recovery or
restoration of the desired page tables. Although the reason is not yet clear, an assumption is that
the AMD NPT is implemented slightly different from the Intel EPT, and treats the switching
operation as a kind of failure, thus passes the control flow simply to the exception-handler and
triggered the reboot.

Similar operation works on one platform but fails on the other. The failure suggests the lack
of support in hardware, or more likely, a few bugs in the implementation of DPMS, but does
not harm the practicability of the basic idea. At least it has been implemented on two Intel
platforms. It reveals a vendor-specific difference between the implementations of TDP by Intel
and AMD. Further efforts are still needed to seek the fundamental reasons.

6.3.3 Problem Analysis

DPMS works as expected on the two Intel platforms. The paging method can be switched as
soon as the hypervisor feels necessary, in response to the changing behavior of the guest workload
in memory accessing. This proves the basic idea for such a change in the current framework is
feasible and practicable. However, the current implementation is still bothered with a problem.
The guest may quite unexpectedly be crashed by two types of the so-called“KVM internal error”,
as the following error log shows:

KVM internal error. Suberror: 1

emulation failure

KVM internal error. Suberror: 3

extra data[0]: 80000306

extra data[1]: 31

After a careful examination in the source code, it is believed that the first type of error is caused
by an attempt of the guest to access the MMIO region of the memory, and the second by a fault
occurred during the delivering of an event to the guest which caused a vmexit. According to the
annotations in the related source code, it is also due to an attempt of the guest to access the
MMIO region. It indicates that the MMIO region may have been corrupted due to the page
method switching. Limited by experience, an effective solution have not been found yet. Things
becomes increasingly worse with an increase of the number for switching. Until now, a basic
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way to overcome this is to slow down the pace for switching, and perform the switching only
when it is really necessary.

In Section 5.3.4 and 5.5, the convergence of the algorithm fro decision making, as well as the
sampling frequency are mentioned, but more detailed discussions are deferred to this Chapter.
With the testing and benchmark results, it becomes more possible to answer these questions.

6.3.4 Convergence and Stability

The switching is governed by the conditions for decision-making. The convergence and stability
of a switching process are therefore closely related with these conditions. The testing has showed
that the combination of conditions in the initial design was not able to guarantee the convergence
and stability of a switching process, because IPC, TMR and PFR are too easy to be influenced
by a few unexpected factors, such as errors for data sampling, which tend to disturb the outcome
quite randomly. Switching may fall into a live lock, as one page method has been just applied, but
begins to trigger a move towards the opposite direction, and so on, without end. Eventually it
may end up in a guest crash due to the aforementioned errors, or damage the overall performance
even if not. For this reason, after a careful study of the run-time statistics in Section 5.2, the
page fault, vmexit, and TMR are selected as the conditions for switching. It proves that by doing
this, the swing (jitter or oscillation) between SPT and TDP has been effectively eliminated. As
a result, the DPMS becomes more stable and efficient.

6.3.5 Sampling Frequency

The sampling frequency is also a critical factor for the performance and effectiveness of DPMS.
An ideal sampling frequency is expected to ensure that the paging method can be switched timely
in response to the changing behavior of the workload, meanwhile remain so in a relatively longer
time to avoid unnecessary switching. This is actually a compromise between the sensitivity and
stability, but with the same target – to maximize the performance gain. As both the two metrics
are influenced by the sampling frequency, the relation can be expressed as functions of the latter,
of which the sensitivity is monotonically increasing, while the stability monotonically decreasing
for the sampling frequency. The intersection point gives the optimal sampling frequency in this
case. Figure 6.3 depicts this kind of relation in a theoretical approach.

sampling frequency0

stability = f(freq)

sensitivity = g(freq)

optimal

Figure 6.3 Theoretical relation between stability and sensitivity

Indeed, the run-time behavior, or characteristic of a workload may change during its execution.
This can be reflected by the variation of IPC, PFR, TMR in Figures 5.6, 5.7, 5.8 and 5.9. The
performance of a workload may benefit more from the switching during its execution. However,
currently, considering that crash may be incurred due to too frequent switching, it is reasonable
to keep the frequency relatively low, not only for the sake of avoiding the crashes, but also for
better performance. The frequency is lowered to a level that paging method may rarely change
during the execution of the same workload.
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6.3.6 Performance of DPMS

The performance of DPMS is evaluated by the following way: first, the individual TDP-inclined
workloads are executed for a number of times (ten time by default) with the shadow paging
initially, to test whether they could be benefited from DPMS. Next, the individual SPT-inclined
workloads are executed for a number of time (also ten times) with the nested paging initially, to
test whether they can be benefited from DPMS. Then, the other normal workloads are executed
ten times from the shadow paging and shadow paging, respectively. Finally, all the workloads are
started sequentially with either the shadow paging or the shadow paging, to check the stability
of DPMS over a large time-span.

The last step makes sense especially because it is quite common for HPC workloads to execute
within a large time-span, hence the execution environment must be stable or robust enough. It
is a pity that the current DPMS is not stable enough to meet this requirement, merely due to
the aforementioned errors. But it is already stable to withstand a number of switchings when
running most of the normal workloads. Even a guest crashed, the execution will be resumed by
restarting the guest. By this means, the performance data were collected, and plotted as Figure
6.4a and 6.4b. With the results illustrated in the two Figures, it comes to a position to answer
the five questions posed at the beginning of this chapter:

• Does DPMS switching paging method for workloads in guest in different cases?
Yes, DPMS switches the paging method for the guest workload when it “feels” necessary, and
from either shadow paging and shadow paging, or vice versa.

• Does DPMS outperform the conventional static approaches?
Yes, by dynamically adjusting the paging method, significant performance loss can be reduced,
compared with the conventional static approaches.

• How much percent speedup can it bring for a normal workload?
The performance gains: dedup (P1: 10.9%, P2: 20.95%), vips (P1: 13.47%, P2: 9.09%),
barnes (P1: 3.92%, P2: 1.03%), fft (P1: 0%, P2: -2.75%).

• Can most of the selected workloads be benefited from the use of DPMS?
Most of the workloads for benchmarking show little bias towards paging method, so normally
they are not benefited from DPMS, but DPMS ensures at least no harm to their performance.

• What kind of workload will most likely be benefited, what not?
The design of DPMS means to improve the performance of the workloads which suffers due to
an inappropriate paging method in the hypervisor. Therefore, only those workloads are likely
to be benefited from the use of DPMS.

6.4 Summary of the Evaluation

With the aim to verify the feasibility of the proposed design, the DPMS has been tested for both
functionality and performance. It shows that DPMS works properly as expected, except for a
few issues which do not harm too much. The performance data are sampled by the PMCs, and
the paging method is switched dynamically on the Intel platforms.

By running a mix of the benchmark workloads sequentially, the hypervisor is free to choose
the paging method desired by the workload. The benchmark results show that both TDP- and
SPT-inclined workloads are benefited from the use of DPMS, meanwhile other workloads are
not harmed in performance.

From these practice, the feasibility and the usability of DPMS for HPC workloads are proved.
With the test and benchmark, Question 8 in Section 1.2 is answered.
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Figure 6.4 Performance comparison among DPMS, SPT and TDP
(a) Platform 1 (Intel Core i7-6700K), (b) Platform 2 (Intel Xeon e5-1620-v2)
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In this chapter, performance-related factors other than memory virtualization will be discussed.
The virtualization of processor and the I/O system may also be potential source of performance
loss in a certain cases.

Section 7.1 summarized the related work for performance loss due to processor virtualization.
Section 7.2 surveys the efforts for reduing the performance related to I/O virtualization, selects
the benchmark for investigating the performance loss in the inter-node pattern and presents the
benchmark results. Section 7.3 anticipates the future works for all aspects.

7.1 Processor and Scheduling Aspect

Related work

Due to the continuous breakthrough, processor has gradually been removed as a major source
of performance loss, especially since the adoption of hardware-assisted virtualization technology,
Intel-VT and AMD-V. Represented by these processors, x86-based ISA become classic virtual-
izable, therefore reduced much development effort for the hypervisors. The VM guest can be
executed almost natively on the hardware processors (cores), with only a small portion of its
instructions still having to be emulated by software1. Consequently, the processor virtualization
is normally not a problem if the instructions to be emulated (mainly for device I/O emulation)
take a small share in the total.

Computational-intensive workload may yield nearly bare-metal speed if few instructions need
to be emulated. In contrast, I/O intensive workload suffer significantly due to the more frequent
context switch between VM guest and the hypervisor. In this case, the performance loss incurred
by processor virtualization is hidden by that of the I/O device virtualization, which ultimately
emerges as the dominating factor in the overall performance loss [132].

1These are mainly instructions dealing with I/O operations, whose ports or address don’t exist therefore software
emulation is needed.
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However, processor virtualization may incur performance loss due to other reasons, especially
in the cases when multi-core virtual machines are running on multi-core physical machine. This
has for long been the default configuration of servers in data centers and HPC supercomputer.
Multi-core virtual machines are adopted, to create a similar execution environment especially
for multi-threading applications, and to harness the power of such physical multi-core machines.
When a multi-core virtual machine runs on a multi-core physical machine, heavy performance
loss may be encountered by a certain applications performing thread-synchronization operations.

Normally the VCPU (virtual processor) of the guest is implemented as thread or task for the
host OS kernel or hypervisor, being scheduled in and out as a normal task by the hypervisor’s
scheduler. Conceptually, the VCPU itself is the device where task scheduling occurs as soon as
the guest enters into execution.

bootstrap

loader

scheduler

interrupt handler

task 1

task 2

task n

kernel loading

initializing

task executing
scheduling
task executing
interrupt handling

time

Figure 7.1 Task scheduling and the associated kernel activities

Figure 7.1 depicts the scenario of task scheduling on the processors (cores) of the host OS
kernel. After the bootstrap and loading stages, the kernel scheduler initializes itself and then
chooses a task for execution. The task runs until it meets certain blocking condition and cannot
proceed. The reasons may be: 1) The task needs data from outside and stops to wait for that;
2) The task has to wait for a task with higher priority; 3) The task decides to yield the resource
voluntarily; or 4) The task simply has finished its job.

With virtualization, the scheduling entity is a VM guest. Meanwhile, scheduling also occurs
in the guest. This leads to a two-level hierarchical scheduling [133, 134, 135]. Figure 7.2 depicts
a simplified imaginary scenario for the VCPU scheduling. A VCPU shares many qualities in
common with a task, but it is also somewhat different by nature, due to the scheduling of guest
tasks on the VCPU itself. Suppose that a multi-threading task, with {Ti|(i = 1, 2, 3)}, is running
on the guest, being scheduled on the virtual processors. If synchronization is needed among these
threads, T0 on VCPU0 enters into a critical region and is holding thea lock, T1 on VCPU1 is
waiting for the release of this lock. In this case, VCPU0 may been preempted by another task
with higher priority on the host or hypervisor. T1 aquires the lock probably only the next time
VCPU0 resumes its execution and gets the chance to release the lock.

In such condition the workload may suffer more performance loss than in the native execution.
This is known as lock holder preemption (LHP) problem for processor virtualization [136, 137].

The LHP problem arises since the current hypervisor or OS are unaware of the tasks running
on the VCPU, thus treats them as normal tasks to schedule. gang-scheduling [138] was proposed
for this, with which all VCPUs involved in a thread synchronization are scheduled simultaneously
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Figure 7.2 Scenario for VCPU scheduling

as a group on different physical processors (cores). As all related VCPUs run at the moment
of synchronization, as the physical processors always do, theoretically the overhead should be
eliminated. However, in practice, due to the negative effects such as CPU fragmentation, priority
inversion, VCPU stacking and reduced utilization of resources [139], gang-scheduling has rarely
been put into practical use in combination with virtualization.

VMware has illustrated how co-scheduling2 is evolved with their product line in past decades.
In the first generation (ESX Server 2.0), co-scheduling was used in the VMware bare-metal
hypervisor, taking a rather rigid strategy by scheduling all VCPUs of a guest simultaneously.
The hypervisor scheduler maintains a counter (the skew) for each VCPU of the multi-core guest.
The skew grows when the associated VCPU lags behind the others until exceeding a threshold,
at which point all VCPU would be stopped to prevent the skew from further growing. This leads
to CPU fragmentation. In ESX Server 3.x this rigid version was replaced with an updated one
known as relaxed co-scheduling. Instead of a single co-start or co-stop decision, each individual
VCPU is now allowed to make this decision itself based on the comparison of its own skew
against that of the slowest sibling. “By not requiring multiple VCPU to be scheduled together,
the co-scheduling wide multiprocessor VM (those has more VCPUs than the underlying host)
becomes efficient” [140]. In the subsequent ESX/ESXi server releases, relaxed co-scheduling was
further “relaxed” and introduced more support for resource affinity, hyper-threading, and also
exposed the host NUMA architecture to the guest. By doing this, the relaxed co-scheduling gains
the capability of supporting “wide VM guest”, meanwhile achieves more load balance.

The current schedulers of open-source hypervisors can also not handle this problem well. In
Linux kernel there are rare efforts to improve the scheduler for QEMU-KVM. Although a patch
for the CFS (Completely Fair Scheduler) has been developed for Linux kernel 3.2 [141], it is
“highly experimental” and not recommended to be merged into the vanilla version. Although
it could reduce the overhead due to LHP, it “could not establish all the positive aspects of the
technique when the benchmarks were applied” [142].

balance scheduling [143] was proposed to cope with the problems left by relaxed co-scheduling,
with which simply only one VCPU per processor core is run, without forcing all the VCPUs to be
scheduled simultaneously. Compared with co-scheduling, balance scheduling can achieve similar
(up to 8%) or better performance without the co-scheduling drawbacks (e.g. CPU fragmentation,
priority inversion, VCPU Stacking and reduced resource utilization). Nevertheless, the VCPU
preemption problem remains. A further improvement was suggested by [133, 144], which employs

2The concept of co-scheduling is similar to gang-scheduling in concept, but normally looser than the latter in
selecting the set of tasks to be simultaneously scheduled. The latter requires all threads of the same process
to run concurrently, while the former allows only a subset.
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a mechanism to dynamically change the number of VCPUs to guarantee only one VCPU per
physical processor core, and eliminate the need of VCPU scheduling from the hypervisor level.
This way, as claimed by the authors, avoids all the negative sides of the former solutions.
However, it relies on a module that performs the VCPU ballooning or VCPU-hotpluging, which
may not be available for all OSes.

In summary, the performance loss due to processor virtualization can theoretically be a se-
rious problem for the multi-threading applications, especially those involving frequent thread-
synchronization on the multi-core physical machine. Normally this is very little and almost
negligible for most of the computation-intensive applications.

7.2 Network Communication Aspect

7.2.1 Related work

Networking is the critical foundation for the message-passing based workloads on a distributed
HPC system. Not only the communication between the processes on different computing nodes,
but also the access to files on storage servers depends on the network. Since all the I/O traffic
occur via network, the overhead of the network becomes a major limiting factor for the overall
performance.

Guest OS

Hardware

Hypervisor

Full virtualization

Trap

Device emulation

(a)

Guest OS

Hardware

Hypervisor

Paravirtualization

Front-end drivers

Back-end drivers

Device emulation

(b)

Figure 7.3 I/O device emulation in full and paravirtualization [145]

The virtualization of I/O devices, especially the network has witnessed the evolution through
a few generations. At the beginning, as shown in Figure 7.3 (a), I/O virtualization was imple-
mented by means of pure emulation by software. When an I/O operation was encountered, the
guest saves the necessary information, such as the port number, operation type, data size for
port I/O, or memory address for memory-mapped I/O etc. in a region accessible by the hyper-
visor and exits into the hypervisor (device emulator). The device emulator effects the operation
either with the help of the physical devices, or simply by means of software. Finally, the results
or feedback is returned back into the guest.

Emulation can achieve maximum portability and flexibility in terms of hardware-decoupling.
However, the guest execution is constantly bothered by vmexit due to I/O device emulation,
which is considered to be a potential source of performance loss for the I/O intensive workloads.
Thus emulation technique is by nature not capable of providing high performance.

Hinted by paravirtualization, VirtIO [146] was developed to aid more efficient transition from
guest to hypervisor. VirtIO is an abstraction layer for devices in a paravirtualized hypervisor.
As Figure 7.3 (b) depicts, the guest OS is aware that it runs in a virtualized environment, and
operates the drivers acting as the front-end. The other half, the drivers that act as the back-end
are accommodated by the hypervisor. The front-end drivers abstract the common operations
for a variety of specific devices in the guest.

With the front-end drivers, the command and data for an I/O operation issued by the guest
are encapsulated as an entry in ring buffers accessible by the back-end part in the hypervisor.
When the ring buffers are full, the request queue is emptied and the I/O tasks are dispatched
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and performed by the back-end drivers to corresponding physical devices or emulator. The
hypervisor responds to the request by putting the result into the buffer.

The paravirtualization approach, VirtIO has significantly simplified the device emulator hence
the development of hypervisor. It reduces the frequency of vmexit, without sacrificing too much
flexibility. Nowadays, VirtIO is the optimal I/O virtualization for most purposes, even compared
with hardware-based I/O virtualization approach, the PCI-device pass-through, with which the
guest is granted direct access to the physical I/O devices. PCI-passthrough can yield near native
performance at the cost of much flexibility.

Many efforts were invested to reduce the performance loss from I/O virtualization, and sig-
nificant results had been achieved. Further efforts [147] were made to speed up the VirtIO by
assigning separate cores to host functionality dedicated to serving multiple guest’s I/O. This
is combined with a fine-grained I/O scheduling and exit-less notifications. It outperforms the
baseline approach by 1.2 to 3 times, approaching or even exceeding the non-interposing I/O
virtualization performance. netmap [148, 149, 150] enables the commodity operating systems to
handle millions of packets per second via a 1 to 10 Gbit/s link without requiring custom hard-
ware or changes to application. VALE [151], a virtual local ethernet that can be used by virtual
machines such as QEMU-KVM and others, as well as normal processes, has achieved a speed
over 17 million packets per second between host processes, and over 2 million packets per second
between QEMU guests, without any hardware assistance. ptnetmap [152], an implementation of
the pass-through mechanism for virtual network devices, can saturate a 10 Gbit link at a rate of
14.88 million packets per second, meanwhile removing the constrains of hardware pass-through.
With VALE as a network back-end, and a slight modifications to the QEMU-KVM hypervisor,
the host’s virtual switch and device drivers, millions of packets can be transmitted per second
for the netmap applications in virtual machines, a 20 times or more improvement in comparison
to the baseline [153].

As the interrupt handling has an immediate impact on the I/O performance, an exit-less I/O
virtualization [154] was implemented to boost the performance of the I/O operations in virtual
machines combined with PCI hardware pass-through, yielding a 97% - 100% of bare-metal perfor-
mance for the most demanding I/O intensive workloads [154]. Specific to the MPI mechanism,
an efficient share memory message passing approach was created for inter-VM communication
of MPI-applications [155]. It uses a virtual device which provides a simple message passing API
to the guest OS. Benchmarks show near native performance in terms of the network bandwidth
and latency.

7.2.2 Benchmark Selection for Inter-Node Pattern

Capable and well-tuned host delivers good single-node performance. Efficient network ensures
excellent overall system performance if the task is well scalable across multiple computing nodes.
To a certain extent, the inter-node pattern makes HPC workload fundamentally different from
others. The inter-node pattern enables to solve large-scale problems by using more computing
resources. While performance loss for virtualization in a single node is easy to determine, it is
not so for network between virtual nodes. Possible reasons are:

• Program execution involves the joint-effort of all components in a computer. Performance loss
may occur in each component due to virtualization, and the performance loss incurred by one
component may overlap with that by other components, which makes it hard to divide the
overall performance loss across the component;

• Performance of the network implies the data transmission speed between a pair of processes,
either inside a physical intra-node, or between two physical nodes. The pair of processes act
as server and client, respectively. While the performance of computation for intra-node can be
easily calculated by comparing the performances of virtual and physical machines, performance
of communication for inter-node is somewhat obscured by various allocation ways;
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• The diversity and non-trivial building process of HPC workload makes it hard to select a set
of representative real-world HPC applications and to organize them as an HPC benchmark
suite for inter-node performance analysis.

For these reasons, it is helpful to select a bunch of the real-world HPC applications from
various domains to form a benchmark suite. The selection criterion is based on the following
considerations:

• Open source, freely available;
• Diversity, from various typical HPC application domains;
• Building must not be too complex, not too many dependencies on external libraries;
• Proper size of the test input data and appropriate execution time3 of the workload;
• The executable binary can be explicitly run by mpirun or mpiexec, which ensures the control

over the location and number of processes when a workload is started on a virtual cluster.

According to these criteria, 16 commonly used HPC applications were selected from various
domains, such as quantum physics, molecular chemistry, weather forecast, environment, biol-
ogy, financial mathematics and so on. The package is not yet a mature benchmark suite with
unified tools for building and testing, but merely a group of binary executables with automated
building by bash scripts. In case that the testing input data is too small, several benchmarks
can be executed sequentially to yield longer execution time. These applications are useful for
benchmarking the network of a computing cluster in inter-node pattern. The suite includes the
following application:

Abinit This application focuses on atomic physics and chemistry. It calculates the electronic
structure, total energy, and charge density of atomic systems (nuclei and electrons) using DFT
(Density Functional Theory), plane waves, and pseudopotentials to solve Schrödinger equations
numerically [156]. Other usages include geometry optimization, molecular dynamics (MD), and
many-body perturbation simulations.

CM1 It is used for atmospheric research, and designed for the studies of relatively small-scale
processes in the Earth’s atmosphere, such as thunderstorms [157]. CM1 is specially designed
for distributed-memory systems, but can also run on shared-memory, or hybrid OpenMP/MPI
systems [158].

Quantum Espresso This application is an integrated software suite for atomistic simulations
based on electronic structure, using density-functional theory, plane waves and pseudopotentials.
The acronym Espresso stands for opEn Source Package for Research in Electronic Structure,
Simulation, and Optimization. It is freely available to researchers under the GNU General Public
License terms [159]. The Quantum Espresso codes work on various types of UNIX machines,
including parallel systems with OpenMP, MPI, and GPU-acceleration [160].

GROMACS This application is a high-end, high-performance software designed for the study
of protein dynamics using classical molecular dynamics theory [161]. Its package is available
under the GNU General Public License terms. The code runs on UNIX, Linux, and Windows.
As the benchmark involves an extra regression testing package, the execution is not tuned as
usual by giving parameters in an MPI command line.

HPCC A collection of benchmark programs used to measures a range of memory access
patterns. It contains basically 7 testing programs, namely, HPL to measure the number of
floating-point operations for solving linear system of equations; DGEMM to measure the number
of double precision floating-point operations for real matrix-matrix multiplication; STREAM to
measure the sustainable memory bandwidth and computation for simple vector kernel; PTRANS
to measure the performance of network between a pair of processors; RandomAccess to measure

3Too short execution can not ensure sufficient precision, and too long execution takes too much time.
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the rate of integer random update of memory (GUPS); FFT to measure the double-precision
floating point operations for one-dimensional DFT (discrete fourier transform); and a number
of tests to measure the bandwidth and latency for a few communication patterns [162, 163].

HPL This is the High-Performance Linpack benchmark package used as the standard tool to
evaluate the performance of a computing system (especially a supercomputer). It measures the
time of solving a uniformly random system of linear equations, and the floating-point operations
by a standard formula. It is witten in C and parallelized by MPI, thus can be scaled across
multiple computing nodes [164].

LAMMPS An open-source tool developed by Sandia National Labs for molecular dynamic
studies. LAMMPS stands for Large-scale Atomic/Molecular Massive Parallel Simulator. It is
rich in feature and functionality, but can still be extended by users. The platform can be a single
processor, or a distributed-memory system supporting message-passing [165].

MILC A set of C programs developed by the MIMD Lattice Computation (MILC) collabora-
tion for doing simulation of four-dimensional SU(3) [166] lattice gauge theory on MIMD parallel
machines. It can perform large-scale numerical simulations to study quantum chromodynamics
(QCD) [167, 168]. MILC supports parallelization by making use of multi-core, message-passing
and graphic processor unit, on machines with a variety of architectures.

mpiBLAST In biology and medicine, a growing need is to process genomic data. An example is
the GenBank, which has a huge capacity, and is keeping on doubling itself roughly per 18 months.
The basic problem is to query the GenBank, which involves comparing a given sequence with
a large set of sequences in the GenBank, basically a one-to-many alignment operation. BLAST
(basic local alignment search tool, also known as NCBI BLAST) is developed for querying
large sequence databases. It works well for small number of queries in small databases. Thus,
BLAST gets parallelized to deal with a large number of queries and rapidly growing database.
Two variants are mpiBLAST [169] and ScalaBLAST [170]. The former can improve the
performance of BLAST almost linearly by adopting fragmented database and query, intelligent
scheduling, and parallel I/O. It supports many ISAs and operating systems. (Source: [171, 172])

MrBayes Phylogenetic Systematics is a branch of biology to classify organisms by using phy-
logenetic methods [173]. A phylogeny is a hypothetical relationship between groups of organisms
being compared. Phylogeny is often depicted by a phylogenetic tree to describe the evolution-
ary relationships between different genera [173]. MrBayes is an application to aid study in
this area. It performs Bayesian inference of phylogeny using a variant of Markov chain Monte
Carlo (MCMC) techniques. MrBayes-3 uses MPI for parallel execution. As the communicated
among the multiple chains is not intensive, near linear speedups can be achieved. (Source: [174])

Nek5000 Computational Fluid Dynamics is a branch of fluid dynamics providing a cost-
effective means of simulating real flows by numerical solution of governing equations. Nek5000
is developed to aid the study of CFD with parallel computing systems. It can be used in
a variety of applications including vascular flow, heat transfer, combustion, ocean modeling,
fundamentals of turbulence, astrophysics, accelerator physics, and nanophotonics. The programs
are written in F77, C and parallelized purely by message-passing approach. Its execution is
highly scalable, ranging from single-processor laptop to most powerful supercomputers of the
world. The prove scalability was shown with over a million MPI ranks running the application.
(Source: [175, 176, 177])

Octopus In material sciences, computation is needed to solve the partial differential equations
(PDE) modelled by applying the density-functional theory (DFT) and its time dependent variant
- TDDFT. Based on quantum mechanical theory, the ab initio (means from the beginning) DFT
calculations can predict the material behaviour without requiring higher order parameters such
as fundamental material properties. DFT and TDDFT are widely adopted in material sciences,
solid physics and chemistry to study the electronic structure of many-body systems, particularly
atoms, molecules, and the condensed phases. Octopus is an application for solving the time-
dependent Kohn-Sham [178] PDEs based on the DFT and TDDFT by numerical simulation. It
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is highly parallelizable. With MPI and OpenMP, its execution can scale to tens of thousands of
processors. Support for graphical processing units (GPUs) through OpenCL and CUDA is also
available. Octopus is freely released under the GPL license. (Source: [179, 180, 181, 182, 183])
OpenAtom In science and technology branches such as chemistry, solid physics, bio-physics,

geophysics, electronic physics, material sciences, a growing need is to simulate the molecular and
atomic systems based on the principles of quantum chemistry. The vast amount of entities and
complex interaction in such systems limit the accuracy, computational efficiency and applicability
of today’s supercomputers. Currently, only a few hundred atoms can be simulated at such level of
detail due to the communication-intensive Fast Fourier Transformations (FFTs). Charm++ is a
parallel programming framework to decompose a task in a way natural to the application domain.
OpenAtom is able to make use of Charm++’s asynchrony and object-based overdecomposition
approach to overcome these challenges. OpenAtom uses the Car-Parrinello Ab Initio Molecular
Dynamics (CPAIMD) approach, which allows to study complex atomic and electronic physics
in semiconductor, metallic, biological and other molecular systems. It can scale to thousands of
cores for realistic scientific systems with only a few hundred atoms. Such excellent scalability
enables it to use the parallelism via fine grains of data and computation. (Source: [184, 185, 186])
Tachyon Many scientific areas demand high-quality rendering of three-dimensional geometry

and vector fields. Algorithms and software tools have been designed to render such photore-
alistic images of according objects. However, since image rendering is a computation-intensive
task, high-quality three-dimensional images are generated not quite efficiently by sequential al-
gorithm and software tools. By making image rendering process parallel, more than two orders
of magnitude of time cost can be saved. Ray-tracing [187] is an approach among the image
rendering techniques. It simulates rays of light in producing images, sped up by parallelizing
the ray-tracing process. It runs on both distributed- and shared-memory systems. Tachyon is
used in visualizing molecular dynamics (VMD) and serves as a benchmark for parallel systems
in this domain. (Source: [188, 189])

Wombat In biology, a phenotype is the observable trait presented in an organism. It may
include the observable structure, function and behavior. Quantitative Genetics is a branch of
Population Genetics that treats the quality of phenotypes as continuous variable quantities. This
makes it possible to use mathematical statistical approaches to study the connection between
genes and their physical manifestations. WOMBAT is a software package for qualitative genetic
analyses of continuous traits, fitting a linear, mixed model via restricted maximum likelihood
(REML). It can be used to analyze large data sets from livestock industry and simulate data
for a given data and pedigree structure. WOMBAT is distributed in the form of pre-compiled
binary code, and can be executed in parallel by using MPI. (Source [190, 191, 192])

WRF In weather research and forecasting, WRF is a set of software tools for atmospheric
research and operational forecasting by means of numerical weather prediction (NWP) . The
latter is an approach to predict the weather by using mathematical models and numerical com-
putations. For this enormous amount of data collected by observing networks must be processed
rapidly and accurately. Supercomputers are able to provide such computing power. WRF uses a
fully compressible and nonhydrostatic model (with a run-time hydrostatic option). Runge-Kutta
time integration schemes, and advection schemes are applied in both horizontal and vertical di-
mensions. WRF runs on both shared- and distributed memory systems, and has excellent
scalability. (Source: [193, 194])

In summary, the benchmark application domains include: physics, chemistry, atmospheric and
weather research, electronics, molecular dynamics, fluid dynamics, biology, genetics, material
sciences, and image rendering. HPCC and HPL are used as single benchmarks in this context.
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7.2.3 Benchmarking for Network Communication

Assuming virtual machines are deployed in a supercomputer, each computing node may host a
few guests. In such an environment, different ways exist to run the MPI-based workloads. When
execution occurs on the virtual platform, the workload can be run in the intra-node pattern on a
guest, or in the inter-node pattern on many guests belonging to a virtual cluster. Similar to the
conventional cluster, a virtual cluster is a collection of mainly virtual computers interconnected
networks. Figure 7.4 shows a few virtual clusters residing on the physical nodes of a cluster.
Normally the computing nodes are virtual machines, however, physical machine can also be used
as a node for computing or more commonly for management.

vm00 vm01

vm02 vm03

vm04 vm05

physical node 0

virtual cluster 1

physical network

vm10 vm11

vm12 vm13

vm14 vm15

physical node 1

virtual cluster 2

vm20 vm21

vm22 vm23

vm24 vm25

physical node 2

virtual cluster 3

Figure 7.4 Virtual clusters [10]

Figure 7.5 depicts the construction and configuration of an example benchmark platform for
such a network. It is a cluster consisting of one management node and two computing nodes,
connected by Gigabit Ethernet network. The system software is the same as specified in Section
3.3. All the benchmark applications are stored in an NFS partition visible by all physical and
virtual nodes in the cluster. Each physical computing node may host a progressively increasing
number of identical guests as the virtual nodes.

The performance loss over network cannot be directly calculated, but estimated by comparing
the performances yielded in a number of cases. The performance loss for intra-node pattern
serves as the basis of comparison, as it does not involve any overhead incurred by the physical
network. Furthermore, performance data yielded in a number of virtual cases are also necessary.
In a virtual cluster, there are various ways for running an MPI-based workload. Both virtual
and physical nodes can be allocated. A workload with two MPI processes, for example, can be
scheduled in four ways, as depicted in Figure 7.6. For convenience, they are labeled as PsnPsn,
PdnPdn, VsnVsn, VdnVdn, respectively, where P stands for physical node, V for virtual node, s
for shared-memory, d for distributed-memory, and n for the number of MPI process allocated on
a single node. The number of processes each node runs, and the virtual nodes each physical node
hosts may also increase for more MPI processes. These schemes represent the basic patterns for
scheduling an MPI-based HPC workload in a virtual cluster, and remain unchanged.

Due to the optimization for inter-VM communication on the same physical node, the VsnVsn
may take the advantage of memory-sharing for inter-process communication. The PsnPsn does
the same at less cost. Performance comparison between these two reveals more about the per-
formance loss due to virtualization than that due to network communication. On the other
hand, both VdnVdn and PdnPdn involve inter-process communication over real physical net-
work. Performance comparison between them therefore reflects the impacts of both network and
virtualization, and serves as a criterion for determining whether a workload could be migrated
into a virtual cluster with distributed memory. Similarly, both VsnVsn and PsnPsn involve no
communication over real physical network, thus the performance comparison determines whether
a virtual cluster with shared memory is suitable for this type of workload.

The performance comparison between PdnPdn and PsnPsn mainly reveals the difference of
distributed and shared memory, so does the comparison between VdnVdn and VsnVsn, but
combined with the difference due to virtualization.
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Figure 7.5 Cluster used for benchmark
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Figure 7.6 Basic ways to run an MPI application on (a) the same physical node; (b) different
physical nodes; (c) different virtual nodes but the same physical node; (d) different
virtual nodes and different physical nodes.

Figure 7.7(a) presents the benchmark results for the selected real-world workload executed as
one, two, four and eight MPI processes, respectively4. Figure 7.7(b)(c) illustrate the performance
comparisons between the above mentioned various cases for 2 and 4 MPI processes, respectively.

Due to the requirements for some of the workloads, execution may not be possible in some
cases, thus missing data exist in the figures. The available data reveals the performance loss for
a batch of real-world HPC workloads over the network for both physical and virtual clusters.

Figure 7.7(a) reveals the following: 1) 11/16 workloads reached 90% of native performance
regardless of the number of MPI processes; 2) 14/16 reached 80% of native performance regard-
less of the number of MPI processes; 3) 2 workloads (octopus and wombat) lose 20% or more of
native performance as the number of MPI process increases.

Figure 7.7(b)(c) reveals the following: 1) In the case of 2 MPI processes, 8/12 workloads are
above 90%, 11/12 above 80% of native performance for Vd1Vd1 scheme (Vd1Vd1/Pd1Pd1); 5/12
are above 90%, 7/12 above 80% of native performance for Vs1Vs1 scheme (Vs1Vs1/Ps1Ps1); 2)
In the case of 4 MPI processes, 10/14 are above 90%, 12/14 above 80% of native performance for
Vd2Vd2 scheme (Vd2Vd2/Pd2Pd2); 8/14 are above 90%, 9/14 above 80% of native performance
for Vs2Vs2 scheme (Vs2Vs2/Ps2Ps2).

4The missing items are due to various reasons: HPCC, HPL and mpiBLAST can only be executed by at least 4 MPI
processes; octopus and wombat yield increasingly poor performance when run as multiple MPI processes, thus
makes little sense in those cases.
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Table 7.1: Performance Loss over Communication Network (normalized)

Workload Vs2 Vs4 Vd1Vd1 Vs1Vs1 Vd2Vd2 Vs2Vs2

abinit 0.04 -0.07 0.07 -0.16 0.11 -0.02
cm1 0.13 0.12 0.18 0.16 0.16 -0.10
espresso 0.05 -0.08 -0.09 0.36 -0.08 0.56
gromacs 0.02 -0.02 - - - -
hpcc - -0.07 - - -0.68 -0.43
hpl - -0.15 - - 0.02 0.24
lammps 0 0.08 0.12 0.73 0.12 0.75
milc 0.05 -0.08 -0.23 0.29 -0.03 0.54
mpiblast - 0.06 - - 0.02 0.06
mrbayes 0.02 -0.03 0.01 0.02 0.01 -0.04
nek5000 0.10 -0.07 - - - -
octopus 0.38 0.39 0.07 - - -
openatom 0.09 -0.10 0.08 0.09 0.04 -0.02
tachyon 0.06 -0.16 0.03 0.01 0.03 -0.24
wombat 0.24 - 0.15 0.20 0.42 0.17
wrf 0 -0.03 0.02 0 0.01 0.08

As a summary of the discussion about the benchmark result, Table 7.1 lists the normalized
performance loss reasoned by the communication network. The first two columns show the
performance loss incurred purely by virtualization (intra node), corresponding to Figure 7.7(a).
The other four columns correspond to Figure 7.7(b) and (c). A noticeable thing is the negative
performance loss, which indicates that virtual machine outperforms physical machine. Though
theoretically this is impossible, it seems not to be so uncommon when benchmarking a virtual
machine. An assumption is that over-clocking of the physical processor could have been trig-
gered. In these cases, the results may be distorted to a certain extent, and cannot be compared
bindly. However, for completeness, they are still presented here.

For entries with comparable data, the performance loss of the network is estimated by sub-
tracting the value of Vs2 from Vd1Vd1 for the case of two processes, and Vs4 from Vd2Vd2
for the case of four processes. A few examples are: abinit: 3%, cm1: 4% to 5%, wrf: 2%, and
lammps: 4% to %12. Considering that the Gigabit Ethernet is used as the network interconnec-
tion, the result does not account for serious performance loss.

7.3 Future Work

7.3.1 Future Work for Memory Virtualization

Currently, all functional units of the dynamic paging method switching are implemented based
on the KVM and named as DPMS. Although DPMS meets the basic requirements for design and
exhibits its potential of improving the hypervisor’s performance, there are still a few problems
unsolved in the implementation. To get DPMS outgrown from an experimental research project,
and taken serious as a practically useful hypervisor component, the following problems must still
be solved:

Problem on AMD Platform

As an important variant of the x86-64 architecture, AMD has a similar hardware extension
for virtualization support as Intel. However, several subtle differences also exist between the
AMD NPT and Intel EPT solutions, which tend to pose problems for developing hypervisors
and migrating virtual machines. Features making use of the hardware virtualization extension
on x86-64 needs two variants. This is also the case for DPMS.
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Problem on Intel Platform

The occasional crash on Intel platform is another issue bothering DPMS. Hinted by the initial
analysis, the two types of errors are all related to MMIO region. A basic assumption is that the
MMIO region in the guest memory has been corrupted due to the changing of page tables. This
may be caused by a mistake, or inappropriate actions in the switching operation. However, to
find out the reasons, deeper investigation of the implementation is still needed.

Improving on Decision-Making

A few thresholds used for Decision Making (see Section 5.3.3) are determined by analyzing the
statistics collected by the PMCs, and the rules are also derived by observation. Although it
works fine, it can be applied only for handling a small number of workloads and data size. An
ideal approach would be machine-learning. The thresholds and rules can be generated from a
large data set, which leads to more reliable and generic results.

Support for Multi-core

The current DPMS makes use of a single core. A challenge for supporting multi-core lies in the
difficulty to control the VCPUs of a guest in an appropriate synchronized manner. However,
this may harm the performance and offset the benefits gained by the dynamic switching.

The Impact of Cache and TLB on STDP’s Performance

With the increasing of the TDP table size, the performance impact of the cache and TLB needs
to be investigated in future.

7.3.2 Future Work for I/O Virtualization

More efforts are needed to study the performance loss of network for the MPI-based workload,
with high-end NIC such as Infiniband. This area attracts more focus to imporve the performance
of virtualization for HPC workload.
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Figure 7.7 Performance comparisons (a) without real network communication, (b) with physical
network communication between 2 MPI processes, (c) with physical network commu-
nication among 4 MPI processes
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Chapter 8 Conclusions

With the aim of improving the performance of HPC workloads in virtual execution environments,
the dissertation initially made a comprehensive study of the performance by benchmarking
the typical real-world HPC applications in virtual machines. The benchmark results indicate
that MPI-based workloads in a cluster environment suffer less significantly than the multi-
threading HPC workloads in a single computing node. Therefore, the efforts for improving the
performance of the hypervisor is focused on the individual components of a single node. In this
case, further benchmarks showed that the virtualization of the memory management system may
pose as a serious source of performance loss for specific types of HPC workloads. This problem
arises partially due to the respective strengths and weaknesses from the current approaches for
virtualizing the memory management system.

For a given processor and I/O hardware, the performance can only be improved by dynamically
exploiting the advantages of each paging approach. However, most of the current main-stream
hypervisors apply static way to configure the paging method prior to the execution of guest
systems, thus use the same paging method once for all to handle different types of workloads.
Based on these observations, the thesis proposes the approaches - DPMS and STDP.

DPMS is practically a software approach, which adds a capability in the hypervisor to exploit
the best qualities of the two standard approaches at present. By analyzing workload-specific
information at run time, the hypervisor is able to adjust the paging method periodically to avoid
certain large overhead. The main concepts realized in DPMS include:

1. Effective use of the performance monitor counters: The performance monitor counters
are able to capture specific run-time statistics about the interaction between the workload and
the execution environment. Useful information can be obtained by analyzing these data, which
may in turn aid the hypervisor to be more adaptive for avoiding high performance loss.

2. Reduction of misprediction and unnecessary switching: A main problem of the pre-
dictive model is the misprediction. Although the benefits of DPMS is obvious, in the cases of
misprediction, the performance cost is expensive. DPMS suffers from this problem, but solves
it by adopting reasonable rules to determine the situation in which the paging method really
needs a switching. These rules are deduced from the data sampled by the performance mon-
itor counters. By applying these rules, the decision is less likely to be disturbed by random
fluctuation of the related performance metrics. In other words, a switching is triggered for
more deterministic reasons.

3. Reconfiguration of the paging method: The dynamic switching of paging method has ad-
vantages over the current static way to configure the paging method. The advantage lies in the
flexibility to switch between the two page methods dynamically. The switching is performed
by modifying not only the components of hypervisor, but also a few registers in the physical
processor. The challenge is to determine the minimum set of operations that guarantee the
proper function and minimize the impact on the original code. With the de-configuration of
the current paging method, the page tables are partially or fully discarded. By configuring the
new paging method, new page tables are incrementally prepared for subsequent operations.
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8 Conclusions

4. Balance between sensitivity and stability: Sensitivity and stability are conflicting tar-
gets. In the design and implementation of DPMS, the balance between them boils down to
the choice of a sampling frequency. Although theoretically the relation is obvious, it is more
a matter of empiricism than of mathematical calculation. Due to insufficiency in the initial
implementation, a certain degree of sensitivity had to be sacrificed by keeping the sampling fre-
quency reasonablly lower, which ensures that the PM-sensitive workloads are handled by their
nature. Meanwhile, the PM non-sensitive workloads is less likely affected due to switching.

By applying these concepts, the dynamic paging method switching is implemented based on
KVM. In comparison to the current static approach, DPMS illustrated its flexibility to cope
with workloads of different types. Based on the benchmark result, the conclusions are:

1. DPMS yields a mixed results of both positive and negative.
2. DPMS can speed up some specific workloads by a few percent.
3. DPMS can outperform the NPT/EPT, but may not exceed the SPT in these cases.

STDP is an approach depending on both the software and hardware, with the aim to reduce
the paging overhead by applying fewer paging levels in the second dimensional page tables for
workloads which are not good at taking the advantage of TLB. Theoretically, 40% of the paging
cost can be reduced for the translation from the guest virtual to host physical address without
considering the TLB effect. The main concepts realized by STDP include:

1. Reducing the paging overhead by restructuring the page tables: The starting point is
that the overhead for n-level paging with the second dimensional page tables has a complexity
of O

(
n2

)
, and if the overhead in the second dimension decreases by O

(
n
)
, the total overhead

will decrease by O
(
n2

)
. If the 2-level page table is adopted in the second dimension, ten times

of memory accessing (10/24 of the total cost) can be saved. In STDP, multiple 4-KB TDP
tables are concentrated into a single 2-MB table.

2. Separation of the page table meta data from page table content: This leads to the
necessity of reorganizing the page tables and the control information. A particular challenge
lies in the maintenance of the mapping relation between a page table and its meta data. In
the implementation of STDP, an array is used for this purpose. The index is calculated from
the address to be translated.

3. Hardware for parsing the restructured page tables: To correctly parse the restructured
page tables, the hardware, more precisely the MMU also needs to be modified. The physical
MMU must be adaptive to traverse the traditional 4-level guest page tables with four steps,
but the restructured 2-level TDP tables with two steps.

The software part of STDP has been implemented. With these concepts, the nested page
tables are concentrated in the 2-MB pages, yielding a decreased walking length. The page
tables can be allocated and managed as expected.
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Computação Cient́ıfica (LNCC), Coordenação de Sistemas e Redes (CSR), Sep. 2015.

[73] B. Goudey, M. Abedini, J. L. Hopper, M. Inouye, E. Makalic, D. F. Schmidt, J. Wagner,
Z. Zhou, J. Zobel, and M. Reumann. High performance computing enabling exhaustive
analysis of higher order single nucleotide polymorphism interaction in Genome Wide
Association Studies. Health Information Science and Systems 2015, S3, Oct. 2015.

[74] S. Anthony. What Can You Do with a Supercomputer.
http://www.extremetech.com/extreme/122159-what-can-you-do-with-a-supercomputer.
Mar. 15, 2012.

[75] FutureGrid - an XSEDE resource provider. http://archive.futuregrid.org.
[76] C. Metz. Amazon Builds World’s Fastest Nonexistent Supercomputer.

http://www.wired.com/2011/12/nonexistent-supercomputer/all. Dec. 23, 2011.
[77] R. Brueckner. Virtual Supercomputer Service Enters Beta.

http://insidehpc.com/2014/12/virtual-supercomputer-hpc-service-enters-beta. Dec.
2014.

[78] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke, S.
Jaconette, M. Levenhagen, and R. Brightwell. Palacios and Kitten: New High
Performance Operating Systems For Scalable Virtualized and Native Supercomputing.
Parallel & Distributed Processing, 2010 IEEE International Symposium, Apr. 2010.

[79] J. R. Lange and P. A. Dinda. SymCall: Symbiotic Virtualization Through VMM-to-Guest
Upcalls. Proceedings of the 2011 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE’11), Mar. 2011.

[80] A. Kudryavtsev, V. Koshelev, B. Pavlovic, and A. Avetisyan. Virtualizing HPC
Applications using Modern Hypervisors. Proceedings of the 2012 workshop on Cloud
services, federation, and the 8th open cirrus summit. ACM, 2012.

[81] Y. Zhang, R. Oertel, and W. Rehm. Performance Loss on Virtual Machines. TUCSIS
2012, Studentensymposium Informatik Chemnitz 2012 Tagungsband zum 1.
Studentensymposium Chemnitz vom 4. Jul. 2012.

[82] Y. Zhang, R. Oertel, and W. Rehm. Performance Impact of Futex on Virtual Machines.
EMS - IEEE European Modelling Symposium 2013, Manchester, UK, Nov. 2013.

[83] D. Bailey, E. Barszcz, and J. Barton et al. The NAS Parallel Benchmarks. RNR
Technical Report RNR-94-007, Mar. 1994.

[84] N. Regola and J. C. Ducom. Recommendations for Virtualization Technologies in High
Performance Computing. Proceedings of the 2010 IEEE Second International Conference
on Cloud Computing Technology and Science, CLOUDCOM’10, pp. 409-416, 2010.

[85] A. O. Kudryavtsev, V. K. Koshelev, and A. I. Avetisyan. Prospects for Virtualization of
High Performance x64 Systems. Programming and Computer Software, 39(6), pp.
285-294, 2013.

[86] K. Bala, M. F. Kaashoek, and W. E. Weihl. Software Prefetching and Caching for
Translation Lookaside Buffers. Proceedings of the 1st USENIX conference on Operating
Systems Design and Implementation. USENIX Association, 1994.

[87] M. Wu and W. Zwaenepoel. Improving TLB Miss Handling with Page Table Pointer
Caches. SOSP ’95 Proceedings of the 15th ACM Symposium on Operating Systems
Principles, Technical report, Rice University, Dec. 1997.

[88] A. Bhattacharjee and M. Martonosi. Characterizing the TLB Behavior of Emerging

116

http://www.extremetech.com/extreme/122159-what-can-you-do-with-a-supercomputer
http://archive.futuregrid.org
http://www.wired.com/2011/12/nonexistent-supercomputer/all
http://insidehpc.com/2014/12/virtual-supercomputer-hpc-service-enters-beta


BIBLIOGRAPHY

Parallel Workloads on Chip Multiprocessors. Parallel Architectures and Compilation
Techniques, PACT’09. 18th International Conference. IEEE, 2009.

[89] A. Bhattacharjee and M. Martonosi. Inter-core Cooperative TLB for Chip
Multiprocessors. Proceedings of the 15th edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, pp. 359-370. 2010

[90] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared Last-level TLBs for Chip
Multiprocessors. 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, 2011.

[91] S. Srikantaiah and M. Kandemir. Synergistic TLBs for High Performance Address
Translation in Chip Multiprocessor. Microarchitecture (MICRO’10), 43rd Annual
IEEE/ACM International Symposium, 2010.

[92] G. B. Kandiraju and A. Sivasubramaniam. Going the Distance for TLB Prefetching: an
Application-driven Study. ISCA’02 Proceedings of the 29th Annual International
Symposium on Computer Architecture, pp. 195-206, May. 2002.

[93] B. L. Jacob and T. N. Mudge. A Look at Several Memory Management Units, TLB-refill
Mechanisms, and Page Table Organizations. Technical Report, 2009.

[94] M. Talluri, M. D. Hill, and Y. A. Khalidi. A New Page Table for 64-bit Address Spaces.
SOSP ’95 Proceedings of the 15th ACM Symposium on Operating Systems Principles,
pp. 184-200 Vol. 29. No. 5. ACM, Dec. 1995.

[95] J. Liedtke. Address Space Sparsity and Fine Granularity. ACM SIGOPS Operating
Systems Review 29.1 (1995): pp. 87-90, 1995.

[96] R. Bhargave, B. Serebin, F. Spadini, and S. Manne. Accelerating Two-Dimensional Page
Walks for Virtualized Systems. Advanced Micro Devices. Mar. 2008.

[97] T. W. Barr, A. L. Cox, and S. Rixner. Translation Caching: Skip, Don’t Walk (the Page
Table). Houston, TX. Jun. 2010.

[98] J. Ahn, S. Jin, and J. Huh. Revisiting Hardware-Assisted Page Walks for Virtualized
Systems. 39th International Symposium on Computer Architecture (ISCA’12), 2012.

[99] A. Arcangeli and A. Kivity. Using Linux as Hypervisor with KVM. Qumranet Inc.,
CERN, Geneve, Sep. 2008.

[100] X. Wang, J. Zang, Z. Wang, Y. Luo, and X. Li. Selective Hardware/Software Memory
Virtualization. ACM VEE’11. Mar. 2011.

[101] C. S. Bae, J. R. Lange, and P. A. Dinda. Enhancing Virtualized Application Performance
Through Dynamic Adaptive Paging Mode Selection. ACM ICAC’11. Jun. 2011.

[102] Y. Zhang, R. Oertel, and W. Rehm. Paging Method Switching for QEMU-KVM Guest
Machine, BigDataScience’14 Proceedings of the 2014 International Conference on Big
Data Science and Computing Article No. 22, Aug. 2014.

[103] J. Gandhi, M. D. Hill, and M. M. Swift. Agile Paging: Exceeding the Best of Nested and
Shadow Paging, ISCA’16 Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 707-718, Jun. 2016.

[104] G. Hoang, C. Bae, J. Lange, L. Zhang, P. Dinda, and R. Joseph.
A Case for Alternative Nested Paging Models for Virtualized Systems. Computer
Architecture Letters, 9, pp. 17-20, University of Michigan, Jun. 2010.

[105] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Efficient Memory Virtualization.
University of Wisconsin-Madison and AMD Research, Oct. 2014.

[106] G. Shainer, P. Lui, T. Liu, T. Wilde, and J. Layton. The Impact of Inter-node Latency
versus Intra-node Latency on HPC Applications. The 23rd IASTED International
Conference on PDCS 2011, Dec. 2011.

[107] H. Subramoni, M. Koop, and D. K. Panda. Designing Next Generation Clusters:
Evaluation of InfiniBand DDR/QDR on Intel Computing Platforms. High Performance
Interconnects (HOTI’09), Sep. 2009.

[108] G. Shainer. Offloading vs. Onloading: The Case of CPU Utilization.

117



BIBLIOGRAPHY

https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization.
Jun. 18, 2016.

[109] J. Tao, W. Karl, and C. Trinitis. Implementing an OpenMP Execution Environment on
InfiniBand Clusters. OpenMP Shared Memory Parallel Programming’08: pp. 65-77, 2008.

[110] M. L. Li, R. Sasanka, S. V. Adve, Y. K. Chen, and E. Debes. The ALPBench Benchmark
Suite for Multimedia Applications. UIUC CS Technical Report UIUCDCS-R-2005-2603,
Jul. 2005.

[111] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C. W. Tseng, and D.
Yeung. BioBench: A Benchmark Suite of Bioinformatics Applications. IEEE
International Symposium on Performance Analysis of Systems and Software, 2005.

[112] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf. MediaBench II Video: Expediting
the Next Generation of Video Systems Research. Microprocessors and Microsystems 33.4
(2009): pp. 301-318, 2009.

[113] PARSEC Overview. http://parsec.cs.princeton.edu/overview.htm#Motivation. 2009.
[114] J. Han, J. Ahn, C. Kim, Y. Kwon, Y. Choi, and J. Huh. The Effect of Multi-core on

HPC Applications in Virtualized Systems. ARCS’2012, LNCS 7179, pp. 123-134,
Springer-Verlag Berlin Heidelberg, 2012.

[115] J. Held, J. Bautsta, and S. Koehl. From a Few Cores to Many - A Tera-scale Computing
Research Overview. White Paper, Research at Intel. Apr. 13, 2012.

[116] O. Wechser. Developing the HPC Compute Cores of Tomorrow. Intel Fellow, Visual and
Parallel Group. Feb. 10, 2014.

[117] P. Dubey. Recognition, Mining and Synthesis Moves Computers to the Era of Tera.
Technology at Intel Magazine, Feb. 2005.

[118] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. PACT’08, pp. 72-81. 2008.

[119] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations. Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pp. 24-36, Jun. 1995.

[120] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quantitative Comparison of
Two Multithreaded Benchmark Suites on Chip-Multiprocessors. IEEE International
Symposium on Workload Characterization (IISWC 2008), Sep. 2008.

[121] T. Reeves. What’s the Difference between AMD64 and Intel EM64T.
https://jetteroheller.wordpress.com/2007/03/09/whats-the-difference-between-amd64-
and-intel-em64t. Mar. 2007.

[122] Intel Core i7-2960XM vs i7-6700K. http://www.cpu-world.com/Compare.
CPU World, Feb. 17, 2017.

[123] Intel Xeon E5-1620 v2 specifications. http://www.cpu-world.com/CPUs/Xeon.
CPU World, Feb. 16, 2017.

[124] Intel Xeon E5-1620 vs E5-2603 v2. http://www.cpu-world.com/Compare. CPU World,
Nov. 23, 2016.

[125] AMD FX-8150 Specifications. http://www.cpu-world.com/CPUs/Bulldozer.
CPU World, Feb. 12, 2017.

[126] AMD FX-8150 - Bulldozer im ausführlichen Test.
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Appendix A Some Data Structures in KVM

A.1 Searching of kvm_mem_slot

memslot−>base_gfn memslot−>base_gfn+ memslot−>npages

gfn

A.2 Translation between GFN and HVA

gfn

slot−>base_gfn
index

PAGE_SIZE
* offset

slot−>userspace_addr

+ hva

(a) GFN to HVA

PAGE_SIZE

+hva gfn

..
offset

index

slot−>base_gfn

slot−>userspace_addr

(b) HVA to GFN

A.3 kvm_memory_region and kvm_userspace_memory_region

guest_phys_addr

memory_size

flags slot slot

guest_phys_addr

memory_size

flags

userspace_addrkvm_memory_region

kvm_userspace_memory_region
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Appendix A Some Data Structures in KVM

A.4 kvm_io_bus

...

*read()

*write()

*destructor()

*ops

*dev

addr

len

kvm_io_devicedev_count
range[0]

*read()

*write()

*destructor()

*ops

*dev

addr

len

kvm_io_device
range[dev_count−1]

*range

ioeventfd_count

A.5 kvm_coalesced_mmio_dev and kvm_coalesced_mmio_ring

addr

pad size

zone

*kvm

dev

list

phys_addr

pad len

data[8]

phys_addr

pad len

data[8]
. . .

coalesced_mmio[0] coalesced_mmio[n]

firstlast

kvm_coalesced_mmio_ring

*read()

*write()

*destructor()

*ops

kvm_io_device

kvm_coalesced_mmio_zone

kvm_coalesced_mmio_dev

A.6 kvm_ioapic

rtc_status

kvm_ioapic

vector

delivery_mode
dest_mode
delivery_status

polarity

trig_mode
remote_irr

mask

rtc_status

handled_vectors

lock

*ack_notifier

*kvm

dev

irq_states[24]

redirtbl[24]

pad irr

id ioregsel

base_address

dest_id

pending_eoi

dest_map
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A.7 interrupt message

A.7 interrupt message

vector

mask delivery_mode
dest_mode
delivery_status

5663

31

32

0

10 − 8

dest_id

polarity

trig_mode
remote_irr

A.8 kvm_lapic

*read()

*write()

*destructor()

*ops

kvm_io_devicebase_address

dev

lapic_timer

divide_count

*vcpu

irr_pending

isr_count

highest_isr_cache

*regs

vapic_addr

vapic_cache

pending_events

sipi_vector

generation

*memslot

gpa

hva

len

gfn_to_hva_cache

kvm_lapic

A.9 iterator

idx[1]

idx[0]

idx[2]

page[0]

page[i]

page[15]

...

...

nr

idx

*sp

struct kvm_mmu_pages

*parent[2]

*parent[1]

*parent[0]

struct mmu_page_path
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Appendix A Some Data Structures in KVM

A.10 kvm_mmuslot

userspace_addr

flags

id

arch

*dirty_bitmap

npages

base_gfn

id_to_index[0] *lpage_info[0]

*lpage_info[1]

kvm_arch_memory_slot

memslots[0]

id_to_index[127]

...

...

kvm_memory_slotkvm_memslots

memslots[127]

generation

*rmap[2]

*rmap[1]

*rmap[0]

A.11 GEN_MMIO

01231

3263

MMIO_GEN_LOW_BITSMMIO_GEN_HIGH_BITS

19 1MMIO_GEN_BITS

spte

MMIO_SPTE_GEN_LOW_MASK

11

MMIO_SPTE_GEN_HIGH_MASK

5261

0

45

shadow_mmio_mask

A.12 pte_list_desc

*sptes[0]

*sptes[1]

*sptes[2]

*more

*sptes[0]

*sptes[1]

*sptes[2]

*more

*sptes[0]

*sptes[1]

*sptes[2]

*more

*sptes[0]

*sptes[1]

*sptes[2]

*more

...

struct pte_list_desc
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A.13 VMCB layout in AMD NPT

A.13 VMCB layout in AMD NPT

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...
reserved_5

rax

star

lstar

cstar

sfmask

kernel_gs_base

sysenter_cs

sysenter_esp

sysenter_eip

cr2

reserved_6

dbgctl

br_from

br_to

last_excp_from

last_excp_to

g_pat
... ... ... ...

0x5e0

0x5f8

0x600

0x608

0x610

0x618

0x620

0x628

0x630

0x638

0x640

0x648

0x668

0x670

0x678

0x680

0x688

0x690

0x698

intercept_cr
intercept_dr
intercept_exceptions
reserved_1

reserved_1pause_filter_count
iopm_base_pa

tsc_offset

asid

tlb_ctlreserved_2
int_ctl
int_vector

msrpm_base_pa

int_state
reserved_3
exit_code
exit_code_hi
exit_info_1

exit_info_2

exit_int_info
exit_int_info_err
nested_ctl

reserved_4

event_inj
event_inj_err
nested_cr3

lbr_ctl

clean
reserved_5
next_rip

insn_leninsn_bytes

0x004

0x000

0x008

0x00c

0x010

0x03c

0x040

0x048

0x050

0x058

0x05c

0x060

0x064

0x068

0x06c

0x070

0x074

0x078

0x080

0x088

0x08c

0x090

0x0ac

0x0b0

0x0b8

0x0c0

0x0c4

0x0c8

0x0d0

0x098

0x0a8

0x3fc

reserved_6
0x0e0

0x400

0x410

0x420

0x430

0x440

0x450

0x460

0x470

0x480

0x490

0x4a0

0x4cc

0x4c8

gs

fs

ds

ss

cs

reserved_1

cpl
reserved_2

es

vmcb.save vmcb.control

tr

idtr

ldtr

gdtr

efer
0x4d0

reserved_3

cr4

cr3

cr0

dr6

rflags

rip

0x4d8

0x548

0x550

0x558

0x560

0x568

0x570

0x578

0x580

dr7

reserved_4

0x5d4

rsp
0x5d8
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Appendix B Part of the DPMS Code

B.1 Paging Method Switching Operation in KVM

static int ept_to_spt(struct kvm_vcpu *vcpu)

{

struct kvm *kvm = vcpu->kvm;

struct kvm_vcpu *v;

unsigned int i;

// DEFINE_WAIT(wait);

if (vcpu->vcpu_id)

return 0;

if (!vcpu->arch.mmu.direct_map)

return 0;

// kvm_guest_suspend(kvm, wait); /* suspend this guest */

enable_ept = 0;

kvm_disable_tdp();

kvm_for_each_vcpu(i, v, kvm) {

kvm->arch.pmc.root_hpa[v->vcpu_id] = v->arch.mmu.root_hpa;

v->arch.mmu.root_hpa = INVALID_PAGE;

vmcs_update(v);

kvm_mmu_setup(v);

kvm_mmu_load(vcpu);

}

// kvm_guest_restore(kvm, wait); /* restore this guest */

return 0;

}

static int spt_to_ept(struct kvm_vcpu *vcpu)

{

struct kvm *kvm = vcpu->kvm;

struct kvm_vcpu *v;

unsigned int i;

// DEFINE_WAIT(wait);

if (vcpu->vcpu_id)

return 0;

if (vcpu->arch.mmu.direct_map)

return 0;

// kvm_guest_suspend(kvm, wait); /* suspend this guest */

enable_ept = 1;

kvm_enable_tdp();

kvm_for_each_vcpu(i, v, kvm) {

kvm_mmu_unload(v);

vmcs_update(v);

kvm_mmu_setup(v);

if (kvm->arch.pmc.first_time) {

kvm->arch.pmc.first_time = 0;

kvm_mmu_load(vcpu);

}

else {

v->arch.mmu.root_hpa = kvm->arch.pmc.root_hpa[v->vcpu_id];

vmx_set_cr3(vcpu, v->arch.mmu.root_hpa);

}

}

// kvm_guest_restore(kvm, wait); /* restore this guest */

return 0;

}
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Appendix B Part of the DPMS Code

B.2 VMCS Updating Operation in KVM

static void vmcs_update(struct kvm_vcpu *vcpu)

{

struct vcpu_vmx *vmx = to_vmx(vcpu);

u32 exec_control, sec_exec_ctl;

u32 eb;

u64 mask;

int maxphyaddr = boot_cpu_data.x86_phys_bits;

eb = vmcs_read32(EXCEPTION_BITMAP);

if (enable_ept)

eb &= ~(1u << PF_VECTOR);

else

eb |= (1u << PF_VECTOR);

vmcs_write32(EXCEPTION_BITMAP, eb);

mask = rsvd_bits(maxphyaddr, 51);

mask |= 0x3ull << 62;

mask |= 1ull;

#ifdef CONFIG_X86_64

if (maxphyaddr == 52)

mask &= ~1ull;

#endif

kvm_mmu_set_mmio_spte_mask(mask);

kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,

PT_DIRTY_MASK, PT64_NX_MASK, 0);

if (enable_ept) {

if (!vcpu->kvm->arch.ept_identity_map_addr)

vcpu->kvm->arch.ept_identity_map_addr =

VMX_EPT_IDENTITY_PAGETABLE_ADDR;

init_rmode_identity_map(vcpu->kvm);

kvm_mmu_set_mask_ptes(0ull,

(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,

(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,

0ull, VMX_EPT_EXECUTABLE_MASK);

ept_set_mmio_spte_mask();

}

exec_control = vmx_exec_control(vmx);

if (enable_ept)

exec_control &= ~(CPU_BASED_CR3_STORE_EXITING |

CPU_BASED_CR3_LOAD_EXITING |

CPU_BASED_INVLPG_EXITING);

vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);

if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())

enable_pml = 0;

if (!enable_pml) {

kvm_x86_ops->slot_enable_log_dirty = NULL;

kvm_x86_ops->slot_disable_log_dirty = NULL;

kvm_x86_ops->flush_log_dirty = NULL;

kvm_x86_ops->enable_log_dirty_pt_masked = NULL;

}

else {

vmx_create_pml_buffer(vmx);

kvm_x86_ops->slot_enable_log_dirty = vmx_slot_enable_log_dirty;

kvm_x86_ops->slot_disable_log_dirty = vmx_slot_disable_log_dirty;

kvm_x86_ops->flush_log_dirty = vmx_flush_log_dirty;

kvm_x86_ops->enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked;

}

setup_msrs(vmx); // newly added

sec_exec_ctl = vmx_secondary_exec_control(vmx);

vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl);

}

}
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