Grundlagen von Support Vector Machines (SVM)

Jens Pönisch

2019-03-16

Motivation

- Masterarbeit Sandy Bitterlich 2016
- Optimierungsverfahren im Machine Learning
- ADMM \rightarrow SVM \rightarrow MPI
- Eigene Implementierung des kompletten Prozesses.

Bezeichnungen

$$\mathbf{x} = (x_1, \ldots, x_n)^\mathsf{T}$$

 \mathbb{R}^n

$$\langle \mathbf{x},\,\mathbf{y}\rangle=x_1y_1+\,\ldots\,+x_ny_n$$

$$\|\mathbf{x}\| = \sqrt{x_1^2 + \ldots + x_n^2}$$

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)^\mathsf{T}$$

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x})$$

s. t.

Vektor mit *n* Komponenten.

Menge aller *n*-dimensionalen reellwertigen Vektoren

Skalarprodukt der Vektoren \mathbf{x} und \mathbf{y} .

Euklidsche Norm (= Länge) des Vektors \mathbf{x} .

Partielle Ableitung der reellwertigen Funktion $f(\mathbf{x})$ nach allen Komponenten.

Der Vektor \mathbf{x} , für den $f(\mathbf{x})$ minimal wird.

Nebenbedingungen (subject to).

Machine Learning

- Teilgebiet der Künstlichen Intelligenz.
- Ziel: «Erlernen» eines Modells aus vorhandenen Trainingsdaten.
- Verfahrensklassen des Machine Learning:
 - Supervised Learning: Für Trainingsdaten sind korrekte Ergebnisse bekannt, für neue Daten soll Ergebnis vorhergesagt werden.
 - Unsupervised Learning: Es gibt keine Ergebnisse, gesucht sind Strukturen innerhalb der Daten (z. B. Cluster).
 - Reinforcement Learning: Eine bestimmte Strategie wird bewertet, Suche nach optimaler Strategie (Geländeerkundungen, optimale Wege).
- SVM ist Verfahren des Supervised Learning.
- Gesuchtes Ergebnis für neue Daten ist entweder Zugehörigkeit zu bestimmter Klasse (Klassifikation) oder stetige Größe (Regression).
- Hier nur Klassifikation.

Klassifikation: Ziel und Vorgehen

- Ein neues Objekt (Datenpunkt) soll einer Klasse zugeordnet werden
 (SPAM – HAM, Katze – Hund – Pferd, Kunde wird Produkt kaufen oder nicht, . . .).
- Für jeden Datenpunkt gleiche Menge von Daten (Features, Komponenten) vor, die als reelle Zahlen codiert sind (Anzahl Worthäufigkeiten, Pixelwerte, Alter, Geschlecht, bisher gekaufte Produkte, ...).
- Eine bestimmte Zahl von Daten ist bereits klassifiziert (Label).
- ullet Zunächst genau zwei Klassen mit den Labels -1 und +1.
- Aus den klassifizierten Daten (Trainingsdaten) wird das Modell erstellt.
- Mithilfe des Modells werden neue Daten klassifiziert.

Geschichte der Support Vector Machine

- Lineare SVM: Vapnik und Chervonenkis 1963.
- Kernel Trick: Boser, Guyon, Vapnik 1992.
- Soft Margin: Cortes, Vapnik 1993–1995.
- Weitere Entwicklungen bei Optimierungsverfahren und Mehrklassen-SVM.

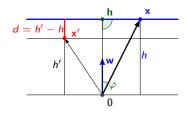
Prinzipielles Vorgehen

- Betrachten Datenpunkte als Punkte im (euklidschen) Raum.
- Konstruieren eine Hyperebene, die beide Punktklassen voneinander «optimal» trennt → Modell.
- \bullet Für neuen Punkt wird bestimmt, auf welcher Seite der Hyperebene er liegt \to Klasse.

Fragen:

- Bestimmen der Hyperebene?
- Was ist «optimal»?
- Bestimme die Seite der Ebene für einen Punkt.

Abstand eines Punktes von Ebene



- w Vektor senkrecht zur Ebene, x beliebiger Punkt auf Ebene, φ
 Winkel zwischen w und x.
- Abstand der Ebene vom Ursprung: $h = ||\mathbf{x}|| \cos \varphi$ gegeben.
- Skalarprodukt: $\langle \mathbf{w}, \mathbf{x} \rangle = \|\mathbf{w}\| \cdot \|\mathbf{x}\| \cdot \cos \varphi$
- Also $h = \frac{\langle \mathbf{w}, \mathbf{x} \rangle}{\|\mathbf{w}\|}$

• Setzen $b := -h \cdot ||\mathbf{w}||$, also

$$\frac{\langle \mathbf{w}, \mathbf{x} \rangle + b}{\|\mathbf{w}\|} = 0$$

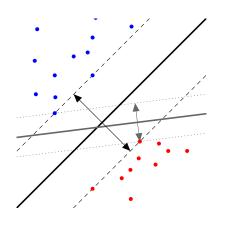
(Ebenengleichung).

• Punkt \mathbf{x}' liegt auf einer Parallelebene mit Abstand $h' = \frac{\langle \mathbf{w}, \mathbf{x}' \rangle}{\|\mathbf{w}\|}$ vom Ursprung, also Abstand von der Ebene

$$d = h' - h = h' + \frac{b}{\|\mathbf{w}\|}$$
$$= \frac{\langle \mathbf{w}, \mathbf{x}' \rangle + b}{\|\mathbf{w}\|}$$

- Multiplikation von w und b mit positiven Faktor verändert Abstand nicht.
- Multiplikation mit negativem Faktor vertauscht Seiten der Ebene.

Grundidee der SVM



 Lege die Hyperebene so, dass der kleinste Abstand eines Punktes zur Ebene möglichst groß ist (und auf der «richtigen» Seite/Klasse t liegt):

$$t\left(rac{\langle \mathbf{w}, \, \mathbf{x}
angle + b}{\|\mathbf{w}\|}
ight) o \max, \quad t \in \{-1, \, +1\}$$

- Möglichst breiter «Streifen» unterhalb und oberhalb der Ebene, der frei von Trainingspunkten ist.
- Punkte auf dem «Rand» heißen Supportvektoren.
- Neue Punkte werden damit hoffentlich «richtig» klassifiziert.

Optimierungsproblem

$$\begin{aligned} & \operatorname*{arg\,max}_{\mathbf{w},\,b} \left\{ \min_{m=1,\,...,\,M} t_m \left(\frac{\langle \mathbf{w},\, \mathbf{x}_m \rangle + b}{\|\mathbf{w}\|} \right) \right\} \\ & = \operatorname*{arg\,max}_{\mathbf{w},\,b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{m=1,\,...,\,M} t_m \left(\langle \mathbf{w},\, \mathbf{x}_m \rangle + b \right) \right\} \end{aligned}$$

- Wähle die Ebene **w**, *b* so, dass der kleinste Abstand eines Punktes zur ihr maximiert wird.
- Doppeloptimierung schwierig, deshalb Umformung.

Vereinfachung des Optimierungsproblems

• Sei κ das Minimum, damit hat jeder Punkt mindestens den Abstand $\pm \kappa$ von der Ebene, also

$$t_m(\langle \mathbf{w}, \mathbf{x}_m \rangle + b) \ge \kappa > 0, m = 1, \ldots, M$$

• Teilen **w** und *b* durch κ (Ebenenabstand ändert sich nicht):

$$t_m\left(\langle \mathbf{w}', \mathbf{x}_m \rangle + b'\right) \ge 1, \ m = 1, \ldots, M$$

• Wir erhalten damit das neue Problem mit Nebenbedingungen:

$$\operatorname*{arg\,max}_{\mathbf{w},\,b} \left\{ \frac{1}{\|\mathbf{w}\|} \right\}$$
 s. t. $t_m \left(\langle \mathbf{w},\, \mathbf{x}_m \rangle + b \right) \geq 1, \; m = 1, \, \dots, \, M$

- Wenn $\frac{1}{\|\mathbf{w}\|}$ maximal, dann $\|\mathbf{w}\|$ minimal, ebenso $\|\mathbf{w}\|^2$.
- Fügen noch einen Faktor $\frac{1}{2}$ ein.

Primales Optimierungsproblem der linearen SVM

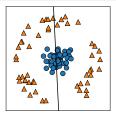
$$\begin{split} &\underset{\mathbf{w},\,b}{\arg\min}\,\frac{1}{2}\|\mathbf{w}\|^2\\ \text{s. t.} &\quad t_m\left(\langle\mathbf{w},\,\mathbf{x}_m\rangle+b\right)\geq 1,\; m=1,\,\ldots,\,M \end{split}$$

- Lösung mit iterativen Verfahren, z. B. mit Stochastic Gradient Descent (SGD) in scikit-learn.
- Komplexität:

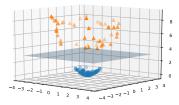
$$O(k \cdot M \cdot \tilde{n})$$

mit Iterationszahl k und Komponentenzahl \tilde{n} jedes Datenpunktes ungleich 0.

Problem 1: Keine lineare Trennung möglich



 Lineare Trennung nicht möglich.



 Mit Radius als neue Komponente. Nichtlineare Transformation: Verknüpfen von Komponenten, hier

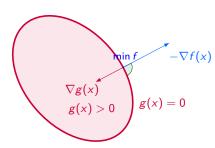
$$\Phi(\mathbf{x}) = (x_1, x_2, x_1^2 + x_2^2)^{\mathsf{T}}$$

• Allgemein: Verknüpfung von Komponentenpaaren $a_{ii}x_i^2 + a_{ij}x_ix_j + a_{jj}x_j^2 + b_ix_i + b_jx_j$.

Probleme:

- Zahl der Komponenten steigt extrem: vielleicht auch Tripel, Quadrupel, höhere Potenzen notwendig.
- Große Zahl frei wählbarer
 Parameter: welche Werte wählen?

Duales Problem



- Verallgemeinertes Problem: $f(\mathbf{x}) \rightarrow \min$, s. t. $g(\mathbf{x}) \ge 0$.
- Lagrange-Formulierung:

$$\mathcal{L}_a(\mathbf{x}) = f(\mathbf{x}) - a \cdot g(\mathbf{x})$$
 s. t. $g(\mathbf{x}) \geq 0, \ a \geq 0$

• Liegt das Optimum auf dem Rand $g(\mathbf{x}) = 0$, liegen ∇f und ∇g auf einer Geraden, also:

$$\nabla \mathcal{L}_{a}(\mathbf{x}) = \nabla f(\mathbf{x}) - a \cdot \nabla g(\mathbf{x}) = \mathbf{0}$$

- Wenn Optimum nicht auf Rand, dann $\nabla f(\mathbf{x}) = 0$, damit a = 0.
- Umformen von $\nabla \mathcal{L}_{\mathbf{a}}(\mathbf{x}) = 0$ nach \mathbf{x} .
- Eliminieren in $\mathcal L$ Parameter $\mathbf x \to$ neues Optimierungsproblem in a.
- Mehrere Nebenbedingungen g_m(x) ≥ 0:

$$\mathcal{L}_{\mathsf{a}}(\mathsf{x}) = f(\mathsf{x}) - \sum_{m=1}^{M} a_m \cdot g_m(\mathsf{x})$$

• Was bringt das?

Langrangefunktion für lineare SVM

• Nebenbedingung umformulieren $(g(\mathbf{x}) \ge 0)$:

$$t_m(\langle \mathbf{w}, \mathbf{x}_m \rangle + b) - 1 \geq 0$$

• Lagrangefunktion in w und b, Lagrange-Parameter a

$$\mathcal{L}_{\mathbf{a}}(\mathbf{w}, b) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{m=1}^{M} a_m (t_m (\langle \mathbf{w}, \mathbf{x}_m \rangle + b) - 1)$$

- Setze alle Ableitungen nach w_i und b auf 0, ersetze alle w_i und b.
- Optimierungsproblem in a.

Duales Problem

$$\arg\min_{\mathbf{a}} \left\{ \frac{1}{2} \sum_{i=1}^{M} \sum_{k=1}^{M} a_i a_k t_i t_k \langle x_i, x_k \rangle - \sum_{i=1}^{M} a_i \right\}$$
s. t.
$$a_i \geq 0, \quad \sum_{i=1}^{M} a_i t_i = 0, \quad i = 1, \dots, M$$

- $\mathbf{a}_m \neq 0$ nur für Supportvektoren \mathbf{x}_m (KKT-Bedingung).
- Klassifikation eines neuen Punktes:

$$y(\mathbf{x}) = \sum_{s \in S} a_s t_s \langle \mathbf{x}, \mathbf{x}_s \rangle + b$$
 S Indices der Supportvektoren mit $b = \frac{1}{|S|} \sum_{s \in S} \left(t_s - \sum_{s \in S} a_i t_u \langle \mathbf{x}_s, \mathbf{x}_u \rangle \right)$

Nichtsupportvektoren werden im Modell nicht benötigt.

Kernel-Trick

- Datenpunkte \mathbf{x} , \mathbf{x}_m erscheinen nur in Skalarprodukten.
- ullet Betrachten nichtlineare Transformation: ${f x} o \Phi({f x}): \mathbb{R}^n o \mathbb{R}^\infty$
- Ersetzen

$$\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_k) \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^\infty \times \mathbb{R}^\infty \to \mathbb{R}$$

durch Kernelfunktion

$$k(\mathbf{x}_i, \mathbf{x}_k) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

- Statt $\Phi()$ wird Kernelfunktion $k(\cdot, \cdot)$ benötigt.
- Jede Funktion geeignet, deren *Gram-Matrix* $[k(\mathbf{x}_i, \mathbf{x}_k)]_{i, k=1}^M$ positiv semidefinit ist.

Übliche Kernelfunktionen

• «Gauß-Kernel» (Radial Base Function):

$$k(\mathbf{x}_i, \mathbf{x}_k) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_k\|^2}$$

Stationärer Kernel (nur von Punktabstand abhängig), freier Parameter γ .

• Polynomkernel:

$$k(\mathbf{x}_i,\mathbf{x}_k) = (\langle \mathbf{x}_i,\mathbf{x}_k \rangle + r)^d$$

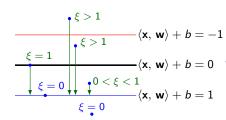
Freie Parameter r, d.

Sigmoid-Kernel:

$$k(\mathbf{x}_i, \mathbf{x}_k) = \tanh(\kappa \langle \mathbf{x}_i, \mathbf{x}_k \rangle - \delta)$$

Freie Parameter κ , δ .

Problem 2: Behandlung von Ausreißern



- Durch «Ausreißer» liegen einzelne Datenpunkte in der «falschen» Klasse, keine Trennung möglich.
- Erlauben einzelne Ausreißer durch Slackvariable, addieren Korrekturwert auf die eigentlich verletzte Randbedingung, um diese zu erfüllen.
- Die Summe der Korrekturen soll möglichst klein sein.

Optimierungsproblem mit Slackvariablen

$$\operatorname*{arg\,min}_{\mathbf{w},\,b,\,\xi_1,\,\ldots,\,\xi_M} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{m=1}^M \xi_m \right\}$$
 s. t.
$$t_m \left(\langle \mathbf{w},\,\mathbf{x}_m \rangle + b \right) + \xi_m \geq 1,\, \xi_m \geq 0, \, m=1,\,\ldots,\, M$$

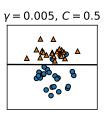
- C ist Regularisierungsparameter.
- Je größer C, desto komplexer das Modell (höhere «Bestrafung» der Ausreißer).
- Statt $C \sum \xi_m$ (Lasso-Regularisierung) auch $C \sum \xi_m^2$ (Ridge-Regularisierung).
- Duales Problem: Lagrange-Funktion mit Variablen $\mathbf{w}, b, \xi_1, \ldots, \xi_M$ und neuen Parametern für s. t. $a_1, \ldots, a_M, \alpha_1, \ldots, \alpha_M$.

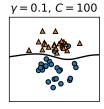
Duales Problem mit Soft Margin

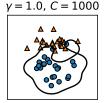
$$\arg\min_{\mathbf{a}}\left\{\frac{1}{2}\sum_{i=1}^{M}\sum_{k=1}^{M}a_{i}a_{k}t_{i}t_{k}\langle x_{i},\,x_{k}\rangle-\sum_{i=1}^{M}a_{i}\right\}$$
 s. t.
$$0\leq a_{i}\leq C,\quad\sum_{i=1}^{M}a_{i}t_{i}=0,\quad i=1,\ldots,\,M$$

- Lagrange-Faktoren α_m kürzen sich weg.
- Quadratisches Problem mit box constraints.
- Lösungsverfahren Sequential Minimal Optimization (SMO) in libsvm, scikit-learn.
- Komplexität: $O(M^2 \cdot n)$ bis $O(M^3 \cdot n)$ (datenabhängig).
- Komplexität begrenzt Anzahl der Trainingsdaten.

Training von SVM

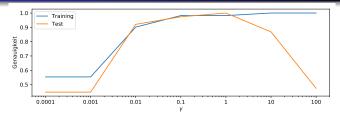






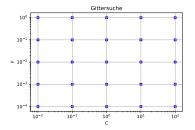
- SVM-Modell ist eigentlich deterministisch und kann im Prinzip exakt berechnet werden.
- Aber: Modell ist von mehreren Parametern abhängig, diese müssen optimiert werden.
- Underfitting: Modell ist zu einfach und klassifiziert zu schlecht.
- Overfitting: Modell «lernt» die Trainingsdaten auswendig und abstrahiert nicht.

Bewerten des Modells



- Daten teilen in Trainings- und Testmenge (z. B. 80 % / 20 %).
- Aufteilung muss statisch sein, Testdaten dürfen nie ins Training eingehen.
- Modellerstellung mit Trainingsmenge, Evaluierung mit Testmenge.
- Underfitting: Geringe Trefferzahl auf Trainingsmenge.
- Overfitting: extrem gute Trefferzahl auf Trainings-, schlechte Trefferzahl auf Testmenge.
- Optimales Modell: etwa gleich gute Trefferzahl auf Trainingsund Testmenge.

Gittersuche



- Gezielte Suche nach bestem Parametertupel.
- Systematisches Durchwandern der möglichen Parameterwerte in geometrischer Folge (Faktor 2 oder 10).

```
\begin{split} & \text{MinFehler} \leftarrow \infty \\ & \text{for } C \in (10^{-1}, \ 1, \ 10, \ 100) \ \text{do} \\ & \text{for } \gamma \in (10^{-5}, \ 10^{-4}, \dots, \ 0.1, \ 1) \ \text{do} \\ & \text{Bestimme Supportvektoren mit} \\ & \text{Parametertupel} \\ & \text{Berechne Fehler} \\ & \text{if Fehler} < \text{MinFehler then} \\ & \text{MinFehler} \leftarrow \text{Fehler} \\ & C_{best} \leftarrow C \\ & \gamma_{best} \leftarrow \gamma \\ & \text{end if} \\ & \text{end for} \end{split}
```

Kreuzvalidierung

Split 1				Validation data
Split 2 [Training data
Split 3				
	Fold 1	Fold 2	Fold 2	

Problem: Gittersuche für komplexe Modelle führt zu Overfitting.

Lösung: Kreuzvalidierung.

- Aufteilen der Trainingsmenge in k Gruppen (Folds).
- Jede Gruppe muss Daten beider Klassen enthalten.
- Berechnung von k Modellen je Parameterpaar: k-1 Gruppen für Modellberechnung, eine Gruppe für Validierung.
- Bewertung der Genauigkeit aller Modelle, Zusammenfassung (Mittelwert).

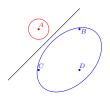
Anschließend: Modellberechnung für *alle* Trainingsdaten mit besten Parametern.

Aufbereitung der Daten

- Verfahren behandelt alle Dimensionen gleichgewichtet.
- Werte aller Dimensionen sollten im gleichen Intervall liegen
 (z. B. [0, 1] oder Mittelwert 0 und Varianz 1) → Umskalieren.
- Behandlung von Nominaldaten (mehrere Kategorien):
 - One-Hot-Codierung: Eine Variable pro Kategorie, genau eine dieser Variablen hat Wert 1, alle anderen 0.
 - Textdaten (jedes mögliche Wort eine Dimension): Word embeddings, z. B. Word2Vec.
- Behandlung fehlender Komponenten in Datenpunkten:
 Datenpunkt löschen oder Komponente durch Mittelwert bzw.
 Median ersetzen.

Mehrfachklassifikation

- Statt 2 nun K Klassen.
- SVM kann nur zwei Klassen trennen \rightarrow mehrere SVMs.



One-versus-Rest:

Berechne K SVMs für jede Trennung k – nicht k (M Daten je SVM). Neuen Punkt mit jeder SVM bewerten und Klasse mit größtem Abstand wählen.

One-versus-One:

Berechne $\binom{K}{2}$ SVMs für jedes Klassenpaar mit Trainingsdaten dieses Paars ($\approx 2\frac{M}{K}$ Daten pro SVM). Neuer Punkt wird in die Klasse eingeordnet, die die meisten SVMs wählen.

In scikit-learn: lineare SVM mit OvR, Kernel-SVM mit OvO (Laufzeit).

Bibliotheken

- libsvm: Referenz- und Basisimplementierung, Kommandozeilen-Tool.
 Viele andere Bibliotheken sind einfach Schnittstellen zu libsvm.
- Python: scikit-learn: Sammlung von ML-Werkzeugen auf Basis von numpy, SciPy.
- R: e1071 (libsvm-Schnittstelle), kernlab (libsvm und bsvm), klaR (svmlight).
- ...

Fazit

- Beliebtes Werkzeug des ML (Kaggle Survey 2017: 26 %).
- Für Datensätze mittlerer Größe bei Kernel-SVM $(O(m^2) \dots O(m^3))$.
- Recht gute Generalisierung.
- Auch für große Datenmengen hochdimensionaler Daten (Text Mining) mit linearer SVM.
- Auch weniger Trainingsdaten als Dimensionen möglich (Overfitting?) mit linearer SVM.
- Hoher Aufwand für mehr als 2 Klassen.
- Online-Learning (Nachtrainieren mit neuen Daten) im Prinzip möglich (nicht in scikit-learn).
- Berechnung auf GPUs möglich (ThunderSVM)
- Modelle schwer interpretierbar.

Quellen I

- [1] Arens et al.: Mathematik. Springer Spektrum. 2015.
- [2] Bishop: Pattern Recognition and Machine Learning. Springer. 2006.
- [3] Bitterlich: Numerische Verfahren zur Lösung von Support Vector Machines. Masterarbeit, TU Chemnitz. 2016.
- [4] Bordes et al.: Fast Kernel Classifiers with Online and Active Learning. ournal of Machine Learning Research. 2005. http://www.jmlr.org/papers/volume6/bordes05a/bordes05a.pdf
- [5] Cortes, Vapnik: Support-vector networks. In: Machine Learning, 20. 1995.
- [6] Hsu, Chang, Lin: A Practical Guide to Support Vector Classification. National Taiwan University. 2016. https:// www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Quellen II

- [7] Kaggle 2017 Survey Results. https://www.kaggle.com/amberthomas/ kaggle-2017-survey-results
- [8] Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. arXiv 1301.3781. 2013. https://arxiv.org/pdf/1301.3781.pdf
- [9] Müller, Guido: Einführung in Machine Learning mit Python. O'Reilly. 2017.
- [10] Řehůřek: Scalability of Semantic Analysis in Natural Language Processing. Ph. D. Thesis. Brno. 2011. https://radimrehurek.com/phd_rehurek.pdf
- [11] Wen et al.: ThunderSVM: A Fast SVM Library on GPUs and CPUs. Journal of Machine Learning Research 19. 2018. http://www.jmlr.org/papers/volume19/17-740/17-740.pdf