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Abstract

The automatic recognition of cognitive load is a vital step towards the develop-
ment of adaptive systems that are capable of providing the user with dynamic
support in order to maintain the load experienced within an optimal range for
maximum productivity. Speech contains a multitude of information and has been
identified to be a potential modality to measure the user’s cognitive load.

The focus of this thesis is on the effectiveness of speech features for au-
tomatic cognitive load assessment, with particular attention being paid to new
perspectives of this research area. A new cognitive load database, called CoLoSS,
is introduced containing speech recordings of users who performed a learning
task. This data collection contrasts with existing cognitive load databases since
learning tasks have not yet been employed and it provides continuous numerical
labels in addition to the discrete load levels considered until now. The CoLoSS
corpus, together with the CLSE database in which two variants of the Stroop
test and a reading span task are employed, forms the basis for the evaluations.
Various acoustic features from different categories including prosody, voice qual-
ity, and spectrum are investigated in terms of their relevance. Moreover, Teager
energy parameters, which have proven highly successful in stress detection, are
introduced for cognitive load assessment and it is demonstrated how automatic
speech recognition technology can be used to extract potential indicators of the
user’s cognitive load. As a further contribution, three hand-crafted feature sets
are proposed.

The suitability of the extracted features is systematically evaluated by recog-
nition experiments with speaker-independent systems designed for three-class
classification (low, medium, and high cognitive load). Various configurations in
terms of combinations of features, filters for feature selection, feature normalisa-
tion methods, and model parameters are tested. To prove the generalisation ability
of the proposed feature sets, cross-corpus experiments are carried out. Addition-
ally, a novel approach to speech-based cognitive load modelling is introduced,
whereby the load is represented as a continuous quantity and its prediction can
thus be regarded as a regression problem. The evaluation of regression algorithms
on the CoLoSS corpus reveals the advantages of using automatic feature subset
selection.
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Chapter 1

Introduction

The rapid technical progress of solutions designed to support industry and every-
day life is accompanied by issues relating to human-machine interaction. This
applies particularly to environments in which a vast amount of information
needs to be integrated and processed. In high accuracy and complex working
environments, such as air traffic control or emergency response centres, tasks
are highly demanding in terms of monitoring, reasoning, and decision-making
(Majumdar and Ochieng, 2002). In this respect, high operator performance is
required, often under sub-optimal conditions in which competing tasks have
to be fulfilled within a relatively short period of time. These requirements
are, however, not limited to error-critical working environments—in modern
society, the intuitive interaction with computerised devices plays a major role,
for example, in education (Gikas and Grant, 2013), car driving (Svangren et al.,
2017), entertainment (Vinayagamoorthy et al., 2016), and more.

Assisting users in completing their tasks more efficiently and enhancing their
performance constitutes a multidimensional problem including causal and assess-
ment factors. The relationship between such factors can be explained through a
construct, which is commonly known as cognitive load (Paas and Van Merriën-
boer, 1994a). Broadly speaking, cognitive load refers to the amount of mental
demands imposed on a user by a particular task. This psychological construct
is based on models of the human working memory that assume limitations in
information processing concerning capacity and time (Miyake and Shah, 1999).
The automatic assessment of the user’s cognitive load is a vital step towards the
development of adaptive interactive systems, which are capable of providing the
user with dynamic support. In this regard, the vision is that, by adjusting the
characteristics of tasks based on information about the user state, the load experi-
enced can be maintained within an optimal range for maximum productivity and
work safety.

1
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1.1 Cognitive Load and the Role of Speech

Cognitive load can be regarded as a variable that attempts to explain and quantify
human performance, learning, and cognitive processes. There are, however, a
number of overlapping and sometimes divergent definitions of the construct.
In the human factors psychological domain, a popular concept is the so-called
‘mental load’ or ‘mental workload’. A good starting point to the issues relevant
in the study and measurement of mental workload is provided by Moray (1979).
The attributes of operator workload are broadly divided into input load, operator
effort, and performance (Johannsen, 1979, p. 4). Different types of operator effort
may occur according to different functions of human information processing, for
example, perception effort, decision effort, and communication effort (Johannsen,
1979, p. 8). Sometimes, the term ‘stress’ instead of ‘peak load’ is used with nearly
the same meaning (Johannsen, 1979, p. 5). Apart from the human factors domain,
in neuroeconomics-focused research, the term ‘cognitive effort’ is associated with
decisions about whether to engage and also about the ‘intensity of engagement’
(Westbrook and Braver, 2015). For the purpose of this thesis, the term ‘cognitive
load’ is adopted along with a widely accepted definition—which rather relates to
human learning—that it is a ‘. . . multidimensional construct that represents the
load that performing a particular task imposes on the cognitive system . . .’ (Paas
and Van Merriënboer, 1994a).

Due to the potential for many applications, cognitive load measurement
has been an active research area in the last couple of decades. A variety of
techniques, ranging from simple approaches such as questionnaires to highly
involved procedures such as functional brain imaging, have been proposed over
the years (Wierwille and Eggemeier, 1993; Just et al., 2003). Generally, indicators
of cognitive load can be divided into performance measures, subjective ratings,
physiological measures, and behavioural measures (Sweller et al., 1998; Brunken
et al., 2003).

Among behavioural measures, speech-based methods have gained interest and,
in fact, it has been found that speech is affected by cognitive load (cf. Berthold
and Jameson, 1999; Müller et al., 2001; Keränen et al., 2004). Speech is a natural
way of communication for human beings and contains a multitude of information
that can be measured permanently in a contact-free way—the recording process is
generally imperceptible for the monitored person. The speech signal is attractive
in many real-life tasks, for example, telephone conversations, voice control
systems, communication training, and language learning, and the speech material
can be easily collected in inexpensive ways. Moreover, it has been demonstrated
that a large amount of acoustic descriptors can be extracted and processed in real-
time (cf. Eyben, 2015). Hence, the speech signal constitutes a promising source
for cognitive load monitoring based on sophisticated audio analysis systems. The
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utilisation of multimodality can improve the quality of monitoring systems since
single continuous measures typically suffer from limitations such as noise or
interruptions—one can easily integrate audio analysis into multimodel systems
to enhance the robustness of cognitive load assessment (Chen et al., 2016).

In light of audio analysis, one key challenge is to find those speech parameters
that correlate well with factors of cognitive load. In other words, effective speech
features have to be determined, which is the main focus of this thesis. From a
technical point of view, audio analysis systems are usually structured into two
main stages: feature extraction and interpretation. The term ‘feature’ is used as a
synonym for the term ‘parameter’ or ‘variable’. Feature extraction serves two
purposes (Lerch, 2012, pp. 4–5):

� Dimensionality reduction: The raw amount of recorded audio data is too large
to handle it for further processing. For instance, one channel of a digital audio
file in Compact Disc quality (44.1 kHz, 16 bits per sample) with a length
of 5 minutes results in 25.2 MB. Instead, a series of features can be used to
represent this data with considerably fewer values by suppressing irrelevant
information.
� Meaningful representation: All information that can possibly be extracted are

contained in the raw audio data. In order to focus on relevant aspects of the
signal, it is necessary to transform the audio data into representations that can
be interpreted by humans or machines.

Features can be categorised as low-level or high-level. Low-level features are
generally considered not to be directly interpretable by humans, while high-level
features represent information with a direct meaning. However, there is no clear
definition for an objective distinction between these terms—it is often a context-
dependent decision. The second stage of audio analysis systems uses the extracted
features to interpret the information. The output can be a feature on a higher level
(e.g., phonemes of a speech recogniser) used for another system or it can be the
final result such as the level of cognitive load experienced by the speaker. This
stage usually implies the utilisation of a model, which has been trained using a
set of features extracted from a dataset and, in the case of supervised machine
learning, the corresponding labels. The term ‘label’ refers to the target value,
typically the meaning behind an observation. Each observation, often denoted as
‘instance’ in machine learning, is represented by the extracted features in form of
a feature vector. A classification model assigns discrete labels to the unknown
test instances, whereas the output of a regression model is a continuous numerical
value.
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1.2 Past Deficiencies

Over the last three decades, a body of work has been carried out discussing the
influence of cognitive load on human speech production. A comparatively young
field is the automatic recognition of cognitive load from speech—first attempts
have been made by Yin et al. (2007). The authors developed a system, which
extracts frame-based acoustic features and discriminates between three levels of
cognitive load using Gaussian mixture models. In subsequent years, the suitability
of various speech parameters was investigated for cognitive load classification
(e.g., Boril et al., 2010; Le, 2012; Yap, 2012; Quatieri et al., 2015). Furthermore,
an international research competition has been held at the INTERSPEECH 2014
conference with the goal to compare state-of-the-art systems of this topic area (cf.
Schuller et al., 2014).

From the brief overview given above, it can be concluded that there exists
great interest in the scientific community regarding optimal feature sets and ma-
chine learning algorithms for speech-based cognitive load recognition. However,
not all aspects have been addressed in the past—there is still a gap in terms of
use-case scenarios. Frequently encountered task designs include Stroop test with
time pressure (Le et al., 2010a), reading comprehension (Le et al., 2011), driving
under cognitive load (Boril et al., 2010), and arithmetic tasks (Gorovoy et al.,
2010). These tasks are highly suitable to investigate the limitations of the human
working memory but do not necessarily reflect use-cases where the cognitive
load is induced by learning processes, which is an important aspect in the field
of education. Further, some use-cases may be associated with stressful demands
causing subjective strain, dysfunctional physiological activity, or deterioration of
performance (Steeneken and Hansen, 1999), for example, due to the influence of
time pressure. Although there exist potential speech parameters from the field of
stress detection and emotion recognition based on the so-called Teager energy
operator (e.g., Zhou et al., 2001; Nwe et al., 2003), they have not yet been used for
automatic cognitive load recognition. Finally, automatic speech-based cognitive
load recognition modelled so far was aimed at predicting discrete categories,
usually comprising three load levels derived from the task difficulty. Interactive
systems, in particular those employing multimodality, could benefit from more
sensitive approaches providing deeper insights and more accurate user state de-
termination. One way of achieving this is to treat cognitive load modelling as a
regression problem, i.e., predicting a continuous numerical quantity instead of
discrete categories.
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1.3 Major Contributions

This thesis addresses the effectiveness of paralinguistic speech features for auto-
matic cognitive load recognition. From the deficiencies discussed in the previous
section, the following three aims have been defined for this thesis: (1) Develop-
ment of a new speech-based cognitive load database, which reflects use-cases in
which individuals are required to achieve learning goals; (2) Evaluation of tradi-
tional speech features and those from the field of stress detection for cognitive
load recognition; (3) Development and evaluation of regression-based cognitive
load analysis from speech.

Since these aims are accompanied by issues of optimisation, detailed elabo-
rated concepts and development steps are required. The major contributions of
this thesis can be summarised as follows:

� Development of a new database including speech recordings of individuals
who performed a learning task and continuous numerical labels as the reference
for cognitive load.
� Development of a software-framework for phoneme-based feature extraction

and an activity detector for speech-event detection. Both tools perform prosodic
analyses and extract features describing tempo, disfluency, and pausing in
speech.
� Re-implementation and investigation of three Teager energy operator based

features for speech-based cognitive load recognition. It is widely accepted
that these features are better able to reflect the non-linear airflow structure of
speech production under stressful conditions.
� Proposition of three new hand-crafted feature sets designed for automatic

cognitive load recognition.
� The effectiveness of speech features for cognitive load assessment is demon-

strated by a feature relevance analysis conducted using correlation as well as
entropy-based measures.
� The effectiveness of speech features for cognitive load assessment is demon-

strated by a systematic evaluation of cognitive load classification systems under
task-dependent as well as task-independent conditions.
� The effectiveness of speech features for cognitive load assessment is demon-

strated by the evaluation of regression-based cognitive load recognition sys-
tems.

Some of these contributions are reflected in the publications by the author of
this thesis (Herms, 2016; Wirzberger et al., 2017, 2018; Herms et al., 2018).
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1.4 Organisation of the Thesis

The remainder of the thesis is organised as follows. Chapter 2 introduces fun-
damental knowledge, which constitutes the basis for this thesis including the
concept of cognitive load, the functioning of the human speech production sys-
tem, and findings from the scientific literature regarding the effects of cognitive
load on speech. Chapter 3 presents the cognitive load task designs and statistics
of the speech material used for the investigations. In Chapter 4, methods for
digital speech processing as well as a variety of indicative speech parameters are
described and the process chain applied for feature extraction is presented. Then,
in Chapter 5, three feature sets are proposed for cognitive load recognition and
results of feature relevance analyses for different cognitive load tasks based on
correlation as well as entropy-based measures are reported. In Chapter 6, the
effectiveness of speech features is investigated by recognition experiments. This
includes an extensive evaluation of cognitive load classification systems under
task-dependent as well as task-independent conditions. Moreover, systems for
regression-based cognitive load recognition are designed and evaluated. Finally,
Chapter 7 summarises the contents of this thesis, highlights the contributions in
conjunction with the main aims, and discusses future directions.



Chapter 2

Background

This chapter introduces necessary knowledge to familiarise the reader with the
terms and concepts used throughout this thesis. First, this chapter starts with the
basics of cognitive load (Section 2.1). Causal and assessment factors, working
memory models, cognitive load theory principles, and different types of cognitive
load are described. Next, cognitive load assessment approaches are reviewed in
Section 2.2 including performance, subjective, physiological, and behavioural
measures. Section 2.3 gives an introduction to the human speech production
system and a literature survey of the effects of cognitive load on speech. In order
to provide the reader with an impression of how the concept of cognitive load
can be applied in practice, Section 2.4 presents various areas of application for
cognitive load assessment, such as education, user interface design, car driving,
and aviation.

2.1 Basics of Cognitive Load

The human cognitive system is considered to be an active, limited capacity
information processing system, which is required for knowledge acquisition and
understanding (Plass et al., 2010, p. 1). The limitations of the system refer to the
human working memory (Section 2.1.2). This type of memory is necessary for
holding and manipulating information while performing complex tasks.

The term ‘cognitive load’ refers to the amount of mental resources that are
required for certain information processing tasks. It is a psychological construct
that allows to explain and quantify human performance, learning, and cognitive
processes. In formal terms, cognitive load is ‘the load imposed on an individual’s
working memory by a particular (learning) task’ (Van Gog and Paas, 2012, p. 599).
The characteristics of a task influence the performance and can induce additional
effects. Highly demanding tasks can lead to cognitive overload, which can be
considered a type of stress—that is, ‘a psycho-physiological state characterised
by subjective strain, dysfunctional physiological activity, and deterioration of

7
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performance’ (Steeneken and Hansen, 1999). On the other hand, a less demand-
ing task can lead to cognitive underload and, in turn, to boredom or a lack of
motivation. It is often desirable to maintain an optimal level of cognitive load, be-
cause cognitive underload or overload may degrade the individual’s performance;
in the worst case, fatal errors occur in complex working environments (e.g., air
traffic control centres). In the context of the cognitive load theory (Section 2.1.3),
the level of cognitive load influences how much is learned and the complexity
of what is learned (Paas et al., 2003b). Consequently, the goal, especially in
instructional design, is to determine an appropriate level of cognitive load instead
of its reduction (Brünken et al., 2010a, p. 255).

2.1.1 The Concept of Cognitive Load
In order to describe and assess cognitive load more precisely, it can be conceptu-
alised by considering various aspects. Paas and Van Merriënboer (1994a) argued
that the construct cognitive load consists of causal factors that affect cognitive
load and assessment factors that are affected by cognitive load.

Figure 2.1 illustrates a schematic representation of the construct cognitive
load including its factors. Causal factors refer to the characteristics of the subject
(e.g., expertise level, age, and spatial ability), the characteristics of the task (e.g.,
complexity, time pressure, and pacing of instructions) in a given environment
(e.g., noise and temperature), and the interaction between the subject and the task.
The assessment factors comprise three different measurable dimensions: mental
load, mental effort, and performance.

Mental load is related to the task and environmental demands. This dimension
is assumed to be independent of the subject and constant for a given task in a
given environment. Consequently, mental load can be regarded as an a priori esti-
mate of cognitive load. Mental effort is related to the subject. This human-centred
dimension reflects the amount of cognitive capacity that is actually allocated
concerning the demands imposed by the task. The overall invested effort is
assumed to be associated with all three causal factors, i.e., task characteristics,
subject characteristics, and subject-task interactions. Theoretically, mental effort
can be measured while the subject is involved in the problem solving or learning
task (Paas et al., 2003b, p. 64). One can assume that mental effort includes
important information that is not necessarily reflected in mental load or perfor-
mance measures. Performance, the third measurable dimension, is specified by
the achievements of the subject. Typical performance measures are the number
of correct answers, number of errors, and time required. As with the mental
effort, performance reflects all three causal factors and can be measured while
the subject is working on the task.
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Figure 2.1 Schematic representation of the construct cognitive load including causal
factors and assessment factors. Adapted from Paas and Van Merriënboer (1994a, p. 353)

2.1.2 Working Memory
The human cognitive architecture is assumed to include separate types of memory.
Only the contents of the working memory can be monitored by humans in a
conscious manner (Sweller et al., 1998, p. 252). This type of the human memory
plays a crucial role for complex cognitive tasks such as reasoning, comprehension,
and learning. The working memory provides temporary storage and manipulation
of information (Baddeley, 1992, p. 1). Its limitations concerning capacity and
time are well-known and widely accepted.

Miller (1956) introduced ‘the magical number seven, plus or minus two’,
which was one of the first attempts to formalise the limits of the working memory
capacity. The statement refers to the number of items that can only be processed
at one time. In more recent works, it is reported that three to five items are
processed simultaneously (cf. Cowan, 2001).

Different memory models were proposed over the years in order to explain the
processes and functions of the human working memory system. In the following
sections, some of the most influential models of working memory are discussed,
namely the multi-store model of memory, multi-component model of working
memory, and embedded-processes model of working memory.1

1Besides the three models presented in the following sections, there are a number of other models
and approaches to describe how the working memory system works. For further information, the
reader is referred to Miyake and Shah (1999).
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2.1.2.1 Multi-Store Model of Memory

The argumentation for a distinction between a temporary short-term memory
and a virtual long-term memory is based on empirical research (e.g., Brown,
1958; Peterson and Peterson, 1959). One of the first and most influential models,
which considers the separation of human memory, was proposed by Atkinson
and Shiffrin (1968). In this model, memory is divided into the three structural
components: sensory register, short-term store, and long-term store.

Information from the environment enters the sensory register, where it resides
for a very short period of time. The sensory information is initially processed and
transferred to the short-term store. The transfer of information does not imply
that the status in the original store is affected; rather, it can be understood as a
process of copying (Shiffrin and Atkinson, 1969, p. 179). The short-term store
controls the information flow into and out of the long-term store. It is assumed
that information in the short-term store decays up to 30 seconds, but can be
extended using a control process called rehearsal (Shiffrin and Atkinson, 1969,
p. 180). In contrast to the sensory register and the short-term store, the long-term
store can be regarded as a permanent repository for information.

The short-term store provides a number of useful functions (cf. Shiffrin and
Atkinson, 1969). It decouples the memory system from the external environment
and relieves the system from the responsibility of attention regarding environ-
mental changes. Additionally, it provides a working memory for manipulations
of information.

2.1.2.2 Multi-Component Model of Working Memory

Results of working memory investigations, also regarding patients with a defective
short-term store, led to the conclusion that a single unitary component is not
sufficient to characterise the architecture of a short-term store which acts as a
working memory (Baddeley, 1992).

Instead, Baddeley and Hitch (1974) suggested that working memory rep-
resents a control system with its limits on storage and processing capabilities.
Moreover, Baddeley (1992) argued that the working memory is divided into
the three separate components: the central executive, phonological loop, and
visuospatial sketchpad. The single components of this multi-component model,
later complemented by the episodic buffer (cf. Baddeley, 2000), are assumed to
work together as a working memory system.

The multi-component model is illustrated in Figure 2.2. Each component of
the model functions as follows:
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Figure 2.2 Baddeley’s multi-component working memory model. The shaded areas
refer to the long-term memory system. Adapted from Baddeley (2000, p. 421)

� The central executive controls and coordinates the slave systems (phonological
loop and visuospatial sketchpad) (Baddeley, 1992). It is responsible for the
attentional control. Thus, executive processes provided by this component are
assumed to be important for the capacity to focus, to divide, and to switch
attention (Baddeley, 1996, 2002).
� The phonological loop comprises two subcomponents, namely a temporary

storage and subvocal rehearsal system. Acoustic or speech-based information
in the phonological storage system decays after a few seconds unless it is
revived through subvocal rehearsal. Furthermore, the subvocal rehearsal system
has the function of registering visual information, such as words or pictures,
within the phonological store (by subvocalisation) (Baddeley, 2003).
� The visuospatial sketchpad provides a temporary storage for the integration

and manipulation of visual and spatial information (Baddeley, 2002). This
component is assumed to be responsible for understanding complex systems
(e.g., machinery), acquiring semantic knowledge about objects and how to use
them, and spatial orientation as well as geographical knowledge (Baddeley,
2003).
� The episodic buffer is a limited-capacity temporary storage system, which

integrates and combines visual and auditory information from the slave systems
and from the long-term memory system (Baddeley, 2000). Thus, it serves as an
interface between system components, each involving a different set of codes.
The buffer can be accessed by the executive control, which binds the amount
of information into episodes.
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2.1.2.3 Embedded-Processes Model of Working Memory

An alternative approach to describe the working memory is provided by Cowan
(1988) who formulated the embedded-processes model. This model defines work-
ing memory as an attentional system including processes that hold a limited
amount of information in an accessible state in order to perform complex tasks.
For this purpose, three components are hierarchically arranged (Cowan, 1999,
p. 64): (1) the long-term memory that includes the amount of all stored informa-
tion; (2) the activated memory (short-term store), which represents the currently
activated part of the long-term memory; (3) the focus of attention (or awareness),
which in turn is part of the activated memory. That is, the working memory is
embedded in the long-term memory and includes activated data in the focus of
attention. In addition, the model includes a brief sensory store, which stores
sensory stimuli for only several hundred milliseconds.

It is assumed that attention is limited in capacity (about three to five items),
while information activation is limited in time (about two to thirty seconds) unless
it is reactivated through additional, related stimulus presentations or thought pro-
cesses (Cowan, 2001, p. 92). The focus of attention is controlled using voluntary
processes caused by the executive control as well as involuntary processes, for
example, induced by novelty or stimuli with significant signals. Recurring and
unchanged context information still activates some processes in memory but may
refer to habituation, which facilitates the control of awareness for new relevant
information (Cowan, 1999, p. 67). Depending on the situation, different data
are prioritised for different processes of the working memory system. Complex
tasks may require associations of particular information from all three sources
(long-term memory, activated memory, and focus of attention) that can be brought
and kept into the focus of attention.

2.1.3 Cognitive Load Theory
Cognitive load theory (CLT) is concerned with the development of instructional
design principles and strategies. The goal of instruction is to increase the amount
of knowledge in long-term memory by learning (Sweller et al., 2011, p. 24). The
theory suggests that appropriate learning can be realised by the consideration of
the human cognitive architecture, i.e., it assumes a limited working memory ca-
pacity and a virtual unlimited long-term memory (Paas et al., 2004). The focus of
CLT is on the control of cognitive load in order to reach useful learning outcomes
in complex cognitive domains. In other words: it is assumed that learning can
be supported by imposing adequate levels of cognitive load based on measure-
ments that refer to the limitations of the working memory capacity (Kirschner,
2002). Within the framework of CLT, there are no explicit assumptions about the
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architecture of working memory and its relation to cognitive load (Brünken et al.,
2010a, p. 261). Nonetheless, Baddeley’s multi-component model seems to be the
best-known working memory model and, in addition, is also referenced by the
cognitive load theory literature (cf. Sweller et al., 2011).

2.1.3.1 The Process of Learning

Learning can be defined as ‘a positive change in long-term memory’ (Sweller
et al., 2011, p. 53). It is an active and resource consuming process in working
memory resulting in the construction of schemas that are stored in long-term
memory (Brünken et al., 2010a, p. 254). This process involves the acquisition
of information and the comprehension of how multiple information elements
interact (Sweller et al., 2011, p. 65). In this context, the term ‘element’ refers
to anything that is learned or processed. Interacting elements are defined as
‘elements that must be processed simultaneously in working memory because
they are logically related’ (Sweller et al., 2011, p. 58).

The concept of ‘schema’ arose in psychology through the works of Piaget
(1923) and Bartlett (1932). A schema can be regarded as a cognitive construct
that combines multiple information elements to a single element, which has
a specific function (Paas et al., 2003a). It can be transferred from long-term
memory to the working memory and treated as only one element consisting
of a number of interacting elements. Schemas can be formed during problem
solving by creating chunks (combining information elements), by complementing
information elements in already existing schemas, or by obtaining schematised
information from other people (Van Merriënboer and Sweller, 2010).

Constructed schemas may become automated if they are frequently used in
practice. For instance, learning how to read or write requires combining single
letters into words, combining words into phrases and so forth. Schema automation
can be helpful for aspects which are consistent across different tasks and, in turn,
can free the capacity of the working memory for other activities. Thus, besides
the function of learning to store information in the long-term memory, schema
acquisition and automation have the effect of reducing the working memory load
(Sweller et al., 2011, 58).

In order to achieve learning goals, the following five psychological processes
have to be considered and work together (Clark et al., 2011, pp. 36–37):

1. Attention: The Learner must focus on information that is relevant to the
learning goal.

2. Activation of prior knowledge: Relevant pre-existing schemas are transferred
from long-term memory into working memory.
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3. Elaboration-rehearsal: The working memory processes new knowledge and
skills in order to integrate them into activated schemas.

4. Encoding: The content is transformed resulting in expanded schemas stored
in long-term memory.

5. Retrieval: The new schemas are brought back into working memory when
needed.

Various cognitive load effects, that show specific instructional implications,
have been revealed over the years. These effects are intended to indicate how
to provide information that best facilitates learning. Some examples are split-
attention, modality, redundancy, and expertise reversal. For a deeper discussion,
the reader is referred to Sweller et al. (2011).

2.1.3.2 Types of Cognitive Load

Managing the working memory load requires the differentiation of its possible
causes. The development of CLT has undergone three main stages in which
specific types of cognitive load had been introduced (Moreno and Park, 2010):
(1) The first stage focused on ‘other mental activities’ that must remain limited
to avoid cognitive load which interferes with learning. This source of load is
referred to as extraneous cognitive load; it can be reduced by better instructional
design. (2) In the second stage, an additional source of load was considered
along with extraneous load, the so-called intrinsic load, which is imposed by
the basic characteristics of information and cannot be reduced by instructional
design. (3) Finally, the third stage introduced the third source of load, namely
germane cognitive load, which has a positive relationship with learning and can
be increased by instructional design.

In summary, the gradual evolution of CLT results in the distinction between
three types of cognitive load. The relationship between the working memory
capacity and the different types of cognitive load is illustrated in Figure 2.3. A
closer look at each individual type is given below:

� Intrinsic load origins from cognitive processing related to the complexity
of information in a task. The degree of this type of cognitive load depends
on the number of cognitive elements that are simultaneously processed in
working memory, but also on the prior knowledge of the learner (Schnotz
and Kürschner, 2007, p. 476). For instance, learning the syntax of a new
language is strongly linked with analysing how words are related to each other.
Consequently, the element interactivity is rather high. In contrast, learning a
list of vocabulary leads to a low element interactivity, because elements are
not processed simultaneously in working memory. Considering the learner’s
prior knowledge in a specific task, intrinsic load is fixed regarding the material
being dealt with (Paas and Sweller, 2014, p. 37).
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Figure 2.3 Working memory capacity and different types of cognitive load. Adapted
from Moreno and Park (2010, p. 18)

� Extraneous load refers to the unnecessary cognitive load caused by the design
of the instruction and learning material (Sweller, 2010b, p. 42). In effect,
this type of load does not contribute to knowledge acquisition. Schnotz and
Kürschner (2007, p. 476) stated that extraneous load is concerned with an
unnecessarily high degree of element interactivity in working memory, for
example, caused by redundant information such as additional text which is
integrated into a self-explanatory diagram. On the other hand, extraneous
load can be the result from irrelevant cognitive activities which are not aimed
at schema acquisition and automation. Both assumptions have one thing in
common: extraneous load interferes with learning and should be reduced as
far as possible.
� Germane load is related to the effort which contributes to schema construction

(Sweller et al., 1998, p. 259). This type of cognitive load is relevant and should
be increased as far as possible because it facilitates learning. In this connection,
an instructional design which results in unused working memory capacity,
for example, caused by low intrinsic or low extraneous load, can be further
improved by encouraging learners to focus on schema construction (Sweller
et al., 1998, p. 264).

The theory assumes that intrinsic, extraneous, and germane cognitive load are
additive, i.e., the sum of all three types constitutes the total cognitive load (Paas
et al., 2003b, p. 65). The intrinsic load is fixed regarding the material and the
learner’s prior knowledge, but it can be reduced through schema acquisition and
automation of the learner (Paas et al., 2003b). The remaining working memory
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capacity can be allocated by extraneous and germane load in a balanced way. The
reduction of extraneous load may increase the germane load caused by effective
instructional design. Adding a heavy extraneous load to a heavy intrinsic load
may result in interference with learning because there is no capacity available
for germane load. It should be noted that the effects of cognitive load due to
extraneous load can be demonstrated only in scenarios with a high number of
elements that must be simultaneously processed in working memory (Paas and
Sweller, 2014, pp. 38–39).

Due to the lack of facet-specific empirical results for the separation of cog-
nitive load types, there is an ongoing discussion in this regard. For instance, it
has been suggested that germane load is not an independent type of cognitive
load but can be considered as related to specific learning goals and associated
with intrinsic cognitive load (Sweller, 2010a; Kalyuga, 2011). It has also been
argued that the total load experienced cannot simply be regarded as the sum of the
three different types. There might be different possible interpretations in terms
of the relationship between intrinsic and germane load: if intrinsic and germane
load are seen as members of different ontological categories, i.e., ‘material’ and
‘cognitive processes’, respectively, there are principled objections to adding the
two together (De Jong, 2010).

2.2 Cognitive Load Assessment

Cognitive load can be regarded as a theoretical construct describing information
processing of the human cognitive system which is not directly observable. Nev-
ertheless, in order to deploy cognitive load assessment in laboratory environments
or real-life use-cases, there is a need for valid and reliable measuring instruments.

As pointed out in Section 2.1.1, the assessment factors of cognitive load
include three different dimensions, namely mental load, mental effort, and per-
formance. Basically, measurement approaches can be classified into analytical
and empirical methods (Xie and Salvendy, 2000). Analytical methods are rather
concerned with the mental load. These types of methods are used in a predic-
tive as well as an evaluative way and contain techniques such as comparison,
consulting expert opinion, utilisation of mathematical models, task analysis, and
computer simulation. In contrast, empirical methods are concerned with post-hoc
measures of mental effort and performance. These methods contain operator
opinion, primary task, secondary task, and physiological techniques.

Another approach to classifying methods of assessing cognitive load has
been proposed by Brunken et al. (2003). Table 2.1 shows this classification of
methods including the two dimensions: objectivity (subjective or objective) and
causal relationship (direct or indirect). The objectivity dimension distinguishes
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Table 2.1 Classification of methods for the assessment of cognitive load based on
objectivity and causal relationship. Adapted from Brunken et al. (2003)

Causal relationship

Objectivity Indirect Direct

Subjective Self-reported invested effort Self-reported stress level
Self-reported difficulty of materials

Objective Physiological measures Brain activity measures
Behavioural measures Dual-task performance
Learning outcome measures

between methods that use subjective data, which are self-reported, and objective
observations of behaviour, physiological conditions, or performance. Regarding
the causal relationship, one can distinguish between methods in which the param-
eter of interest is related to cognitive load in either a direct or indirect manner.
For instance, a direct relationship exists between the difficulty of the task and
cognitive load, because this difficulty is caused by intrinsic and extraneous load.
On the other hand, learning outcome measures are indirect, because they depend
on information processing that may be affected by cognitive load.

According to the type of measuring instruments, techniques can be classified
in terms of performance, subjectivity, physiology, and behaviour (Sweller et al.,
1998; Brunken et al., 2003). The following sections describe these aspects in
more detail.

2.2.1 Performance Measures
The assessment of cognitive load using performance measures is based on the
assumption that there is a relationship between the task performance and the
level of cognitive load experienced by the subject. Cognitive load, which is
involved in a particular task, can be evaluated using a variety of performance
metrics. Typical parameters are the number of correct answers, number of errors,
and time required. Nevertheless, such parameters are not always reliable in a
single-task condition and, consequently, the results should be interpreted very
carefully. More precisely, the relation between the load imposed by the task
and the performance of the subject depends on task demands, human strategies,
motivation, and individual characteristics (Paas et al., 2005; Cegarra and Hoc,
2006).

An alternative approach is to introduce a second task, which is conducted
concurrently with the main task. The underlying idea of this dual-task paradigm
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is that the available capacity, which is not allocated in connection with the
primary task, can be employed for a second task. The secondary task can be
considered to be a cognitive distraction. It typically includes simple activities
regarding the attention of the subject, such as detecting visual or auditory signals
or remembering a series of numbers (Sweller et al., 2011, p. 78). The dual-task
approach can be applied in two different ways (Brunken et al., 2003): (1) the
secondary task is added to the primary task with the goal to induce working
memory load, whereby the performance related to the primary task is of interest;
(2) the secondary task is used to measure the working memory load induced by
the primary task, i.e, the variable of interest is the performance of the secondary
task.

A more difficult primary task can result in an increase in allocated working
memory resources, meaning that less capacity is available for the second task.
Consequently, the performance of the second task decreases and can be used as
an indicator for cognitive load assessment. The main advantage of applying the
dual-task method is that it can provide an almost continuous measure while the
subject is working on the task (Sweller et al., 2011, p. 80). Moreover, using the
same conditions for a secondary task, different primary tasks can be compared
regarding the task design and cognitive load. However, there are limitations
concerning the dual-task approach. Although it forms a sensitive and reliable
technique, the secondary task can interfere with the primary task, especially if
the primary task is very complex or in cases where working memory capacity is
particularly limited, such as in the elderly (Van Gerven et al., 2006).

2.2.2 Subjective Measures
Subjective measurement in conjunction with self-report rating scales is a common
approach for the assessment of cognitive load. The scale method is based on the
assumption that users are able to introspect on their cognitive processes and to
report their perception of invested mental effort (Brünken et al., 2010b, p. 182).
For instance, subjects are asked to rate their mental effort on a 9-point Likert
scale ranging from ‘very, very low mental effort’ to ‘very, very high mental effort’
(Paas et al., 1994). Such a unidimensional scale assesses the overall cognitive
load without considering additional factors.

Variables that are indirectly related to cognitive load such as frustration or
fatigue can also be important indicators (Paas et al., 2003b). The involvement
of many variables forms a multidimensional assessment tool, which serves as a
reliable measuring instrument. For instance, the NASA Task Load Index (Hart and
Staveland, 1988) is used to derive a sensitive estimate of workload by combining
the following six rating scales: performance, mental effort, frustration level, task
demand, physical demand, and temporal demand.
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According to CLT, some attempts have been done to assess various aspects
of cognitive load imposed by a learning task. Cierniak et al. (2009) introduced
a six-point subjective rating scale to measure the three types of cognitive load—
intrinsic, extraneous, and germane load—in order to explain learning outcomes.
In this connection, the intrinsic load scale asked ‘How difficult was the learning
content for you?’, the extraneous load scale asked ‘How difficult was it for you
to learn with the material?’, and the question in terms of germane load was ‘How
much did you concentrate during learning?’. Moreover, Leppink et al. (2013)
developed an instrument for the measurement of the three cognitive load types in
complex knowledge domains such as statistics. They introduced a questionnaire
with a rating scale ranging from ‘0’ (‘not at all the case’) to ‘10’ (‘completely the
case’). The first three questions are related to intrinsic load (e.g., ‘The activity
covered formulas that I perceived as very complex’), the next three to extraneous
load (e.g., ‘The instructions and/or explanations were full of unclear language’),
and the last four questions are related to germane load (e.g., ‘The activity really
enhanced my understanding of the formulas covered’). More recently, Klepsch
et al. (2017) proposed two types of questionnaires: informed rating and naïve
rating. In the former case, participants are first qualified to understand and
differentiate the three types of cognitive load; after conducting each task, learners
have to rate all three types of load on a 7-point Likert scale from ‘very low’ to
‘very high’. Regarding the naïve rating questionnaire, participants are required
to rate all three types of load, each represented by questions, without being
informed about the concept of cognitive load—the naïve rating questionnaire is
also provided with a 7-point Likert scale (from ‘absolutely wrong’ to ‘absolutely
right’) and comprises two questions related to intrinsic load (e.g., ‘This task
was very complex.’), three related to extraneous load (e.g., ‘The design of this
task was very inconvenient for learning.’), and another three items related to
germane load (e.g., ‘I made an effort, not only to understand several details, but
to understand the overall context.’).

Krell (2015) developed a testing instrument to measure the cognitive load
factors mental load and mental effort separately. This instrument consists of six
items for each factor, while each item is provided with a rating scale ranging
from ‘1’ (‘not at all’) to ‘7’ (‘totally’). The items for mental load ask to indicate
the complexity of the task (e.g., ‘The tasks were challenging’), whereas items for
mental effort focus on the personal effort (e.g., ‘At the reply to the tasks I have
made an effort intellectually’).

The advantage of subjective measures is attributed to its simple utilisation.
However, the assessment of cognitive load based on the rating scale method is
usually conducted post-hoc. Subjects are asked to rate their experienced cognitive
load after the task has finished. The result is a global scaling across different parts
of the working procedure. Thus, it remains unclear how the actual cognitive load
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varies over time and which specific aspects caused the level of cognitive load
(Brünken et al., 2010b). Nevertheless, subjective measures can also be applied
in a synchronised way during the working procedure, for example, by using a
pop-up window in a multimedia scenario (cf. Tabbers et al., 2004).

2.2.3 Physiological Measures
Active research has revealed that variations in human cognitive processing are
reflected in physiological measures (Kramer, 1991). These types of measurement
techniques provide insights into the changes in bodily functions. Physiological
signals can be acquired continuously allowing the cognitive load to be assessed
at a high sampling rate.

There are numerous physiological measuring methods that may give an objec-
tive reference for cognitive load. Typical measures that have been investigated in
connection with cognitive load include brain activity monitored using electroen-
cephalography (EEG) (e.g., Wilson and Russell, 2003) or functional near infrared
(e.g., Izzetoglu et al., 2003), heart rate and heart rate variability (e.g., Mulder,
1992; Kennedy and Scholey, 2000; Nickel and Nachreiner, 2000), galvanic skin
response (or conductance response) (e.g., Jacobs et al., 1994; Shi et al., 2007),
and eye activity such as the pupillary response, blink rate, and eye fixation (e.g.,
Backs and Walrath, 1992; Lipp and Neumann, 2004; Ryu and Myung, 2005;
Reyes and Lee, 2008; Siegle et al., 2008).

Some relationships between physiological measures and cognitive load could
be found in the past. The work of Antonenko and Niederhauser (2010) showed
better learning outcomes when adding leads to hypertexts (hypertext node pre-
views). This could be affirmed only by EEG measures (alpha, beta, and theta
brainwave rhythms) that are sensitive enough to show differences in the instanta-
neous cognitive load. In contrast, the self-report mental effort measure was not
sensitive enough to show effects due to its association with the overall cognitive
load. It is well-known that heart rate increases and heart rate variability decreases
during effortful mental processing (Mulder, 1992). Paas and Van Merriënboer
(1994b) demonstrated in their work that spectral information on heart-rate vari-
ability is not sensitive to the differences in cognitive load. The authors Shi et al.
(2007) analysed the mean galvanic skin response across subjects; results confirm
that there is an increase as cognitive load increases. Van Gerven et al. (2004)
showed that pupil dilation increased according to the increased level of cognitive
load, but there was no correlation for elderly participants.

Although physiological techniques seem to provide promising measures for
the assessment of cognitive load, there are some limitations. In order to ob-
tain valid information, some criteria for the selection of a technique should be
considered, for example, sensitivity, intrusiveness, reliability, and generality of
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application (Kramer, 1991). Furthermore, artefacts or continuous noise can be in-
cluded in the physiological signals, which makes data analysis more complicated
with respect to the estimation of cognitive load.

2.2.4 Behavioural Measures
Behavioural measurements can be obtained from any user activity related to the
task. The methods used are based on the assumption that behavioural patterns
differ under different cognitive load levels. The behavioural data is objective and
can be collected through non-intrusive monitoring, for example, using cameras or
microphones that are integrated into a display device. Consequently, users do not
notice that they are being observed—they can devote themselves fully to the task.

For instance, Gütl et al. (2005) proposed an adaptive e-learning framework,
which considers users’ learning activities by monitoring eye movements (e.g.,
fixation and gaze duration) in real-time. Other works proposed behavioural
measures based on input devices, such as the mouse and keyboard, to derive the
users’ emotional state and to provide adaptive systems (e.g., Ark et al., 1999;
Liu et al., 2003). Oviatt (2006) explored the usability of different interfaces
in connection with digital-pen based gesturing. In this connection, different
user-centred design principles and strategies and the manner how these enhance
users’ performance had been illustrated.

The amount of time needed to solve a particular task is also assumed to be
an important indicator since all cognitive processes take time (Brünken et al.,
2010b, p. 188). For instance, Dubé and McEwen (2015) used the response
latency to investigate behavioural aspects of touchscreen interactions and their
consequences for the conceptual understanding of content. Moreover, Pouw et al.
(2016) analysed the reaction time along with accuracy to estimate the subjects’
performance in assessing mechanical concepts.

Apart from that, information retrieval patterns can be used as a measure of
cognitive load; the way in which learners search and select information can serve
as an indicator (Möller and Müller-Kalthoff, 2000). For instance, novice learners
are unfamiliar with the domain and might start reviewing basic information
contained in hypertext pages, whereas domain experts might directly navigate to
pages that include specific information. The analysis of navigation pathways in
such environments could then reveal schema construction.

Most of the discussed techniques seem to be reliable, but they raise the
question of validity. There could be several causes for changes in the parameters,
such as information complexity, interest, or readability (Brünken et al., 2010b,
p. 187). Thus, behavioural data analysis requires careful planning to ensure the
validity of cognitive load measures.
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Fundamentally, measures based on linguistic and paralinguistic speech pa-
rameters can also be classified as behavioural measures, because they uncover
the manner how something is spoken regardless of the meaning of the utterance
(Chen et al., 2016, p. 22). For further information on cognitive load in connection
with speech parameters, see Section 2.3.

2.3 Cognitive Load and Speech

Speech is a complex signal containing a multitude of information that may
contribute as indicators for cognitive load assessment. The parameters in the
speech signal can be measured in a contact-free, non-intrusive way; the recording
process can be carried out without the monitored person perceiving it. Hence, the
speech signal is a promising source for cognitive load monitoring.

Before taking a closer look at the literature regarding the effects of cognitive
load on speech, the fundamentals of the human speech production system are
introduced.

2.3.1 The Human Speech Production System
Speech can be seen as a natural way of communication for human beings. Al-
though speech is used in our daily life, it is a very complex process comprising
many steps from cognitive activities to signal production. Honda (2003) describes
the speech production mechanisms with the following four processes:

1. Transformation of utterances into phonemes in the language centre of the
brain,

2. Generation of vocal organ related commands in the motor centre of the brain,
3. Movement of the vocal organs based on the generated motor commands, and
4. Air emission caused by the lungs in order to produce speech.

2.3.1.1 The Human Vocal Apparatus

The human vocal apparatus is shown in Figure 2.4. It consists of various organs
that are excited in order to characterise the sound being produced. First, air is
absorbed by human beings as part of the breathing procedure. The air pressure
gets released by muscle force from the lungs through the trachea and passes the
articulatory organs. The larynx, commonly known as Adam’s apple, contains two
small folds of muscle, the so-called vocal folds. These two folds can be moved
together or apart; the space between them is defined as the glottis (Jurafsky and
Martin, 2009, p. 252). If the vocal folds are tensed, the air pressure causes their
vibration and the air flow is chopped into quasi-periodic pulses by the vocal



2.3 Cognitive Load and Speech 23

Nasal Cavity

Lips

Teeth

Jaw

Palate

Pharynx

Oral Cavity

Tongue

Larynx and Vocal Folds

1

2

3

4

5

6

7

8

9

Figure 2.4 The human vocal apparatus. Adapted from Pfister and Kaufmann (2008,
p. 13)

folds. This vibration leads to the production of voiced sound units with a specific
frequency, which is also known as the fundamental frequency. Higher frequencies
are caused by thinner and longer vocal folds, whereas in low frequencies, the
vocal folds become shorter and thicker. The frequency ranges from about 80 Hz
to 400 Hz for male adult speakers and about 120 Hz to 800 Hz for female adult
speakers (Honda, 2008, p. 12). Unvoiced sounds are produced when the vocal
folds are relaxed (i.e., no vibration) and the air flow passes through a constriction
in the vocal tract.

The produced acoustic signals from the vocal folds are changed in terms of
the sound by the vocal tract (pharynx, oral cavity, and nasal cavity). Additionally,
the sound caused by air turbulence is also formed by the vocal tract. In this con-
nection, the vocal tract acts as an acoustic filter. It is to note that the movements
of the articulators (tongue, lips, jaw, and palate) changes the transfer function
and, thus, the resonant frequencies of this acoustic filter (Pfister and Kaufmann,
2008, pp. 12–13). Consequently, a generated sound at a particular point in time
depends on the state of the vocal folds as well as the position, shape, and size of
the different speech organs. Finally, speech is composed of a sequence of these
generated sounds.
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2.3.1.2 The Source-Filter Model

From the perspective of acoustic theory, it is common to describe the human
speech production using Fant’s source-filter model (Fant, 1960). This model,
illustrated in Figure 2.5, explains the acoustics of a speech sound including how
pulses are produced by the glottis (the source) and afterwards shaped by the vocal
tract (the filter). The source-filter model unifies a series of linear time-invariant
systems in order generate a speech signal.

Signal modifications can be described as a function based on the concept
of convolution, a mathematical operation, which expresses the input-output
relationship of a system. Let x.n/ and h.n/ be two sequences that are related to
the values of y.n/, one can say that y.n/ is the convolution of x.n/ with h.n/ and
represent this by the notation y.n/ D x.n/ � h.n/. The result y.n/ is a sequence,
where each value is commonly called the convolution sum (Oppenheim et al.,
1999, p. 23):

y.n/ D

1X
kD�1

x.k/h.n � k/: (2.1)

The speech signal can be formulated as a convolution by f .n/ D u.n/ �

v.n/ � r.n/. The corresponding z-transform of the signal, with z being the
complex variable, is defined as

F.z/ D U.z/ � V.z/ �R.z/; (2.2)

where the function U.z/ refers to the source, which can be either voiced or
unvoiced, V.z/ refers to the vocal tract model, and R.z/ refers to the radiation
model representing the pressure at the lips (Schukat-Talamazzini, 1995, p. 33).2

In essence, speech sounds can be classified as either voiced or unvoiced.
Voiced sounds are modelled by signals that are generated with the period Tg and
transferred to the glottal pulse model G.z/. The result is an impulse response
g.n/ with the glottal wave shape. In order to describe the production of a voiced
speech signal instead of a speech signal in general, the glottal pulse, vocal tract,
and radiation components are combined all together and represented as a single
transfer function (Rabiner and Schafer, 1978, p. 104):

H.z/ D G.z/ � V.z/ �R.z/: (2.3)

The intensity of voiced sounds is adjusted by the amplitude control parameter Av .
Unvoiced sounds are approximated by flat-spectrum noise in connection with the
amplitude control parameter Auv (Rabiner and Schafer, 1978, p. 103).

2For details on linear time-invariant systems, discrete-time convolution, and z-transform of signals,
see Oppenheim et al. (1999).
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Figure 2.5 The source-filter model for human speech production. Adapted from Rabiner
and Schafer (1978, p. 105)

For a deeper discussion on acoustic theory and speech production modelling,
the reader is referred to Rabiner and Schafer (1978).

2.3.1.3 Phonemes

Speech is individual, i.e., the same spoken unit articulated by different speakers
results in differences of the speech signal. Even if the same speaker tries to
pronounce the same unit several times, there are differences in the signal. Single
spoken units can be described by the terms ‘phone’, ‘allophone’, and ‘phoneme’.
A phone is the smallest unit of speech sounds. It is characterised by the timbre,
duration, accentuation, and pitch (Fellbaum, 2012, p. 67). Some phones can have
the same meaning. Allophones are different phones, which are assigned to the
same phoneme. A phoneme is a symbolic unit of speech at a particular level of
representation (Harper and Maxwell, 2008, p. 801). These phonetic symbols can
be used to transcribe the sounds of a spoken language and provide, in a combined
form, a description of how words are pronounced.

In order to apply a set of phonemes for diverse areas of application, several
phonetic alphabets have been introduced in the past. The International Phonetic
Alphabet (IPA, 1999) was suggested as a standard by the International Phonetic
Association and is commonly used by linguists. This alphabet has been estab-
lished in order to provide an accurate system for transcribing speech sounds of
all human languages. It is based primarily on the Latin alphabet. The ARPAbet
(Jurafsky and Martin, 2009, pp. 250–282) is another phonetic alphabet, which
was developed by the Advanced Research Projects Agency (ARPA) and specifi-
cally designed for American English. This alphabet is often used in applications
such as automatic speech recognition systems because it is based on ASCII—a
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Table 2.2 IPA, ARPAbet, and SAMPA symbols for the transcription of English conso-

nants and vowels. Adapted from Gibbon et al. (1997, pp. 688–689), Wells (2000), and

Jurafsky and Martin (2009, pp. 251–252)

Consonants Vowels

IPA ARPAbet SAMPA Word IPA ARPAbet SAMPA Word

p p p parsley i iy i lily

t t t tea I ih I lily

k k k cook eI ey eI daisy

b b b bay E eh E pen

d d d dill æ ae f aster

g g g garlic A aa A poppy

m m m mint O ao O orchid

n n n nutmeg U uh U wood

N ng N baking oU ow o lotus

f f f flour u uw u tulip

v v v clove 2 ah V cup

T th T thick Ç er 3` bird

D dh D those aI ay aI iris

s s s soup aU aw aU flower

z z z eggs oI oy OI soil

S sh S squash @ ax @ lotus

Z zh Z ambrosia

tS ch tS cherry

dZ jh dZ jar

l l l licorice

w w w kiwi

r r r rice

j y j yellow

h h h honey

Note that some rarer symbols were omitted

suitable format for computational representations of pronunciations. The Speech
Assessment Methods Phonetic Alphabet (SAMPA) (Wells, 1997) serves as another

example. It has been developed within the European ESPRIT project SAM. As

with the ARPAbet, SAMPA uses ASCII symbols, but it is primarily intended for

the European language area (Fellbaum, 2012, p. 69).

Table 2.2 gives an overview of the phonetic alphabets IPA, SAMPA, and

ARPAbet and, furthermore, distinguishes between consonants and vowels. Con-

sonants are sounds that are produced in conjunction with a partial or complete

closure of the vocal tract; as a consequence, respiratory air is hindered or stopped.

Depending on the type of consonants, the vocal folds vibrate or rest. Vowels are
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sounds that are articulated with vibrating vocal folds while the respiratory air
passes unhindered through the mouth or both the mouth and the nose (Pfister and
Kaufmann, 2008, pp. 14–15).

Languages can be characterised by syllables, which are larger units than a
single sound. However, there is no general definition for syllables (Jurafsky and
Martin, 2009, p. 257). A syllable can be described as a vowel-like sound together
with some surrounding consonants that are associated with it. The process of
syllabification, i.e., breaking up a word into syllables, involves the separation of
a sequence of consonants and vowels into substructures. For a deeper insight into
syllabification, the reader is referred to Jurafsky and Martin (2009).

2.3.2 Effects of Cognitive Load on Speech
Previous studies in literature carried out statistical analyses in order to reveal
the influence of cognitive load on speech-based parameters (i.e., ‘features’). In
this connection, some studies refer to the concept of stress or cognitive stress.
Jameson et al. (2010) argued that stress is linked to cognitive load and time
pressure because these resource limitations can be causes as well as consequences
of stress. Scherer et al. (2002) assumed that in contrast to a single task condition,
dual-task scenarios including attentional demands can induce psychological stress
due to the experienced cognitive capacity limitations under time pressure. Time
pressure can lead to emotional reactions, which, in turn, can have an indirect effect
on cognitive load (Galy et al., 2012). Consequently, the review of the literature,
presented in the following sections, will also include studies concerning stress
due to cognitive tasks.

2.3.2.1 Linguistic Features

The exploration of linguistic features is motivated by the hypothesis that different
levels of cognitive load result in different linguistic patterns. Since this thesis
does not focus on linguistic features, only a short summary is given.

Khawaja et al. (2012) reported results regarding linguistic and grammatical
features in the context of collaborative communication in bushfire management
teams. They showed that high task load leads to an increase in word count,
words per sentence, disagreement words, and first as well as third-person plural
pronouns. Furthermore, a decrease in agreement words and first as well as
third-person singular pronouns could be observed.

Similar results are reported in the work of Sexton and Helmreich (2000).
They demonstrated that the number of words increased during periods of high
workload in a flight crew communication scenario. In this connection, the captain
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Table 2.3 Review of the effects of cognitive load on linguistic features

Feature Tendency

Word count C

Words per sentence C

Agreement words �

Disagreement words C

First-person singular pronouns �

First-person plural pronouns C

Third-person singular pronouns �

Third-person plural pronouns C

C: feature value increases as cognitive load increases,
�: feature value decreases as cognitive load increases

of the crew used more first-person plural for team building purposes, especially
in stressful situations (e.g., ‘we need to . . . ,’ or ‘our problem . . . ,’).

Table 2.3 gives a summary of the effects of cognitive load on linguistic and
grammatical features. A comprehensive investigation including pauses, linguistic
features, grammatical features, and language complexity in conjunction with
cognitive load can be found in Khawaja (2010).

2.3.2.2 High-Level Speech Features

Previous studies investigated the influence of cognitive load on high-level speech
features. Some of these parameters can be classified as prosodic features due to
the characteristics in terms of disfluency and tempo in speech.

For instance, Müller et al. (2001) analysed the parameters disfluency, artic-
ulation rate, content quality, and the number of syllables, silent pauses as well
as filled pauses. Berthold and Jameson (1999) examined, in addition to these
features, the properties of the symptom sentence fragments. The effects of high
cognitive load on the duration of voiced segments in speech are shown in Boril
et al. (2010). Potential concerning the three speech features pause length, pause
frequency, and response latency are reported in the work of Khawaja et al. (2007).
Moreover, Khawaja et al. (2008) investigated pausing in speech by computing
the percentage of silent pauses, filled pauses, and total pauses.

Berthold and Jameson (1999) reviewed the literature of these aspects in speech
as well as the corresponding tendencies under cognitive load. The results are
shown in Table 2.4. It can be seen that cognitive load causes a reduction in output
quality, which is reflected by errors, such as the number of sentence fragments,
false starts, and repetitions. Sentence fragments can be defined as an incomplete
syntactic structure, i.e., the speaker gives up talking or begins a new sentence
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Table 2.4 Review of the effects of cognitive load on high-level speech features. Adapted
from Berthold and Jameson (1999, p. 237)

Feature Tendency

Sentence fragments (number) C

False starts (number) C

Repetitions (number) C

Articulation rate �

Speaking rate �

Onset latency (duration) C

Silent pauses (number) C

Silent pauses (duration) C

Filled pauses (number) C

Filled pauses (duration) C

C: feature value increases as cognitive load increases,
�: feature value decreases as cognitive load increases

during the articulation. False starts are a specific type of self-repair, which begins
with an alternative formulation of the content. A typical effect of cognitive load
on speech is a decrease in the speaking rate (number of spoken units per time) as
well as the articulation rate (number of spoken units per time excluding pauses).
The above-mentioned studies show the same effects compared to the literature
review of Berthold and Jameson (1999). General assumptions should, however,
be made carefully. There are also studies showing other effects regarding the
tempo in speech. For instance, Lively et al. (1993) demonstrated that utterances
produced under workload were shorter in duration. Similar results are reported
in Scherer et al. (2002) showing a shorter average duration of syllables (higher
speaking rate) under high load as well as high-stress conditions.

Pauses in speech have the potential to be indicative of cognitive load (cf.
Müller et al., 2001; Khawaja et al., 2007, 2008). In essence, there are three
different types of pauses in speech: onset latency, silent pauses, and filled pauses.
Onset latency is the time length between the stimulus and the onset of the first
spoken unit (e.g., phoneme or syllable). In contrast, silent pauses and filled
pauses (e.g., ‘uh’ or ‘uhm’) result in disfluencies during the articulation. Esposito
et al. (2007) stated that pauses occur during speech flow in the form of a planning
process which is not performable during the articulation phase. Moreover, the
number and duration of pauses are reflected by the mental effort related to the
lexical and semantical complexity. Besides the cognitive aspects, pauses can
be linked to physiological (breathing activity), socio-psychological (speaking
anxiety), or communicative (rhetorical or provide the opportunity to comprehend
the message) causes (cf. Schilperoord, 2002, p. 75). Schilperoord (2002) argued
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that the duration of pauses may be regarded as the response time, which, in turn,
can be considered to be the cognitive processing time. This assumption can lead
to the conclusion that long pauses are attributed to higher levels of cognitive
load. However, a direct transformation of pause time to cognitive processing time
is not always useful. Pauses are directly observable and can be measured in a
precise manner which is not the case for cognitive load. For instance, pauses of
two seconds would simply result in a load, which is twice as heavy as the load
that is reflected by pauses of one second. Nevertheless, one can assume that more
and longer pauses in speech reflect more mental effort.

2.3.2.3 Low-Level Speech Features

Besides non-acoustic speech parameters, previous works also investigated the
effects of cognitive load on low-level signal characteristics. A summary is given
in Table 2.5.

Cognitive load may induce stress and can result in physiological conse-
quences, such as irregular breathing and increased muscle tension. Steeneken
and Hansen (1999) stated that the increased muscle tension of the vocal folds and
the vocal tract may adversely affect the speech quality. This assumption could be
affirmed by the work of Mendoza and Carballo (1998) showing an increase in
jitter and shimmer in conditions of experimentally induced stress by cognitive
tasks. In contrast, other studies reported a decrease in jitter and shimmer as tasks
become cognitively demanding (Keränen et al., 2004; Rothkrantz et al., 2004).
Two further voice-related parameters were investigated in the past: Yap et al.
(2015) reported a decrease in the harmonics-to-noise ratio and an increase in the
cepstral peak prominence when high levels of cognitive load are induced by time
pressure; the results exhibited statistically significant differences.

Previous studies in literature also investigated the effects of cognitive load
on prosodic features. It has been shown that an increase in cognitive load is
reflected by an increase in the fundamental frequency (Mendoza and Carballo,
1998; Scherer et al., 2002; Rothkrantz et al., 2004; Boril et al., 2010; Huttunen
et al., 2011a), whereas only a few studies showed no consistent effects (Tolkmitt
and Scherer, 1986; Lively et al., 1993). Additionally, some works showed a
decrease in the variability of the fundamental frequency under high cognitive load
conditions (Lively et al., 1993; Huttunen et al., 2011a). An increased cognitive
load is also linked to an increase in the intensity (Rothkrantz et al., 2004; Huttunen
et al., 2011a) and a decrease in energy decay (Scherer et al., 2002).

Features that characterise the human vocal tract have also been found to be
indicative of cognitive load. Boril et al. (2010) reported an increase in the first and
fourth formant centre frequencies in voiced speech segments, but no significant
effects in the second and third. A reduction in the second formant has been shown
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Table 2.5 Review of the effects of cognitive load on low-level speech features

Feature Tendency

Fundamental frequency C

Fundamental frequency variability �

Intensity C

Centre frequency of formant F1 0,C
Centre frequency of formant F2 0, �
Centre frequency of formant F3 0
Centre frequency of formant F4 C

Spectral centre of gravity C

Jitter �,C
Shimmer �,C
Harmonics-to-noise ratio �

Cepstral peak prominence C

C: feature value increases as cognitive load increases,
�: feature value decreases as cognitive load increases,
0: no effect

by Yap et al. (2011a). However, Lively et al. (1993) reported no effects of various
workload levels on the first three formants.

Spectral properties of the speech signal have been found to reflect the cog-
nitive load experienced by the speaker. Scherer et al. (2002) demonstrated that
high cognitive load leads to a decrease in the energy below 500 Hz compared
to the energy in the range of 500 to 1600 Hz. Apart from that, an increase in
the spectral centre of gravity and spectral energy spread could be found in Boril
et al. (2010). Tolkmitt and Scherer (1986) reported that significant changes in
the spectral energy distribution due to cognitive stress can only be observed in
female subjects.

2.4 Cognitive Load Applications

Apart from the formulation of theoretical concepts and models regarding the
construct cognitive load, practical aspects were also considered over the years.
Assuming that cognitive load is automatically assessed, possibly in real-time,
many applications could benefit from measurements of the individual mental
state. For instance, cognitive load measurement can be used in sports (Ruiz
et al., 2010) and medical research (Marchese et al., 2003). Adaptive interfaces
can benefit from cognitive state detection and by that optimise human-machine
interaction (Grootjen et al., 2006, 2007; De Greef et al., 2007). Cognitive load
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measurement can be deployed in environments in which speech is used as part of
the work using the phone or face-to-face communication (Khawaja et al., 2014),
for example, in bushfire management centres, air traffic control rooms, and call
centres. Cognitive load monitoring can also be helpful for developing better
shared mental models to enhance team performance (Fan and Yen, 2007; Fan
et al., 2010).

The following sections focus on relevant areas where the concept of cognitive
load can be applied, namely education in Section 2.4.1, user interface design in
Section 2.4.2, in-vehicle systems in Section 2.4.3, and aviation in Section 2.4.4.

2.4.1 Education
In the context of CLT (Section 2.1.3), high levels of cognitive load may exceed the
capacity of working memory and possibly hamper the construction of schemas
during learning. Substantial empirical evidence for instructional guidelines of
the CLT framework came from a series of experiments and meta-analyses (cf.
Sweller et al., 2011). With this in mind, monitoring a user’s state is crucial to
optimise learning materials, control the learning process, select the learning tasks,
and thus improve the overall learning efficiency.

Anvari et al. (2013) demonstrated how to identify students, who are talented
in 3D computer graphics programming, by conducting a variety of tests including
cognitive load measurement based on task and performance. As a consequence,
students can be supported so that talented students benefit from receiving ad-
vanced training, whereas less talented students can be given extra tutoring. Harms
(2013) reported that personalised tutorials can be helpful to assist programmers in
learning new programming skills—the effectiveness of automatically generated
tutorials can be improved by monitoring the user’s intrinsic cognitive load with
respect to programming expertise, whereby extraneous load can be reduced by
selecting suitable programming concepts.

Intelligent tutoring systems can benefit from cognitive load classification
based on speech. In this context, Zhang et al. (2006) proposed a system to
teach children mathematics and physics using an active learning task, where
children play with Lego gears while interacting with the system through speech
by answering questions (e.g., ‘Why is the smaller gear stronger?’).

Gillmor et al. (2015) examined the effects of cognitive load on students’ per-
formance in a mathematics test by using different representations of mathematics
assessment items. The authors confirmed that cognitive load can be reduced by
signalling important information, aesthetic item organisation, and removing extra-
neous content, which, in turn, improves student performance. CLT is also applied
to various settings such as classroom, workplace, and self-directed learning for
medical education (Young et al., 2014).
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Coyne et al. (2009) discussed how augmented cognition and neuroergonomics
can be expanded into training. In this connection, they used EEG and ocular
data in order to classify the user state in real-time and proposed an adaptive
system, which is able to improve learning by adjusting the training difficulty.
The corresponding model of this approach combines elements from Wickens’
multiple resource theory (Wickens, 2008) and Sweller’s cognitive load theory
(Sweller et al., 2011).

2.4.2 User Interface Design
In order to provide intuitive and effective human-computer interfaces, which
are also aimed for efficient task completion, user interface and information
system designers should consider human cognitive processes and its implications.
Some suggestions deserve to be considered in interface design. This concerns
particularly effects of split-attention and modality (Sweller et al., 1998). The
former effect can be addressed by physical integration of disparate sources of
information in the design in order to avoid load for mentally integrating sources
of information that have been separated either spatially or temporally. Regarding
modality, audiovisual representations of textual and pictorial material may deliver
the information in a more effective way.

The authors Tracy and Albers (2006) applied the principles of CLT (Section
2.1.3) to web site design. Thus, the designer can consider what factors are causing
high cognitive load and then redesign the problem areas (e.g., poor navigation or
cryptic categories) to reduce the load. Moreover, Schultz et al. (2007) proposed a
usability test system to verify user interfaces of web applications based on the
user’s emotions and cognitive load from physiological data.

With regard to information retrieval, Hu et al. (1999) found that interface
design may have a significant effect on system-user communication, regardless
of users’ familiarity with the search task, and that a graphical user interface may
be more effective in supporting such communication than a list-based design.
The aggregate cognitive load of list-based interfaces was comparable to that of
graphical ones—the difference was not statistically significant. On the other hand,
subjects exhibited a higher level of satisfaction with a graphical interface than
with a list-based interface. Both cognitive load and the level of satisfaction were
measured using self-reporting methods.

Shi et al. (2009) proposed a multimodal interface, called CAMI (Cognition-
Adaptive Multimodal Interface). It considers cognitive states and was primarily
designed for a large metropolitan traffic incident and emergency management
system. Different components have been integrated, such as speech analysis,
galvanic skin response, handwriting on a tablet monitor, and hand-gesture based



34 2 Background

interaction. As part of this interface, the system determines when and what
information is delivered to the user (operator) in which way.

2.4.3 In-Vehicle Systems
Interactive in-vehicle systems become more and more popular. These systems
comprise infotainment systems, telematics systems, and portable systems, such
as mobile phones. The driver’s capability to control a vehicle may be influenced
by secondary in-vehicle activities, which, in turn, could have negative safety
consequences. Reliable automatic cognitive load detection can contribute to the
design of safety systems and other intelligent in-vehicle interfaces.

Some work has been done in order to optimise spoken dialogue systems based
on cognitive load measurements of the driver. For instance, Kun et al. (2011)
investigated the effects of different dialogue behaviours on the driver’s cognitive
load using pupil diameter. They revealed that the rise of the pupil diameter is
related to increased cognitive activity when he or she is attempting to find the
word described by the other conversant. In the work of Boril et al. (2010), speech
production differences of the driver were explored by two secondary cognitive
tasks: interaction with the co-driver (low cognitive load) and calls to automated
spoken dialogue systems (high cognitive load). The outcome was that various
speech parameters, such as tempo in speech and the fundamental frequency, are
suitable for cognitive load discrimination.

Engström et al. (2005) reported results from simulated and real motorway
driving concerning the effects of cognitive load on driving performance. It was
found that cognitive load does not affect speed and results in reduced lane keeping
variation as well as increased gaze concentration towards the road centre. These
results are attributed to the driver’s perception of increased risk and the need
to increase the safety. On the other hand, visual load (e.g., operating the radio)
leads to reduced speed and increased lane keeping variation. Moreover, Crundall
and Underwood (1998) studied the differences between novices and experienced
drivers using different levels of cognitive load imposed by different types of roads.
Measures of eye movements were taken, which indicated that experienced drivers
select visual strategies according to the complexity of the roadway, whereas
strategies of novices are too inflexible to meet the requirements.

There is also ongoing research regarding user experience while driving (e.g.,
Jung et al., 2011). Hess et al. (2013) stated that the perceived experience is not
only influenced by the actual product, system, service, or object, but also by
contextual factors, such as emotions and cognitive load. In order to investigate
the relationship between cognitive load and user experience in a driving scenario,
they introduced two driving simulator environments to conduct experiments.
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2.4.4 Aviation
Monitoring the mental state can also be helpful in civil and military aviation
because cognitive overload of pilots and crew directly affects safety.

Huttunen et al. (2011a,b) showed correlations between speech-based parame-
ters and cognitive load according to situation awareness, information processing,
and decision making of pilots in a simulator task. The results of both studies indi-
cate that speech features can be used to monitor the speaker state and support pilot
training in a simulator environment. Based on real-time cognitive load monitoring
of pilots, assistance could be requested in time before critical situations occur.
Svensson and Wilson (2002) analysed the effects of task (mission) complexity
on mental state and performance of pilots using the measurement techniques eye
fixation rate, heart rate, and blink rate. The authors found significant relationships
between heart rate and rated workload, mental capacity, situational awareness,
and performance.

Military pilots have to function in environments that unavoidably have an
effect on speech production and reception. Keränen et al. (2004) analysed changes
in the production of speech by military aircraft pilots. Speech of a total of 19
pilots was recorded, both on real flights and in a simulator—there were clear
increases in the intensity and fundamental frequency of the speech signal for all
the pilots in more intense combat situations. Hence, both prosodic parameters
could potentially serve as indicators of situation demands and the need for support.

The importance of crew communication on the flight deck is discussed in the
work of Sexton and Helmreich (2000). Results of linguistic analyses showed that
the way language is used is correlated with the workload level during flight and,
therefore, with individual performance and error rates.





Chapter 3

Speech Material

Over the last couple of years, various tasks have been used to investigate the
limitations of the human working memory in conjunction with speech parameters,
for example, reading comprehension (Yin et al., 2007), Stroop tests (Yap et al.,
2010b), arithmetic tasks (Gorovoy et al., 2010), digit span tasks (Quatieri et al.,
2015), and driving under cognitive load (Boril et al., 2010). However, speech
corpora within this field are rather rare and in general not freely available for
scientific research. Besides the level of cognitive load, the way the cognitive
load is induced may also influence the manner in which users behave. One can
assume that such factors are reflected in different speech parameters. In order to
explore these aspects and to evaluate cognitive load assessment systems, speech
data is needed. In this chapter, two databases are presented that are used for the
investigations in this thesis, namely CLSE and CoLoSS.

The CLSE database is presented in Section 3.1. It includes speech recordings
of subjects who participated in three different tasks: Stroop test with time pressure,
Stroop test with dual-task, and a reading span task. Each task is composed of three
levels of cognitive load. The partitioned form of the database—a version of the
data collection used for the INTERSPEECH 2014 Computational Paralinguistics
Challenge—was provided for this thesis.

Cognitive load monitoring, which is optimised for environments in which
users are involved in the process of acquiring new or modifying existing knowl-
edge, may enrich application-oriented systems that are aimed at assisting users in
enhancing their learning efficiency. So far, there are no known speech-based cor-
pora available that focus on cognitive load in the context of learning and, secondly,
that provide a more sensitive approach for the assessment of cognitive load than
that of the straightforward classification problem. Therefore, a new cognitive load
corpus, called CoLoSS, has been developed, which includes speech recordings
of subjects who performed a learning task. The speech material is numerically
described by labels that reflect the amount of cognitive resources devoted during
the learning task procedure. CoLoSS is one of the major contributions of this
thesis. Details are found in Section 3.2.

37



38 3 Speech Material

3.1 CLSE Database

The Cognitive Load with Speech and EGG (CLSE) database was developed by
Yap (2012) with the goal to investigate the effects of cognitive load on speech,
especially on glottal parameters. Therefore, in addition to pure acoustic speech
signals recorded using a microphone, the database also includes electroglotto-
graph (EGG) signals. The cognitive load tasks employed in this database and the
data collection are described in the following sections.

3.1.1 Task Design
The CLSE database contains speech recordings of participants who performed
two variants of the Stroop test and a reading span task. The total recording session
for each participant lasted about one hour. For each task, three different levels of
cognitive load were induced: low, medium, and high. All tasks were presented to
the participants using a desktop computer.

3.1.1.1 Two Variants of the Stroop Test: Time Pressure and Dual-Task

The Stroop test (Stroop, 1935) is a psychological test, which aims at investigating
the effects of interference and the related reaction (or processing) time of a person.
More specifically, subjects are required to name the font colour of a word while the
colour name is different. For instance, if the displayed font colour is blue and the
colour name is ‘red’, then the correct answer is ‘blue’. This condition is generally
more demanding than a task in which the word meaning and the font colour
are not incongruent. The Stroop test is often used to study psychophysiology
responses to mental stress (e.g., Salahuddin et al., 2007; Karthikeyan et al., 2014;
Vanitha et al., 2017).

Two variants of the Stroop test are employed in the CLSE database corre-
sponding to the way the cognitive load is induced: Stroop test with time pressure
(CLSE-Time) and Stroop test with dual-task (CLSE-Dual). For both variants,
ten different colours were used (black, blue, brown, grey, green, orange, pink,
purple, red, and yellow). For each trial, 20 colour names were displayed in
random order, i.e., a particular colour name appeared twice. Table 3.1 gives an
overview of the task designs used for CLSE-Time and CLSE-Dual. In the low
cognitive load conditions, font colours correspond to the colour name, while they
are incongruent in the medium and high cognitive load condition.

In the low and medium cognitive load condition of CLSE-Time, participants
were required to read a sequence of words displayed at the same time. In these
cases, task completion is conducted self-paced. The high cognitive load level was
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Table 3.1 Task design of CLSE-Time and CLSE-Dual

Cognitive load CLSE-Time CLSE-Dual

Low Font colour D colour name,
word sequence is displayed at
the same time (self-paced)

Font colour D colour name,
1.0 s display interval for word
sequence

Medium Font colour ¤ colour name,
word sequence is displayed at
the same time (self-paced)

Font colour ¤ colour name,
1.0 s display interval for word
sequence

High Font colour ¤ colour name,
0.8 s display interval for word
sequence

Font colour ¤ colour name,
1.0 s display interval for word
sequence, and tone counting

induced by time pressure—each word of the word sequence, one after another,
was displayed on the screen within a short time span of 0.8 s.

Regarding all cognitive load levels of CLSE-Dual, each word of the word
sequence was displayed at a time interval of 1 s. In the high cognitive load
condition, participants were required to perform a tone-counting task (without
using fingers) while naming font colours. Either a low-pitched (1 kHz) or high-
pitched tone (2 kHz) was played through headphones in two-second intervals,
200 ms before the next word appeared. At the end of each trial, the total number
of high-pitched tones had to be named.

For both Stroop test variants, trials were repeated three times for each load and
subjective ratings were collected at the end of each trial. The subjective ratings
exhibit statistically significant differences in terms of cognitive load conditions
(cf. Yap, 2012).

3.1.1.2 Reading Span Task

The reading span task required participants to read aloud a series of short sen-
tences while memorising a sequence of letters. This type of task design is
commonly used to measure the working memory capacity by the maximum
number of items that can be stored (Daneman and Carpenter, 1980).

This task is divided into sets of trials, whereby each trial is structured as
follows: Participants are asked to read a displayed sentence, which is either
semantically logical or illogical. For instance, the sentence ‘I like to walk in the
sky’ is semantically illogical. The sentence is then verified by the participant
with the statement ‘true’ or ‘false’. Subsequently, a single letter, which has to be
stored in working memory, is presented on the screen for approximately 0.8 s.
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The number of possible letters is twelve (‘F’, ‘H’, ‘J’, ‘K’, ‘L’, ‘N’, ‘P’, ‘Q’, ‘R’,
‘S’, ‘T’, and ‘Y’).

A set of trials varied from two to five sentences. At the end of each set of
trials, the participants were required to recall the memorised letters in the correct
order. For instance, a set of three trials corresponds to a number of three sentences
as well as three letters. After recalling the letters, subjects were asked to rate
their invested mental effort on a scale from 1 to 9. In total, 21 sets of trials
(5�2 trials, 5�3 trials, 5�4 trials, and 6�5 trials) were conducted resulting in 75
produced utterances per subject. These sets were presented in random order, i.e.,
a participant did not know beforehand how many sentences and letters have to be
processed in a sequence.

Cognitive load labelling for the reading span task is based on the assumption
that as the number of letters increases, the amount of working memory utilised
for the task will also increase. Consequently, the cognitive load labels were
assigned by means of the number of sentences: low—reading the first sentence
(no letter); medium—reading the second sentence (first letter); high—reading
the third sentence (second letter), fourth sentence (third letter), and fifth sentence
(fourth letter).

3.1.2 Data Description and Partitioning
The CLSE database includes speech from 26 native English speaking students (20
male and 6 female)—it was recorded in Sydney (Australia). Each of the students
participated in three tasks (Section 3.1.1.1 and 3.1.1.2). The data collection is
grouped into the corresponding sub-databases CLSE-Time (Stroop test with time
pressure), CLSE-Dual (Stroop test with dual-task), and CLSE-Span (reading span
task).

Speech was recorded using a close-talk microphone at a sampling frequency
of 48 kHz and a 16 bit resolution. The speech signals were afterwards downsam-
pled to 16 kHz. Each instance of the database corresponds to a task trial, i.e.,
an audio file comprises speech of 20 named colours in the case of CLSE-Time
and CLSE-Dual, while a single sentence is given per audio file in CLSE-Span.
Further details are shown in Table 3.2. All instances of the entire database are
associated with a class label, which corresponds to a particular cognitive load
level: low, medium, or high. CLSE-Time and CLSE-Dual are provided with data
that include three instances per cognitive load level for each subject. In contrast,
an unequal distribution among classes can be observed in the case of CLSE-Span;
per subject, 21 instances are available for low as well as medium and 33 instances
for high cognitive load.

The database also includes the uttered single letters of the reading span
task and electroglottograph (EGG) data concerning all tasks recorded simulta-
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Table 3.2 Data description of the CLSE database

Description CLSE-Time CLSE-Dual CLSE-Span

Number of subjects 26 26 26
Number of instances 234 234 1,950
Average duration per instance [s] 16.5 20.8 4.0
Total duration [hh:mm] 01:04 01:21 02:09

Table 3.3 Partitioning of the CLSE database

# Train Devel Test
P

Cognitive load

Low 297 189 216 702
Medium 297 189 216 702
High 429 273 312 1,014

Task

CLSE-Time 99 63 72 234
CLSE-Dual 99 63 72 234
CLSE-Span 825 525 600 1,950P

1,023 651 744 2,418

Sum of instances are shown for each cognitive load level and each cognitive load task.
Abbreviations: Devel (development set), Test (test set), Train (training set)

neously with the speech. Furthermore, data for background model training is
included (CLSE-Story) comprising approximately 80 s of read speech per subject.
However, recordings of the single letters, EGG data, and CLSE-Story were not
considered in this thesis.

As part of the INTERSPEECH 2014 Computational Paralinguistics Challenge
(COMPARE) (Schuller et al., 2014), the Cognitive Load Sub-Challenge has been
established. The goal was to provide a test-bed for the automatic recognition of
speakers’ cognitive load as a three-class problem. For this purpose, the CLSE
database was partitioned into speaker disjoint subsets for training, development,
and testing. The training set contains 11 subjects (9 males and 2 females), the
development set 7 subjects (5 males and 2 females), and the test set 8 subjects (6
males and 2 females). Table 3.3 summarises the partitioning of the database for
the Cognitive Load Sub-Challenge. The challenge evaluation refers to the entire
database, i.e., results obtained on all three task-test sets are considered for the
final score. The partitioned version of the CLSE database, as given in Table 3.3,
was provided for the investigations in this thesis.
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3.2 CoLoSS Corpus

Although much effort has been invested in collecting and segmenting speech data
in recent years, there is still a lack of publicly available annotated databases in
the field of cognitive load, in particular in the context of learning. Moreover,
automatic speech-based cognitive load recognition modelled so far was only
considered to be a classification problem, where the level of task difficulty is used
for data labelling.

As a contribution to this research area, a new speech-based corpus has been
developed by the author of this thesis, called CoLoSS (Cognitive Load by Speech
and performance data in a Symbol-digit dual-task). This corpus represents a
subset of data collected in conjunction with previous studies (Wirzberger et al.,
2017, 2018) in which the task design (Section 3.2.1) and cognitive load indicators
(Section 3.2.2) were defined. The recordings of the previously collected data
have been refined within the scope of this thesis (Section 3.2.3) for evaluation
purposes in the field of automatic speech-based cognitive load recognition. Com-
pared to existing data collections that aim at evaluating automatic cognitive load
recognition from speech, the CoLoSS corpus differs in two key aspects: (1) it fo-
cuses on cognitive load induced by learning processes; (2) it provides continuous
numerical labels as a reference for cognitive load.

The corpus material will be made freely available for research purposes
(Herms et al., 2018). In the following sections, details on the corpus are given
including the task design, recording conditions, cognitive load indicators, and
statistics.

3.2.1 Task Design
The fundamental object of this task design is to assess the residual cognitive
resources of subjects while they are performing a learning task. To accomplish
this, the dual-task methodology was applied: a visual-motor primary task in
which subjects are required to learn the assignment of a symbol combination to
a single symbol while simultaneously memorising a sequence of five different
digits from an auditory-verbal secondary task. The symbol assignments in the
primary task reflect knowledge schemas that have to be formed across the trials.1

Subjects’ performance in the secondary task accordingly can be considered to be
the reference for cognitive load associated with the primary task.

1The following four different abstract geometric symbols were used: circle, triangle, square, and star.
The assignment of a symbol combination to a particular symbol was not necessarily logical. This
ensures that prior knowledge of subjects was excluded and, consequently, they had to form their own
learning strategy.
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Correct False

2 s5 s 5 s 2 s 5 s

FeedbackSymbol response Digit responseDigit sound Symbol screen

Figure 3.1 Schematic representation of a dual-task trial applied for the CoLoSS corpus.
Different screens and the corresponding durations in seconds (s) are shown. Primary task:
step two to three; secondary task: step one and five

In total, the task comprises a set of 64 trials and was presented to the partici-
pants using a desktop computer. Participants were guided in each trial by different
screens as illustrated in Figure 3.1. Between two screens, except between the first
two screens, a blank white screen was displayed with a duration of 200 ms. A
single trial is composed of the following five steps: (1) Digit sound: hearing a
sequence of five different digits in the range of 1 to 9 (in random order) generated
by a text-to-speech system for German; (2) Symbol screen: seeing one out of
four randomly generated combinations of different, abstract geometrical symbols,
where the order of the symbols must be considered; (3) Symbol response: select-
ing one out of four possible symbols in a randomly arranged 2�2 grid via mouse
click; (4) Feedback: obtaining feedback, accompanied by the correct symbol in
the case of false response to foster correct schema acquisition; (5) Digit response:
verbally recalling the five-digit sequence of step 1 in correct order.

It is obvious that symbol combinations of the first trials were presented for
the first time and symbol response in step 3 constitutes a chance of 25%. The
task difficulties varied between subjects, but not within the task, by the number
of symbols displayed on the screen in step 2. A distinction was made between an
easy and a difficult condition by two and three symbols, respectively.

With reference to the cognitive load theory (Section 2.1.3), this task design
is associated to various assumptions: Intrinsic cognitive load is represented by
the characteristics of the primary task, i.e., number and order of symbols. The
extraneous cognitive load is represented by the secondary task requirements.
Finally, the overall load, including germane cognitive load, is reflected in the
subjects’ performance concerning the secondary task.

3.2.2 Chosen Measures
In order to obtain a highly sensitive measure of the subjects’ performance for the
primary and secondary task (Section 3.2.1), an efficiency score was computed
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using the likelihood model approach proposed by Hoffman and Schraw (2010).2

The calculation is based upon the ratio between performance and effort, whereby
performance P is represented by the accuracy of problem solving and effort is
represented by the time T required. With this in mind, efficiency can be expressed
as (Hoffman and Schraw, 2010):

Eff D
P

T
; (3.1)

where T is unequal to zero. In the ongoing, the efficiency of the primary task and
the secondary task are denoted as EffPT and EffST, respectively.

For EffPT calculation, the performance was determined by the symbol re-
sponse correctness in the symbol response stage, while the reaction time needed
to select a symbol constitutes the effort component. Note, reaction time refers to
the visual stimulus regarding the appearance of the 2�2 grid.

The performance component of EffST was defined as the correctness of the
subject’s response regarding the five-digit sequence in the digit response stage.
Inspired by evaluation approaches for automatic speech recognition systems, the
word accuracy was chosen as a measure of performance. That is, the spoken
words were aligned against the correct words in the reference and, subsequently,
the number of substituted words S , deleted words D, and inserted words I were
determined. The word accuracy (WA) was then calculated by considering the
word error rate (WER) as follows (Lee, 1988, p. 147):

WER D
S CD C I

N
; (3.2a)

WA D 1 �WER; (3.2b)

where N is the number of words in the reference. Indeed, word error rates can be
greater than 100%, which may occur if I > D. It was decided to avoid negative
accuracy values by setting the lower limit to zero. Since the reference contains
five words, one of the following six values (here, not expressed as a percentage)
could be obtained by the parameter WA: 0, 0.2, 0.4, 0.6, 0.8, or 1.

The effort component of EffST was determined by the time starting from
the presentation of the visual stimulus (speech bubble in the digit response
stage) to the end of the last uttered digit, hereinafter referred to as the ‘verbal
response duration’ (VRD). In fact, VRD includes the onset latency, which reflects
the reaction time from the stimulus to the onset of the first uttered digit. This
time span involves complex cognitive processing for mentally representing the
message, selecting words, and retrieving syntactic as well as phonetic properties

2Although efficiency measures have so far been calculated using a single or the primary task, there is
no reason why they should not be calculated using the secondary task (Sweller et al., 2011, p. 80).
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Figure 3.2 Relationship between word accuracy (WA), verbal response duration (VRD),
and secondary task efficiency (EffST)

and, moreover, motor processing for articulation is required. Although the
reaction time is assumed to reflect how cognitive demanding the primary task
was (Sweller et al., 2011, p. 78), there is more information that can be derived
from the response in the secondary task. This assumption is attributed to the
characteristics of the task itself, namely the occurrence of many digits to be named
instead of only a single reaction. Consequently, as stated above, the complete
response including the onset latency was taken into account to determine the
effort component.

A theoretical perspective of the resulting EffST curves is given in Figure 3.2.
The efficiency score ranges from 0 to 1 while the VRD in seconds ranges from
1 to 5.3 The highest score (EffST D 1) can only be achieved by WA D 1 along
with VRD � 1 seconds. The EffST is highly sensitive for VRD between 1 and 2
seconds. With 2 seconds and more, the score is reduced to 0.5 and below. This
allows considering the reaction time (onset latency) in a sensitive manner for
utterances that are equal in duration.4

3Note that VRD can also be shorter than 1 second. This may occur if only one or two digits are
named with a short reaction time. Again, this is only a theoretical perspective.
4Here, the duration of an utterance is defined as the time from the onset of the first digit to the end of
the last digit.
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3.2.3 Recording and Post-processing
In total, 123 German-speaking students from the Technische Universität Chem-
nitz (Germany) participated in the task. Speech was recorded using a clip-on
microphone connected to a pocket transmitter-receiver system (Sennheiser ew
112). Mono signals were captured at a sampling frequency of 48 kHz and a 24
bit resolution using a mobile recording device (Roland R-88). Each recording
session refers to a particular subject and covers the entire task across the 64
trials. A recording session lasted about 20 minutes. The segments concerning
the uttered five-digit sequence in the digit response stage (Section 3.2.1) were
afterwards extracted using the time-codes (5 secondsC 0.5 seconds tolerance)
from the task log-data.

Unfortunately, the data of 28 subjects had to be excluded, because some
of them did not fulfil the requirements of the entrance test conducted using
an operation span (OSPAN) task5, or did not confirm the license agreement for
providing the data, while in other cases, subjects with lack in language proficiency
(non-native speakers) could be observed. Furthermore, some audio segments of
the remaining subjects were excluded due to manifold reasons: a segment contains
only silence; a segment does not include at least one uttered digit; a segment
contains disturbing noise while the subject is speaking, for example, caused by
unintended gesticulation. To obtain enough data per subject for the investigations,
it was decided that only subjects with at least 75% of valid segments are included
in the speech corpus.

In order to determine the verbal response duration (Section 3.2.2) in a precise
manner, the audio segments were annotated by two student assistants using time
markers in the software Audacity (Audacity Team, 2012). Note, this annotation
process involves omitting any sound including uttered content after the end of
the last uttered digit. Subsequently, all duration values were double checked by
another student assistant.

The efficiency score of the secondary task constitutes a promising indicator
for cognitive load and can be used for data labelling (Section 3.2.4). However,
since the audio segments of the corpus were theoretically contaminated with
information on the verbal response duration and, thus, partly with information
on the secondary task efficiency, segments were further processed by automatic
trimming. Figure 3.3 illustrates an original audio segment including annotations
and the resulting speech segment after trimming. The trimming procedure used

5The OSPAN task was used to obtain a baseline for the participants’ individual working memory
capacity. The task consists of three sets, each provided with five trials. For each trial, participants
were required to remember presented letters from the Latin alphabet while evaluating the correctness
of math problems. At the end of each trial, participants had to determine the correct order of letters.
At least 85% accuracy on the math problems was required.
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Figure 3.3 Onset latency, verbal response duration and segment of a recorded speech
signal

works as follows: Energy threshold-based activity detection (Section 4.1.5) is
applied to the audio signal in order to obtain the onset of the first activity and
the end of the last activity. Here, an activity refers to any sound, which can
be caused by speech, breathing, filled pauses, lip-smacking, and so forth. A
tolerance of 200 milliseconds (ms) is then added to the segmental boundaries of
the activity detector guaranteeing that information on speaker’s activity is not
lost due to detection errors. If the length of the tolerance exceeds the limits of
the original audio segment, as much silence as needed is added to fill the 200
ms at the beginning and/or the end. Afterwards, the trimmed audio segments are
transcoded to 16 kHz with a 16 bit resolution in WAV—the audio file format of
the corpus.

3.2.4 Cognitive Load Labels
The principle behind the dual-task method is that the available working memory
capacity, which is not allocated in connection with the primary task, can be
employed for a second task. Therefore, performance measures of the secondary
task, such as the number of correct answers, number of errors, and/or time
required, can be used as a reliable and valid reference for cognitive load associated
with the primary task (cf. Section 2.2.1). Regarding the task design described
in Section 3.2.1, the work of Wirzberger et al. (2017) backed up the hypothesis
that as learning progresses along with the sequence of trials, both the primary
task efficiency and secondary task efficiency increase. With this in mind, the
variable of interest for data labelling is the secondary task efficiency (Section
3.2.2), which considers performance (word accuracy) as well as effort (time
required). This label assignment serves the purpose of describing the audio data
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with the following assumed relationship: Secondary task efficiency reflects the
amount of the speaker’s devoted cognitive resources while he or she is performing
the secondary task. The higher the load imposed by cognitive, learning processes
in terms of the primary task, the lower the efficiency score of the secondary task.

A second version of the cognitive load labels was realised by applying un-
supervised discretisation. More specifically, the continuous numerical values
of the secondary task efficiency were converted to categorical values by equal-
width binning. This method divides the range of values x into N intervals with
width D .maxx � minx/=N . As a consequence, each interval has the same
width. Here, as in the CLSE database (Section 3.1), a ternary classification
problem is of interest, i.e., the chosen number of intervals was set to N D 3. It
is worth noting that this method is an experimental approach for another repre-
sentation of the labels. Other discretisation methods such as equal-frequency
binning or supervised discretisation can also be used. The optimal conversion of
a continuous numerical indicator into cognitive load classes constitutes an open
issue for future work.

3.2.5 Data Description
Table 3.4 gives an overview of the data collection. The corpus includes 70 native
speakers of German, whereby 18 are male and 52 are female (9 male and 26
female per task difficulty). Due to the exclusion of some audio files (cf. Section
3.2.3), the number of instances varies across the speakers (min D 48, max D 64,
� D 58.23, � D 18.41). Compared to the overall CLSE database (Section 3.1),
the CoLoSS corpus includes 44 more different speakers and 1,658 more instances.
In the following, the corpus material is given at a glance:

� Audio files (WAV, mono, 16 kHz, 16 bit) containing German speech (digits)
from secondary task trials,
� Subject id, trial id, and information about the gender,
� Information on primary task conditions (easy and difficult),
� Primary task performance measurements (symbol response correctness, reac-

tion time, efficiency),
� Secondary task performance measurements (word accuracy, verbal response

duration, efficiency),
� Cognitive load labels (secondary task efficiency as continuous numerical and

ordered categorical variables).

Figure 3.4 illustrates the progression of primary task and secondary task
efficiency over trials. One can see an increasing trend by means of simple linear
regression, but only a slight difference between conditions. For a deeper insight
into data, linear mixed-effects models with standardised (z-score) predictors were
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Table 3.4 Data description of the CoLoSS corpus

Condition

Description easy difficult all

Number of subjects 35 35 70
Number of instances 2,050 2,026 4,076
Average duration per instance [s] 2.66 2.67 2.66
Total duration [hh:mm] 01:31 01:30 03:01
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Figure 3.4 Standardised primary task efficiency (left) and secondary task efficiency
(right) over trials averaged across subjects for each task condition (easy and difficult). The
relationship between trial and efficiency is shown by simple linear regression

used to consider individual effects; the parameters of interest are: condition,
the interaction between trial and condition, and efficiency across trials per sub-
ject. Results confirm an increase in efficiency for the primary task (ˇ D 0.273,
p < 0.001, RMSE D 1.003, R2 D 0.178) as well as for the secondary task
(ˇ D 0.186, p < 0.001, RMSE D 0.983, R2 D 0.478).6 For both tasks, there is
no significant difference between the easy and the difficult condition (p > 0.05).7

Hence, for the investigations in this thesis, no distinction is made between these
conditions.

Since the secondary task efficiency (EffST) is suggested to be the reference
for cognitive load (cf. Section 3.2.4), the underlying parameters are discussed in

6For RMSE computation, a leave-one-subject-out cross-validation was used. R2 was obtained by a
pseudo R2 calculation based on the linear mixed-effects models.
7Subjective measures based on the questionnaire of Leppink et al. (2013) show similar results. For
both intrinsic load and extraneous load, no differences between conditions can be observed. Regarding
germane load, significantly higher ratings (p < 0.05) are obtained by the easy condition.
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Figure 3.5 Histograms for the verbal response duration (left) and secondary task effi-
ciency (right)

more detail. Based on Equation (3.1), EffST is calculated by the ratio between
word accuracy (WA) and verbal response duration (VRD). Regarding the word
accuracy, the five-digit sequence is error-free in almost all cases with a frequency
of 3,480. The remaining accuracies show comparably very low frequencies: 2,
23, 63, 332, and 176 for WAD 0, 0.2, 0.4, 0.6, and 0.8, respectively. By taking all
WA values into account, the mean is 0.94 and the standard deviation is 0.15. This
affirms that the secondary task is rather simple so that it did not tend to distract
subjects from working on the primary task. The distributions of VRD and EffST
are illustrated in Figure 3.5. The data of VRD (min D 0.83, max D 5.5, � D 2.85,
� D 0.68) as well as EffST (min D 0, max D 0.86, � D 0.35, � D 0.11) are not
normally distributed, tested using the Shapiro-Wilk test (p < 0.05). For the VRD
data, the skewness is 0.81 and the kurtosis is 1.41 indicating that the distribution
is slightly skewed to the right and has a higher, sharper peak than the normal
distribution. Similar properties can be observed for EffST, where the skewness is
0.21 and the kurtosis is 1.15.

As stated in Section 3.2.4, the corpus was complemented with categorical
cognitive load labels obtained by applying unsupervised discretisation to the
EffST data. With respect to the assumptions regarding EffST and by involving all
conditions, the discretisation method used leads to the following function:

CL(EffST) D

8̂<̂
:
L1 for 0:58 < EffST � 0:86

L2 for 0:29 < EffST < 0:58

L3 for 0:00 � EffST < 0:29;

(3.3)

where L1, L2, and L3 represent low, medium, and high cognitive load (CL),
respectively.8 Due to the statistical characteristics of EffST, the resulting distri-

8For clarity reasons, the ranges of EffST values shown are rounded to two decimals.
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bution among classes is highly unbalanced (L1: 109, L2: 3,051, and L3: 916).
Hence, for conducting classification experiments, it is strongly recommended to
apply resampling techniques (Section 6.1.1) before model training is performed.





Chapter 4

Speech Processing

Speech information contained in audio is usually represented in a compact form
by specific parameters (i.e., features) that describe the characteristics of the signal
at a comparatively lower rate. This chapter gives an overview of methods for
digital speech processing and feature extraction. First, the fundamentals of audio
signal processing (Section 4.1) are introduced. This is followed by a description
of those features that are investigated in the following chapters of this thesis. The
extracted features cover typical features from the cognitive load literature (Section
2.3.2) and address adjacent fields such as speech under stress. Since the speech
material used (Chapter 3) does not provide a basis for linguistically motivated
features, these are not taken into account. In this thesis, the term ‘feature type’ is
used to differentiate between features regarding the extraction method applied
to speech. Feature types that describe similar aspects in speech are summarised
into a ‘feature group’. Four different groups are considered: prosodic features
(Section 4.2), spectral features (Section 4.3), voice quality features (Section 4.4),
and Teager energy operator based features (Section 4.5).

Almost all feature types presented in this chapter can be classified as low-
level features. The only exception refers to the duration in speech (Section
4.2.3)—a feature type for representing the prosodic characteristics. There are
some arguments indicating that the implemented duration-based features may be
considered to be high-level: (1) they can be interpreted by humans in an intuitive
manner (e.g., speaking rate or number of pauses); (2) from a technical point of
view, the basis for feature computation is provided by different representations of
speech (e.g., phonemes or segment length), not by operating on the audio signal
directly.

The features of the above-mentioned groups can be processed further. Section
4.6 describes how contextual information is derived on frame-level and how
features are summarised for machine learning purposes. At the end of this chapter
(Section 4.7), the implemented overall process chain for feature extraction is
presented.

53
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4.1 Fundamentals

The following sections provide the reader with fundamentals of audio signal
processing. Basically, signals convey information that is contained in patterns
of variation. For technical reasons, discrete-time signals are required, which are
representations of sampled continuous-time signals. Broadly speaking, sampling
is the transformation of a continuous signal into a sequence of numerical values.
Discrete-time signals are mathematically denoted by the function x.n/, where
n is an integer between �1 and 1 (Oppenheim et al., 1999, p. 9). Signal
discretisation can be achieved by using an analogue-to-digital (A/D) converter.
For the perfect reconstruction of the original continuous-time signal, the Nyquist-
Shannon sampling theorem requires that the sampling frequency must be at least
twice the highest frequency in the signal (Oppenheim et al., 1999, p. 146). For
more details regarding signal representation and transformation, the reader is
referred to Oppenheim et al. (1999).

In the remainder of this thesis—for reasons of simplicity—the notation x.n/
refers to a value at index n on any level of discrete data representations.

4.1.1 Short-Time Analysis
Speech is a non-stationary signal, i.e., it has varying properties over time (Her-
mansky, 1999, p. 118). In order to capture the information in specific regions
of speech, the signal needs to be segmented into shorter units. In audio signal
processing, a sliding short-duration window is typically applied to the discrete
signal along the time axis (Jayan, 2016, p. 22). The region of the window is then
considered to be stationary, meaning that its statistical properties are constant.
The signal within the boundaries of the window can be extracted by multiplying
the value of the discrete-time signal x.n/ at time n by the value of the window
w.n/ at time n. The extracted signal from a window is called a frame. Conse-
quently, applying a sliding window along the time axis results in a sequence of
frames (Jurafsky and Martin, 2009, p. 331).

There exist various types of weighting window functions; the choice of a
suitable function depends on the feature to be determined. A rectangular window
passes the original signal form, which is sufficient for the analysis in the time
domain (Schuller, 2013, p. 44). However, a rectangular window cuts off the
signal at its boundaries resulting in discontinuities, which, in turn, can lead to
undesirable effects concerning time-to-frequency transformation (Jurafsky and
Martin, 2009, p. 331). A compromise is the use of window functions that are
characterised by a soft fade in and fade out in terms of time and, thus, also in
terms of frequency (e.g., Hamming, Hanning, and Gaussian window) (Fellbaum,
2012, p. 77).
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Two important parameters influence the results of the short-time analysis:
the window length and the frame rate. The window length corresponds to the
number of samples to be processed at a time. It is crucial to define an adequate
length. Short-duration windows result in localised values, whereas long-duration
windows yield averaged measurements (Jayan, 2016, p. 24). The parameter frame
rate has the function of how frequently the measurement is performed on the
input signal. In slow signal variations, a lower frame rate is sufficient, whereas
fast signal variations require a higher frame rate. The frame rate is typically
parameterised by a frame-shift value controlling the time-shift in the window
placement (Jayan, 2016, p. 25). Depending on the window length, the frame rate
also controls the degree of overlap between successive windows.

4.1.2 Spectrum and Cepstrum
Some speech features require the transformation of a windowed signal into the
frequency domain. The tool for extracting spectral information from a discrete-
time signal x.n/ is commonly known as the discrete Fourier transform (DFT).
The output of the DFT is a complex number X.k/ representing the magnitude
and phase of a frequency component k in the original signal. The DFT at time n
and frequency k is given as (Jurafsky and Martin, 2009, p. 333):

X.k/ D

N�1X
nD0

x.n/e�j
2�
N kn: (4.1)

The DFT is typically computed using the efficient algorithm fast Fourier transform
(FFT). It is worth noting that this implementation of the DFT only works for
values of N that are powers of 2.

Additionally, useful information from the signal can be derived by the cep-
strum. The cepstrum is computed by taking the log for each amplitude value in
the magnitude spectrum and, subsequently, performing the back-transformation
to the time domain. More formally, the cepstrum is defined as the inverse DFT of
the log magnitude of the DFT of a signal, written as (Jurafsky and Martin, 2009,
p. 335):

c.n/ D

N�1X
nD0

log.jX.k/j/ej
2�
N kn: (4.2)

The term ‘cepstrum’ is formed by reordering the first letters of the term ‘spectrum’.
The term ‘quefrency’—formed in a similar way based on the term ‘frequency’—is
commonly used as axis label in order to emphasise the difference between time
domain and cepstral domain (Lerch, 2012, p. 102).
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Figure 4.1 Spectrum (left) and cepstrum (right) of a 25 ms voiced speech frame

As described in Section 2.3.1.2, the voiced speech waveform is generated by
a source signal (of a particular fundamental frequency) which is passed through
the vocal tract filter. Figure 4.1 illustrates the spectrum and the cepstrum of a 25
ms frame extracted from a voiced speech signal. The cepstrum provides a way of
separating the source and the filter: a large peak corresponds to the fundamental
frequency; components modelled by the vocal tract filter are concentrated in the
low quefrency region (Havelock et al., 2008, p. 476). Thus, the cepstrum can be
used for the detection of the fundamental frequency and the extraction of features
for speech recognition.

4.1.3 Autocorrelation Function
Correlation functions measure the degree of similarity between two signals at a
particular time lag. The autocorrelation function (ACF) is a special case, which
measures how well the input signal matches a time-shifted version of itself. This
type of correlation function is a useful tool for short-time speech analysis. For
instance, it can be applied to determine the periodicity in signals (cf. Section
4.2.2). The short-time autocorrelation function of a discrete-time signal x.n/ at
lag � is defined as (Harrington and Cassidy, 2012, p. 146):

ACF.�/ D

N�1��X
nD0

x.n/x.nC �/; (4.3)

whereN refers to the length of the window. Equation (4.3) indicates thatACF.�/
is computed at a given lag value relative to the start of the window at n D 0. The
maximum value of ACF.�/ is at lag � D 0 (i.e., no time-shift) because there is
no difference between the data points to be multiplied (Lerch, 2012, p. 27).
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4.1.4 Contour Smoothing
The contours of low-level speech features may include undesirable short-term
fluctuations or detection errors that can affect the results of further processing
steps. A common way to reduce noise in a sequence of data points is to apply the
simple moving average (SMA) filter. The SMA filter smooths a data contour by
averaging the values within a moving window. In equation form, the output of
the filter at frame n is given by (Smith, 2013, p. 277):

SMA.n/ D
1

W

.W�1/=2X
iD�.W�1/=2

x.nC i/; (4.4)

whereW represents the window length, i.e., the number of frames to be processed.
The parameter W assumes odd numbers due to the centring of n within the
window (symmetrical averaging).

The SMA filter has been implemented for this thesis and is applied to each
low-level feature type. A window length of W D 3 is used in order to retain most
of the information regarding short-term trends.

4.1.5 Activity Detection
In audio analysis, not all frames of the signal are of interest. Some parts of the
signal can contain silence or disturbing noise that may not be important for the
analysis of speech. This concerns in particular automatic speech recognition
(ASR) systems: the recognition performance of ASR is—among other factors—
related to the position of segmental boundaries regarding spoken units (Droppo
and Acero, 2008, p. 662).

Voice activity detection (VAD), also known as speech activity detection,
aims to discriminate between speech and non-speech in audio signals. Early
approaches for VAD are based on energy threshold (Wilpon et al., 1984; Woo
et al., 2000), zero-crossing rate (Hahn and Park, 1992), periodicity measures
(Tucker, 1992), linear predictive coding measures (Rabiner and Sambur, 1977),
and cepstral features (Haigh and Mason, 1993). More recently, data-driven
approaches are followed by using features for classifier training to discriminate
between speech and non-speech in noisy environments. For instance, Gaussian
mixture models (Misra, 2012), support vector machines (Enqing et al., 2002),
recurrent neural networks (Eyben et al., 2013b), deep belief networks (Zhang and
Wu, 2013), and C-means clustering (Górriz et al., 2006) have been successfully
employed.

For this thesis, a threshold-based activity detector has been implemented.
This component is decoupled from specific data sources, meaning that it can be
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used for experimental purposes. Let x.n/ be the sequence of frames obtained by
feature extraction and let a.n/ be the sequence of activity frames, where each
frame is initialised as ‘inactivity’. The following four parameters can be adjusted
and work in concert:

1. Activity threshold: The status ‘activity’ is set in a.n/ at those indices where
x.n/ yields a value above the threshold.

2. Frame tolerance: In a.n/, a defined number of frames are set to ‘activity’
before and after each detection (from step 1).

3. Gap threshold: The gap between two ‘activity’ frames in a.n/ is filled with
‘activity’ if the number of frames between them is below the threshold.

4. Series threshold: A series of consecutive ‘activity’ frames in a.n/ are set to
‘inactivity’ if the number of these frames is below the threshold.

This activity detector is applied for this thesis in order to determine different
types of speech events (Section 4.2.3.2) and to post-process all low-level feature
types in the way that only voiced speech is considered based on the segmental
boundaries of the fundamental frequency (Section 4.2.2). It should be noted
that this type of activity detector only works robustly in non-noisy environments.
Real-world conditions require methods that are more sophisticated.

4.2 Prosodic Features

Broadly speaking, prosody refers to the melody in speech. Prosody is charac-
terised by variations of the parameters intensity, fundamental frequency, and
duration. In combination, these parameters contribute to the production and
perception of rhythm, lexical stress, lexical tone, tempo, and intonation of an
utterance (Fletcher, 2010, p. 521).

The following sections describe the extraction of the intensity (Section 4.2.1),
the fundamental frequency (Section 4.2.2), and duration-based features (Section
4.2.3).

4.2.1 Intensity
The intensity is a physical, measurable parameter of a sound based on the ampli-
tudes over time. In contrast, the term ‘loudness’ refers to a perceptual quantity,
which can only be measured on the basis of human observers (Lerch, 2012, p. 71).
The degree of intensity depends on recording conditions, i.e., it decreases as the
distance from the sound source decreases.

The energy of an audio signal can be used as an approximation to measure the
intensity. The signal energy of a discrete-time signal x.n/ with a finite number
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Figure 4.2 Waveform (background) and intensity (foreground) of a speech signal

of samples is defined by the formula (Manolakis and Ingle, 2011, p. 25):

E D

N�1X
nD0

x.n/2: (4.5)

Alternatively, the root mean square (RMS) related to the amplitudes (i.e., RMS
energy) can be computed, which is one of the most common intensity features.
The RMS energy of a discrete-time signal x.n/ is calculated by (Lerch, 2012,
p. 71):

ERMS D

vuut 1

N

N�1X
nD0

x.n/2: (4.6)

For this thesis, the RMS energy of a signal is extracted by using the analysis
tool Praat (Boersma, 2002). A window length of 25 ms is chosen with a frame-
shift of 10 ms. Figure 4.2 illustrates the corresponding contour extracted from a
speech signal. The result of each frame is in the range of 0 � ERMS � 1. The
value will be zero if the processed part of the signal is silence.

With reference to previous studies in the scientific literature (Section 2.3.2.3),
the intensity of a signal increases as the level of cognitive load increases. This
relationship is particularly true for the data of CLSE-Time (cf. Figure A.1 in
Appendix), whereby statistically significant differences are given between low
and medium as well as low and high cognitive load. For CLSE-Dual, an increase
can be observed from low to medium load with a significant difference, but there
is a drop from medium to high cognitive load (not significant). However, the
difference between low and high cognitive load in CLSE-Dual is still statistically
significant. In the case of CLSE-Span, there is a decrease from low to medium
load and an increase from medium to high load; only the former exhibit a
statistically significant difference. Regarding the distribution of intensity in the
CoLoSS corpus, no significant differences between cognitive load levels can be
observed.
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4.2.2 Fundamental Frequency
The fundamental frequency F0 of a speech signal represents the frequency of the
vocal fold vibration. Hence, this frequency component appears when speech is
voiced. This type of feature can be regarded as the acoustic equivalent to the
perceptual unit pitch. Figure 4.3 shows the fundamental frequency for a speech
signal. There are various detection techniques to obtain this frequency in both
the time domain and the frequency domain. An excellent overview of techniques
is given by Gerhard (2003).

For this thesis, the fundamental frequency is determined in the time domain
by the straightforward autocorrelation approach using the analysis tool Praat
(Boersma, 1993, 2002). The measurement interval is set to 10 ms at a window
length of 40 ms. As pointed out in Section 4.1.3, the autocorrelation function
ACF.�/ has a global maximum at the time lag � D 0, because the signal is
identical to itself. If there are global maxima outside � D 0, then the signal is
called periodic and there exists a time lag T0, which is called the period. The
fundamental frequency F0 of a periodic signal is defined as (Lerch, 2012, p. 8):

F0 D
1

T0
: (4.7)

The correlation of a periodic waveform to itself decreases to a minimum when
the time lag increases to half of the period and increases back to a maximum when
the time lag increases to the length of one period. In the case of harmonically
complex waveforms there may be no global maxima outside � D 0, but possibly
a number of local maxima. If there is a local maximum which is large enough,
then the signal has a periodic part. The first large peak of the autocorrelation
function indicates the fundamental period of the waveform.

Previous works revealed that the fundamental frequency F0 increases along
with cognitive load (cf. Section 2.3.2.3). This can only be partially confirmed in
this thesis (cf. Figure A.1 in Appendix). For both CLSE-Time and CLSE-Dual,
F0 increases from low to medium cognitive load with a statistically significant
difference but decreases slightly from medium to high load. However, for CLSE-
Dual, the difference between low and high cognitive load is still significant. For
the CoLoSS corpus, F0 values indicate a tendency to a slight increase from
medium to high cognitive load—the difference is significant. On the other hand,
confidence intervals of F0 overlap between low and medium as well as low
and high cognitive load. Opposite effects can be observed for CLSE-Span: F0
decreases as cognitive load increases; a significant separation between low and
medium load can be observed, but there are almost no changes between medium
and high cognitive load.
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Figure 4.3 Waveform (background) and fundamental frequency (foreground) of a speech
signal

4.2.3 Duration
Duration-based features refer to the temporal aspects in speech. This type of
prosodic analysis implies the detection of spoken units (e.g., voiced segments
or phonemes) because the timing of substructures can reveal tempo and pausing
in speech. From a technical point of view, this raises two kinds of issues: (1)
How to obtain spoken units in an automatic manner? (2) Which features can be
derived from these spoken units?

Some contributions were made to this, especially with the focus on syllables.
For instance, Mermelstein (1975) proposed a segmentation algorithm based on
the minimum of loudness to detect the boundaries of syllables. In the work of
Hunt (1993), syllables are detected by applying recurrent neural networks with
energy and cepstral features as input parameters. In De Jong and Wempe (2007),
the intensity and fundamental frequency are used in connection with thresholds
to restrict the speech signal; the remaining intensity peaks are considered to be
syllable locations. These locations are then used for computing the speaking
rate by the number of syllables per second. The authors Verhasselt and Martens
(1996) presented an automatic speech detector based on a multilayer perceptron
to determine phone boundaries and the speaking rate (number of phones per
second).

Although some systems seem to be controversial due to their error rates,
the work of Mirghafori et al. (1996) showed the usefulness of measuring tempo
based on hypothesised phones of an automatic speech recognition (ASR) system.
Moreover, previous works demonstrated the importance of ASR-based features
for various use-case scenarios including the prediction of cognitive load (e.g.,
Montacié and Caraty, 2014; Quatieri et al., 2015), Parkinson’s disease (e.g.,
Zlotnik et al., 2015) as well as deception and sincerity (e.g., Herms, 2016). For
further information on automatic speech recognition, the reader is referred to
Young et al. (2006).
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4.2.3.1 Phoneme-Level Features

The speech recognition approach is followed in this thesis to extract features that
refer to the temporal properties of speech. In order to achieve this, an ASR-based
feature extractor has been implemented by the author of this thesis; a preliminary
version was already successfully employed in Herms (2016). The process chain
of the system is illustrated in Figure 4.4. It consists of two main stages, namely
speech recognition and feature extraction.

The open-source framework CMU Sphinx-4 (Walker et al., 2004) has been
used for implementing the speech recognition component. The input data of
the speech recogniser comprise the audio data (e.g., from a WAV file) and an
acoustic model, while the output is a transcript including phonemes and the cor-
responding timecodes in milliseconds. In order to detect the phoneme sequences
for the English language (i.e., CLSE database—Section 3.1), the pretrained US
English generic acoustic model cmusphinx-en-us-5.21 has been used, which is
provided by CMU (Carnegie Mellon University). For the German language (i.e.,
CoLoSS—Section 3.2), a separate acoustic model has been trained based on
the ‘German open source corpus for distant speech recognition’ (Radeck-Arneth
et al., 2015) in conjunction with a pronunciation lexicon, which has been created
using the grapheme-to-phoneme conversion tool (Reichel, 2012) of the BAS
(Bavarian Archive for Speech Signals) web services (Kisler et al., 2016). The
resulting acoustic model for German consists of context-dependent triphone Hid-
den Markov Models with 32 Gaussians per state. Table 4.1 gives an overview of
the symbolic units for each acoustic model. Since all datasets used in this thesis
contain utterances that are not characterised as spontaneous speech, the filled
pauses are not considered for feature computation.

Feature extraction is performed on the basis of the generated transcripts. A
single transcript refers to an instance (audio file) of a particular speech corpus.
Each transcript is considered from the first to the last phoneme. As further in-
dicators, consonants and vowels are detected in the phoneme sequences. Next,

1https://sourceforge.net/projects/cmusphinx/files/, accessed 19 March 2015.

https://sourceforge.net/projects/cmusphinx/files/
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Table 4.1 List of symbolic units for English and German produced by ASR

Type English (ARPAbet notation) German (SAMPA notation)

Phonemes AA, AE, AH, AO, AW, AY, B,
CH, D, DH, EH, ER, EY, F,
G, HH, IH, IY, JH, K, L, M, N,
NG, OW, OY, P, R, S, SH, T,
TH, UH, UW, V, W, Y, Z, ZH

2:, 6, 9, ?, @, C, E, E:, I, N,
O, OY, S, U, Y, Z, a, a:, aI, aU,
b, d, e:, f, g, h, i:, j, k, l, m, n,
o:, p, r, s, t, u:, v, x, y:, z

Silent pauses SIL SIL

Filled pauses BREATH, COUGH, NOISE,
SMACK, UH, UM

syllable patterns are derived based on the concept of the consonant-vowel struc-
ture as described in Farinas and Pellegrino (2001). In this context, a syllable
pattern is defined as C nV , where n is an integer that may be zero, consecutive
vowels are merged, and clusters without vowels are discarded. For instance,
the sequence CCVV.CCV.CV.CCCV.CV.CCC results in the following five valid
syllables: CCV, CCV, CV, CCCV, and CV.

The phonemes, silent pauses, and derived syllables are considered for the
extraction of the following ten static features:

� Utterance duration: time code of the first phoneme subtracted from the time
code of the last phoneme,
� Silent pause duration: the total duration of silent pauses,
� Silent pause frequency: the total number of silent pauses,
� Mean silent pause duration: silent pause duration divided by the silent pause

frequency,
� Silent pause duration ratio: silent pause duration divided by the utterance

duration,
� Silent pause frequency ratio: silent pause frequency divided by the total number

of phonemes,
� Speaking rate (phoneme-based): the total number of phonemes divided by the

utterance duration,
� Speaking rate (syllable-based): the total number of syllables divided by the

utterance duration,
� Articulation rate (phoneme-based): the total number of phonemes divided by

the utterance duration excluding silent pause duration,
� Articulation rate (syllable-based): the total number of syllables divided by the

utterance duration excluding silent pause duration.
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Temporal variation is obtained by taking each single spoken unit into account.
The following four different duration types are extracted:

� Phoneme durations,
� Consonant durations,
� Vowel durations,
� Syllable durations.

A precise description of tempo in speech can be determined by considering
short-time variations. For this purpose, a sliding window with a length of 500
ms and a shift of 100 ms is applied along the time axis. The number of spoken
units is then captured for each short-time interval. Two speaking rate contours
are extracted:

� Speaking rate contour (phoneme-based),
� Speaking rate contour (syllable-based).

Means and 95% confidence intervals for a selection of duration-based features
under different levels of cognitive load are found in Appendix (Figure A.1). The
articulation rate in the case of CLSE-Dual and CoLoSS shows effects similar
to those given in the scientific literature (cf. Section 2.3.2). More precisely,
for CLSE-Dual, there is a monotonically decreasing trend across the levels
of cognitive load with statistically significant differences. The same applies
to CoLoSS, with the exception that the difference between medium and high
cognitive load is insignificant. Interestingly, an opposite effect can be observed
for CLSE-Time, whereby the articulation rate significantly increases when a
high cognitive load is induced (by time pressure). Obviously, compared to the
articulation rate, the trend of the mean consonant as well as vowel durations
turned to the opposite direction, although significant effects are only found
in the case of CLSE-Time and CoLoSS. Both corpora exhibit an increase in
terms of the consonant duration from low to medium and low to high cognitive
load. Looking at the mean vowel duration, the results between databases differ
considerably: CLSE-Time shows a significant increase from low to medium and
a significant decrease from medium to high cognitive load; for CoLoSS, there is a
monotonically increasing trend with statically significant differences between low
and high as well as medium and high cognitive load. It is generally accepted that
longer pauses in speech are indicative of cognitive load. The same conclusion
can be drawn with regard to CLSE-Time where a significant increase from low to
medium and low to high cognitive load can be observed for silent pause duration.
Similar effects are obtained by CoLoSS; values exhibit statistically significant
differences between low and high as well as medium and high cognitive load. In
contrast, CLSE-Dual shows a significant decrease in silent pause duration from
low to medium cognitive load.
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Figure 4.5 Waveform (background) and segment types (foreground) of a speech signal

4.2.3.2 Segments and Onset Latency

The features presented in this section measure the duration of various speech
events based on low-level features. Audio activity detection (Section 4.1.5) is
first applied to a feature contour and the length of each detected segment is then
computed by the difference between its last and first frame. The following three
different types of segment lengths in milliseconds are extracted:

� Speech segment lengths,
� Voiced segment lengths,
� Unvoiced segment lengths.

Figure 4.5 illustrates the three segment types for a speech signal. Speech
segments are detected based on the intensity (Section 4.2.1) of an audio signal.
For voiced segments, the boundaries of the fundamental frequency contours
(Section 4.2.2) are used directly as a reference. Unvoiced segments are then
obtained by the difference between the speech segments and the voiced segments.
Moreover, speech corpora may include stimuli information realised as starting
points in audio files. In order to take the reaction time of a speaker into account,
the onset latency is extracted by considering the timecode of the first frame
contained in the first speech segment.

4.3 Spectral Features

Spectral features play an important role in the recognition of the speaker’s mental
state because they convey the frequency content of the speech signal and pro-
vide complementary information to prosodic features. This group of features
(including cepstral features) is based on the short-time spectral analysis.

Three spectral feature types are considered in this thesis. First, the spectral
centroid (Section 4.3.1) is described. The spectral centroid is associated with
the brightness of a sound. This is followed by the well-known Mel Frequency
Cepstral Coefficients (MFCCs, Section 4.3.2)—the standard feature in automatic
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speech recognition systems. MFCCs describe the spectral properties of a signal
in a compact form with only a few parameters. The third feature of this group
refers to the resonance frequencies of the human vocal tract, also known as the
formants (Section 4.3.3).

In this thesis, spectral features are extracted using the analysis tool Praat
(Boersma, 2002). For short-time spectral analysis, the window length is set to 25
ms with a frame-shift of 10 ms. Praat applies a Gaussian window function for
MFCCs and formants by default. For the spectral centroid, the Hamming window
function is used.

4.3.1 Spectral Centroid
The spectral centroid (SC) refers to the centre of gravity of spectral energy. It is
defined as the weighted sum of the power spectrum divided by its unweighted
sum (Lerch, 2012, p. 45):

SC D

PN�1
kD0 k �X.k/

2PN�1
kD0 X.k/

2
; (4.8)

where X.k/ is the magnitude corresponding to frequency k, and N is half of the
sampling frequency (Nyquist frequency).

The spectral centroid is well correlated with the timbre in terms of brightness.
For instance, low values indicate more low-frequency content, which results in
low brightness, whereas a brighter sound dominates in higher frequency (Park,
2009, p. 399). Figure 4.6 illustrates the spectral centroid contour for a speech
signal. It can be seen that the spectral centroid spikes at transients between speech
and non-speech frames; it is high during pauses (outside the figure).

The spectral centroid is commonly applied in the field of musical genre
classification (e.g., Tzanetakis and Cook, 2002) or musical instrument recognition
(e.g., Eronen and Klapuri, 2000). Moreover, this feature has been used in speech
emotion recognition (e.g., Schuller and Rigoll, 2006; Chen et al., 2012). In this
thesis, the entire frequency band of a speech signal is considered for spectral
centroid determination. There are also other approaches such as the computation
of spectral centroid frequencies and spectral centroid amplitudes within frequency
subbands (e.g., Cummins et al., 2011; Le et al., 2011).

Analyses of the mean spectral centroid reveal that there is an increasing trend
as the level of cognitive load increases from low to medium (cf. Figure A.3 in
Appendix), whereby differences concerning CLSE-Time as well as CLSE-Dual
are statistically significant. For both corpora, differences are negligible between
medium and high load, but spectral centroid values are still significantly higher
in the most intense cognitive load condition than in the lowest. An opposite
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Figure 4.6 Waveform (background) and spectral centroid (foreground) of a speech signal
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effect is given by CoLoSS: the lowest mean spectral centroid is obtained by the
highest level of cognitive load; the difference to medium load is significant. For
CLSE-Span, no significant effects can be observed.

4.3.2 Mel Frequency Cepstral Coefficients
The Mel Frequency Cepstral Coefficients (MFCCs) can be regarded as a compact
description of the spectral properties of an audio signal. The MFCC feature
extraction procedure is closely related to the computation of the cepstrum (Section
4.1.2).

The computation of MFCCs requires four basic steps as depicted in Figure
4.7. In the first step, the frequency spectrum of a windowed signal is determined
by the discrete Fourier transform (DFT). The next step is to apply a bank of
overlapping triangular bandpass filters that follow the mel-warped spectrum. To
this end, a non-linear frequency scale—the mel scale—is used to model the non-
linear human perception of pitch (Lerch, 2012, p. 51). Consequently, MFCCs are
frequently considered to be a perceptual feature. There are differences between
MFCC implementations in terms of the mel-warped spectrum. A common
definition of the mel-frequency scale is (Lerch, 2012, p. 80):

mel.f / D 2595 � log10

�
1C

f

700

�
: (4.9)

The mel-spectrum is obtained by multiplying the magnitude spectrum of the
Fourier transformed signal by each of the triangular mel weighting filters. Sub-
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Figure 4.8 Waveform and MFCC heat map of a speech signal

sequently, the logarithm of the spectrum is taken—it has been found that the
perceived loudness of a signal is approximately logarithmic (Kim et al., 2006,
p. 81). Finally, the discrete cosine transform (DCT) is applied to the logarithm
of the mel-filter outputs. The result is a set of cepstral coefficients. In summary,
the computation of MFCCs can be expressed as (Davis and Mermelstein, 1980,
p. 199):

MFCC.n/ D

KX
kD1

log .Xmel .k// � cos
�
n �

�
k �

1

2

�
�

K

�
; n D 1; 2; : : : ;M;

(4.10)

where Xmel .k/ represents the mel-spectrum with the energy output of the kth
filter, and M is the number of cepstrum coefficients.

Typically, MFCCs are computed for a number of coefficients that is less than
the number of mel-filters. For this thesis, the first 12 coefficients of a 26 mel-filter
bank specification are used. Figure 4.8 illustrates these 12 MFCCs for a speech
signal. Each row in the heat map corresponds to a coefficient; darker shades of
grey represent higher (normalised) values.

Correlation measurements between MFCCs and cognitive load are found in
Appendix (Figure A.5). For the mean MFCCs, almost all values show a very
low relationship to cognitive load across different tasks. However, concerning
CLSE-Time, a small negative relationship can be observed for MFCC 1, 2, and 9;
the results are significant at a level of 0.01. Regarding the variation of MFCCs,
there is only little if any relationship across all tasks. The only exception is given
by MFCC 11 in the case of CLSE-Time, which exhibits a low positive correlation
(p < 0.01).
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4.3.3 Formants
Formants are resonance frequencies of the human vocal tract. Since different vow-
els are produced by different configurations of the vocal tract, they are reflected in
different kinds of resonances (Jurafsky and Martin, 2009, p. 273). Although for-
mant frequencies vary with the articulation of speech, they are also characterised
by the size and proportion of speech organs of an individual speaker (Eriksson,
2012, p. 50). Formants are often directly visible in spectral representations. They
can be described in terms of the centre frequency, amplitude, and bandwidth.
Figure 4.9 illustrates a 300 ms segment of a voiced speech signal; the high energy
portions in the frequency domain are represented by darker shades of grey and
the corresponding first three formant contours are represented by lines.

A common approach to estimate formants involves searching for peaks in
spectral representations. However, there are some difficulties in formant deter-
mination, because the short-time spectra may contain vocal tract’s resonance
frequencies that are too close to each other or some dominant frequencies exceed
resonance frequencies in amplitude. A simplified structure of the speech spectrum
is needed, which can be achieved by linear predictive coding (LPC). The LPC
method provides an accurate estimate of speech parameters that relate to the
configuration of the vocal tract. It derives a compact representation of the spectral
characteristics of a signal. The basic idea of linear prediction is that the current
speech sample Ox.n/ can be estimated by a linear combination of previous output
samples of the original signal x.n/, expressed as follows (Lerch, 2012, p. 29):

Ox.n/ D

PX
iD1

ai � x.n � i/: (4.11)

Equation (4.11) indicates that x.n � i/ are the preceding values, ai are the
predictor coefficients, and P is the order of the predictor. The prediction error is
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Figure 4.9 Spectrogram (left) and the first three formants (right) of a speech signal
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Figure 4.10 Fourier and LPC spectrum of a 25 ms voiced speech frame

computed by the difference between the real output and the prediction (Lerch,
2012, p. 29):

e.n/ D x.n/ � Ox.n/: (4.12)

The predictor coefficients ai are usually estimated by minimising the mean
squared prediction error. The minimum can be found by setting the differential
@e2.n/=@ai equal to zero. This leads to a system of P linear equations—solving
these equations yields the predictor coefficients ai . Finally, the LPC spectrum
is obtained by applying the DFT to the LPC coefficients. For the mathematics
behind LPC analysis and formant estimation, see Schuller (2013).

For this thesis, the centre frequency f and bandwidth b of the first three for-
mants, denoted hereinafter by F1–3(f,b), are extracted using the analysis tool Praat
(Boersma, 2002). For each analysis window, Praat computes LPC coefficients and
determines the formant values. Figure 4.10 illustrates the LPC and the Fourier
spectrum of a 25 ms voiced speech frame. The corresponding first three formant
centre frequencies are 641 Hz, 1313 Hz, and 2422 Hz.

The utilisation of formant frequencies for cognitive load assessment seems
to be controversial due to inconsistent research findings (cf. Section 2.3.2.3).
The same applies to the results regarding the speech material used in this thesis
(cf. Figure A.4 in Appendix). Most effects can be observed for the CLSE-Time
dataset. The centre frequency of F1 shows a monotonically increasing trend
across all cognitive load levels with statistically significant differences between
low and medium as well as low and high cognitive load. Regarding the F3
centre frequency, a significant decrease can be observed from medium to high
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load. Both F2 and F3 bandwidths decrease as cognitive load increases; more
precisely, there is a significant difference between low and high cognitive load
for both measures and, additionally, the bandwidth of F3 exhibits a significant
difference between medium and high load. For the data of CLSE-Dual, only the
centre of the first formant frequency shows a significant effect, namely a decrease
from medium to high cognitive load; yet, there is no monotonic trend across the
levels of cognitive load. In the case of CLSE-Span, there is a significant increase
concerning the centre frequency of F2 from medium to high cognitive load and
a significant decrease in the centre frequency of F3 from low to high cognitive
load. No significant effects are given by the CoLoSS corpus.

4.4 Voice Quality Features

Voice quality features are related to the characteristics of the source signal in
speech. As described in Section 2.3.1.2, the source of voiced speech refers to
the glottis, whereby the source signal is generated by the vocal fold vibration.
In this thesis, the source signal is not separated from the acoustic speech signal.
Instead, the speech signal including all information is used directly for feature
extraction. Four different voice quality feature types are extracted for this thesis.
Two of them are the most common descriptors that characterise the voice, namely
jitter and shimmer (Section 4.4.1). Both parameters are related to the period-to-
period variation. Further, additive noise in the voice signal is measured by the
harmonics-to-noise ratio (Section 4.4.2). Finally, the fourth feature type of this
group is referred to as the cepstral peak prominence (Section 4.4.3), a parameter
which is based on the cepstrum.

Voice quality feature extraction is performed using the analysis tool Praat
(Boersma, 2002). Since these types of features refer to the source signal, which
is periodic, there should be enough consecutive periods per analysis window
to obtain accurate measures. In the case of jitter, shimmer, and cepstral peak
prominence, the analysis window length is set to 50 ms with a frame-shift of
10 ms. For the harmonics-to-noise ratio, the optimal standard setting of Praat is
used with 4.5 periods per window and also a frame-shift of 10 ms. The following
sections give details on feature computation.

4.4.1 Jitter and Shimmer
Jitter and shimmer are the most common descriptors that characterise the voice
quality. The computation of both parameters relates to variations regarding the
oscillation of the vocal folds (Lass, 2014, p. 301).
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Figure 4.11 Waveform (background), jitter, and shimmer (foreground) of a speech signal

Jitter is defined as the period-to-period variation in vocal fold frequency. The
local jitter of a frame can be computed by the average absolute difference between
consecutive periods normalised by the average period length (Boersma, 2002),
expressed as:

j it ter D

1
N�1

PN
nD2 jT0.n/ � T0.n � 1/j

1
N

PN
nD1 T0.n/

; (4.13)

where T0 is the duration of the nth period andN represents the number of periods
(Lass, 2014, p. 302).

Similarly, shimmer is a measure related to the period-to-period variation in
the amplitude of a voice. The local shimmer of a frame is obtained by the average
absolute difference between the amplitudes of consecutive periods, divided by
the average amplitude (Boersma, 2002). The definition can be written as:

shimmer D

1
N�1

PN
nD2 jA.n/ � A.n � 1/j

1
N

PN
nD1A.n/

; (4.14)

where A.n/ is the amplitude of the nth period and N represents the number of
periods.

Figure 4.11 illustrates the local jitter and shimmer for a speech signal. Ex-
cessive amounts of both parameters are generally considered to be indicative of
rough or hoarse voice quality (Lass, 2014, p. 300). It is assumed that irregulari-
ties in frequency and amplitude are consequences of biomechanical (vocal fold
asymmetry), neurogenic (involuntary activities of muscles), and aerodynamic
(fluctuations of airflow) factors (Honda, 2008, p. 11). Moreover, Orlikoff and
Baken (1989) showed that heart rate can have an influence on the jitter.

In fact, findings concerning the effects of cognitive load on jitter and shimmer
are not consistent across studies (cf. Section 2.3.2.3). For the speech material used
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Figure 4.12 Waveform (background) and harmonics-to-noise ratio (foreground) of a
speech signal

in this thesis, a decreasing trend can be observed for both parameters from low to
medium cognitive load (cf. Figure A.2 in Appendix). Interestingly, the influence
of high cognitive load conditions caused by time pressure (CLSE-Time) leads in
turn to a significant increase in jitter and shimmer. A monotonically decreasing
trend across all cognitive load levels can only be observed for shimmer on CLSE-
Dual, jitter on CLSE-Span, and both on CoLoSS. In these cases, differences
between medium and high cognitive load are not significant, but the results
generally indicate that speech includes less rough or hoarse characteristics as
cognitive load increases.

4.4.2 Harmonics-to-Noise Ratio
The harmonics-to-noise ratio (HNR) is a measure of additive noise in the voice
signal. The logarithmic HNR is computed for this thesis by using the auto-
correlation function approach as described in Boersma (1993). In more detail,
autocorrelation corresponds to the power of the signal at lag � D 0. If the pe-
riod T0 of the signal is uncorrelated with added noise, the autocorrelation of the
resulting signal equals the sum of the autocorrelations of its parts. That is, the
autocorrelation at the fundamental period T0 refers to the power of the periodic
component (i.e., harmonic) of the signal, whereas its complement represents the
power of the noise component. The logarithmic HNR in dB can be written as
(Boersma, 1993):

HNR D 10 � log10

�
ACF.T0/

ACF.0/ � ACF.T0/

�
: (4.15)

As a consequence, an equal proportion of the energy in the harmonics and in the
noise will result in HNR of 0 dB. Figure 4.12 illustrates the harmonics-to-noise
ratio for a speech signal. This parameter can be considered to be an acoustic
correlate for breathiness and roughness (Abhang et al., 2016, p. 65).
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Means and 95% confidence intervals of HNR in terms of different cognitive
load levels are found in Appendix (Figure A.2). As cognitive load increases, no
reliable trend can be observed for the data of CLSE-Time: there is an increase
from low to medium and a decrease from medium to high cognitive load, whereby
differences between the levels are statistically significant. For the remaining
corpora, the mean HNR shows a monotonically increasing trend as cognitive
load increases. In this context, significant differences can only be observed for
CoLoSS (from low to medium and low to high cognitive load). The results
suggest a less breathy voice quality as cognitive load increases.

4.4.3 Cepstral Peak Prominence
The cepstral peak prominence (CPP), introduced by Hillenbrand et al. (1994),
compares the amplitude of the cepstral peak with the cepstrum background. As
described in Section 4.1.2, the cepstrum c.n/ is computed by taking the inverse
DFT of log jX.k/j, where log jX.k/j is the logarithm of the magnitude response
obtained by taking the DFT of a signal. The cepstrum contains a large peak
located at the quefrency q0, which corresponds to the fundamental frequency F0.
The cepstrum background is represented by a fitted regression line through the
cepstrum. By taking the cepstral peak c.q0/ and the fitted regression line Oc.n/
into account, the CPP is obtained by:

CPP D c.q0/ � Oc.q0/; (4.16)

where Oc.q0/ represents the corresponding value on the regression line, i.e., the
predicted magnitude for the quefrency at the cepstral peak.

Figure 4.13 illustrates the cepstral peak prominence for a speech signal. Note,
although this parameter can be computed for the overall signal, only voiced
frames are considered due to the focus on voice quality. It has been shown that
CPP is highly correlated with breathiness (Hillenbrand and Houde, 1996) and the
degree of dysphonia (Heman-Ackah et al., 2002). Moreover, the authors Yap et al.
(2011b) demonstrated that CPP is a promising parameter for automatic cognitive
load classification.

An increasing trend of the CPP can be observed with regard to the level of
cognitive load (cf. Figure A.2 in Appendix). However, for both CLSE-Time
and CLSE-Dual, there is an insignificant drop from medium to high cognitive
load. For all speech corpora used in this thesis, CPP values exhibit statistically
significant differences between low and high cognitive load conditions. A mono-
tonically increasing trend across all cognitive load levels can only be observed
for CLSE-Span (not significant between low and medium load) and CoLoSS
(not significant between medium and high load). The results indicate that speech
tends to involve less breathy characteristics as cognitive load increases.
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Figure 4.13 Waveform (background) and cepstral peak prominence (foreground) of a
speech signal

4.5 Teager Energy Operator Based Features

The process of human speech production can be explained by the source-filter
model (Section 2.3.1.2). The theory behind this traditional model assumes that
the source of speech production refers to the motion of the vocal folds and the
constriction of the vocal tract.

However, there is also a different view in this regard. According to studies
by Teager and Teager (1990), human speech production is related to airflow
patterns in the vocal tract. It was suggested that the true source of sound refers
to the interactions between vortex-flows, which are non-linear. Based on these
preliminary considerations, the Teager energy operator (TEO) has been developed
to measure the instantaneous energy of such non-linear interactions. For a discrete-
time signal x.n/, the TEO is expressed by the following equation (Kaiser, 1993):

‰Œx.n/� D x2.n/ � x.nC 1/x.n � 1/: (4.17)

Since the TEO is computed per sample, the result has a very high resolution.
The operator is usually applied to a bandpass filtered speech signal in order
to determine the energy of the non-linear flow for resonant frequencies. Non-
uniform filterbanks are commonly used, which are justified from a human auditory
perception point of view.

One can assume that changes in the human vocal system physiology induced
by stress will affect the airflow patterns in the vocal tract (Zhou et al., 2001). As
a consequence, TEO-based features have gained interest for the automatic classi-
fication of stress (Zhou et al., 1998a,b; Fernandez and Picard, 2003; Ruzanski
et al., 2005). Moreover, some works demonstrated the utilisation of the TEO
for clinical depression detection (e.g., Low et al., 2009), emotion recognition
(e.g., Nwe et al., 2003), robust speech recognition (e.g., Jabloun and Cetin, 1999;
Dimitriadis et al., 2005), and the classification of pathological and normal voices
(e.g., Salhi and Cherif, 2013).

To the best knowledge of the author of this thesis, TEO-based features have
not yet been used for cognitive load recognition. In this thesis, such features are
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Figure 4.14 TEO-CB-Auto-Env feature extraction. Adapted from Zhou et al. (2001)

investigated for the first time in this field. The following three TEO-based features
are extracted: critical band based TEO autocorrelation envelope area (Section
4.5.1) and nonlinear time domain LFPC as well as nonlinear frequency domain
LFPC (Section 4.5.2). All three feature types involve bandpass filtering, which is
achieved by short-time spectral analysis. For this purpose, a Hamming window
function is chosen with a window length of 25 ms and a frame-shift of 10 ms.
Since there is no toolkit available that provides the extraction of these features,
they have been implemented for this thesis using the free software environment
R (R Core Team, 2015).

4.5.1 Critical Band Based TEO Autocorrelation Envelope
Area

Zhou et al. (2001) introduced different TEO-based features with the goal to
investigate variations of the airflow energy within the vocal tract for speech under
stress. In this context, one of the most promising features in terms of accuracy
and reliability is known as the critical band based TEO autocorrelation envelope
area (TEO-CB-Auto-Env). The process chain of TEO-CB-Auto-Env includes
five steps as depicted in Figure 4.14.

In the first step, the so-called critical band based filterbank is applied in order
to filter specific frequency ranges of a voiced speech signal. The concept of
critical bands is associated with the assumption that the human auditory system
performs a filtering operation on the entire audible frequency range; the design
of such a filterbank involves empirical research. The centre frequency and
bandwidth of each band are given in Table 4.2. Each of the 16 filters is a Gabor
bandpass filter. This type of filter is characterised by a Gaussian shape, i.e., the
band fades out at the sides. In discrete form, the Gabor filter can be expressed as
h.n/ D exp

�
� 2�.b T n/2

�
cos .2�fc T n/, with �N � n � N , where T is the

sampling period, fc is the centre frequency, and b is the bandwidth of the filter
(Maragos et al., 1993).

In the second step of the TEO-CB-Auto-Env process chain, the TEO is applied
to each filter output; this yields 16 different TEO streams. These streams are then
segmented into frames with a fixed length. A frame length of 25 ms and a frame-
shift of 10 ms is chosen. Next, for each frame of the TEO streams, the normalised
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Table 4.2 Critical band based filterbank. Adapted from Zhou et al. (2001)

Critical band frequency (Hz)

Band Centre Bandwidth

1 150 100
2 250 100
3 350 100
4 450 110
5 570 120
6 700 140
7 840 150
8 1000 160
9 1170 190
10 1370 210
11 1600 240
12 1850 280
13 2150 320
14 2500 380
15 2900 450
16 3400 550
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Figure 4.15 Waveform and TEO-CB-Auto-Env heat map of a speech signal

autocorrelation function is applied. By computing the area under the envelope
of the normalised autocorrelation function, 16 TEO-CB-Auto-Env contours are
obtained. Figure 4.15 illustrates the 16 TEO-CB-Auto-Env parameters for a
speech signal in the form of a heat map. This type of feature is actually extracted
from voiced speech. However, the figure should give an impression of how the
feature behaves on the entire signal.
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Statistical analyses of TEO-CB-Auto-Env with respect to cognitive load are
found in Appendix (Figure A.6). The 16 parameters show almost no relationship
to cognitive load for the data of CLSE-Span and CoLoSS. It can be assumed that
the slightly higher correlation values obtained on CLSE-Time and CLSE-Dual
are linked to the suitability of TEO features for tasks in which individuals have to
perform under stressful conditions.

4.5.2 Nonlinear Log-Frequency Power Coefficients
The detection of stress and emotion in speech has been investigated by Nwe et al.
(2003) using the non-linear properties of the Teager energy operator (TEO) in
combination with Log-Frequency Power Coefficients (LFPCs). LFPCs simulate
the logarithmic filtering characteristics of the human auditory system. This is
achieved by accumulating the frequency spectrum of a discrete-time signal into a
bank of log-frequency filters.

For LFPC implementation, a log-frequency filterbank has been designed by
the author of this thesis. A set of Q bandpass filters can be generated as follows
(Rabiner and Juang, 1993, p. 78):

b1 D C; (4.18a)
bi D ˛bi�1; 2 � i � Q; (4.18b)

fi D f1 C

i�1X
jD1

bj C
.bi � b1/

2
; (4.19)

where C and f1 are the predefined bandwidth and the first centre frequency
parameters, respectively, and ˛ is the predefined logarithmic growth factor. The
filterbank was specified by C D 54 Hz, f1 D 127 Hz, ˛ D 1.4, and Q D 12.
Table 4.3 gives an overview of the resulting log-frequency filterbank. The parallel
set of bandpass filters covers the spectrum from 100 Hz to about half of the
sampling frequency (i.e., Nyquist frequency).

The energy concerning a particular filter i in the filterbank is given by (Nwe
et al., 2003):

E.i/ D

fiC
bi
2X

kDfi�
bi
2

X.k/2; i D 1; 2; : : : ; 12; (4.20)

where X.k/ is the kth spectral component; fi and bi correspond to the i th centre
frequency and bandwidth, respectively. In order to obtain 12 LFPCs for each
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Table 4.3 Log-frequency filterbank

Log-frequency (Hz)

Band Centre Bandwidth

1 127 54
2 192 76
3 283 106
4 410 148
5 587 207
6 836 290
7 1185 407
8 1673 569
9 2356 797
10 3312 1116
11 4651 1562
12 6525 2187

frame, the logarithmic power is calculated as follows (Nwe et al., 2003):

P.i/ D 10 � log10

�
E.i/

Ni

�
; i D 1; 2; : : : ; 12; (4.21)

where N is the number of spectral components within the boundaries of the i th
filter.

As aforementioned, the non-linear properties of the TEO can be combined
with LFPCs. Although the TEO is typically applied in the time domain, Nwe
et al. (2003) investigated the operator in both the time domain and the frequency
domain. The corresponding feature types are referred to as nonlinear time domain
LFPC (NTD-LFPC) and nonlinear frequency domain LFPC (NFD-LFPC). The
process chains are found in Figure 4.16. NTD-LFPC implies that the TEO
is applied to a windowed signal in the time domain and, afterwards, FFT is
performed to compute the LFPCs. In contrast, NFD-LFPC requires that the
windowed signal is first transformed to the frequency domain by FFT and the
TEO is then applied to the frequency spectrum; at the end, LFPCs are computed.

Both feature types result in 12 low-level parameters according to the number
of bandpass filters. Figure 4.17 illustrates the waveform of a speech signal and
the corresponding nonlinear LFPC contours in the form of a heat map.

Correlation measurements between nonlinear LFPCs and cognitive load indi-
cate the importance of TEO-based features for tasks where individuals have to
cope with stressful conditions, which are reflected by variants of the Stroop test
(cf. Figure A.7 and A.8 in Appendix). More precisely, in the case of CLSE-Time,
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Figure 4.16 Nonlinear LFPC feature extraction
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Figure 4.17 Waveform, NTD-LFPC heat map, and NFD-LFPC heat map of a speech
signal

a moderate (positive) up to a high correlation is obtained by almost all mean
NTD-LFPCs as well as mean NFD-LFPCs. For CLSE-Dual, mean NTD-LFPCs
and mean NFD-LFPCs exhibit a low (positive), with a tendency to moderate,
relationship. For both Stroop test datasets, however, statistically significant dif-
ferences are solely observed between low and medium as well as low and high
cognitive load (p < 0.05)—with only a few exceptions. This means that adding
time pressure or a secondary task to conditions where the word meaning and font
colour are incongruent (medium load) has almost no effect on nonlinear LFPCs.
Apart from that, CLSE-Span and CoLoSS yield negligible correlation values for
both feature types. For all tasks, only a little if any relationship to cognitive load
can be observed for variations in nonlinear LFPCs.
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4.6 Derived Features

The low-level features introduced in the previous sections are represented by
separate frames, where each frame is assigned to a particular index on the timeline.
At this point, there is no information about the relationship between past and
future frames. In order to obtain this contextual information, delta coefficients
are derived from the time series as described in Section 4.6.1.

Another issue refers to the representation of different feature types. Audio
analysis systems usually require data to be in the form of constant-dimensional
feature vectors. Moreover, low-level feature contours may contain redundant
information, which does not contribute to relevant patterns in the data. Feature
summarisation by applying so-called ‘functionals’ is a popular approach in this
regard (Section 4.6.2).

4.6.1 Time Derivatives
In addition to the basic low-level feature types, information about their temporal
evolution can be determined to describe the dynamic characteristics. In this thesis,
this is achieved by computing the so-called delta coefficients using the following
regression formula (Young et al., 2006, p. 68):

�.n/ D

PW
iD1 i

�
x.nC i/ � x.n � i/

�
2
PW
iD1 i

2
; (4.22)

where �.n/ is a delta coefficient at frame n computed in terms of the correspond-
ing frames x.n �W / to x.nCW /. As a consequence, the equation relies on a
number of past and future frames depending on the window size W . The same
formula can be applied to the first order derivative �.n/ to obtain the second
order derivative ��.n/, also known as the acceleration coefficients.

Based on Equation (4.22), delta regression has been implemented for this
thesis. Delta and acceleration coefficients are computed for each low-level feature;
the chosen window size is W D 2.

4.6.2 Statistical Functionals
There are various approaches to process features for use in machine learning.
Some systems consider each low-level feature vector separately and operate
directly on frame-level. Thus, frame-wise results are combined into a single
result using late fusion schemes, or dynamic approaches are used with temporal
alignment provided by methods such as Hidden Markov Models.
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Table 4.4 Overview of statistical functionals used

Functional group Functional type

Moments Mean, standard deviation, skewness, kurtosis

Extrema Minimum, maximum, range, maximum-mean difference, mean-
minimum difference, relative position of global minimum and
maximum

Percentiles 25th, 50th, and 75th percentile

Regression Simple linear regression slope and intercept

Another method is to combine each low-level feature vector into a single
feature vector, which is then used for training or testing. This technique is also
referred to as ‘supra-segmental’ analysis (Schuller, 2013, p. 19). There are several
ways to combine feature vectors. For instance, they can be concatenated to a
higher-dimensional vector. This is only feasible if the length of audio segments
is fixed because learning algorithms usually require constant-dimensional feature
vectors. Due to the nature of speech, however, the length of audio segments
vary considerably. To realise a constant dimensionality for feature vectors, it
is common practice to summarise the low-level feature vectors by applying
statistical functionals to them. Typical functionals are the minimum, maximum,
and the mean.

In this thesis, the concept of statistical functionals is followed. Table 4.4
gives an overview of those functionals that are used for this thesis; four different
functional groups are considered: moments, extrema, percentiles, and regression.2

In the following sections, a brief introduction to the mathematics behind these
statistical descriptors is given.

4.6.2.1 Moments

The arithmetic mean is referred to as the first moment. It is given by:

� D
1

N

N�1X
nD0

x.n/: (4.23)

The spread of the feature around the arithmetic mean is provided by the variance
and the standard deviation. The variance, also known as the second moment, is

2The Java statistics package org.apache.commons.math3.stat is used for computation.
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defined by:

�2 D
1

N

N�1X
nD0

.x.n/ � �/2: (4.24)

The standard deviation � can then be calculated by taking the square root of the
variance �2. The third standardised moment is the skewness—a measure of the
asymmetry of the data distribution. It is defined by:

skewness D
1

N

N�1X
nD0

�
x.n/ � �

�

�3
: (4.25)

The kurtosis is referred to as the fourth standardised moment. It measures the
peakedness or flatness relative to the normal distribution. The definition is:

kurtosis D
1

N

N�1X
nD0

�
x.n/ � �

�

�4
: (4.26)

4.6.2.2 Extrema

The global minimum minx and maximum maxx of a given set of data points
are the smallest and the largest value, respectively. Both extrema can be used
for the computation of the range (maxx � minx), maximum-mean difference
(maxx � �x), and mean-minimum difference (�x �minx).

In addition, data can be described using information on the position of extrema.
The relative position of minx and maxx is obtained by the position index of the
corresponding extremum divided by the maximum number of indices.

4.6.2.3 Percentiles

Percentiles reflect the location of an observation in a distribution. A percentile
is a value for which a given percentage of the data is less than or equal to.
For percentile determination, the values are organised in ascending order. The
percentile location can be calculated by i D .P � N/=100, where P is the
percentile of interest and N is the total number of values (Black, 2012, p. 57). If
the percentile location results in a whole number, the P th percentile is the average
of the value at location i and location i C 1. In the case where the location i is
not a whole number, the floor of i C 1 can then be used.

The 25th percentile, also known as the first quartile, separates the first quarter
of the data from the upper three-fourths. The 50th percentile is the second quartile,
also known as the median. The 75th percentile is the third quartile; it divides the
first three-quarters of the data from the last quarter.
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4.6.2.4 Regression

Linear regression provides useful information about the global progression of a
feature contour. The simple linear regression model is given by (Montgomery
et al., 2012, p. 12):

y D ˇ0 C ˇ1x C �; (4.27)

where y is the dependent variable, ˇ0 is the y-intercept, ˇ1 is the slope of the
regression line, x is an independent variable (regressor), and � represents a
random error component.

In order to estimate ˇ0 and ˇ1, the method of least squares can be used. In
this connection, the goal is to estimate ˇ0 and ˇ1 in the way that the sum S of the
squared distance between the observations yi and the predicted response of the
model is a minimum. The least squares criterion for N pairs of data is expressed
as (Montgomery et al., 2012, p. 13):

S.ˇ0; ˇ1/ D

NX
iD1

.yi � ˇ0 � ˇ1xi /
2: (4.28)

The motivation behind this method is to determine parameters by choosing the
regression line that is closest to all data points.

4.7 Process Chain for Feature Extraction

The previous sections of this chapter introduced the fundamentals of audio signal
processing (Section 4.1) and described those feature types that are investigated in
this thesis (Section 4.2 to 4.5). Moreover, feature post-processing has been taken
into consideration (Section 4.6). In this section, the chain of feature extraction
is presented, which has been implemented for this thesis. The process chain
consists of seven components as depicted in Figure 4.18. Features are extracted
in two ways: Low-level feature extraction and ASR-based feature extraction.

Low-level feature extraction results in a time series x.n/ represented by a
sequence of frames. In order to eliminate artefacts in the data, the low-level
feature is first smoothed by applying the SMA filter (Section 4.1.4). Next, Delta
derives delta coefficients (Section 4.6.1) from a sequence of frames—the output
is a time series, where each index refers to the relationship between past and
future frames of the input data. Applying this component multiple times leads to
higher-order deltas. To obtain relevant segments from the speech signal, voice
activity detection (VAD, Section 4.1.5) is applied to both the smoothed low-level
feature and the corresponding delta features. In this thesis, only voiced speech
is considered based on the segmental boundaries of the fundamental frequency
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Figure 4.18 Process chain for feature extraction

(Section 4.2.2). The aim of this restriction is attributed to the assumption that
unvoiced speech frames result in unsteady characteristics for almost all low-
level features (cf. Section 2.3.1.2—noise component of the source-filter model);
in particular in the case of formants (Section 4.3.3) and voice quality features
(Section 4.4), voice information is required for a robust estimate. In addition,
the VAD component is applied for the extraction of different speech events
(Section 4.2.3.2). Finally, the processed low-level features are transferred to the
Functionals component (Section 4.6.2), which summarises the sequence of data
points (or frames) by applying a number of statistical functions to them.

In the case of ASR-based feature extraction (Section 4.2.3.1), features are
computed on the basis of phonemes. Duration types and speaking rate contours
are directly passed to the Functionals component. The frame sequence of speak-
ing rate contours is not processed by SMA, Delta, or VAD for the following
reasons: (1) VAD is part of the ASR system anyway; (2) SMA and Delta restrict
the number of observations at the beginning and the end of the frame sequence
due to the window analysis—since the number of frames of speaking rate con-
tours is comparatively low, SMA would cause a loss of important information and
Delta would not produce reliable information. Further, static ASR-based features
(e.g., silent pause frequency) are extracted. Since these parameters are static and
describe the speech signal with a single value, post-processing is not required.

Once feature extraction is completed, all resulting feature vectors are con-
catenated by the Feature Fusion component. The result is a single feature vector,
where the dimensionality corresponds to the number of all features.





Chapter 5

Feature Sets and Relevance Analysis

A central aim of this thesis is the evaluation of speech features for the automatic
recognition of cognitive load. In this regard, the static modelling approach is
followed (Section 6.1.4), which generally requires constant-dimensional feature
vectors. As pointed out in the previous chapter, constant dimensionality is realised
by the concept of statistical functionals (Section 4.6.2).

This chapter starts with an introduction of three hand-crafted feature sets
designed for cognitive load (CL) recognition. While CL-Extended (Section
5.1.1) represents a generic feature set including the amount of all features that
are investigated in this thesis, the feature subsets CL-Base (Section 5.1.2) and
CL-Stress (Section 5.1.3) address solely the aspects of cognitive load and stress,
respectively. Further, feature relevance analysis is conducted to give an insight
into the importance of features for different cognitive load tasks. This includes
correlation measurements (Section 5.2) reflecting the strength of the relationship
between features and the level of cognitive load. In addition, a broader context
of feature relevance is considered by analysing feature groups and feature types
using an entropy-based approach (Section 5.3).

5.1 Feature Set Composition

It can be assumed that a context-dependent combination of speech features yields
a system improvement in terms of the automatic cognitive load recognition.
Therefore, three feature sets are defined (Section 5.1.1 to 5.1.3) and evaluated in
the experiments (Chapter 6). The composition of the proposed sets is hand-crafted
based on findings from the scientific literature.

5.1.1 CL-Extended
The CL-Extended feature set contains the amount of all features that are extracted
for this thesis. Apart from features that are assumed to be indicative of cognitive
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Table 5.1 CL-Extended feature set

Feature group Feature type Functionals # Features

Low-level

Prosodic F0+�+�� A 48
Prosodic Intensity+�+�� A 48
Spectral Spectral centroid+�+�� A 48
Spectral 12 MFCC+�+�� A 576
Spectral Formants F1–3(f,b)+�+�� A 288
Voice quality Jitter+�+�� and Shimmer+�+�� A 96
Voice quality HNR+�+�� A 48
Voice quality CPP+�+�� A 48
TEO 16 TEO-CB-Auto-Env+�+�� A 768
TEO 12 NTD-LFPC+�+�� A 576
TEO 12 NFD-LFPC+�+�� A 576

High-level

Prosodic 4 Duration types B 40
Prosodic 2 Speaking rates C 18
Prosodic 3 Segment lengths D 12
Prosodic 11 Static features 11P

3,201

Information on functional sets are found in Table 5.2

load (cf. Section 2.3.2), this set also includes paralinguistically motivated param-
eters from the field of automatic stress detection, namely Teager energy operator
(TEO) based features (cf. Section 4.5). Moreover, CL-Extended forms the basis
for evaluating various feature subsets, such as other hand-crafted feature sets,
feature groups, feature types, or subsets obtained by applying feature selection
algorithms.

The CL-Extended feature set is summarised in Table 5.1. Each feature type
refers to a particular feature group: prosodic features (Section 4.2), spectral fea-
tures (Section 4.3), voice quality features (Section 4.4), and TEO-based features
(Section 4.5). Further, a distinction was made between low-level and high-level
features. Within the scope of this thesis, low-level features refer to the acoustic
signal directly, whereas high-level features refer to different representations of
speech, such as phonemes, syllables, or voiced segments; here, all duration-based
features (Section 4.2.3) are classified as high-level. For all low-level features,
the first order derivative (�) and second order derivative (��) are added. In the
case of windowed high-level features (speaking rates), it was decided to omit
this contextual information due to the low number of frames. In other words:
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Table 5.2 Overview on functional sets

Functional set

Functional A B C D

Mean X X X
Standard deviation X X X X
Skewness X
Kurtosis X
Minimum X X X X
Maximum X X X X
Range X
Maximum-mean difference X X X
Mean-minimum difference X X X
Relative position of minimum X X X
Relative position of maximum X X X
25th percentile X
50th percentile X
75th percentile X
Simple linear regression slope X X X
Simple linear regression intercept X X X

time derivatives are associated with discarding the first and the last frame (cf.
Equation (4.22)), which, in turn, may result in too few data points for computing
informative statistical functionals.

Different sets of functionals are defined in Table 5.2. Functional set A applies
all 16 functionals to the low-level features with the goal to obtain as much
information as possible from the time series. The functionals contained in B, C,
and D constitute functional subsets that are applied only to the high-level features.
In these cases, some functions concerning the data distribution are omitted,
because reliable information can hardly be derived due to the comparatively small
number of observations, especially when the utterance duration is very short.
The lowest number of observations is generally given by segment lengths—only
four functionals are included in set D. Functional set C is applied to the two
types of speaking rates (phoneme-based and syllable-based). In contrast to set
B, the first moment (mean) in set C is omitted since the average speaking rate is
already included in the static features. In this connection, a static feature gives
a single numerical value per utterance instead of a series of observations. With
reference to Section 4.2.3, the following features are classified as static: utterance
duration, 2 speaking rates (phoneme-based and syllable-based), 2 articulation
rates (phoneme-based and syllable-based), 5 silent pause features, and the onset
latency.
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In summary, the CL-Extended feature set contains 65 low-level features and
65 corresponding delta and acceleration coefficients. 16 functionals are applied
to these 195 contours, which gives a total of 3,120 features. Further, the set
contains 81 high-level features: 4 duration types (phonemes, consonants, vowels,
and syllables) for which 10 functionals are applied; 2 speaking rates (phonemes
and syllables) with 9 functionals; 3 segment length features (speech, voiced, and
unvoiced) with 4 functionals; 11 static features (10 phoneme-level features and
the onset latency). The CL-Extended feature set yields a total of 3,201 features.

5.1.2 CL-Base
The CL-Base feature set represents a subset of CL-Extended (Section 5.1.1).
It contains only those features that are assumed to be indicative of cognitive
load. The design is based on studies from the scientific literature concerning
the influence of cognitive load on speech (Section 2.3.2). Note, this does not
necessarily rule out the suitability of CL-Base for other scenarios.

Since the goal is to compose a reduced set of features, only the first order
derivative (�) is added. Further, the centre frequency and bandwidth of the
third formant are excluded, because previous studies reported that there are no
significant effects of cognitive load on these parameters. The number of voice
quality features are reduced as well: harmonics-to-noise ratio (HNR) and cepstral

Table 5.3 CL-Base feature set

Feature group Feature type Functionals # Features

Low-level

Prosodic F0+� A 32
Prosodic Intensity+� A 32
Spectral Spectral centroid+� A 32
Spectral 12 MFCC+� A 384
Spectral Formants F1–2(f,b)+� A 128
Voice quality Jitter+� and Shimmer+� A 64
Voice quality CPP+� A 32

High-level

Prosodic 4 Duration types B 40
Prosodic 2 Speaking rates C 18
Prosodic 3 Segment lengths D 12
Prosodic 11 Static features 11P

785

Information on functional sets are found in Table 5.2
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peak prominence (CPP) are measures of energy noise in the signal and both
are (negatively) correlated with breathiness; since HNR and CPP are highly
correlated (cf. Samlan et al., 2013) and CPP seems to be very robust against
changes in utterances (cf. Fraile and Godino-Llorente, 2014), it was decided to
exclude HNR from the feature set. So far, there is no evidence regarding the
suitability of Teager energy operator based features (TEO) for cognitive load
recognition. Consequently, the TEO feature group is omitted.

The CL-Base feature set is summarised in Table 5.3. It contains 22 low-level
features and 22 corresponding delta coefficients. For each of these 44 contours,
16 functionals are applied resulting in 704 features. All high-level features of
CL-Extended are also included in CL-Base since consistent effects of cognitive
load on these types of features have been demonstrated in the past (cf. Section
2.3.2.2). In total, the CL-Base feature set contains 785 features.

5.1.3 CL-Stress
The design of the CL-Stress feature set is motivated by the hypothesis that a
subset of CL-Extended (Section 5.1.1) is more suitable for use in stress-related
environments. It has been found that features based on the Teager energy operator
(TEO) are effective for stress detection (cf. Section 4.5). Consequently, TEO-
based features are included in CL-Stress—and that is the major difference by

Table 5.4 CL-Stress feature set

Feature group Feature type Functionals # Features

Low-level

Prosodic F0+� A 32
Prosodic Intensity+� A 32
Spectral 12 MFCC+� A 384
Spectral Formants F1–2(f,b)+� A 128
Voice quality Jitter+� and Shimmer+� A 64
TEO 16 TEO-CB-Auto-Env+� A 512
TEO 12 NTD-LFPC+� A 384

High-level

Prosodic 4 Duration types B 40
Prosodic 2 Speaking rates C 18
Prosodic 3 Segment lengths D 12
Prosodic 11 Static features 11P

1,617

Information on functional sets are found in Table 5.2
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comparison with CL-Base (Section 5.1.2). Since the TEO is typically applied
in the time domain, the rather experimental feature NFD-LFPC, which applies
the TEO in the frequency domain, is omitted. Compared to CL-Extended and
CL-Base, this feature set contains fewer spectral features. Moreover, only the
two most common voice quality features are included, namely jitter and shimmer.

Table 5.4 summarises the CL-Stress feature set. It contains 48 low-level
features and 48 corresponding delta coefficients. By applying 16 functionals to
the 96 contours, 1,536 features are obtained. As in CL-Extended and CL-Base,
all 81 high-level features are included. In sum, the CL-Stress feature set contains
1,617 features.

5.2 Monotonic Relationship

The most effective features out of all extracted features (Section 5.1.1) are now
addressed, whereby the relationship between features and the level of cognitive
load is of interest. To this end, the datasets presented in Chapter 3 are used. In
order to remove the inter-speaker variability and environmental mismatch, all
features are speaker-normalised for each cognitive load task individually using
z-score transformation (� D 0, � D 1). Regarding the CLSE database, only the
data of the training and development set can be used, because speaker information
is not included in the test partition (cf. Section 3.1.2). It is to note that in the case
of the CoLoSS corpus only categorical labels are considered (Section 3.2.5).

Due to the nature of ordinal cognitive load labels, the absolute Spearman’s
correlation coefficient is chosen as the relevance criterion. The Spearman’s
correlation coefficient CCS determines the strength and direction of the monotonic
relationship. Accordingly, its numerical value ranges from �1 to 1. A value
near zero indicates that there is no relationship between the feature and the level
of cognitive load. For CCS determination, let x.n/ and y.n/ be the feature and
the level of cognitive load, respectively. The coefficient CCS can be computed
by first replacing x.n/ and y.n/ with their ranks and then applying Pearson’s
equation (Pearson, 1895):

CCP D

PN�1
nD0

�
x.n/ � �x

��
y.n/ � �y

�qPN�1
nD0

�
x.n/ � �x

�2qPN�1
nD0

�
y.n/ � �y

�2 : (5.1)

In the following sections, feature relevance analysis is carried out—the ten
most important features are determined using R (R Core Team, 2015). The
features are ranked according to the absolute CCS within the context of a particular
task and, in addition, across all tasks. Since each task is represented by a
different corpus, the analyses are referred to as ‘within-corpus feature ranking’
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(Section 5.2.1) and ‘cross-corpus feature ranking’ (Section 5.2.2). Significance of
correlation was tested (t-test) with the null hypothesis that there is no monotonic
relationship between the feature and the level of cognitive load; information on
p-values are given in the corresponding tables.

5.2.1 Within-Corpus Feature Ranking
This analysis aims at identifying the most relevant features for each single task
(Table 5.5 to 5.8). Correlation measurements are reported for the top ten features
on a given task along with presenting their correlation on the remaining tasks.

Regarding the data of CLSE-Time (Table 5.5), the ten most relevant features
are quite obviously nonlinear LFPCs. These features exhibit a high positive
relationship with the level of cognitive load. The strongest correlation is obtained
by the 25th percentile of the NFD-LFPC 11. However, all ten features show low
correlation values for CLSE-Dual, though still statistically significant. In the case
of CLSE-Span and CoLoSS, the nonlinear LFPCs exhibit very low correlations.
Mean correlations across all tasks are also very low; the direction is strongly
influenced by CLSE-Time and CLSE-Dual.

Judging from the results in Table 5.6, 80% of the top-ranked features for
CLSE-Dual refer to the prosody in speech, more specifically, they belong to the
duration-based features. The remaining features indicate the importance of the
Teager energy operator (nonlinear time-domain LFPCs). The two best absolute

Table 5.5 Top ten features ranked by absolute correlation for CLSE-Time

CCS

Rank CLSE-Time features T D S C Mean

1 NFD-LFPC 11 (Q1) 0:748** 0:342** �0:106** �0:041** 0.236
2 NTD-LFPC 7 (Mean) 0:725** 0:420** 0:007 �0:029 0.281
3 NTD-LFPC 7 (Q2) 0:723** 0:432** 0:008 �0:003 0.290
4 NTD-LFPC 8 (Mean) 0:718** 0:440** 0:048 �0:018 0.297
5 NFD-LFPC 11 (Mean) 0:716** 0:333** �0:070** �0:035* 0.236
6 NFD-LFPC 6 (Mean) 0:709** 0:402** �0:042 �0:009 0.265
7 NTD-LFPC 2 (Mean) 0:708** 0:422** 0:011 �0:028 0.278
8 NTD-LFPC 2 (Q2) 0:707** 0:423** 0:015 �0:015 0.283
9 NFD-LFPC 8 (Mean) 0:705** 0:391** 0:008 �0:030 0.269
10 NTD-LFPC 4 (Mean) 0:705** 0:409** 0:002 �0:022 0.274

Significance denoted by *p < 0.05, **p < 0.01. Abbreviations: C (CoLoSS), CCS (Spear-
man’s correlation coefficient), D (CLSE-Dual), Q1 (25th percentile), Q2 (50th percentile),
S (CLSE-Span), T (CLSE-Time)
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Table 5.6 Top ten features ranked by absolute correlation for CLSE-Dual

CCS

Rank CLSE-Dual features T D S C Mean

1 Silent pause frequency ratio 0:464** �0:746** 0:053 0:047** �0.045
2 Silent pause frequency 0:471** �0:706** 0:052 0:047** �0.034
3 Ph spk-rate (SD) 0:475** 0:589** 0:027 0:140** 0.308
4 Syl duration (Max) 0:083 0:533** �0:012 0:078** 0.170
5 Syl duration (Max �Mean) 0:095 0:495** �0:029 0:081** 0.160
6 NTD-LFPC 4 (Q3) 0:105 0:493** �0:011 �0:082** 0.126
7 Mean silent pause duration 0:339** 0:482** 0:049 0:055** 0.231
8 Speech segment length (Max) 0:079 0:478** 0:032 �0:003 0.146
9 Syl duration (SD) 0:094 0:477** �0:014 0:061** 0.154
10 NTD-LFPC 2 (Q3) 0:170* 0:474** �0:008 �0:072** 0.141

Significance denoted by *p < 0.05, **p < 0.01. Abbreviations: C (CoLoSS), CCS (Spear-
man’s correlation coefficient), D (CLSE-Dual), Ph (phoneme-based), Q3 (75th percentile),
S (CLSE-Span), SD (standard deviation), spk-rate (speaking rate), Syl (syllable-based), T
(CLSE-Time)

correlations are obtained by silent pause features. Interestingly, both features
exhibit a strong negative correlation showing the opposite effect compared to the
other tasks and the scientific literature (cf. Section 2.3.2.2). The reason for this
may be attributed to delays in subjects’ responses due to more intense cognitive
load under time pressure, which, in turn, can result in fewer pauses between the
subsequent responses. As expected, a positive low up to a moderate correlation
can be observed for the duration of syllables (maximum and maximum-mean
difference) and for the mean silent pause duration. In addition, the variation in
speech tempo is found to be relevant, which is reflected by the standard deviation
of the phoneme speaking rate and syllable duration. The former also contributes
to the highest mean correlation across all tasks.

In Table 5.7, the most relevant features are shown for CLSE-Span. It can be
seen that the overall best feature is the onset latency. Surprisingly, the (significant)
correlation value indicates the opposite effect compared to the scientific literature
(Section 2.3.2.2). Although it is not clear if the audio segments of CLSE-Span
correspond exactly to the log-data from recording sessions, one can assume that
there is a common position regarding the stimulus, most probably at the starting
point of an audio segment. For the remaining tasks, the onset latency provides
no valid results, because it refers to the first stimulus as well as the first response
(cf. Section 4.2.3.2), whereas each trial in CLSE-Time and CLSE-Dual consists
of many stimuli and responses; in the case of CoLoSS, stimulus information
was deliberately excluded by trimming (cf. Section 3.2.3). Looking at the ranks
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Table 5.7 Top ten features ranked by absolute correlation for CLSE-Span

CCS

Rank CLSE-Span features T D S C Mean

1 Onset latency �0:210** 0:392** �0:451** 0:034* �0.059
2 F0 (Regr. intercept) �0:308** 0:077 �0:213** �0:023 �0.117
3 Intensity (Pos of max) 0:201* 0:189* �0:206** 0:014 0.050
4 NTD-LFPC 3 (Pos of max) 0:147 0:310** �0:195** 0:034* 0.074
5 NFD-LFPC 12 (Q1) 0:651** 0:292** �0:191** �0:037* 0.179
6 NTD-LFPC 9 (Pos of max) 0:013 0:352** �0:187** 0:019 0.049
7 MFCC 1 (SD) 0:090 �0:022 0:181** �0:030 0.055
8 MFCC 1 (Q3) �0:444** �0:151 0:181** 0:023 �0.098
9 NTD-LFPC 5 (Pos of max) 0:184* 0:266** �0:172** 0:003 0.070
10 NFD-LFPC 3 (Pos of max) 0:322** 0:105 �0:171** �0:012 0.061

Significance denoted by *p < 0.05, **p < 0.01. Abbreviations: C (CoLoSS), CCS (Spear-
man’s correlation coefficient), D (CLSE-Dual), Pos (position), Q1 (25th percentile), Q3
(75th percentile), S (CLSE-Span), SD (standard deviation), T (CLSE-Time)

two and three, prosodic features are found to be relevant—in particular, the
simple linear regression intercept of F0 and the relative position of the maximum
intensity. Further, five TEO-based features (nonlinear LFPCs) and two spectral
features (MFCCs) are among the top ten. It is noticeable that 50% of the most
relevant features are related to the relative position of the global maximum.
However, apart from the onset latency, the correlation values for CLSE-Span are
very low.

The ten most relevant features for CoLoSS are summarised in Table 5.8. The
overall best CoLoSS feature is the utterance duration which, however, shows
insignificant results for CLSE-Span. One can see that almost all features refer
to the prosody. With 80%, tempo in speech (speaking rate, articulation rate, and
durations) based on phonemes forms the majority proportion among the top ten
features. Some of them are particularly relevant for CLSE-Time: a moderate
correlation can be observed for the minimum as well as the maximum-mean
difference of the speaking rate. An opposite effect regarding the average speaking
rate is obtained on CLSE-Dual; the reasons for this are stated above. Moreover,
the minimum of the phoneme-based speaking rate is found to be relevant but
does not generalise to CLSE-Dual and CLSE-Span. One of the top CoLoSS
features refers to the shape of the intensity time series (simple linear regression
slope), which, in addition, yields an almost moderate correlation for CLSE-Time.
Apart from that, the TEO feature NTD-LFPC 12 (simple linear regression slope)—
ranked as number ten—shows a very low (positive) correlation; its results are
statistically significant across all tasks. Finally, although the highest absolute,
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Table 5.8 Top ten features ranked by absolute correlation for CoLoSS

CCS

Rank CoLoSS features T D S C Mean

1 Utterance duration 0:434** 0:345** 0:034 0:284** 0.274
2 Ph spk-rate �0:442** 0:471** �0:021 �0:229** �0.055
3 Ph spk-rate (Min) �0:606** 0:000 0:002 �0:229** �0.278
4 Intensity (Regr. slope) 0:497** 0:135 �0:053 0:179** 0.190
5 Ph art-rate �0:136 �0:118 �0:020 �0:167** �0.110
6 Ph duration (SD) 0:359** 0:062 0:002 0:156** 0.145
7 Ph duration (Mean) 0:198* 0:028 0:016 0:152** 0.098
8 Ph duration (Mean �Min) 0:146 0:013 0:007 0:151** 0.079
9 Ph spk-rate (Max �Mean) 0:518** 0:308** 0:032 0:149** 0.252
10 NTD-LFPC 12 (Regr. slope) 0:522** 0:248** �0:100** 0:146** 0.204

Significance denoted by *p < 0.05, **p < 0.01. Abbreviations: art-rate (articulation rate),
C (CoLoSS), CCS (Spearman’s correlation coefficient), D (CLSE-Dual), Ph (phoneme-
based), S (CLSE-Span), SD (standard deviation), spk-rate (speaking rate), T (CLSE-Time)

mean correlation across all task is given by the minimum of the phoneme-based
speaking rate, there is only little if any correlation in the case of CLSE-Dual and
CLSE-Span.

5.2.2 Cross-Corpus Feature Ranking
For cross-corpus feature ranking, all four corpora were initially agglomerated on
instance-level resulting in a new large dataset. The features were then ranked
according to the absolute correlation using the new dataset.

Table 5.9 depicts the ten most relevant cross-corpus features by absolute
correlation and shows their importance for each corpus individually. As can
be seen in the table, only prosodic features are among the top ten, eight of
which belong to the duration-based features. All ten cross-corpus correlations
are statistically significant, but the strength is generally very low. The highest
correlation is obtained by the utterance duration, though it shows weak results
for CLSE-Span. Four phoneme-based speaking rate features are found to be
particularly relevant (ranks two to five). In this connection, the correlation
direction regarding the variation of speaking rates (SD and max-mean difference)
is positive across tasks—the results are statistically significant except for CLSE-
Span. For the minimum and mean of the phoneme-based speaking rate, cross-
corpus results are only consistent with those of CLSE-Time and CoLoSS. Besides
duration-based features, the simple linear regression slope of the intensity and F0
indicates the importance of the global progression regarding prosodic low-level
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Table 5.9 Top ten features ranked by absolute correlation across all corpora

CCS

Rank Cross-corpus features T D S C Cross

1 Utterance duration 0:434** 0:345** 0:034 0:284** 0:202**

2 Ph spk-rate (Min) �0:606** 0:000 0:002 �0:229** �0:148**

3 Ph spk-rate (Mean) �0:442** 0:471** �0:021 �0:229** �0:138**

4 Ph spk-rate (SD) 0:475** 0:589** 0:027 0:140** 0:129**

5 Ph spk-rate (Max �Mean) 0:518** 0:308** 0:032 0:149** 0:125**

6 Onset latency �0:210** 0:392** �0:451** 0:034* �0:123**

7 Ph art-rate �0:136 �0:118 �0:020 �0:167** �0:110**

8 Syl spk-rate (Mean) �0:422** �0:119 �0:026 �0:139** �0:109**

9 Intensity (Regr. slope) 0:497** 0:135 �0:053 0:179** 0:109**

10 F0 (Regr. slope) 0:620** 0:081 0:047 0:118** 0:107**

Significance denoted by *p < 0.05, **p < 0.01. Abbreviations: art-rate (articulation rate),
C (CoLoSS), CCS (Spearman’s correlation coefficient), D (CLSE-Dual), Ph (phoneme-
based), S (CLSE-Span), SD (standard deviation), spk-rate (speaking rate), Syl (syllable-
based), T (CLSE-Time)

feature sequences, though the correlations are not significant for CLSE-Dual as
well as CLSE-Span.

5.3 Information Gain

The relationship between single features and the level of cognitive load, measured
by the correlation, is discussed in Section 5.2. Even when the correlation is very
weak due to a non-monotonic relationship, one can still obtain a high degree
of information about the label produced by the feature. In the ongoing, the
order of cognitive load levels is not decisive for feature relevance analysis; the
information shared by the feature and the label is of interest. The basis for this
type of measurement is provided by the concept of entropy.

Entropy is an information-theoretic measure of uncertainty of a random
variable (Cover and Thomas, 1991, p. 12). The entropy H.Y / of a discrete
variable Y is measured in bits of information and is given by (Cover and Thomas,
1991, p. 13):

H.Y / D �
X
y2Y

p.y/ log2 p.y/: (5.2)

The value p.y/ represents the probability of the individual class y. It is calculated
as the number of occurrences of y divided by the total number of instances in the
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dataset. By introducing a feature X , the values of Y in the dataset are partitioned
into subsets according to the individual values of X . The Entropy of Y after
observing X is written as (Cover and Thomas, 1991, p. 16):

H.Y jX/ D �
X
x2X

p.x/
X
y2Y

p.yjx/ log2 p.yjx/: (5.3)

If the entropy of Y after observing X is less than the prior entropy H.Y /, then
the feature can reduce uncertainty by providing information about Y . If a feature
cannot reduce uncertainty, it must be irrelevant (Liu and Motoda, 1998, p. 26). In
this context, the information gain (IG) of a feature X is defined as the difference
between the prior entropy H.Y / and the expected posterior entropy by X (Liu
and Motoda, 1998, p. 26):

IG.X/ D H.Y / �H.Y jX/: (5.4)

As a consequence, the feature with the highest IG has the lowest conditional
entropy.

Both discrete features and discrete labels are required for IG computation.
Regarding the CLSE database (Section 3.1), categorical labels already exist.
In the case of CoLoSS, the discretised version of the cognitive load labels is
considered (see Section 3.2.5). As in the feature relevance analysis by correlation
(Section 5.2), all features of the CL-Extended feature set (Section 5.1.1) are
taken into account for which the inter-speaker variability and environmental
mismatch are minimised by applying speaker normalisation for each cognitive
load task individually using z-score transformation (� D 0, � D 1). Since subject
information is not included in the test partition of the CLSE database (cf. Section
3.1.2), only the training and development set are used.

In this thesis, the IG is computed using the data mining toolkit WEKA 3
(version 3.8.1) (Witten et al., 2016). For feature discretisation, WEKA applies the
minimum description length method (Fayyad and Irani, 1993) by default. Since
the probability of individual classes varies across the datasets used in this thesis,
different entropy values are obtained: 1.585 (CLSE-Time), 1.585 (CLSE-Dual),
1.550 (CLSE-Span), and 0.937 (CoLoSS). In the following sections, a broad
perspective of feature relevance is given—different feature subsets are evaluated
using the mean IG.

5.3.1 Inter-Feature Group Comparison
A central question in the automatic assessment of cognitive load from speech is
what aspects of speech are most suitable for which task. To this end, the relevance
of feature groups was investigated by the mean information gain (IG) for each
corpus.
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Table 5.10 Feature group relevance by mean information gain (IG) for each corpus

Mean IG

Feature Group CLSE-Time CLSE-Dual CLSE-Span CoLoSS

Prosodic 0.100 0.042 0.004 0.013
Spectral 0.015 0.006 0.002 0.000
Voice quality 0.027 0.010 0.001 0.000
TEO 0.054 0.024 0.002 0.001

The results are summarised in Table 5.10. One can see that the prosodic
features are superior across all four corpora. The second best feature group
includes TEO-based features, except for CLSE-Span. All groups are by far most
effective for CLSE-Time. In the case of CoLoSS, there is no relevance regarding
spectral and voice quality features.

Due to the inclusion of all features per feature group, there is an overwhelming
majority of features with a low IG. This, in turn, has a negative effect on the mean
IG, whereby individual aspects within a group are not taken into account. In
order to compensate for this fact, intra-feature group measurements were carried
out (see Section 5.3.2).

Alternatively, feature groups can be analysed using a relevant subset of
features. This approach was followed—the top 100 features that show highest
IG were selected for each corpus individually (for details, see Appendix A.3).
Furthermore, mixtures of tasks were considered by performing feature ranking
on fused corpora (pooled on instance-level). In the ongoing, any combination of
tasks is denoted as ‘cross-corpus’. Figure 5.1 summarises the obtained feature
subsets by the share of each feature group. Another aspect to which considerable
importance should be attached is also illustrated, namely the shares of functional
groups.

Now, the feature subsets are compared to the full feature set (CL-Extended).
In this connection, a group of features is considered to be particularly relevant for
a corpus (or cross-corpus) if its share among selected features is larger than its
share of the full feature set. Notable differences in the importance can be observed
for the feature groups. Interestingly, each corpus and cross-corpus is dominated
by TEO-based features, especially in those cases where tasks are performed
under stressful conditions (i.e., CLSE-Time and CLSE-Dual). For the CoLoSS
corpus as well as for each cross-corpus in conjunction with CoLoSS, prosodic
features are particularly relevant, but the major proportion is still given by TEO
features. The feature subset obtained by CLSE-Span, also by its combination
with CLSE-Time and CLSE-Dual, shows a similar proportion of feature groups
in comparison with that of the full feature set. Concerning the functional groups,
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Figure 5.1 Feature relevance by feature group (above) and functional group (below).
Distributions in % of the top 100 features, ranked by the information gain for each
cognitive load corpus and cross-corpus, are shown and compared to the full feature set
(CL-Extended). Corpora: T (CLSE-Time), D (CLSE-Dual), S (CLSE-Span), C (CoLoSS)

percentiles seem to be promising for both CLSE-Time and CLSE-Dual. On the
other hand, extrema are particularly relevant for CLSE-Span, also in cross-corpus
settings. It can also be seen that regression functionals are important for the
CoLoSS corpus and for its combination with CLSE-Time as well as CLSE-Dual.
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5.3.2 Intra-Feature Group Comparison
Feature group comparison, presented in the previous section, provided a rather
broader view in terms of feature relevance. Now, feature types associated with
the groups will be examined closer. To this end, the mean information gain (IG)
was computed for the 13 different feature types of CL-Extended (cf. Section
5.1.1).

Table 5.11 shows the results for each corpus individually. Looking at CLSE-
Time and CLSE-Dual, the intensity is the most relevant prosodic feature type and,
moreover, the most important feature type across all groups. For the CoLoSS
corpus, the duration-based features are superior to all others. Regarding CLSE-
Span, mean IG values are identical in the prosodic as well as spectral feature
group. The best spectral feature type for the remaining three corpora is the
spectral centroid followed by formants and MFCCs. Next, the table reveals
that the voice quality features jitter and cepstral peak prominence (CPP) are
particularly relevant for CLSE-Time. The latter also seems to be promising
for CLSE-Dual. With regard to CoLoSS, however, voice quality and spectral

Table 5.11 Feature type relevance by mean information gain (IG) for each corpus

Mean IG

Feature Type CLSE-Time CLSE-Dual CLSE-Span CoLoSS

Prosodic features

Intensity+�+�� 0.156 0.068 0.004 0.001
F0+�+�� 0.038 0.000 0.004 0.001
Duration 0.104 0.052 0.004 0.026

Spectral features

Spectral centroid+�+�� 0.053 0.029 0.002 0.001
12 MFCC+�+�� 0.012 0.004 0.002 0.000
Formants F1–3(f,b)+�+�� 0.016 0.006 0.002 0.000

Voice quality features

Jitter+�+�� 0.036 0.004 0.000 0.001
Shimmer+�+�� 0.019 0.009 0.000 0.000
HNR+�+�� 0.015 0.002 0.001 0.000
CPP+�+�� 0.037 0.024 0.002 0.000

TEO-based features

16 TEO-CB-Auto-Env+�+�� 0.020 0.004 0.001 0.000
12 NTD-LFPC+�+�� 0.085 0.044 0.003 0.002
12 NFD-LFPC+�+�� 0.069 0.029 0.002 0.002
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features show hardly any relevance. Finally, the feature types of the TEO group
are analysed. It can be observed that nonlinear LFPCs (NTD-LFPCs and NFD-
LFPCs) are the most relevant TEO features across all four corpora. In three out
of four cases, NTD-LFPCs yield highest mean IG values.



Chapter 6

Recognition Experiments

The main focus of this thesis is on the assessment of cognitive load from speech.
Feature relevance analyses, presented in Chapter 5, revealed the effectiveness of
single features and feature sets for different cognitive load tasks. In this chapter,
speech features are evaluated and discussed with regard to automatic cognitive
load recognition. First, in Section 6.1, fundamental prerequisites for carrying out
the experiments are presented. The experimental methodology used throughout
the experiments is described in Section 6.2. A series of experiments is conducted
with the aim of verifying the suitability of relevant speech features for various
cognitive load scenarios. It starts with a systematic evaluation of features for
cognitive load classification with tasks considered in isolation (Section 6.3). In
Section 6.4, feature sets are compared in terms of the generalisation capability
of models, which is determined by cross-corpus classification of cognitive load.
This is followed by the evaluation of feature sets for classification scenarios in
which data from different tasks including the target task are taken into account for
modelling (Section 6.5). Next, classification experiments are conducted according
to the rules of the INTERSPEECH 2014 COMPARE challenge in Section 6.6,
whereby the results obtained by features and algorithms used in this thesis are
compared with those of the official baseline system. Finally, regression-based
approaches to cognitive load recognition are introduced and evaluated in Section
6.7.

6.1 Requirements, Measures, and State of the Art

In the following sections, various methods and measures are introduced that
constitute the basis for the experiments in this thesis. In addition, a summary of
existing automatic speech-based cognitive load classification systems is given.

103
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6.1.1 Resampling
Real-world data is usually unbalanced in terms of the class distribution, which
can have negative effects on the learning performance of a classifier (Sotiropoulos
and Tsihrintzis, 2017). Resampling techniques focus on changing the number of
instances in the training data to adjust the distribution among classes. Generally, it
is not clear beforehand which technique is most suitable regarding the classifier’s
performance. Some of the most popular solutions are described in the following.

The most straightforward solution is to collect more data from the minority
classes in order to be included in the training data, also known as natural resam-
pling. However, this approach is associated with high effort, because, as stated
above, real-world data is principally unbalanced. The simplest method is certainly
to increase the minority classes through random replication of the corresponding
instances. This technique is referred to as random over-sampling. The counter-
part, also known as random under-sampling, aims at balancing the training data
through the random removal of instances belonging to the majority class. There
are also techniques that perform instance generation instead of replication to ad-
dress the class imbalance problem. The most popular of such techniques is called
SMOTE (Synthetic Minority Over-sampling Technique) (Chawla et al., 2002).
The main idea behind SMOTE is to create synthetic examples by interpolating
between several neighbouring instances of the minority class.

Apart from changing the class distribution, some other strategies have been
proposed as a remedy for the class imbalance problem on feature-level and
classifier-level. For further information, a summary of solutions is given by Guo
et al. (2008).

6.1.2 Feature Normalisation
Feature normalisation is a common requirement for most learning algorithms.
It aims at adjusting feature values measured on different scales to a common
scale and provides a way to compensate the environmental mismatch between
different datasets. Normalisation can result in faster training time and better
model accuracy (Priddy and Keller, 2005, p. 15). In audio processing, feature
normalisation can be carried out on different levels as described in the following
sections.

6.1.2.1 Normalisation of Low-Level Features

The normalisation of low-level features is commonly applied in the field of
automatic speech recognition (e.g., Liu et al., 1994; Viikki and Laurila, 1998;
Zolnay et al., 2005). In this connection, cepstral features, represented by a
sequence of feature vectors, are normalised per utterance with regard to the mean
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and the variance. Cepstral mean normalisation aims at removing the average
from the feature values, whereas cepstral variance normalisation scales feature
values to have a unit variance (Gales and Young, 2008). Both methods can be
combined to cepstral mean and variance normalisation, which has been shown
to be a robust approach against additive noise (Strand and Egeberg, 2004).

Speaker normalisation is another approach, which can be used in low-level
processing stages. Speakers have vocal tracts of different sizes, which, in turn,
causes formants to shift in frequency. In order to compensate for this fact, the
frequency axis in filterbank analysis can be adjusted accordingly. This method is
also known as vocal tract length normalisation (Young et al., 2006).

Among the approaches for normalising low-level features, a method called
feature warping has gained interest, which maps the feature distribution to the
standard normal distribution over a specific time interval (Pelecanos and Srid-
haran, 2001). This method was also applied on a per speaker basis—initially
proposed for emotion recognition (Sethu et al., 2007).

6.1.2.2 Normalisation of Statistical Features

In the context of static modelling (Section 6.1.4), statistical functionals can be
applied to low-level features (cf. Section 4.6.2) and the resulting feature vector
can then be normalised before feeding it into a learning machine—which is
the preferred approach in this thesis. It should be noted that feature processing
using the concept of functionals is, in addition, a sort of normalisation over time,
because a single feature vector with a constant number of elements is obtained
regardless of the segment duration (Schuller et al., 2011a). In fact, segments vary
in length due to the nature of speech: words differ in duration because of different
numbers of phonemes and the way words are expressed by the speaker; in turn,
the length of an utterance is influenced by combinations of these substructures.

Typical transformations of derived statistics include the min-max normalisa-
tion and the z-score normalisation. In the case of min-max normalisation, the data
is scaled to a fixed range—usually between 0 and 1. This technique computes
normalised values of a feature x by (Berthold et al., 2010, p. 130):

x0 D
x �minx

maxx �minx
; (6.1)

where minx and maxx represent the minimum and maximum of all observed
values, respectively. The z-score normalisation, also known as standardisation,
rescales features in the way that they have a mean value of 0 and a standard
deviation of 1. The z-scores of a feature x are computed by (Berthold et al., 2010,
p. 130):

x0 D
x � �x

�x
; (6.2)
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where �x and �x are the mean and standard deviation of all observed values,
respectively.

The min-max normalisation is very sensitive to outliers in the sense that a
single outlier can force the whole data to concentrate only in a small interval. As
this effect is less prominent for z-scores, z-score normalisation is preferred for
the experiments in this thesis.

In addition, there is the question of what data is used to compute the normali-
sation parameters and on what data the normalisation is performed. In this regard,
the chosen normalisation method influences, among other factors, the prediction
performance of a model (cf. Schuller et al., 2010, 2014). In the following, four
methods are defined that are investigated in the experiments of this thesis. The
first of these methods is denoted as partition normalisation (PN). The PN method
normalises features of training and test partitions individually. This method is
typically used if sufficient amount of representative data is available for each
partition. However, test sets are sometimes too small to compute reliable scaling
parameters or systems are conceptualised for online data processing, where each
test instance is processed ad-hoc without considering information from the whole
test set. In such cases, normalisation parameters, applied to both training and test
data, are computed only from the training data. In the ongoing, this method is
referred to as training normalisation (TN). Next, speaker normalisation (SN) is
used to remove the inter-speaker variability. This is realised by scaling the feature
values on a per speaker basis. Usually, the recording conditions differ across
speech corpora; for example, there are varying room acoustics, microphone types,
and microphone distances. In order to eliminate this environmental mismatch,
features can be normalised for each corpus individually, hereinafter referred to as
corpus normalisation (CN). This method is assumed to be particularly useful for
cross-corpus experiments.

6.1.3 Feature Selection
The success of machine learning is based on many factors. Particularly crucial
for this field are the properties of feature sets designed for modelling. The
occurrence of irrelevant or redundant features may have negative effects on
learning algorithms (Liu and Motoda, 1998, p. 19). Feature selection is the
process of selecting a subset of relevant features for model construction. The
utilisation of feature selection techniques provides a variety of advantages:

� Less data allowing the learning algorithms to operate faster,
� Higher accuracy and better generalisation from data, if the right subset is

chosen,
� Simpler and more compact representation, which is easier to understand, and
� Fewer features have to be extracted regarding new data from the same domain.
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Figure 6.1 A unified view of feature selection

Basically, feature relevance depends on the type of the evaluation measure.
For example, if accuracy is the measure of interest and a feature’s removal causes a
reduction in the classifier’s accuracy, then this feature is relevant (Liu and Motoda,
1998, p. 29). In addition, Kohavi and John (1997) have made a distinction between
strong and weak relevance. Strong relevance means that the feature is always
necessary. If this feature is removed the results will deteriorate. Weak relevance
stands for a feature, which is not always necessary, but it may become necessary
under certain conditions. Besides the issue of feature relevance, high-dimensional
data often contain many redundant features. It is widely accepted that perfectly
correlated features are redundant. Redundant features can be seen as a type
of irrelevant features; the removal of one of them will not affect the learning
performance (Liu and Motoda, 2007, p. 5).

Feature selection is not the same procedure as feature reduction. Feature
reduction (or feature extraction) techniques, such as principal component analysis,
transform features from the original feature space into another space resulting
in fewer features, whereas feature selection techniques operate within the same
feature space. One can differentiate between supervised and unsupervised feature
selection. In supervised feature selection—the preferred selection method in
the experiments of this thesis—, labels are used to measure the goodness of
features. In the case of unsupervised feature selection, where labels are not
present, a common approach is the method of clustering. For further information
on unsupervised feature selection, the reader is referred to Liu and Motoda (2007).

The aspects of feature selection can be generalised into a unified framework
as depicted in Figure 6.1. The following three stages constitute the search for an
optimal feature subset: subset generation, subset evaluation, and stopping criteria.
The search is repeated as long as predefined stopping criteria are not fulfilled.
Typical criteria are, for example, the goodness of the evaluation result, the number
of minimum features needed, or the completion of the overall search. Subset
generation defines the search strategy including search direction and heuristic.
At each time of the feature selection process, a new subset is generated and,
subsequently, evaluated using an evaluation measure. In the following sections,
two aspects of feature selection are discussed in more detail: the search problem
and feature evaluation.
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6.1.3.1 The Search Problem

Feature selection can be regarded as a search problem, where feature subsets
are represented by a state in the search space (Liu and Motoda, 1998). The
optimal subset of features can typically be found by using exhaustive search. To
accomplish this with n features, 2n combinations have to be evaluated, which
is, however, not feasible for a large number of features. The search through the
space of feature subsets is linked to two issues, namely the search direction and
the search strategy.

The forward generation (or forward selection) begins with an empty set of
features. In the search phase, features are added to the feature set based on
some criteria. The amount of selected features grows until it reaches the amount
of the original feature set. In contrast, the backward generation (or backward
elimination) begins with the full set of features. Here, the least important feature
is removed—the feature set shrinks until there is only one feature available.
One can also take the advantage of both directions, also known as bidirectional
generation.

In order to avoid the time-consuming exhaustive search, heuristics can be
applied by using graph-based search algorithms. Heuristic search is much faster
because it only searches a specific path and finds an approximately optimal
subset—it does not guarantee that the found feature subset is optimal. A fre-
quently encountered heuristic search is the best-first search strategy. Best-first
search expands its search space layer by layer. All child nodes of a currently
chosen node represent newly generated subsets. These child nodes are evaluated
and the child node that produces the best result is chosen. Additionally, best-first
search allows backtracking along the search path, which facilitates searching
from a promising previous subset. The process of searching is repeated until no
further expansion is available. It is common that a stopping criterion is used, such
as the number of fully expanded nodes that do not contribute to an improvement.
Alternatively, the greedy hill-climbing heuristic is a simpler strategy. It functions
in a manner similar to the best-first search, but without backtracking. The search
path will only be expanded if the result of the best performing child node is
equal or greater than the currently chosen node. If there is no improvement, the
algorithm stops and gives the approximately optimal subset located at this point.

6.1.3.2 Feature Evaluation

Regarding the way in which features are evaluated, there are two main approaches:
wrappers and filters.

Wrappers use the performance of a learning algorithm for feature evaluation.
For instance, the classifier’s accuracy can be used directly as a measure. The idea
behind this approach is that the feature selection algorithm exists as a wrapper
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around the learning algorithm, i.e., the learning algorithm can be regarded as a
black box. A popular search method for the wrapper approach is the so-called
sequential forward floating search (Pudil et al., 1994). Once the optimal feature
subset is found, the learned model can be evaluated on the independent test set.
Usually, it makes no sense to use a different learning algorithm in the final testing
phase, because the optimal feature subset is obtained by the interaction between
a specific learning algorithm and the dataset.

The filter approach is based upon an independent measure for evaluating
features without the utilisation of a learning algorithm. Typical measures refer
to the information, distance, dependence, or consistency. In its simplest form, a
filter evaluates each feature individually and performs feature ranking according
to the evaluation results that reflect the degree of feature relevance. A subset of
features can then be defined by the number of top-ranked features or a threshold
concerning the relevance score.

In the experiments of this thesis, the following three filter-based feature
selection methods, each based on the algorithms of the WEKA 3 data mining
toolkit (Witten et al., 2016), are investigated:

� IGN: The information gain (IG) is used to measure the relevance of each
feature individually. IG determines how much information about the labels is
provided by the feature (cf. Equation (5.4)). The chosen criterion for feature
selection is the number N of top-ranked features.
� CCPN: This method evaluates the worth of a feature by measuring the Pear-

son’s correlation (cf. Equation (5.1)) between it and the classes after class
binarisation (one-against-all) is performed. The top N features, ranked by
the correlation coefficient (average of absolute, binary-class correlations), are
selected.
� CFS: The correlation-based feature selection (CFS) algorithm (Hall, 1999)

measures the goodness of feature subsets. The core idea behind this method
is to find a feature subset in which each feature is highly correlated with the
labels while the correlation of the features among each other is low. As a
consequence, this method takes both feature relevance and feature redundancy
into account. The CFS algorithm is applied in conjunction with the forward
best-first search strategy.

Generally, the wrapper models lead to better results due to the inclusion of the
learning algorithm during the selection process. However, feature selection using
the filter approach is faster, because measures such as correlation or information
gain are usually cheaper than measuring the accuracy of a classifier. In cases
where learning algorithms cannot handle large-scale feature sets, filters can be
applied as a pre-processing step to reduce the dimensionality. Moreover, the filter
approach provides a kind of generic feature selection (independent of the learning
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algorithm), meaning that filters can overcome overfitting (Guyon and Elisseeff,
2003).

6.1.4 Modelling
The aim of an audio analysis system is to interpret recorded data. For this purpose,
features are extracted from labelled data and an appropriate model needs to be
learned.1 The feature vectors and the labels are used to build either classification
or regression models. While classification models assign categorical values to the
test instances, regression models produce continuous numerical values. Before
applying an analysis system to real-world use-cases, it is common practice to first
simulate the system. To this end, specific datasets are used for evaluation and
optimisation.

Generally, one can distinguish between static and dynamic learning algo-
rithms. Static learners operate on constant-dimensional feature vectors for time
series of variable length. In this connection, acoustic low-level descriptors are
first processed using statistical functionals (Section 4.6.2) or bag-of-audio-words
(Bhatia et al., 2017). More recently, methods that operate directly on the raw
time representation of a signal have gained attention (Trigeorgis et al., 2016).
Moreover, it has been shown that convolutional neural network architectures,
mainly developed for analyses of images, can be used to process spectrograms of
an audio signal (Weißkirchen et al., 2017). However, static algorithms are not
capable of modelling time-dependent aspects contained in the data. Dynamic
learning algorithms, on the other hand, consider the time series directly. Such
algorithms handle different tempo deviations—in fact, this is an important aspect
especially in the field of automatic speech recognition, because spoken units such
as vowels and consonants vary in time. The standard tool for modelling time-
varying acoustic events is the Hidden Markov Model (HMM). In HMM-based
acoustic models, each class is represented by an HMM that includes transition
probability parameters aij and output observation distributions bj . At each step
in time, a transition is made based on the probabilities aij from the current state
si to one of its connected states sj (Gales and Young, 2008). The state sequence
is not observable as such, i.e., it is hidden, but can be observed through the
underlying sequence of observations (Rabiner, 1989).

Almost all works in the field of paralinguistic speech processing, including
this thesis, perform static modelling on utterance-level (cf. Section 6.1.6; Anag-
nostopoulos et al., 2015). This can mainly be attributed to the nature of datasets.
Speech corpora in this field usually contain a set of audio files, where each file rep-

1This approach belongs to the group of supervised machine learning methods since the model is build
based on known outcome values. Unsupervised methods are not considered in this thesis.
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resents an utterance that is described by a single label. The SEMAINE Database
(McKeown et al., 2012), on the other hand, serves as an example where speech
is continuously labelled: The raters could move a slider in a given range to rate
their subjective opinion in terms of social interactions contained in audiovisual
material; in this way, dimensional labels (e.g., Valence) were recorded at a rate of
50 samples per second.

The following sections give a short introduction to those static learning
algorithms that are used for the experiments in this thesis.

6.1.4.1 Support Vector Machines

Support vector machines (SVMs) base on statistical learning theory and are
primarily designed for binary, linear classification problems (Cortes and Vapnik,
1995). The fundamental idea behind SVMs is to find an optimal hyperplane
between two classes that should generalise well. Figure 6.2 illustrates the con-
struction of a hyperplane in a two-dimensional space for a typical linear separation
problem. It can be seen that both labelled clusters are well separated. The dis-
tance between the separating hyperplane and one of the (canonical) hyperplanes
through the closest points is called the margin. The closest points—the so-called
support vectors—determine the maximum margin and influence the position of
the separating hyperplane. This means that only a small amount of training data
has to be taken into account for optimal separation. For the classification task, the
data points xi are differentiated between positive and negative according to their
class assignment, i.e., data points are labelled as yi D C1 for class 1, whereas
those of class 2 are labelled as yi D �1. The separating hyperplane is given as
w � x C b D 0, where w is the weight vector (normal vector to the hyperplane),
x is the input vector, and b is the bias of the hyperplane. In the training phase,
the parameters w and b are determined. The mathematical background behind
SVMs is given by Cortes and Vapnik (1995).

For optimisation, the hyperparameter C of an SVM classifier can be adjusted.
It defines its complexity and is also known as the softness parameter—larger
values of C lead to smaller-margin hyperplanes.

So far, the classification for a linear separation problem has been described.
In real-world conditions, however, the data of different classes could be partially
mixed up, possibly with overlapping data points. The classification problem is
then more complex and the data is not linearly separable. For such non-linear
classification problems, the so-called kernel trick can be applied to map the data
into a higher-dimensional space, where the classification problem can then be
solved linearly. Frequently used kernel functions are the polynomial kernel,
Gaussian kernel, and sigmoid kernel.
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x1

x2

Figure 6.2 Example of an optimal hyperplane (solid line) in a two-dimensional space.
The circles and crosses indicate instances belonging to a particular class. The support
vectors are marked with grey squares and define the maximum margin of separation
(parallel dashed lines) between the two classes

Although support vector machines are initially conceptualised for two-class
problems, some strategies have been established to realise multi-class classifica-
tion (Campbell and Ying, 2011, p. 8):

� A binary tree can be used, where the learning task is reduced to binary classifi-
cation at each node. Depending on the outcome of a decision, one of the next
two nodes is selected.
� A series of one-against-all classifiers can be used. In this case, separate SVMs

are trained using data from a particular class as the positive labelled instances
and the remaining classes are negatively labelled instances.
� One-class classifiers can be trained for each class. The idea is to construct a

boundary around the normal data while data outside the boundary is classified
as abnormal.

The success of SVMs is attributed to the fact that they are capable of han-
dling large feature spaces, sparse features, and being robust against overfitting
(Joachims, 1998). Moreover, the concept of support vector machines can be
applied to regression problems, also known as support vector regression (SVR)
(Drucker et al., 1997). The principle behind SVR is that constraints are used to
allow for some errors within a certain distance to the true values.
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6.1.4.2 Artificial Neural Networks

Inspired by the structure and function of the central nervous system of vertebrates,
the organisation of biological neurons has been adopted in the field of computer
science. The basis for artificial neural networks is provided by mathematical mod-
els that describe how neurons work (cf. McCulloch and Pitts, 1943; Rosenblatt,
1958). An artificial neural network can be regarded as a graph with a number of
nodes and edges. The nodes in a network represent the neurons and the edges
between them are the weighted synaptic connections (Jain et al., 1996).

Information processing of an artificial neuron can be described as follows:
Each input variable xi of a neuron j is multiplied by a weighted parameter wj i .
The weighted inputs are summed up together with a bias wj0. This process
results in an activation (Bishop, 2006, p. 227):

aj D

NX
iD1

wj ixi C wj0: (6.3)

The sum is then passed through an, usually non-linear, activation function, which
gives the final output of the neuron.

There are different activation functions; the choice depends on the nature of
the data and the assumed target variables. A frequently used activation function
is the sigmoid function (Bishop, 2006, p. 228):

y.aj / D
1

1C e�aj
: (6.4)

An alternative to the sigmoid function is the hyperbolic tangent, or tanh function
(Bishop, 2006, p. 245):

y.aj / D
eaj � e�aj

eaj C e�aj
: (6.5)

For multi-class problems, the j th output, with j D 1; : : : ; K, of the last network
layer can be normalised to determine the class probability. This is achieved by
the softmax function (Bishop, 2006, p. 198):

y.aj / D
eajPK
kD1 e

ak
: (6.6)

In the case of regression problems, where a single neuron is used in the last layer,
the identity function y.aj / D aj is typically the activation function of interest,
since any continuous function can be approximated by networks (Bishop, 2006,
p. 228).

Different types and topologies of artificial neural networks have been pro-
posed over the years. A specific class of neural networks is the multilayer
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Figure 6.3 Example of a multilayer perceptron with one hidden layer and a single output
neuron. The nodes represent the neurons and the arrows denote the information flow. The
number of neurons in the input layer corresponds to the number of features. Connections
between nodes indicate weight parameters

perceptron (MLP). MLPs belong to the group of feedforward neural networks.
The neurons of an MLP network are arranged in at least three layers. The first
layer takes the inputs, whereas the last layer produces the outputs. The layers
between them are referred to as hidden layers—they have no connections to
the external world. In principle, hidden layers extract features from the input
space and can thus provide more appropriate representations. Each neuron of an
input or hidden layer is connected to the neurons of the next layer. There is no
backward connection or a connection among neurons in the same layer. Figure
6.3 gives an example of an MLP with one hidden layer and a single output neuron
for binary classification or regression tasks.

The input weights of the neurons can be learnt to reduce the output error.
Frequently used error functions are the mean square error or the cross-entropy.
One of the most popular training techniques for multilayer networks is the
gradient descent-based backpropagation algorithm (Rumelhart et al., 1986). It
includes the following steps: (1) Propagate the input vector xn forward through
the network. (2) Compute the output error by taking the predicted and actual
values into account. (3) Propagate the output error backwards from the final layer
to the previous layers in order to obtain the errors for the hidden units.

Along with backpropagation, the gradient of error E is used to update the
weights (Bishop, 2006, p. 240):

w.�C1/ D w.�/ � �rE.w.�//; (6.7)

where � labels the iteration step and the parameter � > 0 is known as the learning
rate. For a deeper discussion and the mathematics behind network training, the
reader is referred to Bishop (2006).
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Figure 6.4 Long Short-Term Memory block with one cell. Inputs are the input data
vector, previous outputs from cells in the current layer, and bias values. The gates (‘f’)
represent non-linear summation units that collect the activations from inside and outside
the memory block and control the activation of the cell via multiplicative units (black
circles). Input and output activation functions are denoted as ‘g’ and ‘h’, respectively.
Dashed lines indicate weighted peephole connections

Contextual information from the past can be added to a feedforward neural
network by allowing cyclical backward connections. Such networks are called
recurrent neural networks (RNNs). The recurrent connections of an RNN allow
the inputs to persist in the hidden layers. However, for standard RNN archi-
tectures, the context can be quite limited in practice—the influence of a given
input on the hidden layer, and thus on the network output, either decays or blows
up exponentially over time. This effect is often referred to as the ‘vanishing
gradient problem’ (Hochreiter et al., 2001). To overcome this limitation, the
Long Short-Term Memory (LSTM) architecture (Hochreiter and Schmidhuber,
1997) was introduced. LSTM networks have shown remarkable performance
in many tasks, for example, phoneme classification (Graves and Schmidhuber,
2005), handwriting recognition (Liwicki et al., 2007), and multimodal emotion
recognition (Wöllmer et al., 2010). An LSTM layer consists of a set of recurrently
connected memory blocks. Each block contains one or more self-connected mem-
ory cells and the following multiplicative units: the input, output, and forget gates.
Figure 6.4 depicts an LSTM memory block with a single cell. The input and
output of the cell are multiplied by the activations of the corresponding gates and
the cell’s previous state is multiplied by that of the forget gate. As a consequence,
the network is capable of storing and accessing information over a long period
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of time. For instance, the activation of the cell will not be overwritten by new
inputs as long as the input gate is closed; it can be made available much later in
the sequence by opening the output gate. The purpose of the forget gates is to
reset memory cells. The ‘peephole’ connections improve the ability to learn tasks
that require precise timing and counting of the internal states (Gers et al., 2002).

RNNs can be trained by the gradient descent-based backpropagation algo-
rithm. Here, it is modified to BPTT—backpropagation through time (Werbos,
1990).

6.1.5 Evaluation Measures
The evaluation of the system’s recognition performance requires an appropriate
measure. The choice usually depends on some criteria. In the case of classifica-
tion, the most common evaluation measure is the accuracy, also referred to as
the recognition rate. It is defined as the ratio between the number of correctly
classified test instances and the total number of test instances (Schuller, 2013,
p. 133):

ACC D
# correctly classified test instances

# test instances
: (6.8)

The accuracy per class i , i.e., the class-specific recall Ri , can be used to compute
the weighted average recall (Schuller, 2013, p. 133):

WAR D
CX
iD1

piRi ; (6.9)

where pi is the prior probability of class i and C is the number of classes. If
the distribution of test instances among classes is unbalanced to a certain degree,
the overall accuracy does not give a truthful performance measure. Instead, the
unweighted average recall (UAR) can be selected (Schuller, 2013, p. 134):

UAR D
1

C

CX
iD1

Ri : (6.10)

Models that predict continuous numerical values are referred to as regression
models. For evaluation: Let x.n/ and y.n/ be the predicted and actual values,
respectively, with n D 0; : : : ; N � 1, where N is the total number of instances.
An accurate measure of the linear relationship between the two variables is
provided by the Pearson’s correlation coefficient CCP (Equation (5.1)). However,
if the data is non-normally distributed or we speak of ordinal variables, then
the Spearman’s correlation coefficient should be preferred (Field, 2013). The
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Spearman’s correlation coefficient CCS is computed by first ranking the data, i.e.,
replacing the actual values of x.n/ and y.n/ by their ranks, and then applying
the Pearson’s equation.

In addition to the relationship between numerical variables, the model ac-
curacy can be determined by considering the difference between the predicted
values and the actual values. Common error measures are the mean absolute
error (MAE), mean square error (MSE), and root mean square error (RMSE)
(Kassambara, 2017, p. 60):

MAE D
1

N

N�1X
nD0

jx.n/ � y.n/j; (6.11)

MSE D
1

N

N�1X
nD0

�
x.n/ � y.n/

�2
; (6.12)

RMSE D

vuut 1

N

N�1X
nD0

�
x.n/ � y.n/

�2
: (6.13)

The MAE provides information about the average size of the prediction error and
is not sensitive to error outliers. The MSE gives more weight to large deviations
by taking the square of the errors. MSE provides useful information about the
distribution and outliers, but it may warp the results—the interpretation should
be done very carefully. To overcome this limitation, the square root of the MSE
can be taken as given by the RMSE.

6.1.6 Existing Speech-Based Cognitive Load Classification
Systems

Previous studies analysed the effects of cognitive load on speech parameters
(Section 2.3.2) and have thus formed the basis for the development of speech-
based cognitive load classification systems. Table 6.1 gives a summary of such
systems—the authors, features, classification methods, and the recognition per-
formance on the datasets are contained. The systems shown cover the following
four tasks: Stroop test, reading comprehension, arithmetic task, and driving under
cognitive load. All authors conducted speaker-independent experiments. Most of
them used a leave-one-subject-out cross-validation strategy, i.e., data from each
of the subjects is used exactly once as the test data while data of the remaining
subjects is used for model training. Only the authors Boril et al. (2010) separated
the total dataset into a single training partition and test partition. Probably the
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Table 6.1 Summary of existing speech-based cognitive load classification systems

Reference Features Classifier Task (C) ACC [%]

Yin et al. (2007) MFCC+��, F0+��, GMM R (3) 71.10
intensity+��

Yin et al. (2008) MFCC+��, F0+��, GMM S (3) 77.50
intensity+��

Le et al. (2009) Non-uniform filterbank, GMM S (3) 76.50
cepstral features

Yap et al. (2009) MFCC, F0, intensity, GMM S (3) 85.30
phase based features

Boril et al. (2010) Cepstral features, SVM Fusion D (2) 94.30
spectral centroid of GMMs

Gorovoy et al. (2010) Tempo and pauses Decision tree A (3) 77.80
MLP A (3) 77.80
Logistic regr. A (3) 82.20
Bayes net A (3) 82.20

Le et al. (2010a) Subband cepstral GMM S (3) 80.00
features

Le et al. (2010b) SMFCC, MFCC GMM S (3) 54.50

Yap et al. (2010a) Regr. of formants F1–3 GMM S (3) 74.20

Yap et al. (2010b) Formants F1–2+� GMM S (3) 67.90

Le et al. (2011) Spectral centroid GMM S (3) 88.50
features GMM R (3) 72.60

Yap et al. (2011a) Formants F1–3+� GMM S (3) 67.70
GMM R (3) 51.90

Yap et al. (2011b) Formants F1–3, CPP GMM S (3) 62.70
GMM R (3) 57.80

Task: A (arithmetic), D (driving), R (reading), S (Stroop test). Abbreviations: ACC (accu-
racy), C (number of classes)

first speech-based system for cognitive load recognition was introduced by Yin
et al. (2007).

The table shows which speech features have been applied in the past. Some
of the most effective features in almost any speech processing task are the well-
known Mel Frequency Cepstral Coefficients (MFCCs). In the context of cognitive
load classification, MFCCs have been extracted from the speech signal (cf. Yin
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et al., 2007, 2008; Yap et al., 2009; Le et al., 2010b) and, additionally, from the
glottal waveform output resulting in Source Mel Frequency Cepstral Coefficients
(SMFCCs) (cf. Le et al., 2010b). Other works investigated cepstral features in
conjunction with different filterbank configurations (cf. Le et al., 2009, 2010a).
Apart from that, Boril et al. (2010) and Le et al. (2011) explored the spectral
centroid, which represents the centre of gravity of the spectrum. The formants
F1, F2, and F3—commonly known as the first three resonance frequencies of
the human vocal tract—were also used for cognitive load classification (cf. Yap
et al., 2010b, 2011a,b). Yap et al. (2011b) suggested that the cepstral peak
prominence (CPP) contains useful voice source information that complements
the information captured by formants. Prosodic features have shown potential
for the automatic classification of user states, for example, in speech emotion
recognition (e.g., Dellaert et al., 1996; Luengo et al., 2005; Schuller et al., 2007).
Such features also contribute to the classification of cognitive load. For instance,
Gorovoy et al. (2010) used the articulation rate, pause rate, and pause percentage.
Moreover, prosodic features such as the fundamental frequency F0 and intensity
were extracted from the speech signal (cf. Yin et al., 2007, 2008; Yap et al., 2009).
In addition to the extraction of speech parameters, some works used information
about their dynamics, for example, the first order derivative (�) (cf. Yap et al.,
2010b, 2011a) and second order derivative (��) (cf. Yin et al., 2007, 2008).

Table 6.1 indicates that most of the works employed a classification method
based on Gaussian mixture models (GMMs), i.e., modelling a static distribution of
features in the feature space with a series of Gaussian distributions. Furthermore,
Boril et al. (2010) proposed a system, which uses a support vector machine (SVM)
classifier in order to fuse the scores of various GMMs. Regarding the arithmetic
task, Gorovoy et al. (2010) investigated the following four different classification
methods: logistic regression, Bayes net, decision tree, and multilayer perceptron.

In summary, 88.50% accuracy is achieved for the Stroop test and 72.60% for
the reading comprehension task. Both results were obtained by using spectral
centroid features in connection with GMMs. For the arithmetic task, the highest
accuracy with 82.20% could be achieved by tempo and pause features; for
classification, both logistic regression and Bayes net were superior. Driving under
cognitive load has been investigated as a binary classification problem with a
combination of GMMs and SVM resulting in 94.30%. For further information on
the systems, the reader is referred to the literature in Table 6.1. However, some
of the systems are not easily comparable, since different speech databases were
used.

As part of the conference INTERSPEECH 2014, the Computational Para-
linguistics Challenge (COMPARE) (Schuller et al., 2014) established a unified
test-bed for the automatic recognition of speakers’ cognitive load in speech, also
known as the Cognitive Load Sub-Challenge. It provided transparent conditions
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Table 6.2 Systems and results of COMPARE 2014 (Cognitive Load Sub-Challenge)

Reference Features Classifier UAR [%]

Gosztolya et al. (2014) COMPARE feature set DNN 63.05

Huckvale (2014) COMPARE feature set SVM 63.10

Kua et al. (2014) COMPARE feature set, SVM 63.70
MFCCs with shifted delta
coefficients, spectral centroid
features+�+��

Montacié and Caraty (2014) COMPARE feature set, SVM 63.10
IS10 feature set, tempo,
pauses, speech events

Nwe et al. (2014) COMPARE feature set, SVM 61.50
GMM and ANN features

Schuller et al. (2014) COMPARE feature set SVM 61.60

Van Segbroeck et al. (2014) IS11 feature set, Perceptual i-vector 68.90
Linear Prediction coefficients,
voice-related and Gabor
features

Abbreviations: UAR (unweighted average recall)

concerning datasets, toolkits, experiments, and results to the participants. The
CLSE database (Section 3.1) was used for evaluation purposes; the official
measure was the unweighted average recall (UAR). The systems and results,
including the baseline (cf. Schuller et al., 2014), are shown in Table 6.2. Note
that one of the participants is not listed in the table, because test results (‘slightly
worse than the baseline’) are not reported in the corresponding paper (see Jing
et al., 2014). Almost all participants used the COMPARE baseline feature set
(Weninger et al., 2013), which contains 6,373 static features (functionals of
low-level feature contours). The baseline features as well as the IS10 and IS11
feature sets are provided by the open-source openSMILE feature extractor (Eyben
et al., 2013a). Some works extended these sets by further features (cf. Kua et al.,
2014; Montacié and Caraty, 2014; Nwe et al., 2014; Van Segbroeck et al., 2014).
SVM is the most frequently encountered classification method (cf. Huckvale,
2014; Kua et al., 2014; Montacié and Caraty, 2014; Nwe et al., 2014; Schuller
et al., 2014). In contrast, Gosztolya et al. (2014) used a deep neural network
(DNN) architecture. The best result on the test set (68.90% UAR) was achieved
with i-vector modelling (cf. Van Segbroeck et al., 2014)—a concept, which was
originally proposed by Dehak et al. (2011).
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6.2 Experimental Methodology

This section describes the general methodology used in the experiments of this
thesis. Figure 6.5 illustrates a unified overview of a single experimental run
including model training and evaluation for a given speech database. In the case
of k-fold cross-validation, this scheme is repeated k times, with each of the k
folds used exactly once as test data and the remaining k � 1 folds as training data.

At the beginning of the workflow, a given speech database is partitioned
into a training set for model construction and a test set for model evaluation.
Features are extracted from each instance of both datasets and the corresponding
instance labels (target attributes) are assigned to the feature vectors. In order
to ensure that the training data is balanced in terms of the class distribution,
resampling techniques (Section 6.1.1) can be applied before features are processed
further. Since the test data is considered the unseen, independent dataset, it has
to be unaffected by this stage. The next stage is feature normalisation (Section
6.1.2). Some methods normalise the training and test partitions individually.
Alternatively, the normalisation parameters computed on the training data can be
applied to the test data. The opposite direction is not allowed since the test data
must remain undiscovered for a fair evaluation. Once the features are normalised,
feature selection methods (Section 6.1.3) can be applied to the training data
in order to obtain the most relevant features. Afterwards, feature mapping is
required, because features obtained from the training data have to exactly match
those of the test data. For this purpose, those features of the test data are removed
that are not associated with the training data.

Then, model training is performed (Section 6.1.4), which involves providing a
learning algorithm with the training data to learn from. The training data contains
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Figure 6.5 A unified overview of the methodology used for the experiments in this
thesis. Boxes with rounded corners represent data and models, whereas boxes without
rounded corners indicate processing components. Boxes with dashed lines are optional
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the labels to map the input data to the target. After the training process, the
learned model is obtained. Finally, the model is applied to the test data where
it attempts to predict a label for each unseen test instance. Afterwards, the test
data is associated with two types of labels, namely the actual labels from the
original dataset and the predicted labels produced by the model. Both references
form the basis for the evaluation of the model goodness expressed by the measure
of interest (Section 6.1.5). If cross-validation is used, results from the folds are
averaged to produce a single estimate.

6.3 Within-Corpus Evaluation

In this section, the suitability of various speech features is evaluated for task-
specific cognitive load classification. Since all speech corpora used in this thesis
(Chapter 3) employ a different methodology for inducing cognitive load, model
training and testing are performed for each corpus individually (hereinafter
denoted as ‘within-corpus evaluation’).

This evaluation is accompanied by the question ‘Which system configuration
performs best concerning a particular task?’ and, secondly ‘Which features
are suitable for a given task?’. The answer to the former question implies the
identification of an outstanding classification model for each corpus, whereas the
latter refers to an approximate estimate of relevant features for each corpus. In
the following sections, the experimental setup and results of the within-corpus
evaluation are reported.

6.3.1 Experimental Setup
Speech features were systematically evaluated on the three corpora contained in
the CLSE database (Section 3.1) and on the CoLoSS corpus (Section 3.2) for
which discretised labels were used. The goal was to automatically discriminate
between three levels of cognitive load, i.e., low, medium, and high.

The methodology for determining relevant features in the present investigation
can be regarded as a bottom-up approach based on the CL-Extended feature set
(Section 5.1.1). It starts with each feature type individually including delta and
acceleration coefficients. This is followed by early (feature-level) fusion for each
feature group reflecting the different aspects regarding speech characteristics,
namely prosody, spectrum, voice quality, and non-linearities in speech production
(TEO). Finally, hand-crafted feature sets (CL-Extended, CL-Base, and CL-Stress),
introduced in Section 5.1, are examined.
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Moreover, late fusion methods regarding the n-best feature group models
were of interest, with n D 2, 3, 4. That is, the best performing feature groups,
each represented by the best feature group result (i.e., single feature type or early
fusion), were combined by applying a particular rule for fusing the outputs of
the corresponding models. In this context, majority vote and average probability
were investigated; WEKA 3 (Witten et al., 2016) was used for this purpose.
Regarding majority vote—as the name indicates—the label which was predicted
most frequently will be selected as the final output. If labels of a particular
classifier have the same probability, then all labels receive a vote. However, one
drawback with this rule is that labels are randomly chosen if multiple labels end
up with the same number of votes. In the case of the average probability rule, the
probabilities of classes given by each model are first summed up and, afterwards,
divided by the total number of models.

Apart from knowledge-based approaches, the automatic selection of relevant
features was investigated. The following three filter methods were applied to the
CL-Extended feature set: the top 100 ranked features by information gain (IG100)
as well as correlation (CCP100) and the correlation-based feature selection (CFS)
algorithm (Section 6.1.3.2).

For all experiments, a leave-one-subject-out cross-validation (LOSOCV) was
chosen as an evaluation strategy to realise speaker-independent conditions and
to have a reasonable approach with regard to the rather small datasets. Since
subject information is not included in the test sets of the CLSE database, only the
training and development sets were used by combining them in the experiments.
Further, it was ensured that each training partition in LOSOCV is balanced in
terms of the class distribution. This was achieved by random over-sampling using
WEKA 3 (Witten et al., 2016). For CLSE-Span, the required target-size for an
approximate balance was 150%. In the case of CoLoSS, the defined target size
was 230% to achieve a uniform class distribution. For the remaining corpora, class
balancing was not needed. Additionally, different feature normalisation methods
were investigated: speaker normalisation, partition normalisation, and training
normalisation (Section 6.1.2.2). In order to have fair evaluation conditions,
feature normalisation was applied only within the LOSOCV procedure, not to an
entire dataset before LOSOCV is performed. Even though subjects of the CLSE
database participated across different tasks, each CLSE corpus was considered
to be an independent scenario, i.e., speaker normalisation was applied for each
corpus individually.

For a consistent evaluation and to investigate the effectiveness of features,
only one classification method was used that should generalise well. The chosen
classifier was a support vector machine (SVM) with a polynomial kernel function.
As training algorithm, Sequential Minimal Optimisation (SMO) (Keerthi et al.,
2001) was used, which is implemented in the WEKA 3 data mining toolkit
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(Witten et al., 2016). For optimisation, different values of the SVM complexity
parameter were investigated with C D 10n, where n D �5;�4; : : : ; 0. It can be
assumed that higher values would lead to a loss in generalisation properties.

The chosen evaluation measure was the unweighted average recall (UAR),
since it provides a truthful estimation of the performance, in particular for test
cases in which the distribution of instances is highly unbalanced among classes.
The reported results were obtained by averaging UAR values across all folds
of LOSOCV. In order to determine whether a system performs significantly
better, one-sided paired t-tests were used with ˛ D 0.05. That is, two system are
compared by considering the differences between (paired) UAR results produced
on each fold of LOSOCV.

To summarise, LOSOCV results were produced for 13 feature types, four
feature groups (early fusion), three feature sets, and three feature selection meth-
ods. Four different corpora, three feature normalisation methods, and six SVM
complexities were investigated. Moreover, six late fusion methods were used for
each corpus. In total, 1,680 results were obtained.

6.3.2 Results
A series of classification experiments was conducted on four different corpora.
Results are reported for optimised SVM complexities; for details, see Appendix
B.1.

Recognition results per feature type obtained on CLSE-Time are shown
in Table 6.3. Generally, UAR results indicate the issue of speaker variability;
speaker normalisation (SN) is generally superior to partition normalisation (PN)
and training normalisation (TN). The best prosodic feature type refers to the
duration-based features (73.46% UAR) for which SN was used. Early fusion of all
speaker-normalised prosodic features leads to a significant increase (p< 0.05)—a
plus of 6.79%—and to the overall best result for CLSE-Time. Regarding the
spectral feature types, formants in conjunction with SN are superior with 67.90%
UAR. By uniting all speaker-normalised spectral features, an improvement of
3.70% is achieved, though not significant (p > 0.05). In the case of voice quality
feature types, the speaker-normalised cepstral peak prominence (CPP) performs
best with 66.05% UAR, but there is a drop in performance when fusing CPP with
the remaining speaker-normalised voice quality features. Interestingly, the best
results in terms of single feature type comparison across all groups are given by
Teager energy operator (TEO) based features: 74.07% UAR by NTD-LFPC with
SN as well as NFD-LFPC with SN or PN. Little improvement is found by uniting
all TEO features (2.47%).

Table 6.4 shows the results per feature type for CLSE-Dual. Looking at
the prosodic features, duration yields the best UAR across all normalisation
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Table 6.3 Classification results per feature type and normalisation method for CLSE-
Time

UAR [%]

Feature group Feature type SN PN TN

Prosodic Intensity+�+�� 67.28 66.05 56.79
Prosodic F0+�+�� 66.67 68.52 54.32
Prosodic Duration 73.46 70.99 69.75
Prosodic Early fusion 80.25 75.93 70.37

Spectral Spectral centroid+�+�� 65.43 62.35 51.85
Spectral 12 MFCC+�+�� 64.20 64.81 52.47
Spectral Formants F1–3(f,b)+�+�� 67.90 64.20 51.85
Spectral Early fusion 71.60 69.14 58.64

Voice quality Jitter+�+�� 53.70 52.47 53.70
Voice quality Shimmer+�+�� 50.00 50.62 50.00
Voice quality HNR+�+�� 54.32 46.91 47.53
Voice quality CPP+�+�� 66.05 62.35 51.23
Voice quality Early fusion 63.58 61.73 57.41

TEO 16 TEO-CB-Auto-Env+�+�� 59.88 62.96 54.94
TEO 12 NTD-LFPC+�+�� 74.07 67.90 54.32
TEO 12 NFD-LFPC+�+�� 74.07 74.07 58.02
TEO Early fusion 76.54 76.54 61.73

Best result per feature group is highlighted in bold. Abbreviations: PN (partition nor-
malisation), SN (speaker normalisation), TN (training normalisation), UAR (unweighted
average recall)

methods. Unsurprisingly, speaker normalisation is superior with 59.88% UAR.
By fusing all speaker-normalised prosodic features, the result is significantly
better with an absolute difference of 11.11%. Moreover, with 70.99% UAR, the
prosodic (early fusion) system achieves the overall best result for CLSE-Dual.
Regarding the group of spectral features, MFCCs in conjunction with SN (61.73%
UAR) perform clearly better than the remaining feature types. A slight, but not
significant (p > 0.05), increase is observed when fusing all spectral features that
are normalised by either SN or PN. The performance of voice quality features is
generally lower compared to the remaining feature groups; the best result (53.70%
UAR) is obtained by CPP with the PN method. Feature type comparison within
the TEO group reveals that NTD-LFPC with PN is superior (62.35% UAR).
Fusing all TEO features leads to a better performance (65.43% UAR) once the
SN method is applied, although the difference is not significant (p > 0.05).
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Table 6.4 Classification results per feature type and normalisation method for CLSE-
Dual

UAR [%]

Feature group Feature type SN PN TN

Prosodic Intensity+�+�� 54.32 50.62 48.77
Prosodic F0+�+�� 40.12 37.04 38.27
Prosodic Duration 59.88 57.41 50.62
Prosodic Early fusion 70.99 61.73 54.32

Spectral Spectral centroid+�+�� 51.85 50.00 44.44
Spectral 12 MFCC+�+�� 61.73 54.94 45.68
Spectral Formants F1–3(f,b)+�+�� 49.38 51.23 44.44
Spectral Early fusion 64.81 62.35 52.47

Voice quality Jitter+�+�� 45.68 39.51 40.74
Voice quality Shimmer+�+�� 43.83 41.36 44.44
Voice quality HNR+�+�� 45.68 42.59 43.21
Voice quality CPP+�+�� 48.77 53.70 47.53
Voice quality Early fusion 50.62 47.53 43.21

TEO 16 TEO-CB-Auto-Env+�+�� 44.44 43.21 38.27
TEO 12 NTD-LFPC+�+�� 61.73 62.35 45.68
TEO 12 NFD-LFPC+�+�� 61.11 61.11 48.77
TEO Early fusion 65.43 61.73 51.85

Best result per feature group is highlighted in bold. Abbreviations: PN (partition nor-
malisation), SN (speaker normalisation), TN (training normalisation), UAR (unweighted
average recall)

For CLSE-Span, recognition results per feature type are shown in Table 6.5.
The performance is generally lower compared to CLSE-Time and CLSE-Dual.
It can be seen that the overall best result for CLSE-Span with 54.74% UAR is
obtained by the speaker-normalised duration-based features. Even if early fusion
is used for the prosodic features, there is no improvement in performance. Within
the group of spectral features, MFCCs with SN perform best (48.77% UAR).
An insignificant improvement is observed when fusing all speaker-normalised
spectral features (49.79% UAR), which corresponds to the second best result
for CLSE-Span. Regarding voice quality features, the CPP with SN is superior
(40.62% UAR), but a decrease in performance can be seen when CPP is combined
with the remaining speaker-normalised voice quality features. However, fusing
all features of this group has a positive effect in the case of PN and TN. For
the group of TEO-based features, NFD-LFPC outperforms the remaining TEO
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Table 6.5 Classification results per feature type and normalisation method for CLSE-
Span

UAR [%]

Feature group Feature type SN PN TN

Prosodic Intensity+�+�� 46.02 43.71 44.30
Prosodic F0+�+�� 45.17 40.31 39.21
Prosodic Duration 54.74 53.66 52.82
Prosodic Early fusion 52.73 50.21 49.97

Spectral Spectral centroid+�+�� 39.83 42.14 40.25
Spectral 12 MFCC+�+�� 48.77 48.30 43.99
Spectral Formants F1–3(f,b)+�+�� 45.70 45.93 44.48
Spectral Early fusion 49.79 48.98 46.74

Voice quality Jitter+�+�� 37.07 38.89 38.09
Voice quality Shimmer+�+�� 36.86 36.73 37.16
Voice quality HNR+�+�� 37.33 36.77 37.85
Voice quality CPP+�+�� 40.62 38.68 39.22
Voice quality Early fusion 39.64 40.38 40.27

TEO 16 TEO-CB-Auto-Env+�+�� 42.70 42.52 43.31
TEO 12 NTD-LFPC+�+�� 47.90 47.85 45.29
TEO 12 NFD-LFPC+�+�� 49.46 49.32 47.73
TEO Early fusion 49.13 48.42 46.52

Best result per feature group is highlighted in bold. Abbreviations: PN (partition nor-
malisation), SN (speaker normalisation), TN (training normalisation), UAR (unweighted
average recall)

systems across all feature normalisation methods—early fusion of TEO features
stays behind. Unsurprisingly, the best result is obtained by using SN (49.46%
UAR).

Next, the results per feature type for CoLoSS are examined. From Table
6.6 it can be seen that, in contrast to the other corpora where SN dominates
(cf. Table 6.3 to 6.5), the TN method is superior for CoLoSS across all features.
This difference can be explained by the fact that the data of CoLoSS is highly
unbalanced regarding the class distribution—applying feature normalisation after
class balancing (cf. Section 6.2) is probably accompanied by the risk that it
causes a mismatch between training and test data. This mismatch seems to
be compensated by TN, which normalises the training and test partition with
parameters computed only from the training partition; this topic deserves more
attention in future work. Looking at the results, the most effective features for
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Table 6.6 Classification results per feature type and normalisation method for CoLoSS

UAR [%]

Feature group Feature type SN PN TN

Prosodic Intensity+�+�� 41.91 46.07 58.13
Prosodic F0+�+�� 39.11 41.25 53.66
Prosodic Duration 44.93 56.06 62.67
Prosodic Early fusion 45.75 56.41 61.41

Spectral Spectral centroid+�+�� 39.59 41.60 50.92
Spectral 12 MFCC+�+�� 43.24 50.33 54.92
Spectral Formants F1–3(f,b)+�+�� 41.27 49.88 52.80
Spectral Early fusion 43.03 52.34 54.99

Voice quality Jitter+�+�� 37.92 42.53 49.50
Voice quality Shimmer+�+�� 36.47 42.11 47.27
Voice quality HNR+�+�� 36.11 37.52 47.34
Voice quality CPP+�+�� 39.93 43.84 53.77
Voice quality Early fusion 35.94 45.69 52.59

TEO 16 TEO-CB-Auto-Env+�+�� 38.78 47.05 52.28
TEO 12 NTD-LFPC+�+�� 50.83 50.30 57.47
TEO 12 NFD-LFPC+�+�� 50.56 50.82 57.54
TEO Early fusion 46.73 50.36 55.44

Best result per feature group is highlighted in bold. Abbreviations: PN (partition nor-
malisation), SN (speaker normalisation), TN (training normalisation), UAR (unweighted
average recall)

CoLoSS refer to the prosody, in particular to the duration with 62.67% UAR.
MFCCs are superior in terms of single spectral feature types (54.92% UAR).
A slight, but not significant, increase with an absolute difference of 0.07% is
observed when uniting all spectral features. The best voice quality feature type is
the CPP (53.77% UAR)—it performs even better than early fusion of all voice
quality features. Regarding the TEO group, the highest UAR with 57.54% is
obtained by NFD-LFPC; the performance is comparable with that of NTD-LFPC
(the absolute difference is 0.07%). Fusing all TEO-based features results in lower
performance (55.44% UAR).

So far, the performance of feature types and their fusion per feature group
were investigated. The n-best feature group models, each represented by the best
feature group result, were afterwards combined by late fusion methods. Table 6.7
shows the results for all four corpora. For comparison purposes, the overall best
feature group result per corpus is also shown; it is denoted as ‘1-best’ in the table
(cf. Table 6.3 to 6.6). Regarding CLSE-Time, fusing the outputs of the 3-best
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Table 6.7 Classification results per late fusion method for all four corpora

UAR [%]

n-best Late fusion CLSE-Time CLSE-Dual CLSE-Span CoLoSS

1-best — 80.25 70.99 54.74 62.67
2-best Majority vote 79.01 67.28 53.57 59.88
2-best Average probability 79.01 67.28 53.57 59.88
3-best Majority vote 80.25 69.75 54.92 60.26
3-best Average probability 80.86 69.75 54.80 58.92
4-best Majority vote 77.78 65.43 52.84 58.43
4-best Average probability 78.40 66.05 53.04 57.83

Best result per corpus is highlighted in bold. Abbreviations: UAR (unweighted average
recall)

models by average probability outperforms—not significantly (p > 0.05)—the 1-
best model with 80.86% UAR. An improvement is also observed for CLSE-Span.
By applying majority vote for the 3-best models, up to 54.92% UAR is reached;
the improvement is not significant at a level of 5%. For the remaining corpora,
late fusion methods perform worse than the 1-best models.

For the feature set evaluation, the full feature set (CL-Extended) is compared
to knowledge-based subsets (CL-Base and CL-Stress). The classification results
for all four corpora are shown in Table 6.8. For CLSE-Time, the best result is
obtained using CL-Base with the SN method (81.48% UAR). It is, however, not
significantly better than that of CL-Extended (with PN). Regarding CLSE-Dual,
CL-Base with speaker normalisation also leads to the highest UAR (72.22%),
though the difference to CL-Extended (with SN) is not significant. In the case of
CLSE-Span, CL-Extended with PN (54.42% UAR) outperforms the remaining
configurations (the difference is not significant). For CoLoSS, the TN method
yields by far the best results, which is not surprising because TN was also the
optimal feature normalisation method in the feature type evaluation (cf. Table
6.6). The results show that CL-Stress is slightly better than CL-Extended, but
CL-Base is (not significantly) superior with 62.02% UAR.

Next, filter-based feature selection methods are investigated. The results are
summarised in Table 6.9. The classification performances are compared to the
full feature set (CL-Extended); the best system configuration in terms of the
full feature set serves as a baseline. Looking at the results, no improvements
can be observed for CLSE-Time as well as CoLoSS. Regarding CLSE-Dual, the
best performance (72.84% UAR) is achieved by CFS for speaker-normalised
features, although it is not significantly better than the full set (p > 0.05). Inter-
estingly, when considering only TN for CLSE-Dual, all feature selection methods
outperform the full set. Notable results are obtained on CLSE-Span; for each
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Table 6.8 Classification results per feature set and normalisation method for all four
corpora

UAR [%]

Corpus Feature set SN PN TN

CLSE-Time CL-Extended 79.01 80.86 67.28
CLSE-Time CL-Base 81.48 78.40 72.22
CLSE-Time CL-Stress 79.01 79.01 63.58

CLSE-Dual CL-Extended 70.99 69.14 54.94
CLSE-Dual CL-Base 72.22 64.81 54.32
CLSE-Dual CL-Stress 65.43 59.26 54.32

CLSE-Span CL-Extended 53.50 54.42 51.15
CLSE-Span CL-Base 53.05 52.27 49.09
CLSE-Span CL-Stress 52.89 51.75 50.18

CoLoSS CL-Extended 47.23 54.78 59.15
CoLoSS CL-Base 44.85 58.06 62.02
CoLoSS CL-Stress 46.54 56.62 60.51

Best result per corpus is highlighted in bold. Abbreviations: PN (partition normalisation),
SN (speaker normalisation), TN (training normalisation), UAR (unweighted average recall)

normalisation method, feature selection yields better results than the full set.
The best result for CLSE-Span (57.37% UAR) is obtained by CCP100 when
using speaker normalisation, which corresponds to an increase of 2.95% (not
significant) compared with the best full set configuration.

In the following, optimal system settings are discussed. The best configuration
per corpus is given in Table 6.10. It can be seen that only feature subsets of the full
set (CL-Extended) are superior. Some of them are hand-crafted, while others are
obtained automatically by using filter-based feature selection. Large differences
are observed between UAR results. The absolute difference between the highest
UAR (CLSE-Time) and the lowest UAR (CLS-Span) is 24.11%. Generally,
CLSE-Span and CoLoSS seem to be more challenging than the variants of the
Stroop test.

All four corpora contain a relatively small number of instances recorded under
laboratory conditions. This raises questions about the applicability of the pro-
posed systems to real-world use-cases. Hence, an estimate of the optimal system
configuration should be made for each task instead of suggesting outstanding
models. For this purpose, the top three systems per task are considered, whereby
configurations with equivalent results are regarded as one of the best systems—
meaning that more than three configurations can be given for a particular corpus.
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Table 6.9 Classification results per feature selection method and normalisation method
for all four corpora. The full set (CL-Extended) is also shown for comparison purposes

UAR [%]

Corpus Feature selection SN PN TN

CLSE-Time Full set (CL-Extended) 79.01 80.86 67.28
CLSE-Time IG100 69.14 77.16 77.16
CLSE-Time CCP100 72.84 74.07 74.07
CLSE-Time CFS 75.93 79.01 79.01

CLSE-Dual Full set (CL-Extended) 70.99 69.14 54.94
CLSE-Dual IG100 69.75 67.28 67.28
CLSE-Dual CCP100 69.75 69.14 69.14
CLSE-Dual CFS 72.84 68.52 68.52

CLSE-Span Full set (CL-Extended) 53.50 54.42 51.15
CLSE-Span IG100 55.69 54.58 54.58
CLSE-Span CCP100 57.37 56.43 56.43
CLSE-Span CFS 56.76 55.77 55.77

CoLoSS Full set (CL-Extended) 47.23 54.78 59.15
CoLoSS IG100 48.79 46.26 46.26
CoLoSS CCP100 47.52 57.21 57.21
CoLoSS CFS 44.77 53.93 53.93

Best result per corpus is highlighted in bold. Abbreviations: PN (partition normalisation),
SN (speaker normalisation), TN (training normalisation), UAR (unweighted average recall)

Table 6.10 Best system configuration for each corpus

Corpus Features Norm C UAR [%]

CLSE-Time Feature set: CL-Base SN 10�2 81.48
CLSE-Dual Feature selection: CFS SN 10�2 72.84
CLSE-Span Feature selection: CCP100 SN 10�3 57.37
CoLoSS Feature type: Duration TN 10�2 62.67

Abbreviations: C (SVM complexity parameter), Norm (feature normalisation method), SN
(speaker normalisation), TN (training normalisation), UAR (unweighted average recall)

The systems are summarised in Table 6.11. Shown are the feature groups (single
feature type or feature fusion), proposed feature sets, and feature selection meth-
ods. From the table it can be seen that the greatest share refers to both the group
of prosodic features and the CL-Base feature set. However, CL-Base should
be preferred, since it covers more aspects in speech, and secondly, one of the
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Table 6.11 Summary of the top three system configurations for each corpus

Corpora

Configuration CLSE-Time CLSE-Dual CLSE-Span CoLoSS
P

Features

Feature group: Prosodic X* X X 3
Feature group: Spectral X* 1
Feature group: Voice quality 0
Feature group: TEO X* 1
Feature set: CL-Extended X X 2
Feature set: CL-Base X X X 3
Feature set: CL-Stress 0
Feature selection: IG100 0
Feature selection: CCP100 X 1
Feature selection: CFS X X 2

Feature normalisation

Speaker normalisation (SN) X X X 3
Partition normalisation (PN) X X 2
Training normalisation (TN) X X 2

*: feature group model for late fusion (cf. Table 6.3 and 6.7)

prosodic systems is only used for late fusion (CLSE-Time, cf. Table 6.3 and 6.7),
not as a final system. It is notable that the best results in the case of CLSE-Span
are obtained exclusively by feature selection methods. The most common feature
selection method across tasks is CFS, which is generally an advisable method
because it considers both feature relevance and feature redundancy. Regarding
the feature normalisation methods, speaker normalisation should be preferred, if
possible. On the other hand, there are systems regarding CLSE-Span that perform
well when using PN and TN (cf. Table 6.9). The CoLoSS corpus serves as an
example where the best results are obtained only by TN (cf. Table 6.6, 6.8, and
6.9). In this context, it is worth noting that the choice of a feature normalisation
method strongly depends on the nature of the dataset (not only on the task!), as
discussed above.

6.4 Cross-Corpus Evaluation

The goal of this experiment is to explore the transferability of a cognitive load
classification system to similar domains. Experiments are usually conducted
using a single database where the training and test set belong to the same context.
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Testing on different speech-based cognitive load corpora requires systems that
generalise across different tasks, different types of labels, different languages,
and different recording conditions. In previous works, it was assumed that an
impression of the generalisation ability of a recognition system can be obtained by
simple cross-corpus evaluation (e.g., Schuller et al., 2010, 2011b). This approach
was followed in this thesis and is associated to the following two questions:
(1) ‘What is the strength of generalisability of a model, which is trained on a
single corpus?’; (2) ‘Can the performance be improved by combining several
corpora for model training?’. Since this evaluation is concerned with aspects of
generalisation, both questions are accompanied by the issue of optimal generic
feature sets.

There exists only a limited number of cognitive load corpora, while the
methods applied for inducing cognitive load are rather different. This poses
the question of whether there is any way to generalise a system across different
cognitive load tasks. In contrast, an increasing amount of data is available
for speech emotion recognition. This provided the basis for many studies to
investigate the generalisability and robustness of systems by conducting cross-
corpus experiments using a variety of speech data, for instance, from acted,
induced, and natural emotions (see Lefter et al., 2010; Schuller et al., 2010,
2011b,c).

In the following sections, the experimental setup and the results of the cross-
corpus evaluation are presented, with the focus on the above-mentioned research
questions.

6.4.1 Experimental Setup
Cognitive load recognition was considered a ternary classification problem (low,
medium, and high load). The experiments were conducted using the three corpora
of the CLSE database (Section 3.1) and the CoLoSS corpus (Section 3.2). For
the CoLoSS corpus, the discretised labels were employed. In the first part of the
experiments, each model is trained on the basis of a single corpus, which is then
tested on the data of the remaining corpora. The second part of the experiments
addresses corpus fusion by the agglomeration of various corpora on instance-
level—also known as data pooling—for the construction of a model, which is
tested on disjoint data from a separate corpus.

For generalisation purposes, only hand-crafted feature sets were used instead
of exploring feature types or feature selection methods. These include CL-
Extended, CL-Base, and CL-Stress (Section 5.1).

All experiments are speaker-independent. In the case of the CLSE corpora,
only the training and development sets were used by combining them, because
subject IDs are not included in the corresponding test sets. Since all subjects
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of the CLSE database participated in all three CLSE tasks, a kind of leave-one-
subject-out validation was required if both training and test corpora are part of
the CLSE database. For instance, if CLSE-Time is part of the training data and
CLSE-Dual is the corpus to be tested, then the kth fold of the validation represents
subject k in CLSE-Dual for testing while k is excluded from CLSE-Time for
training. Moreover, it was ensured that each corpus contained in the training
data is balanced in terms of the distribution among classes. This was achieved
by applying WEKA’s implementation of random over-sampling (Witten et al.,
2016). For CLSE-Span and CoLoSS, the required target-size was 150% and
230%, respectively. For the remaining corpora, class balancing was not required.
Further, the following feature normalisation methods were investigated: speaker
normalisation, corpus normalisation, and training normalisation (Section 6.1.2.2).
Although one can obtain more data for speaker normalisation by taking informa-
tion on subjects across the CLSE corpora into account, per speaker normalisation
was performed on each corpus individually to ensure task independence. While
corpus normalisation adjusts feature values on a per corpus basis for both the
training and test set, the training normalisation method ignores corpora of the
training set and applies the computed normalisation parameters to the test set.

Classification was carried out by a support vector machine (SVM) classifier
with a polynomial kernel; Sequential Minimal Optimisation (SMO) (Keerthi
et al., 2001) was used as training algorithm, which is provided by the WEKA 3
toolkit (Witten et al., 2016). In the experiments, the SVM complexity parameter
C was optimised by investigating C D 10n, with n D �5;�4; : : : ; 0. Higher
values were avoided for generalisation purposes.

The unweighted average recall (UAR) was chosen as the evaluation measure
because the distribution among classes is highly unbalanced in the case of CLSE-
Span and CoLoSS. If the leave-one-subject-out procedure (see above) was applied,
UAR results from the folds were averaged to produce a single estimate.

In summary, the first part of the experiments yields 648 results: Four corpora
were used for single-corpus training, whereby each model is tested against the
remaining three corpora; three feature sets, three normalisation methods, and
six SVM complexities were systematically evaluated. In the second part of the
experiments, 216 results were obtained: Multi-corpus training was performed
using three out of four corpora, whereby the resulting model was tested against
the fourth one. This gives four test cases, each for three feature sets, three feature
normalisation methods, and six SVM complexities.

6.4.2 Results
Classification results for cross-corpus evaluation were produced by two types of
experiments: (1) single-corpus training, whereby the resulting model is tested
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against the remaining corpora; (2) combining various corpora by data pooling
for training and using a separate corpus for testing. The results are reported in
terms of optimal support vector machine (SVM) C values. For reproducibility,
the reader is referred to Section 6.4.1 and Appendix B.2.

First, cross-corpus evaluation by single-corpus training is considered. The
results per feature set and feature normalisation method are found in Table 6.12.
The UAR values were obtained by averaging single UAR results produced on
each of the test corpora with optimal constant SVM C. As expected—due to
divergent task characteristics—the results are far worse compared to those of
the within-corpus evaluation (cf. Section 6.3). It can be seen that CL-Base
yields highest UAR for each training set. There are notable differences with
regard to feature normalisation: while speaker normalisation (SN) is superior for
CLSE-Dual and CoLoSS, corpus normalisation (CN) and training normalisation
(TN) are optimal for CLSE-Time and CLSE-Span, respectively. The overall best
result is achieved by CLSE-Time with the corpus normalisation method (41.27%
UAR). However, the results are only little above the chance level (33.33%) and
obviously too low for practical use.

Table 6.12 Classification results for cross-corpus evaluation by training on one cor-
pus and testing against the remaining three corpora with constant SVM C parameter.
Comparison of feature sets and normalisation methods

UAR [%]

Train on Feature set SN CN TN

CLSE-Time CL-Extended 38.53 37.47 35.00
CLSE-Time CL-Base 38.69 41.27 36.22
CLSE-Time CL-Stress 39.31 39.20 35.04

CLSE-Dual CL-Extended 38.60 36.58 34.53
CLSE-Dual CL-Base 40.33 37.43 35.34
CLSE-Dual CL-Stress 39.20 38.98 35.97

CLSE-Span CL-Extended 32.23 34.86 33.75
CLSE-Span CL-Base 33.29 33.95 36.19
CLSE-Span CL-Stress 33.37 33.36 33.74

CoLoSS CL-Extended 39.43 35.98 33.61
CoLoSS CL-Base 40.48 35.36 33.61
CoLoSS CL-Stress 39.48 37.12 33.63

Best result per corpus is highlighted in bold. Abbreviations: CN (corpus normalisation),
SN (speaker normalisation), TN (training normalisation), UAR (unweighted average recall)
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Figure 6.6 Classification results for cross-corpus evaluation by training on one corpus
and testing against the remaining corpora with optimised SVM complexity. Comparison
of feature sets (CL-Extended, CL-Base, and CL-Stress) and feature normalisation methods
(SN: speaker normalisation, CN: corpus normalisation, and TN: training normalisation)

Additional UAR results are depicted in Figure 6.6. Here, the SVM complexity
parameter C is optimised for each test case individually. The figure indicates
that the classification models are not capable of generalising well across all
test corpora. However, individual cases show results of around 50% UAR. For
instance, when using CLSE-Time as the training set in connection with speaker-
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normalised CL-Stress features, the best result is obtained on CLSE-Dual (50.00%
UAR) and vice versa (52.47% UAR). Nearly identical results are given for CLSE-
Time when testing on the CoLoSS corpus. In turn, models trained on CoLoSS
reach almost 50% UAR when they are applied to CLSE-Time or CLSE-Dual.
The data of CLSE-Span is more challenging—test results are barely above the
chance level. When using CLSE-Span for model training, results are generally
very low (the best is 44.44% UAR by using CL-Base with CN, tested on CoLoSS).
Finally, a general recommendation regarding the feature sets and normalisation
methods can hardly be derived, since optimal configurations very much depend
on individual cases.

The results of the second cross-corpus experiment are summarised in Table
6.13. Each result was produced by using one out of four corpora for testing,
while data of the remaining corpora were pooled on instance-level and used for
model training with optimised SVM complexity C. In order to get an impression
of the system’s performance in general with respect to feature sets and feature
normalisation methods, the mean across optimal UAR results is also shown in the
table. Moreover, results for leave-one-corpus-out cross-validation (LOCOCV)
are reported that were obtained by optimal constant SVM C across test cases.
Regarding test results produced on each individual corpus, the highest UAR
values are: 45.68% UAR on CLSE-Time (CL-Stress with SN), 43.83% UAR on
CLSE-Dual (CL-Base with SN), 36.49% UAR on CLSE-Span (CL-Extended
with SN), and 46.34% UAR on CoLoSS (CL-Base with CN). By taking the mean
UAR results into consideration, CL-Base outperforms the other feature sets for
SN and CN with 39.87% UAR and 38.10% UAR, respectively. The best result for
TN (36.41% mean UAR) is achieved by using the CL-Extended feature set. The
same applies for LOCOCV, but—as expected—the results are generally lower
than those of the mean UAR since SVM C remains constant across the folds in
LOCOCV.

In summary, cross-corpus evaluation is a challenging field due to divergent
characteristics of corpora. The first part of the cross-corpus evaluation demon-
strates model generalisability for cognitive load classification by using single
task-specific corpora as training data. In this context, the generalisation capability
can be regarded as the highest average UAR score determined by testing across
all remaining corpora with a constant SVM complexity C. In light of this crite-
rion, the results are 41.27% for CLSE-Time, 40.33% for CLSE-Dual, 36.19%
for CLSE-Span, and 40.48% for CoLoSS (cf. Table 6.12). Taking individual
cases into account leads to better results, even a plus of about 10% (cf. Figure
6.6). Hence, it is recommended to apply task-specific cognitive load assessment
systems to domains that meet the requirements of the system to some extent.
Such is the case, in particular, for CLSE-Time and CLSE-Dual, since both cor-
pora employ the Stroop test in conjunction with stressful conditions. However,
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Table 6.13 Classification results for cross-corpus evaluation by corpus fusion for model
training and testing against a different, single corpus. Comparison of feature sets and
normalisation methods

UAR [%]

Test on Feature set SN CN TN

CLSE-Time CL-Extended 38.89 32.10 36.42
CLSE-Dual CL-Extended 38.89 40.74 35.19
CLSE-Span CL-Extended 36.49 35.39 34.61
CoLoSS CL-Extended 38.29 40.91 39.42

Mean CL-Extended 38.14 37.29 36.41
LOCOCV CL-Extended 36.92 34.17 35.17

CLSE-Time CL-Base 43.21 33.95 33.33
CLSE-Dual CL-Base 43.83 38.89 35.80
CLSE-Span CL-Base 33.66 33.21 33.79
CoLoSS CL-Base 38.77 46.34 39.31

Mean CL-Base 39.87 38.10 35.56
LOCOCV CL-Base 39.84 37.92 34.74

CLSE-Time CL-Stress 45.68 33.95 33.33
CLSE-Dual CL-Stress 41.36 39.51 37.04
CLSE-Span CL-Stress 34.71 34.09 33.53
CoLoSS CL-Stress 37.50 40.12 35.58

Mean CL-Stress 39.81 36.92 34.87
LOCOCV CL-Stress 38.77 35.45 33.94

Mean UAR refers to the test results shown, each obtained by optimised SVM C, while
leave-one-corpus-out cross-validation (LOCOCV) results are obtained by using optimal
constant SVM C across all test cases. Best mean UAR and LOCOCV are highlighted in
bold. Abbreviations: CN (corpus normalisation), SN (speaker normalisation), TN (training
normalisation), UAR (unweighted average recall)

the results are far below those of the within-corpus experiments (Section 6.3).
Another aspect of cross-corpus evaluation concerns testing across a set of corpora,
while for each test case the remaining corpora are fused by data pooling for
model training. The results suggest that the CL-Base feature set with speaker
normalisation is superior on average for individual cases (39.87% UAR) and
for LOCOCV (39.84% UAR). However, with regard to individual test results,
data pooling generally yields lower performances compared to single-corpus
training (cf. Table 6.13 and Figure 6.6). Consequently, as stated above, individual
cases should be considered in which both training and test data exhibit similar
characteristics in terms of the cognitive load task.



6.5 Mixed-Corpus Evaluation 139

6.5 Mixed-Corpus Evaluation

While training and test data are disjunctive in terms of corpora in the cross-corpus
evaluation (Section 6.4), the mixed-corpus methodology aims at combining a
number of corpora for model training, whereby a subset of one out of these
corpora is excluded for testing. In this way, various contexts are involved in the
modelling process, while at the same time knowledge about the target domain
is used. Lefter et al. (2010) already demonstrated positive effects of the mixed-
corpus method on the recognition performance in comparison to cross-corpus
and within-corpus approaches in the field of speech emotion recognition.

The evaluation presented here refers to the question: ‘How much potential
for improvement exists through combining data from the target domain and other,
similar domains for cognitive load modelling in comparison to within-corpus and
cross-corpus approaches?’. In this connection, the performance of hand-crafted
feature sets is of interest. The experimental setup and results of the mixed-corpus
evaluation are given in the following sections.

6.5.1 Experimental Setup
In the experiments, the speakers’ cognitive load state had to be classified automat-
ically as either low, medium, or high. Features and algorithms were evaluated on
four different corpora, namely CLSE-Time, CLSE-Dual, and CLSE-Span from
the CLSE database (Section 3.1) and the CoLoSS corpus (Section 3.2). Note
that the CoLoSS corpus was used together with discretised labels. In order to
foster the generalisability of models, the CL-Extended, CL-Base, and CL-Stress
feature set (Section 5.1) were employed instead of single feature types or feature
selection methods.

Leave-one-subject-out cross-validation (LOSOCV) was performed to have
speaker-independent and comparable conditions. Since subject IDs are not
included in the test partitions of the CLSE database, only the data of the training
and development sets were used by combining them. The mixed-corpus method
was realised as follows: A particular corpus is the focus of the evaluation, meaning
that the LOSOCV procedure is applied only to this corpus. At this juncture—
from a technical point of view—, this corresponds to the strategy used in the
within-corpus evaluation (Section 6.3). The difference in the evaluation carried
out here is that for each fold of LOSOCV, the remaining three corpora are added
to the training partition. For a valid evaluation, it was ensured that the speaker
contained in the test partition was not present in any other corpus of the training
partition.

The goal was to realise a mixture of corpus data. The (pooled) training
partitions of LOSOCV were balanced regarding the class distribution by random
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over-sampling using WEKA 3 (Witten et al., 2016). The required target-size
for an approximate data balance is 200%. Feature normalisation parameters
were computed across corpora, not for each corpus separately. The following
three feature normalisation methods were investigated: speaker normalisation,
partition normalisation, and training normalisation (Section 6.1.2.2). Regarding
per speaker normalisation, the features of a particular speaker were normalised by
considering the overall speaker context from all corpora, if possible. In fact, this
relates to the corpora of the CLSE database. It should be noted that the overall
speaker context also applies to test partitions.

As in the previous evaluations, the WEKA 3 data mining toolkit (Witten et al.,
2016) was used for classification, with polynomial kernel support vector machines
(SVMs) trained using Sequential Minimal Optimisation (SMO) (Keerthi et al.,
2001). The following SVM complexities were investigated: C D 10n, with
n D�5;�4; : : : ; 0. As evaluation measure, the unweighted average recall (UAR)
was chosen due to the unbalanced distributions among classes in the CLSE-Span
and CoLoSS datasets.

To summarise, results were produced on four corpora with three feature sets,
three feature normalisation methods, and six SVM complexities. This yields a
total of 216 results.

6.5.2 Results
In this section, results of the mixed-corpus evaluation are reported. The classifi-
cation performances, optimised by means of the support vector machine (SVM)
complexity (see Appendix B.3), are shown in Table 6.14. Different feature
sets (CL-Extended, CL-Base, and CL-Stress) and feature normalisation meth-
ods (SN: speaker normalisation, PN: partition normalisation, and TN: training
normalisation) are compared.

The best UAR results can be roughly summarised as follows: 50.62% on
CLSE-Time (CL-Stress with SN), 46.30% on CLSE-Dual (CL-Base with TN
and CL-Stress with PN), 50.51% on CLSE-Span (CL-Extended with SN), and
58.50% on CoLoSS (CL-Extended with TN). Judging from the results, there is
no single best feature set across test cases and the differences between results are
rather small.

Compared to the performance of feature sets in the within-corpus evaluation
(Table 6.8 in Section 6.3.2), no further improvements can be observed, though
the difference is small in the case of CLSE-Span and CoLoSS (3.91% and 3.52%,
respectively). In contrast, a clear difference can be seen for CLSE-Time (30.86%)
and CLSE-Dual (25.92%). Unsurprisingly, the best results obtained by mixed-
corpus experiments are slightly better than those obtained by systems for which
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Table 6.14 Classification results for mixed-corpus evaluation. Comparison of feature
sets and normalisation methods

UAR [%]

Test on Feature set SN PN TN

CLSE-Time CL-Extended 46.30 44.44 41.98
CLSE-Dual CL-Extended 45.68 41.98 37.65
CLSE-Span CL-Extended 50.51 45.08 44.12
CoLoSS CL-Extended 44.85 47.41 58.50

Mean CL-Extended 46.84 44.73 45.56

CLSE-Time CL-Base 48.77 44.44 43.21
CLSE-Dual CL-Base 39.51 44.44 46.30
CLSE-Span CL-Base 48.00 42.08 44.06
CoLoSS CL-Base 45.34 46.26 58.34

Mean CL-Base 45.41 44.31 47.98

CLSE-Time CL-Stress 50.62 40.74 45.06
CLSE-Dual CL-Stress 44.44 46.30 45.06
CLSE-Span CL-Stress 49.71 43.37 44.28
CoLoSS CL-Stress 45.78 45.71 58.48

Mean CL-Stress 47.64 44.03 48.22

Best mean UAR is highlighted in bold. Abbreviations: PN (partition normalisation), SN
(speaker normalisation), TN (training normalisation), UAR (unweighted average recall)

the target domain was not considered for modelling (cf. second experiment of
the cross-corpus evaluation, Table 6.13 in Section 6.4.2). More precisely, the
absolute differences are 4.94% for CLSE-Time, 2.47% for CLSE-Dual, 14.02%
for CLSE-Span, and 12.16% for CoLoSS. Looking at the mean UAR results in
Table 6.14, it can be seen that the CL-Stress feature set with the TN method
performs best in general (48.22% UAR), which corresponds to a plus of 8.35%
compared with the best mean UAR obtained by cross-corpus experiments (see
again Table 6.13 in Section 6.4.2).

It can be concluded from the findings of this evaluation that the model per-
formance of the proposed mixed-corpus method lies in between those of within-
corpus and cross-corpus experiments. Future research effort could be spent on
corpus or instance selection—for example, based on the distance between class
centres (cf. Schuller et al., 2011b)—to better exploit the amount of training
material available for cognitive load recognition.
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6.6 COMPARE 2014—Cognitive Load Sub-
Challenge

The INTERSPEECH 2014 Computational Paralinguistics Challenge (COMPARE)
(Schuller et al., 2014) established a unified test-bed for the automatic recognition
of speakers’ cognitive and physical load in speech. The experiments presented in
this section focus on optimisation problems regarding features and algorithms in
order to outperform the COMPARE baseline system according to the rules of the
Cognitive Load Sub-Challenge.

Three levels of cognitive load have to be classified automatically: low (L1),
medium (L2), and high (L3). The CLSE database serves to evaluate the perfor-
mance of systems. The database is partitioned speaker-disjunctive into training,
development, and test sets (cf. Section 3.1.2), whereby each partition consists of
three different tasks (CLSE-Time, CLSE-Dual, and CLSE-Span). While informa-
tion on tasks is available for each partition, subject information is not included in
the test set. The official evaluation measure of the Cognitive Load Sub-Challenge
is the unweighted average recall (UAR) in %.

The baseline system is characterised as follows: The open-source feature ex-
tractor openSMILE (2.0 release) (Eyben et al., 2013a) was applied for the extrac-
tion of features on utterance-level. The features are provided by the COMPARE
feature set, which is defined in the corresponding openSMILE configuration
file. It contains 6,373 statistical features (functionals of low-level descriptors);
for details on the feature set, the reader is referred to Weninger et al. (2013).
Balancing the training instances in terms of the class distribution was achieved
by applying integer upsampling to the classes L1, L2, and L3 by the factors 2, 2,
and 3, respectively. CLSE-Time, CLSE-Dual, and CLSE-Span were treated sepa-
rately due to the different task characteristics. The baseline system uses z-score
transformation regarding feature normalisation for training and test partitions
with parameters computed only from the training partition—which corresponds
to the training normalisation (TN) method used in this thesis (cf. Section 6.1.2.2).
For classification, a linear kernel support vector machine (SVM) provided by
the WEKA 3 data mining toolkit (Witten et al., 2016) was chosen and trained
using the Sequential Minimal Optimisation (SMO) algorithm (Keerthi et al.,
2001). The SVM complexity parameter C was investigated in the development
phase. Optimal results were obtained by C D 10�4. For the evaluation on the
test set, a new model was trained for each task using the corresponding training
and development set, whereby the integer upsampling method was applied once
again. The development baseline is 63.2% UAR (74.6% on CLSE-Time, 63.5%
on CLSE-Dual, and 61.2% on CLSE-Span) and the official baseline on the test
set is 61.6% UAR (66.7% on CLSE-Time, 56.9% on CLSE-Dual, and 61.5%
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on CLSE-Span). It should be noted that there exists only a single true baseline,
namely the test set result obtained by the official baseline system. Further details
are found in the challenge paper (Schuller et al., 2014).

As stated above, the goal is to outperform the official baseline system. In this
respect, the question of suitable features is of interest. Secondly, since subject
information is not included in the test partition, there is the question of whether
the performance can be improved by adjusting features on a per speaker basis in
a way that different clusters, obtained by a speaker identification technique, are
normalised individually.

6.6.1 Experimental Setup
It is assumed that the way that cognitive load is expressed in speech by subjects
depends strongly on the task they had to perform. In Schuller et al. (2014), this
could be confirmed by experimental results. Consequently, the basic approach
here is that models are trained and evaluated for each sub-partition (CLSE-Time,
CLSE-Dual, and CLSE-Span) individually.

In the development phase, i.e, the evaluation on the development set, the per-
formance of the following hand-crafted feature sets was of interest: CL-Extended,
CL-Base, and CL-Stress (Section 5.1). The unbalanced class distribution of
CLSE-Span was adjusted by increasing the number of minority class instances in
the training set using SMOTE (Section 6.1.1) in WEKA 3 (Witten et al., 2016);
results obtained by other over-sampling techniques were generally lower in pre-
liminary experiments. Some of the features contained in the above-mentioned
feature sets could be irrelevant or redundant. Therefore, apart from using hand-
crafted feature sets, feature selection was performed to obtain the most relevant
features in an automatic manner. It was decided to use filters instead of wrappers
in order to avoid model overfitting; the CL-Extended feature set in connection
with the training data served as the basis for exploring the feature space. The
following three filter methods were considered: feature ranking by information
gain (IG), feature ranking by correlation (CCP), and the correlation-based feature
selection (CFS) algorithm (Section 6.1.3.2). In the case of IG and CCP, an incre-
mental evaluation of the top N features was performed on the development set to
determine the global maximum in model performance; only those features were
considered that have a relevance score > 0. However, large-scale feature sets may
include many redundant features that do not contribute to a better performance.
The CFS method addresses this issue by searching for a feature subset in which
each feature is highly correlated with the target class while the correlation of the
features among each other is low.

In the experiments, three feature normalisation methods were investigated,
namely speaker normalisation, partition normalisation, and training normalisation
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(Section 6.1.2.2). Since subject information is not included in the test set, the
utilisation of speaker normalisation implies that speakers have to be identified in
an automatic manner before feature values can be adjusted in terms of the speaker-
context. A common approach to discriminate between speakers from a given input
audio stream is to apply ‘speaker diarisation’. The goal of a speaker diarisation
system is to provide an answer to the question—‘Who spoke when?’. In essence,
such a system performs three main tasks: (1) discriminate between speech and
non-speech regions; (2) detect speaker changes to segment the audio data; (3) fuse
segmented data into speaker-homogeneous clusters (Shao et al., 2010, p. 30). In
this thesis, the open-source toolkit LIUM SpkDiarization (Meignier and Merlin,
2010) was chosen for speaker identification due to its low error rates compared
to other diarisation toolkits (cf. Kiktova and Juhar, 2015). After summarising
all test set instances per task into a single audio stream and applying speaker
diarisation, 14 clusters for CLSE-Time, 13 clusters for CLSE-Dual, and 8 clusters
for CLSE-Span were obtained. Subsequently, feature values were normalised
on a per cluster basis, which corresponds to (pseudo) speaker normalisation. As
pointed out in Section 3.1.2, the actual number of subjects in the test set is 8;
each of them participated in all tasks.

Further, two static classification methods were contrasted: support vector
machines (SVMs) and multilayer perceptrons (MLPs). SVMs with polynomial
kernel functions were trained using the Sequential Minimal Optimisation (SMO)
algorithm (Keerthi et al., 2001), which is implemented in the WEKA 3 data
mining toolkit (Witten et al., 2016). The SVM complexity parameter C was
optimised on the development set. This was achieved by evaluating C D 10n,
with n D �5;�4; : : : ; 0. Higher values were omitted to avoid overfitting. Re-
garding the second classification method, MLPs were employed with one hidden
layer for which sigmoid activation functions were used. For the output layer, the
softmax activation function was chosen. The Java-based toolkit DeepLearning4J
(Deeplearning4j Team, 2016) was used for building the networks. Constant
parameter setting was determined empirically: 50 epochs were used for model
training at a learning rate of 0.01 and the momentum (Nesterov) was set to 0.9.
For optimisation, the number of hidden nodes HN was investigated on the de-
velopment set by HN D 2n, with n D 3; 4; : : : ; 9. In the case of CLSE-Span,
the number of instances is much higher compared to the other tasks. In turn,
this is more demanding in terms of the computation time for model training. In
order to compensate for this fact, mini-batches were used with a size of four
instances—which was computationally more efficient.

In summary, before a selection of systems is evaluated on the independent
test set, different configurations were investigated in the development phase. Six
feature sets (three predefined sets and three sets obtained by feature selection),
three feature normalisation methods, six SVM-hyperparameter values and seven
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MLP-hyperparameter values were evaluated. All three tasks were considered,
which yields a total of 702 results.

6.6.2 Results
In this section, different system configurations are evaluated according to the rules
of the Cognitive Load Sub-Challenge. Three levels of cognitive load (L1: low,
L2: medium, and L3: high) had to be classified automatically. Each cognitive
load task (CLSE-Time, CLSE-Dual, and CLSE-Span) was considered to be
independent. Initially, the training set was used for feature selection and model
training; parameter optimisation was performed on the development set. In the
following, experimental results are reported for optimal classifier parameters. For
information on hyperparameter settings, the reader is referred to Appendix B.4.

First, feature selection methods are evaluated in connection with feature
normalisation strategies (SN: speaker normalisation, PN: partition normalisation,
and TN: training normalisation) and classifiers (SVM: support vector machine
and MLP: multilayer perceptron). Figure 6.7 illustrates the UAR performance
according to the number of ranked features by information gain (IG). For each
system configuration, classifier parameters were constant across the number of
features—results are shown for the best global maxima. Since the basic criterion
was IG > 0, the number of features is restricted: 502 (SN) and 205 (PN/TN)
for CLSE-Time; 205 (SN) and 33 (PN/TN) for CLSE-Dual; 277 (SN) and 275
(PN/TN) for CLSE-Span. For reasons of clarity, only the top 250 features are
shown. Incremental evaluation was performed with a step size of ten features.
Regarding CLSE-Time, it can be seen that SVM performs well when using SN
and the top 130 features (85.71% UAR, 11.11% above the baseline). The best
UAR obtained by PN-SVM (top 70 features) corresponds exactly to the baseline,
while all results obtained by TN-SVM remain below it. By using MLP on CLSE-
Time, results above the baseline can be reached when SN or TN is applied. It is
remarkable that the baseline can be outperformed with only 20 features (TN-MLP,
1.59% over the baseline). The best result for MLP on CLSE-Time (84.13% UAR)
is achieved when the top 230 speaker-normalised features are used. In the case of
CLSE-Dual, SVM with the top 40 features and MLP with the top 30 features, both
with SN, yield highest UAR (73.02%), which corresponds to an improvement of
9.52% compared to the baseline. Moreover, PN-MLP outperforms the baseline as
well (top 30 features); the absolute difference is 1.58%. Concerning IG ranking
on CLSE-Span, none of the methods is capable of improving the baseline system.
Here, the highest UAR (59.37%) is obtained by SN-MLP and the top 130 features;
1.83% below the baseline.

The performance according to the number of ranked features by correlation
(CCP) is shown in Figure 6.8. In this case, a relevance score > 0 was obtained by
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Figure 6.7 Classification results on the development set for CLSE-Time, CLSE-Dual,
and CLSE-Span according to the number of ranked features by information gain obtained
from the corresponding training set. Global maxima are highlighted. Comparison of
feature normalisation methods (SN: speaker normalisation, PN: partition normalisation,
and TN: training normalisation) and classifiers (SVM: support vector machine and MLP:
multilayer perceptron)

almost all features. It was decided to restrict the number of top-ranked features
to a maximum of 1,000. The step size for incremental evaluation was set to 50
features. As in the case of IG ranking, results are shown for classifier parameters
that were constant across the number of features and superior in terms of the
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Figure 6.8 Classification results on the development set for CLSE-Time, CLSE-Dual,
and CLSE-Span according to the number of ranked features by correlation obtained from
the corresponding training set. Global maxima are highlighted. Comparison of feature
normalisation methods (SN: speaker normalisation, PN: partition normalisation, and TN:
training normalisation) and classifiers (SVM: support vector machine and MLP: multilayer
perceptron)

global maximum of UAR. Regarding CLSE-Time, the SN-SVM classifier clearly
outperforms the baseline system (best is at 1,000 features—85.71% UAR). The
performance on CLSE-Time is further improved by SN-MLP with the top 250
features (87.30% UAR), which corresponds to an absolute difference of 12.7%
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compared to the baseline system. MLP in combination with PN yields lower
results, though the maximum (200 features) is still above the baseline. Looking
at the results for CLSE-Dual, all global maxima—except that of PN-SVM—
outperform the baseline system. The best SVM system performs slightly better
than the best MLP system, the difference is 1.59%. For CLSE-Span, only SN-
MLP seems to be promising (61.95% UAR at 100 features), although there is
only little improvement over the baseline (0.75%).

Apart from the incremental evaluation for feature subset selection, the correla-
tion-based feature selection (CFS) algorithm was applied to the training material
in order to obtain feature subsets that are characterised by high feature relevance
and low feature redundancy. Compared to the full feature set (cf. Section 5.1.1),
feature subsets selected by CFS contain a relatively small number of features: 64
(SN) and 45 (PN/TN) for CLSE-Time; 54 (SN) and 20 (PN/TN) for CLSE-Dual;
31 (SN) and 26 (PN/TN) for CLSE-Span.

Table 6.15 summarises the results on the development set (UAR in % for
each task individually) obtained by different feature sets, feature normalisation
methods, and classifiers. Configurations that outperform the baseline system
(CLSE-Time: 74.6%; CLSE-Dual: 63.5%; CLSE-Span: 61.2%) are highlighted
in bold. Interestingly, feature selection methods are superior to the hand-crafted
feature sets in 15 out of 18 configurations (task/normalisation/classifier). Only
the SN-MLP classifier outperforms the development-baseline across all tasks.

According to the rules of the challenge, all three tasks have to be considered
in terms of the development and test set. For this purpose, combinations of
feature normalisation methods (SN/PN/TN) and classifiers (SVM/MLP) across
tasks were created resulting in six different system configurations. Each system
consists of three models, one model for each task. Each model is characterised
by the best performing features determined in the development phase (cf. Table
6.15). For the evaluation on the test set, models were re-trained for each task
individually using both the training and development set (hereinafter referred to
as ‘pooled training data’), since it was assumed that robustness is enhanced by
involving more data for modelling. If one of the models was based on feature
selection then the features obtained in the development phase were adopted, i.e.,
feature selection was not applied again. The class distribution of the pooled
training data was balanced for CLSE-Span by SMOTE (Section 6.1.1) using
WEKA 3 (Witten et al., 2016). The feature normalisation methods PN and TN
were applied once again. Per speaker normalisation is only feasible for the pooled
training data since subject IDs are not included in the test set. However, this
fundamental problem can be eased by using speaker diarisation (cf. Section
6.6.1). In this way, speaker-clusters were obtained from the test set and then
normalised individually—denoted hereinafter by ‘speaker-cluster normalisation’
(SCN). For modelling with the pooled training data, the optimal parameter settings
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Table 6.15 Development results per feature set, feature normalisation method, and
classifier for each task of COMPARE 2014 (Cognitive Load Sub-Challenge)

UAR [%]

SVM MLP

Task Features SN PN TN SN PN TN

CLSE-Time CL-Extended 84.13 63.49 65.08 76.19 71.43 68.25
CLSE-Time CL-Base 87.30 77.78 68.25 85.71 73.02 68.25
CLSE-Time CL-Stress 84.13 68.25 68.25 85.71 71.43 66.67
CLSE-Time IGN 85.71 74.60 71.43 84.13 73.02 76.19
CLSE-Time CCPN 85.71 69.84 73.02 87.30 76.19 73.02
CLSE-Time CFS 80.95 68.25 66.67 80.95 60.32 60.32

CLSE-Dual CL-Extended 69.84 65.08 65.08 74.60 68.25 66.67
CLSE-Dual CL-Base 69.84 53.97 53.97 73.02 57.14 63.49
CLSE-Dual CL-Stress 65.08 55.56 58.73 69.84 60.32 61.90
CLSE-Dual IGN 73.02 63.49 61.90 73.02 65.08 61.90
CLSE-Dual CCPN 77.78 60.32 66.67 76.19 71.43 71.43
CLSE-Dual CFS 61.90 63.49 65.08 58.73 65.08 66.67

CLSE-Span CL-Extended 54.85 49.68 48.01 55.78 47.83 49.39
CLSE-Span CL-Base 55.39 54.38 49.37 55.08 55.06 50.58
CLSE-Span CL-Stress 55.70 53.60 46.92 57.99 54.48 50.34
CLSE-Span IGN 58.65 57.33 57.06 59.37 55.23 54.94
CLSE-Span CCPN 60.38 58.32 55.91 61.95 57.23 54.32
CLSE-Span CFS 60.98 58.54 56.44 58.98 54.01 52.77

Results above the development-baseline are highlighted in bold. Abbreviations: MLP
(multilayer perceptron), PN (partition normalisation), SN (speaker normalisation), SVM
(support vector machine), TN (training normalisation), UAR (unweighted average recall)

determined in the development phase were used. The predictions from the task-
dependent evaluations (development and test set) were concatenated and scored
for UAR normally.

The final results are briefly summarised in Table 6.16. As mentioned above,
SCN is only applied to the test set. Looking at the results, it can be seen that
systems with speaker normalisation (SN) outperform the baseline on the de-
velopment set, while the remaining normalisation methods stay behind. The
SN/SCN-SVM system yields a UAR of 65.5% (a plus of 2.3%), but it performs
worse than the baseline system on the test set. The highest UAR on the develop-
ment set is achieved by SN/SCN-MLP (69.7% UAR), 6.5% above the baseline
system. Furthermore, SN/SCN-MLP outperforms the baseline on the test set
with 62.2% UAR, which corresponds to an absolute difference of 0.6%. It can be
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Table 6.16 Summary of the final results for COMPARE 2014 (Cognitive Load Sub-
Challenge)

UAR [%]

Features Norm Classifier Devel Test

CL-Base (T), CCPN (D), CFS (S) SN/SCN SVM 65.5 58.8
CCPN (T), CCPN (D), CCPN (S) SN/SCN MLP 69.7 62.2
CL-Base (T), CL-Extended (D), CFS (S) PN SVM 61.1 59.4
CCPN (T), CCPN (D), CCPN (S) PN MLP 60.5 56.8
CCPN (T), CCPN (D), IGN (S) TN SVM 59.4 54.1
IGN (T), CCPN (D), IGN (S) TN MLP 58.5 55.3

Baseline system (Schuller et al., 2014) 63.2 61.6

Features are shown for each task; tasks are given in brackets. Results above the baseline
are highlighted in bold. Abbreviations: D (CLSE-Dual), Devel (development set), MLP
(multilayer perceptron), Norm (feature normalisation method), PN (partition normalisa-
tion), S (CLSE-Span), SCN (speaker-cluster normalisation), SN (speaker normalisation),
SVM (support vector machine), T (CLSE-Time), Test (test set), TN (training normalisa-
tion), UAR (unweighted average recall)

Table 6.17 Confusion matrix for the test set of COMPARE 2014 (Cognitive Load Sub-
Challenge) showing classification in percentage for low (L1), medium (L2), and high
(L3) cognitive load by the best system configuration

predicted

L1 L2 L3
P

ac
tu

al

L1 76.4% 13.9% 9.7% 216

L2 13.9% 62.5% 23.6% 216

L3 16.7% 35.6% 47.8% 312

concluded that, theoretically, the sixth place among all participants is reached (cf.
Table 6.2 in Section 6.1.6). Eight participants (including the baseline) submitted
system results at the time of the challenge; only seven of them reported test set
results in the corresponding papers.

It was shown that filter-based feature selection methods are superior to pre-
defined feature sets and adjusting the feature values by speaker normalisation
(and speaker-cluster normalisation) helps to improve the classification perfor-
mance. Some details on the test set results obtained by the best proposed system
(SN/SCN-MLP) are given in Table 6.17. The cognitive load levels L2 and L3 are
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confused to some degree. The best performance is obtained for L1, whereas L3
seems to be more challenging.

6.7 Regression Approaches

In the previous sections, various features and algorithms have been extensively
evaluated for the automatic recognition of cognitive load, whereby the load has
been considered a classification problem in terms of three different levels (low,
medium, and high).

In this section, regression-based cognitive load recognition from speech is pro-
posed for the first time—here, the system outputs are continuous numerical values
instead of discrete categories. Different feature sets, feature normalisation meth-
ods, and regression algorithms are evaluated on the CoLoSS corpus (Section 3.2).
In this connection, modelling is related to the efficiency score of the secondary
task. As pointed out in Section 3.2.4, the higher the cognitive load imposed by
the primary task, the lower the efficiency in the secondary task. Two questions
are investigated: (1) ‘Which feature set is useful for modelling?’; (2) ‘What is the
effect of modelling temporal dependencies regarding the chronological sequence
of task trials?’.

In the following, the experimental setup is presented (Section 6.7.1) and
evaluation results obtained are discussed (Section 6.7.2).

6.7.1 Experimental Setup
Regression experiments were conducted on the CoLoSS corpus (Section 3.2),
whereby modelling of cognitive load refers to the secondary task efficiency (EffST)
scores. The EffST values range between 0 and 0.86; for further information on
the data, see Section 3.2.5. A leave-one-subject-out cross-validation (LOSOCV)
was chosen as an evaluation strategy to guarantee speaker-independent conditions
and to obtain a reliable estimate of the model performance. The experimental
methodology used here follows that of Section 6.2. Of course, class balancing is
not needed.

In the experiments, the following three proposed feature sets were contrasted:
CL-Extended, CL-Base, and CL-Stress (Section 5.1). In addition, the effec-
tiveness of automatically selected features was of interest. To this end, the
correlation-based feature selection (CFS) method (Section 6.1.3.2) was applied
to CL-Extended. Three different approaches for the normalisation of the feature
values were evaluated. These are speaker normalisation, partition normalisation,
and training normalisation (Section 6.1.2.2).
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For modelling using the extracted statistical features, support vector regres-
sion (SVR), multilayer perceptron (MLP) networks, and Long Short-Term Mem-
ory (LSTM) recurrent neural networks (RNNs) were employed. SVR was applied
with a polynomial kernel function. This regressor was optimised in the same
way as it was done for the support vector machine classifier in the previous
evaluations. That is, the complexity C was tuned for each configuration by in-
vestigating C D 10n, with n D �5;�4; : : : ; 0. For SVR model training, the
Sequential Minimal Optimisation (SMOreg) algorithm (Shevade et al., 2000)
provided by the WEKA 3 data mining toolkit (Witten et al., 2016) was used. Next,
one-hidden-layer MLP networks with the sigmoid activation function for hidden
layer neurons were evaluated. The parameter set was determined empirically
based on preliminary experiments—stochastic gradient descent optimisation with
Nesterov momentum (0.9) was applied at a learning rate of 0.01 for 20 epochs
with a mini-batch size of 8. The influence of temporal context on the prediction
performance was investigated by using LSTM RNNs. LSTM networks with one
hidden layer were evaluated; the tanh function was used for the LSTM memory
blocks. For temporal context modelling, the sequence length was set to eight
consecutive task trials, where the current trial (prediction) corresponds to the last
step in the sequence. In this way, a kind of sliding window was applied along the
trial axis for each subject. With regard to the first trials of an overall trial series,
the sequences had to be truncated as long as they did not reach the predefined
length of eight. Only a few learning parameters differ from those of the MLP
networks; here, 50 epochs were used with a mini-batch size of 32. MLP and
LSTM networks were optimised by investigating different values for the number
of hidden nodes (or memory blocks): 2n, with n D 3; 4; : : : ; 8. Since regression
is performed, the output layer of both networks consists of a single node to which
the identity function was applied. For neural network design and model training,
the Java-based toolkit DeepLearning4J (Deeplearning4j Team, 2016) was used.

Two performance measures were of interest. The Spearman’s correlation
coefficient (CCS) and the root mean square error (RMSE) were chosen, whereby
CCS was considered to be the primary measure; it reflects the relationship between
the actual and predicted values.2 The results from the cross-validation folds were
averaged to obtain a single estimate for each of the two measures.

The experiments can be summarised as follows: LOSOCV results for regres-
sion-based cognitive load recognition were produced on the CoLoSS corpus.
Four feature sets (three predefined sets and one varying set obtained by feature
selection), three feature normalisation methods, and six hyperparameter values
were investigated in connection with three different regressors. In total, this yields
216 results.

2The CCS was preferred for measuring the relationship because the EffST data of 51 subjects is
non-normally distributed (Shapiro-Wilk test, p < 0.05).
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6.7.2 Results
A series of experiments was conducted to evaluate the prediction performance
of regression methods. The goal was to automatically estimate the secondary
task efficiency (EffST), which reflects the cognitive load in a learning task sce-
nario (Section 3.2.2). Features, feature normalisation methods, and regression
algorithms are compared. The results obtained by each system configuration are
reported in terms of tuned regressor-hyperparameters (see Appendix B.5).

Table 6.18 summarises the performance for all configurations; the Spear-
man’s correlation coefficient (CCS) is considered to be the primary evaluation
measure. Regarding hand-crafted feature sets, CL-Base performs slightly better
in general (in five out of nine cases). However, feature subsets obtained by the
correlation-based feature selection (CFS) method include a much smaller number
of features (SN—speaker normalisation: � D 52.1, � D 1.9; PN—partition
normalisation/TN—training normalisation: � D 57.2, � D 4.4) and outperform
all three predefined feature sets. This suggests that the regression methods are
highly sensitive to both the number and the relevance of features. The differences
between feature normalisation approaches are not very large. The best RMSE
results are generally dominated by the TN method. From the table it can be

Table 6.18 Results for the automatic prediction of the secondary task efficiency

SN PN TN

Feature set Regressor CCS RMSE CCS RMSE CCS RMSE

CL-Extended SVR 0.470 0.089 0.498 0.092 0.501 0.070
CL-Base SVR 0.475 0.088 0.501 0.094 0.495 0.072
CL-Stress SVR 0.475 0.088 0.499 0.095 0.496 0.071
CFS SVR 0.530 0.087 0.533 0.095 0.538 0.068

CL-Extended MLP 0.297 0.115 0.382 0.111 0.369 0.085
CL-Base MLP 0.419 0.096 0.446 0.102 0.421 0.074
CL-Stress MLP 0.367 0.103 0.426 0.105 0.416 0.078
CFS MLP 0.504 0.090 0.509 0.094 0.490 0.070

CL-Extended LSTM 0.079 0.152 0.045 0.197 0.081 0.129
CL-Base LSTM 0.047 0.156 0.024 0.210 0.087 0.143
CL-Stress LSTM 0.078 0.164 0.070 0.210 0.075 0.128
CFS LSTM 0.078 0.137 0.064 0.157 0.105 0.107

Best result is highlighted in bold. Abbreviations: CCS (Spearman’s correlation coefficient),
LSTM (Long Short-Term Memory), MLP (multilayer perceptron), PN (partition normali-
sation), RMSE (root mean square error), SN (speaker normalisation), SVR (support vector
regression), TN (training normalisation)
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Figure 6.9 Boxplots of regression results per model (learned with CFS features)

seen that Long Short-Term Memory (LSTM) networks perform much worse than
support vector regression (SVR) and multilayer perceptrons (MLPs). The overall
best performance is obtained by SVR with CFS features and the TN method
(CCS D 0.538, RMSE D 0.068). This system performs significantly better than
the best MLP (PN, CFS) and LSTM system (TN, CFS) in terms of CCS as well
as RMSE.3

Details on leave-one-subject-out cross-validation (LOSOCV) results obtained
with CFS features are given in Figure 6.9—the distributions per model are shown
as boxplots. Regarding CCS results, SVR and MLP show similar characteristics,
while LSTM models stay behind. The highest median of CCS is observed for
PN-MLP (0.537) and the maximum of single CCS results across all models is
obtained by PN-SVR (0.860). Looking at the RMSE, results differ considerably
and outliers are present for almost all models. MLP with TN shows the lowest
median of RMSE (0.063), while SVR with TN yields the lowest RMSE (0.029).
LSTM networks show less stable RMSE results, in particular when features have
been normalised by the PN method.

To provide an impression of how the best system works, predicted and actual
values are visualised for four subjects in Figure 6.10. The grey line indicates the
system outputs, whereby each output refers to a single task trial. In this respect,
it is important to remember that the higher the cognitive load, the lower the EffST
(cf. Section 3.2.4). Judging from the plots, there is a clear need for improvement
regarding the range of predicted values. While the regressor performs well for

3Statistical significance was tested using a one-sided paired t-test for the results produced on the folds
of LOSOCV, with a significance level of ˛ D 0.01.
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Figure 6.10 Automatic prediction of secondary task efficiency (EffST) per trial using
the best system configuration (see Table 6.18). The black line represents the actual values
and the grey line represents the predicted values. Examples are shown for different subject
IDs from the CoLoSS corpus: ‘17’ (upper left), ‘22’ (upper right), ‘43’ (lower left), and
‘65’ (lower right)

EffST up to approximately 0.5 (see upper left and lower right in the figure), it
is not capable of predicting much higher values (see upper right and lower left
in the figure). The reason for this can be attributed to the fact that the data of
EffST is non-normally distributed (cf. Section 3.2.5)—there is not enough training
material available regarding higher values so that the regression method has no
chance to learn sufficiently.

It can be concluded that the best regression system for automatic cognitive
load assessment is based on SVR and CFS features together with the TN method
for feature normalisation. Further improvements might be achieved by better
handling the given characteristics of the data distribution in the training sets,
for example, by performing data transformation (e.g., logarithm function) or
using additional data from similar tasks. The results obtained by LSTM networks
showed that the data of the CoLoSS corpus is not suitable for modelling with
contextual information from the past when testing, as well as scoring, is carried
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out on a per subject basis.4 The reasons for the much lower performance might
be that: (1) there is no specified relationship between a current trial and the past
trials concerning the primary task (random selection of symbol combinations,
cf. Section 3.2.1), which, in turn, may cause fluctuations of cognitive load and
patterns in speech; (2) the time span between two successive trials (approximately
20 seconds), and thus between two utterances, might be too long to derive
meaningful information from the past—in previous works, LSTM networks were
applied for speech processing on the basis of frames or utterances without such
delays (cf. Wöllmer et al., 2008, 2010; Eyben et al., 2010). In addition, allowing
LSTM networks to have access to the past as well as the future information—
realised by bidirectional LSTM networks—might improve the performance.

4Note that LOSOCV without averaging per subject results generally yields higher correlation values.
For instance, in this way, a CCS of 0.404 can be achieved by TN-LSTM with CFS features, which
corresponds to an absolute difference of 0.299 compared to the strict evaluation conducted in this
thesis (cf. Table 6.18).



Chapter 7

Conclusion

This chapter summarises the research work presented in this thesis. First, the
contents of this thesis are highlighted and it is discussed how the main aims
have been achieved (Section 7.1). Finally, open issues and future directions are
addressed (Section 7.2).

7.1 Summary

This thesis focuses on the effectiveness of paralinguistic speech features for the
automatic assessment of cognitive load. The research presented throughout this
work was motivated by open issues from past research efforts—important aspects,
such as use-case scenarios, features, and modelling approaches, had not yet been
touched sufficiently. This led to the definition of the following three aims for
this thesis: (1) Development of a new speech-based cognitive load database,
which reflects use-cases in which individuals are required to achieve learning
goals; (2) Evaluation of traditional speech features and those from the field of
stress detection for cognitive load recognition; (3) Development and evaluation
of regression-based cognitive load analysis from speech.

For the investigations conducted, the speech material from two databases was
used (Chapter 3). The first one, the CLSE database, was provided for this thesis
and contains speech recordings of participants who performed three different
tasks, each composed of three levels of cognitive load. Two variants of the Stroop
test are included: Stroop test with time pressure (CLSE-Time) and Stroop test
with dual-task (CLSE-Dual). The third task contained in CLSE is a reading
span task (CLSE-Span), which is related to the working memory capacity by
the maximum number of items that can be stored. The second database, called
CoLoSS, was developed within the scope of this thesis. This database contains
recordings of participants who performed a learning task while cognitive load
was induced by the corresponding learning processes—thereby, aim (1) was fully
achieved. Fundamentally speaking, CoLoSS contrasts with existing cognitive
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load databases, since learning tasks have not yet been employed and it provides
continuous numerical labels in addition to the discrete labels used until now.

A number of indicative speech features were extracted and discussed (Chapter
4). This particularly concerns prosodic features. Given the evidence for the
importance of temporal aspects in speech related to the human working memory,
it is essential to consider the corresponding prosodic parameters. To this end, a
software framework for the extraction of duration-based features and a threshold-
based activity detector for the extraction of speech-events were implemented in
this thesis. Complementary information to the prosody was provided by extracted
frequency content of the speech signal. From the literature it is observed that
cognitive load can result in increased muscle tension of the human vocal folds.
Hence, speech quality features were also taken into account. Although tasks
may be associated with factors of stress, for example, due to time pressure or
secondary task demands, speech features that are assumed to be suitable for
stress detection have not yet been considered for cognitive load recognition.
This gap has been closed in this thesis by investigating three promising Teager
energy operator (TEO) based features. As a further contribution, feature sets
were designed for static modelling of automatic cognitive load (CL) recognition
(Section 5.1). The CL-Extended feature set, which contains a total of 3,201
statistical parameters, represents the amount of all speech features extracted
for this thesis. Two feature subsets were derived, namely CL-Base and CL-
Stress. While the former is motivated by studies from the scientific literature
in terms of the effects of cognitive load on speech, the latter in which TEO
features are included is intended for tasks that are associated with stress factors.
For achieving aim (2), the effectiveness of the extracted speech features was
successfully evaluated by feature relevance analyses and recognition experiments,
as described in the following.

Feature relevance analyses were conducted to verify the suitability of speech
features for use in different cognitive load tasks. Correlation results, presented in
Section 5.2, confirmed the assumptions regarding the importance of the TEO for
tasks that may be associated with stress, such as variants of the Stroop test (CLSE-
Time and CLSE-Dual). On the other hand, prosodic features describing temporal
aspects are generally relevant, in particular for the learning task employed in
the CoLoSS corpus. An approach to the analysis of the generalisation across
tasks revealed that the most effective features refer to the tempo in speech. Next,
different aspects of speech were evaluated by the information gain (Section 5.3).
In addition to the above-mentioned results, it was found that the intensity of
the speech signal is a promising indicator in terms of the Stroop test variants.
Moreover, for all datasets used in this thesis, the top 100 features ranked by the
information gain showed again that prosodic features are particularly relevant
and—interestingly—all tasks are dominated by TEO features.



7.1 Summary 159

A series of recognition experiments was carried out to investigate the effec-
tiveness of speech features for automatic cognitive load assessment (Chapter
6). Speaker-independent systems were designed and extensively evaluated for
three-class classification (low, medium, and high) and prediction by regression.
Considering all configurations with respect to feature sets, feature normalisation
methods, learning algorithms, and use-case scenarios, more than 3,000 results
were produced.

Classification systems based on support vector machines (SVMs) were sys-
tematically evaluated for each cognitive load task individually (Section 6.3).
Although TEO parameters showed excellent results in feature type comparison on
the CLSE-Time dataset, the CL-Base features in which TEO parameters are not
included are superior. For the data of CLSE-Dual and CLSE-Span, feature subsets
obtained by feature selection algorithms achieved the best results. Regarding the
learning task employed in the CoLoSS corpus, the most effective features refer
to the prosody, in particular to the proposed duration-based features. It turned
out that there are large differences in performance between tasks—while systems
perform well for the variants of the Stroop test, both the reading span task and the
learning task seem to be more challenging. For instance, the absolute difference
in performance between CLSE-Time and CLSE-Span is 24.11%. Indeed, it is
questionable to suggest a single outstanding system configuration due to the
relatively small number of speech examples that were recorded under laboratory
conditions. Hence, the most effective features were estimated by considering
the top three systems per task. The outcome was that prosodic features and the
CL-Base feature set perform best in general and that the latter should be preferred
since it covers more aspects in speech. Moreover, per speaker standardisation is
generally the best feature normalisation method.

Next, the transferability of SVM-based cognitive load classification systems
was investigated by cross-corpus experiments (Section 6.4), i.e., task-specific
models were evaluated on the speech data of a different cognitive load task.
Here, the effectiveness of the three proposed hand-crafted feature sets was of
interest. When testing is carried out across many different tasks at a constant SVM
complexity, the CL-Base feature set exhibits the best generalisation properties.
Nevertheless, the results are only little above the chance level (33.33%) and
obviously too low for practical use. SVM complexity optimisation for each target
task individually leads—as expected—to better results, even a plus of about 10%.
But in this case, a clear trend regarding effective feature sets cannot be observed.
Another finding is that task-specific systems perform better in domains that are
related to the system-design to some extent; this can be proven, for example,
by employing variants of the Stroop test for model evaluation. Attention was
also given to the fusion of data from various tasks for modelling, while the
test set represents a separate task. In this respect again, the CL-Base feature
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set is superior on average, although the performance is comparable to that of
single-task training. Apart from that, the so-called mixed-corpus methodology
was introduced (Section 6.5), where the core idea was to involve various task-
contexts for modelling, while at the same time knowledge about the target task is
considered. This was realised by combining different corpora for SVM model
training, whereby a subset of one out of these corpora is excluded for testing.
Hand-crafted feature sets were compared, and this time, the CL-Stress feature
set performs better in general, although the differences between results are rather
small. Due to the influence of data from the target task, systems perform better
than in cross-corpus settings, but the results are still below those from evaluations
where training and test data refer to the same task. Therefore, it is strongly
recommended to perform per task modelling and testing, if possible; otherwise,
for modelling, one should collect as much data as possible from tasks that have
characteristics similar to those of the target task.

Another aspect was addressed, which refers to the inter-speaker variability in
use-case scenarios where, however, information about speakers is not present. As
a solution to this issue, cognitive load classification systems were developed that
take the advantages of speaker identification techniques for the normalisation of
features, i.e., feature values were scaled on a per speaker-cluster basis (Section
6.6). By applying speaker-cluster normalisation on feature subsets obtained by
filters and employing multilayer perceptrons for task-dependent classification,
baseline results of the INTERSPEECH 2014 Cognitive Load Sub-Challenge
could be outperformed—a recognition performance of 62.2% was reached, which
corresponds to a difference of 0.6%.

Finally—for achieving aim (3)—regression-based cognitive load recognition
systems were designed and evaluated (Section 6.7). For this purpose, the data
collection of the CoLoSS corpus was used. Support vector regression (SVR),
multilayer perceptrons (MLPs), and Long Short-Term Memory (LSTM) recurrent
neural networks were compared in conjunction with the three proposed feature
sets and feature subsets obtained by the correlation-based feature selection (CFS)
algorithm. The results showed that CFS outperforms all three predefined feature
sets. Another result is that the CoLoSS corpus is not suitable for modelling with
contextual information from the past task trials, which was proven by the use of
unidirectional LSTM networks. The overall best regression-based cognitive load
assessment system is based on SVR. Its outputs are moderately correlated with
the actual values; results of the best MLP system are comparable.
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7.2 Future Work

Different open issues arose during the research work conducted. First, the speech
material used in this thesis was recorded under laboratory conditions. Speaker and
environmental variability have been minimised by using feature normalisation
methods. In realistic scenarios, however, a number of additional factors might
affect the applicability of a cognitive load monitoring system. For instance, differ-
ent channel types can be used, such as telephone or different microphones. This
issue becomes even more serious in an ambient noise context. Hence, databases
that contain speech from a large number of speakers recorded under real-world
conditions are needed to investigate the effects of environmental differences on
both the user’s cognitive load as well as the recognition performance of a system.
It would also be interesting to explore strategies for taking the individual charac-
teristics of users into account, for example, by clustering speakers according to
their expertise level. Moreover, attention should be paid to data selection to better
exploit the amount of training material available for modelling—one way of
achieving this is to use measures of the distance between class centres (Schuller
et al., 2011b).

Another aspect, which should be addressed, is related to the design of the
proposed feature sets (Section 5.1). Teager energy features on its own have shown
excellent results and performed even better than any other feature type in terms of
Stroop test tasks in which users had to cope with stressful conditions (cf. Section
6.3.2). Nevertheless, traditional features represented by the CL-Base feature set
perform better for such tasks than those of the CL-Stress feature set in which
Teager energy features are included. Hence, for the future, the CL-Stress feature
set should be refined to better benefit from stress-related features for cognitive
load recognition.

In all classification experiments conducted in this thesis, cognitive load was
considered a three-class problem. Probably some use-cases require a more
abstract view of cognitive load. For instance, in critical working environments, a
warning system could be employed for the purpose of detecting the operators’
overload. This can be achieved by treating cognitive load as a binary classification
problem: For the data used in this thesis, all speech examples representing low
and medium load can be grouped to one class and those representing the high
load to another one. Alternatively, one can easily divide the continuous numerical
labels of the CoLoSS corpus (Section 3.2) into two intervals by equal-width
binning.

Apart from that, linguistic features have proven to be potential indicators
of the user’s cognitive load. While the combination of linguistic and acoustic
information has been demonstrated for emotion recognition (e.g., Lee et al., 2002;
Schuller et al., 2004), the advantages of combining both information is still an



162 7 Conclusion

open issue for future work in the field of cognitive load recognition. Tasks such as
reading comprehension may serve as a basis where the answers given by subjects
may provide useful information due to the occurrence of spontaneous speech.

More recently, alternative approaches to audio analysis have gained attention,
such as bag-of-audio-words (Bhatia et al., 2017), spectrogram representations
for convolutional neural network architectures (Weißkirchen et al., 2017), and
methods that operate directly on the raw time representation of a signal (Trigeorgis
et al., 2016). It would be interesting to evaluate such approaches for automatic
cognitive load recognition. Modelling with temporal context based on task
trial sequences using Long Short-Term Memory recurrent neural networks have
proven not to be suitable in conjunction with the corpus developed in this thesis (cf.
Section 6.7.2); this topic deserves more attention once databases are created that
contain speech together with detailed information on how cognitive load evolves
over short-time intervals. Moreover, cognitive load recognition systems designed
so far produced per utterance results, although it can be assumed that cognitive
load might vary quickly and application-oriented systems could benefit from
continuous recognition. Continuous recognition can be realised, for example, by
making predictions on smaller units (e.g., words) using dynamic algorithms such
as Hidden Markov Models. In turn, the underlying labelled data is required but
its creation is usually associated with high effort: One way is probably to vary the
level of cognitive load through the task difficulty in short-time intervals. Another
approach could be to continuously label the speech data through the subjective
opinion of individual raters or by using reliable indicators such as physiological
measures.

All in all, it is still a vision of the future but already on the horizon: Reliable
interactive systems being capable of adaptive to the user’s cognitive processes
probably become part of our life as research and technology progress. The
achievements of this thesis contribute to the development of system compo-
nents that are responsible for the automatic assessment of cognitive load from
speech—the effectiveness of speech features has been demonstrated in terms
of new perspectives including cognitive load in the context of learning and the
applicability of parameters that are highly indicative of stress, as well as the use
of regression models, for cognitive load recognition. Two key aspects outside
the scope of this thesis are of tremendous importance and certainly interrelated
for cognitive load monitoring in real-life use-cases: real-time processing and
multimodality. Substantial efforts were made in these directions, for example,
the development of computational methods for real-time feature extraction (e.g.,
Eyben, 2015) and, on the other hand, the exploration of robust multimodal cogni-
tive load measurement with physiological and behavioural modalities (e.g., Chen
et al., 2016). Thereby, the basis for future research by the author of this thesis
can be considered to be given.



Appendix A

Statistics

Statistics of various speech parameters were calculated on the CLSE database
(Section 3.1) and the CoLoSS corpus (Section 3.2). The inter-speaker variability
and task-dependent effects were minimised by performing z-score transformation
on a per speaker basis for each task individually. Regarding the CLSE database,
only the recordings of the training and development set were used, because
information about speakers is not included in the test set.

Appendix A.1 presents means and 95% confidence intervals of speech parame-
ters under different levels of cognitive load (L1: low, L2: medium, and L3: high).
In the case of CoLoSS, discretised labels were used (cf. Section 3.2.5). Statistical
significance in terms of differences between load levels was determined through
pairwise t-tests, with a Bonferroni-adjusted significance level of ˛ D 0.05. For
parameters that contain multiple channels, the relationship to cognitive load was
determined by correlation measurements per feature dimension (Appendix A.2).
Here, the numerical labels of CoLoSS were used. Due to the ordinal nature of
cognitive load labels of the CLSE database as well as non-normal distributed
labels of the CoLoSS corpus, the Spearman’s rank correlation coefficient was
chosen. For the CoLoSS corpus, the sign of the coefficient has been changed due
to the assumptions in terms of cognitive load (cf. Section 3.2.4). The significance
of the correlation was tested (t-test) with the null hypothesis that the relationship
between the speech parameter and the level of cognitive load is zero. Statistical
results including significances are discussed in the corresponding sections of
Chapter 4. The rule for interpreting the size of correlation is provided by Hinkle
et al. (2003). Finally, Appendix A.3 presents the top 100 features ranked by the
information gain along with the average of absolute, binary class correlations
computed using Pearson’s equation.
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A.1 Means and Confidence Intervals
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Figure A.1 Means and 95% confidence intervals of prosodic features under different
levels of cognitive load per task. Abbreviations: AR (syllable-based articulation rate), CD
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A.2 Channel Dependent Correlations
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Figure A.5 Correlations between the level of cognitive load and 12 MFCCs per task;
grey: significance (p < 0.05), black: strong significance (p < 0.01)
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Figure A.6 Correlations between the level of cognitive load and 16 TEO-CB-Auto-Env
channels per task; grey: significance (p < 0.05), black: strong significance (p < 0.01)
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Figure A.7 Correlations between the level of cognitive load and 12 NTD-LFPC channels
per task; grey: significance (p < 0.05), black: strong significance (p < 0.01)
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Figure A.8 Correlations between the level of cognitive load and 12 NFD-LFPC channels
per task; grey: significance (p < 0.05), black: strong significance (p < 0.01)
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A.3 Feature Ranking

Table A.1 Top 100 features ranked by information gain for CLSE-Time

Rank IG CCP Feature

1 0.720 0.522 NTD-LFPC 7 (Mean)
2 0.654 0.521 NTD-LFPC 2 (Mean)
3 0.645 0.499 NTD-LFPC 5 (75th percentile)
4 0.644 0.527 NTD-LFPC 8 (Mean)
5 0.644 0.505 NFD-LFPC 11 (25th percentile)
6 0.636 0.496 NTD-LFPC 1 (Mean)
7 0.632 0.499 NTD-LFPC 7 (75th percentile)
8 0.619 0.500 NTD-LFPC 11 (75th percentile)
9 0.612 0.506 NTD-LFPC 2 (50th percentile)
10 0.607 0.499 NTD-LFPC 4 (75th percentile)
11 0.605 0.509 NTD-LFPC 9 (75th percentile)
12 0.594 0.483 NTD-LFPC 1 (50th percentile)
13 0.593 0.487 NTD-LFPC 5 (50th percentile)
14 0.591 0.510 NTD-LFPC 6 (Mean)
15 0.591 0.520 NTD-LFPC 4 (Mean)
16 0.590 0.511 NTD-LFPC 5 (Mean)
17 0.587 0.487 NTD-LFPC 3 (Mean)
18 0.587 0.506 NTD-LFPC 7 (50th percentile)
19 0.586 0.511 NFD-LFPC 11 (Mean)
20 0.586 0.518 NTD-LFPC 11 (Mean)
21 0.585 0.474 NFD-LFPC 5 (Mean)
22 0.582 0.463 NFD-LFPC 12 (25th percentile)
23 0.574 0.492 NFD-LFPC 6 (Mean)
24 0.570 0.523 NTD-LFPC 9 (Mean)
25 0.565 0.514 NTD-LFPC 8 (50th percentile)
26 0.564 0.504 NTD-LFPC 8 (75th percentile)
27 0.560 0.470 NTD-LFPC 3 (75th percentile)
28 0.554 0.480 NTD-LFPC 12 (50th percentile)
29 0.552 0.516 NFD-LFPC 9 (Mean)
30 0.549 0.512 NTD-LFPC 10 (Mean)
31 0.544 0.490 NFD-LFPC 8 (Mean)
32 0.542 0.470 Intensity (50th percentile)
33 0.542 0.502 NTD-LFPC 11 (50th percentile)
34 0.541 0.509 NTD-LFPC 4 (50th percentile)
35 0.538 0.504 NTD-LFPC 9 (50th percentile)

Continued on next page
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Table A.1—continued from previous page

Rank IG CCP Feature

36 0.538 0.495 NFD-LFPC 11 (50th percentile)
37 0.535 0.497 NFD-LFPC 10 (Mean)
38 0.529 0.480 NTD-LFPC 6 (50th percentile)
39 0.528 0.490 NTD-LFPC 10 (75th percentile)
40 0.522 0.448 NFD-LFPC 12 (50th percentile)
41 0.521 0.410 NFD-LFPC 8 (25th percentile)
42 0.521 0.466 Intensity (25th percentile)
43 0.521 0.479 NTD-LFPC 3 (50th percentile)
44 0.521 0.499 NTD-LFPC 11 (25th percentile)
45 0.520 0.428 NFD-LFPC 12 (Mean)
46 0.518 0.444 NTD-LFPC 12 (75th percentile)
47 0.515 0.469 NTD-LFPC 12 (Mean)
48 0.514 0.443 NTD-LFPC 1 (25th percentile)
49 0.513 0.503 NTD-LFPC 10 (50th percentile)
50 0.508 0.461 NTD-LFPC 4 (25th percentile)
51 0.501 0.476 NFD-LFPC 6 (75th percentile)
52 0.499 0.485 NTD-LFPC 6 (75th percentile)
53 0.499 0.463 Intensity (Mean)
54 0.498 0.454 NFD-LFPC 8 (75th percentile)
55 0.497 0.504 NTD-LFPC 2 (75th percentile)
56 0.497 0.501 NFD-LFPC 10 (25th percentile)
57 0.496 0.495 NFD-LFPC 9 (75th percentile)
58 0.489 0.468 NFD-LFPC 10 (50th percentile)
59 0.487 0.480 NFD-LFPC 11 (75th percentile)
60 0.486 0.483 NTD-LFPC 9 (25th percentile)
61 0.480 0.450 NFD-LFPC 6 (50th percentile)
62 0.479 0.486 NTD-LFPC 10 (25th percentile)
63 0.478 0.432 Utterance duration
64 0.477 0.456 NTD-LFPC 12 (25th percentile)
65 0.475 0.482 NFD-LFPC 9 (50th percentile)
66 0.472 0.478 NTD-LFPC 2 (25th percentile)
67 0.465 0.462 Intensity (Mean �Min)
68 0.464 0.456 NFD-LFPC 2 (50th percentile)
69 0.464 0.480 NFD-LFPC 9 (25th percentile)
70 0.460 0.440 NFD-LFPC 8 (50th percentile)
71 0.459 0.481 NTD-LFPC 1 (75th percentile)
72 0.458 0.456 NTD-LFPC 8 (25th percentile)
73 0.456 0.449 NFD-LFPC 2 (75th percentile)
74 0.453 0.447 NTD-LFPC 6 (25th percentile)
75 0.453 0.421 Phoneme speaking rate

Continued on next page
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Table A.1—continued from previous page

Rank IG CCP Feature

76 0.452 0.466 NFD-LFPC 7 (Mean)
77 0.445 0.429 Syllable speaking rate
78 0.445 0.434 NFD-LFPC 6 (25th percentile)
79 0.438 0.452 Intensity (75th percentile)
80 0.438 0.453 NFD-LFPC 2 (Mean)
81 0.436 0.469 NFD-LFPC 10 (75th percentile)
82 0.436 0.445 NTD-LFPC 5 (25th percentile)
83 0.434 0.420 NFD-LFPC 7 (25th percentile)
84 0.434 0.442 NFD-LFPC 5 (50th percentile)
85 0.431 0.467 NFD-LFPC 5 (75th percentile)
86 0.426 0.423 NFD-LFPC 5 (25th percentile)
87 0.423 0.429 NTD-LFPC 3 (25th percentile)
88 0.420 0.451 NFD-LFPC 4 (Mean)
89 0.401 0.451 NFD-LFPC 7 (75th percentile)
90 0.401 0.420 NFD-LFPC 4 (75th percentile)
91 0.391 0.401 Syllable speaking rate (Mean �Min)
92 0.391 0.413 NFD-LFPC 4 (50th percentile)
93 0.369 0.430 NTD-LFPC 7 (25th percentile)
94 0.366 0.395 Silent pause duration
95 0.365 0.380 NFD-LFPC 12 (75th percentile)
96 0.364 0.421 NFD-LFPC 7 (50th percentile)
97 0.359 0.400 NFD-LFPC 8 (Max)
98 0.358 0.390 Spectral centroid (75th percentile)
99 0.355 0.434 NFD-LFPC 4 (25th percentile)
100 0.351 0.375 Silent pause frequency

Abbreviations: IG (information gain), CCP (Pearson’s correlation coefficient)
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Table A.2 Top 100 features ranked by information gain for CLSE-Dual

Rank IG CCP Feature

1 0.620 0.470 Silent pause frequency ratio
2 0.374 0.429 Silent pause frequency
3 0.331 0.357 Intensity (Mean �Min)
4 0.323 0.399 NTD-LFPC 3 (50th percentile)
5 0.320 0.339 Phoneme speaking rate (SD)
6 0.316 0.366 NTD-LFPC 6 (50th percentile)
7 0.307 0.370 NTD-LFPC 4 (Mean)
8 0.302 0.372 NTD-LFPC 5 (50th percentile)
9 0.302 0.379 NTD-LFPC 3 (Mean)
10 0.292 0.373 NTD-LFPC 4 (50th percentile)
11 0.282 0.386 NTD-LFPC 2 (50th percentile)
12 0.279 0.372 NTD-LFPC 1 (Mean)
13 0.278 0.336 NTD-LFPC 10 (75th percentile)
14 0.273 0.376 NTD-LFPC 2 (Mean)
15 0.273 0.347 NTD-LFPC 10 (Mean)
16 0.270 0.340 NTD-LFPC 10 (50th percentile)
17 0.270 0.319 NTD-LFPC 12 (Mean)
18 0.268 0.324 NFD-LFPC 11 (50th percentile)
19 0.268 0.320 NFD-LFPC 10 (75th percentile)
20 0.266 0.336 NTD-LFPC 11 (50th percentile)
21 0.266 0.321 NFD-LFPC 10 (Mean)
22 0.262 0.354 NTD-LFPC 8 (50th percentile)
23 0.260 0.341 NFD-LFPC 7 (25th percentile)
24 0.259 0.348 Intensity (25th percentile)
25 0.258 0.303 Syllable duration (Max)
26 0.258 0.348 Intensity (Mean)
27 0.257 0.319 NTD-LFPC 12 (75th percentile)
28 0.256 0.335 Intensity (75th percentile)
29 0.256 0.359 NFD-LFPC 7 (50th percentile)
30 0.256 0.378 NFD-LFPC 4 (Mean)
31 0.255 0.362 NTD-LFPC 8 (Mean)
32 0.252 0.359 NTD-LFPC 7 (75th percentile)
33 0.252 0.356 NTD-LFPC 9 (Mean)
34 0.252 0.325 NTD-LFPC 11 (75th percentile)
35 0.250 0.348 NTD-LFPC 1 (50th percentile)
36 0.250 0.291 NFD-LFPC 12 (75th percentile)
37 0.250 0.350 NTD-LFPC 8 (75th percentile)
38 0.248 0.339 NTD-LFPC 9 (50th percentile)
39 0.248 0.331 NTD-LFPC 11 (Mean)
40 0.244 0.281 NFD-LFPC 12 (Mean)

Continued on next page
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Table A.2—continued from previous page

Rank IG CCP Feature

41 0.244 0.303 NTD-LFPC 9 (75th percentile)
42 0.243 0.357 NTD-LFPC 3 (25th percentile)
43 0.241 0.360 NTD-LFPC 9 (25th percentile)
44 0.240 0.361 NTD-LFPC 7 (50th percentile)
45 0.238 0.358 NTD-LFPC 6 (Mean)
46 0.238 0.340 NTD-LFPC 8 (25th percentile)
47 0.237 0.338 NTD-LFPC 4 (25th percentile)
48 0.237 0.337 Intensity (50th percentile)
49 0.236 0.350 NFD-LFPC 4 (75th percentile)
50 0.236 0.321 NFD-LFPC 3 (Mean)
51 0.236 0.291 Syllable duration (Max �Mean)
52 0.236 0.356 NTD-LFPC 7 (Mean)
53 0.235 0.326 �Intensity (SD)
54 0.235 0.352 NFD-LFPC 4 (50th percentile)
55 0.233 0.352 NTD-LFPC 5 (Mean)
56 0.233 0.328 NTD-LFPC 3 (75th percentile)
57 0.232 0.306 NTD-LFPC 12 (50th percentile)
58 0.231 0.240 TEO-CB-Auto-Env 15 (Mean �Min)
59 0.230 0.334 NTD-LFPC 11 (Mean �Min)
60 0.230 0.350 NFD-LFPC 7 (Mean)
61 0.226 0.350 NTD-LFPC 1 (75th percentile)
62 0.225 0.322 NTD-LFPC 4 (75th percentile)
63 0.223 0.347 NTD-LFPC 5 (25th percentile)
64 0.223 0.327 NTD-LFPC 2 (75th percentile)
65 0.223 0.288 �NTD-LFPC 2 (50th percentile)
66 0.220 0.312 NFD-LFPC 9 (75th percentile)
67 0.217 0.254 �NTD-LFPC 3 (50th percentile)
68 0.217 0.336 NFD-LFPC 8 (75th percentile)
69 0.217 0.323 NFD-LFPC 10 (50th percentile)
70 0.216 0.359 NTD-LFPC 6 (25th percentile)
71 0.215 0.349 NTD-LFPC 10 (25th percentile)
72 0.214 0.339 NTD-LFPC 7 (25th percentile)
73 0.214 0.288 �NTD-LFPC 4 (75th percentile)
74 0.212 0.335 NFD-LFPC 6 (Mean)
75 0.211 0.313 NFD-LFPC 5 (Mean)
76 0.208 0.281 Speech segment length (Max)
77 0.208 0.332 NTD-LFPC 2 (25th percentile)
78 0.208 0.321 NFD-LFPC 3 (75th percentile)
79 0.208 0.314 NFD-LFPC 3 (50th percentile)
80 0.207 0.319 NFD-LFPC 9 (50th percentile)

Continued on next page
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Table A.2—continued from previous page

Rank IG CCP Feature

81 0.206 0.271 NFD-LFPC 12 (50th percentile)
82 0.206 0.298 NFD-LFPC 11 (Mean)
83 0.205 0.328 NFD-LFPC 4 (25th percentile)
84 0.205 0.322 NTD-LFPC 6 (75th percentile)
85 0.203 0.329 NTD-LFPC 1 (25th percentile)
86 0.203 0.312 NTD-LFPC 11 (25th percentile)
87 0.199 0.327 NFD-LFPC 9 (Mean)
88 0.197 0.285 NFD-LFPC 4 (Max)
89 0.196 0.326 NFD-LFPC 10 (25th percentile)
90 0.194 0.311 NFD-LFPC 10 (Mean �Min)
91 0.194 0.338 Mean silent pause duration
92 0.192 0.248 TEO-CB-Auto-Env 14 (Max)
93 0.192 0.311 Phoneme speaking rate
94 0.191 0.246 NTD-LFPC 8 (Regr. intercept)
95 0.190 0.305 NTD-LFPC 10 (Mean �Min)
96 0.190 0.303 NFD-LFPC 11 (75th percentile)
97 0.189 0.280 NTD-LFPC 7 (Position of max)
98 0.188 0.325 NFD-LFPC 8 (50th percentile)
99 0.187 0.278 Speech segment length (SD)
100 0.186 0.321 NFD-LFPC 6 (50th percentile)

Abbreviations: IG (information gain), CCP (Pearson’s correlation coefficient)
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Table A.3 Top 100 features ranked by information gain for CLSE-Span

Rank IG CCP Feature

1 0.338 0.398 Onset latency
2 0.060 0.127 Intensity (Position of max)
3 0.058 0.177 F0 (Regr. intercept)
4 0.057 0.104 F2 centre (Regr. slope)
5 0.057 0.101 NTD-LFPC 3 (Position of max)
6 0.047 0.125 NFD-LFPC 3 (Position of max)
7 0.047 0.122 NTD-LFPC 9 (Position of max)
8 0.044 0.085 NTD-LFPC 5 (Position of max)
9 0.043 0.089 Intensity (Position of max)
10 0.043 0.089 NTD-LFPC 6 (Position of max)
11 0.041 0.090 Intensity (Position of min)
12 0.039 0.097 NFD-LFPC 5 (Position of max)
13 0.038 0.070 ��Intensity (Position of min)
14 0.038 0.098 NFD-LFPC 1 (Position of max)
15 0.037 0.119 NTD-LFPC 11 (Position of max)
16 0.036 0.144 MFCC 1 (75th percentile)
17 0.035 0.080 NTD-LFPC 4 (Position of max)
18 0.035 0.089 NTD-LFPC 8 (Position of max)
19 0.034 0.070 NFD-LFPC 3 (Position of max)
20 0.034 0.086 ��NTD-LFPC 5 (Position of min)
21 0.034 0.091 NTD-LFPC 12 (Position of max)
22 0.034 0.081 TEO-CB-Auto-Env 13 (Position of max)
23 0.033 0.048 TEO-CB-Auto-Env 11 (Position of max)
24 0.033 0.112 NTD-LFPC 10 (Position of max)
25 0.032 0.096 TEO-CB-Auto-Env 16 (Position of max)
26 0.032 0.095 NTD-LFPC 7 (Position of max)
27 0.032 0.105 MFCC 3 (Position of max)
28 0.031 0.065 NTD-LFPC 12 (Position of min)
29 0.030 0.085 NTD-LFPC 2 (Position of max)
30 0.030 0.068 TEO-CB-Auto-Env 8 (Position of max)
31 0.030 0.128 MFCC 1 (Max)
32 0.030 0.117 MFCC 6 (75th percentile)
33 0.029 0.079 NFD-LFPC 4 (Position of max)
34 0.029 0.054 NFD-LFPC 12 (Position of min)
35 0.029 0.088 NFD-LFPC 9 (Position of max)
36 0.029 0.093 NFD-LFPC 7 (Position of max)
37 0.029 0.071 ��NFD-LFPC 10 (Position of min)
38 0.028 0.076 NFD-LFPC 6 (Position of max)
39 0.028 0.057 NTD-LFPC 10 (Position of min)
40 0.028 0.094 TEO-CB-Auto-Env 14 (Position of min)

Continued on next page
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Table A.3—continued from previous page

Rank IG CCP Feature

41 0.028 0.057 NTD-LFPC 11 (Position of min)
42 0.028 0.099 NFD-LFPC 10 (Position of max)
43 0.028 0.098 TEO-CB-Auto-Env 10 (Position of max)
44 0.027 0.074 NFD-LFPC 8 (Position of max)
45 0.027 0.052 NTD-LFPC 5 (Position of min)
46 0.027 0.072 NTD-LFPC 1 (Position of min)
47 0.026 0.132 MFCC 1 (SD)
48 0.026 0.062 NTD-LFPC 7 (Position of min)
49 0.026 0.079 NTD-LFPC 1 (Position of max)
50 0.026 0.083 ��Intensity (Position of max)
51 0.026 0.042 F1 bandwidth (Position of min)
52 0.026 0.069 NTD-LFPC 9 (Position of min)
53 0.026 0.072 ��NFD-LFPC 12 (Position of min)
54 0.025 0.112 MFCC 3 (Regr. intercept)
55 0.025 0.134 NFD-LFPC 12 (25th percentile)
56 0.025 0.053 NFD-LFPC 8 (Position of min)
57 0.025 0.087 TEO-CB-Auto-Env 14 (Position of max)
58 0.025 0.086 CPP (Position of min)
59 0.025 0.088 NFD-LFPC 9 (50th percentile)
60 0.025 0.086 HNR (Position of max)
61 0.024 0.035 ��MFCC 5 (Position of min)
62 0.024 0.121 CPP (Regr. intercept)
63 0.024 0.074 TEO-CB-Auto-Env 14 (Position of max)
64 0.024 0.054 TEO-CB-Auto-Env 3 (Position of max)
65 0.024 0.089 ��TEO-CB-Auto-Env 16 (Position of max)
66 0.023 0.059 NFD-LFPC 1 (Regr. intercept)
67 0.023 0.086 CPP (Position of max)
68 0.023 0.035 NFD-LFPC 10 (Position of max)
69 0.023 0.105 F2 centre (Regr. intercept)
70 0.023 0.074 NFD-LFPC 11 (Position of max)
71 0.023 0.098 ��NTD-LFPC 3 (Position of min)
72 0.023 0.058 ��NTD-LFPC 12 (Position of max)
73 0.023 0.072 TEO-CB-Auto-Env 9 (Position of max)
74 0.022 0.071 TEO-CB-Auto-Env 4 (Position of max)
75 0.022 0.080 ��TEO-CB-Auto-Env 14 (Position of min)
76 0.022 0.090 Jitter (Position of min)
77 0.022 0.087 ��CPP (Position of max)
78 0.022 0.075 ��NTD-LFPC 12 (Position of min)
79 0.022 0.091 ��NTD-LFPC 11 (Position of min)
80 0.022 0.091 MFCC 3 (Regr. slope)

Continued on next page
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Table A.3—continued from previous page

Rank IG CCP Feature

81 0.022 0.052 NTD-LFPC 8 (Position of max)
82 0.022 0.064 ��NTD-LFPC 10 (Position of min)
83 0.022 0.085 TEO-CB-Auto-Env 3 (Position of max)
84 0.022 0.053 NTD-LFPC 6 (Position of min)
85 0.022 0.066 F2 centre (Min)
86 0.022 0.061 NTD-LFPC 3 (Position of min)
87 0.022 0.094 NFD-LFPC 2 (Position of max)
88 0.022 0.094 ��TEO-CB-Auto-Env 15 (Position of max)
89 0.022 0.065 ��NTD-LFPC 4 (Position of min)
90 0.022 0.059 MFCC 7 (Regr. intercept)
91 0.022 0.068 MFCC 2 (Regr. intercept)
92 0.021 0.064 NTD-LFPC 12 (Position of max)
93 0.021 0.059 ��NFD-LFPC 5 (Position of max)
94 0.021 0.080 NFD-LFPC 9 (Position of min)
95 0.021 0.056 NFD-LFPC 9 (Position of max)
96 0.021 0.097 ��NTD-LFPC 6 (Position of min)
97 0.021 0.101 MFCC 7 (25th percentile)
98 0.021 0.043 F0 (Regr. slope)
99 0.021 0.068 NTD-LFPC 7 (Position of max)
100 0.021 0.094 ��NTD-LFPC 2 (Position of min)

Abbreviations: IG (information gain), CCP (Pearson’s correlation coefficient)
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Table A.4 Top 100 features ranked by information gain for CoLoSS

Rank IG CCP Feature

1 0.549 0.223 Mean silent pause duration
2 0.549 0.215 Silent pause frequency ratio
3 0.515 0.223 Silent pause duration ratio
4 0.488 0.225 Silent pause duration
5 0.458 0.220 Silent pause frequency
6 0.455 0.065 Syllable speaking rate (Min)
7 0.375 0.016 Syllable speaking rate (Max)
8 0.267 0.064 Phoneme speaking rate (Max)
9 0.173 0.211 Phoneme speaking rate (Min)
10 0.154 0.234 Utterance duration
11 0.080 0.204 Phoneme speaking rate
12 0.042 0.040 Phoneme speaking rate (Position of min)
13 0.042 0.043 NTD-LFPC 11 (Position of min)
14 0.042 0.048 Phoneme duration (Position of max)
15 0.041 0.022 NTD-LFPC 12 (Position of min)
16 0.036 0.021 NTD-LFPC 3 (Position of min)
17 0.035 0.036 Syllable speaking rate (Regr. slope)
18 0.034 0.044 NTD-LFPC 5 (Position of min)
19 0.031 0.036 NFD-LFPC 12 (Position of min)
20 0.030 0.124 Phoneme articulation rate
21 0.030 0.008 Syllable speaking rate (Regr. intercept)
22 0.029 0.023 Syllable speaking rate (Mean �Min)
23 0.027 0.147 Phoneme speaking rate (SD)
24 0.026 0.123 Phoneme duration (Mean)
25 0.026 0.122 Intensity (Regr. slope)
26 0.024 0.110 Phoneme duration (Mean �Min)
27 0.024 0.124 Phoneme speaking rate (Mean �Min)
28 0.024 0.090 Syllable speaking rate
29 0.023 0.140 Phoneme speaking rate (Max �Mean)
30 0.023 0.023 Syllable speaking rate (Position of max)
31 0.023 0.137 Phoneme duration (SD)
32 0.023 0.029 NFD-LFPC 11 (Position of min)
33 0.022 0.091 NTD-LFPC 9 (Regr. slope)
34 0.021 0.104 Consonant duration (Mean)
35 0.021 0.100 NTD-LFPC 11 (Regr. slope)
36 0.020 0.107 Consonant duration (Max)
37 0.020 0.101 NTD-LFPC 3 (Regr. slope)
38 0.019 0.091 NTD-LFPC 10 (Regr. slope)
39 0.019 0.110 Phoneme duration (Max)
40 0.019 0.106 NTD-LFPC 12 (Regr. slope)

Continued on next page
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Table A.4—continued from previous page

Rank IG CCP Feature

41 0.019 0.076 NTD-LFPC 7 (Regr. slope)
42 0.019 0.055 ��NTD-LFPC 7 (SD)
43 0.018 0.085 NTD-LFPC 8 (Regr. slope)
44 0.018 0.095 Phoneme speaking rate (Regr. intercept)
45 0.018 0.079 ��MFCC 1 (25th percentile)
46 0.017 0.060 ��NTD-LFPC 9 (SD)
47 0.017 0.034 Syllable duration (Max)
48 0.017 0.058 ��NTD-LFPC 6 (SD)
49 0.017 0.113 Consonant duration (SD)
50 0.017 0.051 �NFD-LFPC 2 (SD)
51 0.017 0.055 ��NTD-LFPC 10 (SD)
52 0.017 0.104 Consonant duration (Mean �Min)
53 0.017 0.072 ��NTD-LFPC 7 (75th percentile)
54 0.017 0.054 ��NTD-LFPC 8 (SD)
55 0.017 0.073 NTD-LFPC 6 (Regr. slope)
56 0.016 0.077 ��NTD-LFPC 6 (75th percentile)
57 0.016 0.078 NFD-LFPC 9 (Regr. slope)
58 0.016 0.084 NFD-LFPC 11 (Regr. slope)
59 0.016 0.021 Syllable articulation rate
60 0.016 0.050 �NFD-LFPC 4 (SD)
61 0.016 0.069 ��NTD-LFPC 11 (75th percentile)
62 0.016 0.031 �NTD-LFPC 11 (Regr. slope)
63 0.016 0.092 Consonant duration (Max �Mean)
64 0.015 0.073 NTD-LFPC 5 (Regr. slope)
65 0.015 0.066 ��Spectral centroid (75th percentile)
66 0.015 0.043 ��NFD-LFPC 5 (SD)
67 0.015 0.070 NFD-LFPC 12 (Regr. slope)
68 0.015 0.017 Syllable duration (Mean)
69 0.015 0.059 ��NTD-LFPC 5 (SD)
70 0.015 0.074 ��MFCC 1 (SD)
71 0.015 0.068 ��NTD-LFPC 4 (SD)
72 0.015 0.095 ��MFCC 2 (75th percentile)
73 0.015 0.038 �NFD-LFPC 5 (SD)
74 0.015 0.079 NTD-LFPC 4 (Regr. slope)
75 0.015 0.038 �NTD-LFPC 12 (Regr. slope)
76 0.014 0.072 ��MFCC 3 (SD)
77 0.014 0.026 ��NFD-LFPC 2 (SD)
78 0.014 0.067 ��NTD-LFPC 10 (75th percentile)
79 0.014 0.041 ��NTD-LFPC 11 (SD)
80 0.014 0.044 �NTD-LFPC 5 (75th percentile)

Continued on next page
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Table A.4—continued from previous page

Rank IG CCP Feature

81 0.014 0.079 ��NFD-LFPC 12 (75th percentile)
82 0.014 0.062 ��NTD-LFPC 2 (SD)
83 0.014 0.057 ��NTD-LFPC 3 (SD)
84 0.014 0.008 �NFD-LFPC 5 (Mean)
85 0.014 0.079 F0 (Regr. slope)
86 0.014 0.075 ��NFD-LFPC 6 (75th percentile)
87 0.014 0.088 ��NFD-LFPC 10 (75th percentile)
88 0.014 0.042 �NTD-LFPC 6 (SD)
89 0.014 0.040 �NFD-LFPC 3 (Regr. slope)
90 0.014 0.091 Phoneme duration (Max �Mean)
91 0.014 0.039 ��Intensity (Regr. slope)
92 0.014 0.022 NTD-LFPC 7 (Position of min)
93 0.013 0.061 NFD-LFPC 5 (Regr. slope)
94 0.013 0.074 ��NFD-LFPC 8 (75th percentile)
95 0.013 0.060 NFD-LFPC 10 (Regr. slope)
96 0.013 0.018 ��NFD-LFPC 3 (SD)
97 0.013 0.046 �NTD-LFPC 6 (75th percentile)
98 0.013 0.059 NTD-LFPC 1 (Regr. slope)
99 0.013 0.014 �NFD-LFPC 5 (75th percentile)
100 0.013 0.053 ��NFD-LFPC 7 (SD)

Abbreviations: IG (information gain), CCP (Pearson’s correlation coefficient)
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Hyperparameter Settings

Appendix B.1 to B.5 present the optimal model-hyperparameter settings from the
experiments conducted in this thesis (Section 6.3 to 6.7).
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B.1 Within-Corpus Evaluation

10-5 10-3 10-1

SN

SVM complexity C

CFS (feature selection)

CCp100 (feature selection)
IG100 (feature selection)

CL-Stress (feature set)

CL-Base (feature set)

CL-Extended (feature set)
Fusion of TEO features

12 NFD-LFPC+D+DD
12 NTD-LFPC+D+DD

16 TEO-CB-Auto-Env+D+DD
Fusion of voice quality features
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HNR+D+DD

Shimmer+D+DD
Jitter+D+DD

Fusion of spectral features

Formants F1-3(f ,b )+D+DD
12 MFCC+D+DD

Spectral centroid+D+DD
Fusion of prosodic features

Duration

F0+D+DD
Intensity+D+DD

10-5 10-3 10-1

PN

SVM complexity C

10-5 10-3 10-1

TN

SVM complexity C

CLSE-Time    CLSE-Dual    CLSE-Span    CoLoSS

Figure B.1 Optimal SVM complexity C per feature category (vertically arranged)
and normalisation method (horizontally arranged, above) for within-corpus evaluation.
Symbols indicate corpora. Abbreviations: PN (partition normalisation), SN (speaker
normalisation), TN (training normalisation)
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B.2 Cross-Corpus Evaluation
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SVM complexity C

CLSE-Time    CLSE-Dual    CLSE-Span    CoLoSS       

Figure B.2 Optimal SVM complexity C per feature set (vertically arranged) and feature
normalisation method (horizontally arranged, above) for cross-corpus evaluation by train-
ing on one corpus and testing against the remaining corpora. Symbols indicate corpora
used for training. Abbreviations: CN (corpus normalisation), SN (speaker normalisation),
TN (training normalisation)
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Figure B.3 Optimal SVM complexity C per feature set and individual test case (ver-
tically arranged), and feature normalisation method (horizontally arranged, above) for
cross-corpus evaluation. Symbols indicate corpora used for training. Abbreviations: CN
(corpus normalisation), SN (speaker normalisation), TN (training normalisation)
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10-5 10-3 10-1

SN

SVM complexity C

CL-Stress

CL-Base

CL-Extended

10-5 10-3 10-1

CN

SVM complexity C
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SVM complexity C

CLSE-Time    CLSE-Dual    CLSE-Span    CoLoSS LOCOCV  

Figure B.4 Optimal SVM complexity C per feature set (vertically arranged) and feature
normalisation method (horizontally arranged, above) for cross-corpus evaluation by corpus
fusion for model training and testing against a separate corpus. Symbols indicate corpora
used for testing and LOCOCV (leave-one-corpus-out cross-validation with constant C ).
Abbreviations: CN (corpus normalisation), SN (speaker normalisation), TN (training
normalisation)

B.3 Mixed-Corpus Evaluation
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CLSE-Time    CLSE-Dual    CLSE-Span    CoLoSS       

Figure B.5 Optimal SVM complexity C per feature set (vertically arranged) and feature
normalisation method (horizontally arranged, above) for mixed-corpus evaluation. Sym-
bols indicate corpora used for testing. Abbreviations: PN (partition normalisation), SN
(speaker normalisation), TN (training normalisation)
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B.4 COMPARE 2014—Cognitive Load Sub-
Challenge
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SN

SVM complexity C

CFS (feature selection)
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CLSE-Time    CLSE-Dual    CLSE-Span    

Figure B.6 SVM complexity C optimised on the development set of the Cognitive Load
Sub-Challenge per feature category (vertically arranged) and feature normalisation method
(horizontally arranged, above). Symbols indicate corpora. Abbreviations: PN (partition
normalisation), SN (speaker normalisation), TN (training normalisation)
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Figure B.7 Number of MLP hidden nodes optimised on the development set of the Cog-
nitive Load Sub-Challenge per feature category (vertically arranged) and feature normali-
sation method (horizontally arranged, above). Symbols indicate corpora. Abbreviations:
PN (partition normalisation), SN (speaker normalisation), TN (training normalisation)
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B.5 Regression Approaches
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Figure B.8 Optimal SVR complexity C per feature category (vertically arranged) and
feature normalisation method (horizontally arranged, above) for the prediction of the
secondary task efficiency of CoLoSS. Abbreviations: PN (partition normalisation), SN
(speaker normalisation), TN (training normalisation)
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Figure B.9 Optimal number of MLP hidden nodes per feature category (vertically ar-
ranged) and feature normalisation method (horizontally arranged, above) for the prediction
of the secondary task efficiency of CoLoSS. Abbreviations: PN (partition normalisation),
SN (speaker normalisation), TN (training normalisation)
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Figure B.10 Optimal number of LSTM memory blocks per feature category (verti-
cally arranged) and feature normalisation method (horizontally arranged, above) for the
prediction of the secondary task efficiency of CoLoSS. Abbreviations: PN (partition
normalisation), SN (speaker normalisation), TN (training normalisation)
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