
Matched instances of Quantum Sat (QSat)

Product state solutions of restrictions

Andreas Goerdt

Chemnitz Technical University, Department of Computer Science

Strasse der Nationen 6, 09107 Chemnitz, Germany

e-mail: goerdt@informatik.tu-chemnitz.de

Abstract

Matched instances of the quantum satisfiability problem have the following prop-

erty: They have a product state solution. This is a mere existential statement and

the problem is to find such a solution efficiently. Recent work by Gharibian and

coauthors has made first progress on this question: They give an efficient algorithm

which works for instances whose interaction hypergraph is restricted in a certain

way.

We continue this line of research and give two results: First, an efficient algorithm

is presented which works when the constraints themselves are restricted (the inter-

action hypergraph is not restricted). The restriction is that each constraint has at

most 2 additve terms. Second, over the field of real numbers the problem of solving

matched instances of QSat by product state solutions becomes NP-hard.

1 Introduction

Generalities. The quantum complexity class QMA (Quantum Merlin Arthur)

is defined analogously to NP: Given a quantum state, a quantum comupter can

efficiently check (with sufficiently high probability) that this state solves a given

instance of the problem considered. The theory of Hamiltonian Complexity, see

for example [10] is currently being developed to deal with the relevant questions.

Many complete problems for this class have been found, and one of them is QSat,

the quantum satisfiability problem (in fact it is complete for a restriction QMA1

where the check succeeds with probability 1.) QSat has been introduced by Bravyi

in [7]. Note that problems in QMA seem much more difficult that those in NP,as

the witnessing quantum state in general is a sum of exponentially many terms and

thus cannot even be described classically in any efficient way.

1



We focus on QSat. In particular we are interested in efficiently solvable subcases.

Recently remarkable results have been obtained in this area: Already Bravyi shows

that the quantum analogue of 2-Sat is efficiently solvable. It took 10 years until it

was noted that quantum 2-Sat can in fact be solved in linear time [8],[9], as classical

2-Sat. More recently Gharibian and coauthors [3] has looked at QSat instances

where each QBit (corresponding to variables of the classical case) occurs at most

twice and obtained an efficient algorithm (as classical,too). This paper contributes

to the program to find more cases of QSat with an efficient algorithm.

Notation. An instance of the quantum satisfiability problem on n QBits 1, . . . , n

is a conjunction of constraints C1, . . . , Cm. A constraint C is a quantum state acting

on k QBits i1, . . . , ik from these n QBits:

C =
∑

b1,...,bk

�b1...bk ∣b1 . . . bk >i1...ik

with bi ranging over the two Bits 0, 1. States ∣QB1 >, . . . , ∣QBn > with ∣QBi >=

ai,0∣0 > + ai,1∣1 > (with a the complex conjugate of a) are a solution of C iff

∑
b1,...,bk

�b1,...,bk ⋅ ai1,b1 ⋅ . . . ⋅ aik,bk = 0.

That is the state ∣QBi1 > ⊗ ⋅ ⋅ ⋅ ⊗ ∣QBik > is orthogonal to the state C. We only

consider product state solutions ∣QB1 > ⊗ ⋅ ⋅ ⋅ ⊗ ∣QBn > . By the way this avoids

the problem of general solutions which cannot be efficiently described. Note that

constraints can still be entangled and thus really quantum. An instance C1, . . . , Cm

is satisfiable iff we have states ∣QBi > of our QBits which solve all Cj simultaneously.

Base states of a QBit are ∣0 > and ∣1 > and correspond directly to classical boolean

values.

For C = ∣b1 . . . bk > a base state constraint ∣QBi1 > , . . . , ∣QBik > are a solution

iff at least one ∣QBij ∣ is a base state with ∣QBij > = ∣¬bj > . Interpreting a base

state constraint, for example ∣10 >, as the clause ¬x1 ∨ x2, we see that the classical

satisfiability problem is included in QSat. Note that x1 = 1, x2 = 0 is the unique

assignment falsifying the clause.

An instance of QSat is matched iff for each constraint we can pick one among the

QBits on which it acts (we call it the matched QBit) such that no QBit is picked

2



twice. Collecting the Qbits of each constraint in one set (hyperedge) a QSat instance

induces a hypergraph (with multiple edges) on vertices 1, . . . , n. We call this the

interaction hypergraph. Thus an instance is matched iff its interaction hypergraph

has an SDR (system of distinct representives.) Note that an SDR can be found

effciently by bipartite matching techniques. The graph considered is: One side the

vertices 1, . . . , n, the other side the hyperedges and each hyperedge is adjacent to

the vertices it consists of. Then an SDR is a matching in which each hyperedge

occurs. For a matched instance of the classical satisfiability problem a solution can

easily be found by assigning the matched variables the right truth value.

Motivation. In [1] (see also [2]) the following result is proven by non-constructive

means (of basic Algebraic Geometry): Each matched instance of QSat has a product

state solution. The motivating question for this work is obvious: Can we find such a

solution efficiently ? Following common usage, [8] [9] [3], we disregard all questions

of numerical precision here.

In seminal work on this problem Gharibian and coauthors [3] has given a positve

answer to the question provided the interaction hypergraph has certain restricting

properties (and the constraints are generic.)

Results and techniques. A constraint has l additive terms iff exactly l among

the �b1...bk are non zero. An instance has l terms iff each of its constraints has at

most l additive terms.

With l = 1 we only have base state constraints and therefore the classical satis-

fiability problem. Our first result concerns the natural next step, matched QSat

instances with 2 terms.

Theorem 1 The following problem has an efficient algorithm. Input: A matched

QSat instance with 2 additive terms. Output: A product state solution to this in-

stance.

Example 1.1 We observe that the case l = 2 cannot be directly reduced to a classical

constraint satisfaction problem as the case l = 1. A constraint with 2 terms, for

example, is (∣000 > + ∣111 >)i,j,k. A product state solution consisting of base states

must have one Qbit among i, j, k ∣0 > and another one ∣1 > . Thus we have a

2−colouring of the hyperedge {i, j, k}. A 2−colouring means that not all vertices of

a hyperedge have the same colour. Even in a matched instance a solution cannot be

3



found by simply assigning the matched vertex of each hyperedge the right colour (as

in the case of classical Sat.)

Consider the Fano Plane, see for example [3]. It is a 3−uniform hypergraph (that is

each edge consists of exactly 3 vertices) with the following properties: First, it has

an SDR, second it is not 2−colourable.

We consider the QSat instance with constraints (∣000 > + , ∣111 >)i,j,k. for each

edge {i, j, k} of the Fano plane. It is matched and therefore must have a product

state solution. It cannot have one of base states only because it is not 2−colourable.

As the QSat instance has 2 additve terms our theorem applies.

The proof of Theorem 1 is based on a simple observation: Constructing a product

state solution of the constraint (∣000 > + ∣111 >)i,j,k for example, means looking

for complex numbers ai, bi, ci for i = 0, 1 such that a0 ⋅ b0 ⋅ c0 = − a1 ⋅ b1 ⋅ c1.
Taking logarithms we reduce this to a linear equation. Thus for a QSat instance

of m constraints we get a linear system of m equations in n variables. (Actually,

we choose to introduce 2 linear systems one for the real and one for the imaginary

part.) For a matched instance the system has at most n equations. If the system is

solvable we have a solution of the instance.

But what, if the system is unsolvable? We will see that the system is non-homogeneous.

In this case we resort to an old idea of Seymour from the theory of 2−colourability

of hypergraphs, see [4] (we learned if from [5].) We consider the homogeneous ver-

sions of the system (just setting each right-hand-side to 0.) As we have at most n

equations this system must have a non-trivial solution now. This allows us to assign

base states to some QBits in order to solve some constraints, and a smaller matched

instance remains to be solved.

Clearly, this approach is limited to l = 2 because otherwise taking logarithms does

not yield a linear system.

It seems difficult to find efficiently a product state solution to a matched instance

in general. Thus we look for indicators of algoritmic hardness. We have a result in

this direction, too.

Theorem 2 The following problem is NP-hard. Input: A matched QSat instance

over the real numbers. Output: A product state solution with real coefficients.

4



This means in particular that matched QSat instances are not always solvable over

the reals (this reflects the fact that the reals are not algebraically closed.)

2 Proof of Theorem 1

An algorithm for symmetric instances. A symmetric constraint C has the form

C = � ⋅ ∣b1 . . . bk > + � ⋅ ∣¬b1 . . .¬bk > with � ∕= 0 and � ∕= 0.

We normalize one of the coefficients � or � to 1. A symmetric instance consists of

symmetric constraints.

A base state solution to a symmetric constraint corresponds to a solution in the sense

of Not-all-equal Sat of (the clause corresponding to) ∣b1 . . . bk > (or ∣¬b1 . . .¬bk >).

Definition 2.1 Let C = (∣b1 . . . bk > + �∣¬b1 . . .¬bk >)i1...ik with � = r ⋅
exp(i ), r > 0, be a symmetric constraint acting on QBits i1 . . . ik from QBits

1, . . . , n. Let xi be a variable corresponding to QBit i.

(a) The left-hand-side of C is

LHS(C) =
∑
j,bj=1

xij −
∑
j,bj=0

xij

with j = 1, . . . , k. For � = 1 this is not unique and we pick one of the two possibilties

as LHS(C).

(b) The radius equation of C is LHS(C) = ln r.

(c) The phase equation of C is LHS(C) = � +  .

Example 2.1 We consider the symmetric constraint ∣110 > + �∣001 > with

� = r ⋅ exp(i ), r > 0, acting on the first 3 QBits, 1, 2, 3, for simplicity. The

left-hand-side is x1 + x2 − x3.

Product state solutions correspond to solutions of the equation

a1 ⋅ b1 ⋅ c0 + � ⋅ a0 ⋅ b0 ⋅ c1 = 0.

5



Making the ansatz that a0 = b0 = c0 = 1 and a1, b1, c1 ∕= 0 and decomposing

a1 = s1 ⋅ exp(i�1), b1 = s2 ⋅ exp(i�2) , c1 = s3 ⋅ exp(i�3) with si > 0

we get solutions to the equation above from solutions to

s1 ⋅ s2 = r ⋅ s3 and exp(i�1) ⋅ exp(i�2) = − exp(i ) ⋅ exp(i�3).

Taking logarithms, solutions to the preceding equations can be obtained from real

solutions to

ln s1 + ln s2 − ln s3 = ln r and �1 + �2 − �3 = � +  .

Thus it is sufficient to solve the radius and phase equation.

Proposition 2.1 Let C1, . . . , Cm be a symmetric QSat instance over QBits 1, . . . , n.

Let t1, . . . , tn solve the linear system of the radius equations of C1, . . . Cm for x1, . . . , xn

over the reals. Let �1, . . . , �n solve the system of the angle equations (over the reals).

Then the states

∣QBi > = ∣0 > + si ⋅ exp(i�i)∣1 > with si = exp(ti)

are a solution to C1, . . . , Cm

The proof of this proposition is by calculation along the lines of Example 2.1.

Example 2.2 The symmetric instance ∣00 > +∣11 >, ∣00 > −∣11 >, with both

constraints on the same two QBits, is matched. The left-hand-side can be picked as

−x1 − x2 for both constraints. The right-hand-side of the radius equation is 0 in

both cases (giving the radius of exp(0) = 1.) But the right-hand-side of the phase

equations is � for the first constraint and 0 (or 2�) for the second. The phase

equations have no solution and Proposition 2.1 does not apply.

However, we have a solution of base stats, one QBit must be ∣0 > and the other

one ∣1 > . Observe that the radius si > 0 in Proposition 2.1 and solutions with base

states are not found.

Proposition 2.2 Let C1, . . . , Cm be a symmetric instance of QSat over QBits 1, . . . , n.

Let a1, . . . , an be a non-trivial solution for x1, . . . , xn of the homogeneous linear sys-

tem

LHS(C1) = 0, . . . , LHS(Cm) = 0

6



over the reals. Let

∣QBi > = ∣0 > if ai < 0 and ∣QBi > = ∣1 > if ai > 0,

and let ∣QBi > be an arbitrary state if ai = 0.

Then we have: The state ∣QB1 > ⊗ . . .⊗ ∣QBn > is a solution to any constraint of

the instance which acts on at least one QBit i with ai ∕= 0.

Proof. Let C = (∣b1 . . . bk > + �∣¬b1 . . .¬bk >)i1...ik be a constraint of the

instance. We have LHS(C) =
∑

j,bj=1 xij −
∑

j,bj=0 xij . Any non-trivial solution

to LHS(C) = 0 assigns at least two of the variables ∕= 0.

Assume that xij with bj = 1 is assigned > 0 then another xij′ with bj′ = 1 is assigned

< 0 or one of the xij′ with bj′ = 0 is assigned > 0 in order that the sum is equal to 0.

Assume the first alternative applies.Then ∣QBj >= ∣1 > and ∣QBj′ >= ∣0 > . The

term ∣¬b1 . . .¬bk > evaluates to 0 regardless of the states of the remaining QBits as

¬bj = 0. The term ∣b1 . . . bk > always evaluates to 0 as bj′ = 1. Thus the claim holds

for C.

Assume the second alternative applies. Then we have ∣QBj >= ∣QBj′ >= ∣1 > .

The term ∣b1 . . . bk > evaluates to 0 because bj′ = ∣0 > . The term ∣¬b1 . . .¬bk >
evaluates to 0 as ¬bj = 0.

The remaining cases are: First, an xij with bj = 1 is assigned < 0, and second, all

xij with bj = 1 are assigned 0) . These cases are easily treated in the same way

finishing the proof.

All this is subsumed in the following algorithm.

Algorithm 2.1 Input: A matched symmetric instance of QSat on QBits 1, . . . .n.

Output: A solution to this instance.

Set I := the input instance.

1. Set up the radius and phase linear system of I. If they both have a solution assign

QBit i for 1 ≤ i ≤ n as prescribed in Proposition 2.1. End.

2. Obtain a non-trivial solution to the homogeneous system as in Proposition 2.2.

Assign base states to the Qbits as in Proposition 2.2.

Leave the remaining Qbits unassigned.

3. Set I := the constraints of I which act only on QBits which are not assigned.

7



4. If I has no constraints then assign the Qbits unassigned by now arbitrarily. End.

5. Goto 1.

Concerning correctness: First I always consists of those constraints of the input

which act only on unassigned QBits. As such I is a matched instance throughout.

All constraints which act on variables assigned in 2. are solved regardless of the

states the remaining QBits.

The linear system considered in 1., 2. is a mapping Rn′ −→ Rm′
with n′ standing for

the number of unassigned variables and m′ for the number of constraints acting only

on these variables. Therefore m′ ≤ n′. If 1. does not apply we have that the kernel

of the linear system is non-trivial. Therefore 2. applies and at least 1 constraint is

solved by the assignment regardless how the remaining QBits are assigned. Thus I

obtained in 3. has at least one constraint less. If 1. applies the instance I is solved

by the assignment according Proposition 2.1.

Concerning running time: O(n)−times solving linear equations yields O(n4).

Reduction to symmetric instances. We need the following general transforma-

tion rule.

Assign ∣QBi >= ∣b > . For each constraint which acts on QBit i and at least one

additional QBit we do the following: We decompose it as

∣b >i ⊗ ∣�1 > + ∣¬b >i ⊗ ∣�2 > .

and substitute it with ∣�1 > . If the first term is not present (∣�1 >= 0) we simply

delete the constraint. For this transfomation we have: If we have no constraint

acting only on i then any solution of the transformed instance yields a solution to

the original instance after appending ∣QBi >= ∣b > .

We have a matched instance of QSat with two terms. To begin with, we get rid

of non-symmetric constraints with two terms. Non-symmetric constraints with two

terms can be written as

∣b > ⊗(∣b1 . . . bk > + �∣c1 . . . ck >) , � ∕= 0.

We apply the following tranformation rules to the instance.

1. Elimination of the constraint

∣b >i ⊗(∣b1 . . . bk > + �∣c1 . . . ck >).

8



where i is not the matched Qbit of the constraint. We substitute this constraint

simply with

∣b1 . . . bk > + �∣c1 . . . ck > .

Note that Qbit i may well occur in the new instance. The instance remains matched

and any solution to the new instance is a solution to the original instance.

2. Elimination of the constraint

∣b >i ⊗(∣b1 . . . bk > + �∣c1 . . . ck >)

where i is the matched QBit of the constraint. In this case we use the rule Assign

∣QBi >= ∣¬b > . First we observe that the only constraint acting only on i can be

the constraint considered as each constraint acting on i must act on its matching

QBit, too. The constraint considered becomes true under the assignment. As QBit

i is not the matched QBit of any other constraint any solution to the transformed

instance yields a solution to the original instance.

After appyling 1. as long as it applies and then 2. in the same way, we have a

matched instance in which all constraints with 2 terms are symmetric. We still need

to eliminate constraints with only 1 term. We apply the following transformation

rule to the instance.

3. Elimination of constraints ∣b1 . . . bk >i1,...,ik . Let ij be the matched QBit, then:

Assign ∣QBij ∣ = ∣¬bij > . The new instance is matched. Assign ∣QBij >= ∣¬bij >
ensures that any solution to the new instance gives a solution to the original one.

We iterate 3. as long as we have constraints with 1 term only. Finally, this yields a

symmetric instance with two terms or an instance without constraints. In the last

case we assign the QBits not assigned by now arbitrarily and have a solution to the

original instance.

3 Proof of Theorem 2

We give a translation of a classical 3−Sat formula into a matched instance. For this

translation we need several instances of QSat as building blocks. First the instance

of 2 constraints

9



∣00 >i,j, ∣11 >i,j .

This is a matched instance (matching the first constraint to i and the other one

to j) with the following property: A product state is a solution to this instance

iff ∣QBi >= ∣b > and ∣QBj >= ∣¬b >, b = 0, 1. This instance allows to restrict

attention to states which are base states and thus classical boolean values. (Note

that this instance is solved by the state ∣01 > +∣10 >, but this is not a product

state and therefore is not of relevance here.)

The conjunction constraint:

∣011 > + ∣1 > ⊗(∣01 > + ∣10 > + ∣00 >) on QBits i, j, k.

This constraint computes the logical ∧ in the following sense: If ∣QBj >= ∣b > and

∣QBk >= ∣c > where b, c = 0, 1 then ∣QBi > ⊗∣QBj > ⊗∣QBk > is a solution to

this constraint iff ∣QBi >= ∣b ∧ c > .

For disjunction the constraint:

∣0 > ⊗(∣01 > + ∣10 > + ∣11 >) + ∣100 > on QBits i, j, k.

For negation we get ∣00 > +∣11 > . If a product state is a solution we have: If one

of the QBits is a basis state, the other one must its negation. (We have inclded this

only for didactical purposes, we do not need this constraint.) Note that the two

constraints above ∣00 >, ∣11 > enforce that both QBits are basis states.

These building blocks can be assembled to get a matched instance which determines

the truth value of a 3−Sat formula with boolean variables x1, . . . , xn given the truth

values of the variables.

Initialization instance:

(∣00 >, ∣11 >)1,n+1, (∣00 >, ∣11 >)2,n+2, . . . (∣00 >, ∣11 >)n,2n.

This is clearly matched. For any solution we have that QBits 1, . . . , n are basis states

and QBits n + 1, . . . 2n the corresponding negations. Moreover any combination of

basis states of 1, . . . , n can occur in a solution.

Given truth values for QBits 1, . . . , n we can calculate the truth value of a clause

with two disjunction constraints. The first QBit (the result) of these constraints

always is a new QBit. This new Qbit is the matched Qbit of the constraint.

10



After this we use m − 1 conjunction constraints to calculate the conjunction of

the values computed for the m clauses before. The first QBit of each conjunction

constraint is a new Qbit. Again it is the matched QBit.

Clearly this instance is matched. Let r be the QBit which contains the final result.

With the additional constraint ∣0 >r we can ensure that ∣QBr >= ∣1 > . Thus any

solution gives a satisfying assignment. But with this constraint the instance is not

any more matched. (We see here that product state satisfiability of QSat instances

with one more constraint than the number of variables is NP-hard.)

But, over the reals the test ∣QBr >= ∣1 > is possible without violating the matching

condition. The building block for this is:

(∣00 > + ∣11 >)t,s , (∣01 > − ∣10 >)t,s

on two QBits t, s (for test.) Clearly by itself this is matched. A product state

solution is

(a0∣0 > +a1∣1 >) ⊗ (b0∣0 > +b1∣1 >) with a0 = b0 = 1, a1 = b1 = i

as a0b0 = 1 and a1b1 = −1 and a0b1 = a1b0 = i .

It is easy to see that we have no real product state solutions: First, each product

state solution is such that a0, a1, b0, b1 must all be ∕= 0. For if a0 = 0, for example,

we must have that b1 = 0, in order to have a solution of the first constraint. This

means b0 = 1 and then the state does not solve the second constraint.

Now

a0b0 + a1b1 = 0 and a0b1 − a1b0 = 0

implies a0 = − a1b1/b0 and then with the second equation − a1b
2
1 − a1b

2
0 = 0.

This implies − b21/b
2
0 = 1 and b1/b0 = i . Thus we have no solution of real

product states for the building block. (Note that ∣00 > −∣11 > is a real solution,

but non-product.)

Now we add to the instance the following two test constraints:

((∣00 > + ∣11 >) ⊗ ∣0 >)t,s,r , ((∣01 > − ∣10 >) ⊗ ∣0 >)t,s,r

with r the result QBit above and t, s new Qbits. Clearly the whole instance is still

matched. A product state solution over the reals must have ∣QBr >= ∣1 > to solve

the test constraints. If ∣QBr >= ∣0 > we must have a solution to ∣00 > + ∣11 >

11



, ∣01 > − ∣10 > on QBits s, t. Thus QBits 1 . . . n of a solution must be a satisfying

assignment of the original 3−Sat instance.

4 C

onsidering constraints l∣000 . . . 00 > + < 111 . . . 11∣ and their product stae satisfi-

ability we have a (quantum motivated) relaxation of hypergraph 2−colouring, see

example 1.1. There are other (quantum) ways to relax classical constraint satisfac-

tion problems, see for examole [11]. One may speculate if there is any relationship.

Matched instances of constraint satisfaction problems in general do not seem to have

been systematically investigated, in particular from an algorithmic point of view,

but see[6].

References

[1] C. R. Laumann, A. M. Laeuchli, R. Moessner, A. Scardicchio, and S. L. Sondhi.

On product, generic, and random generic quantum satisfiability. arXiv e-Print

quant-ph/0910.2058v2,2010.

[2] K. R. Parthasaraty. On the maximal dimension of completely entangled sub-

space for finite level quantum systems. Prodeedings Mathematical Sciences 114,

364-375, 2004.

[3] Marco Aldi, Niel de Beaudrap, Sevag Gharibian, Seyran Saeedi. On efficiently

solvable cases of Quantum k-SAT. In Proceedings MFCS 2018.

[4] P. D. Seymour. On the two colouring of hypergraphs. Quarterly Journal of

Mathematics 25, 303-312, 1974.

[5] O. Kullmann, X. Zhao. Bounds for variables with few occurences in conjunctive

normalforms. arXiv e-Print math.Co 1408.0629v5, 2017.

[6] Michael A. Henning, Anders Yeo. 2-colourings in k-regular k-uniform hyper-

graphs. European Journal ofCombinatorics 34, 1192-1202, 2013.

[7] S. Bravyi. Efficient Algorithm for a quantum analogue of 2-SAT. arXiv e-Print

quant-ph/0602108v1, 2006.

12



[8] Niel de Beaudrap, Sevag Gharibian. A linear time algorithm for quantum 2-

SAT. In Proceedings Conference on Computational Complexity, 2016.

[9] I. Arad, M. Santha, A Sundaram and S. Zhang. Linear time algorithm for

quantum 2SAT. In Proceedings ICALP 2016.

[10] Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quan-

tum Hamiltonian complexity. Foundations and Trendsin Theoretical Computer

Science,10(3), 159-282, 2014.

[11] Albert Atserias, Phokion G. Kolaitis,and Simone Severini.Generalized satisfi-

ability problems via operator assignments. arXiv e-Print cs.LO/1704.01/36v1,

2017

13


