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“If it looks like a duck, and quacks like a duck, we have at least to consider

the possibility that we have a small aquatic bird of the family anatidae

on our hands.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency [Adams, 1987].





Abstract

Birds are omnipresent and often reveal their presence through their vocalizations.

They respond to environmental changes over many spatial scales and are thus ideal

indicator species to monitor ecosystem health across various lifeforms. Automated

observation of avian vocal activity and species diversity can be a transformative

tool for ornithologists, conservation biologists, and bird watchers to assist in long-

term monitoring of critical environmental niches. Digital sound transformation is

commonly used when studying bird sounds. Since the inception of the sound spectro-

graph, spectrograms play a significant role in avian research. We can assume that vi-

sual representations of bird sounds contain valuable information on species identity,

rendering spectrograms a particularly suitable representation. Deep artificial neural

networks have surpassed traditional classifiers in the field of visual recognition and

acoustic event classification. Still, deep neural networks require expert knowledge to

design, train, and test powerful models. With this constraint and the requirements

of future applications in mind, an extensive research platform for automated avian

activity monitoring was developed: BirdNET. An unprecedented amount of training,

validation, and test data was used to assess the overall system performance on more

then 3,900 hours of field recordings covering 987 classes and almost 300 hours of

fully annotated soundscapes containing almost 80,000 vocalizations. The resulting

benchmark system yields state-of-the-art scores across various acoustic domains and

was used to develop expert tools and public demonstrators that can help to advance

the democratization of scientific progress and future conservation efforts.
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Listen to bird sounds online:

While reading, you will come across several examples of bird sounds that I considered

useful for the narrative of this thesis. I decided to create a web page that lets you

listen to those examples instead of just looking at spectrograms or transcriptions.

Whenever you see a speaker icon, you can scan the QR code above to listen to the

corresponding bird sounds online at:

https://birdnet.cornell.edu/samples





1. Motivation and Contributions

1.1 Avian ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Democratizing deep neural networks . . . . . . . . . . . . . . . 3

1.3 Methodology and outline . . . . . . . . . . . . . . . . . . . . . 4

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The assessment of ecosystem health through long-term monitoring of avian activity

is a cornerstone of conservation biology [Gregory et al., 2004, p. 17]. The availability

of high-end recording equipment led to vast archives of audio content collected by

an active community of bird watchers around the globe. Including the public in the

process of habitat monitoring is very likely to succeed due to the interest that birds

spark in many people. Yet, not everyone can identify birds by sight or sound which

would require new tools that not only record and analyze but also teach the process

of bird identification by eye and ear.

1.1. Avian ecology

In avian ecology, point counts are of particular importance to conduct surveys re-

garding avian activity and diversity (see Section 2.3). In that field, autonomous

recording units (ARU) mark the starting point of automation. The costs of mobile

recorders, which can last several days or weeks, were drastically reduced over the

past few years1. With an increase in automation comes the need for computerized

analysis. Large amounts of data and hundreds of recorded soundscapes require fast

and reliable processing—methods from the field of (deep) machine learning might

be able to provide that.

Identifying birds (in this case by sound) is not a trivial task. The diversity of

avian vocalizations poses a considerable challenge to any automated recognition

1The SWIFT recording unit of the Cornell Lab of Ornithology costs $250 in small series pro-

duction and contains high-quality, durable recording equipment.
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1. Motivation and Contributions

system. Aside from technical constraints like sensitivity, noise floor, polar patterns,

or size, automated bird sound detection has to deal with a vast variety of avian

vocalizations. One of the most frequently asked questions about such a system

is whether it would be like “Shazam for birds”. Considering what fuels the song

recognition capabilities of Shazam, the answer must be ‘No, it’s more complicated

than that’. Recognition technology in the field of audio fingerprinting relies on

matching short audio chunks with entries in a database to derive similarity scores

[Weare, 2006], [Chandrasekhar et al., 2011]. This way, audio files can be identified

quickly, mostly independent of recording quality or length of the recording. However,

this technology has two major drawbacks: The queried audio file has to exist in the

database, and the file must not change over time to guarantee high recognition

performance.

Fingerprinting has only very limited application for bird song recognition. The avian

vocal tract enables birds to emit sounds of great variety and complexity. Avian

auditory physiology suggests that birds (especially true songbirds, oscines) are able

to learn, mimic, or invent vocalizations (see Section 2.2.2). Aside from that, birds

adapt to environmental niches by altering their vocal output. We can assume that

variation in space and time will lead to an ever-changing repertoire of songs and

calls. If each individual of an oscine species learns vocalizations based on territorial

neighbors, habitat, or time of the year, we have to assume that fingerprinting does

not provide the technological foundation to develop a robust recognition system.

An example might help to grasp the outreach of this assumption: When presented

with a never before aired Beatles song, a song that seemed forgotten, a recognition

system based on fingerprints (like Shazam) would almost certainly not be able to

identify it. It might not even be able to recognize the band, whereas the casual

listener would probably make the right guess. In birds, local dialects, mimicry, or

vast song repertoires of multiple hundreds of songs would require to record every

possible bird sound in a database. To some extend, the same acoustic features used

for fingerprinting (mostly MFCC, see Section 3.3.1), would suffice for a number of

species that are not able to learn, but they would most likely not suffice to grasp

the vast variety of bird sounds in general. The ability to derive learned embeddings

based on statistical features of large and diverse input value distributions and the

potential to generalize on unseen samples might render deep neural networks an

applicable choice for bird sound recognition.

2



1.2. Democratizing deep neural networks

1.2. Democratizing deep neural networks

Processing large amounts of audio-visual data has led to a paradigm shift in machine

learning. With the emergence of deep artificial neural networks (DNN)2, classic pro-

gramming was almost entirely replaced by more generic approaches in that domain.

Today, extremely complex DNN solve a vast amount of tasks, often with uncanny

performance. And yet, we are still far away from true computer intelligence, despite

the fact that artificial neural networks were designed with human cognition in mind.

The past years have seen a tremendous hype evolving around topics of so-called ‘AI’.

Some of this excitement might even be justified. Countless smart-devices that we

use every day have already been taken over by a significant number of DNN solving

tasks like face recognition, text completion, or speech synthesis [Ignatov et al., 2018].

Hardware accelerated processing was key for the success of DNN in the early 2010s,

and it is key to many applications today.

Often purely based on statistics, DNN depend on hundreds, sometimes even thou-

sands of examples to learn a generic representation of objects, texts, scenes or other

complex value distributions. Additionally, designing, training, and testing a neu-

ral network requires expert (domain) knowledge and intuition due to the holistic

nature of implementation details and hyperparameters. Despite the vast output of

publications in this field of research, the process of democratizing this technology

might come to an abrupt halt in the near future. The need for data and com-

puting power led to some disturbing developments in the recent past. A striking

negative example is AutoAugment by Google Brain [Cubuk et al., 2018]. In this

paper, Cubuk et al. present an adaptive way of generating augmented samples for

training that are ideal for the task and yield new state-of-the-art results across a

number of popular benchmark datasets. Yet, 15,000 GPU hours were needed to

optimize this form of data augmentation for the ImageNet dataset alone. This kind

of computing power is available to very few global players only and the results are not

applicable for reproduction. In early 2019, OpenAI (founded by entrepreneur Elon

Musk) developed language models that were able to perform almost human-like text

generation [Radford et al., 2019]. In contradiction to its name, OpenAI decided not

to release the code and model for public inspection “[d]ue to concerns about large

language models being used to generate deceptive, biased, or abusive language at

scale [...]”3. Many scientists objected this strategy, arguing “[...] that deceptive

2A rather delayed inception which vastly accelerated in 2012 with AlexNet. See Section 3.2
3https://openai.com/blog/better-language-models/, 2019-08-13

3



1. Motivation and Contributions

technologies lose most of their powers if the public is broadly aware of the potential

for manipulation.”4

The central motivation for this dissertation lies in the idea that computer science

provides (open source) tools that help people to solve (complex) tasks in new ways.

But those tools are only truly powerful when their design involves the people who

are going to use them—like Frederick P. Brooks, Jr. proposed in his ACM Allen

Newell Award acceptance lecture at SIGGRAPH [Brooks Jr, 1996]:

“If the computer scientist is a toolsmith, and if our delight is to fashion

power tools and amplifiers for minds, we must partner with those who

will use our tools, those whose intelligences we hope to amplify.”

Training and applying deep neural networks to new task domains can help to achieve

just that. The field of bioacoustics often relies on the analysis of large amounts of col-

lected data. The goal is “[...] to collect and interpret sounds in nature by developing

and applying innovative conservation technologies across multiple ecological scales to

inspire and inform conservation of wildlife and habitats.”5 Current environmental

changes (like global warming) amplify the need for transformative tools for many

research groups alike. Two essential questions evolve from that: How can the field of

deep learning contribute to bioacoustics? How can large-scale data analysis provide

new insights that might help to cope with environmental issues of our time? In this

thesis, I will try to answer both questions with emphasize on avian ecology.

1.3. Methodology and outline

As part of my research on avian vocalizations, I will provide basic insights into

the avian vocal tract and auditory system in Chapter 2. I will shed light on song

learning and imitations, local dialects, and repertoires but will solely focus on as-

pects that have an explicit implication on automated bird sound recognition. Some

dimensions—like song tutoring—have only limited impact, whereas others demand

task-specific solutions. The methodology of this thesis follows this principle when-

ever a theoretical overview is presented. The application of methods from the field

of deep learning for visual recognition to the domain of acoustic event identification

might appear to be somewhat unjustified when considering audio data as purely

4https://thegradient.pub/openai-please-open-source-your-language-model/, 2019-08-13
5Mission statement of the Bioacoustics Research Program of the Cornell Lab or Ornithology
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1.3. Methodology and outline

sequential. However, one of the most important tools in avian research is the visu-

alization of audio signals in form of spectrograms [Kroodsma, 2005, p. 2].

We can assume that birds encode their species identity in their vocalizations. This

means that we can also assume that species identity is encoded in spectrograms

as well. Still, it remains unclear how species identity is encoded, which leads to

the following question: What are the spectrogram characteristics that ensure high

applicability for the recognition of bird vocalizations? I will explore the process of

spectrogram generation with respect to avian vocal behavior in Section 2.4.2.

Using DNN to identify bird sounds in audio data is not entirely new. In fact,

two major evaluation campaigns focus on this topic since 2014 (see Section 3.3).

The progress in this domain has led to huge leaps in performance over the past

editions. Similar to the results of the ILSVRC competition, the arrival of deep

learning quickly transformed the entire field of avian acoustics. Today, almost every

proposed system in this field relies on DNN. Due to this, I will summarize recent

advances and introduce the basic concepts of deep learning in Chapter 3. The focus

of this part will once again be on task-specific considerations, relevant technologies,

and high-level concepts only.

Extensive experimentation is often key to success and ensures general applicabil-

ity. The high number of variables in a deep learning system requires vast domain

knowledge that renders most implementations inaccessible. Modern frameworks

like Lasagne, Keras, PyTorch, TensorFlow, or MXNet provide vast functionality to

develop such a system on a high abstraction level. In Chapter 4, I will propose

a software research platform that combines this functionality with task-agnostic,

high-level workflows to design, train, validate, and apply DNN for a variety of tasks:

BirdNET. Chapter 4 will focus on the core aspects of this platform and introduce

components, implementation details, and interfaces. BirdNET will serve as the

primary tool for evaluation with unprecedented collections of audio data and state-

of-the-art DNN models.

The design of the experimental studies in Chapter 5 evolves around the ability of

DNN to generalize on unseen samples despite a high number of classes with signifi-

cant intra-class heterogeneity. The investigation of core strategies and components

should provide generalizable insights into the process of developing a robust system

for automated bird sound recognition. The proposed approach involves the acquisi-

tion of large training, validation, and test data that represents real-world use cases,

5



1. Motivation and Contributions

establishing a baseline setup to test certain hypotheses that concern spectrogram

extraction, architectural designs, as well as various DNN topologies and their cor-

responding training regimes, and eventually the application of the experimentally

validated system to investigate the influence of avian vocal diversity on the overall

results. The established benchmark system will be used to confirm basic avian

behavioral patterns during a number of application scenarios.

Handling extremely large amounts of data is the core of BirdNET’s application

to real-world monitoring scenarios. I will present four different demos and proto-

types that employ the benchmark system to detect avian vocalizations in diverse

soundscape data in Chapter 6. First, an online live stream demo analyzes year-round

recordings from Sapsucker Woods, Ithaca, USA recorded by an outdoor microphone.

Placed near a bird feeder and a pond, the microphone provides diverse soundscapes

that reveal different levels of correlation between abundance, temperature, and vocal

activity. Secondly, two monitoring scenarios are presented that use ARU (i.e. the

aforementioned SWIFT recording unit) and assess biodiversity at monitoring sites

in Germany and the USA. Both scenarios provide insights into (spatio-) temporal

behavioral patterns and strength and weaknesses of the proposed benchmark system.

Thirdly, I will explore recent observations that were made by users of a BirdNET

smartphone app. This application focuses on teaching birding by ear while at the

same time involving the public in the process of avian monitoring. Democratizing

deep learning technologies to develop tools for a wide audience is one of the core

aspects of this thesis. The smartphone app provides evidence that this approach

indeed leads to increased user engagement. Finally, a fully automated monitoring

station—consisting of a solar powered Raspberry Pi and a fly-through bird feeder—

provides an overview of how BirdNET could help close the gap between dense but

spatially confined recording arrays and highly distributed but non-continuous mobile

recording devices (i.e. smartphones). The so-called HaikuBox will be distributed

in the USA so that schools and other educational institutions can maintain an au-

tonomous monitoring station that provides year-round observation data.

1.4. Results

BirdNET is a versatile research platform and follows in the footsteps of AMOPA

([Ritter, 2014]) and the Xtrieval Web Lab ([Wilhelm-Stein, 2016]). It provides an

6



1.4. Results

ecosystem of components that can be used to form processing chains to build appli-

cations for an expanding list of scenarios. And yet, BirdNET itself is an expert tool

that requires expert knowledge to configure and use. Despite its high abstraction

level of functionality and centralized fine-grained settings, public demonstrators and

prototypes are its core strength. Task-agnostic workflows and fast processing of au-

dio data with deep learning techniques render BirdNET a valuable experimentation

platform to derive (mostly) generalizeable results.

Building upon that, the experimental design in this thesis focused on certain hy-

potheses that address main aspects of avian acoustic event recognition. In this sense,

most of the presented results are transferable to other implementations or monitor-

ing tasks. Fair experimental conditions for each run and comparable, reproducible

results were primary concerns. Due to that, the contribution to the field of avian

activity monitoring is two-fold: First, derived results by hypothesis confirmation

and extensive experimentation provide a sound foundation to quickly build power-

ful recognition systems for long-term, large-scale analysis scenarios. Secondly, the

ability to develop applications based on flexible composition of core functionality

and high-level programmable interfaces allows to adjust to new use cases (mostly)

independent of available hardware or task requirements.

The experimental investigation in this thesis focused on spectrogram computation,

architecture design of DNN, deep and shallow topologies, implicit and explicit reg-

ularization, cost-sensitive learning, and model efficiency when computational re-

sources are limited (see Chapter 5 for more details). The proposed workflow is

task-agnostic and provides detailed insights into how current state-of-the-art tech-

nologies from the domain of visual recognition can help to solve complex acoustic

monitoring tasks. All formulated hypotheses were confirmed or partially confirmed;

the most notable results imply that

• Spectrograms that visualize longer chunks of audio contain more valuable in-

formation and thus result in better classification performance.

• High temporal resolution of input spectrograms (short frame length) improves

the classification performance.

• Multi-label classification with mixup training increases the overall performance

across all tasks.
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• Deeper topologies (more layers) do not necessarily perform better than wider

topologies (more filters).

• Deeper topologies do outperform shallow layouts when computational resources

are limited.

• Except for oversampling, cost-sensitive learning does not improve the overall

classification performance.

Starting with a benchmark system that resembled current best practices and do-

main knowledge from previous experience and publications in the field, incremental

improvements were employed and validated. The evaluation featured a number

of different complementary metrics (see Section 4.2.3) and diverse test data from

various domains (see Section 5.2.1). The resulting benchmark system yields state-of-

the-art scores across all validation domains, especially when compared to the scores

achieved during the 2019 BirdCLEF challenge6. With an increase of 15.4% over

the best single model that did not use validation samples for training, the proposed

training regime and DNN design appear to be competitive considering the difficulty

of the task. The benchmark system also revealed that

• Deep neural networks are data hungry and require large numbers of training

data (in this particular case up to 750 per class).

• Signal quality of training samples significantly affects the overall classification

quality and manual pre-processing might be worth the effort in some cases.

• Task-specific designs and training regimes outperform standard architectures

from other campaigns and task domains.

The investigation of species-specific scores revealed that number and quality of train-

ing samples significantly impact the classification results (see Figure 5.7). Addi-

tionally, bird species diversity plays an important role, especially for species that

incorporate heterospecific material into their vocalizations or those that are likely to

be confused with similar classes. However, we can conclude that no single signifier

implies if the overall classification performance of a species is going to be applicable.

Depending on the target use case, a number of considerations have to be taken into

account (e.g. computational resources, degree of manual interference, availability of

6Which were not officially published at the time of writing and are part of the annual CLEF

lab proceedings.
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clean training samples). Additionally, the lack of a ‘gold standard’ might correlate

structural deficiencies of the approach with the lack of clean and time-stamped

labels. Despite the extremely heterogeneous validation data (which for the most

part was only weakly linked to the training data), the focus on fully automated

data processing, and the renunciation of expert sample curating, the experimental

results may not reflect real-world performance. It remains possible (and plausible)

that empirical assessments of application performance might reveal proper overall

performance despite low category scores. For most classes, we can assume that the

derived scores are representative, which indicates strengths and weaknesses of the

approach (for a detailed assessment of class performance see Appendix D).

In order to shed some light on the automated (i.e. learned) extraction of high-

level features by deep neural networks, class activation maps were generated. This

approach resulted in remarkably detailed visualizations of important vocal features.

Although the generated activation maps might not reveal how birds encode species

identity, they imply that certain parts of every bird vocalization are of high sig-

nificance to be identifiable by the proposed recognition system. Most notably,

redundant elements (as in trills) compensate information loss (e.g. Red-winged

Blackbird and Wood Thrush), re-occurring elements suffice for species identification

(e.g. Common Chaffinch and White-crowned Sparrow), and gaps between notes and

the duration of single elements help to identify similar sounding species (e.g. Black-

capped Chickadee and Tufted Titmouse). Sometimes, only a small frequency band

or portion of a vocalization encode species identity (e.g. Blue Jay and Common

Buzzard). For more details see Section 5.3.

Other major contributions to the field of avian acoustics and activity monitoring

include high-fidelity applications for real-time audio stream analysis, large-scale

soundscape processing for selected monitoring stations and recorder arrays, mobile

learning tools (i.e. smartphone apps), and fully-autonomous, solar powered moni-

toring stations (see Chapter 6). Data visualization of results reveals spatio-temporal

patterns of avian behavior and species diversity that indicate the vast potential of

the proposed technology for a broad range of tasks in the domain of ecosystem

health assessment. BirdNET might indeed have the potential to transform the field

of bioacoustics through novel expert tools and public involvement.
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This chapter aims at providing most of the theoretical background needed to follow

the work of this thesis. First, I will introduce some central ideas covering the

biological aspects of bird sound, conservation biology, and relevant citizen science

projects. Secondly, a brief introduction to audio signal processing will cover the main

aspects of digital sound representations and their adaption to human perception.

The intention of this chapter is to provide an overview rather than giving in-depth

insights into both fields, solely focusing on aspects that are relevant for an automated

bird sound recognition system. Therefore, some methods and aspects are left out or

shortened with remarks to further introductory literature.
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2.1. On the relationship of humans and birds

Birds play a significant role in our lives. Most of us hear or see birds almost daily,

birds are a common source of sound for humans. Many consider the songs and calls

of birds relaxing but have also experienced the cacophony of a busy dawn chorus in

the early hours of a springs’s day. This comes as no surprise. Birds vocalize in the

hearing range of humans and—for the most part—share our daily routine of wake

and sleep. Avian life often depends on daylight, and many birds are busy from dawn

to dusk and silent during the night.

Many people have a distinct relationship with birds that involves childhood memories

and the desire for recreation as an adult. Most households maintain a bird feeder

during the winter times to prevent backyard birds from starving but also to cherish

the beauty and elegance of local bird species.

In contrast, identifying birds by sight or sound cannot be considered general knowl-

edge, even for some very common species. When asked, most people note that they

would wish to be able to identify birds by sound but consider this a complicated

task with a steep learning curve. Some people even feel guilty for not knowing more

about their environment, especially if it is about such a common environmental

aspect like the songs of birds.

Furthermore, conservation biology became one of the most important scientific fields

in the past years and the interest is ever-growing. Birds face many challenges because

of human-induced environmental issues that include the destruction of breeding and

overwintering habitats, global warming, noise and light pollution, pesticides, and

large buildings. Computer science should be understood as an interface between

research, citizen science, and public education. If researchers can create tools that

help the public to learn more about their environment, people might regain a strong

attachment to nature and thus be more open to protecting it.

Additionally, reliable identification of bird species with the help of a computer sys-

tem would be a transformative tool for ornithologists, conservation biologists, and

birders. Even though members of these groups are often organized in large commu-

nities, the need for participation of the public is vital for some of the most crucial

projects like long-term bird counts to assess changes in ecosystems and habitats.
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2.2. Avian vocal behavior

2.2. Avian vocal behavior

Communication between members of one bird species is not just limited to sound.

However, the channels of vision and sound are more developed in birds, in stark con-

trast to mammals, where the olfactory system is often significantly more important

for communication. For many applications of bird identification and observation,

sound is also the primary source of information, especially if we consider the diffi-

culties of identifying birds by sight over a long distance, in dense forests, or during

migration that happens at night [Byers and Kroodsma, 2016, p. 382].

Avian vocalizations are extremely diverse and song is often the most complex utter-

ance. Most of the roughly 10,000 bird species in the world produce sounds—either

with their vocal tract or non-vocally using other body parts. Passeriformes is the

largest order of birds and contains the suborder Passeri (oscines) which members

are commonly called (true) songbirds [Lovette, 2016, pp. 51-59]. The variety of

avian vocalizations is greatest in songbirds and most of them are capable to develop

learned vocalizations. Independent of their taxonomic order or capability to learn,

imitate, mimic, or invent, birds produce sounds built from single elements that form

notes, phrases, series, warbles, trills, and—eventually—song [Pieplow, 2017, p. 8].

Avian vocalizations serve different social functions and can be divided into songs and

calls—a concept that I will explore in this section. Avian vocal activity is mostly

linked to annual changes in seasons that affect breeding cycles and migration. Varia-

tion in space often results in distinct local dialects that often restrict communication

between individuals of different populations. [Byers and Kroodsma, 2016, pp. 382-

392] All of those aspects influence the development of an automated bird sound

recognition system. Therefore, this section focuses on the history of bird studies,

the production and perception of bird sounds, vocal development and repertoires,

song variations, and the function of bird song with emphasis on North American

and European species.
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2.2.1. Studying bird sounds

Reasons to study birds—and bird sounds in particular—are manifold. From a sci-

entific standpoint, birds are ideal subjects to observe because of their omnipresence.

Additionally, birds perform important ecological functions in almost every habitat.

They often form the top of the food chain and thus incorporate changes on lower

levels. They mainly feed on insects, anurans, fish, mammals, seeds and nectar and

thus are impacted by almost every life-form in their habitat. Birds also often occupy

environmental niches that are highly endangered by climate change and pollution.

The observation of bird abundance in a habitat can tell us a lot about the current

state of the ecosystem.

Although the study of bird song is comparatively recent—advances in recording

technologies were not made before the 20th century—some work was done before

that. One of the earliest episodes that supposedly ignited the science of bird song

learning is reported in ‘Bird song: biological themes and variations’ by Catchpole

and Slater and dates back to 1773 [Catchpole and Slater, 2008, p. 2]:

“The Hon. Daines Barrington [. . . ] established the existence of song

learning, for example, because he heard the song of a wren emanating

from a house he was passing and, knowing how difficult such birds were

to keep in captivity, knocked on the door out of curiosity, only to discover

that the singer was a captive goldfinch. Presumably this bird had been

exposed to wren song at some stage and had picked it up.”

During that time, the study in bird song was limited in depth mostly due to the lack

of analytical equipment [Catchpole and Slater, 2008, p. 3]. Today, modern record-

ing, storage, and—most importantly—visualization technology allows researchers to

gain fine-grained, highly detailed insights into auditory bird communication.

The inception of the sound spectrograph that was developed during World War

II—and its availability for researchers in the 1950’s—is considered the birth hour of

modern science of bird song according to [Marler, 2004, pp. 2-10]. Moreover, the

transformation of sound into images has been widely adapted in the field of bird

sound research since the publication of William Thorpe’s study on song learning in

chaffinches [Thorpe, 1954] that almost exclusively relied on visualizations of songs

made using a sound spectrograph. The images created using this (or a similar)

technology are commonly referred to as sonograms or spectrograms.
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I will also include some visualizations of bird songs and calls throughout this thesis

to illustrate details and differences. Computer technology allows us to generate

different visual abstractions of audio signals; the details of this process will be elab-

orated in Section 2.4. For reasons of consistency, all visualizations that represent

sound in time and frequency will be called spectrograms further on.

The visualization of bird sounds is well established and widely used. It is con-

sidered one of the most convenient modalities when analyzing bird vocalizations

[Kroodsma, 2005, p. 2]. However, the transcription of bird songs remains ambiguous

and often non-intuitive—despite the fact that sounds are commonly used to identify

birds. According to Nathan Pieplow, expert birders tend to detect and identify ten

times more species by ear than by sight [Pieplow, 2017, p. 1]. Nonetheless, most

field guides focus on visual features like size, shape and plumage colors to help citizen

scientists to identify birds. On top of that, those field guides use a wide variety of

vocabulary to transcribe bird sounds and often do not contain the verbalization of

all song variations.

The following transcriptions of song and calls of the American Goldfinch (Spinus

tristis) were taken from some of the most popular field guides for North America:

Peterson Field Guide to Birds [Peterson, 2010, p. 332]: Song clear, light,

canary-like. In undulating flight, each dip is punctuated by ti-DEE-di-di or per-

chik-o-ree or po-ta-to-chip.

Sibley Birds East [Sibley, 2016, p. 420]: Song high, musical, rapidly repeated

phrases toWEE toWEE toWEE tweer tweer tweer ti ti ti ti ; may suggest buntings

but less stereotyped; fading at end. Call thin, wiry toweeeowee or tweeee; also a soft

tihoo and variations. Flight call a soft, whistled, descending series of ti di di di.

National Geographic Field Guide to Birds [Dunn and Alderfer, 2017, p. 442]:

Song is a lively series of trills, twitters, and swee notes. Distinctive flight call,

per-chik-o-ree.

Learning to identify birds by their songs and calls according to those field guides

can be quite challenging. It is clearly a hard task to memorize all those descriptions

without a reference or years of experience. Furthermore, listening to a bird sound in

the field and then trying to find the corresponding species according to those descrip-

tions seems to be impossible. Figure 2.1 illustrates song and calls of the American

Goldfinch as spectrogram for comparison with the aforementioned transcriptions.
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(a) Song ( 1) (b) Calls ( 2)

Figure 2.1.: Vocalizations of the American Goldfinch (Spinus tristis). According to

Sibley Birds East, the song depicted on the left can best be transcribed

as toWEE toWEE toWEE toWEE toWEE toWEE ti ti ti ti ti, whereas

both calls on the right can be verbalized as toweeeowee toweeeowee.

We can see that the actual signal is richer than any of the transcriptions ever can

be. This is not an entirely new discovery, in fact, as Peter Marler reports, skilled

musicians have tried to transcribe the notes of bird songs using musical characters for

quite some time [Marler, 2004, p. 3]. Most notably, French bird watcher and com-

poser Olivier Messiaen (1908–1992) is well-known for his transcriptions of bird songs

and stylized songs from the Wood Thrush or the Baltimore Oriole [Fallon, 2007].

The vocal abilities of birds however are far greater than any musical instrument

can accomplish, forcing musicians to adapt the transcription in pitch and tempo

rendering them unrecognizable to ornithologists.

In his impressive Field Guide to Bird Sounds of Eastern North America, Nathan

Pieplow presents a novel approach to break down bird sounds into basic elements

and then using those elements to describe bird songs and calls in a uniform way

[Pieplow, 2017]. The resulting visual index—the core reference feature of this book,

intended to help birders identify unfamiliar bird species by ear—covers 83 densely

written pages for Eastern North American species alone. Even the attempt to com-

bine spectrograms and recordings of birds like in ‘The Sound Approach to birding’

[Constantine, 2006] requires intense learning sessions and is often not practical to

casually learn birding by ear.

In conclusion, identifying birds by sound is a convenient way as the vocal-auditory

system of birds is highly developed and often used for communication. Additionally,

spectrograms can be used to analyze bird vocalizations. On the other hand, teaching
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someone to identify birds by sound is challenging. Computer assisted tools can help

to ease the process of identification for researchers, birders, and citizen scientists.

However, in order to decide what such a system needs to look like, we have to

investigate more aspects of bird vocalizations.

2.2.2. Production and perception of sounds in birds

Birds are true masters when it comes to singing. The astonishing number of notes

as well as the range in pitch and tempo are unmatched. Especially oscine passerine

birds (or true songbirds) are known for their rich repertoires of songs and calls—

some of them are life-long learners or even mimics. Thanks to their specialized

vocal tract, songbirds are able to emit sounds with high precision and complexity.

However, bird sounds do not just include songs. I will explore the avian vocal tract,

different types of bird sounds—there is a number of distinct non-vocal sounds—and

avian physiology in this section.

Vocal sounds

Vocal sounds are not limited to songbirds. Almost every bird species emits sound to

defend a territory, attract mates, warn about predators, or mock and mimic. Based

on complexity, length, or function, vocal sounds of birds can be divided into songs

and calls. Although the distinction between song and call is not always clear-cut,

a given vocalization can usually be classified as either of both. Generally, a call is

considered less complex but richer in function, whereas a song oftentimes is louder

and more complex but mainly used to attract mates or compete with members of the

same sex. [Byers and Kroodsma, 2016, pp. 360-365] The differences between songs

and calls for two species are illustrated in Figure 2.2: The Common Yellowthroat

(Geothlypis trichas) with a complex song and simple calls, as well as the Black-

capped Chickadee (Poecile atricapillus) with a rather simple song and more complex

calls.

The syrinx is the sound producing organ in birds and the equivalent of the human

voice box or larynx. Catchpole and Slater provide a detailed overview of the most

important biological aspects of bird vocalizations and introduce the research that

was done to unravel avian sound production [Catchpole and Slater, 2008, pp. 20-

28]. The complexity of the syrinx varies in different bird species and is greatest in
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(a) Common Yellowthroat song ( 3) (b) Common Yellowthroat calls ( 4)

(c) Black-capped Chickadee song ( 5) (d) Black-capped Chickadee call ( 6)

Figure 2.2.: Songs and calls of two North American bird species—Common Yel-

lowthroat and Black-capped Chickadee.

songbirds. In contrast to the human larynx, the syrinx consists of two chambers.

Songbirds can vibrate paired tissues called labia (see Figure 2.3, Lateral and medial

labium) in each of them [Byers and Kroodsma, 2016, p. 380]. This is an interest-

ing fact, as it allows birds to produce two-voiced sounds (biphonation) at different

pitches and thus very complex musical structures with a high tempo. Additionally,

the syrinx of birds is positioned closer to the lungs at the junction of the two bronchi

[Catchpole and Slater, 2008, p. 23]. The sounds produced with both chambers are

then mixed when they pass the trachea. This fascinating effect can be observed in

a number of birds, especially the Wood Thrush (Hylocichla mustelina) that creates

one of the most complex sounds a bird can make with its impressive trills at the end

of each song ( 7).

However, there are physical limitations to the complexity and tempo of bird vo-

calizations. John Brackenbury provides a detailed description of sound modula-

tions that birds are capable of in Volume 1 of ‘Acoustic Communication in Birds’
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Figure 2.3.: Vocal tract of songbirds: External and internal view of the syrinx. Il-

lustrations by Andrew Leach. Adopted from Dr. Rod Suthers, PhD,

The Suthers Laboratory.

[Brackenbury, 1982, pp. 66-70]. Mainly, modulations of the produced sounds are

achieved by stretching or retracting the neck, breathing patterns, and by changes in

the width of the opened bill. It was also shown that a trade-off between bandwidth

and repetition rate exists, meaning that complex utterances can only be repeated

at a lower rate [Podos, 1997].

Birds vocalize in different frequency ranges. Again, a number of (physical) con-

straints determines the pitch at which a sound is produced and transmitted. Accord-

ing to Catchpole and Slater, several considerations have to be taken into account

[Catchpole and Slater, 2008, pp. 86-92]. First, the size of the sound-producing

mechanism required to emit low-frequency sounds is often limited by the size of the

bird itself. Therefore, small birds (like most songbirds) are not capable of low-pitched

sound production (see Figure 2.4a). Additionally, a number of environmental fac-

tors influence the transmission of audio signals and thus generally require a specific

frequency range for ideal transmission. In open habitats, the most prominent envi-

ronmental influences are temperature and humidity. Sound travels faster in warm

air, high humidity enhances transmission, and atmospheric turbulence might scatter

the signal. In forests, distortions might also occur when objects (like dense vege-

tation) scatter the path of transmission. The height at which birds vocalize above

ground, the distance to the intended receiver, and the amount of background noise

also play an important role and might alter the signal. [Wiley and Richards, 1982,

pp. 147-151], [Halfwerk et al., 2011]
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(a) Minimum frequency and body mass (b) Frequency range and vegetation density

Figure 2.4.: The supplementary data provided by [Hu and Cardoso, 2009] shows a

distinct correlation between body mass and the minimum frequency—

only larger birds are able to vocalize in a lower frequency range. The

correlation between vegetation density and the frequency range of bird

vocalizations in the same study is not as distinct as the acoustic adap-

tion hypothesis might suggest. Only a slight decrease can be observed

when comparing open (1.0-2.0), semi-closed (2.0-3.0), and closed (3.0-

4.0) habitats.

The acoustic adaptation hypothesis proposes that the physical structure of bird

sounds correlates with differences in habitat acoustics. According to this hypoth-

esis, bird sounds with lower frequencies, narrower frequency ranges, and longer

inter-element intervals should occur more frequently in densely vegetated habi-

tats. [Morton, 1975] However, data of recent studies (see Figure 2.4b) suggests

that habitat structure only weakly predicts the acoustical properties of bird songs

[Hu and Cardoso, 2009]. This observation is backed by studies on mocking calls

[Billings, 2018] or meta-analyses that identify other significant factors like energetic

costs of bird vocalizations, the exposure to predators, or fitness of a population

[Boncoraglio and Saino, 2007]. Additionally, the study of acoustic ecology suggests

that birds—along mammals and insects—occupy ‘acoustic niches’ to reduce the ef-

fect of overlap between different species in frequency and time. It is assumed that

the audio bio-spectrum of a habitat is kept intact by alternating vocalizations of

different individuals. [Krause, 1993]
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The acoustic adaption and niche hypotheses also apply to human altered environ-

ments. Some bird species like the Great Tit (Parus major) are known to vocalize

with higher minimum frequencies in dense and noisy urban areas to avoid over-

lap with low-frequency noise [Slabbekoorn and Peet, 2003]. Independently of their

suitability to predict the physical structure of bird vocalizations, both hypotheses

indicate that frequency shifts in bird sounds occur depending on environmental fac-

tors. This is an important modality and should be accounted for when training an

acoustic recognition system—either by dataset adaption (e.g. data augmentation)

or shift invariant audiovisual features (see Chapter 3 for more details).

Non-vocal sounds

The vocal sounds produced by birds can be used to identify species or even individ-

uals. Additionally, a variety of non-vocal sounds are also distinct for some species

and help birders to decide which species they are hearing. Some of those sounds are

even very common and the casual listener would probably recognize them instantly.

However, not all non-vocal sounds are suitable for identification, e.g. splashing of

water might reveal the presence of an aquatic bird, but the sound alone is most

likely not sufficient to identify a species.

According to Nathan Pieplow’s ‘Field Guide to Bird Sounds of Eastern North Amer-

ica’ [Pieplow, 2017, pp. 4-5], we can discriminate five categories of characteristic

non-vocal sounds:

Beating the bill against a hard surface: Common in woodpeckers that hit their

bill against hard surfaces like trees or metal plates that yield loud and long-lasting

sounds when struck repeatedly [Byers and Kroodsma, 2016]. Woodpecker drum-

ming mainly occurs during the breeding season and probably functions as territory

defense and courtship. Woodpecker species have characteristic drum patterns that

vary in speed and are easily discernible in spectrograms (see Figure 2.5).

Snapping the bill shut: The White Stork (Ciconia ciconia) probably produces

the most widely known sound of bill-clattering ( 10). The sound is created

by quickly beating the mandibles together and can be heard over long distances

[Cramp and Simmons, 1977, p. 334]. Other species like owls, flycatchers and gnat-

catchers use bill snapping in close-range aggressive displays [Pieplow, 2017, p. 5].
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(a) Downy Woodpecker ( 8) (b) Hairy Woodpecker ( 9)

Figure 2.5.: Characteristic non-vocal drum patterns of two woodpecker species.

Species-specific drum rates can be used for identification.

Clapping the wings together: This kind of sound production generally happens

during flight when species like Long-eared and Short-eared Owls or pigeons clap

their wings together above or below their body [Pieplow, 2017, p. 5].

Moving feathers through air: When in flight, the feathers of most birds produce

sound when moving through the air. However, some species are specialized in sound

production using their feathers [Pieplow, 2017, p. 5]. One of the most prominent

examples are hummingbirds that emit characteristic buzzing sounds during flight.

Additionally, male hummingbirds are known to use their wings and tails to produce

a diversity of sonations when diving towards a perched female [Clark and Feo, 2008],

e.g. Anna’s Hummingbird (Calypte anna) produces a mechanical ‘chirp’ when diving

that precedes the normal song ( 11).

Inflating body cavities with air: Despite the fact that all birds have air sacs as

part of their respiratory system, only a few species have modified air sacs that are

used in sound production. An inflated air sac can serve as resonating chamber or can

be used to explosively release air, which results in popping sounds. [Pieplow, 2017,

p. 5] The American Bittern (Botaurus lentiginosus) is known to produce bizarre

sounds inflating the esophagus ( 12).

Avian auditory physiology

Although all vertebrates share the same structural organization of the main brain

regions, the capabilities of bird brains can be divided into two groups. Only par-
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rots, hummingbirds, and songbirds have the necessary forebrain anatomy develop

learned vocalization. Other bird species lack song learning capabilities and only

use basal brain structures to produce innate and genetically inherited vocaliza-

tions. [Jarvis, 2004, p. 226] Neurobiologists discovered two main vocal pathways

in birdbrains; one that controls the production of songs (motor pathway) and an-

other that is more involved in the mechanics of song learning (learning pathway)

[Catchpole and Slater, 2008, pp. 36-37]. Both pathways are part of a highly tech-

nical field of research that rapidly advances. However, I will solely focus on the

perception and auditory capabilities of birds with respect to the three most impor-

tant dimensions: Frequency discrimination, intensity discrimination, and temporal

discrimination [Dooling, 1982, pp. 102-110]. All three dimensions are interconnected

with the brain structure and the main auditory pathway but are primarily important

because of their significance for audio signal processing. Once we know how birds

perceive vocalizations of other individuals, we can decide on optimal parameter

settings for technical representations of bird sounds.

Frequency discrimination: Pitch is considered an important characteristic of

many communication signals—not just in birds but also for humans. Frequency

is an important cue for song recognition in many species [Dooling, 2004, p. 215].

The audiogram is the most basic measure of hearing (Figure 2.6a). On average,

birds hear best between 1 and 5 kHz with limits of the auditory space available

for vocal communication from about 500 Hz to 6 kHz [Dooling, 2004, pp. 207-209].

However, as discussed earlier, constraints in sound production and transmission limit

the ability of birds to vocalize using the full auditory space. Considering this, the

audiogram is of limited value to explore the relationship between auditory capability

and natural behavior [Dooling, 1982, p. 102]. Frequency discrimination thresholds

provide a more realistic measure of auditory capability. Birds are highly sensitive to

frequency changes and—according to studies for five species—can discriminate a 1%

change in frequency with the highest sensitivity between 1 and 4 kHz (Figure 2.6b).

However, humans are significantly more sensitive to changes in a broader frequency

range.

Intensity discrimination: Birds often vocalize over longer distances to commu-

nicate with the intended receiver. As the signal travels across a diverse landscape

with various obstacles (such as dense vegetation), it is often altered before it reaches

the recipient. The intensity of the broadcasted signal is probably impacted the most

in long-range communication. Therefore, intensity can be considered an unreliable
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(a) Audiogram (b) Frequency discrimination thresholds

Figure 2.6.: The audiogram (left) illustrates the auditory space for oscine (black)

and non-oscine birds (white) [Dooling, 1982, p. 97]. Birds are most

sensitive from 1-5 kHz. Frequency discrimination thresholds (right) are

a more realistic measure of auditory capability. A Weber fraction of

0.01 to 0.02 translates to a 1% change in frequency. [Dooling, 1982, pp.

102-103] Birds are most sensitive between 1-4 kHz, humans are capable

of detecting even smaller changes in frequency.

acoustic dimension to encode species or individual identity, motivational state, or

even distance [Dooling et al., 2000, p. 330]. However, Richards and Wiley suggest

that repetitive amplitude modulation (like in trills of bird songs) allows enough

redundancy to minimize the effects of amplitude fluctuations and reverberations

on long-range acoustic communication [Richards and Wiley, 1980]. Despite that,

the difference in intensity between two successive sounds has to exceed 3 dB to be

detectable by birds. [Dooling, 1982, p. 104] Again, humans are more sensitive in

that domain and normally can detect 1 dB change in intensity [Dooling, 2004, p.

215]. Birds are on par with other vertebrates like cats, mice and rats.

Temporal discrimination: Birds show impressive hearing abilities compared to

humans considering their inferior anatomy of the inner ear—but humans remain

more versatile and perform better in frequency and intensity discrimination. It

appears that there is only one specific domain where birds outperform the human
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(a) Minimally detectable gap in noise (b) Minimally detectable gap using tonal stimuli

of different frequency

Figure 2.7.: Temporal integration measures for humans and birds as shown in

[Dooling et al., 2000, pp. 337-338]. The gap detection threshold in noise

ranges from 2-4 ms for birds that are also less affected by low intensity

sounds than humans (left). The difference is even more significant when

two consecutive tonal markers differ in frequency (right). Both measures

assume that the studied bird species are representative for the majority

of birds.

auditory system: Temporal discrimination. This ability can mainly be measured

in two ways, namely maximum temporal integration and minimum temporal inte-

gration. The relation between the detection of a sound and its duration is usually

referred to as maximum temporal integration. It is a measure of the ability to

sum acoustical energy over time. [Dooling et al., 2000, p. 335] In that domain,

birds perform almost as well as humans. A sound should be at least 200 ms in

duration to maximize audibility [Dooling, 1982, p. 105]. Birds can also discriminate

changes in duration of about 10 to 20%, which is similar to what humans can achieve

[Dooling, 1982, p. 196]. In terms of the minimum integration time that birds can

achieve, we have to consider two modalities of gap detection measurements. First,

if we look at two consecutive sounds (tonal markers) that are similar, gap detection

abilities of birds are again on par with that of humans (and other mammals) and

usually range from 2 to 4 ms [Dooling et al., 2000, p. 336]. However, if we con-

sider consecutive sounds that differ in frequency, birds are significantly less affected

in their ability to distinguish the gap between two tones [Dooling et al., 2000, p.
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337]. Figure 2.7 illustrates the differences in the ability of birds and humans to

discriminate between temporal changes in an acoustic signal.

Available studies only focus on a few bird species and we have to assume that

other species might not fall into that spectrum. The results however seem to be

widely accepted and Robert J. Dooling can be considered one of the most prolific

authors on that subject. Therefore, we can summarize that the auditory system of

birds does not outperform human hearing abilities, except for temporal integration.

Birds are most sensitive to changes in frequency between 1 and 4 kHz, can detect

a 3 dB change in intensity and have superior temporal integration of 2 to 4 ms for

consecutive tones of different frequency.

2.2.3. Vocal development and repertoires

Compared to all bird sounds and vocalizations, songs are especially prominent. Un-

like most other birds, oscine passerines learn many components of their songs, which

therefore can be very complex. The process of vocal development for a bird starts as

nestling, continues after fledging, and is perfected during adulthood. In this section,

I will explore the different dimensions of song learning according to Michael Beecher:

When a song is learned, how many songs a bird can learn, if it needs tutoring, as

well as copying fidelity and the degree of canalization [Beecher, 2008].

When songs are learned

Among all birds, songbirds are especially diverse with about 4,600 of the world’s

10,000 species. Most songbirds have a sensitive period during which they learn

their songs and perfect their repertoire. The length of that period can range

from only a few weeks up to the entire lifespan in so-called open-ended learners.

[Byers and Kroodsma, 2016, pp. 370-371] Experiments usually include the tutor-

ing of captive birds to determine when they are sensitive to song learning. To do

that, researchers often use playback to simulate an individual of the same species.

One of the most comprehensive studies of song learning in birds (in that case Song

Sparrows) was reported by Beecher in 2008 and suggests that learning phases last

until the bird’s first breeding season [Beecher, 2008]. However, sensible phases show

significant variation across species and sometimes consist of more than one peak

of high sensitivity [Hultsch and Todt, 2004]. The example in Figure 2.8 shows the
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(a) Practice (plastic) song ( 13) (b) Crystallized song ( 14)

Figure 2.8.: Comparison of two White-throated Sparrow songs (same individual).

After song learning is completed, adult males sing a series of pure tones

(b) whereas young birds struggle with the precise control of the syrinx

and throat muscles (a).

plastic and crystallized song of a White-throated Sparrow (Zonotrichia albicollis)

to illustrate how song learning changes complex vocalizations. It is important to

account for plastic songs when monitoring a habitat, especially a few weeks into the

breeding season. It will be interesting to see how well acoustic recognition systems

can identify young birds that do not have a crystallized song.

How many songs a bird learns

Most bird species learn to sing in the early weeks of their life. Some species mem-

orize and imitate large repertoires, while others simply learn to control their syrinx

and throat muscles to sing their innate song. Although many bird songs are based

on some common features that seem to be genetically encoded for a species, some

birds only develop one song with not much variation across all individuals. Espe-

cially suboscine birds like the Eastern Phoebe (Sayornis phoebe) or flycatchers of

the Empidonax genus develop their innate song even when captured, isolated or

surgically deafened [Kroodsma, 1988, Kroodsma and Konishi, 1991]. This is par-

ticularly interesting, since acoustically isolated songbirds usually develop abnormal

songs. Moreover, the songs of early-deafened birds tend to be even more abnormal

[Marler and Sherman, 1983].

The number of songs that one individual can learn varies across species and ranges

from less then ten to above 100 or even further for some species (see Table 2.1).

27



2. Theory on Bird Biology and Audio Signal Processing

Table 2.1.: Estimated repertoire sizes for selected species as summarized in

[Catchpole and Slater, 2008, p. 205]. The Brown Thrasher is one of

the most versatile birds with long song sequences and a tremendously

large repertoire ( 15).

Species Repertoire size

Ovenbird (Seiurus aurocapilla) 1

White-crowned Sparrow (Zonotrichia leucophrys) 1

Common Chaffinch (Fringilla coelebs) 1-6

Great Tit (Parus major) 2-8

Hermit Thrush (Catharus guttatus) 6-12

Song Sparrow (Melospiza melodia) 7-11

European Starling (Sturnus vulgaris) 15-70

Marsh Wren (Cistothorus palustris) 33-162

Northern Mockingbird (Mimus polyglottos) 53-150

Common Nightingale (Luscinia megarhynchos) 160-231

Song Thrush (Turdus philomelos) 138-219

Brown Thrasher (Toxostoma rufum) 1500+

However, the Brown Thrasher (Toxostoma rufum) seems to be more versatile than

any other species. Donald Kroodsma reports the study of one individual that sang

more than 1800 different songs over the course of two hours [Kroodsma, 2005, p.

196]. Even profound mimics like the Northern Mockingbird (Mimus polyglottos) are

known to have only up to 150 songs per individual. This is even more impressive

considering that each individual develops its own repertoire. However, evidence

suggests that not all songs are memorized. Some of them seem to be improvised on

the spot, others are copies of another territorial male [Kroodsma, 2005, p. 199].

Some species, like the Blue Jay (Cyanocitta cristata) or American Crow (Corvus

brachyrhynchos), are part of the Passeriformes order but do not develop stereotyp-

ical songs. Despite the lack of ‘real’ songs, those birds often have vast repertoires of

calls and are highly variable [Kroodsma, 2005, pp. 179-191].

Repertoire size itself is hard to comprehend, because not all songs are distinct and

may contain repeating elements in varying order. Additionally, repertoires can

be extremely large and thus hard to quantify. Most of the time, they can only
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be estimated using an average repetition rate over the course of a long record-

ing [Catchpole and Slater, 2008, pp. 204-208]. This approach is extremely time-

consuming due to the manual comparison of spectrograms and therefore, only a few

individuals get studied [Kroodsma, 2005, p. 192].

Vocal development in the other orders of birds has been less well studied. Parrots

are known for their ability to imitate human speech, hummingbirds are known to

develop abnormal songs in isolation, and species like doves or pigeons develop vo-

calizations that seem to be encoded in the genes without any imitation or tutoring.

[Byers and Kroodsma, 2016, pp. 378-379]

Song tutoring

Imitation of adult bird song plays a significant role in the vocal development of many

bird species. However, the implications for a computerized bird sound recognition

system are limited. In contrast to the duration of song learning and the eventual size

of the repertoire of an individual, the fact that birds learn from a tutor cannot be

incorporated into a dataset easily. Additionally, even if a dataset would reflect the

song tutoring within a population of birds, a resulting recognition system would still

have to focus on common song features to identify individuals of the same species

from another population.

Learning from a tutor can be considered a combination of social interaction between

individuals and the sensitive phase of young learner [Byers and Kroodsma, 2016,

pp. 372-376]. While some species (mostly oscine passerines) develop abnormal

songs when isolated, other species do not require a tutor to develop crystallized

songs. The parents of a young male—especially the father—can be considered as

one of the most influential tutors of a young bird. However, dialects in bird song

are common among the majority of songbirds, which indicates that the father might

provide an important learning experience, but juvenile birds tend to acquire songs

that are needed at their own breeding location [Kroodsma, 2004, p. 121]. It is

believed that young birds hatch with a rough ‘template’ of their own species’ song

and only memorize vocalizations that match that template, thus learning song al-

most exclusively from individuals of the same species [Catchpole and Slater, 2008,

pp. 52-53].
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Copying fidelity

Developmental programs of bird song include species that copy songs by precise

imitation, species that vary in the importance of imitation, and species that almost

exclusively rely on invention [Byers and Kroodsma, 2016, p. 373]. Again, isolated

individuals of some species develop abnormal songs if their learning process depends

on tutoring. For example, this was shown for Swamp Sparrows (Melospiza geor-

giana) and Song Sparrows (Melospiza melodia) that still showed distinct differences

in their repertoires despite isolation but were not able to learn crystallized songs

[Marler and Sherman, 1985]. Other species like the Gray Catbird (Dumetella caro-

linensis) are known to develop rich repertoires in isolation that feature songs that

are indifferent from songs developed by tutored individuals [Kroodsma et al., 1997].

As discussed earlier, the Brown Thrasher is known to invent entire sequences of

songs on the spot. It remains unclear whether tutoring is still required in order to

invent vocalizations [Beecher, 2008].

Degree of canalization

The ability to mimic allows some species to incorporate astonishing amounts of

heterospecific material into their repertoire of songs. Mimicry significantly adds to

the diversity of a repertoire and might help to attract mates with an impressive suc-

cession of songs. However, the functional significance of mimicry remains uncertain

[Catchpole and Slater, 2008, p. 75]. One of the most accomplished mimics is the

Northern Mockingbird (Mimus polyglottos). Male mockingbirds sing well over 100

songs and a considerable number of them are copies of other species’ vocalizations

[Byers and Kroodsma, 2016, p. 399]. Mockingbirds often tend to vocalize in a long

sequence of songs, permanently switching from one tonality to another ( 16).

Of all mimics, the Superb Lyrebird (Menura novaehollandiae) seems to be the most

elaborate, with an uncanny ability to incorporate not just natural but also technical

sounds into its song. Especially individuals in captivity tend to mimic car alarms, hu-

man speech, camera shutters or even toy sounds ( 17). Studies of European Star-

lings (Sturnus vulgaris) documented high-fidelity mimicry of tens of different sounds,

including calls of owls, gulls and ducks as well as various environmental sounds like

the ‘meow’ of cats or a squeaky door [Hausberger et al., 1991]. Other species known

for their mimicry include the Lawrence’s Thrush (Turdus lawrencii), the Marsh

30



2.2. Avian vocal behavior

Warbler (Acrocephalus palustris), and even Blue Jays (Cyanocitta cristata) that

imitate calls of raptors like hawks. Although other species are known to mimic

occasionally, it is believed that this occurs as maladaptive side effect of song learn-

ing and the males who learn the wrong songs usually are not able to attract mates

[Byers and Kroodsma, 2016, p. 399].

2.2.4. Song variation in space and time

Most songbirds have a remarkable repertoire of songs and oscine passerines develop

and perfect their repertoire during various developmental programs. We already

know that song learning in birds occurs as part of the adaption to a new environment

with new territorial neighbors and potential mates. Tutoring plays an important

role in song learning and we can assume that imitation limits the incorporation of

heterospecific material into the repertoire for the majority of species. That being

said, we also have to assume that vocal bird sounds differ depending on population

and habitat (variation in space). Additionally, variations in bird song occur from

generation to generation and even over the course of a day (variation in time), when

males alter their song sequences or phrases depending e.g. on the presence of other

aggressive males, potential mates, or predators.

Variation in time

Birdwatchers are able to identify species by their songs, which is useful to not

only distinguish closely related species with similar plumage but also when sight

is limited. In avian systematics, song is of particular use at the species level and

if songs can indicate species identity, we have to assume that song enables birds

to recognize their own species and even individuals. [Catchpole and Slater, 2008,

p. 149]. Experiments with Ovenbirds (Seiurus aurocapilla) showed that a male

can distinguish familiar songs of a neighbor from (playback) sounds of an intruder

[Weeden and Falls, 1959]. It is also known that (the extensively studied) White-

throated Sparrows (Zonotrichia albicollis) respond more aggressively to a stranger’s

song depending on the playback location, which indicates that these sparrows rec-

ognize that certain songs belong to a particular individual [Falls and Brooks, 1975].

This is of importance for any automated bird sound recognition system as it adds to
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the diversity of a potential dataset and we have to account for individual variations

of a species song (see Figure 2.9).

The invariant feature hypothesis suggests that those features of song that vary least

and are relatively constant between individuals are most likely reliable for species

recognition [Catchpole and Slater, 2008, p. 153]. Douglas Nelson found that alter-

ations in frequency of the entire song are more important for species recognition

since they vary less than other cues like number of phrases, trill-note duration, and

inter-note interval. Frequency changes greater than two standard deviations rela-

tive to the mean resulted in significantly weaker responses during his experiments.

[Nelson, 1988] Therefore, we can conclude that an automated recognition system

needs to focus on semantically meaningful (high-level) and shift-invariant features

of bird song for species identification.

Variation in space

Song sharing within a population includes the sharing of entire repertoires or not

a single element at all. Variations occur in patterns (also called dialects) that

affect the distribution of song types and song elements among birds within an

area. According to Catchpole and Slater, we can distinguish between micro- and

macrogeographic variations that sometimes even occur within sharp boundaries.

[Catchpole and Slater, 2008, pp. 242-254] Donald Kroodsma reports an episode in

which he observed more than a thousand White-crowned Sparrows, but only six

different songs along a 30-mile coastline in California that had very distinct bound-

aries between populations [Kroodsma, 2005, pp. 44-55]. Distinct macrogeographic

variations in the U.S. most prominently occur in March Wrens (Cistothorus palus-

tris), for which the songs of western individuals (that occur west of the Missouri

River all the way to the Pacific) are very different from those of their eastern relatives

(that occur east to the atlantic) [Byers and Kroodsma, 2016, p. 387]. Again, a sharp

boundary of habitats that prevents western and eastern individuals from mating can

be observed. This even leads to the suggestion that we might face different species

because of significant geographic variations in song [Kroodsma, 2005, p. 134].

However, birds tend to construct their songs from a limited range of elements (see

Figure 2.9) and variations between bird populations mostly occur through element

permutations. Variations in element types are much less apparent. Yet, in some
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(a) White-crowned Sparrow 1 ( 18) (b) White-crowned Sparrow 2 ( 19)

(c) White-crowned Sparrow 3 ( 20) (d) White-crowned Sparrow 4 ( 21)

Figure 2.9.: Songs of four individuals of the White-crowned Sparrow (Zonotrichia

leucophrys). Males in the field usually restrict themselves to a single

song type [Chilton and Lein, 1996]. Common elements like the long

introductory whistle, the characteristic trills and buzzes occur in all four

song types but vary in pitch. The inter-note and inter-phrase intervals

appear to be similar among all four individuals. Recordings in this

example where acquired in different locations across North America and

variations in song patterns are most likely the result of regional dialects.

species, different populations do not share a single element that reoccurs in all indi-

viduals rendering dialect characteristics hard to define [Catchpole and Slater, 2008,

p. 246].

Why do spatial variations occur? Different hypotheses have been formulated, includ-

ing the matching habitat hypothesis [Hansen, 1979] that is somewhat similar to the

acoustic adaption and niche hypotheses, the hypothesis of genetic adaption to form

distinct populations and eventually new species [Nottebohm, 1972], the hypothesis

of social adaption to territorial neighbors [Catchpole and Slater, 2008, pp. 260-261],
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or even the hypothesis that song variations occur as functionless byproduct of song

learning [Andrew, 1962].

In any case, the fact that song pattern variations occur based on location but mostly

affect the permutation of song elements, is of great significance for automated species

identification systems. Classification algorithms cannot rely on song features (or

even acoustic fingerprints) of individuals but instead need to incorporate re-occurring

patterns across all individuals of one species. It remains to be seen how intra-species

song diversity affects the need for extensive training data.

2.2.5. Function of bird song and singing behavior

Most investigations of bird vocalizations have focused on the songs of songbirds.

Although females are known to sing in many species, male bird song appears to be

more prominent throughout the year. [Byers and Kroodsma, 2016, p. 392] Changes

in vocal production based on season and daytime play a significant role in automated

bird species recognition. I will explore the most prominent aspects of variations in

song production in this section.

Seasonal variations and breeding cycle

The ‘dual function’-theory suggests that male bird song serves two primary func-

tions: Defense of a territory and mate attraction [Catchpole and Slater, 2008, p.

114]. Empirical evidence correlates seasonal song production and the breeding cycle

of birds. Different studies support this assumption and show that seasonal song pro-

duction spikes with the start of breeding activity and then sharply declines over the

next few weeks [Catchpole, 1973]. Experiments on mate removal also demonstrated

this strong correlation. Males tend to increase their song production significantly

when female mates are removed and return to a normal level when the mates return.

[Krebs, 1981], [Otter and Ratcliffe, 1993] Song always occurs throughout the year

but reaches its peak in spring when resident birds and migrants occupy and defend

their territories [Catchpole and Slater, 2008, p. 114]. This annual cycle is of great

importance for automated bird sound classification as the arrival of migrants in their

breeding grounds poses a hard challenge due to the high levels of song production.

Additionally, since song production decreases after the breeding season, and some

migrants might even be detectable for only a few weeks throughout the year, the
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recognition system has to adapt to changes in species and song diversity. We will

see in Section 2.3 how metadata can help to predict species abundance based on

time and location.

Daily variations and dawn chorus

Song production does not only vary over the course of a year but also during the

day. Most day-active birds are silent throughout the night and start the day with

a burst of songs roughly one hour before sunrise [Byers and Kroodsma, 2016, p.

396]. More and more species join this so-called ‘dawn chorus’ in a rather predictable

sequence. It is believed that the ability to see strongly correlates with the beginning

of song production at sunrise. Birds with larger eyes and thus better ability to see

in dim light tend to start song production earlier. [Thomas et al., 2002] This even

applies for tropical birds that start singing based on height above ground—sunlight

first penetrates the forest canopy and later reaches the ground [Berg et al., 2006].

The dawn chorus can be considered the most important time of the day for species

detection based on song. However, it is also the most challenging: Song overlap

during this cacophony poses one of the most difficult challenges in signal processing.

Additionally, birds tend to sing faster songs with shorter intervals of silence during

the dawn chorus compared to the rest of the day. Some species even use entirely

different repertoires at dawn. [Byers and Kroodsma, 2016, p. 397] The reasons for

this behavior are manifold and range from social interaction with neighbors to the

inability to hunt due to the lack of sunlight and thus the tendency to instead use the

first light of the day to sing. The diurnal rhythm of song and the relationship with

other behaviors is not yet fully understood. [Catchpole and Slater, 2008, p. 130]

Considering the variations of song production over time, it remains questionable

whether birds avoid overlap with other individual’s vocalizations. We already know

that birds use counter-singing to communicate with territorial neighbors (see Section

2.2.4) and occupy acoustic niches (see Section 2.2.2); on top of that, birds do in fact

avoid competition when singing. Several studies have shown that birds adjust their

song output in relation to other species and other individuals by changing the rhythm

of their vocalizations in terms of song length and patterns of silence between songs

in asynchronous cycles. [Catchpole and Slater, 2008, pp. 136-138]

Another noteworthy dimension of bird sounds are flight songs and flight calls. Vocal-

izing during flight can be considered physically demanding. However, many shore-
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Figure 2.10.: Visualization of dawn chorus vocalizations recorded in June in Alaska,

United States ( 22). The high levels of song production and the

significant number of overlapping vocalizations in frequency and time

pose a hard challenge for any bird sound recognition system.

birds produce long and complex songs in flight, European Sky Larks even tend to

rise into the sky to sing long whistle notes before descending back into their terri-

tory. [Byers and Kroodsma, 2016, p. 400] Monitoring of nocturnal bird migration is

almost always limited to non-visual observation and thus often relies on flight calls—

short, often high-pitched species-specific vocalizations given during sustained flight

[Farnsworth, 2005]. The automated detection of flight calls for species identification

during the night can be seen as a distinct—almost independent—area of research

within the complex of automated bird sound recognition because of the relatively

rare nature of those acoustic events [Lostanlen et al., 2018].

2.3. Avian ecology

Seasonal changes in bird species abundance, diversity, and composition in a local

habitat are strongly linked to avian migratory patterns and thus the result of adap-

tations to variations in the environment. Migratory bird species take two-way trips

between wintering and breeding sites annually (migration). Even non-migratory

birds depart from their hatching grounds to find new breeding locations (dispersal).

[Winkler et al., 2016, pp. 453-454] It is vital for any avian monitoring system to

account for these two types of movements.

Selecting representative vertebrates as indicator species to monitoring environmen-

tal changes in habitats across all lifeforms is a common technique in conservation
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biology. Birds are ideal indicators as they have been shown to respond to various

environmental changes over many spatial scales. They usually reveal their pres-

ence, and their abundance is influenced by nature and configuration of surrounding

habitats. [Carignan and Villard, 2002] Additionally, geographic distribution, local

abundance, and habitat specialization all influence the vulnerability to extincting,

particularly in highly specialized species with small populations and narrow range

[Fitzpatrick and Rodewald, 2016, p. 590].

I will explore some of the most critical aspects of bird migration and dispersal in

this section. I will also shed some light on recent conservation efforts and citizen

science projects in support of conservation biology.

2.3.1. Habitats, abundance, and migration

One of the most exhaustive resource to study avian movements is ‘eBird Status and

Trends’ with its maps, charts, and animations. Available online, it provides un-

precedented depth of information for 107 North American species in four key areas:

Abundance, population trends, habitat association, and range. [Fink et al., 2018]

Based on observations of citizen scientists and predictions derived from those, the

data collection lively illustrates the macrogeographic scale of bird migration (see

Figure 2.11).

The migratory range of birds and seasonal variations in abundance provide us the

clues of when and where to look for certain species. For example, monitoring efforts

in Kentucky, USA, have to account for relatively short peaks in species diversity

when migrating birds pass through. Apparently, avian movements, time of the year,

and location are strongly linked with the diversity of avian vocalizations. We can

expect migratory (and also dispersal) patterns to significantly influence vocal pro-

duction in a given region. On top of that, knowing which species are to expect based

on location and time, helps to identify pivotal environments to protect from some

of the most critical threats to bird populations: Habitat loss, habitat fragmenta-

tion, introduced predators, pollution, introduced diseases, and other human-induced

stressors [Fitzpatrick and Rodewald, 2016, pp. 593-603].

Habitat attraction and avoidance also play a significant role in species composition

in avian communities. Competing bird species are partitioning limited resources

such as food and territorial niches for breeding [MacArthur, 1958], [Koenig, 2016,
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(a) Non-breeding (b) Pre-breeding (c) Breeding

(d) Normalized relative abundance in Guatemala, Kentucky (USA), and Quebec (CA)

Figure 2.11.: Seasonal variations in abundance of the Magnolia Warbler (Setophaga

magnolia). Migration starts in May, when the birds leave their win-

ter habitats in Central America, ranges across the Eastern United

States and ends in June, when the breeding grounds in Canada are

reached. Starting in September, the warblers migrate again, and reach

the winter habitats in late October. Maps and data provided by

[Fink et al., 2018].

pp. 518-522]. Vegetation structure can change the diversity of bird communities

and the number of species a certain habitat can contain is limited based on its

configuration [Vickery et al., 1995]. Yet, differences on species diversity and com-

position occur on a rather microgeographic scale, rendering preferences on habitat

structure a hard to comprehend dimension of bird migration. For example, the Mag-

nolia Warbler preferably occupies evergreen broadleaf forest in its Central American
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winter habitats. When migrating north, it can be found in deciduous broadleaf for-

est, woody savannas, and urban environments. On its breeding grounds, it prefers

mixed forest. [Fink et al., 2018] On a local scale, this list is not exhaustive and

we have to assume that individuals also occur in different habitats, although they

usually avoid their characteristics (e.g. large water bodies or closed shrublands).

In order to orchestrate conservation efforts, the preservation of preferred habitats

is key to protect endangered species and to maintain their reproductive success

[Fitzpatrick and Rodewald, 2016, p. 583].

For now, macrogeographic migration patterns present us a more reliable picture: The

chance of encountering a Magnolia Warbler in the western states of the U.S. year-

round or during the winter month in Canada is slim, and the conclusion we can draw

from that for an automated recognition system is of greater significance. Predicting

species abundance, diversity and composition based on time and (macrogeographic)

location will greatly impact the reliability of the proposed recognition system of this

thesis (see Chapters 5 and 6).

2.3.2. Conservation biology and citizen science

Monitoring populations is one of the most important approaches to assess ecosys-

tems in terms of conservation priority—especially in regions with high overall bio-

logical diversity. Monitoring indicator species, such as birds, can help to identify

early warning signs that indicate habitat changes that are likely to affect many

other species [Fitzpatrick and Rodewald, 2016, pp. 607-608]. Commonly, two main

methods—survey and census—are used to assess the species composition of an area.

Since census would require researchers to count every individual and thus limits

investigations to only a few species, surveys are easier to conduct and provide a

sufficient assessment for most tasks. However, surveys might also be incomplete due

to the question of when, where, and for how long to count individuals or species.

[Bibby et al., 2004, pp. 1-3] Of all the available counting techniques, I will focus on

point counts to estimate relative abundance and population trends during a survey.

They are of particular interest for automation efforts and widely used in conservation

biology.
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Point counts

When bird watchers or researchers decide to observe an area and assess bird species

diversity by counting, they often encounter difficulties. The trade-off between time

available and the number of points sampled concerns the question of how to max-

imize the probability of detections. The need for standardized methods of bird

counts for different geographic regions, habitats, seasons, and levels of abundance is

apparent. [Lynch, 1995] In an effort to formulate those standards, Ralph et al. or-

ganized a workshop during which biologists suggested important dimensions of bird

count methodology [Ralph et al., 1995]. Some of those suggestions are of particular

interest because they serve as strong arguments for an automation of the counting

process:

Setup of monitoring stations: According to Ralph et al., point count stations

should be systematically located and placed to avoid boundaries between habitat

types with a minimum distance between stations of 250 meters (820 feet). An

increased number of independent sampling stations is considered more reliable than

repeatedly counting at a smaller number of stations.

Count period at each station: The amount of time spent at a monitoring station

is a compromise between the acquisition of accurate data and the effort of sampling

a larger number of stations. The proposed observation time is 5 minutes when the

time of travel between monitoring sites is less than 15 minutes and 10 minutes when

the time for travel is greater than 15 minutes.

Time periods and weather conditions: The detectability of bird species varies

depending on season and time of day. The suggestion is to conduct point counts

when the detection rate of the species being studied is most stable. Additionally,

Ralph et al. note that birds should not be surveyed when it is raining, during heavy

fog, or windy conditions.

Observer training: Differences between observer skills have a significant impact

on the success of point counts. The ability to identify birds by sight and sound

usually takes several years to develop. Ralph et al. state that the training of non-

experts is almost certainly too time-consuming to be feasible when all species that

occur at a location should be counted.

Involving the public to conduct point counts has certain advantages. First, the num-

ber of monitoring stations increases significantly. Secondly, the covered time span
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expands to year-round observations. Thirdly, local bird watchers are supposedly

skilled enough to conduct reliable point counts without further training. Two of

the most prominent campaigns to involve citizen scientists for bird counts are eBird

checklist observations [Sullivan et al., 2009] and the annual ‘Stunde der Gartenvögel’

of the Naturschutzbund Germany (NABU) 1. In both cases, bird watchers are asked

to provide bird counts at their preferred location over the course of 5-60 minutes.

Still, observations are limited in time and thus might not provide a complete assess-

ment. Additionally, monitoring a specific habitat or cryptic and endangered species

still requires systematic observations by experts.

Acoustic monitoring

Point counts require bird watchers to identify species either by sight or sound. The

overall habitat structure plays a significant role in point counts and may limit the

possibility to see individuals that occur in an area. In fact, birds are easier to find

and to detect in open habitats—even if they are silent. Yet, most detections in

closed forest can only be made by ear. [Bibby et al., 2004, p. 3] Considering this,

acoustic monitoring using autonomous recording units (ARU) allows researchers to

conduct point counts in almost any densely vegetated habitat. A recent survey

study—published by Shonfield & Bayne in 2017—notes that ARU have become a

widely used sampling tool in ecological research and monitoring over the past decade

[Shonfield and Bayne, 2017]. Advances in hard- and software allows manufacturers

to produce weatherproof recording units at low costs. One prominent example of

a widely used ARU is the SWIFT recording unit provided by the Cornell Lab of

Ornithology (Figure 2.12). This particular unit is currently being used to gather

continuous audio recordings from various locations around Ithaca, New York in the

United States—the experimental foundation of this thesis (see Chapter 5).

According to Shonfield & Bayne, using ARU to conduct point counts has certain ad-

vantages, including repeated sampling across spatial and temporal scales, reduced

observer bias due to peer review, reduced field time as result of continuous ob-

servation, and a permanent record of the survey for further analysis and storage

[Shonfield and Bayne, 2017]. Still, those advantages come at the cost of increased

workload due to manual labeling of countless hours of recordings. The difficulty of

processing large amounts of data is one of the main reasons why human-conducted

1https://www.nabu.de/tiere-und-pflanzen/aktionen-und-projekte/stunde-der-gartenvoegel/
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(a) SWIFT recorder assembly line (b) SWIFT recorder in the field

Figure 2.12.: Autonomous recording units are a widely used sampling tool in eco-

logical research. The SWIFT recorder provided by the Bioacoustics

Research Program (BRP) of the Cornell Lab of Ornithology2 allows to

record up to 30 consecutive days of audio. Optimizing the assembly of

these weatherproof ARU reduces the costs to $250 per unit. SWIFT

recorders will provide the majority of audio recordings used for exper-

iments and evaluation throughout this thesis. Images provided by the

BRP.

point counts still are the superior tool of habitat assessment. It is the primary goal

of this thesis to provide conservation biologists, ornithologists, and citizen scientists

with tools that help to increase the effectiveness of autonomous recording units for

avian activity monitoring.

Public data acquisition

Identifying birds by ear often requires expert knowledge and years of experience (see

Section 2.2.1). The training of an automated recognition system usually requires

large amounts of data—audio recordings of bird vocalizations. Again, involving

the public can help to acquire recordings of bird species across the globe. Com-

munity projects like xeno-canto.org3 or eBird4 and professional collections like the

3https://www.xeno-canto.org
4https://ebird.org
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outstanding Macaulay Library5 provide a vast amount of open source data on bird

vocalizations, occurrences, and other metadata.

Xeno-canto: Founded in 2005 by Bob Planqué and Willem-Pier Vellinga, xeno-

canto.org evolved into one of the largest collections of sounds of wild birds from all

across the world. The website aims to popularize bird sounds, to improve their acces-

sibility, as well as to increase the knowledge of bird sounds in general. Xeno-canto is

open for public contribution and recordings are shared using various Creative Com-

mons licenses. The collection itself features more than 400,000 recordings of over

10,000 species totaling for more than 7,000 hours of audio data. [Xeno-canto, 2019]

eBird: The Cornell Lab of Ornithology and the National Audubon Society launched

eBird in 2002 to engage a vast network of citizen-scientists to report bird observa-

tions using standardized protocols [Sullivan et al., 2009]. Since then, eBird grew

into the world’s largest biodiversity-related citizen science project. Bird watchers

around the world contribute over 100 million bird sightings each year. When sub-

mitting an observation, birders have to answer a number of questions and sightings

are cross-checked using a list of likely species based on date and region. eBird

supports the scientific community by opening its collection to researchers through

tools, applications, and programming interfaces. [eBird, 2019]

Macaulay Library: In 1929, Arthur Allen and Paul Kellogg made the very first

recordings of wild birds in Ithaca, NY, United States. This marks the birth hour

of the Cornell Library of Natural Sounds. Due to rapidly advancing recording tech-

nologies, the collection evolved into the largest scientific archive of natural history

audio, video, and photographs over the course of the following decades. The early

2000’s mark the inception of the digital era that was followed by a rapid phase

of expansion. To honor their contribution to the Library of Natural Sounds, the

collection was named the Linda and William Macaulay Library of Natural Sounds.

As of today, the collection consists of more than ten million photos, over 400,000

audio recordings, and almost 60,000 videos. [Macaulay, 2019]

The importance of the aforementioned libraries and archives can not be overes-

timated. Public involvement in the collection of media and metadata is vital to

advance avian research. Fortunately, the birding community is highly active and

dedicated to record, share, and analyze vast amounts of observations. Other initia-

tives like the British Library Sound Archive, the Tierstimmenarchiv Berlin or the

5https://www.macaulaylibrary.org
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Australian National Wildlife Collection provide access to high quality collections

of natural sounds. Thanks to those efforts, the acquisition of training data for

an automated bird sound recognition system will most likely result in a large and

heterogeneous dataset of high overall quality.

2.4. Sound digitization and representation

Since the late 1920’s, when Allen and Kellogg recorded their first birds, record-

ing equipment has evolved into sophisticated tools of sound capturing. The new

millennium brought advanced digital devices that replaced common tape recorders.

Today, computer technology allows us to capture, process, and analyze digitized

sounds of birds with ease. Since the arrival of the smartphone, almost every adult

owns a compact recording device—the technological variety of sound recorders is

ever expanding. This variety has implications for automated sound processing sys-

tems. Professional recording gear used by birders and scientists differs greatly from

the microphones and recorders used in ARU or smartphones. In this section, I will

explore those differences, elaborate on spectrogram generation and the adaption of

digitized sound representations to the avian vocal and auditory range.

2.4.1. Digital sound recording

The study of bird song is an important tool for every ornithologist and capturing bird

sounds remains one of the most important tasks in field research (see Section 2.2.1).

Birders and scientists go through great lengths to capture birds in the wild. (Semi-)

professional recordings provided by the Macaulay Library or Xeno-canto are the

results of those efforts. As stated earlier, the vast archive of both collections can be

used to train an automated bird sound recognition system. However, the application

of such a system will very likely be affected by a domain shift from unidirectional

recordings as training data towards omnidirectional recordings as test data. Con-

sidering this, it is important to account for the differences of both domains.
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Unidirectional recordings

The reasons to record bird vocalizations are manifold. Typically, a permanent record

of those sounds is useful to analyze song structures, the number of songs a male sings,

to study behavioral patterns and the interaction with territorial neighbors or even to

conduct playback experiments. Additionally, recordings of bird sounds can be used

to teach birders how to identify birds by sound or to preserve a record of endangered

species. Whatever the reason, recording equipment should satisfy two main criteria:

It should provide high quality recordings for further lab analysis and should be light

enough to carry out in the field. [Catchpole and Slater, 2008, p. 12]

Mainly, two types of microphones are used for this task: Highly directional ‘shotgun’

microphones and recording systems that include a parabolic reflector (sometimes

called ‘dish’) [Kroodsma, 2005, p. 404]. Humans and birds mostly share the same

vocal and auditory range, thus commercially available recording systems often fulfill

the requirement of decent quality. The type of microphone that is suitable for

the task of bird sound recording is often determined by the polar response pattern

(see Figure 2.13). When the source of the sound is close enough to the mic (like

it is in most scenarios where human speech is recorded in a studio), a cardioid

polar pattern is most likely the ideal choice. Since birds often perch in the canopy

or flee when humans approach, shotgun patterns are more effective as they allow

recordists to point the microphone at the distant sound source. However, parabolic

reflectors in combination with omnidirectional microphones are far more effective at

capturing distant or soft sound. The parabola reflects incoming sounds towards the

center, where the mic is mounted, favouring higher frequencies. Parabolas become

ineffective below frequencies at which the wavelength of a signal is equal to the

diameter of the reflector and thus might alter the recorded vocalization to a notable

extend. [Kroodsma, 2005, pp. 405-406] Despite that, parabolic reflectors are widely

used to record bird sounds since birds tend to vocalize using higher frequencies than

humans and parabolas also shield the microphone from background noise.

Omnidirectional recordings

The characteristics of a microphone—like polar response pattern, sensitivity, or

noise floor—have a significant impact on the overall quality of a recording. Yet,

the choice of microphone for a bird sound recording task is often limited due to
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(a) Omnidirectional (b) Bidirectional

(c) Cardioid (d) Shotgun (e) Professional recording gear

Figure 2.13.: Different microphone polar patterns (a-d). Cardioid patterns are most

commonly used in the vast majority of studio recording scenarios.

Shotgun microphones can be used to capture distant sounds by point-

ing at the source. Parabolic dishes in combination with omnidirec-

tional microphones capture high frequencies over long distances and

thus are ideal for bird sound recordings. Professional recording gear

often includes high quality headphones and digital recorders. Authors:

Galak76 (a, b, d), Nicoguaro (c), Jay McGowan (e)

certain constraints—two of which are important to consider for long-term acoustic

monitoring: The recording scenario and the available space in a compact recording

system. One of the goals of this thesis is to develop an automated bird sound

recognition system for mobile devices such as ARU (point counts) or smartphones

(single species identification). Directional microphones are not a good option for

acoustic monitoring since they have to be pointed at a sound source by hand.

Omnidirectional microphones are a better choice as they will likely capture a bird

independently from its position. Acoustic recorders—like the SWIFT recorder—

mostly use small omnidirectional microphones pointed downwards to capture the

surrounding soundscape. Equally capturing sounds from all directions comes at the

costs of less detailed recordings of distant sounds and high ambient noise levels.
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Both impairments considerably impact the automated recognition and the shift in

recording domains has to be accounted for during data augmentation.

Today, smartphones are a convenient tool to capture bird sounds. Since smart-

phones are handheld devices, manually pointing at the sound source could im-

prove the recording quality. However, due to their compact size, modern smart-

phones often contain very small microelectro-mechanical system (MEMS) micro-

phones [Bogue, 2013]. Due to their small and flat form factor, MEMS micro-

phones are often omnidirectional, but the type of housing influences the directivity

[Lewis, 2011]. It is almost impossible to predict the type of microphone and its

characteristics due to the heterogeneous ecosystems of smartphone manufactures

and devices. The recording quality is heavily dependent on built-in microphones,

device casings and hardware pre-processing steps to reduce background noise. Due

to this fact, an acoustic classification system has to account for a vast variety of

alterations of recorded sounds.

2.4.2. Spectrogram computation

Spectrograms are widely used in the study of bird sounds and provide detailed visual

clues that help to analyze avian vocalizations. Their level of detail is far greater than

any textual transcription of bird sounds and almost every publication in the field

of avian communication features spectrograms to visualize distinct features of bird

song. Species identity is known to be encoded in vocal and non-vocal bird sounds and

therefore will likely be represented in visualizations of those sounds. Spectrograms

can be considered one of the most important digital representations of sound in

avian research. Thus, visual representations of sound in the time and frequency

domain will be the building blocks of the machine learning approach to automated

bird sound recognition described in this thesis. Spectrogram computation however,

leaves us with certain degrees of freedom, which I will explore in this section.

Sampling rate

Sound waves travel through a medium like air or water and can be measured as

local variation in pressure, or local movement of the medium. Every device that is

capable of measuring these local variations can be used to capture a waveform that

represents the deviation of pressure from normal pressure over time. [Schlüter, 2017,
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p. 46] When digitizing a recorded waveform, the continuous-time signal has to be

discretized using samples spaced at certain intervals. The Nyquist-Shannon sampling

theorem specifies an important condition for this process: A continuous-time signal

can be exactly reconstructed from its samples if the sampling rate exceeds twice

the signal bandwidth [Lyon, 2017, p. 134]. This means that an audio signal with a

maximum frequency of 1000 Hz has to be sampled with a rate of at least 2000 Hz to

be exactly reconstructable. Oversampling in form of a small safety margin helps to

prevent the loss of information. Sampling at 2000 Hz results in 2000 discrete data

points for each second.

In practice, the choice of the best sampling rate for recorded bird sounds is affected

by some constraints. Usually, we are limited to sampling rates of 22.05 kHz, 44.1

kHz or 48 kHz. A sampling rate of 22.05 kHz would be more than enough for bird

vocalizations since the vocal range of birds is usually limited between 500 Hz and 6

kHz. However, most devices capable of sound recording natively support sampling

at 44,100 kHz—a de facto standard set by Sony for practical reasons when recording

to analog video cassette tapes. The SWIFT field recorder uses a sampling rate of 48

kHz, another commonly used rate in modern audiovisual entertainment (e.g. DVD

and Blu-ray). Choosing the most practical sampling rate based on native device

capabilities avoids costly re-sampling.

Frame length and overlap

When computing a spectrogram, the discrete-time sequence of samples is broken up

into periodically overlapping frames (or windows) of length N . Spectral information

is then extracted by applying the discrete Fourier transform (DFT) to each frame.

Following the notation of [Heinzel et al., 2002], the DFT transforms a vector of N

complex numbers xk, k = 0 . . . N − 1 into a vector of N complex numbers ym,m =

0 . . . N − 1 with

ym =

N−1∑
k=0

xk exp

(
− 2πi

mk

N

)
, m = 0 . . . N − 1 (2.1)

The computational costs of this transformation are O(N2). Most scientific program-

ming libraries use a more efficient Fast Fourier Transform (FFT) implementation

proposed by Cooley and Tukey [Cooley and Tukey, 1965] that only needs N log2N
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operations but requires N to be a power of 2. Some libraries implement various

forms of the FFT, which use very efficient forms of the Cooley and Tukey approach,

allowing for a significant reduction of computations for arbitrary input lengths.

Choosing an inapt frame length can lead to leakage—discontinuity between samples.

Therefore, the time series of samples xj is multiplied with a window function wj

to remove discontinuities. For a DFT of length N , the window function is defined

by a vector of real numbers wj , j = 0 . . . N − 1. Many window functions exist,

most of them are smooth ‘bell-shaped’ curves. One of the most widely used window

functions for spectrogram computation is the Hann window, defined as:

wj =
1

2

[
1− cos

(
2π · j
N

)]
, j = 0 . . . N − 1 (2.2)

Again, this notation follows Heinzel et al., who also state that the overlap between

consecutive frames should account for the window width (narrow windows need more

overlap) and give equal weight to all data. Heinzel et al. propose to use a Hann

window with 50% overlap between consecutive frames for spectrogram computation.

[Heinzel et al., 2002]

However, choosing the best frame length and overlap for a specific task can be

challenging and often depends on the applied scenario. Larger windows result in

higher frequency resolution, smaller windows provide more temporal details (Figure

2.14). For bird sounds, temporal resolution appears to be more important than

frequency resolution (see Section 2.2.2).

The complex result of the short-time Fourier transform (STFT) for a single frame is

added to a matrix that contains magnitude and phase for each sample in time and

frequency. Computing the squared magnitude of this matrix results in the (power)

spectrogram.

The shape of the output spectrogram is important for further processing and has

to be taken into account when choosing values for frame length and overlap. Low

input resolution is desirable to reduce computational costs, but the level of detail

has to match the requirements of the target use case.
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(a) frame length N = 256, hop size H = 128 (b) frame length N = 512, hop size H = 256

(c) frame length N = 1024, hop size H = 512 (d) frame length N = 2048, hop size H = 1024

Figure 2.14.: Different frame lengths and hop sizes using a Hann window for a Wood

Thrush song. While short frames (a, b) result in high temporal res-

olution and blurred frequency representations, longer windows (c, d)

show significant temporal blurring and sharp details along the fre-

quency axis. For this sample, temporal resolution is more important

than frequency resolution.

The resulting width Sw and height Sh of the output spectrogram S can be derived

from the values for sampling rate fs, duration t, frame length N , and hop size

H = N − overlap as follows:

Sw =

⌊
fs · t
H

⌋
− 1, Sh =

⌊
N

2

⌋
+ 1 (2.3)

According to that, a spectrogram for a one-second signal sampled at 48 kHz using

a frame length of 512 samples and 50% overlap (hop size = 256) has an output

resolution of 186 × 257 (Sw×Sh) data points (or pixels). Instead of a fixed number

of samples, some implementations use milliseconds as length of a frame.
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Frequency scaling

The human perception of pitch is not linear. Using a linear frequency scale when

computing a spectrogram does not account for the logarithmic pitch perception of

higher frequencies. Additionally, a linear frequency scale might overemphasize high

frequencies. [Lyon, 2017, pp. 88-89] Humans and birds are limited in their auditory

range and a compression of those high frequencies could reduce computational costs

during further processing. Experimental pitch comparison formed the basis for a

better scaling.

Stevens, Volkmann, and Newman proposed the mel scale, a log-like scale of pitch,

which maps Hertz to Mels [Stevens et al., 1937]. The mel scale is one of the most

frequently used perceptional scalings. Based on the assumption that an offset of

700 Hz marks the division between near linear and near logarithmic perception

[Lyon, 2017, p. 88], the definition of the mel-frequency scale is

fscaled = 2595 log10

(
1 +

f

700

)
. (2.4)

The mel scale maps 1000 Hz to 1000 mels, a scale factor of 2595 provides near

linear scaling for low frequencies and near logarithmic scaling for higher frequencies

above 1 kHz (Figure 2.15). However, evidence suggests that the mel scale is an

inaccurate reflection of pitch perception and it often faces criticism, especially for

its high break frequency. Numerous other break frequencies have been proposed, e.g.

Glasberg and Moore estimate fbreak at 228.8 Hz based on tone-in-noise experiments

[Glasberg and Moore, 1990] or Fant, who proposes a break frequency of 1000 Hz,

which provides a more accurate approximation for higher frequencies [Fant, 1968].

From an engineering perspective, high break frequencies reduce the number of low-

frequency channels needed to compress a linear frequency scale. Considering the

general form

fscaled = A log10

(
1 +

f

fbreak

)
(2.5)

where A is an arbitrary scaling constant, different values for fbreak might yield a

more appropriate scaling for different scenarios. Birds are most sensitive to changes

in frequency between 1 and 4 kHz, the auditory space of birds ranges from 500 Hz
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Figure 2.15.: Different auditory frequency scales. The mel scale proposed by Stevens,

Volkmann, and Newman uses a break frequency of 700 Hz, while Fant

proposed a break frequency of 1000 Hz. Glasberg and Moore esti-

mate a break frequency of 228.8 Hz based on tone-in-noise masking

experiments. All three curves provide approximately linear scaling

until 1000 Hz and a logarithmic scaling for higher frequencies. Birds

vocalize with higher pitch than humans. Therefore, a break frequency

of 1750 Hz and approximate linear scaling until 500 Hz emphasizes

higher frequencies, which provides better frequency scaling despite the

lack of strong auditory evidence.

to 6 kHz. Birds usually vocalize with higher frequencies than humans due to their

limited size. Therefore, using a high break frequency of 1750 Hz and a scale factor

A of 4581—that maps 500 Hz to 500 mels—provides a frequency compression that

accounts for avian auditory physiology. Yet, this assumption is purely based on

technical considerations and lacks strong auditory evidence.

Magnitude scaling

The linear scale power spectrogram—as result of the STFT with squared magnitudes—

does not reflect subtle changes in intensity due to its wide margin between values

(Figure 2.16a). To counter this, and to provide a more detailed representation of

intensity changes, different magnitude scales have been proposed. Some of them

address the human auditory system, some of them are purely technically motivated.

For the recognition of bird sounds in field recordings, three main types of magnitude

scaling appear applicable.
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Logarithmic scaling: The most widely used scale to reflect changes in intensity in

acoustic signals is the decibel (dB) scale. As a logarithmic scale, it is defined as

SdB(t, f) = 10 log10

(
S(t, f)

r

)
(2.6)

for each value of a power spectrogram S in time t and frequency f . The reference

power r typically refers to the maximum value of S or 1. Some implementations of

the dB scale allow to normalize the scaled output SdB to a maximum value with

SdB(t, f)′ = max(SdB(t, f), SdB(t, f)−m) (2.7)

whereas m defines a dB threshold, e.g. of 60 dB (Figure 2.16b). Despite its common

application for acoustic signals, the dB scale is not an accurate perceptive scale. Hu-

man perception of loudness is not equally sensitive for all frequencies [Lyon, 2017,

pp. 50-53]. Based on the avian auditory physiology, the same applies for birds. Con-

sidering this, logarithmic scaling of squared magnitudes can be seen as yet another

technical convenience.

Nonlinear scaling: Scaling magnitudes depending on the use case can help to

yield representations that lead to better results during further processing. For bird

sounds, Schlüter applied a nonlinear magnitude transformation (Figure 2.16c) for

the classification of 1,500 South American bird species during the 2018 BirdCLEF

challenge (also see Section 3.3.1).

The proposed transformation with a trainable parameter a for every time-frequency

bin x is defined as

y = xσ(a), with σ(a) = 1/(1 + exp(−a)) (2.8)

and also amplifies low magnitudes but preserves more subtle details as a dB scaling.

Schlüter proposed values for a ranging from -1.2 to -1.7, based on his 2018 Bird-

CLEF experiments. [Schlüter, 2018] Since empirical evidence verifies the suitability

of this transformation for a bird sound recognition task, the application of this

approach might improve the classification performance on faint bird vocalizations

in soundscape recordings despite the lack of heavy noise suppression.
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(a) Power spectrogram (b) Logarithmic scaling

(c) Nonlinear scaling (d) PCEN

Figure 2.16.: Different magnitude scales. The power spectrogram (a) with simply

squared magnitudes does not reflect subtle changes in intensity. Typi-

cally, the decibel scale (b) is applied to achieve logarithmic scaling for

changes in intensity. Schlüter proposed a nonlinear scale that preserves

fine changes in intensity but might result in a noisy representation (c).

Wang et al. proposed per-channel energy normalization (d), which

adaptively suppresses noise but creates heavy artefacts for shorter

chunks of audio. All scales were normalized to preserve comparability.

Adaptive scaling: The most sophisticated approach of magnitude scaling—that

also has been applied in a bird sound recognition scenario—was proposed by Wang et

al. to enhance far field human speech recognition: Per-channel energy normalization

(PCEN). According to Wang et al., PCEN uses adaptive gain control to dynamically

compress magnitudes instead of static compression (like in log or nonlinear scales).

[Wang et al., 2017] The approach was successfully applied by Lostanlen for the de-

tection of flight calls in noisy environments with slightly adapted parameter settings

[Lostanlen et al., 2019], [Lostanlen et al., 2018]. However, the approach seems to

perform worse on short chunks of audio and produces heavy artefacts (Figure 2.16d)

54



2.4. Sound digitization and representation

compared to other magnitude transformations—even when parameter settings were

trained [Schlüter, 2018].

The avian auditory system appears to be insensitive to changes of 3 dB or less.

Additionally, intensity is a fairly inaccurate encoding of information in long-range

communication. Choosing the appropriate magnitude transformation might be more

important for the separation of overlapping signals of different individuals, or the

separation of foreground and background, than it might be for species classifica-

tion.

2.4.3. Adaption to avian acoustic monitoring

Preserving as much information as possible while maintaining a good overall com-

pression in the final visual representation of a acoustic signal is vital for further

processing. Again, finding the best configurations for the three most important

domains of spectrogram computation is key. I will propose parameters that are a

compromise of technical feasibility and auditory evidence for temporal resolution,

frequency compression and magnitude scaling.

Temporal resolution

Considering the fact that temporal resolution might be the most important di-

mension of spectrogram computation, choosing the right parameters is critical .

However, practical limitations often constrain the ideal selection. One of the most

critical constraints is the actual output resolution of each spectrogram. The reason

for this is purely technical: The input size of any image processing algorithm has

to be as small as possible to ensure high throughput and low computational costs.

Mainly, there are two ways to restrict the temporal output resolution of the STFT.

First, limiting the length of audio that is represented as spectrogram to only a few

seconds and secondly, adjusting the window size and overlap of the STFT to provide

a maximum of useful details and a minimum of frames.

We already know that bird songs typically are longer and more complex than calls.

Additionally, species identity is known to be encoded in song. Therefore, the appro-

priate duration of an audio signal that is visualized in a spectrogram has to reflect the

expected duration of a bird vocalization to avoid cropping. Not every part of a song
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Figure 2.17.: Empirical results for the length of bird song. Users of the smartphone

app were asked to isolate bird vocalizations by drawing an interval on

the screen. Of those selections, roughly 60% contained a detectable

bird species. The SWAMP dataset consists of 15 fully annotated days

of soundscapes and features over 47,000 expert annotations of more

than 80 North American species. The 2017 BirdCLEF dataset contains

expert annotated soundscapes and over 50 audible species from South

America. Only a few publications contain quantifiable measures of the

length of bird vocalizations but also feature European species. Only

intervals with a duration shorter than five seconds were considered.

is equally important (e.g. trills contain redundant information), but it is not feasible

to predict which part is sufficient to identify a species. Therefore, the entire vocal-

ization should be present in a spectrogram. Unfortunately, only a few publications

mention quantifiable durations of bird songs across multiple species. As a result, I

will rely on empirical data extracted from various sources to determine the average

length of bird vocalizations across species (Figure 2.17). The empirical data contains

almost 80,000 human selections (expert annotations and non-expert interval selec-

tions) and more than 100 published song durations extracted from [Beletsky, 1989],

[Marler and Isaac, 1960], [Irwin, 2000], and [Dobson and Lemon, 1975]. The analy-

sis of the data reveals that the average length of bird vocalizations across hundreds

of species is 1.94 seconds. Thus, limiting the length of audio chunks depicted in

a spectrogram to 2-3 seconds will ensure that almost every bird vocalizations is

represented in its entirety.

Limiting the number of samples used to generate a spectrogram allows us to decrease

the window length of the STFT to gain a high temporal resolution. Still, a temporal
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resolution in gap detection between two consecutive tones of differing frequency of 2

to 4 ms (which is typical for birds) requires a window length of only 64 (2.6 ms) or

128 samples (5.3 ms). At a sampling rate of 48 kHz, both would lead to a unfeasible

number of frames and low frequency resolution. A window length of 512 samples

(10.7 ms) appears to be a good compromise between output resolution and auditory

evidence. With an overlap of 50% (256 samples), each frame corresponds to a time

step of 5.3 ms.

Frequency scaling

Birds vocalize in a limited frequency range and the avian auditory system is not

equally sensitive to all frequencies. The minimum and dominant frequencies of al-

most every bird sound lie above 200 Hz and below 10 kHz [Hu and Cardoso, 2009].

Therefore, restricting the visible frequency range in a spectrogram to values between

150 Hz and 15 kHz most likely represents the vast majority of bird vocalizations and

reduces the amount of data needed to process this representation. Cutting off fre-

quencies below the Nyquist threshold (which would be at 24 kHz if we sample at 48

kHz) can lead to leakage when applying a frequency compression. Thus, the use of

band pass filters helps to flatten the critical frequency band between 150 Hz and 15

kHz and to avoid hard cut-offs. Typically, Butterworth filters [Butterworth, 1930]

are used to avoid leakage at cut-off frequencies. Compressing the remaining frequen-

cies to achieve a scaling that reflects the avian auditory system using a mel-like scale

will likely result in a dense representation with maximum information preservation

in the frequency domain.

Magnitude scaling

Highly directional recordings of bird vocalizations often include clearly audible

sounds with fine details. Most publicly available sound files contain the primary

bird sound with high intensity. However, omnidirectional recorders produce noisy

recordings that blend ambient noise and bird sounds. The application of a mag-

nitude scaling has to reflect on that. Considering the works of Schlüter, using a

nonlinear magnitude scale seems to be the most appropriate choice for bird sound

recognition in noisy environments despite the fact that this kind of compression is

neither adaptive nor widely used.
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Proposed workflow

Finally, the proposed workflow of spectrogram computation for avian acoustic mon-

itoring can be outlined by the following steps:

• Open an audio file or stream at 48 kHz sampling rate, re-sample if necessary.

• Split the audio signal into 2- or 3-second chunks.

• Perform the STFT with Hann windows of 10.7 ms length (512 samples), 50%

overlap, and 512 frequency bins that result in a fixed target output width and

height.

• Apply a bandpass filter at cut-off frequencies of 150 Hz and 15 kHz to avoid

leakage.

• Perform frequency compression using a mel-like scale with 64 mel bands and

a break frequency at 1750 Hz.

• Transform the magnitudes using a nonlinear scale.

• Normalize the output between 0 and 1.

• Save the final spectrogram as lossless image for further processing.

The entire workflow provides the foundation for baseline experiments, and will be

subject of further evaluation in Chapter 5.

2.5. Summary

Avian vocalizations—especially bird song—are often highly complex and consist

of a rapid succession of elements. Birds are capable to utter two-voiced sounds

thanks to their sophisticated vocal tract. The evolution of song is complex and—for

most passerine birds—requires extensive learning, imitation and even improvisation.

The intra-species complexity of song repertoires is vast and the number of songs

a single individual is capable to sing ranges from very few to multiple hundreds.

Local dialects add to the sheer amount of species-specific vocalizations rendering the

identification of birds based on their sounds a complex task with a steep learning

curve.
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Additionally, birds are important indicator species for environmental monitoring

and habitat assessment. One of the most common approaches to survey the species

diversity of an area are point counts—labor intensive tasks that require extensive

expert knowledge. Automated recording units can assist in this task but require even

more time to analyze due to their hour-long recordings. An automated bird sound

recognition system would be a transformative tool to assist ornithologists, conserva-

tion biologists and citizen scientists in the assessment of avian species diversity and

long-term monitoring of critical environmental niches.

The worldwide community of birders provides extensive data that can be used to

train and assess such an automated system. However, the provided data differs from

what can be expected in the field. Audio recordings are of high quality, recorded

with (semi-) professional and highly directional equipment and observations based

on checklists are rare for remote habitats. Still, the sheer amount of available data

provides a great starting point for development despite the differences.

Digital tools of sound transformation are commonly used in avian research. Vi-

sualizations of bird vocalization in the form of spectrograms have a long lasting

tradition in bird biology and are widely adapted to analyze audio recordings. We can

assume that visual representations of bird sounds also contain valuable information

on species identity, rendering spectrograms a particularly suitable representation of

avian sounds. Still, it remains to be seen which configuration and parameter set-

tings provide a maximum of encoded information at a minimum of computational

costs.
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The extraction of semantic features and meaningful information from audio record-

ings is a lively field of research that mainly evolves around the automated recognition

of human speech. The identification of a vast number of sounds and acoustic events

has applications in many areas of our daily life. The automated detection and

classification of bird vocalizations is one of those applications. In this chapter, I will

explore the evolution of machine learning attempts to solve the many challenges in

this field. I will briefly introduce the academic field of acoustic event recognition,

shed some light on recent technological advances in deep learning and will lay out the

progress that has been made by participants of the two major bird sound detection

and classification campaigns. Again, this chapter aims at providing an overview and

I will reference further introductory literature that provides a more in-depth look at

central ideas.

3.1. Acoustic event recognition

In 1953, Colin Cherry started to empirically explore the behavioral concepts behind

the human ability to selectively attend to the voice of one speaker in a mixture of

different speech signals (the ‘cocktail party problem’, [Cherry, 1953]). The field of
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computational segregation of sound sources evolved around the assumption that hu-

mans perform an auditory scene analysis (ASA) to transform the sounds of different

sources into separate mental representations [Bregman, 1994]. The segregation of

overlapping acoustic signals is of particular importance for automated speech recog-

nition (ASR) over long distances in diverse environments—especially considering the

problems of reverberation and additive background noise [Barker et al., 2013]. But

human speech is just one modality of information encoding and with the inception

of smart devices that can ‘hear’ (e.g. smartphones or robots), other sound sources

and events are of interest as they might carry information not present in speech

[Stowell et al., 2015]. The detection and classification of acoustic events is a sub-

area of computational auditory scene analysis [Wang and Brown, 2006] that assigns

labels to perceived sounds.

We can observe some terminology confusion in the literature concerning the defi-

nition of acoustic event classification (AEC) and acoustic event detection (AED).

According to Temko et al., we can distinguish between both fields using the following

definitions [Temko et al., 2006b]:

Acoustic event classification deals with events that occur in isolated audio seg-

ments, each of which actually contains an event. The goal is to classify those isolated

events based on acoustic features.

Acoustic event detection combines the identification of timestamps of events in

continuous audio streams and the classification of those detected events.

However, since AED is often used to describe the detection of only one class or

highly abstract classes of acoustic events (e.g. ‘animal sound’ or ‘human speech’),

the identification of bird species based on sounds can be considered a combination of

AEC and AED due to its high number of classes and vast intra-class heterogeneity.

Furthermore, we have to consider the difference between sound emission and per-

ception. We could argue that the perception of a sound has to reflect the auditory

capabilities of the receiver—auditory physiology or microphone characteristics—

whereas the emission of sound includes vocal capabilities as well as acoustics in

open or closed environments. Ideally, computational attempts to identify acoustic

events would be robust against variations in emission and perception. However,

it is often easier to reflect on perceptual characteristics in controlled environments

(e.g. when technical recorder characteristics are known). Therefore, I will use the

following definition to refer to automated bird sound identification:
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Acoustic event recognition involves both tasks of detecting an event in a noisy

input stream of audio and classifying it using a fixed amount of fine-grained target

classes that require high-level concepts of acoustic events.

Acoustic event recognition (AER) for automated bird species identification consists

of two processing stages: First, the occurrence of a bird sound has to be detected

in a noisy stream of audio across a variety of digital receivers (AED) and secondly,

this sound has to be assigned to one particular bird species (AEC). Both tasks are

equally important and will be combined to one single step of species recognition

using classifiers that are capable to suppress false detections for non-events.

The overall process of acoustic event recognition is based on the extraction of features

and their classification to distinguish between audible sounds. This process is often

complemented with extensive pre-processing of audio data and post-processing of

classification results. Yet, the extraction of suitable features is vital to the success,

and their design is often based on the human auditory system, e.g. the widely

used Mel Frequency Cepstral Coefficients (MFCC). Some authors report good over-

all results using MFCC to identify environmental results [Cowling and Sitte, 2003].

However, speech features are not necessarily suited for the detection and classifica-

tion of generic acoustic events [Chu et al., 2009]. Time- and frequency-domain fea-

tures are commonly used in computational scene recognition ([Peltonen et al., 2002],

[Eronen et al., 2006]) and are often complemented with transformations to reduce

the spatial dimension of the resulting feature vectors [Zhuang et al., 2008]. Common

classifiers include Hidden Markov Models ([Chen et al., 2005], [Temko et al., 2006a]),

Gaussian Mixture Models ([Raboshchuk et al., 2015]), and Support Vector Machines

([Chu et al., 2009]).

Since their recent inception, deep artificial neural networks (DNN) excelled the

performance of ‘traditional’ classifiers in the domain of acoustic event recognition

and are successfully applied to identify environmental sounds [Shu et al., 2018],

[Salamon and Bello, 2017]. The capabilities of deep neural networks in the acoustic

domain are highly competitive, sometimes even resulting in perfect predictions in

controlled environments [Kahl et al., 2017a]. We can assume that those classifiers

are well-suited to process large and divers collections of avian recordings. This

assumption is backed by the ever increasing performance of deep neural networks

in well-known evaluation campaigns. I will explore the evolution of DNN in recent

years and their application to various bird identification tasks in the following two

sections.
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3.2. Deep artificial neural networks

Machine learning marks a paradigm shift from classic programming—where humans

input rules and data to automatically generate answers—towards a more generic ap-

proach where humans input data and answers to generate the rules (supervised learn-

ing). In 1950, Alan Turing objected Ada Lovelace’s comment on general-purpose

computers which—according to her—never do anything really new. Turing stated

that computers might very well be capable of learning and originality. [Turing, 1950]

Until today, this assumption fuels the ongoing pursuit to achieve true computer in-

telligence. However, recent machine learning approaches that solve complex tasks

are designed to find statistical structure in a given number of examples, which allows

those systems to come up with rules that eventually lead to an automation of this

task. Even though the name suggests that the human brain stood as example for

the design of deep artificial neural networks—a specific group of machine learning

approaches—we cannot assume that the human brain implements anything like the

learning mechanisms used in modern deep learning—despite conceptual references

to neurobiology. [Chollet, 2017a, pp. 4-8]

Still, deep artificial neural networks significantly expanded the capabilities of mod-

ern data processing approaches to generalize and can be perceived as milestone

developments towards computer intelligence. When developing and applying those

technologies to automatically solve complex tasks, we have to keep in mind that

deep learning is based on statistics and often heavily biased by input data. So far,

deep learning has achieved remarkable breakthroughs in image processing, speech

recognition, or machine translation (see [Zhao et al., 2019], [Hinton et al., 2012a],

[Wu et al., 2016]). In this section, I will introduce the basic terminology, topologies

and recent advances in deep learning using artificial neural networks.

3.2.1. Concepts and topologies

One of the most comprehensive works on deep neural networks is the 2016 edition

of Deep Learning by Goodfellow, Bengio, and Courville [Goodfellow et al., 2016].

I will follow the definitions and notations for most concepts introduced in this

book. François Chollet provides a more practical introduction in Deep Learning with

Python [Chollet, 2017a]. Yet, the scope of this section is to provide the necessary

terminology needed to follow the chapters on system architecture and experiments
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rather than providing in-depth details. Both of the aforementioned books are highly

recommended as further introductory literature.

Deep learning

Although the term deep might suggest that we are dealing with an approach of

learnable deep understanding, it rather refers to successively stacked nonlinear op-

erations that form a processing chain [Chollet, 2017a, p. 8]. One core concept of

deep learning is to replace hand-crafted features that describe input data with an

automatically learned solution. In so-called end-to-end learning, the machine learn-

ing algorithms do not rely on any hand-engineered descriptors and instead learn to

map raw inputs to predictions autonomously. This conceptual pattern is not reliant

on extensive knowledge in the task domain. Still, the design of deeply stacked

nonlinear operations—deep artificial neural networks—requires expert knowledge in

the deep learning domain, extensive experimentation, and careful composition of

data. [Schlüter, 2017, p. 14]

Feedforward networks

Deep feedforward networks (or multilayer perceptrons) are considered the quintessen-

tial deep learning models. Following the notation of [Goodfellow et al., 2016, p.

163], the goal of a feedforward network is to approximate a function f∗, where—

for a classifier—the assignment of y = f∗(x) maps an input x to a category (or

class) y. Feedforward networks learn the value of the parameter θ and define a

mapping y = f(x; θ) that results in the best function approximation. This way, the

flow of information is directional and passes through the function being evaluated

from x towards the output y. Feedforward networks do not contain any feedback

connections. In contrast, recurrent neural networks (RNN) do feed outputs of the

model back into itself and thus form a separate class of deep models specifically

well-suited to process sequential inputs. While RNN are widely used in natural lan-

guage applications [He et al., 2019], feedforward networks form the basis of many

commercial applications, especially in the domain of object recognition in images

[Sandler et al., 2018].
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Feedforward models are composed of many different functions connected to a chain.

For example, a chain consisting of three (differentiable) functions f (1), f (2), and

f (3), which can be called first, second, and third layer of a network, has the form

f(x) = f (3)(f (2)(f (1)(x))) (3.1)

and thus a length (or depth) of three. The final layer of such a network is called

output layer, intermediates are referred to as hidden layers. The given training data

consists of noisy, approximate examples of f∗(x) where each sample x is comple-

mented with a label y ≈ f∗(x). The output layer must produce a value close to

y, the behavior of all other layers is not explicitly specified by the training data.

[Goodfellow et al., 2016, pp. 163-164]

Neuron activation

If we consider each network layer vector valued, we can interpret the role of each

vector element analogous to a neuron (or unit), all of which act in parallel with each

representing a vector-to-scalar function [Goodfellow et al., 2016, p. 164]. Concep-

tually derived from the signal transmission in the human brain, artificial neurons

receive inputs from many other neurons and compute their own activation value.

Values xi of the incoming vector x are weighted by a weight vector w and offset by

a bias b. The values of w and b are called the tunable parameters of a layer.

The mapping of all input values to an output scalar is computed using the weighted

sum of the input values expressed as
∑
i xi ·wi or the dot product wTx. After adding

the offset scalar b, the accumulated inputs are passed through the (often nonlinear)

activation function φ(a) (see Figure 3.1).
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(a) Visualization of φ
(
b+ wT x

)
(b) Visualization of φ

(
b+WT x

)
Figure 3.1.: Neuron activation in feedforward networks. Values xi of the incoming

vector x are weighted by a weight vector w and offset by a bias b.

The accumulated inputs are passed through the activation function φ(a)

and are thus mapped to the neuron output y. Since all neurons of a

feedforward layer share the same inputs x, we can express the vector

of weighted sums as a matrix product WTx. Visualizations shown in

[Schlüter, 2017, p. 15]

In summary, the mapping of weighted inputs to outputs as the elemental function

of feedforward networks is defined as:

y = f(x; θ, φ) = φ
(
b+

∑
i

wixi
)

= φ
(
b+ wTx

)
(3.2)

In their most basic form, the neurons of each layer are fully connected to all neurons

of the preceding layer. Since all neurons share the same input vector, the vector of

weighted sums can also be expressed as matrix dot product WTx. [Schlüter, 2017,

p. 15-16], [Rey and Wender, 2011, p. 16-17]
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Furthermore, we can derive the mapping from inputs x to labels y by an appropriate

choice of the activation function of the output layer neurons—the transfer function

φ(a). Mainly, two transfer functions are commonly used in classification scenarios.

First, the logistic sigmoid function maps the inputs to a value between 0 and 1 and

is defined as

σ(a) =
1

1 + exp(−a)
(3.3)

where the resulting output scalars can be interpreted as probability that the input

belongs to the target class. The sigmoid transfer function is the ideal choice for

binary and multi-label classification tasks. The softmax function for each output

unit i is defined as

s(a)i =
exp(ai)∑
j exp(aj)

(3.4)

and also assigns probability values between 0 and 1 to each value of the output

vector. Since the sum of all output probabilities is 1, the softmax function is best

used for categorical classification problems with ‘one hot’ labels.

The neurons of the hidden layers of a feedforward network usually all use the same

nonlinear activation function, including sigmoid activation (logistic or hyperbolic

tangent), or the widely adapted rectifier r(a) = max(a, 0) [Glorot et al., 2011] and

leaky rectifier l(a) = max(a, 0.01a) activation [Maas et al., 2013]. Neurons with

rectified activation are called ‘rectified linear units’ (short ReLU) and—along their

derivates like PReLU, ELU, or SELU—are successfully applied in a vast number of

scenarios [Ramachandran et al., 2017].

Training

Finding the best approximation of f∗ is the goal of the learning algorithm. Stacking

nonlinear functions (or layers) in a feedforward network allows to model nonlinear

relations between inputs and outputs. While learning, we have to assess the error

of the output y in comparison to the targets t using a so-called loss function J(y, t).

The choice of loss functions depends on the task and therefore on the choice of
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transfer function for the last-layer neurons (e.g. softmax or sigmoid). In binary

classification, the binary cross-entropy

J(y; t) := −t log(y)− (1− t) log(1− y) (3.5)

is a common choice. For categorical classification, the categorical cross-entropy

J(y; t) := −
∑
i

ti log(yi) (3.6)

is commonly used to compute the network error [Schlüter, 2017, p. 22]. The goal of

the learning algorithm is to minimize the output loss across all input samples. The

fundamental concept of deep neural networks is to use the loss as feedback and to

adjust the tunable weights of each unit accordingly. Computing the contribution of

each parameter to the overall loss is done during backpropagation by applying the

chain rule to compute the derivatives of complex, stacked functions. This process

is also called optimization. Learning takes place when the adjustable weights of

each unit are updated by changing their value by a small margin—the learning

rate—according to the gradient of the loss. This process moves the loss towards

a (local) minimum, thus leading to learned statistical representations of the input

data. [Chollet, 2017a, pp. 46-52]

Convolutional layers

In fully-connected, dense feedforward networks, each unit of a layer is connected

to all units of the preceding layer. Therefore, densely connected layers learn global

patterns in their input feature space. In contrast, convolutional layers learn local

patterns as they only connect a limited amount of preceding neurons to form an

output. Local patterns can be recognized anywhere in the input data and provide

significantly improved generalization capabilities. [Chollet, 2017a, p. 122] This is

especially useful if neighboring values of the input vector are semantically linked.

Convolutional neural networks (CNN, convnets) are the most widely used type of

feedforward models in image processing. For images, the convolution operation

converts input feature maps (3D inputs with height×width× channels) to output

feature maps by transforming small patches (Figure 3.2). Taking advantage of the

structural characteristics of an input can simplify the learning task when learned
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Figure 3.2.: Example of a convolution with kernel size 3x3. Convolutional layers

learn local patterns as they only connect a limited amount of preceding

neurons to form an output. In the depicted images, a 4x4 input matrix

is transformed into a 2x2 output through local mapping. Images appear

in [Dumoulin and Visin, 2016].

patterns provide better representations through exploitation of local value corre-

lations. A fully-connected feedforward network neuron can be transformed into a

convolutional unit with

c(X; θ, φ) = φ
(
b+

∑
i

Xi ∗Wi

)
(3.7)

by replacing scalar inputs xi with a matrix Xi, each scalar weight wi with a ma-

trix Wi (the so-called kernel) and scalar multiplication for vector values by a 2D-

convolution operation (usually denoted with an asterisk) [Schlüter, 2017, p. 19].

Convolutional layers use the same activation functions for their units as densely

connected layers.

Since the dimensions of each kernel are significantly smaller than the input, con-

vnets have fewer learnable parameters than fully-connected networks. In addi-

tion, convolutional layers share kernel weights across all input values. Both char-

acteristics provide convnets with two fundamental properties: Learned local pat-

terns are translation invariant (equivariance) and CNN can learn spatial hierarchies

of patterns as result of shape-altering intermediate pooling operations, padding,

strides or through dilation with large receptive fields. [Chollet, 2017a, pp. 122-123],

[Goodfellow et al., 2016, pp. 322-330]
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Generalization

The recent success of deep neural networks derives from their ability to solve com-

plex tasks (in computer vision). In fact, DNN are able to fit random labels to

random noise for almost any kind of input data. Due to this, a number of diffi-

culties arise when trying to force neural networks to generalize. Additionally, the

term generalization itself is problematic—what do we mean when we say that a

DNN generalizes well? Commonly, generalization means that a network trained to

minimize the training loss is capable of achieving a similar performance on unseen

validation samples. Still, training and validating data are often strongly linked

since they originate from the same distribution. It remains questionable, whether

we can assume that the performance on the validation data is representative of the

performance on any unseen (real-world) samples. From an experimental point of

view, validating the DNN performance using unseen but labeled samples is the only

way of determining if one neural network generalizes better than others.

The capability to generalize is linked to the effective capacity of a neural network.

Depending on the task, the number of parameters needed to fit the entire training

data with zero loss is only depending on the complexity of the input value distri-

bution. That implies, that any DNN with sufficient capacity can fit any label-data

assignments, even random noise. [Zhang et al., 2016] Still, since every network with

sufficient capacity will eventually memorize the training data, the best way of mea-

suring the capability to generalize is through validation with unseen samples. If the

training and validation loss diverge by a huge margin, we can assume that the DNN

is focusing on semantically unlinked noise in the training data—an effect which is

typically called overfitting.

Regularization

Avoiding overfitting and maintaining generalization capabilities is the main goal

while training deep neural networks. A number of methods to achieve that goal

have been proposed, some of them are very effective—although Zhang et al. (2016)

state that it is often unclear why. Most approaches employ some form of im-

plicit or explicit regularization for DNN with a large number of trainable parame-

ters. Explicit regularization often affects the model capacity and typically includes

domain-specific data augmentation (see Chapter 4), weight decay (or L2 penalty,
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[Goodfellow et al., 2016, pp. 115-116]) and dropout [Srivastava et al., 2014]. Im-

plicit regularization methods commonly include early stopping of the training pro-

cess and the well-established batch normalization [Ioffe and Szegedy, 2015]. How-

ever, the impact of each regularization method on the overall generalization capa-

bility has to be evaluated experimentally and strongly depends on the complexity of

the task to solve. Regularization can significantly improve the performance of a deep

neural network or having little impact at all. Additionally, the inapt combination

of regularization methods might prevent the network from converging towards the

minimal loss, thus requiring us to increase the model capacity.

Network design

One of the key considerations for a deep learning approach is determining the net-

work architecture. The word architecture refers to the overall structure of a network

[Goodfellow et al., 2016, p. 191]. According to the literature, the terms architecture

and topology are interchangeable and both widely used. Still, I prefer to refer to

the overall design of a neural network as architecture (e.g. feedforward, recurrent,

convolutional) and to the specific succession of layers and their number of units as

topology (e.g. shallow, deep, wide). The process of finding the best possible topology

for a given task is often labor intensive and based on intuition. For some tasks, even

one hidden layer might be sufficient, others often require very deep networks with up

to several hundreds of layers (especially in image processing). The prototypical pro-

cess of designing a suitable topology involves experimentation guided by monitoring

the error function and incremental changes based on evaluation results. One of the

most controversial design choices in deep learning evolves around the assumption

that feedforward networks benefit from depth and not width. More specifically,

increasing the number of learnable parameters without increasing the depth is said

to be significantly less sufficient than an increased number of successive layers with

an unaltered number of weights [Goodfellow et al., 2016, p. 197]. Yet, deep nets are

considerably harder to train and require significantly more computational resources.

Investigating the evolution of deep neural networks for image processing as part of

the next section reveals that wide but shallow topologies perform better for some

tasks.
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3.2.2. Evolution of CNN

It is save to say that the annual ImageNet Large Scale Visual Recognition Challenge

(ILSVRC, [Russakovsky et al., 2015]) played a crucial role in the development and

evolution of deep neural networks for computer vision. In fact, some of the most

influential topologies, training methods and deep learning techniques have been

proposed to solve the main task of this challenge: Identifying visual objects rep-

resenting 1,000 different classes in real-world photographs. The competition itself

started in 2010 and lasted until the year 2017, when the organizers decided that

the (tremendously) complex task of visual object recognition can be considered as

solved—with a top-5 error rate of 3.57%, human-level performance on this dataset

has already been topped in 2015.

LeNet: Following Schmidhuber’s timeline of deep learning [Schmidhuber, 2013],

the inception of modern DNN started with Hubel and Wiesel’s description of simple

and complex cells in the visual cortex in 1962 [Hubel and Wiesel, 1962]. But the

technical foundation was formed even before that with the description of the percep-

tron by Rosenblatt in 1958 [Rosenblatt, 1958]. The formulation and adaption of the

backpropagation algorithm for neural networks during the 1970’s and its eventual

application for CNN by Yann LeCun in 1989 [LeCun et al., 1989] ignited the rapid

development of more complex and more powerful deep neural networks. It was

also LeCun et al. who presented the first, widely-adopted CNN architecture that

was capable of classifying characters and handwritten digits with high precision

[LeCun et al., 1998]. This shallow topology consisting of two convolutional, two

pooling and three fully-connected layers was able to achieve an error rate of only

0.8% on 10,000 test images.

AlexNet: The milestone achievement—mostly considered as the breakthrough of

deep learning—of winning the ImageNet competition in 2012 and beating the pre-

vious best top-1 error rate of 45.7% [Sánchez and Perronnin, 2011] by 8.2%, was

accomplished by the SuperVision group including Alex Krizhevsky, Ilya Sutskever,

and Geoffrey Hinton [Krizhevsky et al., 2012]. The proposed topology consisted of

five convolutional, three pooling and three fully-connected layers. The so-called

AlexNet architecture follows the main design of LeNet but employs other influential

design decisions like strided convolutions, ReLU neuron activation, and dropout.

Until today, many CNN topologies follow the presented ideas and solve a wide

variety of tasks with AlexNet-like designs. Subsequently, one year later, another
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AlexNet-like architecture—ZFNet—won the ImageNet competition by adjusting the

configuration of the original topology [Zeiler and Fergus, 2014]. More importantly,

Zeiler and Fergus (hence the name ZFNet) established the first convenient way to

visualize CNN features in their work, the reason why this topology is considered a

major milestone in deep learning.

VGG: In 2014, Simonyan and Zisserman published their streamlined VGG archi-

tecture to compete in the ImageNet competition [Simonyan and Zisserman, 2014].

They did not outscore other contestants, but the topology of 16 weighted layers

(VGG-16) remained a milestone achievement because of its lean topology that is

easily reproducible. It also established the use of 3x3 filters instead of large kernels

of 7x7 or even 11x11. Interestingly, Simonyan and Zisserman found that adding

more layers and increasing the depth of the network did not improve the classifi-

cation results. The VGG-16 version achieved a 8.8% error rate and significantly

outperforms ZFNet. However, the VGG-19 version only achieved 9.0% error rate,

leading to the assumption that depth is limited for streamlined topologies with

stacked convolutions. The VGG topology is very wide, using a high number of

filters and thus contains more than 13 million trainable parameters, which make it

prone to overfitting for smaller datasets with less variance. Still, due to the use of

stacked 3x3 convolutions instead of larger kernel sizes, the number of parameters is

significantly smaller than in AlexNet that consists of more than 60 million tunable

weights.

GoogLeNet/Inception: In the same year, Szegedy et al. attempted to construct

a very deep architecture that consisted of 22 weighted layers [Szegedy et al., 2015].

The so-called GoogLeNet was able to set a new record of only 6.6% top-5 error rate

in the object classification category. The authors successfully adopted 1x1 convo-

lutions and the global average pooling operation from Lin et al. [Lin et al., 2013]

to build very deep networks. GoogLeNet consists of successive ‘Inception’ modules

that reduce the computational costs through dimensionality reduction (stacking 1x1

and 3x3 or 5x5 convolutions). The network also contains only one fully-connected

layer for softmax classification preceded by global average pooling. As a result,

GoogLeNet had only 6.7 million trainable parameters.

ResNet: The first successful attempt to top human performance on the ILSVRC

dataset was presented by He et al. in 2015 [He et al., 2016a]. The described ar-

chitecture consisted of up to 152 weighted layers—an incredible increase compared

to previous attempts. To avoid the effects of vanishing or exploding gradients that
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can occur during backpropagation in very deep and narrow networks, the authors

established so-called skip or shortcut connections to form ‘Residual Blocks’ consist-

ing of two branches—one that contains convolutional layers and one that directly

maps the input to the output of the block through element-wise addition. Error

propagation can now skip the convolutional layers of a residual block, thus still

reaching earlier layers of the network. An ensemble of multiple ResNets was able to

achieve a top-5 error rate of 3.57% passing the human-level threshold of 5.1% set

by Andrej Karpathy in 2014 [Karpathy, 2014]. In the following years, a number of

additions and modifications to the ResNet architecture have been proposed. Most

notably, Zagoruyko and Komodakis showed that ‘Wide ResNets’ with a reduced

number of layers but increased number of filters outperform all previous versions

[Zagoruyko and Komodakis, 2016]. Until today, deep residual networks remain the

go-to architecture for many tasks due to their easy-to-implement topology and high

classification performance.

DenseNet: Huang et al. built upon the idea of residual shortcut connections and

promoted a deep architecture that passes collective knowledge from early layers to

every succeeding layer [Huang et al., 2017]. These so-called densely connected net-

works concatenate outputs from dense blocks by stacking the channels of previous

blocks. The width of the networks grows with every additional dense block, thus

passing previously established features to deeper layers. The authors argue that

the so-achieved diversified features have richer patterns. In fact, large DenseNets

outperform a variety of ResNets on current benchmark datasets. Still, the imple-

mentation of those topologies is more complex and so ResNets often remain the

preferred choice for many tasks.

MobileNets: In an attempt to further reduce the number of parameters and com-

putational costs of deep neural networks, Howard et al. published MobileNets in

2017 [Howard et al., 2017]. The basic idea evolves around the observation, that

depthwise separable convolutions perform on par with standard convolutional layers

but significantly reduce the computational costs by limiting the number of input

values that each filter processes [Chollet, 2017b]. Depthwise separable convolutions

can be considered a special case of grouped convolutions (already introduced with

AlexNet) where the number of groups equals the number of channels. The same idea

was employed by Xie et al. to further improve the performance of residual networks

[Xie et al., 2017]. In summary, recent developments and improvements generally

aimed at maintaining the performance of well-established typologies and—at the
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same time—reducing the computational costs to make deep neural networks more

applicable to real-world scenarios.

Born-again networks: We have to remind ourselves that top-performing systems

presented to solve complex tasks during international competitions often use bagging

to merge the predictions of an ensemble of networks. The ImageNet competition

showed that network ensembles are very powerful and often outperform single nets.

Still, those ensembles are not well-suited for real-time applications due to their

incredibly high computational costs. Evolving around the idea of knowledge distilla-

tion presented in [Hinton et al., 2015], born-again networks employ student-teacher

training where—instead of ‘hard’, one-hot labels—‘soft’ predictions of a teacher net-

work are used to train the student [Furlanello et al., 2018]. The same approach can

be used to distill large ensembles into one single network, which mostly maintains

the overall performance and gains real-time applicability.

The investigation of recent advances in CNN topologies reveals techniques that are

very efficient and widely adopted. However, the primary domain of the presented

models is object classification in photographs. This raises the question whether

these architectures are suitable to classify acoustic events. I will shift the focus of

this investigation towards the recognition of avian vocalizations. Fortunately, two

major evaluation campaigns evolved around this task. I will shed some light on

recent developments within these campaigns in the following section.

3.3. Evaluation campaigns for avian acoustics

The comparability and reproducibility of scientific progress is key to advance a

specific field of research. Unfortunately, many published works present experiments

using proprietary sets of data. Establishing data collections that can be used to

compare a scientific approach to the state-of-the-art helps to publish more transpar-

ently. The deep learning community mostly adopted major benchmark collections

like the MNIST dataset of handwritten digits and characters [LeCun et al., 1998],

the CIFAR-10 and CIFAR-100 tiny image dataset [Krizhevsky and Hinton, 2009], or

the aforementioned ImageNET collection [Russakovsky et al., 2015]. The bioacous-

tics research community established multiple evaluation campaigns, each of which

features a different dataset. Until today, no de facto standard has evolved and the

campaigns are ever changing in terms of data and metrics. Yet, each annual edition
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led to various submissions of participating research groups presenting their approach

for the same data collection— making those submissions comparable and progress

(to some extend) measurable over consecutive editions. Due to the size of the pro-

vided training and test datasets, the number of included species, and participating

research groups, the BirdCLEF and DCASE Bird Audio Detection challenge can

be considered the most important evaluation campaigns to investigate the scientific

progress in the field of avian sound recognition.

3.3.1. BirdCLEF

The LifeCLEF Bird Detection Challenge (BirdCLEF) launched in 2014 as part of

the workshop program of the Cross-Language Evaluation Forum (CLEF). Before

that, only three campaigns attempted the task of avian sound classification in audio

recordings: The ICML4B Bird Challenge that was hosted on Kaggle and included

35 bird species and 90 test recordings [Glotin et al., 2013a], the 9th annual MLSP

Competition featured 19 species and 645 recordings [Briggs et al., 2013], and the

SABIOD and Biotope workshop at NIPS 2013 that included 1,000 recordings con-

taining 87 species [Glotin et al., 2013b]. In the first edition, organizers challenged

participants with a significantly larger dataset consisting of more than 14,000 record-

ings covering 501 bird species from South America [Goëau et al., 2014]. However,

the recordings originated from Xeno-canto and mostly contained only one primary

species (mono-species recordings). In contrast to other competitions, the task did

not include omnidirectional recordings of soundscapes thus focusing entirely on

species recognition in (mostly) high-quality recordings. Still, the total number of

classes and audio files was unprecedented and posed a considerable challenge to

a community that mainly experimented with ‘traditional’ features and classifiers.

The organizers decided to use a ranking metric (mean average precision, MAP)

to assess the performance of the submitted runs. Two scenarios were evaluated:

First, the performance of the proposed systems including all annotated fore- and

background species, and secondly, the performance considering only foreground

(primary) species. It is noteworthy that audio files provided by citizen scientists

on xeno-canto.org do only contain weak labels. Those labels state the species that

are audible in one recording without any information on the timestamps. Addition-

ally, some recordings might even contain false labels or might entirely be missing

background annotations due to non-expert labeling.
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The first edition of BirdCLEF in 2014 mainly saw approaches that included the ex-

traction of low-level audio features using established frameworks like OpenSMILE

([Eyben et al., 2010]) or Marsyas ([Tzanetakis and Cook, 2000]). Most prominently,

spectral features like MFCC were used in almost every attempt. Participants ex-

tracted features for segments of various length, but only Lasseck used probability

estimations to decide whether a segment actually contains a valid bird vocalization

[Lasseck, 2014]. All participating groups performed a dimension reduction on the

extracted features to cope with large-scale data. The classification of segments and

the eventual assignment of a label to each recording was done using support vec-

tor machines ([Martinez et al., 2014], [Leng et al., 2014]), decision trees and random

forests ([Lasseck, 2014], [Stowell and Plumbley, 2014]), or nearest neighbor cluster-

ing methods ([Joly et al., 2014], [Northcott, 2014]). Only one participating research

group decided to use a deep neural network to classify extracted features. However,

the applied densely-connected network did perform significantly worse than most

other classifiers [Koops et al., 2014]. The authors stated that the most plausible

reason for the inferior performance was overfitting to the training data. Koops et

al. also speculated that other network architectures might be more efficient and not

equally prone to learn unrelated noise in training recordings.

In 2015—the second edition of BirdCLEF—the organizers decided to significantly

raise the number of recordings in the dataset to more than 30,000. The dataset

contained 999 South American bird species, almost doubling the previous number

of classes [Goëau et al., 2015]. Interestingly, the performance of the proposed sys-

tems was on par with the results from 2014 despite the increase in complexity. Still,

the large number of recordings forced participants to reduce the training data and

the number of features—strongly implying the deficiencies of low-level audio feature

classification for extremely large datasets. Again, MFCC were among the most fre-

quently used features, the most successful classifiers were SVM ([Joly et al., 2015])

and decision trees ([Lasseck, 2015], [Stowell, 2015], [Meza et al., 2015]).

One of the most significant breakthroughs came in 2016 with the arrival of deep

learning techniques for bird sound identification. The mono-species dataset of the

third edition was unchanged, but the organizers introduced a new test dataset in-

cluding soundscapes recorded by the Xeno-canto community [Goëau et al., 2016].

The performance of the proposed systems increased greatly, improving the mean

average precision by more than 10% compared to previous editions. Sprengel et

al. introduced a CNN classifier trained on extracted spectrograms that achieved a
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Table 3.1.: Evolution of system performance on the BirdCLEF mono-species record-

ing task based on mean average precision (MAP). In 2018, very deep

topologies of CNN performed best, but well-designed shallow architec-

tures were on par. This underlines the importance of task-specific opti-

mization.

Year Species MAP Classifier Reported in

2014 501 0.453 Randomized decision trees [Lasseck, 2014]

2015 999 0.454 Randomized decision trees [Lasseck, 2015]

2016 999 0.555 5-layer CNN [Sprengel et al., 2016]

2017 1,500 0.616 Deep Inception-v4 CNN [Sevilla and Glotin, 2017]

2018 1,500 0.740 Deep Inception-v3 CNN [Lasseck, 2018b]

2018 1,500 0.705 8-layer CNN [Schlüter, 2018]

MAP of 0.555 including background species and 0.686 considering only foreground

species [Sprengel et al., 2016]. The authors applied the classical scheme of image

classification with deep neural networks to the domain of acoustic event recognition.

The approach included the splitting of audio files into chunks, extracting mel scale

spectrograms for each chunk and pre-filtering the training data by an elaborate

signal-to-noise estimation based on morphological operations. Sprengel et al. ap-

plied data augmentation to all training samples consisting of pitch and time shifts

as well as additional noise from rejected segments. The AlexNET-like 5-layer CNN

was evaluated on a subset of 50 classes before the application to the entire dataset.

As mentioned in the working notes, the authors were not able to successfully train a

deeper neural network, confirming the observation that deeper typologies suffer from

vanishing gradients. The next best system proposed by Lasseck achieved a MAP of

0.519 respectively 0.585 excluding background species [Lasseck, 2016]. Interestingly,

Piczak also applied a deep convolutional neural network to solve the task but was

not able to outperform Lassecks ‘traditional’ attempt [Piczak, 2016]. This result

indicates that hand-crafted, well-designed features are key to successful avian sound

classification. That assumption is backed by the observation that deep learning

models showed inferior performance in the soundscape domain, at best achieving a

MAP of 0.078 compared to 0.137 accomplished by Lasseck.

Still, the success of deep neural networks in the domain of sound identification led

to the disappearance of MFCC, SVM and decision trees in all following editions.
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All presented approaches in 2017 included CNN trained on extracted spectrograms

[Goëau et al., 2017]. Again, the organizers decided to increase the number of record-

ings and classes to more than 48,000 audio files containing 1,500 South American

species. The best performing system featured the Inception-v4 architecture trained

on extracted spectrograms and achieved a mean average precision of 0.616 includ-

ing background species, topping the previous benchmark by more than 6% despite

the increase of recordings [Sevilla and Glotin, 2017]. This result confirms two main

hypotheses: First, spectrograms are well-suited to encode species identity of birds

and secondly, convolutional neural networks achieve a high detection quality for

extremely large datasets. Our own approach—that closely followed Sprengel et al.—

confirmed another interesting observation: Well-designed shallow (AlexNet-like) ar-

chitectures perform on par with extremely deep models, achieving a MAP of 0.605

[Kahl et al., 2017a]. However, the detection accuracy for soundscape recordings re-

mained low despite newly introduced recordings of higher quality from Peru and

Colombia.

The 2018 edition of BirdCLEF saw another vast increase in the performance for

Xeno-canto recordings. The dataset remained unchanged and the presented ap-

proaches all included deep neural networks [Goëau et al., 2018]. With his strong

performance and a MAP of 0.740, Lasseck demonstrated the superiority of his

segmentation and data augmentation approach for spectrograms [Lasseck, 2018b].

The author adopted his workflow from previous editions, replacing the classifier

with a very deep Inception-v3 model. Lasseck evaluated various state-of-the-art

topologies like Xception, ResNet152 or DenseNet but stated that none of those

was able to achieve a better performance. Schlüter presented a shallow AlexNet-

like architecture closely following the baseline system provided by us as organizers

[Kahl et al., 2018a]. Still, his workflow of spectrogram extraction, model adaption

and result pooling significantly outperformed our baseline approach [Schlüter, 2018].

His attempt of single-pass species prediction for arbitrary signal lengths included

some interesting design choices that I will evaluate further throughout Chapter 5.

In an attempt to replace CNN classifiers by recurrent neural networks (more specif-

ically long short-term memory networks, LSTM), Müller and Marti experimented

with deep architectures trained on raw signal chunks [Müller and Marti, 2018]. The

success of this method for speaker diarization ([Wang et al., 2018]) implied that this

approach would be applicable for bird species identification. However, the authors

were not able to train a system that achieved more than mediocre scores of 0.246
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including background species. This outcome further cemented the superiority of

deep convolutional neural networks in that domain.

The 2019 edition of BirdCLEF exclusively shifted the task of avian sound recog-

nition towards soundscape analysis due to the lack of performance in this domain

in previous editions. The dataset featured 15 fully-annotated days of continuous

soundscapes containing 659 species and more than 80,000 labeled segments. My

work as an organizer included the acquisition of training and test data and I will

explore the dataset in Chapter 5 in more detail.

3.3.2. DCASE Bird Audio Detection

The IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and

Events (DCASE) was launched in 2016 to contribute to the increasing interest

in computational auditory scene analysis [Mesaros et al., 2018]. Established chal-

lenges and workshops like the Music Information Retrieval Evaluation eXchange

[Downie, 2008] or TRECVid Multimedia Event Detection [Awad et al., 2016] were

not explicitly focused on environmental sounds and real-world acoustic scenes and

were thus not suited to explore new methods of sound event classification. DCASE

provided the ideal platform to promote a number of new competitions including

the Bird Audio Detection (BAD) challenge that focused on avian sounds. Stowell

et al. recognized the demand for automated bird sound identification systems to

assess long-term monitoring data [Stowell et al., 2016] and launched the BAD track

as part of DCASE 2017.

The challenge itself pursues a slightly different approach than BirdCLEF. As former

participants, Stowell et al. focused on the mere detection of avian sounds instead of

their classification. Yet, the task is extremely complex given the main constraint:

Participants are asked to detect avian sounds in field recordings of an unknown

domain. The shift of the acoustic domain between training and test data requires

proposed systems to adapt to unseen environmental sound sources. The organizers

provide four main datasets: First, the Chernobyl dataset collected in the Chernobyl

Exclusion Zone [Wood and Beresford, 2016] containing more than 6,000 manually

annotated items. Secondly, the crowdsourced WarblR dataset that contains 10,000

manually labeled 10-second recordings submitted by users of the WarblR smart-

phone app. Thirdly, the Freefield1010 dataset [Stowell and Plumbley, 2013] con-

sisting of 7690 short audio clips selected from the Freesound online audio archive,
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and lastly, the PolandNFC dataset collected by the organizers [Pamu la et al., 2017]

that contains 22 half-hour recordings that feature nocturnal flight calls. Datasets

were split into segments, requiring participants to predict whether a segment con-

tains an avian sound or not. Submitted runs were evaluated via leave-one-out

cross-validation (train on one acoustic scene, apply to another) and the evaluation

used the area under the ROC curve (AUC) measure as primary quality metric.

[Stowell et al., 2018]

In the first edition, the superiority of deep neural networks was once again apparent.

The ‘traditional’ baseline system provided by the organizers (proposed as part of the

2014 BirdCLEF challenge, [Stowell and Plumbley, 2014]) achieved 79% AUC, while

Lasseck’s systems (part of the 2016 BirdCLEF challenge, [Lasseck, 2016]) scored

84.2% AUC. Both systems were significantly outperformed by shallow, well-designed

DNN architectures that even topped the performance of a very deep DenseNet

[Pellegrini, 2017]. Cakir et al. proposed a neural net topology consisting of four

convolutional and two recurrent layers [Cakir et al., 2017]. This network used con-

volution and pooling operations to reduce the input spectrograms in the frequency

domain, passing the remaining time-series through gated recurrent units (GRU,

[Cho et al., 2014]) and achieved an AUC score of 88.5%. Interestingly, this CNN-

RNN fusion approach performs considerably well for the binary classification of

acoustic scenes, implying that semantically enriched temporal information is suffi-

cient to detect the presence and absence of birds.

Gill and Schlüter submitted the best performing system that scored 88.7% AUC

and the proposed CNN topology contained four convolutional and three fully con-

nected layers with only 370,000 trainable parameters [Grill and Schlüter, 2017]. The

network design impressively demonstrates that task-specific layouts are capable of

achieving state-of-the-art performance while maintaining practical applicability. The

authors used mel scale spectrograms of fixed length (1,000 frames, 80 mel bins) to

represent input recordings. The pooling scheme—to reduce the inputs of consecutive

convolutional layers—accounts for the large temporal resolution and applies 3 × 1

max pooling for deeper layers, preserving decent frequency resolution to feed into

fully-connected layers.

Consequently, the 2018 edition saw only minor improvements of the impressive scores

of the first edition. This time, Lasseck applied the very deep Inception-v3 archi-

tecture to achieve the new best score of 89% AUC [Lasseck, 2018b]. The system

and training scheme is closely related with Lassecks 2018 BirdCLEF submission.
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Table 3.2.: Selected results of both editions of the bird audio detection challenge

based on area under the curve scoring (AUC). The gap between various

CNN topologies and decision trees is significantly smaller for the binary

detection task of presence or absence of bird sounds. The results imply

that task-specific network designs and training regimes are more efficient

than elaborate architectures or domain adaption attempts.

Year AUC Classifier Reported in

2017 0.842 Randomized decision trees [Lasseck, 2016]

2017 0.885 4-layer CNN + 2-layer RNN [Cakir et al., 2017]

2017 0.887 4-layer CNN + 3-layer FC [Grill and Schlüter, 2017]

2018 0.788 Capsule Networks [Vesperini et al., 2018]

2018 0.808 4-layer CNN + 3-layer FC [Berger et al., 2018]

2018 0.890 Deep Inception-v3 CNN [Lasseck, 2018a]

However, it remains questionable whether the elaborate segmentation of training

data led to the improved score or if improvements are due to the complex CNN

architecture.

One observation to back the argument that the influence of the applied CNN archi-

tecture is limited was made by Berger et al. who combined a different method of do-

main adaption with the CNN established by Gill and Schlüter [Berger et al., 2018].

The attempt yielded only 80.8% AUC score, significantly lacking state-of-the-art

performance. In opposition to that, Vesperini et al. proposed a new deep neural net-

work design employing so-called capsule networks (CapsNets) developed by Sabour

et al. [Sabour et al., 2017]. This attempt resulted in even lower scores of 78.8%

AUC despite the fact that CapsNet are designed to account for spatial hierarchies

between visible objects. Considering both outcomes, it seems that CNN explicitly

designed to solve a specific task also need a well-designed training regime to yield

top performance. Additionally, it appears that the domain of acoustic event classi-

fication using spectrograms is less complex than object recognition in photographs

and CNN architectures with a small computational footprint might already achieve

competitive results when specifically adjusted to the task at hand.
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3.4. Summary

Recent advances in the domain of acoustic event recognition impressively demon-

strate that deep artificial neural networks outperform long-established classifiers

like Gaussian mixture models, decision trees, or support vector machines. It is also

apparent that low-level audio features do not suffice to represent large, complex

datasets with multiple hundreds of classes. The frequent use of spectrograms to vi-

sualize avian vocalizations has explicit practical appeal in the domain of automated

bird sound recognition. The evolution of deep neural networks advanced the field

of object recognition in images beyond human-like performance. Yet, the domain of

bird species identification in spectrograms is less complex despite its high intra-class

diversity. Considering this, the design of neural network architectures, topologies,

and training regimes that explicitly adapt to a specific task is crucial. The lively

field of deep learning research is well-documented, well-explored but still requires ex-

pert knowledge to train and evaluate decent network designs. Additionally, dataset

bias and lack of generalization are among the main concerns when applying neural

networks to real-world use cases. In the following chapters, I will present a system

design that accounts for recent developments in the deep learning domain, enables

extensive evaluation on benchmark datasets and allows the distribution and appli-

cation of trained models to a number of monitoring scenarios of avian activity.
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Since 2007, the Chair of Media Informatics at the Chemnitz University of Tech-

nology deals with the semantic enrichment of multimodal data. The main focus

is on questions of human-computer interaction and the fusion of metadata of large

heterogeneous datasets. During that time, an interdisciplinary research group de-

veloped two main frameworks: The Extensible Retrieval and Evaluation Framework

(Xtrieval) dedicated to processing, indexing, and searching in large text corpora,

and the Automated Moving Picture Annotator (AMOPA) designed to semantically

enrich large audio-visual media collections. Both frameworks have been used to

solve a variety of (scientific) tasks, and a considerable amount of research has been

released (see also [Berger et al., 2015]).
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Most notably, Kürsten published his approach to component-level evaluation in in-

formation retrieval using Xtrieval in 2012 [Kürsten, 2012]. Four years later, Wilhelm-

Stein added the layer of applications to the system with his work on teaching the

information retrieval process [Wilhelm-Stein, 2016]. Ritter presented a holistic at-

tempt to extract high-level metadata from video footage of local TV stations using

AMOPA in 2014 [Ritter, 2014]. All three approaches can be considered milestone

developments that incorporated the entire workflow of dataset handling, training

of an automated retrieval or classification system, and its application to real-world

use cases and scenarios. I built upon the presented design decisions and ideas to

develop a third system that combines component-level evaluation, a holistic workflow

design, and applications to solve the complex task of bird species identification in

audio recordings. Implicitly encoding the use case and underlying technology, the

system is called BirdNET.

In contrast to common naming schemes that refer to a specific DNN design (like

AlexNet, ResNet, or DenseNet), BirdNET is more than a single neural network

architecture. BirdNET is a toolkit, a framework, and an infrastructure to train,

evaluate, and distribute deep neural networks for acoustic monitoring of avian ac-

tivity. Yet, the design of BirdNET is dedicated to research and thus not necessarily

applicable on a consumer level. In this chapter, I will summarize my design decisions,

the underlying concepts and workflows of training, evaluation and distribution, as

well as some implementation details concerning third-party functionality.

4.1. Design Decisions

Wilhelm-Stein designed the Xtrieval Web Lab as a platform that allows users to per-

form retrieval experiments without programming knowledge [Wilhelm-Stein, 2016,

pp. 127-129]. Built on recent web technologies, the Xtrieval Web Lab can be used

to design and execute fine-grained experiments on a number of datasets. Users have

full control over the succession of components, their configuration, and even the

evaluation process. Similar to the fully configurable processing chains established

by Ritter for AMOPA [Ritter, 2014, pp. 101-103], Wilhelm-Stein uses lanes that

consist of an ordered set of components to model the process of input handling,

data processing, and output distribution [Wilhelm-Stein, 2016, p. 136]. Following

this scheme, BirdNET combines extensive functionality and a highly configurable,
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domain-agnostic workflow of components that helps to create reproducible results

and task-specific applications.

4.1.1. Extensive functionality

Modern deep learning frameworks like Tensorflow1 or Keras2 provide functionality

to not only build DNN but also to load and process input data, run experiments,

visualize results, and deploy models to a variety of platforms. Both frameworks

are meant to provide layers of abstraction that hide core functionality and guide

researchers through the complex process of training deep neural networks. With

that in mind, BirdNET was designed to cover all areas of deep learning, from data

handling to training and evaluation towards model deployment and visualization.

Audio data handling: Loading and processing audio data is one of the key features

to build a system for bird sound recognition. BirdNET can load and open files

from a local storage or network resource, regardless of their encoding. Additionally,

BirdNET allows to read from continuous audio streams over network (e.g. live

streams of remote recording stations) or local system hardware (e.g. sound card

and microphone). The audio processing component computes spectrograms from

raw audio signals based on detailed settings and can be used as stand-alone library

in other projects.

Image data handling: Since spectrograms are widely used to analyze avian vocal-

izations and have proven to be extremely valuable for automated bird species iden-

tification, BirdNET provides extensive image handling functionality. This includes

the loading of 2D or 3D images from local storage, shape and value transformations

like resizing, value or filter operations, and—most importantly—augmentation on

sample and batch level. Augmentation includes almost every established method of

cropping, value shifting, flipping, rotation, the addition of noise, as well as contrast,

lightness, and hue transformations. Again, this component for image processing

was designed as stand-alone library to provide a collection of image transformation

techniques for other projects.

Multi-threading: Deep learning requires specialized hardware to efficiently com-

pute weight updates of deep neural networks. In my research, consumer graphics

1https://www.tensorflow.org
2https://keras.io
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cards (GPU) were used for batch forwarding and backpropagation. Training a DNN

also requires a considerable amount of CPU time, especially for data handling op-

erations like loading and augmentation. In an attempt to streamline the training

process, BirdNET uses multiple threads to prepare batches of samples using the

system’s CPU while passing a single batch of images through the network on a

GPU. A queue of readily prepared batches balances different processing speeds be-

tween CPU and GPU depending on model complexity or number of samples. This

component is called batch generator and was specifically developed for BirdNET

without multi-purpose application in mind.

Epoch training: Modern deep learning frameworks pass 4D tensors through con-

volutional neural networks. For images, the second, third, and fourth dimension

represent channels, height, and width, the first dimension represents the number of

samples or batch size. One batch (sometimes also called mini-batch) is a subset of

training samples, the sum of all batches represents the entire training data. The

process of passing one batch through the network, computing the loss and propagat-

ing it back through the network to update weights is called one iteration. A training

epoch consists of all iterations needed to process every batch of the training data

once. BirdNET employs batch training and—after each epoch—assesses the current

training progress.

Online and offline evaluation: The assessment of the model performance on

unseen data is done in two ways: Online evaluation takes place during training after

each epoch with frozen weights, offline evaluation is done after the training process

has finished and uses unseen audio files of mono-species recordings or soundscapes.

Both assessment methods employ a set of complementary metrics that are used to

determine the best overall result of the training.

Metrics: Evaluation campaigns have mainly established ranking metrics to assess

the detection and classification performance of automated bird sound recognition

systems. However, not every metric is suitable for every use case and thus BirdNET

supports multiple evaluation measures. Those metrics include categorical and bi-

nary cross-entropy, top-1 accuracy, sample- and class-wise mean average precision,

precision, recall, and various f-measures. Each metric has its specific strength and

weakness, the combination of different assessments copes with dataset imbalances

and bias as well as task-specific requirements. The metrics module of BirdNET

allows the task-agnostic evaluation of automated classifiers.
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Model deployment: BirdNET employs implicit regularization in form of early

stopping. After each epoch, the online evaluation process determines the overall

performance of the current model and saves a so-called snapshot of the model to

local storage. After the training converges, the best overall snapshot is used for

offline evaluation. In addition, the IO-component of BirdNET allows to preserve

trained models along their input shape configuration for further usage. Models are

stored as byte-wise data structure dumps, making the entire model easily reusable.

Saved snapshots can be deployed to a number of applications, the IO-component

handles all save and load functionality.

Model visualization: One main concern when training deep neural networks is the

inability to comprehend why a specific model generalizes well and others don’t. The

term ‘black box’ is often used to describe complex model structures that lack trans-

parency. The deep learning community has established certain methods to visualize

and interpret weight configuration of DNN. Most notably, Olah et al. published

a series of articles on how to understand the detection process when inferring test

samples [Olah et al., 2017], [Olah et al., 2018], [Carter et al., 2019]. BirdNET im-

plements some of those methods to raise the awareness of what the network actually

learned during training. The employed methods include the visualization of weight

and kernel activations, as well as occlusion and saliency maps for hidden layers.

Metadata handling: Time of the year and location are crucial aids when iden-

tifying birds in the field. Community projects like Xeno-canto or eBird provide

vast amounts of metadata that can help to improve the automated detection per-

formance. BirdNET is capable of incorporating those information into the training

and evaluation process in form of labels, sample selectors, or post-filters for plausible

predictions. All metadata is stored in unified text files on local storage and can be

accessed during all stages.

Logging and statistics: Since BirdNET was primarily designed as research plat-

form, logging of the training and evaluation process over time is one of the central

functions of the system. Individual labels can be assigned to each experiment, thus

making the results and statistics of each run traceable. Logging supports different

output levels for general progress information, errors, and evaluation metrics. Log

files are stored locally and can be accessed after each training cycle.

Applications: BirdNET is applicable to a number of scientific and real-world sce-

narios. Model storage and deployment supports the design of independent applica-
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tions on various platforms like desktop computers, web browsers, smartphones or

even low-power mobile recorders. Therefore, BirdNET also includes the infrastruc-

ture and interfaces to make models accessible using web technologies or stand-alone

hardware. Applications include analysis systems for evaluation campaigns, the anal-

ysis of large amounts of field recordings, and the real-time analysis on (semi-) mobile

devices. I will introduce those applications in more detail in Chapter 6.

Due to its extensive functionality, BirdNET has to be considered an expert tool

that requires expert knowledge to operate. Although a number of applications and

demos provide accessibility to a wide audience, the scope of the development did

not account for consumer-level applicability or teaching purposes. The area of ap-

plication is purely academic and serves the sole purpose of in-depth analysis and

scientific exploration.

4.1.2. Detailed configuration

One truly remarkable code repository was released in 2015 by Ross Girshick as a very

detailed complementary resource to the outstanding ‘Faster R-CNN’ tech report on

arXiv [Ren et al., 2015]. The code base came with complete install instructions,

pre-trained models, and example scripts to reproduce the published results3. Gir-

shick allowed interested research groups to fully manipulate the entire detection

and classification process and even train their own models. As a stand-out exam-

ple of transparency in modern computer science research, the repository featured

a central configuration file that provided access to the core functionality of the

code base without having to search for crucial settings. In the following years, it

became more and more common to not just release the experimental code base but

also to refactor the code to make it more accessible. Today, almost every major

contribution to the field of deep learning research is complemented with a code

repository. Most evaluation campaigns require their participants to release the code

they implemented to solve the challenge’s tasks. In order to follow this tradition, a

central configuration system that allows to manipulate every detail of the BirdNET

training and evaluation workflow without having to find the corresponding portion

of source code was implemented. This configuration system gives users full control

over every aspect of dataset handling, spectrogram computation, data augmentation,

model design and hyperparameters, training regime, regularization, evaluation data

3https://github.com/rbgirshick/py-faster-rcnn
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and metrics, as well as the final deployment of trained models. Since the intended

scope of BirdNET aims at scientific exploration, the entire workflow is dynamically

configurable by editing a single file.

4.1.3. Domain-agnostic workflow

BirdNET is not just fully configurable but also allows to train on other than audio

input data. Since all variables of input source and shape can be adjusted, adapt-

ing the classification workflow of BirdNET can be considered domain-agnostic. To

simplify things even further, BirdNET uses folder names as one-hot labels. Due to

that, researchers only have to swap datasets on local storage to train a DNN for a

completely different usage scenario. This could include training a detection system

for sounds of other animals like insects or mammals, switching domains towards am-

bient assisted living or even to the domain of image classification for photographs.

BirdNET dynamically saves and loads trained models and allows to apply them for

various use cases. The only requirement is a fitting input data shape, independent

of its source. The system will automatically adjust to new input dimensions by

reshaping the input tensors.

In the past, the domain-agnostic workflow of BirdNET was applied to contribute to

a number of international evaluation campaigns like the TRECVid instance search

challenge ([Kahl et al., 2016], [Kahl et al., 2017b], [Thomanek et al., 2018]) or Bird-

CLEF ([Kahl et al., 2017c], [Kahl et al., 2018a]). It also helped to solve some classi-

fication tasks from other acoustic domains [Kahl et al., 2017a]. Additionally, Bird-

NET was used to design a classification system for visual impairments of digitized

(S)VHS tapes from local TV stations [Müller, 2018]. Still, the primary usage sce-

nario is acoustic event recognition and future developments will be dedicated to that

domain.

4.1.4. Reproducibility and transparency

The deterministic behavior of a scientific system is a cornerstone of reproducibility.

Therefore, most approaches use fixed random seeds to eliminate result offsets due

to unpredictable states. Randomization plays a significant role in deep learning and

influences many aspects. Typically, a single random seed is used to initialize the sys-

tem’s randomizer at the beginning of each experiment. As a result, repeated runs of
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the exact same configuration will lead to the exact same results. Yet, using only one

initialization process can lead to unexpected, inconsistent behavior as consequence of

very insignificant changes to the randomized picking order. For example, removing

only a single sample from the training data leads to changes in the randomized

value sequence during the next experiment and thus to unwanted side-effects or

even significantly different results. To counter this, BirdNET uses a single random

seed but multiple initialization processes to ensure system consistency despite mi-

nor changes. The implemented initializers control sample selection, augmentation

sequences, model initialization, batch shuffling, and validation sample selection and

order. Consequently, changes in the composition of the training data no longer affect

the initialization process of the model or the selection of validation samples due to

independent randomizers. This way, model performance on different portions of the

dataset can be evaluated—the observed effects are due only to changes in the sample

selection.

With transparency in mind, I designed BirdNET to be comprehensible and reusable.

The code base features extensive comments and documentation along refactored,

modular implementations. The repository containing the source code for my Bird-

CLEF contributions is publicly available on GitHub4 and will be expanded to feature

web services and demos in the future.

4.1.5. Distribution and applications

Applying a scientific system that was developed to achieve good overall results on

domain-specific training data to real-world use cases is a challenging task. On top

of that, the achieved performance on a validation dataset (although independent)

might not stand when the system is exposed to truly unseen samples. Application

design and development are crucial parts of scientific exploration, but not many

research groups ‘go the extra mile’ to open their system to the public. However,

public demos are an excellent tool to communicate research progress and to gather

feedback that can help to improve the system’s performance. Therefore, model

deployment capabilities are a central aspect of BirdNET and account for three main

design constraints: Platform independence, interfaces, and real-time processing.

Platform independence: BirdNET is applicable to a variety of stand-alone sys-

tems like mobile recorders, web servers, or desktop workstations. I tried to reduce

4https://github.com/kahst/BirdCLEF-Baseline
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the number of code dependencies to avoid conflicts in versioning on different target

platforms. Yet, some core functionality is provided by third-party libraries, most

notably the deep learning back end (for more details see Section 4.3). As a result,

BirdNET requires a(ny) Linux distribution to host the training and evaluation pro-

cess. Since most applications were developed for access over internet, each client

has to be capable of providing the resources for a web browser. Fortunately, many

(mobile) devices run a Linux OS, making BirdNET available for Raspberry Pi, online

cloud services, or smartphones.

Interfaces: BirdNET supports two kinds of interfaces: A programmable interface

consisting of a set of methods and functions to instantiate a training or analysis

process, and secondly, a RESTful API to allow access over the internet. Each

interface is dedicated to different use cases and applications. For instance, running

an audio analyzer on a Raspberry Pi requires to capture audio data from an input

stream (preferably a microphone) and passing that data to the processing pipeline

using pre-defined functions. Accessing BirdNET via smartphone also requires the

recording of audio data and passing this data to the REST server that then starts

the analysis automatically. (I will provide more detailed information on how to

apply BirdNET in Chapter 6.)

Real-time processing: One of the most important requirements is the ability

to process audio data in real-time. In the case of spectrogram analysis, ‘real-

time’ means that the entire process of audio handling, DNN forward pass, and

result computation has to be finished before the time represented in the spectro-

gram elapses. More specifically, the analysis of a three-second spectrogram must

be finished in under three seconds to be considered ‘real-time’. When running on

specialized hardware—like in powerful, stationary workstations—processing a short

signal chunks only takes some milliseconds. In contrast, on a low-power, (semi-)

mobile platform like the Raspberry Pi, the efficient analysis of audio data is more

challenging. BirdNET uses optimized workflows and caching to save time and com-

putational resources. However, the design of the deep neural network significantly

impacts the analysis speed. I will present a practical approach on how to reduce the

size and computational requirements of deep neural networks in Section 5.2.7.

One of the core aspects during the development of BirdNET was its future distribu-

tion. The value of public demos and prototypes cannot be overestimated. Opening

a system for citizen scientists and non-experts provides valuable insights into how

people are expecting a system to work. Observing the usage of those demonstrators
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also provides clues on which aspects of the detection process are more important

than others. Eventually, this process will lead to insights on how to cope with false

detections, how to communicate the recognition process and how to build usable

tools that perform well on domain-specific data despite some inefficiencies.

4.2. Concepts and workflows

The entire concept of BirdNET has been designed with two main objectives in

mind: Scientific evaluation and application. The workflow for each task consists

of task-specific modules that can be divided into three main groups: Utilities, core

functionality, and interfaces. Additionally, certain external functionality provided

by the host system and clients is needed to model the workflow of single processes.

This section provides an overview of the interaction of constituents and their intra-

and inter-component communication.

4.2.1. Components

BirdNET consists of components. Some of them serve low-level, stand-alone tasks,

others combine functionality to provide high-level access to fundamental features.

With transparency and reproducibility in mind, the interaction between groups of

constituents was designed to be highly functional and domain-agnostic. Due to that,

the implementation of each component leaves certain degrees of freedom in terms of

dynamic configuration and usage. Still, each element serves a very specific task and

plays a distinct role in the overall workflow (see Table 4.1).

The host system has to provide local storage for training and test data as well as

intermediate results, logs, and model snapshots. BirdNET requires certain third-

party libraries and frameworks, which have to be provided by the host system as well.

Utility components are mostly stand-alone and can be combined to serve high-level

tasks by providing dynamically configurable low-level functionality like spectrogram

extraction, data augmentation, batch handling, model export, result evaluation, or

the visualization of neuron activations. Core modules form processing chains of

low-level components to build DNN, compile their static computational graphs in-

cluding loss functions and optimizers, train models on large heterogeneous datasets,

and evaluate their performance on a variety of test samples. Core functionality of
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Table 4.1.: BirdNET components and their tasks. External functionality from host

and client is needed to control and access the workflow. Utility mod-

ules provide task-specific functionality, which is then combined in core

components of modeling, training, and testing. Interfaces provide access

via programmable functions, a central configuration file and a RESTful

API.

Group Name Task

Host
Storage Training and test data, logs, and snapshots

Packages Third-party functionality

Utilities

Audio File IO, spectrogram extraction

Image File IO, data augmentation

Batch generator Multi-threaded sample preparation

IO Model snapshot import and export

Metrics Result evaluation

Visualize Neuron activation and saliency maps

Core

Model Dynamic DNN generation and graph compilation

Train Load data, train model, save snapshot

Test Load data, load snapshot, test model

Interfaces

Config Centralized control over every aspect

Functions High-level, programmable access to components

RESTful API Access over internet

Client

Record Capture raw audio

Parse Prepare analysis results

Display UI, visualizing detections

BirdNET can be accessed using a centralized configuration file, programmable, high-

level functions or a RESTful API, which serves as linchpin for most applications and

demos. The component-level workflow is based on community standards for deep

learning systems and implements central ideas of AMOPA and the Xtrieval Web

Lab. Individual components cover many aspects of their specific task including best

practices and recent scientific advances in the field of acoustic event recognition.
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4.2.2. Training

The training process of BirdNET is a core component that consists of several sub-

tasks. For the recognition of acoustic events, those sub-tasks include data handling,

spectrogram computation and pre-processing, data augmentation, and most impor-

tantly the optimization of a deep neural network. In this section, I will explore key

functionalities of those tasks in more detail.

Data handling

In order to provide domain-agnostic functionality, all samples are locally stored on

the host system. This way, users are able to easily investigate the data, look at

samples and metadata, and can decide which data properties would influence the

overall performance of a trained neural network. To streamline the data acquisition

process, BirdNET requires images stored in folders that provide one-hot labels with

their name. On top of that, metadata stored in a textual, human-readable format

(in our case JSON) can be used to provide additional information on the contents

of each sample.

At the beginning of each training cycle, BirdNET reads the dataset from local

storage and decides which samples to use for training. The selection is based on user

and task requirements and can be fully controlled using the centralized configuration

file. The following properties of each sample are considered before the selection:

• Origin: Xeno-canto, Macaulay Library, eBird, AudioSet, or private collec-

tions; each source of audio recordings has its own characteristics that need to

be taken into account.

• Signal-to-noise ratio: Estimated level of non-label sounds in the sample.

The assessment is made during pre-processing of extracted spectrograms.

• Rating: Most community platforms provide user ratings to indicate the over-

all quality of a recording.

• Bird seen: If yes, the recordists states that she has actually seen the bird,

which implies that the label has a high chance to be correct.
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• Background species: Every recording we use for training only contains

weak labels that do not state any temporal information. A high number of

background species might lead to falsely labeled samples during the extraction

of short audio chunks from a longer recording.

• Samples per class: Most training datasets have a significant class imbalance.

To counter that, the number of samples per class can be limited or expanded

before training.

The individual samples of each class are rated and ranked based on the above criteria.

Next, a subset of samples is chosen to generate input data of maximum quality. Each

input sample consists of a file path and corresponding label—the actual file handling

happens during the batch generation stage. The sequence of input samples of the

entire dataset is then randomized to minimize the bias of loss estimation and weight

updates.

Spectrogram computation and pre-processing

When training on weak samples, the biggest challenge is to extract segments of

audio signal that actually contain valuable information in regard to the assigned

label. Considering bird song, this means that we have to account for segments of si-

lence between successive vocalizations. This even becomes more apparent for sparse

vocalizations like most calls. Some birds might even vocalize only a few times during

a recording. In the meantime, background noise dilutes the label. Traditionally, the

amount of actual signal in a sequence of values is estimated using one of the many

measures of signal-to-noise ratio. Most signal processing libraries implement the

most basic form: Mean divided by standard deviation. A number of other measures

have been proposed accounting for deficiencies of the basic estimation. Still, for the

recognition of acoustic events, especially bird sounds, task-specific methods need to

be applied to distinguish between signal and noise.

Single elements (or notes) of a bird vocalization can span a number of time steps

leaving spaces between frequency bins (e.g. slurs) or span a number of frequency

bands but leaving temporal breaks in between (e.g. trills). In either case, a signal-

to-noise measure has to treat columns and rows of a spectrogram separately. As

mentioned in Section 2.4.3, spectrogram computation has to account for temporal

integration in avian auditory physiology. Therefore, we can assume that fine-grained
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(a) Source spectrogram (b) Median threshold

(c) Blur (d) Morphological closing

Figure 4.1.: Spectrogram pre-processing to estimate noise levels. Thresholding ap-

plies different values to frequency bins and time steps to account for

rapidly uttered song elements (b). Blurring the result effectively elim-

inates single spots (c). Morphological closing merges single elements

into larger units, indicating where larger portions of a song are (d).

The number of remaining (white) pixels in the image indicate the signal

strength in relation to non-song elements (black).

details are represented in each spectrogram. Applying a mel-like scale further em-

phasizes this effect in the frequency domain. As a result, a high variation in time

and frequency indicates the presence of valuable signal information. The process

of determining which pixel value of a spectrogram is part of a bird vocalization is

depicted in Figure 4.1.

Sprengel et al. established this method with their participation in the 2016 Bird-

CLEF challenge [Sprengel et al., 2016]. Since then, a number of approaches in the

same domain have successfully adopted this process [Chou and To, 2018], including

our own BirdCLEF attempts [Kahl et al., 2017c], [Kahl et al., 2018a]. The method

has proven to be robust against the most common impairments: The chorus of

non-bird sounds (see Figure 4.2). This also applies to other constant sound sources

like heavy wind, traffic or artifacts from mobile recorder defects. Compared to the

basic method of signal-to-noise ratio estimation, the proposed method is mostly
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(a) Mostly clean recording ( 7)

(b) Spring Peeper chorus overlay ( 23)

Figure 4.2.: Normalized signal strength estimation for two versions of a Wood

Thrush recording. For the mostly clean version, the standard signal-

to-noise ratio (mean divided by standard deviation, orange) highly cor-

relates with the advanced estimation based on morphological features

(blue). An (artificial) overlay of a Spring Peeper chorus—which is com-

mon for some regions in North America—significantly disturbs the stan-

dard measure. The advanced estimation remains mostly unaffected.

unaffected by heavy disturbance due to background sounds. This is important in

order to maintain a high sample quality when extracting spectrograms from short

audio chunks of longer recordings. Still, it remains unclear whether the contained

signal actually represents a bird and if so, if it is the correct species indicated by

the weak label. This distinction can only be made manually or by a sophisticated

classifier—both methods are unfeasible for fast pre-processing of large amounts of

audio data.
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Data augmentation

In the domain of deep learning—a particularly ‘data-hungry’ domain—the need for

training sample diversification has led to numerous transformation methods. Some

of them, like random crop, rotation, or contrast changes also apply for the domain

of acoustic event recognition—since we are dealing with images as well. However,

domain-specific data augmentation is important to account for unforeseen variations

in real-world samples as early as during training. In terms of bird sound identifica-

tion, some methods have proven to be explicitly powerful. Those methods include

the adaption to changes in pitch when birds adjust their vocal output according to

a habitat. Additionally, the vast number of recording devices and environmental

noise sources need to be represented in the training data. The shift in recording

domains for high-quality, mono-species recordings and omnidirectional soundscapes

is significant. The generalization ability of a trained DNN depends on the selection

of training samples that represent the test data. Judging from recent publications,

the following augmentations appear to be well-suited for this task:

Vertical and horizontal stretch: Lasseck achieved state-of-the-art performance

in the 2018 BirdCLEF and DCASE Bird audio detection challenge. In his attempt,

he applied a number of data augmentation methods that account for the inner-

species diversity of bird vocalizations [Lasseck, 2018b]. One of the best performing

methods supposedly arose from the fact that birds change the pitch and tempo of

their vocalizations on certain occasions. Lasseck decided to use vertical (frequency

domain) and horizontal (time domain) stretches of randomly selected portions of

the input spectrogram. This way, a specific selection of frequency bins or time steps

is amplified (enlarged) and the resulting spectrogram is then trimmed back to the

original shape.

Vertical and horizontal roll: Two years before that, Sprengel et al. implemented

a similar but lossless version of Lasseck’s transformation [Sprengel et al., 2016]. In

their attempt, pitch and time shifting is done using random vertical and horizontal

roll. When rolling, the pixels of a spectrogram are shifted along one axis, elements

that exceed the spectrograms width or height are added at the other end of the

roll axis. Vertical roll accounts for pitch changes in bird sounds, horizontal roll

simulated the process of short-time chunk selection from longer recordings. Both

methods have proven to be fundamental to the success of bird sound identification

systems.
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(a) Input spectrogram (b) Elastic distortion

(c) Frequency masking (d) Time masking

(e) Frequency roll (f) Time roll

(g) Frequency stretch (h) Time stretch

(i) Noise sample (j) Noise sample addition

Figure 4.3.: Different domain-specific augmentation methods. Along common aug-

mentations like random crop, contrast changes, or rotation, some meth-

ods are particularly useful for spectrogram transformation. Since the

acoustic adaption hypothesis suggests that birds adapt to a habitat by

altering the pitch of vocalizations, frequency stretch, roll or distortion

have proven to significantly impact the detection quality. Other aug-

mentation methods like the addition of noise samples, masking, or time

roll and stretch account for impairments of recordings or other environ-

mental sound sources. An (almost) infinite number of unseen samples

can be created through the combination of the above methods.
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Elastic distortion and warp: The combination of time and frequency shifts can

lead to unrealistic distortions of bird sounds. Yet, deep neural networks often benefit

from strong regularization—sometimes even heavily distorted input samples can be

useful. One method of elastic distortion was applied by Simard et al. for the recog-

nition of handwritten digits [Simard et al., 2003]. When applied to spectrograms,

these local distortions lead to artifacts that mostly preserve the input signal but

apply random shifts and stretches. A similar observation was made by Park et al.

in 2019. The authors discovered that warping spectrograms along a given grid leads

to strong recognition performance of human speech [Park et al., 2019].

Time and frequency masking: In the same article, Park et al. confirmed the

applicability of spectrograms for the recognition of human speech. They also applied

two other methods of data augmentation: Time and frequency masking. Arguably,

not every element of an utterance is equally important for classification. The same

applies to bird sounds, where trills repeatedly encode the same signal to counter

reverberations. Considering this, masking (or dropout) of entire frequency bands

or time steps can help to force a DNN to focus on semantically important features

that are invariant to information loss.

Addition of noise: Environmental background noise is one of the main impair-

ments of field recordings. Choruses of anurans or insects (like Spring Peepers or

Crickets), heavy wind, rain, or even technical sounds like traffic, lawn mowers, or

construction noise heavily impact the detection quality of an automated system.

From an application perspective, each use case comes along with certain sound

sources that need to be accounted for. When training a neural network, we are

basically presented with two main strategies to avoid these distractions: Collecting

ambient sound samples and using them to train a separate class of acoustic events,

or adding these samples to existing spectrograms to force the network to ignore se-

mantically unlinked information. One of the most powerful augmentation methods

implements the second strategy: Noise sample addition. With the application of the

advanced signal-to-noise estimation during the spectrogram extraction from training

recordings, a number of samples will be rejected due to insufficient signal. Those

samples are particularly well-suited to simulate different levels of ambient noise when

added to a mostly clean spectrogram. Additionally, the addition of non-bird sounds

results in new, ‘natural’ training samples. Our experiments as part of BirdCLEF

have shown that this augmentation method significantly increases the overall detec-

tion performance [Kahl et al., 2017c], [Kahl et al., 2018a], [Kahl et al., 2018b].
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Models and snapshots

When designing neural network architectures and topologies, we not only have to

account for maximum performance but also the future use case when the DNN is

applied. Certain constraints influence the overall network design. One of the most

important constraints is the target platform. Not every DNN topology is suitable

for all platforms, especially when it comes to (semi-) mobile hardware like the Rasp-

berry Pi. Typically, reducing the capacity of a model to make it applicable to such

hardware comes at the cost of accuracy. Therefore, the dynamic model generation

of BirdNET allows to investigate a vast variety of topologies that are based on one

architectural concept. During the process of finding the best model for a target

platform, certain degrees of freedom can be adjusted. The best possible topology

that still satisfies the requirements of the intended use case can be found through

extensive experimentation. BirdNET supports two major DNN architectural designs

and a number of variations of those.

AlexNet-like topologies: Shallow typologies with only a few layers have proven

to yield strong performance for the detection and recognition of bird vocalizations

[Grill and Schlüter, 2017], [Kahl et al., 2017c], [Schlüter, 2018]. Additionally, sim-

ple network designs are easier to train and considerably faster to evaluate due to the

reduced training time. Task-specific design choices can be made in rapid succession,

often leading to strong performance despite the lack of capacity. Additionally, the

domain of acoustic event recognition in spectrograms is not as complex than other

computer vision tasks. Considering this, it appears that the strong performance

of shallow topologies is strongly linked with this circumstance. AlexNet-like ar-

chitectures are well-suited for hardware platforms that do not contain specialized

processors. Still, it became apparent that very deep networks outperform shallow

networks by a small margin [Sevilla and Glotin, 2017]. Although achieving the best

possible performance with those kinds of designs might not be possible, they are

still highly applicable and thus integrated into BirdNET.

ResNet variations: Very deep architectures with multiple tens of layers achieve

state-of-the-art performance for many scenarios. Despite the fact that unaltered

topologies of those deep architectures can be successfully applied to the domain of

bird identification [Lasseck, 2018b], task-specific layouts are needed to comply with

design constraints like limited hardware resources. Of all deep network architectures,

ResNets appear to be the most flexible. Building upon the initial ideas presented
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in [He et al., 2016a], a number of research groups have revisited the design. Most

notably, He et al. proposed pre-activated blocks in [He et al., 2016b], Zagoruyko and

Komodakis showed that ResNet derivatives with a high number of filters profit from

dropout and thus need significantly less layers [Zagoruyko and Komodakis, 2016],

and Xie et al. proposed residual blocks that derive from the Inception design

[Xie et al., 2017]. Even DenseNets—as introduced by Huang et al.— can be seen

as an extension of the initial ResNet architecture [Huang et al., 2017]. Residual

networks are specifically robust against information loss. Huang et al. have shown

that dropout of entire residual branches during training leads to better performance

[Huang et al., 2016]. Veit et al. demonstrated that even the loss of multiple layers

does not significantly affect the general detection performance [Veit et al., 2016].

Overall, the residual design allows to easily implement variations that can be strong

additions to the initial layout. Still, the individual impact of each variation has

to be explored through experimentation and is likely dependent on task-specific

modalities. The available degrees of freedom are:

• Model type: Choosing the type of DNN for training affects the usage of

almost every other degree of freedom. Two network architectures are avail-

able, the specific topology characteristics are dynamically build based on the

following settings.

• Nonlinearity: Most common activation functions are supported, including

the many variations of the rectified linear activation (ReLU) like leaky and

very leaky ReLU activation, exponential linear activation (ELU), as well as

identity mapping. The choice of activation function affects all layers except

the input and output units.

• Initialization scheme: Random weight initialization also affects all layers

equally. BirdNET uses He initialization ([He et al., 2015]) sampled from a

normal distribution. The required gain factor is derived from the activation

function and changes accordingly without the need for user input.

• Number of filters: The question whether wide or deep neural networks

perform better can be investigated by setting different values for the number

of filters (channels) in each layer. As input, a 1D vector is required, specifying

the number of layers with its length and the amount of filters with its values.

For AlexNet-like architectures a vector of [32, 64, 128, 256] would specify a

neural network with four convolutional layers with twice the amount of filters
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in each succeeding layer. For a ResNet, this vector would generate a DNN with

four consecutive residual stacks (each with a later defined number of blocks)

whereas each stack applies the same amount of channels to each block (and

thus to each convolutional layer).

• Kernel sizes: Equivalent to the definition of layer count and amount of filters,

the corresponding kernel sizes are specified by another 1D vector with entries

of the form (h,w) that define height and width of the filters of each layer (or

residual stack).

• Number of groups: Grouped convolutions were already introduced with

AlexNet and can help to reduce the number of operations needed during a

forward pass by limiting the number of channels that each group receives as

input. The number of convolutional groups can be defined by yet another 1D

vector that sets values for each convolutional layer (or residual stack).

• Batch normalization: One of the most important methods of implicit reg-

ularization is batch normalization. It can be activated for all convolutional

layers of a neural network by setting a flag. Batch norm learns statistics of in-

put batches over all channels and applies normalization by reducing covariance

shift [Ioffe and Szegedy, 2015]. This method typically impacts the detection

performance significantly but comes at the cost of slower training. Batch norm

is applied before the activation of neurons and often works best with ReLU

activations.

• Dropout: Lasagne provides three types of explicit regularization in the form

of dropout: Random dropout of single neurons of a layer, dropout of locations

(the same neuron in every channel) and dropout of entire channels. The type

and probability of neuron deactivation during dropout is specified globally in

BirdNET for all dropout layers.

• ResNet K and N: In their paper about wide ResNets, Zagoruyko and Ko-

modakis introduced the two scaling factors K and N. Both impact the dynamic

generation of any ResNet variation in BirdNET by multiplying the number of

filters in each block (K) and by specifying the number of blocks in each stack

(N). Both constants can be either specified as scalar or 1D vector that applies

different values to each stack.
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• Global pooling: Only fully convolutional neural networks can be generated

with the aforementioned configurations. Recent DNN designs do not contain

any fully-connected layers since they are prone to overfitting and greatly in-

crease the number of weights. As an alternative, global pooling reduces all

trailing dimensions beyond the second axis of incoming inputs before applying

the final softmax or sigmoid activation. Schlüter introduced logistic mean

exponential pooling in [Schlüter, 2018]—an addition specifically designed for

the detection of multiple instances in one input sample. This appears to be

an ideal choice for spectrograms that cover longer chunks of audio and might

contain vocalizations of multiple species.

Models are then trained with randomized batches drawn from a subset of all available

training samples. Learning rate decay ensures that each model converges towards

the minimal loss, early stopping implicitly regularizes the training process. Several

evaluation metrics are used to determine the best weight configuration, which is

then serialized and locally stored for further examination and usage.

4.2.3. Evaluation

One of the key components of BirdNET is the evaluation module that assesses the

performance of a trained net at certain stages. Two kinds of evaluation procedures

are implemented: Online evaluation after each epoch at training time, and offline

evaluation after the training has finished. During each procedure, different datasets

and metrics are used to test the performance.

Datasets

As mentioned in Section 3.2.1, the assessment of the generalization capabilities of

neural networks depends on test and validation data that contains unseen samples.

Additionally, those datasets have to account for the expected use case of the model

deployment. In order to cover different domains and applications while maintaining

flexible experimentation, I decided to follow the widely-adopted scheme of train-

ing and validation splits that include samples that are most appropriate for the

individual evaluation task.
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Correlated validation set: Typically, when training deep neural networks, a large

dataset is split into two folds: Training split and validation split. Since DNN require

large amounts of data, a commonly used ratio is 9:1 for both splits. Each split covers

all classes and has to contain enough samples to accurately represent the initial value

distribution. Therefore, we can argue that the common (multi-fold) cross-validation

scheme is not required in this case. Both portions of the training data can contain

one single or multiple labels per sample allowing to assess binary or categorical error

rates.

Uncorrelated validation set: In our specific domain, training samples repre-

sent short excerpts of longer recordings. Despite the fact that validation samples

are never used to train, it is important to note that those samples are still highly

correlated with the training data due to matching noise patterns from the original

recordings. Due to this, BirdNET also uses uncorrelated validation data that con-

tains samples that were solely extracted from validation recordings—entire audio

files that are not part of the training data (but still might contain clues reflecting

the recording equipment of bird watchers). Correlated and uncorrelated validation

samples are used during online evaluation to monitor the performance of a DNN

during training.

Mono-species recordings: Field recordings that only contain a single species are

one of the target domains for BirdNET. In addition to the uncorrelated validation

data, a portion of training recordings is used to serve as uncorrelated test data. Of

all training examples, ten percent are exclusively used for offline evaluation after

the training has finished. Due to the arbitrary length of those recordings, all scores

are pooled (or bagged) to derive a single prediction. Evaluation metrics assess

whether the pooled detection matches the initial (weak) label and—in some cases—

the enlisted background species.

Soundscapes: Domain adaption capabilities of trained neural networks for acous-

tic event recognition are another important dimension of the evaluation process.

Thanks to the effort of experienced annotators, it was possible to create a large

soundscape dataset consisting of hour-long audio files from SWIFT recorders. The

soundscape test data matches the BirdCLEF2019 dataset, thus making results com-

parable with other attempts. However, during the majority of experiments, only a

(representative) fraction of the benchmark data will be used.
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Metrics

The choice of metric significantly impacts the performance assessment of DNN.

Depending on the task, we can choose from a variety of single- and multi-label

metrics to account for certain constraints. Typically, each metric has its strengths

and weaknesses. With this in mind, I decided to apply different, complementary

metrics that fit different domains like single spectrograms, mono-species recordings

and soundscapes, including benchmark metrics employed during the BirdCLEF and

DCASE Bird detection challenge.

Cross-entropy: The most commonly used loss functions for classification tasks

are the binary and categorical cross-entropy (see Section 3.2.1). Since training and

validation data are (mostly) uncorrelated, a comparison between training and val-

idation loss is fundamental to detect overfitting. Although explicit regularization

like dropout affects the cross-entropy loss during training and not during validation,

diverging loss values always indicate issues concerning the model capacity. BirdNET

uses early stopping to prevent overfitting, the validation loss is used to decide which

snapshot achieved the best performance. If the validation loss does not improve for

more than five epochs, training is aborted.

Accuracy: In categorical classification using one-hot labels, accuracy is a com-

mon measure—despite its deficiencies. In our case, the top-1 accuracy for balanced

validation datasets is one of the more strict metrics, requiring a DNN to detect

the present class by assigning the highest score. The accuracy for targets t and

predictions p as implemented in BirdNET is defined as

Li = I(ti = argmaxcpi,c) (4.1)

where the prediction with the highest score for each sample has to match the index

i of the one-hot label. This metric is omitted in multi-label scenarios due to the

high number of true negatives.

Mean average precision: Ranking metrics are a better choice for tasks with

multiple classes per sample. One of the most commonly used measures is the mean

average precision (MAP). In contrast to the top-1 accuracy, the average precision

reflects the rank of the desired labels among all predictions sorted by decreasing
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confidence. Since DNN use fixed output sizes that contain scores for each class, the

average precision for one sample is defined as

AvgP =

∑n
k=1(P (k)× rel(k))

nrel(S)
(4.2)

where k is the rank in the list of returned species, n is the total number of returned

species (equals the number of classes), P (k) is the precision at cut-off k in the

prediction vector, and rel(k) is an indicator function based on binary labels that

equals 1 if the item at rank k is a relevant species. Based on the ground truth, nrel

denotes the number of relevant species S for each sample with values from 0 to n. In

real-world, multi-label scenarios, typical values for nrel range between 1 and 5. The

overall score reflects the mean across all samples, thus favouring imbalanced classes

with more samples. But even in balanced datasets, the MAP is biased. Depending

on the inner-class heterogeneity (e.g. repertoire size of one species), this metric

implies good overall performance despite major deficiencies. However, the MAP is

widely used and is one of the two main metrics at BirdCLEF, which makes results

comparable.

Class-wise mean average precision: To counter a possible bias due to unbal-

anced data, the MAP metric can be adjusted to reflect classes and not samples

(cMAP). This variation is of great importance to assess the real-world applicability

of a trained DNN since it treats each class as equally challenging. Ranking metrics

usually profit from large results lists that eventually contain every relevant species.

Yet, for the analysis of soundscapes, particularly ‘clean’ results are needed. There-

fore, detection systems have to apply a confidence threshold to avoid dilution of

result lists. To account for this, the average precision for one class is defined as

AvgP (c) =

∑n
k=1(P (k)× rel(k))

nrel(C)
(4.3)

where the predictions of each class are ranked based on the confidence score and the

indicator function rel(k) denotes if the prediction at rank k is relevant. Acquiring

the mean across all classes C with

cMAP =

∑C
c=1AvgP (c)

C
(4.4)

results in a balanced measure of DNN detection quality that gives equal weight

to each class independent from its initial bias (e.g. recording quality, number of

samples, or species diversity). This measure is also the primary metric of the 2019
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BirdCLEF challenge that explicitly focuses on continuous soundscapes that show

high variance in the number of vocalizations for the contained bird species.

Precision, Recall, F-measures: Omnidirectional soundscape recordings are very

challenging due to faint vocalizations and heavy background noise. Additionally, the

output predictions for each soundscape segment have to be as accurate as possible.

In many cases, only the highest scoring class can be considered. A convenient metric

to assess the number of correct predictions compared to the number of mistakes in

multi-label scenarios is the well-known precision, which is defined as

P =
tp

tp+ fp
(4.5)

and simply computes the ratio between true positives (tp) and false positives (fp).

Precision is a strict measure that does not account for the rank of each prediction

among all returned results. On top of that, the number of missed vocalizations

is also of great importance. This measure is reflected in the recall metric that is

defined as

R =
tp

tp+ fn
(4.6)

and accounts for the number of returned true positives compared to the number of

missed vocalizations (false negatives, fn). Both metrics are strongly connected and

sometimes contradict each other. Therefore, the harmonic mean of both metrics

(F1-score) has been proposed. Considering the general form of the F-measure

Fβ = (1 + β2) · P ·R
β2 · P +R

(4.7)

with its scaling constant β, a shift towards precision—that favours high accuracy at

the price of reduced recall—can be achieved by reducing β to 0.5 (which would be

equal to the F0.5-measure).

Area under ROC curve: The confidence of predictions plays a significant role

in real-world use cases since results need to be dependable. Each F-measure only

captures a specific snapshot that does not imply how sensitive the system is to

changes in the minimum confidence threshold. The receiver operating characteristic

(ROC) curve accounts for changes of this lower boundary. In compliance with the

primary metric of the DCASE Bird detection challenge, the area under the ROC

curve metric (AUC) is used to assess how distinct the distribution of confidence
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values is across all results. The ROC measures the true positive rate (or recall)

against the false positive rate defined as

FPR =
fp

fp+ tn
(4.8)

where the number the of true negatives (tn) accounts for scores below a confidence

threshold that actually do not contain a valid vocalization. Higher values for AUC

indicate that a DNN can detect non-vocalizations and reflect that in the score. This

is important considering long lasting segments of silence in soundscape recordings

(e.g during the night).

Other implemented measures include the top-1 mean confidence to assess different

pooling strategies and the elapsed time per training epoch to account for computa-

tionally expensive changes to the overall design of the DNN and training regime.

4.2.4. Distribution

Dependable results and fast computation are among the most important require-

ments that all application scenarios demand. Aside from that, a number of explicit

variations to the overall detection process have to be made in order to cope with

domain-specific constraints. Each scenario is based on different hardware, input

data, and user-level interactions. Mainly, three distinctive application categories

can be defined.

• Large-scale analysis: This involves the analysis of mono-species recordings

and soundscapes. But only the latter has long-term applicability and would be

the most transformative. The number of recordings acquired during the mon-

itoring of a habitat over a longer period of time poses a significant challenge.

Usually, high detection quality comes at the cost of computationally expensive

processing. Although the analysis will be deployed to powerful workstations,

fast processing of signal chunks is key to achieve a target processing time of one

minute for one hour of audio data. On top of that, results need to be accurate

with high F-measure and explicitly low false positive rate. Each input file

will be split into short (overlapping) chunks to derive high-quality predictions

despite high vocalization density. This is an explicit multi-label scenario.
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• Mobile recorders: In an ideal setting, passive ARU would be replaced by

active monitoring devices built with (semi-) mobile hardware. Since this sce-

nario requires power-saving setups, the computational requirements of a deploy

recognition system are at the forefront of design considerations. Yet, reducing

model capacity to save resources often entails the lack of detection quality.

I will focus on this use case during the experimental stage and explore tech-

nologies that allow the application of DNN for ARM architectures like the

Raspberry Pi. Real-time processing of input spectrograms requires precise

detections without the help of bagging or model ensembles.

• Web and demo application: The third application scenario evolves around

the need for demos, prototypes and web applications to communicate sci-

entific research. Fortunately, this domain is the most flexible in terms of

detection quality and speed. Following the idea of system-as-a-service, access

over internet does not require clients to execute computationally expensive

operations. The expected amount of data is significantly less than during any

large-scale analysis task and this allows longer execution times—real-time is

not mandatory. However, this scenario requires task-specific error handling to

communicate where and when the detection failed.

Each scenario has its specific constraints and requirements and thus needs explicitly

adapted versions of BirdNET. Most importantly, model export has to comply with

these circumstances and should make the deployment as easy as possible.

4.3. Implementation details

Publishing code repositories alongside scientific papers has become more an more

common in the computer science community. Today, almost every major contribu-

tion to the field of deep learning is accompanied by an extensive, open source code

base that enables interested research groups to investigate the presented results.

Python is one of the most popular programming languages used in those repositories.

The vast amount of third-party functionality makes it the ideal choice to rapidly

advance scientific progress if distribution is not the primary goal. Additionally, every

major deep learning framework has Python bindings.
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Therefore, BirdNET’s core functionality is also implemented in Python and I will

introduce some of the most important additional libraries and frameworks in this

section.

• NumPy (https://www.numpy.org): This can be considered the most funda-

mental package for scientific computing in Python. The success of Python as

programming language for scientific projects is largely due to NumPy’s vast

and extremely fast processing of N-dimensional inputs. Along with SciPy,

NumPy covers most of the basic functionality of MATLAB but remains open

source. BirdNET uses NumPy for all shape transformations of input data,

prediction arrays, and basic image processing functionality.

• Matplotlib (https://matplotlib.org): As another MATLAB-like Python li-

brary, Matplotlib provides 2D plotting functionality for scientific figures. Its

functionality can be integrated with scientific workflows based on NumPy,

rendering it a convenient tool to visually investigate the performance of an

academic system. Additionally, all plots in this theses were created using

Matplotlib.

• Scikit-learn (https://scikit-learn.org): Measuring the overall performance of

a computational system is one of the cornerstones of every scientific evaluation.

Scikit-learn provides numerous, ready-to-use implementations of common eval-

uation metrics. Again, seamless integration into NumPy-based workflows is

one of the key advantages of this library. In BirdNET, relevant metrics were

implemented using Scikit-learn.

Additional functionality of BirdNET for smartphone apps or web applications is

implemented in Java (Android) and JavaScript to support a high number of potential

clients and platforms.

4.3.1. Audio and image processing

For the domain of acoustic event recognition, the processing of audio and image data

has to be computationally inexpensive. Since BirdNET processes large amounts of

input data in short periods of time (multiple times faster than ‘real-time’), well-

established third party libraries are used to cover those core functions.
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• LibROSA (https://librosa.github.io/librosa/): This Python package is in-

tended for the design of music information retrieval systems. It contains the

building blocks of convenient audio processing and provides an easy-to-use,

high-level API. However, LibROSA requires a number of external libraries and

frameworks, which makes it incompatible with some platforms (e.g. Raspian,

the most popular Raspberry Pi OS). Still, the process of opening (any) audio

files and re-sampling them to the target sampling rate with LibROSA is easy

and fast (since it is build upon FFMEG).

• pyAudio (https://people.csail.mit.edu/hubert/pyaudio/): Some of LibROSA’s

functionality is based on pyAudio, which provides Python bindings for the I/O

library PortAudio. pyAudio allows to open continuous streams of audio from

almost any source and is thus well-suited for real-time processing of live audio

data on almost any platform. I use pyAudio to read audio chunks from external

microphones of mobile platforms like the Rasberry Pi.

• SciPy (https://www.scipy.org): Countless scientific projects rely on SciPy, a

Python-based ecosystem of open-source software for mathematics, science, and

engineering. SciPy provides a high-level API for a wide variety of scientific

functions including signal processing. In BirdNET, SciPy is used to apply

bandpass filters to audio input signals to soften frequency cut-offs.

• OpenCV (https://opencv.org): As one of the most important image pro-

cessing libraries, OpenCV provides core functionality for image handling in

BirdNET. This includes loading and saving of images, transformations like re-

sizing and cropping, and almost every data augmentation. OpenCV contains

Python bindings and is compatible with all major OS distributions.

Additionally, BirdNET uses custom mel-like filter banks that avoid ‘hard-snapping’

of frequency bins that LibROSA employs. This implementation also allows to adjust

every parameter of the resulting frequency scale, especially the aforementioned break

frequency and scaling constant.

4.3.2. Deep learning frameworks

The number of available deep learning frameworks is ever increasing. Today, Ten-

sorFlow and pyTorch can be considered the two most important collections of deep

learning functionality. The scientific community quickly adopted to the evolution of
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those and other frameworks and some of the most acknowledged works were built

with Caffe, Torch, Theano, CNTK or even Darknet. The choice of the underlying

backend for deep learning applications depends primarily on personal or task-specific

preferences, as most frameworks offer comparable functionalities.

• Theano (https://github.com/Theano/Theano): Similar to most frameworks

for modeling mathematical expressions in Python, Theano was launched in

2010 by Bergstra et al. as alternative to NumPy/SciPy that makes use of

specialized hardware like GPU [Bergstra et al., 2010]. Consequently, most of

Theano’s functions are also contained in NumPy. Yet, due to the efficient com-

pilation process and use of various optimization procedures for task-specific

hardware, Theano provides a dramatic speed-up compared to execution on

CPU [Theano Development Team, 2016]. Additionally, Theano supports sym-

bolic differentiation of complex expressions—one of the building blocks of deep

learning. Well before the inception of TensorFlow in 2015, Theano provided

state-of-the art functionality and a well-maintained code base. Unfortunately,

Theano was discontinued in 2017.

• Lasagne (https://github.com/Lasagne/Lasagne): One reason for the early

success of Theano in the field of deep learning was the quality of available high-

level APIs. Most notably, Keras and Lasagne provided easy-to-use collections

of neural network layers, optimizers and loss functions [Dieleman et al., 2015],

[Chollet et al., 2015]. While Keras aimes at providing the complete integration

of every aspect of training and testing of neural networks, Lasagne focuses on

model generation. Its extensive documentation and clean code base make

it accessible and controllable. Additionally, due to personal communication

with Jan Schlüter—one of the core developers of Lasagne–BirdNET profited

from custom implementations for the very specific domain of acoustic event

recognition.

Similar to TensorFlow’s layer API, Theano and Lasagne require researchers to im-

plement a significant amount of supporting code, since they cover only core func-

tionality. However, they also allow users to build processing chains that can be

controlled in every detail. Therefore, Theano and Lasagne are ideal choices for

BirdNET—which itself can be seen as another abstraction layer of Lasagne in the

fashion of nolearn5 by Daniel Nouri.

5https://github.com/dnouri/nolearn

115



4. System Architecture

4.3.3. Web tools and services

Web applications and services are becoming increasingly popular for making research

prototypes accessible to a wide audience. In most cases, the actual scientific system

relies on very specific hard- and software requirements. In contrast, web clients run

on almost every platform, sometimes even supporting embedded systems without

any need for specific resources. A number of libraries provide extensive function-

ality to provide user-friendly access to research prototypes with limited amount of

implementation overhead.

• Pickle (https://docs.python.org/2.7/library/pickle.html): Converting dynamic

data structures and object hierarchies to byte streams can be done with Pickle.

The library allows to serialize any given state of a dynamic Python object into

a persistent representation (usually stored on hard drive). Pickle allows to

conveniently export trained models and their weights along various additional

configuration data for further usage. Preserving the best model snapshot and

importing it into a number of BirdNET applications with the help of Pickle

enables to deploy classifiers to new platforms without having to adjust detailed

settings.

• Bottle (https://bottlepy.org): Python provides distributed system function-

ality with its Web Server Gateway Interface (WSGI). Bottle is a convenient

micro-framework with no external dependencies that wraps basic WSGI func-

tionality. Bottle allows to create RESTful web applications that can be ac-

cessed over the internet or locally using any kind of web client. Compared to

other widely-used frameworks like Django6, Bottle is ideal for rapid prototyp-

ing of simple applications due to its streamlined API.

• Twisted (https://twistedmatrix.com): One of the most important features of

Bottle is the interchangeable back end. This means that a vast number of

other web server implementations can be installed to handle API requests.

Considering the load that is to be expected when deploying public web apps,

asynchronous server architectures are ideal for handling traffic when multi-

ple CPU cores are available. BirdNET uses Twisted as server back end in

combination with Bottle. Twisted is a well-tested, event-driven networking

engine that handles simultaneous API requests (especially file uploads) for all

of BirdNET’s online applications.

6https://www.djangoproject.com
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• Bootstrap (https://getbootstrap.com): Responsive web applications that are

accessible with a vast number of clients are important to communicate ad-

vances in scientific research. Bootstrap is a convenient toolkit to develop such

applications with ease. It provides functionality to quickly design and imple-

ment complex web pages with pre-defined components. Bootstrap is used for

all web demos of BirdNET.

• jQuery (https://jquery.com): This is one of the most popular libraries for

element manipulation, event handling, and (most importantly) Ajax requests

written in JavaScript. The interface extension jQuery UI provides high-level

abstractions of basic interactions with web pages. Both libraries are used to

handle user events for all web applications.

• Chart.js (https://www.chartjs.org): Making model outputs accessible to a

wide audience is key to communicate how the sound recognition system of

BirdNET functions. Typically, predictions of neural networks consist of 1D

output vectors that contain class probabilities. Chart.js provides a convenient

and extensive API to visualize those confidence values and other stats related

to the classification process for web applications.

• Leaflet (https://leafletjs.com): Interactive maps are an important tool to

investigate user submissions to BirdNET. Leaflet is one of the most popular

libraries to build mobile-friendly maps based on various tile renderers. Leaflet

supports certain levels of interaction based on user events and is fully cus-

tomizable in terms of the overall look and feel. The library supports rapid

prototyping with its high-level API.

BirdNET also uses a custom, real-time spectrogram viewer implementation based

on JavaScript developed at the Bioacoustics Research Program of the Cornell Lab

of Ornithology.

4.4. Summary

Based on the implementation of AMOPA and the Xtrieval Web Lab, BirdNET

was built to provide modular processing chains of core components. Main design

decisions include extensive functionality, detailed configuration, a domain-agnostic
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workflow, transparent and reproducible implementations, as well as an application-

driven development process. The overall workflow employs detailed data handling,

audio processing capabilities, extensive data augmentation, dynamic model design,

and export. A number of third-party, open-source frameworks and libraries provide

additional functionality for training, testing and distribution. Moreover, BirdNET is

a research platform that allows to design and evaluate sophisticated training regimes

of deep neural networks for acoustic event recognition. Yet, it is not the implemen-

tation, demos, or applications that are at the center of my attention throughout this

thesis. In fact, each component of BirdNET is interchangeable or replaceable. Bird-

NET is a tool to explore methods, algorithms, and scenarios that are applicable to a

wide variety of scientific problems. The next chapter will provide the experimental

foundation for the future adoption of model architectures, training schemes, and

task-specific applications and their transfer to any other deep learning framework

or toolkit.
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This section provides an in-depth analysis of the aforementioned requirements, con-

straints, and recent advances in the domain of acoustic event recognition. It covers

different aspects of data acquisition, spectrogram extraction, neural network archi-

tectures, training regimes, and applications. I will study the impact of core changes

to the previously proposed system and their (task-specific) implications on the over-

all detection performance. Building on previous chapters, I will evaluate detailed

workflow settings that explicitly evolve around the main aspects of large-scale, long-

term avian acoustic monitoring. Eventually, I will investigate the performance of

the resulting benchmark system that will also be applied to a number of real-world

scenarios in Chapter 6.
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5.1. Goals and main focus

Experimental evaluation is the standard way to assess the performance of deep

neural networks. Usually, the ability to generalize is tested by training the neural

network on a (often large) amount of training samples and testing the prediction

quality on representative test data [Goodfellow et al., 2016, pp. 117-118]. In most

cases, training and test data are strongly linked since they originate from the same

value distribution. Still, the ability to achieve excellent results on truly new, unseen

samples is one of the major advantages of DNN compared to traditional classifiers.

My goal is to study the impact of changes to core components of the overall work-

flow. Each scenario and use case has different requirements and constraints and

some of the results might not be transferable to other tasks. However, my exper-

imental efforts will focus on key elements of DNN performance to ensure mostly

task-agnostic results. Therefore, I do not aim for complete evaluation of all possible

configurations (which is unfeasible for most aspects) but instead concentrate my

efforts on distinct alterations of data processing, DNN architecture, and training

regime while minimizing side effects such as dataset bias or random variations.

5.2. Experimental investigations

The design of the experimental studies in this thesis evolves around the ability

of DNN to generalize on unseen samples despite a high number of classes with

significant intra-class heterogeneity. I will test certain scenarios that focus on dif-

ferent domains of DNN applications with diverse data in mind. For the domain of

acoustic event recognition for avian activity monitoring, the proposed approach first

involves the acquisition of large training, validation and test datasets, which are

mostly unlinked and represent real-world use cases. Secondly, a baseline setup to

assess the initial system performance based on domain knowledge and assumptions

derived from previous work will be established. Thirdly, the evaluation of different

spectrogram extraction strategies, architectural designs, as well as various DNN

topologies and their corresponding training regimes will build upon the baseline

results. Next, I will propose and evaluate ways to reduce the model complexity for

mobile applications. Finally, I will train a benchmark system, which is also subject

of an in-depth analysis to decide on future improvements.
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5.2.1. Acquisition and composition of data

Selecting data samples that represent actual applications of deep neural networks

is vital to ensure a good overall performance. Fortunately, the birding community

provides vast archives of sound recordings for almost every bird on the planet. In

this thesis, the focus is on North American and European species to allow real-world

testing. Tremendous effort was put into the accumulation of audio files from both

domains: Mono-species recordings and soundscapes. Expert annotators and consul-

tants provided labels, bounding boxes and curated lists of birds for both continents.

Additionally, metadata provided by citizen scientists was used to establish one of

the largest datasets ever used in bird sound recognition.

The selection of bird species that would eventually form the contained classes of

a trained neural network was based on two main sources of information. First, a

curated list from expert ornithologists contained 595 species of North America that

can be considered vocal. This list did not feature every possible species that might

occur but included all common species that are likely to be encountered during

monitoring scenarios. Secondly, European species were selected based on eBird

frequency data. Therefore, the eBird API 1.1 was queried to generate class lists for

grid cells, each with a size of 0.5 degree latitude and longitude. Every list contained

occurrences based on submitted eBird checklists for every week of the year (reduced

to four weeks per month, 48 weeks total, see Figure 5.1). The European class list

included all birds that occur on at least 25% of all checklists (frequency) over at

least four weeks per year. When the number of cells with that property exceeded

100, the species was selected as class. The resulting number of species for Europe

is 555, which totals to an amount of 1,049 classes for both continents (due to some

overlap). Again, the number of species reflects actual observations, which is crucial

when considering future applications for smartphones or ARU.

Based on these two lists of bird species, the web API of Xeno-canto and the Macaulay

Library (ML archive and eBird) were queried to retrieve metadata and recordings.

The Xeno-canto community collected hundreds of thousands of audio files, some-

times exceeding 1,000 recordings for a single species. To avoid future data biases

due to imbalanced training data, I decided to limit the amount of retrieved recordings

to 250 per species. Despite the fact that both lists contain birds that are frequently

observed, each class is required to contain at least ten recordings. The reason for this

were considerations of the experimental design where datasets are split into folds
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(a) Great Tit (Parus major)

(b) Song Thrush (Turdus philomelos)

(c) European Serin (Serinus serinus)

Figure 5.1.: Relative frequency based on eBird checklist data for the city of Chem-

nitz, Germany. The Great Tit is a very common bird with high abun-

dance year-round (a), the Song Thrush is partially migratory and has

high relative abundance from March until August (b). The European

Serin is not very common in this area but still fulfills the basic require-

ment for selection of at least four weeks with a frequency above 0.25

(c). Data provided by the eBird API 1.1

that dedicated 80% of the files for training, 10% for (online) validation, and 10% for

(offline) testing. Since each fold needed to contain at least one sample per species

with no overlap between training and validation data, ten files were considered the

minimum amount of recordings. This restriction reduced the total number of classes

to 984.

My previous work in this domain suggests that fallback classes, which contain non-

events, are vital to the success of a recognition system. Based on those assumptions,

various other data sources provided a variety of sound recordings that feature events
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Table 5.1.: Different data sources that are used for training. Xeno-canto and the

Macaulay Library provide vast archives of audio data for the 984 bird

species of this project. Complementary, other acoustic events like insects,

anurans, environmental, or technical sounds are also part of the dataset.

Human vocal sounds form one additional class for training, so do non-

bird animals. All other sound sources are merged into a non-event class.

Name Classes Files Duration (h) Size (GB)

Xeno-canto 984 118,882 1,798 156.3

ML archive 968 107,196 2,016 177

Non-birds 1 (83) 358 22 9.5

AudioSet 7 (16) 16,851 121 67.3

Freefield1010 1 5,755 16 5.1

WarblR 1 1,855 5.2 1.7

Combined 987 250,897 3,978.2 416.9

like vehicles, human speech, wind, rain, and other animal sounds. The Google

AudioSet is one of the largest collections of human-labeled sounds that span a wide

range of classes that are organized in an ontology [Gemmeke et al., 2017]. I selected

16 distinct events organized in seven classes that include human voice, whistles, and

locomotion, insects, anurans, environmental, and technical sounds. As part of the

DCASE Bird detection challenge, the Freefield1010 and WarblR datasets contain

a high number of (unlabeled) non-events and account for 7,610 files derived from

professional and semi-professional recordings. Sounds of other animals, especially

insects and anurans that are common in North America are important to consider

as sources of sound during our monitoring efforts in Ithaca, NY. Again, a curated

list of other vocalizing animals was composed, the ML archive provided several

hundreds of recordings that contain the most vocal non-bird species like Spring

Peeper, American Bullfrogs, Chipmunks and Katydids. The list of recordings was

extended with personal recordings contributed by Russ Charif and Mary Clapp.

The entire dataset features an unprecedented amount of recordings, almost 1,000

different classes of birds, and acoustic events with an accumulated run length of

more than 3,978 hours. Every recording featured extensive metadata that was

used to select high-quality recordings with supposedly correct labels in order to

train an automated recognition system that is robust against unforeseen acoustic
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circumstances. Soundscapes with expert labels allow real-world testing and form

comparable results. However, I did not use the entire dataset to train each itera-

tion of the proposed DNN. Due to computational limitations, I decided to split the

dataset into folds that served different purposes and sample compositions.

Sapsucker Woods 100, SSW100: This is the primary evaluation data split. It

features the 100 most common species for the Sapsucker Woods bird sanctuary in

Ithaca, New York and includes all 84 species that occur in the annotated soundscapes

recordings. The training split consists of 36,072 recordings, the test split contains

3,966 randomly selected audio files. The dataset is imbalanced with a maximum

amount of 500 files and a minimum amount of 56 per class. The dataset also features

non-event recordings that were used as noise overlays during data augmentation.

BirdNET 1000, BN1000: The complete collection of all audio files contains more

than 250,000 recordings from various (aforementioned) sources. The training data

consists of 203,903 audio files that span 984 bird species. The test split contains

at least one randomly selected recording for each species and a total of 22,175 files.

This set also includes three non-event classes ‘Human’, ‘Non-Bird’, and ‘Noise’. This

dataset is also imbalanced with a maximum of 500 recordings and a minimum of 10

recordings per species. Non-event classes contain up to 9,492 files.

BirdCLEF 2019 Test Soundscapes, BC2019: The test set of the LifeCLEF

Bird recognition challenge consists of 335 fully-annotated soundscapes with a total

duration of more than 280 hours. Of those soundscapes, 286 were recorded between

March and July of 2017 in the Sapsucker Woods area in Ithaca, New York. In

an incredible effort, expert annotators labeled more than 80,000 vocalizations that

cover 84 bird species. During my experiments, the same ground truth (merged into

five-second segments) and metrics as in BirdCLEF 2019 were used to assess the

real-world performance of the final trained classifier.

Dawn Chorus Soundscapes, DCSC: This is a representative collection of 24

soundscape recordings that include one hour before and one hour after sunrise of

each of the fully-annotated days that are part of the BirdCLEF2019 test data. Each

occurring species is contained in the SSW100 data split an thus recognizable by a

trained classifier. Dawn chorus recordings are some of the most important sound-

scapes to survey the species diversity of a habitat and pose a considerable challenge

due to a high number of vocalizations. For the sake of comparability, the ground

truth used for this split also equaled the official BirdCLEF2019 annotations.
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5.2.2. Experimental setup

Previous attempts in the domain of acoustic event recognition have led to some basic

findings about the overall training and evaluation workflow. Since all hyperparam-

eters (or settings) of each training cycle are interconnected, it is often impossible

to identify those connections empirically. Therefore, I designed a baseline experi-

ment, which featured preliminary hyperparameters, derived from previous experi-

ence. Each succeeding experiment built upon the results of this baseline attempt.

This way, the best possible combination of hyperparameters would evolve over time.

However, due to the holistic nature of these trials, the resulting workflow might still

be improvable through further experimentation. In this section, I will define the

variables, which were subject of investigation during the evaluation.

Evaluation mode: Due to the large amount of training data, I followed the

scientific (de facto) standard of deep learning experiments. In contrast to x-fold

cross-validation—which is common for traditional machine learning methods—each

experiment consisted of three runs. Each run featured the exact same data source,

architecture and training regime and was fully deterministic. However, random-

ness plays a significant role in deep learning. Therefore, each run used a different

global random seed, which altered the order of samples, augmentations, and—most

importantly—network initialization. The median score of those three runs served

as the final assessment of the evaluated recognition system.

Audio processing: The computation of spectrograms from audio files has vari-

ous degrees of freedom, which I discussed earlier. Not all of them were subject to

investigation. I focused on two main constraints for spectrogram extraction: The

DNN input shape and the average length of bird vocalizations. Empirically, the

mean duration of a bird song ranges from two to three seconds (see Section 2.4.3,

Figure 2.17). Longer spectrograms are more likely to contain a (weakly) labeled

vocalization, shorter audio chunks provide a higher detection resolution. I inves-

tigated spectrograms that represented 2.0, 2.5, and 3.0 seconds of audio. For fair

comparison, the resulting DNN input shape was kept consistent across all three

variations. Considering the avian auditory system, the window length and over-

lap of each spectrogram were fixed in another series of experiments that lead to

consistent temporal resolution but different input shapes. All other computational

parameters (e.g. frequency and amplitude scaling) remained unaltered and followed

the proposed workflow of Section 2.4.3.
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(a) Downsampling block (b) Regular residual block (c) Classification branch

Figure 5.2.: Baseline design of DNN components. Based on the design of Wide

ResNets, each residual block (b) contains two convolutional layers and

one dropout layer followed by element-wise addition of the weighted

and unweighted paths. Downsampling blocks (a) precede regular blocks

and apply max pooling to reduce spatial dimensions and an additional

convolutional layer in the shortcut branch to increase the amount of

filters. All convolutional layers apply batch normalization (BN) before

their ReLu activations. The classification branch (c) follows the design

of Schlüter and reduces the input shape to a single dimension through

average pooling followed by softmax activation [Schlüter, 2018].

DNN Architecture: The baseline experiment featured a modified version of the

Wide ResNet architecture (Figure 5.2). Three core components form the succession

of layers: First, a pre-processing stem transforms the original input spectrogram

before it is passed through a series of residual stacks. Secondly, this sequence of

residual stacks—consisting of downsampling and regular residual blocks— extracts

features that are eventually passed through the third component, the classification

branch. The initial design of the pre-processing branch is simple and contains a

single 3x3 convolution with ReLu activation preceded by batch normalization. A

1x2 max pooling layer reduces the spatial dimension in the time domain. Residual

blocks are identical with the ReLu pre-activated version of the design proposed in

[Zagoruyko and Komodakis, 2016, Figure 1].
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Table 5.2.: Baseline ResNet topology

Group Name Input shape Output shape

Pre-processing
Conv + BN + ReLu (1x64x384) (8x64x384)

Max pooling (8x64x384) (8x64x192)

ResStack 1
Downsampling block (8x64x192) (16x32x96)

ResBlock (16x32x96) (16x32x96)

ResStack 2
Downsampling block (16x32x96) (32x16x48)

ResBlock (64x8x24) (64x8x24)

ResStack 3
Downsampling block (32x16x48) (64x8x24)

ResBlock (64x8x24) (64x8x24)

ResStack 4
Downsampling block (64x8x24) (128x4x12)

ResBlock (128x4x12) (128x4x12)

Classification

Conv + BN + ReLu (128x4x12) (128x1x1)*

Conv + BN + ReLu (128x1x1) (256x1x1)

Conv + BN (256x1x1) (100x1x1)

Global pooling (100x1x1) (100x1)

Softmax (100x1) (100x1)

* this shape was altered to represent different time and frequency steps

Downsampling blocks follow the original layout but employ max pooling instead of

2x2 strides. These blocks are also ReLu pre-activated and do not use a bottleneck

convolution to increase the amount of filters. Instead, the number of filters is in-

creased during the 3x3 convolution. The classification branch is derived from the

design proposed in [Schlüter, 2018] but leads to just one prediction for the entire

spectrogram to ensure fair evaluation of certain durations. Experiments concern-

ing the overall architecture were supposed to shed light on the impact of topology

changes for pre-processing, residual stacks and classification.

The resulting residual neural network consist of 110 total layers of which 24 are

weighted (contain trainable parameters). The design is relatively shallow consid-

ering typical ResNets and cannot be considered very wide. With its 1.5 million

parameters, the architecture has only limited capacity. However, baseline experi-

ments featured only 100 classes and had to be as fair as possible for different input

sources. Therefore, I chose an architecture that is not prone to overfitting and

contains the necessary outline for further modifications.
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Baseline training: Tuneable hyperparameters of the overall training process were

chosen based on previous experience. Not all of them were subject to changes during

further experiments. The success of a training regime often depends significantly

on the interaction of numerous options. It remains questionable if the best possi-

ble combination can be found experimentally. The centralized configuration file of

BirdNET contains 12 settings for spectrogram computation, 25 adjustable hyper-

parameters for the overall training process, 13 settings for DNN configuration, 17

data augmentation methods (each with at least 2 degrees of freedom) and 27 options

for result post-processing. Since most settings are not simply binary but allow the

choice of (almost) infinite assigned values, automated methods of hyperparameter

optimization are not feasible considering the time needed to train a model. Due to

this, grid search, random search, or even genetic algorithms are imperfect options.

Following standard best practices, I decided to limit the investigation to essential

settings based on their expected impact on the overall performance. For the baseline

experiment, the following starting hyperparameters were chosen:

• No data augmentation

• 60 epochs with early stopping

• Batch size 32

• Constant learning rate of 0.001

• L2 weight regularization of 0.0001

• Adam optimizer

• Strictly balanced datasets

• 500 training samples per class

• 100 validation samples per class

• 5 test recordings per class

• 24 (dawn chorus) test soundscapes

In order to ensure fast training and to avoid bias due to imbalanced data splits,

a subset of the SSW100 and DCSC datasets was used to train baseline classifiers

on single labels. Frequency data derived from eBird checklists was used to post-

filter soundscapes predictions based on date—a species had to occur on at least

2% of all checklists to be considered valid. This setup was not intended to achieve

the highest possible scores. Instead, it was designed to ensure fair evaluation of

different spectrogram computation modalities. All of the above hyperparameters

remain unchanged during the investigation of audio visualizations. Under certain

circumstances, other combinations might have favoured different input sources and

provided better scores. For the sake of comparability, the baseline training regime

was fixed.
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5.2.3. Spectrogram computation

The first series of experiments evolved around the question whether high temporal

resolution is key for automated bird species identification. Birds often have very

complex vocalization with fine-grained temporal detail. For spectrogram computa-

tion, the temporal level of detail increases with shorter frames. However, shorter

frames also increase the total number of frames for a fixed signal length. This

impacts the input resolution of the resulting spectrogram. Considering future real-

time applications, the input shape of the recognition system should be as small

as possible. Additionally, the use of weak labels in the dataset might result in

‘empty’ samples when the extracted chunks are too short. On the other hand, short

chunks provide better detection resolution in soundscapes. Longer chunks require

wider input shapes due to more resulting frames with constant temporal resolution.

Considering the average length of bird song, chunks with a duration between two

and three seconds seem plausible. I decided to investigate two modes of spectrogram

computation in terms of temporal resolution: First, a constant number of frames

with varying frame length. Secondly, constant frame length but varying numbers of

frames. Three hypotheses have been tested:

Hypothesis 1 Spectrograms that visualize longer chunks of weakly labeled audio

contain more valuable information and thus result in better classification perfor-

mance despite lower temporal resolution.

Hypothesis 2 Spectrograms that visualize shorter chunks of weakly labeled audio

contain less valuable information for successful training but provide better detection

results in soundscapes.

Hypothesis 3 High temporal resolution (short frame length) improves the classifi-

cation performance.

Considering the investigation of song duration (Figure 2.17), I decided to evaluate

signal chunks with a duration of 2.0, 2.5 and 3.0 seconds. To keep the resulting

spectrogram shape (and thus the DNN input shape) constant, the frame length was

adapted in a way that each spectrogram used Hann windows of varying length but

constant overlap of 50%. Due to design constraints, the resulting spectrogram width

had to be divisible by 8 to allow spatial reduction with square pooling sizes. Constant

input shapes are crucial to ensure fair evaluation in which the DNN architecture does

not affect the result due to a varying amount of trainable weights. The median score
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Table 5.3.: Spectrogram computation experimental results (median out of three tri-

als). All spectrograms use a mel-like scale with 64 bins to scale fre-

quencies and 384 Hann windows with varying length and constant 50%

overlap.

SSW100 Val split SSW100 Test split DCSC

D FL MAP cMAP MAP cMAP F0.5 AUC

2.0 10.7 0.555 0.49 0.744 0.670 0.160 0.726

2.5 13.0 0.576 0.514 0.736 0.656 0.182 0.724

3.0 15.6 0.598 0.545 0.737 0.661 0.140 0.709

D = duration in seconds, FL = frame length in milliseconds

of three experiments for each chunk duration was considered representative of the

approach and used for comparison.

The results of the experimental evaluation of different chunk durations (see Table

5.3) confirmed the hypotheses 1 and 2. Longer signal chunks significantly improve

the classification performance for single spectrogram predictions. This implies that

three-second spectrograms are easier to train and lead to better classifiers. Shorter

signal chunks lead to better performance in the specific domain of mono-species

recordings and soundscape analysis. However, post-processing of predictions can

ease the difference in classification performance through bagging of scores and over-

lapping intervals. Post-processing most likely cannot compensate insufficient train-

ing. Consequently, a spectrogram duration of three seconds appears to be the best

choice for bird sound recognition.

Building on these results, hypothesis 3 was tested. Since a small DNN input resolu-

tion is desirable, variations in overlap between consecutive frames lead to different

numbers of resulting frames while keeping the frame length constant. The investi-

gation covered three computational modes of three-second spectrograms. Full-size

spectrograms with 10.73 ms windows, 50% overlap and 576 frames, mid-sized spec-

trograms with 10.7 ms windows, 384 frames and 26.8% overlap, and finally, small

spectrograms with only 192 frames, 26.5% overlap and a large window size of 20.6

ms (1024 samples).
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Table 5.4.: Three-second spectrogram experimental results (median out of three tri-

als). Reducing the frame length significantly improves the soundscape

performance but only marginally affects single spectrogram predictions.

Overlapping Hann windows by 50% does not improve the performance.

The same applies for high input resolutions.

SSW100 Val split SSW100 Test split DCSC

NF OL MAP cMAP MAP cMAP F0.5 AUC

192 26.5 0.587 0.533 0.733 0.654 0.165 0.738

384 26.8 0.599 0.545 0.743 0.671 0.191 0.722

384 50.0 0.598 0.545 0.737 0.661 0.140 0.709

576 48.8 0.599 0.538 0.736 0.659 0.153 0.736

NF = Number of frames, OL = Overlap in percent

Changing the input resolution of a neural network requires to alter the topology. In

order to keep most of the design consistent, I decided to adjust the receptive field

of the classification branch. This way, larger input shapes provide more details to

process and the number of network parameters changes accordingly—larger inputs

most likely require more capacity. Additionally, larger inputs significantly increase

the time per prediction. The experiments showed more than 35% longer training

times per epoch for spectrograms with a high number of frames.

Investigating the results, hypothesis 3 was partially confirmed. The most notable

increase in classification performance came in the soundscape domain (see Table

5.4). Shorter frame lengths improved the F0.5 measure significantly. In all other

domains, scores are on par with other configurations. Very large frames (of 1024

samples) decreased the performance notably. This implies, that highly detailed

spectrograms with short frames are the best choice for bird sound recognition in

noisy environments. However, altering the input size of a neural network eventually

leads to changes in the capacity and thus large inputs could lead to overfitting

due to more model parameters. This effect cannot be entirely excluded although

experiments provided fair conditions.

Frequency scaling is another important dimension of spectrogram computation.

The proposed mel-like scale (see Section 2.4.2) emphasizes lower frequencies—which

adapts to the avian vocal and auditory system. Still, reducing the frequency reso-
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Table 5.5.: Three-second spectrogram frequency scaling experimental results (me-

dian out of three trials). More details in the frequency domain do not

improve the classification performance. In fact, the decline is significant

in the soundscape domain.

SSW100 Val split SSW100 Test split DCSC

MEL BINS MAP cMAP MAP cMAP F0.5 AUC

48 0.597 0.551 0.724 0.660 0.168 0.713

64 0.599 0.545 0.743 0.671 0.191 0.722

80 0.592 0.537 0.740 0.651 0.186 0.686

96 0.582 0.522 0.735 0.662 0.154 0.718

lution of a spectrogram leads to information loss. Research suggests that temporal

resolution is more important than frequency resolution for avian vocalizations (see

Section 2.2.2). This assumption does not imply how an adequate frequency scaling

should look like, and it remains questionable if higher frequency resolution in fact

improves the overall performance. Therefore, another hypothesis can be formu-

lated:

Hypothesis 4 Higher frequency resolution (more than 64 mel bins) does not im-

prove the classification performance.

I decided to test hypothesis 4 experimentally through four different configurations

that included a varying number of mel bins. Again, altering the number of frequency

bins changed the input size of the DNN. During these experiments, the network

architecture remained unchanged, only the classification branch was adjusted.

The results imply no significant difference in the scores (see Table 5.5). In fact, we

can only observe a small performance decline with higher frequency resolution. Using

64 mel bins appears to be the best overall setting, at least in terms of soundscape

performance. Smaller spectrograms almost perform on par—a finding that might

help to reduce computational costs for mobile recorders in future trials. Therefore,

hypothesis 4 was partially confirmed. Yet, evaluation results indicated that all tested

spectrogram extraction schemes perform similar. The only truly significant change

came with the increase in duration from two to three seconds per audio chunk. Other

variables like the choice of mel scale, magnitude scaling or window functions were
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not evaluated due to their (expected) low impact factor. Three-second spectrograms

with 64 mel bins and 384 (Hann windowed) frames of 10.7 ms length served as input

source for all further experiments.

5.2.4. Architecture design

The next step of the evaluation process was dedicated to the investigation of different

architecture designs of the neural network. Based on the initial setup, different

versions of key components were tested. This included pre-processing stems, residual

blocks and variations of the classification branch. Until this point, all experiments

focused on the single label task of identifying one bird species per spectrogram.

With real-world scenarios in mind, this constraint does no longer apply. Therefore,

a multi-label training scheme was established for all further experiments. Following

the idea of mixup training proposed in [Zhang et al., 2017], multi-label samples were

created using two randomly added single-label spectrograms:

x̂ = λxi + (1− λ)xj

ŷ = yi ∨ yj
(5.1)

The scale factor λ in the range [0.25, 0.75] randomly weights each of the two samples

(xi, xj) to form a new spectrogram that contains two vocalizations. The two corre-

sponding ‘one-hot’ label vectors (yi, yj) are combined by logical disjunction (boolean

‘or’) to form a multi-label vector. This process is repeated for randomly selected

samples from each training batch until the number of labels per spectrogram reaches

a pre-defined average. The maximum label count per sample is limited to 3.

This method of sample synthesis can be considered as data augmentation and acts

as strong regularizer during training. The initial design of the DNN did not have

the capacity to represent this increase in data complexity. Therefore, the first series

of experiments concerned the number of filters needed to reflect changes in the input

value distribution. First, the unaltered baseline network will be tested using sigmoid

instead of softmax outputs, a slight decrease in performance is expected:

Hypothesis 5 Single-label classification performance will decrease with the use of

sigmoid instead of softmax activation in the classification branch.
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Table 5.6.: Multi-label experiments (median out of three trials). Synthesizing sam-

ples through random weighted addition significantly improves the classi-

fication performance due to strong regularization. Increasing the model

capacity helps to map the complex input value distribution.

SSW100 Val split SSW100 Test split DCSC

LPS K MAP cMAP MAP cMAP F0.5 AUC

1.0 1 0.608 0.552 0.753 0.666 0.148 0.774

1.5 1 0.625 0.571 0.764 0.697 0.191 0.770

1.5 1.5 0.649 0.595 0.788 0.716 0.165 0.796

1.5 2 0.653 0.604 0.794 0.721 0.149 0.801

LPS = Labels per sample (average across one batch, max = 3)

Secondly, the multi-label synthesis was applied to the baseline architecture, which

was expected to lead to slightly increased performance due to stronger regulariza-

tion. Finally, the number of filters of the baseline architecture was raised to reflect

on the increased data complexity. To achieve this, the scaling factor K proposed

in [Zagoruyko and Komodakis, 2016] affected all convolutional layers from the pre-

processing stem, residual stacks and classification branch with the exception of layers

dedicated to reflect the number of classes. This change was expected to yield sig-

nificantly better results due to a considerably higher number of trainable weights.

Hypothesis 6 reflects these assumptions:

Hypothesis 6 Multi-label classification with mixup training will increase the overall

performance across all tasks.

The results shown in Table 5.6 confirm both hypotheses. Training with augmented

samples that contain one, two or three labels significantly improves the classifica-

tion performance. Random weighted addition serves as strong regularization and

thus affects single- and multi-labels tasks. Due to the increased complexity of the

training data, an increased model capacity has notable impact when compared to

the baseline model. However, the classification branch in its current form does only

predict species probabilities for the entire spectrogram. Aside from regularizing

effects, random weighted addition does not per se lead to better predictions. Short

audio chunks provide a better temporal resolution and thus are capable of prediction

species despite overlapping vocalizations. Changing the receptive field of the clas-
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(a) 1 x 2 (b) 1 x 3

(c) 1 x 6 (d) 2 x 6

Figure 5.3.: Different class branch output shapes represent different time steps when

correlating deep features to the input spectrogram. The depicted (syn-

thesized) sample spectrogram contains three labels and is the result of

random weighted addition. The final spectrogram represents a very

busy acoustic scene. Dividing this scene into segments and predicting

probabilities for all classes for each of those segments can help to improve

multi-label classification performance.

sification branch simulates this short-chunk prediction process by passing different

output shapes into the global pooling layer.

As a result, the class branch output shape represents abstract visual features that

can be mapped to temporal (and frequency) steps in the input spectrogram. Due

to this, we can assume that each segment of the output shape maps visual features

of very short chunks of input audio (see Figure 5.3).

For a three-second spectrogram, an output shape of 1 x 6 contains predictions for

each of the 100 classes every half second. With help of this arbitrary shape, we

can now simulate independent predictions for short chunks of audio that provide

decent resolution to grasp overlapping vocalizations. We can derive the following

hypothesis from this:

Hypothesis 7 Classification branch output shapes that represent short temporal

steps improve the overall performance.

To test this hypothesis, I decided to apply log-mean-exponential pooling as intro-

duced in [Schlüter, 2018]. First mentioned by Pinheiro and Collobert, this pooling

strategy aims to avoid vanishing scores that might occur due to average computation
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Table 5.7.: Multi-label experiments (median out of three trials). Predicting species

probabilities for short chunks of input audio increases the classification

performance considerably. Three time steps (where each equals a step

size of one second) appear to perform best. Smaller time steps do not

increase the performance.

SSW100 Val split SSW100 Test split DCSC

COS K MAP cMAP MAP cMAP F0.5 AUC

(1, 1) 2 0.653 0.604 0.794 0.721 0.149 0.801

(1, 2) 2 0.675 0.631 0.804 0.738 0.168 0.792

(1, 3) 2 0.679 0.635 0.815 0.751 0.161 0.801

(1, 4) 2 0.674 0.630 0.813 0.746 0.175 0.794

(1, 6) 2 0.676 0.627 0.817 0.744 0.163 0.789

COS = Classification output shape (h, w), K = Filter multiplier

and preserves high confidences before passing the result through sigmoid activation

[Pinheiro and Collobert, 2015]:

lme(y; a) =
1

a
log

(
1

T

T−1∑
t=0

exp(a · yt)
)

(5.2)

For each time series y of local, short chunk predictions with scores (y0, y1, ..., yT−1)

for a single species, the sharpness factor a controls the behavior of this function.

For a→∞, this function approximates the behavior of maximum pooling that only

keeps the highest probability predicted for each class across all time steps. With

a → 0, the function approximates standard average pooling. Schlüter proposes a

sharpness a = 1, previous experiments confirmed the suitability of this approach.

The results of the experiments with different output shapes as shown in Table 5.7

indicate that step-wise predictions affect the overall performance up until a certain

threshold. This observation partially confirmed hypothesis 7. In the conducted

experiments, this threshold is 3. More time steps did not help to improve the per-

formance. Reasons for this outcome include the fact that short chunks might not in-

clude the entire vocalization in many cases. Despite the fact that overlapping sounds

are problematic, one-second predictions appear to be the best choice. An additional

series of experiments based on this outcome revealed that an added frequency step
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Table 5.8.: Multi-label experiments (median out of three trials). Based on the as-

sumption that three time steps perform best, some modifications were

tested. Neither an added frequency step nor an increase in the sharpness

factor a did improve the classification results. Higher sharpness seems

to affect the soundscape performance—an observation that is worth con-

sidering for mobile recorders.

SSW100 Val split SSW100 Test split DCSC

COS a MAP cMAP MAP cMAP F0.5 AUC

(1, 3) 1 0.679 0.635 0.815 0.751 0.161 0.801

(2, 3) 1 0.669 0.626 0.799 0.742 0.166 0.803

(1, 3) 5 0.662 0.613 0.785 0.720 0.187 0.791

COS = Classification output shape (h, w), a = Sharpness

does not provide useful information (see Table 5.8). Due to the mel-like frequency

scaling, vocalizations typically span the majority of the frequency band and therefore

cannot be separated. Higher sharpness for the log-mean-exponential pooling func-

tion also does not improve the performance. This suggests that average-like pooling

is better suited to represent the species distribution in multi-label spectrograms.

Downsample blocks

Features extracted in early layers form the foundation of a well-performing classi-

fication branch. In (almost every) classic DNN design, spatial dimensions decrease

with depth, while the number of channels (filters) increases. Almost every pro-

posed milestone architecture in the domain of visual object recognition uses such

a layout. A higher number of channels comes at the cost of increased training

time—something that is compensated by smaller inputs. Yet, altering spatial di-

mensions and filter count in a Wide ResNet architecture can introduce bottlenecks

or unnecessary high computational costs. Therefore, a number of downsampling

block designs have been proposed. The next series of experiments focused on the

question, whether changes to the downsampling block—which handle both, spatial

reduction and filter increase—can lower the computational costs while maintaining

the overall performance.
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(a) DS 1 (b) DS 2 (c) DS 3

(d) DS 4 (e) DS 5 (f) DS 6

Figure 5.4.: Different downsample block designs. Batch normalization and nonlin-

earites are omitted for clarity. Each block increases the number of filters

(F IN→F OUT) and reduces the spatial dimensions through max pool-

ing (strides in the original ResNet design). The baseline block (a) does

not use a bottleneck layer and increases the number of filters in the 3x3

convolution. Design 2 (b) delays that increase until the 1x1 convolution.

Block 3 (c) has a bottleneck layer, design 4 (d) precedes the shortcut

convolution with average pooling. Designs 5 and 6 (e + f) combine

previous variations.

I decided to evaluate six different designs derived from previous experience and

state-of-the-art publications (Figure 5.4). Most notably, the baseline block (DS 1),

which was used in past editions of BirdCLEF, is a simplified version of the origi-

nal design (DS 3). ResNet tweaks recently proposed in [Xie et al., 2018] alter the

original design to a more sophisticated layout (DS 4). Other tested versions con-

tain single alterations of these designs. The results shown in Table 5.9 indicate

that differences between downsample block variations are only minor. Surprisingly,

the initial baseline design performed very well, even when compared to more re-

cent approaches. Training times differed significantly and the main constraint for
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Table 5.9.: Investigation of downsample block designs (median out of three trials).

Only minor differences exist between the performance of different down-

sample block designs. Version 4 appears to be the best compromise of

training speed and overall scores.

SSW100 Val split SSW100 Test split DCSC

D ID TPE MAP cMAP MAP cMAP F0.5 AUC

DS 1 87 0.679 0.635 0.815 0.751 0.161 0.801

DS 2 77 0.662 0.614 0.801 0.730 0.178 0.799

DS 3 87 0.667 0.619 0.806 0.735 0.163 0.798

DS 4 79 0.676 0.633 0.807 0.733 0.165 0.824

DS 5 101 0.684 0.643 0.814 0.748 0.150 0.822

DS 6 79 0.676 0.637 0.808 0.745 0.151 0.795

D ID = Design id, TPE = Time per epoch in seconds

the eventual selection reflected that. Although layout DS 5 performed best on the

single spectrogram task, its increase in training duration renders it a non-optimal

choice. Overall, DS 4 as mentioned by Xie et al. in their ‘ResNET bag of tricks’

appears to perform best considering time per epoch and overall scores. However,

other training settings could increase the performance of a design when specifically

adapted. Nonetheless, layout DS 4 was used for all further experiments. The layout

of the regular residual block remained unchanged and reflected the wide dropout

design proposed as best performing design in [Zagoruyko and Komodakis, 2016].

Pre-processing

Large receptive fields in early layers of a DNN have proven to be effective in the

past. AlexNet used 11x11 kernels, ZFNet used 7x7 filters. The GoogleNet de-

sign used 5x5 kernels as largest filters but kept the 7x7 convolution as first layer.

VGG-16 introduced stacked 3x3 convolutions to reduce the number of parameters

while maintaining the size of the receptive field. Especially for tasks that involve

high resolution inputs (like photographs) or require high resolution outputs (like

segmentation masks), large receptive fields tend to increase the overall performance

[Yu and Koltun, 2015]. However, it remains questionable if that also applies for
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Table 5.10.: Investigation of pre-processing kernel sizes (median out of three trials).

Large kernel sizes do not notably slow down training due to only one

input channel. A 5x5 kernel size appears to perform best. Stacked

3x3 convolutions significantly increase the training time and slightly

decrease the performance.

SSW100 Val split SSW100 Test split DCSC

KS TPE MAP cMAP MAP cMAP F0.5 AUC

3x3 79 0.676 0.633 0.807 0.733 0.165 0.824

5x5 79 0.677 0.634 0.811 0.744 0.176 0.816

9x9 80 0.664 0.619 0.795 0.735 0.164 0.816

7x7 79 0.661 0.615 0.797 0.734 0.158 0.821

5x5* 93 0.668 0.626 0.809 0.739 0.179 0.805

KS = Kernel size, TPE = Time per epoch in seconds, *stacked 3x3 convolutions

very dense, extremely specialized visual representations—such as spectrograms. I

decided to test the following hypothesis in another series of experiments:

Hypothesis 8 A large receptive field of the pre-processing stem improves the overall

performance.

First, different kernel sizes in the first layer of the pre-pocessing stem were tested to

examine whether larger kernels actually improve the overall performance. According

to previous advances and the fact that almost every very deep network design fea-

tures stacked convolutions in its stem to resemble large kernels, the expected results

should show better scores for larger filters. However, the experimental investigation

revealed that this is not the case when spectrograms are used an input (Table 5.10).

A kernel size of 5x5 consistently improved the performance compared to the initial

3x3 convolution, but larger filter sizes decreased classification scores significantly.

Therefore, hypothesis 8 can only be partially confirmed.

Stacking 3x3 convolutions to achieve the same receptive field with less parameters

is a common design scheme. The entire Inception architecture is built on the as-

sumption that deeper networks profit from replacing costly convolutional operation

with more effective successions of stacked layers [Szegedy et al., 2015]. Replacing a

5x5 convolution with two (stacked) 3x3 convolutions reduces the number of network
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parameters while increasing the depth. Yet, except for a slight increase in sound-

scape performance, this design choice did not yield better results than a single 5x5

convolution but significantly raised the time needed to train one epoch.

According to the results of the architectural investigations, all further experiments

used 5x5 kernels in the pre-processing stem, DS 4 downsample block designs, regular

Wide ResNet residual blocks, and three time steps with log-mean-exponential pool-

ing in the classification branch. One of the most important insights of the conducted

series of experiments revealed that all tested architectural changes perform similar

with no version that significantly outperforms all other choices across all tested

domains. This implies that changes to the training regime (which was fixed so far)

might have a greater impact on the overall performance.

5.2.5. Topologies and training regimes

With the main DNN architecture established, the next investigation focused on

network topologies and training regimes. Until now, hyperparameters like learning

rate, batch size, or optimizer remained unchanged to provide fair evaluation. Addi-

tionally, no data augmentation was used. In this section, I will explore the results of

deep and wide network topologies, different augmentation methods, as well as some

variations of essential training hyperparameters.

This can be considered a critical stage of the experimental process since the sequence

of the conducted tests might influence the outcome. To be more specific, testing

deeper or wider networks without augmentation might lead to overfitting and non-

conclusive results. However, the full potential of some augmentation methods might

not be visible when trained on a shallow and narrow topology. I decided to evaluate

different augmentation methods first, so that very powerful topologies do not suffer

from overfitting. Task-specific augmentation is key to good overall scores and the

methods that I evaluated experimentally reflect changes in frequency, time and

magnitude (see Figure 4.3 in Section 4.2.2). The current DNN layout supposedly

does not have the capacity to map the increased input distribution when samples

are augmented. Therefore, the scale factor K was set from 2 to 2.5 in order to add

more filters and thus more weights to the network. To ensure that this setting would

lead to overfitting without any further regularization, another baseline experiment

was conducted.
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Table 5.11.: Investigation of augmentation methods (median out of three trials).

The results indicate that noise samples are serving to adapt the acoustic

domain, vertical stretch best simulates frequency shifts in bird song, and

horizontal roll significantly diversifies the training sample selection.

SSW100 Val split SSW100 Test split DCSC

METHOD MAP cMAP MAP cMAP F0.5 AUC

none 0.668 0.626 0.794 0.731 0.145 0.809

v roll 0.683 0.644 0.820 0.752 0.182 0.792

h roll 0.690 0.651 0.815 0.750 0.152 0.808

v stretch 0.684 0.646 0.818 0.753 0.185 0.809

h stretch 0.681 0.643 0.816 0.743 0.140 0.791

f dropout 0.674 0.634 0.818 0.761 0.161 0.802

t dropout 0.663 0.619 0.786 0.723 0.161 0.818

warp 0.677 0.636 0.815 0.750 0.154 0.830

noise 0.680 0.640 0.815 0.763 0.224 0.807

The results shown in Table 5.11 indeed suggest that scaling the width caused the

DNN with increased capacity to overfit. The scores across all tasks dropped notably

compared to previous trials. It remains unclear whether the capacity was sufficient

to provide fair conditions for all augmentation methods that acted as unequally

strong regularization. However, the effects that could be observed were still very

conclusive. Only one augmentation method decreased the overall scores, the major-

ity of approaches led to significantly better classification results.

One particular interesting observation implies that time-domain dropout decreases

scores, while frequency domain dropout increases the performance. This very likely

reflects the information density in both domains: Information along the frequency

axis is somewhat redundant while the temporal resolution of the used spectrograms

contains very dense data points. This supports the assumption that the selected

computational approach of spectrogram generation is ideal in terms of available

detail and resulting input resolution. Experiments with different numbers of mel bins

(Table 5.5) revealed comparable performance when dropping 16 frequency bins.

The slightly reduced information density in the frequency domain allowed to simu-

late frequency shifts of vocalizing birds in different habitats through augmentation.
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Those methods—especially vertical stretch—proved to be very effective. Horizontal

roll preserves all the information in the time domain and still increases the input

sample diversity—with notable effect. Additional noise samples are one of the most

powerful augmentation methods, which was expected considering previous experi-

ence. This leads to the conclusion that vertical stretch best simulates shifts in pitch,

horizontal roll emulates different sample selection strategies and noise samples cover

the domain shift between mono-species recordings and soundscapes. I selected these

three methods to serve as augmentation for all further experiments. During those,

each method had a 50% chance to be selected as data augmentation that resulted

in samples that contain none, one, two, or all three (with 12.5% probability) aug-

mentations.

Depth vs. width

With strong regularization methods added, the next series of experiments concerned

the omnipresent question whether deep networks provide better performance than

wide topologies. The implemented ResNet architecture with its two scale factors K

and N allows to easily tune both dimensions. Yet, the current baseline network was

derived from the wide residual network design and thus supposedly favours wide but

shallow layouts. Twelve different topologies were assessed (Table 5.12) to test the

commonly formulated hypothesis:

Hypothesis 9 Deeper topologies (more layers) perform better than wider topologies

(more filters).

Since the added data augmentation significantly increases the variance of the input

value distribution, networks with high capacity (number of parameters) were ex-

pected to perform better. However, those topologies also needed significantly longer

training durations and thus might not be worth the improved performance when the

difference is too small.

The observable results (see Table 5.13) demonstrate that effect clearly. More capac-

ity and thus longer, costly training only improves the performance until a certain

threshold. The choice of the network topology has to reflect this constraint. Yet,

the outcome of the investigation also shows that wider and deeper topologies do

outperform the baseline design. In fact, the basic assumption derived by Zagoruyko

et al. in their Wide ResNet paper [Zagoruyko and Komodakis, 2016] was exactly
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Table 5.12.: Different network topologies.

ID ResNet K ResNet N PARAMS LAYERS TPE

1 2 2 5,037,492 28 (121) 94

2 2 3 6,608,052 36 (157) 109

3 2 4 8,178,612 44 (193) 124

4 2 5 9,749,172 52 (229) 139

5 3 2 11,285,212 28 (121) 123

6 3 3 14,816,092 36 (157) 160

7 3 4 18,346,972 44 (193) 196

8 3 5 21,877,852 52 (229) 230

9 4 2 20,018,948 28 (121) 157

10 4 3 26,293,508 36 (157) 204

11 4 4 32,568,068 44 (193) 253

12 4 5 38,842,628 52 (229) 301

TPE = Time per epoch in seconds

confirmed: Increasing the scaling factor K and thus increasing the number of filters

per layer does consistently improve the classification results independent of the depth

of the network. However, the soundscape performance appears to be entirely linked

to the depth of the DNN. This implies that Hypothesis 9 can be confirmed. The

performance across all other tasks appears to be solely linked to the capacity of the

network and significantly improves with higher numbers of parameters.

Although deeper topologies outperform shallow ones, there appears to be a limit

until which depth actually benefits the experimental outcome. A depth of three

blocks per residual stack consistently outperforms shallow stacks with only two

residual blocks. After that, more depth increases the classification performance but

not in every case—which unfortunately is a bit inconsistent to be reliant. However,

this indicates that the Wide ResNet design effectively compensates a lack of depth

with wider layers—which is exactly what was intended. Deeper topologies do not

contribute to an increased performance for single label and mono-species recording

tasks, but both are of high importance.

Considering this outcome, the choice of topology that was used in all further exper-

iments had to reflect the overall task performance and the required computational
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Table 5.13.: Investigation of network topologies (median out of three trials). More

filters (and thus higher capacity) lead to consistently better results

independent from the depth. The soundscape performance strongly

correlates with the depth of the topology. Computationally expensive

topologies do not necessarily provide better results.

SSW100 Val split SSW100 Test split DCSC

ID MAP cMAP MAP cMAP F0.5 AUC

1 0.687 0.649 0.823 0.765 0.186 0.800

2 0.678 0.638 0.823 0.760 0.231 0.776

3 0.690 0.659 0.830 0.770 0.211 0.784

4 0.690 0.653 0.832 0.768 0.250 0.746

5 0.694 0.657 0.833 0.777 0.189 0.815

6 0.691 0.659 0.825 0.773 0.231 0.775

7 0.699 0.664 0.838 0.778 0.230 0.755

8 0.698 0.664 0.839 0.780 0.245 0.742

9 0.702 0.671 0.839 0.783 0.177 0.785

10 0.702 0.667 0.838 0.779 0.265 0.758

11 0.703 0.670 0.839 0.786 0.225 0.762

12 0.700 0.668 0.840 0.777 0.238 0.74

costs. Therefore, topology 10 appeared to be the best compromise. With a width of

four and a depth of three, it achieved the best soundscape performance (the AUC

score can be raised with a different choice of confidence threshold and is thus omitted

in the decision process). It also closely matched the top performance across other

tasks. With a training time of 204 seconds per epoch, the computational costs are

acceptable, the network capacity leaves some room for more regularization, which

will come with the use of more samples and more classes.

Dropout

Wide residual networks benefit from width because of additional regularization in the

form of random dropout. This regularization method is widely used and powerful.

Hinton and Srivastava argue that dropout consistently improves the performance
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of deep neural networks—an observation that is backed by countless publications

in the field [Hinton et al., 2012b], [Srivastava et al., 2014]. ‘Standard’ dropout pre-

vents activations from becoming strongly correlated, which would lead to overfitting.

To counter this, single activations are dropped (zeroed) randomly with a certain

probability at training time. Tompson et al. argue that spatial dropout—which

drops entire channels instead of single neurons—leads to better regularization when

spatial features exhibit strong correlation [Tompson et al., 2015]. For images, this

is the case, the same might apply for spectrograms. The next series of experiments

focuses on this hypothesis:

Hypothesis 10 Spatial dropout improves the overall performance through better

regularization for spatially correlated inputs.

The effectiveness of dropout regularization is linked to the overall capacity of the

network and the probability to drop activations or channels. Since both methods

might require different dropout probabilities, a series of settings was tested (Table

5.14).

The results however are not conclusive. Spatial dropout significantly increases the

recognition performance in the soundscape domain, but the performance drops con-

siderably in all other tasks. This outcome only partially confirms Hypothesis 10.

It appears that low dropout probabilities consistently perform worse in both test

scenarios for mono-species recordings and soundscapes. Aside from that, evidence

does not suggest that one method is far superior, but dropout in general increases

the performance of a Wide ResNet (which confirms another assumption by the

authors of the original proposal). However, spatial dropout requires more epochs

to complete the training process due to stronger regularization. Considering this,

the initial setting of 50% random dropout appeared to be the best choice for future

experiments that use more samples to leave some capacity for more diverse input

data.

Learning rate decay

For the sake of faster experimentation, I decided to use the ADAM optimizer, which

converges considerably faster and automatically adapts the learning rate for each

weight individually [Kingma and Ba, 2014]. Although it might not converge towards

the optimal solution [Wilson et al., 2017], it eases the choice of the initial learning
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Table 5.14.: Investigation of dropout regularization (median out of three trials).

Spatial dropout achieves better scores in the soundscape domain but

diminishes the performance across all other tasks. Random dropout

with 50% probability per activation appears to be the best choice.

SSW100 Val split SSW100 Test split DCSC

TYPE P MAP cMAP MAP cMAP F0.5 AUC

R 0.125 0.704 0.668 0.837 0.776 0.207 0.742

R 0.250 0.700 0.667 0.835 0.783 0.261 0.763

R 0.500 0.702 0.667 0.838 0.779 0.265 0.758

S 0.125 0.693 0.656 0.828 0.774 0.256 0.742

S 0.250 0.693 0.660 0.832 0.772 0.273 0.729

S 0.500 0.686 0.647 0.827 0.768 0.277 0.733

P = Dropout probability, R = Random dropout, S = Spatial dropout

rate—a critical setting for fast training. Specifying an initial learning rate sets an up-

per bound for the adaptive weight updates for ADAM. Most optimizers benefit from

a learning rate schedule that incrementally decays the learning rate while training.

This might as well apply for ADAM. All previous experiments featured a constant

learning rate, the next series tested commonly used schedules. In its simplest form,

learning rate decay linearly reduces the update step size between a starting and

end value. The most popular form of learning rate decay however is a step-wise

reduction. The learning rate is multiplied with a pre-defined factor—usually 0.1

per step—at certain points during training. With that technique, steps need to

be placed whenever the loss flattens—something that might be challenging to do.

Adaptive detection of flattening loss or continuous decay could be better choices. Of

the continuous scheduling methods, two variations stand out: Kingma and Ba used

square root scheduling in their original proposal of the ADAM algorithm, Loshchilov

and Hutter proposed an aggressive schedule that uses cosine annealing to decay the

learning rate towards zero [Loshchilov and Hutter, 2016].

The results however indicate that the DNN is overfitting to the metric of a particular

task due to delayed early stopping (see Table 5.15). The training loss decreases con-

siderably more than the validation loss, which only helps two of the three tasks, the

overall soundscape performance suffers. Therefore, a learning rate schedule should

be applied for specific tasks only and was not employed during further experiments.
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Table 5.15.: Investigation of learning rate schedules (median out of three trials).

Continuous decay requires knowledge of the expected training progress.

An adaptive schedule avoids that by adjusting the learning rate when-

ever the validation loss flattens for three epochs. However, soundscape

performance appears to suffer significantly, which could be the result of

overfitting due to delayed early stopping

SSW100 Val split SSW100 Test split DCSC

TYPE MAP cMAP MAP cMAP F0.5 AUC

Constant 0.702 0.667 0.838 0.779 0.265 0.758

Linear 0.704 0.670 0.837 0.782 0.239 0.781

Step 0.707 0.672 0.848 0.785 0.234 0.772

Adaptive 0.717 0.685 0.851 0.797 0.218 0.767

Root 0.709 0.674 0.836 0.778 0.195 0.773

Cosine 0.712 0.679 0.841 0.785 0.221 0.766

However, of all learning rate decay schedules, the adaptive, step-wise version ap-

pears to outperform all other methods as it scales the learning rate by a factor of

0.5 whenever the validation loss flattens for three epochs and thus does not require

manual adjustment. We can conclude that continuous decay is only of use when

we know how well the model actually performs during training. The result of that

would be an increased amount of experimentation—which is not very practical. Still,

I used the adaptive scheduling method for model fine-tuning after training with a

constant learning rate to boost the performance of the benchmark system.

Cost-sensitive learning

Modern deep learning frameworks with high-level API like Keras allow to address

class imbalances in the training data. In reality, most classes of a datasets will

consist of different numbers of samples. Basically, two strategies exist to counter

class imbalances: Data-level approaches and algorithm-level methods. Addressing

imbalanced amounts of samples per class on data level usually implies that classes

have to be over- or undersampled in order to restore balance. Both methods are

very popular and have proven to be effective for deep neural networks in the image

recognition domain [Buda et al., 2018]. On an algorithmic level, class imbalances
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Figure 5.5.: Class weights based on number of samples as in Equation 5.3. The

data splits used to investigate certain balancing strategies contained

a random amount of samples per class (blue bars). Class weights

(red line) multiply the loss for each class accordingly—rare classes gain

more weight and force the model to optimize towards underrepresented

classes.

can be addressed with penalties (costs) that serve as an addition to the employed

loss function. A number of weight functions have been proposed and most of them

resemble the share of a class in relation to the entire dataset. One of the simplest

forms of class weights can be derived from

Wi =
N

C · Si
(5.3)

where N is the total number of samples, C is the total number of classes and Si

specifies the number of samples for a specific class i. When all classes have an

equal amount of samples, every class weight is 1. Imbalanced datasets reflect class

probabilities based on sample count (see Figure 5.5). The above equation imple-

ments the ‘balanced’ mode of class weight computation of scikit-learn—a widely

used method.

The vector of class weights can be applied to a DNN by adding an additional layer

[Khan et al., 2017] or by altering the error measure. Commonly, the cost-sensitive

penalty is applied to the loss function, e.g. by multiplying it with the vector of all

class weights as implemented in TensorFlow. Aside from that, we can also change

the loss function to reflect class imbalances. One of the most prominent examples

is the focal loss proposed in [Lin et al., 2017]. Focal loss does not only reflect class

imbalances, it also emphasizes samples that are hard to learn. For bird vocalizations,
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this sounds very promising since some birds have a high intra-species heterogeneity.

However, this heterogeneity cannot be easily measured and it is thus very complex to

find a quantifiable weight that could serve as penalty. The focal loss function shifts

the attention to samples that were falsely classified during the previous training step

and thus automatically establishes a difficulty measure.

Focal loss is typically aimed at datasets with extreme imbalances and contributes

very effectively to improving the detection of rare events. In my experiments, I used

the non-α balanced version proposed by Lin et al. with

FL(y) = −t(1− y)γ log(y)− (1− t)yγ log(1− y) (5.4)

for targets t and predictions y. The added modulating factor (1 − y)γ and the

focusing parameter γ allow to down-weight (easy) correct classifications. Although

this method favors underrepresented classes and hard-to-train samples, it might

amplify the focus on unrelated noise since not all samples do actually contain a

valid bird vocalization. Adjusting the valaue for γ allows to weaken the effect of

the focal loss. The initial design proposed by Lin et al. was intended for extreme

imbalances of 1:1000. Pre-tests revealed that a γ-value of 0.25 performs best for the

current use case and was therefore chosen for this investigation.

The unbalanced dataset for this series of experiments was simulated by randomly

limiting the number of samples per class to a (uniformly chosen) value between 50

and 500. For comparison, a run without any balancing method was added as the

resulting dataset contains only half as many samples as previous, balanced collec-

tions. The validation and test data remained unaltered. The most interesting metric

is the class-wise mean average precision. As balanced measure of classification per-

formance, it reflects the overall performance across all classes independent of their

amount of samples or difficulty level (vocal diversity). Therefore, we can derive the

following hypothesis:

Hypothesis 11 Cost-sensitive learning methods—that adapt to class imbalances in

the dataset—increase the performance despite underrepresented classes.

This hypothesis can be partially confirmed based on the results (Table 5.16). How-

ever, of all the investigated methods, only oversampling appears to have a significant

effect. Additionally, some methods only increase the performance for one task.
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Table 5.16.: Investigation of data balancing and cost-sensitive learning methods (me-

dian out of three trials). Oversampling slightly increases the perfor-

mance for mono-species recordings, class weights significantly increase

the soundscape performance. Focal loss does not help to improve the

performance for unbalanced data. It drastically decreases the sound-

scape performance due to emphasis on unrelated noise in the train-

ing samples. Focal loss does slightly improve the results for balanced

datasets but even then drastically reduces the soundscape performance.

SSW100 Val split SSW100 Test split DCSC

DATA METHOD MAP cMAP MAP cMAP F0.5 AUC

U None 0.658 0.618 0.789 0.739 0.177 0.791

U OS 0.659 0.611 0.814 0.747 0.180 0.767

U OS/US 0.645 0.591 0.796 0.735 0.177 0.780

U Weights 0.635 0.593 0.772 0.726 0.216 0.784

U FL 0.656 0.617 0.781 0.732 0.164 0.81

B None 0.702 0.667 0.838 0.779 0.265 0.758

B FL 0.707 0.673 0.834 0.783 0.179 0.767

U = Unbalanced, B = Balanced, OS = Oversampling, US = Undersampling

FL = Focal loss

Class weights are best for soundscape performance, focal loss drastically decreases

the scores in that domain. In fact, the focal loss trials suffer from overfitting to

unrelated noise in the training data. Non-events that contain a bird species label

are highly problematic for this kind of penalty. While focal loss slightly improves

the performance for balanced data splits, it consistently produces a high number

of false positives that do not contain a bird vocalization in soundscape recordings.

Unfortunately, this outcome is anti-climatic. Established and very basic methods

of dataset balancing outperform sophisticated approaches by a significant margin.

Yet, as part of the final model fine-tuning, cost-sensitive penalties might lead to

improved, task-specific performance and could be worth the application.

In conclusion, the experimental evaluation of topologies and training hyperparame-

ters revealed that data augmentation has great impact on the overall performance.

Sample diversity in all three spectrogram domains (time, frequency, magnitude) ef-

fectively improves the classification results through adaption to the target domain.
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Very deep topologies outperform shallow designs by a significant margin. However,

the baseline architecture that follows the wide residual network design of Zagoruyko

and Komodakis benefits from increased width and dropout regularization. Learning

rate decay and cost-sensitive learning provide task-specific improvements and were

applied during fine-tuning of the final benchmark system (see Section 5.2.7).

5.2.6. Mobile architectures

Mobile DNN architectures are typically very limited by computational resources.

Additionally, soundscape analysis relies on real-time capabilities that require DNN

to process a spectrogram in less time than this spectrograms represents (e.g. a

three-second spectrogram has to be processed in less than three seconds). For better

temporal resolution, overlapping spectrograms are often desirable. In our scenario,

a three-second spectrogram should be processed in less than two seconds to allow

a one-second overlap. The target platform for all experiments in this section is a

Raspberry Pi 3 A+1. On this device, the proposed workflow of audio processing

and spectrogram extraction requires 250 milliseconds. Therefore, the maximum

(practical) amount of time for one DNN prediction is 1,750 ms.

The first mobile architecture for examination was a traditional AlexNet-like design

with 8 layers and simply stacked 3x3 convolutions (Table 5.17). The pre-processing

stem and classification branch were exactly the same as in previous experiments

since their design has been experimentally validated. The overall network layout

is simple but provides sufficient capacity combined with real-time execution on a

Raspberry Pi. Theano and Lasagne are not optimized for ARM architectures and

simply run in CPU mode. Other frameworks like TensorFlow Lite are specifically

designed for the Raspberry Pi and might provide better performance. For this series

of experiments, these circumstances were omitted.

Of all tested versions, a scaling factor K of 3 appears to perform best (see Table

5.18). All tested variations are real-time capable by definition, but K = 4 is not

practical when an overlap of one second should be achieved. The results show

that more parameters do not increase the performance beyond a certain threshold.

Shallow, AlexNet-like architectures are significantly inferior to fully optimized wide

residual networks, even when compared to variations with the same amount of train-

able weights (see Table 5.13; with K = 4 the network has 12,690,480 parameters).

1see https://en.wikipedia.org/wiki/Raspberry Pi for more details and hardware specs
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Table 5.17.: AlexNet-like mobile topology based on previous design decisions. Shal-

low designs have proven to be effective in the past. With less than 1

million parameters, the 8-layers model is real-time capable when applied

to a Raspberry Pi.

Group Name Input shape Output shape

Pre-processing Conv + BN + ReLu (1x64x384) (8x64x192)

Conv 1
Conv + BN + ReLu (8x64x192) (16x32x96)

Dropout

Conv 2
Conv + BN + ReLu (16x32x96) (32x16x48)

Dropout

Conv 3
Conv + BN + ReLu (32x16x48) (64x8x24)

Dropout

Conv 4
Conv + BN + ReLu (64x8x24) (128x4x12)

Dropout

Classification

Conv + BN + ReLu (128x4x12) (128x1x1)

Conv + BN + ReLu (128x1x1) (256x1x1)

Conv + BN (256x1x1) (100x1x1)

Global pooling (100x1x1) (100x1)

Sigmoid (100x1) (100x1)

Total number of layers: 33 (8 weighted), Parameters: 814,776

However, the soundscape performance is surprisingly competitive, which might be

due to the (sometimes inaptly) fixed confidence threshold but mainly implies that

the employed training regime is very effective independent of the underlying DNN

architecture. Considering computational limitations and extremely fast execution

on a ARM CPU, the performance is still very competitive.

A central question that arises from the observed scores is whether deeper (resid-

ual) architectures perform even better. More layers require more computational

resources, but some designs are still real-time capable due to some specific design

choices. In the past, different mobile model architectures that achieve competitive

results in the domain of visual object recognition have been proposed (most notably

in [Howard et al., 2017], [Sandler et al., 2018], and [Tan and Le, 2019]). Based on

residual blocks and their alterations, mobile networks employ grouped convolutions

that parallelize feature extraction pathways by limiting the amount of channels that
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Table 5.18.: Investigation of mobile AlexNet-like topologies (median out of three

trials). A high number of filters per layer and thus more effective capac-

ity significantly improves the performance. Surprisingly, the regulariz-

ing effect of insufficient capacity (underfitting) appears to increase the

soundscape performance. Considering the inexpensive model design,

the results are very competitive across all tasks.

SSW100 Val split SSW100 Test split DCSC

K TPP MAP cMAP MAP cMAP F0.5 AUC

1 0.49 0.610 0.535 0.767 0.677 0.208 0.753

2 1.02 0.653 0.592 0.811 0.742 0.254 0.752

3 1.78 0.657 0.595 0.811 0.739 0.210 0.768

4 2.92 0.654 0.591 0.814 0.745 0.207 0.748

TPP = Time per prediction in seconds (incl. audio processing)

each convolution processes. In the most extreme case, the amount of convolutional

groups matches the number of incoming channels, which is called depthwise sepa-

rable convolution [Kaiser et al., 2017]. An increased number of groups significantly

reduces the computational costs of a model while mostly maintaining the overall

performance.

The design of residual blocks and stacks for the next series of experiments strongly

resembled the classical (but ReLU pre-activated) design without any further changes

[He et al., 2016b, Fig. 1b]. The pre-processing stage and classification branch re-

mained unchanged and incorporated experimentally proven design decisions (see

Figure 5.6). The architecture uses strided convolutions instead of max pooling to

spatially downsize inputs. This change was expected to yield slightly worse results

but significantly faster processing. Again, the scaling factors K and N were used

to increase the number of residual blocks per stack and the number of filters per

layer. In the most basic form (with N = 1), this layout already has 16 weighted

layers, which is a considerable increase compared to shallow, AlexNet-like designs

of previous experiments.

As observed in Section 5.2.5, the expected results should show an increase in overall

performance (especially for soundscapes) for deeper topologies. Two hypotheses can

be derived from the aforementioned considerations:
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(a) Downsample block (b) Basic residual block (c) Classification branch

Figure 5.6.: Baseline design of mobile ResNet components. Residual block follow

the original (ReLU pre-activated) design of He et al. Pre-processing

stem and classification branch incorporate experimentally derived de-

sign decisions. Instead of max pooling, strided convolutions are used to

spatially downsize incoming features.

Hypothesis 12 Residual neural network designs outperform shallow AlexNet-like

architectures.

Hypothesis 13 Deeper topologies (with more convolutional layers) outperform shal-

low layouts, even when computational resources are limited.

In order to preserve real-time capabilities with one-second overlap, the processing

of a three-second chunk of audio has to be finished in under two seconds. Whenever

the execution time exceeded this limit, grouped convolutions were used to reduce

the computational costs. Since convolutional groups were expected to yield slightly

worse results, the number of groups was kept as low as possible.

The experimental results of this investigation shown in Table 5.19 strongly confirm

hypothesis 12. Residual model designs outperform shallow architectures across all

tasks. This applies even when the number of parameters—and thus the network

capacity—is comparable. Residual layouts are more flexible and provide more de-

grees of freedom to adjust execution time and performance. Depth plays a crucial

role but does not lead to better results without an increase in capacity. This only
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Table 5.19.: Investigation of mobile ResNet topologies (median out of three trials).

Residual neural networks once again outperform AlexNet-like layouts.

In contrast to previous investigations however, depth does only increase

the overall performance when the number of parameters is raised ac-

cordingly. When computational resources are limited, wider topologies

outperform deeper designs. Grouped convolutions consistently reduce

the classification scores.

SSW100 Val split SSW100 Test split DCSC

K N TPP MAP cMAP MAP cMAP F0.5 AUC

1 1 0.80 0.638 0.578 0.781 0.714 0.238 0.721

1 2 1.36 0.654 0.609 0.813 0.747 0.240 0.728

1 3 1.87 0.659 0.610 0.808 0.735 0.242 0.740

1 4 2.42 0.651 0.606 0.800 0.736 0.244 0.747

1* 5 1.68 0.640 0.586 0.781 0.714 0.235 0.765

1.5 1 1.39 0.656 0.602 0.809 0.746 0.246 0.756

1.5 2 2.64 0.671 0.626 0.824 0.764 0.245 0.762

1.5* 3 1.46 0.638 0.581 0.782 0.724 0.226 0.764

2 1 2.08 0.675 0.630 0.826 0.768 0.244 0.769

3* 1 1.99 0.665 0.611 0.811 0.752 0.243 0.790

TPP = Time per prediction in seconds (incl. audio processing)

* Used grouped convolutions

partially confirms hypothesis 13. With constant scaling factor K (and thus a con-

stant number of filters per layer), an increased number of layers and thus more depth

does not yield better results when grouped convolutions have to be applied to reduce

execution times. The lack of capacity diminishes the performance of more layers.

The same observation was consistently made in other trials. Whenever grouped

convolutions are needed, the performance drops independent of the depth of the

model. This circumstance also limited the performance of wider designs rendering

convolutional groups a non-optimal choice for the target use case. Overall, a depth

of N = 1 and width of K = 2 appears to perform best. The execution times of this

setting are still acceptable and only slightly exceed the previously set limit.
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In conclusion, mobile network design perform well on a variety of sound recognition

tasks. Despite limited computational resources, the proposed architectures achieve

competitive scores with only slightly decreased performance compared to previous

investigations. Three main insights can be derived from that: First, residual net-

work designs reach top performance and can be comfortably adjusted to a variety of

tasks and target platforms. Secondly, higher scores come at the cost of significantly

increased execution times. Efficient models that preserve real-time capability on

(semi-) mobile devices obtain competitive scores that can only be outperformed

by extremely costly network designs. Thirdly, the established training regime—

especially the proposed augmentation method—appears to highly impact the over-

all performance. Changes to the employed training regime significantly affect the

classification results and consistently provide better scores than any architecture

alteration. This observation is in line with recent advances made during the Bird-

CLEF challenge and implies that a number of different model architectures perform

equally good when training parameters are chosen carefully.

5.2.7. Benchmark system

During the training of the final benchmark system, the aforementioned techniques,

architectures and topologies were combined to learn representations of nearly 1,000

bird species. According to the experimental results in Table 5.13, scaling factors

of K = 4 and N = 3 appeared to be the best choice for the benchmark model. A

number of training iterations was conducted to estimate the influence of different

amounts of samples on the overall performance. First, the model was trained with

100 samples per class for a few epochs to initialize the network. After that, the

number of samples was steadily increased after convergence. Previously trained

snapshots were used to initialize succeeding trials. Pre-training models allows to

transfer knowledge that has already been learned onto the new task. This scheme

drastically reduces the time needed for training. With each new start of a training

process, the learning rate and dropout probability were reduced but kept constant

across all epochs. In order to counter class imbalances, slight oversampling was

employed. Samples of classes that did not contain enough training spectrograms

were repeatedly added to the dataset until the number of samples reached 10%

of the desired amount. This way, underrepresented classes did gain more weight

during the training but did not benefit overfitting due to excessive repetition of

samples. Three non-event classes were added to the dataset: Human, Non-Bird and
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Noise. To avoid future classification of non-bird sounds and ambient noise, the label

vectors of those two classes only contained zeros. This way, the model was forced

to suppress high class probabilities for non-event samples. Human vocal sounds are

an important dimension for public demonstrators and were thus part of the training

and test data.

With a random selection of max. 3,000 samples per class, the entire training data

(BN1000, see Section 5.2.1) split contained 1,727,234 three-second spectrograms.

The validation data was kept mostly balanced to avoid biased error measures. In

total, the BN1000 validation split contained 87,764 samples (max. 100 per class).

Mono-species recordings were used to evaluate the overall model performance on a

number of unseen audio files. Again, the test data was kept mostly balanced and

contained a total amount of 2,868 recordings (max. three per class). 24 dawn chorus

recordings were used to examine the soundscape performance of each model. For the

sake of better comparability, this portion of the test data remained unchanged.

The effectiveness of a DNN can be estimated by limiting the amount of training

samples. For future applications, it is desirable to avoid the need for extremely high

sample counts per class due to the potential lack of recordings for rare or endangered

species. With 1,000 samples per class (3,000 seconds of audio for three-second

spectrograms), the proposed network design already achieves competitive scores

(see Table 5.20). Adding more samples to the training data slightly improves the

scores but eventually decreases the performance due to significant class imbalances.

The most common bird species are represented by a vast amount of recordings and

high number of annotated vocalizations in the soundscape data—which is therefore

highly biased. Yet, for real-world use cases, the same imbalance will occur when

monitoring avian diversity without the focus on endangered or rare species. Models

trained on imbalanced data hold applicable value due to this circumstance.

Born-again networks do not outperform their teacher models in the mono-species

task but significantly increase the soundscape performance when the confidence

threshold is adjusted (model 4 was chosen due to the highest soundscape scores,

see Table 5.21). Interestingly, ‘soft’ labels appear to increase the ability to grasp

uncertain or faint vocalizations. The born-again student model outperforms all other

networks across almost every metric in the soundscape domain.

Soundscape performance is one of the most important aspects when considering

real-world monitoring scenarios. In fact, the single-model performance has to be
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Table 5.20.: Benchmark experiments for 984 species, 87,764 validation spectrograms,

2,868 mono-species recordings and 24 soundscapes. An increase in train-

ing samples slightly improves the overall performance. A restart of

the training process with more samples and pre-trained model weights

appears to result in different gradient minima and thus occasionally

decreased performance. Born-again networks do not outperform mod-

els trained on binary labels but significantly increase the soundscape

performance (see Table 5.21). All models used moderate oversampling

to counter class imbalances.

BN1000 Val split BN1000 Test split DCSC

ID SAMPLES MAP cMAP MAP cMAP F0.5 AUC

1 1000 0.637 0.596 0.766 0.729 0.319 0.593

2 1500 0.647 0.601 0.769 0.735 0.275 0.601

3 2000 0.655 0.611 0.772 0.739 0.294 0.580

4 2500 0.646 0.600 0.767 0.731 0.314 0.570

5 3000 0.651 0.607 0.771 0.735 0.323 0.582

4** 2500 0.652 0.606 0.765 0.727 0.322 0.553

** trained as born-again network

maximized to avoid costly ensemble strategies. A number of hyperparameters can

be tuned to improve the overall scores for the DCSC dataset. Most prominently,

the confidence threshold applied to distinguish between bird vocalizations and non-

events has to be adjusted to provide objective scoring. The F0.5 measure is the

most important metric for this task and threshold optimization aims at maximizing

this score.

As part of the BirdCLEF 2019 soundscape evaluation campaign, Lasseck (MfN,

Museum für Naturkunde, Berlin) submitted two single-model runs that achieved

state-of-the-art performance on the BC2019 test data2. One of his models was

trained using the validation data provided by the organizers. Considering only

dawn chorus recordings, those two runs achieved a F0.5 score of 0.243 and 0.412

when validation samples were used (see Table 5.21).

2Results are part of the CLEF 2019 working notes collection. At the time of writing, this

collection has not been officially published.
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Table 5.21.: Investigation of single-model soundscape performance. Model 4 pro-

vides the best performance of all models trained on binary targets.

The born-again version of this network significantly improves the scores

across almost every metric. This implies that ‘soft’ labels enable a DNN

to grasp faint or distorted vocalizations.

DCSC

ID CT P R MAP cMAP F0.5 AUC

MfN 1 0.52 0.356 0.148 0.148 0.107 0.243 0.668

MfN 2* 0.43 0.452 0.349 0.354 0.205 0.412 0.646

1 0.08 0.425 0.235 0.234 0.140 0.335 0.634

2 0.05 0.388 0.231 0.230 0.157 0.316 0.657

3 0.07 0.433 0.229 0.231 0.159 0.334 0.612

4 0.06 0.456 0.251 0.252 0.153 0.359 0.611

5 0.07 0.442 0.236 0.236 0.150 0.342 0.623

4** 0.06 0.495 0.272 0.276 0.172 0.389 0.605

ID = Model identifier according to BirdCLEF 2019 submissions and Table 5.20

CT = Best confidence threshold (according to the F0.5 measure)

P = Precision, R = Recall, * used validation data for training

** trained as born-again network

Interestingly, the best performing BirdNET model archives a F0.5 measure of 0.389

and significantly outperforms MfN 1 (which only featured 659 species). However,

using validation data to fine-tune a trained model (MfN 2) drastically improves the

scores. Two explanations for this observation have to be considered: First, the

shift in acoustic domain between mono-species recordings and soundscapes can be

overcome with samples of the expected target domain. Due to the high efforts needed

to collect and annotate this data, this approach appears to be non-optimal. However,

the increase in performance is considerably high and manually labeling soundscape

data might be worth the effort. A second explanation evolves around the assumption

that evaluation campaigns often reward overfitting to the employed metric. In this

case, the provided validation data consisted of three fully annotated days and thus

a very representative portion of the entire dataset (test data consisted of 12 days).

Assuming that the contained vocalizations covered most of the value distribution of

the test data, training with validation samples can be considered training with test
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samples and thus overfitting to the test data. Future investigations have to address

this uncanny increase in performance to determine which of the two explanations is

the most plausible.

Other performance enhancing strategies to increase the overall scores on the sound-

scape data involve the bagging of scores through exponential pooling and the ad-

justment of the sigmoid activation function that converts network outputs into class

probabilities. Again, the experimental focus was on improving the F0.5 measure for

the DCSC data (optimizing other metrics can be done using the same approach and

mostly depends on the target use case). Additionally, the mentioned methods can

be used to influence the behavior during application and help to adjust prediction

probabilities depending on the use case, when the quality of input recordings differs

from training data. Due to this, scores achieved during those experiments are (to

some extend) the result of overfitting to the soundscape data and metrics.

The 2019 BirdCLEF evaluation system requires to predict bird species for 5-second

intervals. With an overlap of one second, the number of analyzed spectrograms per

time interval for current recognition system increases. Additionally, higher temporal

resolution helps to cope with overlapping vocalizations—especially during the dawn

chorus. Thus, a slight increase in performance can be observed (see Table 5.22).

However, overlapping spectrograms and increasing the number of predictions comes

at the cost of increased analysis time. For noncritical use cases, this change might

be worth the additional computational costs.

Suppressing low class probabilities through other than average pooling is also very

effective—especially for faint vocalizations and uncertain predictions. When the

amount of test samples for a specific prediction interval is increased (e.g. by over-

lapping spectrograms), class probabilities p can be effectively pooled with:

pi = (s · yi)2 (5.5)

The adjustable factor s linearly scales the class predictions y for each class i before

squaring the resulting scores and thus emphasizes class probabilities until a certain

threshold. A scaling factor of 2 improves all scores > 0.5, a scaling factor of 8

increases all scores > 0.125. In terms of maximized F0.5 measure, s = 2 performs

best. Higher values for s however significantly improve the cMAP metric.
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Table 5.22.: Investigation of enhanced single-model soundscape performance. De-

pending on the use case, techniques to optimize towards specific metrics

can be applied. Adjusting spectrogram overlap, bagging of scores and

sigmoid activation sensitivity can help to increase the performance for

specific applications. Low AUC scores are due to strict elimination of

false positives below an F0.5-optimal confidence threshold.

DCSC

METHOD P R MAP cMAP F0.5 AUC

MfN 1 0.356 0.148 0.148 0.107 0.243 0.668

MfN 2* 0.452 0.349 0.354 0.205 0.412 0.646

NONE 0.495 0.272 0.276 0.172 0.389 0.605

OVERLAP 0.482 0.29 0.293 0.178 0.395 0.596

EXP POOL 0.490 0.278 0.284 0.210 0.391 0.605

SIGMOID 0.469 0.289 0.292 0.178 0.388 0.629

ALL 0.474 0.294 0.300 0.218 0.394 0.597

P = Precision, R = Recall, * used validation data for training

Pooling (or bagging) of scores to merge multiple predictions into one can also be

very effective when applied to ensembles. Although ensembles of trained networks

often require a vast amount of computational resources, the increase in performance

might be worth considering. Again, due to potential overfitting to the evaluation

metric, this method is particularly popular across all evaluation campaigns.

The sigmoid activation function to convert class activations y into probability scores

p is defined as

pi =
1

1 + exp(−s · yi)
(5.6)

with a scaling factor s of 1.0 in the standard implementation. Lowering this scal-

ing factor leads to higher scores for uncertain class predictions, higher values of s

require higher class activations to produce the same score. Adjusting s is one of the

most convenient strategies to increase recall or prediction according to the desired

application at the time of inference. With s = 1.125, the F0.5 measure is highest
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for the DCSC data. When all of the aforementioned approaches are combined, a

scaling factor of 0.95 performs best.

The combination of all enhancing strategies archives a F0.5 score of 0.394, which

outperforms Lasseck’s approach (MfN 1) by 15.1% and almost reaches the single-

model performance when validation data is used for training (MfN 2). Considering

the uncertain reasons for the drastically improved scores of Lasseck’s second run,

the experimentally derived scores resemble state-of-the-art performance. However,

the F0.5 measure was not the primary metric of the BirdCLEF challenge and the

submitted runs are thus not entirely optimized towards this measure. The margin

in performance is still significant. Especially when considering the higher number

of classes and custom network architecture (Lasseck uses the Inception-v3 model,

[Szegedy et al., 2016]). Ensemble methods for DNN are very popular and typi-

cally lead to slightly improved scores when optimized for campaign-specific metrics

[Lasseck, 2018b], [Schlüter, 2018]. Due to the high costs of processing soundscapes

with model ensembles, this strategy was not further pursued. The established

(single-network) baseline models will be used to investigate more aspects of the

domain of bird sound recognition in Section 5.3.

Mobile benchmark experiments

Deep architectures for mobile applications achieve competitive scores if optimized for

a specific task. When the number of classes is limited, these models perform almost

on par with large, very deep topologies—especially in the soundscape domain (see

Table 5.19). However, increasing the number of classes and thus the complexity of

the input data might lead to drastically reduced scores due to insufficient network

capacity. It might not be the ideal choice to force a mobile net to learn features of a

large amount of classes. When applied to a specific habitat, only a certain number

of bird species is relevant for this location. However, for the sake of comparabil-

ity, all 984 species and three non-event classes were part of the mobile benchmark

experiments.

The validation and test data remained unchanged compared to previous trials, dawn

chorus soundscapes were used to evaluate real-world performance. The training

regime also remained unaltered to provide fair conditions for all trials. During

the experiments, the number of training samples was steadily increased, pre-trained

models were used to initialize each new run. Again, dropout probability and learning
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Table 5.23.: Benchmark experiments for mobile architectures. An increase in train-

ing samples leads to higher class imbalance but improves the scores

until a certain threshold. A split size of 2,500 training samples appears

to perform best. Mobile models perform significantly worse than large

topologies. Considering the computational constraints, the results are

still competitive. Knowledge distillation helps to improve the sound-

scape performance and can be considered a valuable addition to the

overall training procedure.

BN1000 Val split BN1000 Test split DCSC

ID SAMPLES MAP cMAP MAP cMAP F0.5 AUC

1 1000 0.575 0.482 0.690 0.619 0.271 0.673

2 1500 0.573 0.485 0.690 0.630 0.285 0.644

3 2000 0.581 0.493 0.695 0.632 0.268 0.654

4 2500 0.584 0.498 0.697 0.631 0.283 0.664

5 3000 0.582 0.497 0.694 0.638 0.265 0.656

6 1000* 0.574 0.489 0.699 0.634 0.325 0.652

7 2500* 0.574 0.492 0.700 0.638 0.330 0.625

* trained with knowledge distillation

rate were reduced with each start of a new training process and kept constant across

all epochs.

The experimental results mostly reflect the outcome of previous trials: Increasing

the number of samples does increase the overall scores until a certain threshold

(Table 5.23). A training split size of 2,500 samples per class appears to perform

best. Yet, the margin between scores of the two benchmark models (non-mobile vs.

mobile) is significant. The amount of classes in the benchmark trial clearly demon-

strated that mobile networks suffer greatly when computational constraints apply.

Reducing the input data complexity based on local environmental characteristics is

recommended.

Knowledge distillation supposedly helps to increase the overall performance despite

the lack of network capacity. Similar to training a born-again network, knowledge

distillation (or model distillation) uses the predictions of a teacher model to present

targets for training of a student network. These ‘soft’ targets resemble the un-
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Table 5.24.: Investigation of single-model soundscape performance for mobile ar-

chitectures. Again, more training samples do not necessarily lead to

better scores. Knowledge distillation along overlap, pooling and sig-

moid variations provide significantly improved performance. The best

single mobile model outperforms MfN1 by a significant margin despite

its limited computational footprint.

DCSC

ID CT P R MAP cMAP F0.5 AUC

MfN 1 0.52 0.356 0.148 0.148 0.107 0.243 0.668

MfN 2* 0.43 0.452 0.349 0.354 0.205 0.412 0.646

1 0.10 0.395 0.17 0.168 0.108 0.274 0.685

2 0.08 0.379 0.197 0.193 0.117 0.290 0.676

3 0.09 0.351 0.195 0.189 0.116 0.277 0.689

4 0.12 0.379 0.197 0.193 0.116 0.290 0.674

5 0.09 0.366 0.195 0.188 0.119 0.283 0.679

6 0.14 0.453 0.209 0.208 0.109 0.326 0.657

7 0.11 0.472 0.217 0.225 0.118 0.339 0.652

7** 012 0.461 0.227 0.225 0.135 0.344 0.625

ID = Model identifier according to BirdCLEF 2019 submissions and Table 5.23

CT = Best confidence threshold (according to the F0.5 measure)

P = Precision, R = Recall, * used validation data for training

** used overlap, pooling and sigmoid variation at test time

certainty of predictions with low confidence—which is especially important when

weak labels lead to ‘empty’ samples. The employed teacher model in this series of

experiments was derived from the best performing single model of previous trials.

Based on the results in Table 5.21, model 4 was selected. The resulting scores of

this training process show that knowledge distillation does not boost the scores for

clean samples of mono-species recordings. However, the soundscape performance

drastically improves through training with uncertain predictions. It appears that

this domain profits from a networks ability to cope with distorted samples—which

is learned by imitating the teacher model.
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Soundscape performance of mobile networks increases even further when the afore-

mentioned post-prediction techniques are applied (see Table 5.24). Training with

more samples does not automatically lead to better scores—which is consistent

with previous observations and backs the assumption that the employed training

regime is very effective even for limited amounts of samples per class. Again, post-

processing of predictions through bagging of scores, increased sensitivity due to

adjusted sigmoid activation and overlapping predictions improve the F.05 measure

to 0.344. This score is substantially worse when compared to large models but still

outperforms Lasseck’s approach by 10.1%—an impressive margin considering the

small computational footprint of this network design. Ensembles of models might

improve the overall performance but are omitted in this investigation due to the

lack of real-world applicability.

In conclusion, the proposed DNN designs provide state-of-the-art performance, even

when the amount of training samples is limited. The employed training regime

appears to be very effective and—along with task-specific optimizations—leads to

unprecedented scores in the soundscape domain. Knowledge distillation is a valuable

addition to train born-again networks and mobile architectures that lack capacity.

Training samples that originate from the target domain might increase the perfor-

mance even further and could be worth the labor intensive annotation of soundscape

data.

5.3. Results

With the two best performing models established, the final experiments included

the entire BirdNET 1000 test data and all 2019 BirdCLEF soundscapes from North

America. In total, the test data contained 22,960 mono-species recordings and 286

soundscapes (covering 12 days). In both trials, BirdNET achieves top performance

considering previous attempts of BirdCLEF participants (see Tables 5.25 and 3.1).

Across all samples, the mean average precision is 0.791 with an AUC of 0.974. These

scores are slightly better than during previous investigations due to the increased

class imbalance. The class-wise mean average precision provides a more balanced

performance estimation but still indicates good overall classification quality.
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Table 5.25.: Final mono-species results for the best single models. The final

test dataset contained more than 20,000 recordings with weak labels.

BirdNET achieves state-of-the-art performance on an unprecedented

amount of samples including background species. Scores of the mobile

version drop considerably but are still very competitive.

BN1000

MODEL TOP-1 ACC MAP cMAP AUC

BirdNET 0.777 0.791 0.694 0.974

BirdNET Pi 0.699 0.728 0.580 0.969

ACC = Accuracy

Due to weakly labeled samples and incomplete notation of background species, the

real-world performance is very likely to be better than the scores indicate. The lack

of a ‘gold standard’ prevents a fully objective result estimation. Yet, considering the

high number of classes, vast intra-class heterogeneity and diverse test recordings, the

current recognition quality is most likely applicable for a variety of use cases in avian

activity monitoring. Although mono-species results are not entirely comparable

(BirdCLEF 2018 featured more classes but manually curated data; top scores were

achieved by ensembles), we can conclude that deep neural networks are able to

extract high quality features from extremely complex input data to recognize birds

in field recordings.

Soundscapes are of particular interest and the transfer of knowledge derived from

high quality recordings to noisy soundscape data appears to be a very practical

approach when manual interference is not desirable. Despite the shift in acoustic

domains, BirdNET achieves strong results with a final F0.5-measure of 0.414 (Ta-

ble 5.26). Again, mobile performance drops considerably but remains applicable—

especially when considering the possibility of real-time processing. The best single

model outperforms Lasseck’s approach MfN 1 by 15.4% and is almost on par with

MfN 2 that used validation samples for training. Additionally, the best mobile model

outperforms MfN 1 by 9.1% despite significantly more classes and cost-efficient ar-

chitecture.
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Table 5.26.: Final soundscape results for the best single models. The overall per-

formance of all models slightly increases on the entire 2019 BirdCLEF

Soundscape test data. BirdNET significantly outperforms MfN1 and is

on par with MfN 2 without the use of validation samples.

BC2019

MODEL CT P R MAP cMAP F0.5 AUC

MfN 1 0.52 0.335 0.180 0.186 0.135 0.260 0.645

MfN 2* 0.44 0.451 0.360 0.371 0.228 0.416 0.627

BirdNET 0.04 0.449 0.358 0.359 0.228 0.414 0.584

BirdNET Pi 0.12 0.419 0.265 0.262 0.139 0.351 0.637

CT = Best confidence threshold (according to the F0.5 measure)

P = Precision, R = Recall, * used validation data for training

Some interesting questions concerning the overall classification performance arise

form the investigation of the benchmark scores:

• To which extend is the overall performance affected by low signal quality in

training recordings?

• How do weak and noisy labels affect the achieved scores?

• If at all, how does species diversity affect the overall performance?

• How well does the model perform for extremely diverse species?

Finding the answers to these questions would need a ‘gold standard’ of correctly

labeled recordings for every species in the dataset. Due to the lack of timestamps,

the available validation data often contains false labels, non-events and prominent

background species. However, we have to cope with these circumstances and it is

assumed that all validation samples have a correct label for the following investi-

gation. The entire validation dataset contains 208,610 spectrograms and spans 985

classes (all bird species + human vocal sounds). An extensive listing of class-specific

results can be found in Appendix D.

In total, only 15 species were classified with an AUC score below 0.7, only 34 with

an AUC score below 0.8. Considering the vast amount of classes, this result is very

promising and demonstrates the effectiveness of the proposed system. The AUC

168



5.3. Results

(a) Number of training samples

(b) Mean signal quality

Figure 5.7.: Factors that impact the overall performance. Class-wise average preci-

sion (red, smoothed with moving average) consistently improves with

the number of available training samples (a). Signal quality of training

samples (b) drastically decreases the classification performance until a

threshold of 0.4 (noise measure based on morphological features, see

Figure 4.1).

measure can be seen as a very effective assessment of intra-class detection quality

and implies that very certain predictions mostly contain the correct event. When

ranking the validation samples based on class scores, the average precision of each

class provides another good look at the classification quality for each individual

class. In this domain, only 58 species show an average precision below 0.3, only 184

species are classified with an average precision below 0.5—above this threshold, the

results can be considered real-world applicable. Interestingly, the worst performing

species contain Owls, Doves, Sparrows, Sandpiper, Finches and others—a diverse

mix of genera but no species that can be considered widely spread or very common.

Yet, this also applies for the top-performing classes, raising the question whether

genus and abundance are signifiers for classification quality.
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After close investigation, two main factors appear to impact the overall detection

performance most: The number of available training samples and the signal quality

among those samples (see Figure 5.7). The class-wise average precision is strongly

affected when the number of available training samples is below 750. This implies

two major drawbacks of the presented approach: First, deep neural networks are

data hungry and require many samples to train a classifier from scratch. Secondly,

rare species that feature only a few recordings on Xeno-canto or in the Macaulay

Library might not be reliably detectable due to this circumstance. Additionally,

the average precision is affected when the recording quality is low. Based on the

proposed signal-to-noise measure (that uses morphological features to determine the

signal strength), an average signal quality below 0.4 significantly impacts the class-

wise performance. For those classes, manual selection of training samples might help

to improve the scores while maintaining a high level of automation.

Still, the quality of the training data alone does not suffice to predict how well a

certain species can be detected by the proposed system. Another important dimen-

sion is species diversity—mostly in terms of repertoire size (see Table 5.27). The

examination of class-specific results for selected species often leads to a somewhat

ambivalent picture: The Ovenbird (Seiurus aurocapilla), as a rather simple species,

has poor training data quality and overall poor classification performance. Yet, the

Hermit Thrush (Catharus guttatus)—another fairly simple species—has also poor

quality training data but performs best among all investigated species. Species

that are known to incorporate hetero-specific material into their vocalizations like

the European Starling (Sturnus vulgaris) and Northern Mockingbird (Mimus poly-

glottos) imply that imitation is a significant challenge for automated recognition

systems. Both classes show poor performance independent of training data quality.

For extremely diverse species with vast repertoires, confusion with other species

might affect the scores more than any other dimension. When good quality train-

ing data is available, repertoire size does not affect the classification scores—the

model achieves high scores for Common Nightingale (Luscinia megarhynchos) and

Brown Thrasher (Toxostoma rufum). However, the Song Thrush (Turdus philome-

los) probably suffers from confusion with the Eurasian Blackbird (Turdus merula),

which also can be observed when analyzing soundscape data. Species diversity with

a (supposedly) high number of false labels might amplify this effect.
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Table 5.27.: Correlation between species diversity, sample count, signal quality, and

overall scores. Repertoire size alone is no conclusive indication for recog-

nition quality. Noisy training data affects the overall performance and

mostly leads to decreased performance for any species diversity. Birds

that imitate (European Starling, Northern Mockingbird) show unsatis-

factory performance despite good quality training data.

BN1000 Training and validation data

SPECIES RS TS SQ AP F0.5

Ovenbird 1 2326 0.580 0.503 0.519

White-crowned Sparrow 1 3059 0.519 0.633 0.644

Common Chaffinch 1-6 3360 0.651 0.580 0.604

Great Tit 2-8 3769 0.554 0.611 0.554

Hermit Thrush 6-12 3071 0.520 0.875 0.866

Song Sparrow 7-11 3176 0.593 0.542 0.599

European Starling 15-70 3934 0.707 0.509 0.426

Marsh Wren 33-162 3288 0.727 0.790 0.740

Northern Mockingbird 53-150 3833 0.609 0.443 0.352

Common Nightingale 160-231 4241 0.785 0.745 0.737

Song Thrush 138-219 3816 0.751 0.541 0.425

Brown Thrasher 1500+ 3508 0.726 0.764 0.706

RS = Repertoire size, TS = Training samples, SQ = Mean signal quality

AP = Average precision, F0.5 = Maximum F0.5 through optimized confidence

Local dialects play a significant role in bird song recognition and repertoire size is

only one dimension of species diversity. One core aspect of song variation through

dialects is the permutation of re-occurring elements (see Section 2.2.4). Additionally,

song complexity plays an important roll as well. Two-voiced sounds or fast sequences

of trill notes, frequency range and similarity between species have to be considered.

We already know that species identity is encoded in bird songs (and calls). Statisti-

cally speaking, features that can be used to identify a certain species should occur

in every vocalization. Deep neural networks heavily rely on those features and are

very good in identifying and utilizing re-occurring patterns in avian vocalizations

to recognize species. However, deep neural networks are known to be extremely

difficult to interpret and are said to be ‘black boxes’.
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Of all approaches to shed light on the decision-making of DNN, class activation maps

(CAM) appear to be the most conclusive when trying to identify the most important

parts of a bird vocalization. Other visualization methods like guided backpropaga-

tion ([Springenberg et al., 2014]) or deconvolution ([Zeiler and Fergus, 2014]) yield

high resolution outputs but are not class-discriminative.

First proposed in [Zhou et al., 2016], CAM highlight the most important parts

of an image in terms of class-specific scores. CAM can be derived by weighting

convolutional layer activations (as proposed by Zhou et al.), weighted gradients

([Selvaraju et al., 2017]) or simply by occluding certain parts of the input image

and observing the scores (occlusion mapping, [Zeiler and Fergus, 2014])—which is

independent of the network architecture but still very discriminative.

When occluding the input spectrogram, a sliding window successively occludes every

part of the image. In the occluded area, all values are set to zero. Despite the fact

that this might introduce an unwanted bias that might force the net to react unpre-

dictably (similar to adversarial inputs, [Szegedy et al., 2013], [Kurakin et al., 2016]),

zero values are common artifacts in the training data due to pre-processed record-

ings. The proposed model appears to be able to cope with such impairments. How-

ever, whenever an important region is occluded, the class score of the primary species

should drop. Lower scores after occlusion imply high importance for the particular

region. Figures 5.8 to 5.15 provide insights into the most important parts of bird

vocalizations for selected species that were identified with high confidence.

Although the depicted activation maps might not reveal how birds encode species

identity, they imply that certain parts of every bird vocalization are of high sig-

nificance to be identifiable by the proposed recognition system. Most notably,

redundant elements (as in trills) compensate information loss (e.g. Red-winged

Blackbird and Wood Thrush), re-occurring elements suffice for species identification

(e.g. Common Chaffinch and White-crowned Sparrow), and gaps between notes and

the duration of single elements help to identify similar sounding species (e.g. Black-

capped Chickadee and Tufted Titmouse). Sometimes, only a small frequency band

or portion of a vocalization encode species identity (e.g. Blue Jay and Common

Buzzard).
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(a) c = 0.98

(b) c = 0.95

(c) c = 0.95

(d) c = 0.88

(e) c = 0.88

Figure 5.8.: Class activation maps of Red-winged Blackbird (Agelaius phoeniceus)

vocalizations with confidence c. Introductory notes are consistently

more important for species identification than the characteristic trill

that appears to provide enough redundancy to compensate information

loss. ( 24)
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.99

(d) c = 0.99

(e) c = 0.99

Figure 5.9.: Class activation maps of Wood Thrush (Hylocichla mustelina) vocal-

izations with confidence c. This species is one of the most prominent

examples for two-voiced sounds with its characteristic trills at the end

of each song. Despite this re-occurring pattern, introductory notes con-

sistently lead to higher class activation. ( 25)
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.99

(d) c = 0.99

(e) c = 0.98

Figure 5.10.: Class activation maps of Tufted Titmouse (Baeolophus bicolor) vocal-

izations with confidence c. The gap between two consecutive tones

appears to be the discriminating feature for species identification. The

introductory note alone does not suffice to distinguish the Tufted Tit-

mouse from other species like the Black-capped Chickadee (Poecile

atricapillus) that utter similar tonal sequences. ( 26) 175
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.98

(d) c = 0.91

(e) c = 0.89

Figure 5.11.: Class activation maps of Black-capped Chickadee (Poecile atricapillus)

vocalizations with confidence c. Although the species-specific vocal-

izations are similar to some variations of the Tufted Titmouse song

(see Figure 5.10), class activations show a distinct focus on the first

note while the gap between notes does not appear to be important for

species identification. ( 27)176
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.99

(d) c = 0.99

(e) c = 0.83

Figure 5.12.: Class activation maps of White-crowned Sparrow (Zonotrichia leu-

cophrys) vocalizations with confidence c. Although an individual in

the field only utters a single song, permutations of song elements lead

to a vast number of regional dialects. Re-occurring elements are key

to identify this species. Other elements appear to contain redundant

or insufficient information for identification. ( 28) 177
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.99

(d) c = 0.98

(e) c = 0.98

Figure 5.13.: Class activation maps of Common Chaffinch (Fringilla coelebs) vocal-

izations with confidence c. Again, re-occurring elements are key for

identification. Despite distinct regional dialects between populations

of this species, common patterns in song lead to high class activation

independent of their location in the song sequence. ( 29)
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.99

(d) c = 0.99

(e) c = 0.99

Figure 5.14.: Class activation maps of Blue Jay (Cyanocitta cristata) vocalizations

with confidence c. The nasal ‘jeer’ of this species is characteristic and

commonly heard. Only a single frequency band appears to encode

species identity and thus leads to significant drops in confidence when

occluded. ( 30)
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(a) c = 0.99

(b) c = 0.99

(c) c = 0.99

(d) c = 0.97

(e) c = 0.88

Figure 5.15.: Class activation maps of Common Buzzard (Buteo buteo) vocalizations

with confidence c. The nasal upslur at the beginning of each vocal-

ization appears to be the most discriminating feature. Other parts

of the utterance contain redundant information that does not lead to

increased class activation. ( 31)
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5.4. Summary

The design of the experimental studies in this chapter evolved around the ability

of DNN to generalize on unseen samples despite a high number of classes with

significant intra-class heterogeneity. A number of hypothesis were tested on an

unprecedented amount of training, validation, and test data that consisted of more

than 3,900 hours of field recordings covering 987 classes and almost 300 hours of

fully annotated soundscapes containing almost 80,000 vocalizations. Considering

constraints of real-world applications, two main DNN designs were tested: A Wide

ResNet architecture with elaborate residual blocks for powerful workstations as well

as a simplified ResNet variation following the original design for mobile platforms

like the Raspberry Pi.

The investigation focused on spectrogram computation, architecture design, deep

and shallow topologies, implicit and explicit regularization, cost-sensitive learning,

and model efficiency when computational resources are limited. All formulated

hypotheses were confirmed or partially confirmed; the most notable results imply

that

• Spectrograms that visualize longer chunks of audio contain more valuable in-

formation and thus result in better classification performance.

• High temporal resolution of input spectrograms (short frame length) improves

the classification performance.

• Multi-label classification with mixup training increases the overall performance

across all tasks.

• Deeper topologies (more layers) do not necessarily perform better than wider

topologies (more filters).

• Deeper topologies do outperform shallow layouts when computational resources

are limited.

• Except for oversampling, cost-sensitive learning does not improve the overall

scores.

The resulting benchmark system yields state-of-the-art scores across all domains, es-

pecially when compared to the scores achieved during the 2019 BirdCLEF challenge.

With an increase of 15.4% over the best single model that did not use validation
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samples for training, the proposed training regime and DNN design appear to be

competitive considering the difficulty of the task. The benchmark system also re-

vealed that

• Deep neural networks are data hungry and require large numbers of training

data (in this particular case up to 750 per class).

• Signal quality of training samples significantly affects the overall classification

quality.

• Task-specific designs and training regimes outperform standard architectures

from other campaigns.

The investigation of species-specific scores revealed that number and quality of train-

ing samples significantly impact the classification results. Additionally, species di-

versity plays an important role, especially for species that incorporate heterospecific

material into their vocalizations or those that are likely to be confused with sim-

ilar classes. For species identification, re-occurring elements and patterns provide

important clues to recognize vocalizations despite very distinct regional dialects.
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Applications are an important corner stone of scientific communication with the

public. Optimizing the behavior of the developed system for each application helps

to establish strategies to cope with unforeseen constraints of real-world data. Due

to its modular nature, BirdNET assembles different processing chains for each ap-

plication. Each of those chains consists of task-specific basic components. The

highly-automated model export and import allow to rapidly develop new application

scenarios for real-time analysis, autonomous recording stations, and mobile apps. I

will present four of them in this chapter.

6.1. Live stream analysis

The BirdNET web demo for live stream audio data was one of the first applications

to ever employ the automated recognition system1. The initial version was released

1https://birdnet.cornell.edu/live/

183



6. Applications

Figure 6.1.: Live stream demo screenshot. The client visualizes the audio stream

as spectrogram and places markers to indicate estimated timestamps of

bird vocalizations. The bar chart contains species probabilities for the

prediction interval, the species counter displays the number of detections

of the last 60 minutes.

as early as November 2017 and immediately sparked the interest of bird enthusiasts

and researchers alike. Intended for large screens, the demo was part of numerous

presentations of the technology. It helped to analyze changes to the underlying

system for real-world applications—especially over the course of changing seasons.

Located in Ithaca, NY, USA, the weatherproof microphone used for this demo con-

tinuously records ambient sound with high sensitivity (and thus high range). Next to

the microphone sits the bird feeding station used for the ‘Cornell Lab FeederWatch

Cam at Sapsucker Woods’ 2. As a consequence, bird vocalizations are often the

result of social interaction between individuals visiting the feeder. Additionally, a

large water body that is home to a vast number of aquatic birds, is also in hearing

range.

2https://youtu.be/5x01AdCuLnk
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The species diversity of the stream, its high number of audible social calls, and

especially its high recording range render the stream a particular challenging sound

source. For the analysis, the input audio signal is buffered and read after each second

to run the analysis with high resolution (in this case: three-second spectrograms

with two-second overlap). Predictions are made for a total of five seconds, scores are

bagged through exponential pooling. Since the analysis of the stream is independent

from any visualization, the analysis server stores the current result vector filled with

species probabilities on hard drive.

Online access to the data is provided through the BirdNET web API. The client (in

most cases a web browser) renders the live stream data and visualizes the signal as

continuous spectrogram (see Figure 6.1). Every 700 ms, the client requests the cur-

rent analysis data and also plots charts and label markers. Those markers represent

estimates of the location of every detected vocalization in the stream’s spectrogram.

Due to the independence of both stream-accessing methods, markers might show

a slight drift compared to the actual vocalization. In addition to the probability

visualization of each detection interval, a list of species that were detected over the

course of the last 60 minutes is shown.

6.1.1. Abundance and vocal activity

This list demonstrates one of the central use cases of any stream analysis: Diversity

estimation and avian (vocal) activity. Some soundscapes recorded by the streaming

microphone are extremely complex and often lead to missed vocalizations. However,

species diversity estimation does not require the system to detect every single vocal-

ization. The most important measure is species presence—which can be estimated

through accumulated detections. On top of that, avian vocal activity provides an

interesting perspective on avian social behavior and abundance. Investigating anal-

ysis data from live stream audio over the course of an entire year reveals insights

into how environmental factors like season, weather, and—most notably—migration

might impact the vocal behavior of birds.

Figure 6.2 visualizes one of the most apparent aspects of avian vocal activity esti-

mation: The correlation between abundance and vocal activity. Analysis results of

365 days of monitoring data reveal that the vocal activity of some species highly

correlates with the abundance reported by bird watchers (through eBird checklists).
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This applies for both, migratory and stationary species. The measured vocal activity

highly depends on environmental factors and monitoring location.

Placed near a bird feeder, the live stream microphone records vocal interaction of

bird species and their rivalries. This is apparent for one of the most abundant species

of Eastern North America: The Black-capped Chickadee (Poecile atricapillus) that

appears to be extremely vocal during the winter feeding season. To some extent, this

seems plausible. Black-capped Chickadees are known to encode information about

predators, territorial males or alarming situations with a varying number of dee

notes in their calls—a behavior that is apparently often provoked around bird feeders

between November and February. Due to that, observed and measured activity often

diverge notably. As another example of weak correlation between abundance and

vocal activity, the Great Crested Flycatcher (Myiarchus crinitus) appears to vocalize

mostly during breading season and remains mostly silent otherwise. Despite the fact

that this species has an estimated presence between April and September, detections

in the live stream data occur only between May and June. It remains questionable

whether this behavior is entirely linked to breeding, but the observation suggests

notable effects of mating and hatching on the overall vocal activity. Other species

like the Red-winged Blackbird (Agelaius phoeniceus) or the Yellow-rumped Warbler

(Setophaga coronata) show much less difference between observed abundance and

recorded vocal activity.

6.1.2. Temperature and vocal activity

The high sensitivity and thus high range of the live stream microphone allows to in-

vestigate even more aspects of avian vocal behavior. Birds are known to adjust their

vocal activity based on weather conditions [Robbins, 1981]. Low temperatures often

lead to reduced activity [Garson and Hunter JR, 1979], [Hasan and Badri, 2016].

Despite the bias of a nearby bird feeder, this effect is observable with significant

correlation in the live stream data, especially for months from October to March,

when the effects of migration are minimal (see Figure 6.3).
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(a) Year-round, strong correlation

(b) Year-round, weak correlation

(c) Migratory, strong correlation

(d) Migratory, weak correlation

Figure 6.2.: Normalized relative vocal activity (blue bars) and normalized eBird

checklist frequency (dashed line). The results of one year of live stream

analysis show interesting vocal activity patterns when compared to the

observed abundance. See Appendix A for more charts.
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Figure 6.3.: Normalized relative vocal activity (blue bars) and average temperature

in ◦F (red line). Avian vocal activity often strongly correlates (c, esti-

mated with Pearson’s r) with daily temperature variations.

Although the analysis data of live stream audio might contain false positive detec-

tions and a strong bias towards species that regularly visit bird feeders, automatically

detected vocalizations indicate behavioral patterns that cannot easily be observed

manually. Despite its primary use for presentation purposes, the live stream demo

allows to investigate avian vocal activity in continuous audio streams. In the future,

this application might help ornithologists to discover behavioral patterns linked to

the social functions of bird vocalizations. Without any manual interference, we are

now able to proof basic concepts of avian ecology and vocal behavior. Building

on that, spatio-temporal patterns might emerge when investigating the results of

multiple recording stations.
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6.2. SWIFT soundscape analysis

The assessment of avian activity using point count surveys is an important aspect of

avian ecology (see Section 2.3.2). Autonomous recording units are widely used but

often require labor intensive, manual analysis, which renders this approach mostly

unfeasible for long-term monitoring scenarios. BirdNET allows to quickly process

large amounts of audio data to extract bird vocalizations. Since the survey scenario

in avian ecology does not require to detect every single bird sound, the current

detection rates are applicable (despite relatively low recall). Still, maintaining a

larger number of recording stations requires on-site maintenance to swap batteries

of SD cards. Reducing the number of recording units is less labor intensive but still

provides insights into aspects of avian activity, especially the assessment diversity.

6.2.1. AMTiC

In 2019, SWIFT recording units were installed at the Tierpark Chemnitz (the local

zoo) to estimate the number of free ranging bird species that occur in some of

the many different (micro-) habitats (AMTiC - Acoustic Monitoring at Tierpark

Chemnitz). Two primary locations were selected: First, a densely overgrown area

surrounded by shrubs, large trees, and native hoofed animal enclosures (A1). Sec-

ondly, a location next to a shallow creek and pond, which are mainly inhabited by

(captive) native aquatic birds but also attract a number of songbirds that prefer

small water bodies (A2). Both locations often show very different avian profiles

due to the distinct habitats they represent (see Figure 6.4 and Appendix B). Other

recording locations focused on captive, tropical birds and are thus omitted here.

The results imply that the choice of location is crucial and generates a significant

bias in species diversity estimation. During this monitoring scenario, the Common

Chiffchaff (Phylloscopus collybita) has high detection rates at site A1 and is almost

non-present at site A2 when analysing the audio recordings collected between April

26th and May 15th—three weeks of high avian activity in Central Europe. It appears

likely that individuals at site A1 used the dense vegetation to establish a nest and

breed, which significantly influences the amount of registered vocalizations. At site

A2, a flock of House Sparrows (Passer domesticus) used the nearby maintenance

buildings to feed on seeds, fruits, and grass prepared for other animals—a behavior

that is typically displayed in zoos.
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(a) Common Chiffchaff A1 (b) Common Chiffchaff A2

(c) House Sparrow A1 (d) House Sparrow A2

(e) Eurasian Blue Tit A1 (f) Eurasian Blue Tit A2

Figure 6.4.: Vocal activity of selected species recorded in Chemnitz. Recording sta-

tion AMTiC 1 (A1) was surrounded by dense vegetation, AMTiC 2 (A2)

was next to a shallow creek and pond.

190



6.2. SWIFT soundscape analysis

Other species—like the Eurasian Blue Tit (Cyanistes caeruleus)—are equally present

in the recordings of both monitoring stations and thus provide a more objective

picture of vocal behavior over time. Most notably, Blue Tits appear to limit their

vocal output with the end of April and are only rarely detected after that. The

reasons for this observation might be natural (e.g. reduced mating and breeding

activity) or technical when other species with high vocal activity mask the Blue

Tits songs and calls. Increasing the number of recordings stations might help to

investigate this aspect of avian behavior more closely.

Comparing the detected vocal activity across multiple SWIFT recorders also reveals

falsely detected species (see Figure 6.5). Depending on the monitoring location and

the presence of nearby noise sources, BirdNET tends to consistently detect certain

species that are not present. The patterns that occur in data plots over a selected

period of time often show continuous detections with no clear distinction between

day and night and a relatively low detection rate in general. Birds that vocalize

in a lower frequency range (e.g. Owls and Doves) are often prone to produce false

positives. During the AMTiC project, the Eurasian Eagle-Owl (Bubo bubo) and

Tawny Owl (Strix aluco) were detected due to the noise of distant vehicles that

emitted sounds similar to those of Owls with their tires ( 32). Although it can

not be excluded that these species were present during the observed time, the results

are most likely not applicable for further investigation.

Additionally, a group of captive Greater flamingos (Phoenicopterus roseus) appeared

to be very vocal and audible in both recorders, which led to false positives of the

Whooper Swan (Cygnus cygnus). Flamingos are not represented in the current

version of BirdNET since they mostly occur in captivity. The confusion of native

and non-native species has to be considered when analyzing monitoring data and

still requires a fair amount of manual interference and post-processing to eliminate

unwanted false positives. However, false detection rates are surprisingly low and the

results contain valuable insights into the avian activity of certain habitats.

Additionally, a number of temporal patterns emerge when analyzing the detection

results. This includes clearly visibly daily cycles of activity between dawn and

dusk, as well as changes in vocal output over the course of several weeks and—most

importantly—breeding season and migration. A single recording unit suffices and

already displays distinct activity patterns for most species.
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(a) Eurasian Eagle-Owl A1 (b) Eurasian Eagle-Owl A2

(c) Tawny Owl A1 (d) Tawny Owl A2

(e) Whooper Swan A1 (f) Whooper Swan A2

Figure 6.5.: Examples for common false detections in soundscape data. Most preda-

tors and some aquatic birds are falsely detected when triggered by am-

bient noise or unknown bird species.
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6.2.2. SWAMP

Activity patterns are usually amplified when multiple tens of SWIFT recorders form

an array to closely monitor an area through point count surveys. Since 2017, the

Sapsucker Woods Bird Sanctuary in Ithaca, NY, USA is object of acoustic investi-

gation to assess changes in species abundance over a long period of time (SWAMP

- Sapsucker Woods Acoustic Monitoring Project, see Figure 6.6).

Figure 6.6.: SWAMP recording sites. An array consisting of 30 SWIFT recorders

continuously monitors an area that approximately spans 0.6 x 0.9 mi

(900 x 1,500 m) and generates more than 100 GB of audio data per day.

Maps generated with Leaflet and OpenStreetMap tiles.

Depending on the use case, soundscape analysis of recorded audio reveals spatio-

temporal patterns that are almost impossible to achieve without automated analysis.

Some of the most interesting aspects of vocal behavior are changes in the vocal

output over the course of a day. Due to different habitat structures, the vocal

output at different recording sites is likely to vary significantly. The analysis of

soundscapes recorded with the SWAMP array in May 2017 reveals exactly this:

Species abundance and vocal activity differ depending on location and time of the

day, which is visible in a number of consecutive heat maps representing the total

amount of hourly detections for every recording unit (Figures 6.7 and 6.8).
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Figure 6.7.: Spatio-temporal patterns of hours 1 to 15.
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Figure 6.8.: Spatio-temporal patterns of hours 16 to 24. Avian vocal activity in-

creases until 4 a.m., peaks between 6 a.m. and 10 a.m., and decreases

until 9 p.m. with only minor activity during the night. Average across

the month of May 2017, all times in EDT (UTC-4).

Although this insight is not completely new, the resolution and scale at which these

results can be derived is unprecedented. Over the course of a day in May, the

(normalized) average hourly vocal activity is greatest at the recording locations 1-

20. Despite the nearby highway, avian activity in the Sapsucker Woods appears to

be more dependent on (micro-) habitat composition.

Stand-out recording locations include unit 4, 11, 15, and 30 that are located near wa-

ter bodies with high numbers of aquatic birds (mostly Mallards and Canada Geese),

as well as unit 19 with high Blue Jay activity. SWIFT units 21, 23, 24, 26, and 27

recorded visibly less vocalizations—probably due to the fact that this area spans a
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(a) Black-capped Chickadee (b) Wood Thrush

(c) Canada Goose (d) Great Crested Flycatcher

Figure 6.9.: Spatial maps of normalized absolute species abundance in May 2017.

Most species only occur at specific locations throughout the Sapsucker

Woods area. Some recorders do not pick up a single vocalization of

a particular species—which implies that habitat preferences limit the

range even within a relatively small observed area. For more maps see

Appendix C.

net of trails that are regularly used by birdwatchers. Yet, these patterns indicate

a correlation between species abundance and environmental factors, but they do

not necessarily imply the specific causality of changes in vocal behavior. We can

only assume that the presence of humans and their structures are avoided by some

species. Dense vegetation often offers more breeding locations and better protection
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against predators and is therefore favoured by many species—a circumstance that

is also visible in the observational data.

Specific habitat characteristics and species-specific preferences become even more

apparent when investigating spatial maps of species distribution within the Sap-

sucker Woods area (see Figure 6.9). These maps are generated by accumulating

every detection for each species at each site. The resulting maps indicate the nor-

malized vocal activity in May 2017 and often show a very limited range despite

the relatively small observed area. Black-capped Chickadees appear to prefer re-

mote forests covered by site 1-18, the Great Crested Flycatcher also occurs East of

Sapsucker Woods Road (site 25), the Wood Thrush prominently occurs alongside

the Wilson Trail (site 27), and Canada Geese (unsurprisingly) prefer larger water

bodies (site 15). Again, the analysis data implies a correlation between habitat and

vocal activity. It does not necessarily indicate species abundance and it allows only

limited reasoning about causalities. However, an increased number of monitoring

stations allows to derive spatio-temporal patterns that gain more details with every

additional recorder.

6.3. Smartphone app

Mobile applications for avian activity monitoring can be a transformative tool to

assess species diversity on a global scale over a long period of time. From a scien-

tific point of view, public involvement to gain vast amounts of observational data

can provide otherwise unattainable perspectives and insights into some of the most

complex avian behavioral patterns. The success of eBird with millions of submitted

checklists and observations, sound snippets, and photos supports this assumption.

Additionally, public participation and scientific communication could open the do-

main of machine learning to a completely new audience. Bird watchers, citizen

scientists, and an interested public are likely to adapt new technologies that ad-

dress environmental issues. Smart devices that run mobile applications are widely

spread and often provide an advanced technology platform that is well-suited for

this purpose.
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6.3.1. Scope

The BirdNET smartphone app is primarily intended to serve as a learning tool. It

targets bird watchers and beginners alike but mainly focuses on providing knowledge

about local bird species. With the combination of sound visualization, interpretabil-

ity, and added details about birds from various knowledge bases, the BirdNET app

intends to teach the process of birding by ear. Yet, it does not contain any tutorials

and specific insights into the vast diversity of bird vocalizations. Learning to identify

birds by ear is guided solely by automated recognition. Public involvement in the

assessment of species abundance and vocal activity is simply achieved by the intrinsic

motivation of learning. Whereas eBird checklists require (expert) knowledge about

local bird species, an automated recognition system only requires basic reasoning.

This often eases the difficulty of providing reliable observational data to contribute

to the environmental efforts by researchers.

When viewed as recording station, each mobile device becomes a valuable addition

to the vast grid of conducted point counts. Despite the occasional use of the app

to identify a bird species, long-term data series might emerge due to immersive

usability. It appears plausible that those data series can help to gain new insights

into species abundance, diversity, and vocal activity. The latter becomes one of the

most interesting aspects of large-scale observation. Since the automated detection

is limited to sound, an assessment of species presence reflects how often and how

prominently a species is audible. In contrast to other point count surveys that

rely on both modalities—sight and sound—the retrieved observation data allows

to exclusively correlate vocal activity with other environmental factors like habitat

characteristics, weather, or migration. We can assume that users of the smartphone

app tend to be very selective in the sounds they analyze. This supposedly amplifies

the effect of vocal presence and might shift the focus to uncommon or very vocal

species.

6.3.2. Design

The disproportionate importance of spectrograms for avian research was at the

center of the design process for the BirdNET smartphone app. Visualizing sounds

is an important cornerstone of interpretability. Therefore, one key element of the

interface design is a real-time (rolling) spectrogram view that instantly visualizes
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(a) Record (b) Select (c) Analysis (d) Details

Figure 6.10.: BirdNET app screenshots. The interface serves as a visual metaphor

of a portable recording device and guides users through the process

of recording, selection, and analysis. Additional knowledge bases like

Wikipedia and AllAboutBirds.org provide more information on the

identified species.

sounds recorded by the mobile device (see Figure 6.3.2). The entire interface serves

as a visual metaphor for a portable recording device with its rather technical appear-

ance. User interaction is guided through a simple process of recording, selection, and

analysis that is repeated for every new identification. Observing the spectrogram

view provides indications about the overall recording quality and helps to isolate the

sounds that should be analyzed. This process avoids a major drawback of acous-

tic recognition—low signal quality—by eliminating unwanted noise and overlapping

vocalizations. Additionally, the visual perception of bird sounds helps to reason

whether a detection is plausible or not. It might also reduce the frustration when

the app is not confident about the identified species. This process is supported with

verbalizations of confidence scores through terms like ‘almost certain’, ‘probable’,

‘highly uncertain’ or even ‘wild guess’.

The presentation of results allows to further investigate the identified species. In-

cluded resources contain web content derived from Wikipedia, the Macaulay Library,

and AllAboutBirds.org (for North American species only). The additional content

includes textual descriptions, sound samples, and pictures that are intended to sup-
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port the learning process. Observations are recorded on a web server that also han-

dles the load of the analysis process. On-device detection would be technically feasi-

ble, a centralized approach however has certain advantages. First, updating models

and thus providing better results does not rely on user interaction. Secondly, an

increase of computational resources allows to apply larger and deeper networks, and

finally, the reduced technical requirements of a client allow the app to be ported to

a wide range of devices. The BirdNET web API handles the request/response work-

load and distributes incoming observations across several analysis workers. Again,

single model performance is key to quickly process a potentially large number of

requests.

6.3.3. Distribution

Starting with a rough prototype, the development of the app began in 2017 and

only featured a ‘Record’ button that accessed the device microphone when clicked.

Following the design of very common recording scenarios like voice messages, the

recording duration was determined by the time the button was pressed. First results

were unsatisfying. Despite good overall performance in previous evaluations, the de-

tection rate was extremely low and unreliable. Due to that, the process of recording

was complemented with a real-time spectrogram view that then allowed to isolate

bird vocalizations. After a testing stage with a selected group of frequent users, the

app was officially released to the Google Play Store in September 2018. Without

any advertisement or paid content, the number of active users steadily grew only

through specific, topic-related search in the Play Store. At the end of 2018, a total

number of 1.414 active users had installed the app3. These numbers began to rise

quickly and surpassed 100,000 active installs on May, 27th. At the end of July 2019,

more than 250,000 users had BirdNET installed on their mobile device. BirdNET

is free of charge and available for Android devices only.

3Active users (or active installs) mark the amount of devices that currently have installed the

app. Retention rates for this app are approximately 70% over the entire live-span.
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6.3.4. Reception

With an average rating of 4.344 based on 843 reviews4, the BirdNET smartphone

app significantly outperforms similar apps in the same category. Mobile song ID

applications include BirdGenie: ID Birds by Song by Princeton University Press

with a rating of 1.4 across 21 reviews, and Song Sleuth: Auto Bird Song ID w/

David Sibley by Wildlife Acoustics, Inc. with a rating of 2.2 across 13 reviews.

Naturblick by the Museum für Naturkunde Berlin also features an automated sound

recognition component and is rated at 3.9 across 341 reviews. Sunbird Images

distributes a mobile app for bird identification that also contains acoustic recognition

called Bird Song Id: Auto Recognition that received an average rating of 4.1 across

381 reviews.

Most notably, textual feedback for BirdNET notes a wide variety of aspects that

were intended during the development of the app. Some of the more extensive

reviews reflect on the use of the app to learn about bird vocalizations, the visual

selection of sounds, the response to non-events (e.g. human sounds), and raised

awareness for bird encounters:

First birdsong recognition app that really works. Most birds in our back-

yard spend most of their time in trees, heard but not seen, and it’s great

to learn who’s singing.

Simple and brilliant. Helped me narrow a sound down to a chiffchaff -

a sound I have been wondering about for years. THANKS!!!!

Works pretty well. I tried it on some birds that i already recognized and

it got it right. Nice interface in that you can just keep it recording and

then visually select the sound bite you want to analyze.

It’s a mistake to take BirdNet on a walk if you’re out for exercise! You’re

too tempted to stop and identify birds. The app is fascinating and

seems to work very well.

Does an amazing job at listening to audio and choosing what it thinks

the noise could be (Including humans making bird noises!)

4All scores were retrieved on 2019-07-31
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I’ve been using this app for a couple of weeks now, sooooo useful and

fun! It clearly identifies birds, enabling for me to see and photograph

ones that I’d never have spotted without this app. Love love it!

Additionally, the app has sparked national and international media attention, which

underlines the appeal of an automated recognition and learning tool. User feedback

was used to improve the app by adding features like a detailed observation overview

or by adjusting the visual interface to provide a better user experience and acoustic

guidance for visually impaired users. The app also supports local common names

in 12 languages and a localized interface in English, German, French, Czech, and

Dutch.

6.3.5. Results

Between September 2018 and July 2019, BirdNET users submitted more than 2.9

million recordings with a total duration of 6,021 hours containing more than 2 million

observations5. Due to the lack of an iOS version and the popularity of Android out-

side the USA, European users submitted more than twice as many observations than

users in North America. From months April to July 2019, the observation density

is sufficient to generate spatio-temporal patterns of avian activity on a continental

scale. Yet, the dataset contains strong biases due to some circumstances that have

to be taken into account:

• The app is available in selected countries only including Central and Western

Europe, as well as the United States and Canada.

• People in densely populated areas use the app more frequently and thus submit

more observations.

• Predictions are post-filtered according to eBird checklist frequencies.

• Over time, more people start using the app, which steadily increases the num-

ber of observations.

• People might not submit an observation of a species they were able to previ-

ously identify with the app.

5A valid observation has to contain GPS coordinates, a confidence score of more than 1.5% and

must not feature a non-event class.
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• The number of observations significantly varies with time (e.g. on weekends)

and weather conditions (e.g. summer heat waves).

• Observations might contain false positives due to class confusion that leads to

more detections for the confused species.

Considering these limitations, analyzing the submitted data requires to eliminate

or at least to reduce some of the most apparent biases. Relative values that are

normalized over time present a more objective view but are still highly dependent

on the number of users in an area. Data interpolation and moving averages can help

to eliminate outliers and gaps that arise from spatio-temporal variations. Two main

categories of avian activity can be investigated using BirdNET submission: Vocal

activity over time and location, as well as avian diversity on a large scale.

Vocal activity

Estimating the vocal activity of a bird species based on observations submitted

via smartphone app might indicate the overall abundance on a global (or at least

continental) scale. Vocal activity itself is linked to avian behavioral patterns, es-

pecially breeding and migration. The absolute number of detections of a species

indicates how prominently the bird is perceived. Assuming that smartphone users

tend to analyze (and thus submit) observations when they occur very frequently, the

amount of detected vocalizations in relation to the total number of all recognized

songs and calls might imply how much a species stands out—which can be due to

very high vocal activity. When visualized over time (see Figure 6.11) for Europe,

species like the Eurasian Wren (Troglodytes troglodytes) and Common Nightingale

(Luscinia megarhynchos) show peaks in their (perceived) vocal activity with up to

12% of all submitted vocalizations.

With multiple tens of thousands of detections, these two species are an example of

birds with complex, clearly audible vocalizations that are often conspicuous and not

easily identifiable by the average listener. When encountered, smartphone users are

apparently very likely to submit a vocalization. Due to this, we can observe changes

in vocal activity over time with relatively dense data points independent from the

number of users. Despite the fact that vocal activity plots imply migration patterns,

we cannot necessarily conclude when and where the activity was highest. Again,

analyzing spatio-temporal patterns (Figures 6.12 and 6.13) provides more detail.
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Figure 6.11.: Relative vocal activity in Europe between January and July 2019 for

two very conspicuous species.

These patterns reveal two main insights: First, spatial abundance changes over time

and does not necessarily reflect the relative vocal activity. Both visualizations have

to be treated complementary. The occurrence of the Eurasian Wren peaks in June,

whereas the highest relative vocal activity was measured in January when many

migrating birds are missing. Secondly, vocal activity can be used to assess species

distribution. The spatial abundance of the Common Nightingale peaks in May with

distinct distribution patterns and is significantly reduced after that. This pattern

matches the relative vocal activity and both dimensions provide valuable insights

into habitat preferences across Europe. Still, we have to assume that both visualiza-

tions would profit from an increased number of observations and lack considerable

amounts of details in the current form. Monitoring submissions over several years

might reveal more conclusive patterns for even more species. The number of users

during the time of spring migration in 2019 was not sufficient to assess movements

with a satisfying level of detail and additional observations are needed.
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(a) 2019-04-21 (b) 2019-05-21

(c) 2019-06-20 (d) 2019-07-20

Figure 6.12.: Spatio-temporal patterns of relative, normalized vocal activity of the

Eurasian Wren.

Avian diversity

In addition to the vocal activity of single species, the diversity of birds for an area

is another important dimension of avian ecology. On a continental scale, avian

diversity indicates behavioral patterns that are mostly linked to migration. To

some extend, this measure also implies species composition when stationary and

migratory species are somewhat predictable. Again, spatio-temporal patterns can

be derived from large-scale data over long periods of time (see Figure 6.14). Yet,

the spatial scale of species diversity does not necessarily allow to draw conclusions
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(a) 2019-04-21 (b) 2019-05-21

(c) 2019-06-20 (d) 2019-07-20

Figure 6.13.: Spatio-temporal patterns of relative, normalized vocal activity of the

Common Nightingale.

whether specific habitats are more attractive than others. The data points provided

by users of the BirdNET smartphone app contain strong biases and lack the required

density—at least for the first half of 2019. A strong emphasis on densely populated

areas leads to a strong correlation between urban environments and the expected

species diversity for a specific location. The mid-west of the United States apparently

lacks a sufficient number of submissions. Interpolation and weighting of observations

could resolve this issue, still, only long-term data will provide the required details.
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(a) Week 15, 240 species (b) Week 18, 317 species

(c) Week 21, 346 species (d) Week 24, 367 species

Figure 6.14.: Spatio-temporal patterns of normalized species diversity in the USA.

A strong bias towards densely populated areas results in strong corre-

lation between avian diversity and urban environments. The effects of

peak migration (usually between weeks 17-20) are still clearly visible.

Temporal patterns provide a more objective look at changes in avian diversity. Be-

tween the end of April and the first weeks of May (weeks 17-20), migration usually

reaches its peak across North America. Despite a correlation between the number

of users and the number of detected species, the effect of migration on the diversity

of species is clearly visible in these patterns. Again, urban areas profit from a high

number of data points, but the overall diversity index remains high even for some

rural areas. In addition to eBird checklist data, those results could provide a valuable

dimension of real-time species diversity assessments.
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Outlook

Since its release in September 2018, the BirdNET smartphone app has sparked

the interest of many bird watchers in North America and Europe. Due to a high

number of active users, the app provides a significant amount of observational data

that can be used to analyze avian behavioral patterns that are linked to vocal

activity. Due to its nature as a learning tool, users of the app do not necessarily

document every encounter and only submit vocalizations that are conspicuous and

not easily recognizable by the average listener. Strong biases towards the number

of users, urban areas and species selection based on personal interests, often lead to

unwanted correlations that disturb the occurring patterns. However, the app has

already proven to be a valuable tool for highly distributed, long-term monitoring of

avian activity. Over time, more and more users will start using the app and provide

data that can be used to study annual effects of migration, habitat changes, and

climate change—among others.

6.4. HaikuBox

As an autonomous recording and analysis station, the HaikuBox prototype is in-

tended to serve as link between SWIFT recorders and the BirdNET smartphone

app. When distributed across the United States at selected locations, HaikuBoxes

will provide daily assessments of species occurrences based on real-time analysis.

Due to the fixed position and non-selective audio analysis, spatio-temporal data is

expected to compensate some of the drawbacks of mobile apps and recorder arrays

that lack either range or resolution. The on-device execution of the bird sound

recognition significantly reduces the maintenance overhead. Recorded audio data

is analyzed ‘on the fly’ and results are stored in textual form, which is periodically

sent to a central server. The entire station is solar powered, a Raspberry Pi provides

the computing platform. Yet, the power consumption of the mobile computer is too

high to allow full-day assessments. Therefore, each HaikuBox station only records

one hour before and one hour after sunrise—during the dawn chorus. The remainder

of daylight is used to charge the Lithium battery.

The fly-through bird feeder serves two main purposes: First, it attracts birds year-

round and provokes vocalizations due to social interaction of individuals. Secondly,

we can assume that people are more likely to maintain a recording station when they
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(a) Feeder unit (b) Microphone and camera (c) Interior

Figure 6.15.: HaikuBox prototype attached to a fly-through bird feeder that attracts

local bird species and provokes a high number of vocalizations due to

social interaction. On-device analysis using mobile DNN architectures

reduces the maintenance overhead of swapping SD cards, solar panels

charge the Lithium battery.

can observe backyard birds feeding. The production of a small series of HaikuBoxes

will start with the end of 2019 after a testing stage that will provide insights into

the applicability of mobile DNN architectures for this use case. Again, the dual use

as learning tool and scientific monitoring station aims at democratizing the process

of bird watching to sensitize a wide audience to the effects of environmental changes

on avian activity.

6.5. Summary

Public demos, prototypes, and applications allow bird watchers and scientists to

gain insights into behavioral patterns linked to avian activity. In contrast to tra-

ditional point counts, those applications provide data at large scale—spatially and
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temporally. Correlating effects of environmental changes to migration, breeding,

social interaction, diversity, and activity can be observed due to dense data points

that originate from recording arrays (AMTiC, SWAMP), highly-distributed mo-

bile recorders (smartphones), or single-mic stations (HaikuBox, live stream micro-

phones). Processing large-scale data comes at the cost of significantly increased

computing power. BirdNET provides applicable and fast deep neural networks for

avian activity monitoring for all those scenarios. Involving the public in the process

of data acquisition sparks the interest of many users that are eager to submit obser-

vations when using designated learning tools. These tools combine both, scientific

assessments and democratized technology to reach a wide audience. The applica-

tions presented in this chapter mark the starting point of public services that allow

users to record, analyze, and submit observations independent of their profession.

BirdNET will help to expand these efforts by including more species, continents,

and task-specific applications in the near future.
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Birds are meaningful to many people and are a common source of sound for humans.

Many households maintain a bird feeder during the winter to prevent backyard birds

from starving and to cherish the beauty and elegance of local species. Birds are om-

nipresent, often reveal their presence through their vocalizations, and they respond

to various environmental changes over many spatial scales. Therefore, they are ideal

indicator species to monitor environmental changes in habitats across all lifeforms

and to identify early warning signs that indicate habitat changes (see Section 2.3).

Automated observation of avian activity to assess vocal activity and species diver-

sity can be a transformative tool for ornithologists, conservation biologists, and bird

watchers to assist in long-term monitoring of critical environmental niches.

Communication between individuals of birds is not limited to sound, but the avian

vocal tract and auditory system are highly developed. For many applications of bird

identification and observation, sound is the primary source of information. However,

avian vocalizations are highly complex and often consist of rapid successions of el-

ements and notes. Most birds emit sound to communicate—either with their vocal

tract or non-vocally using other body parts (see Section 2.2.2). Passeriformes is the

largest order of birds and contains the suborder of oscine passerines—true songbirds.

The evolution of song in oscines is complex and requires extensive learning, imita-

tion, and even improvisation. The intra-species heterogeneity of song repertoires is

vast with species being able to sing multiple hundreds of songs per individual. Varia-

tions in time and space add to that diversity and render the automated identification

of avian vocalizations an extremely difficult task (see Section 2.2.4).

Digital sound transformation is commonly used when studying bird sounds. Since

the inception of the sound spectrograph, spectrograms play a significant role in

avian research (see Section 2.2.1). We can assume that visual representations of

bird sounds contain valuable information on species identity, rendering spectrograms

a particularly suitable representation. The worldwide community of bird watchers

provides vast archives of digital sound recordings for almost every bird species on the

planet. These recordings are mostly of high quality and were recorded with (semi-)
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professional and often highly directional equipment (see Section 2.3.2). Autonomous

recordings units to monitor ecological niches and habitats mostly use omnidirectional

microphones, which usually leads to significant levels of ambient noise. Adapting

to this shift in acoustic domains is critical when training an automated recognition

system based on publicly available audio data.

Deep artificial neural networks (DNN) have surpassed traditional classifiers like

Gaussian mixture models, decision trees or support vector machines in the field of

acoustic event recognition. This progress has transformed the the two largest eval-

uation campaigns for avian sound identification and led to very competitive results

in that domain (see Section 3.3). Still, deep neural networks require expert knowl-

edge to design, train, and test powerful models—a process that is often guided by

intuition due to the holistic nature of hyperparameter tuning. Additionally, dataset

bias and lack of generalization are among the main concerns when applying neural

networks to real-world use cases (see Section 3.2.1). With these constraints and

the requirements of future applications in mind, an extensive toolkit for automated

avian activity monitoring was developed: BirdNET.

The implementation of this toolkit was based on a number of distinct design de-

cisions including extensive functionality, detailed configuration, a domain-agnostic

workflow, transparent and reproducible implementations, as well as an application-

driven development process. BirdNET employs the overall workflow of detailed data

handling, audio processing capabilities, extensive data augmentation, and dynamic

model design and export. Due to those features, BirdNET is a research platform

that allows to design and evaluate sophisticated training regimes of deep neural

networks for acoustic event recognition (see Chapter 4).

The experimental studies in this dissertation evolved around the ability of DNN

to generalize on unseen samples despite a high number of classes with significant

intra-class heterogeneity. The investigation focused on key components and com-

putational processes under fair conditions in order to obtain largely generalizable

results (see Chapter 5). An unprecedented amount of training, validation, and test

data was used to assess the overall system performance on more then 3,900 hours of

field recordings covering 987 classes and almost 300 hours of fully annotated sound-

scapes containing almost 80,000 vocalizations. The resulting benchmark system

yields state-of-the-art scores across all domains, especially when compared to recent

advances during the 2019 BirdCLEF challenge. With an increase of 15.4% over the

best single model designed for the 2019 soundscape evaluation dataset that did not
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use validation samples for training, the proposed training regime and DNN design

appear to be competitive considering the difficulty of the task (see Section 5.2.7).

Avian activity monitoring often requires labor intensive interference to conduct point

counts or to analyze large amounts of audio data. BirdNET can not only help to

reduce the amount of manual work in that domain, it also provides new, valuable

insights into some of the most basic avian behavioral patterns (see Chapter 6).

The assessment of avian vocal activity and diversity gains an important dimension

of investigation with spatio-temporal visualizations of observational data acquired

through long-term monitoring using autonomous recorders or massive amounts of

submissions using a smartphone app. Future developments of BirdNET will focus

on expanding that dimension by providing fast and reliable acoustic recognition for

various monitoring scenarios.

Future work

BirdNET is already advanced and provides good overall performance for many use

cases. However, soundscape analysis still poses a significant challenge with scores

that leave considerable room for improvements. Future progress will focus on en-

hance those scores to expand BirdNET to a variety of monitoring scenarios. The

system’s road map for the next few years includes the following developments:

Training with less samples: The current results presented in this dissertation

imply that deep neural networks are indeed extremely data hungry and require vast

amounts of training samples. Additionally, the overall quality of those samples has

to be very high to prevent decreased performance. Both circumstances are somewhat

unsatisfying. Pre-processing of noisy samples could lead to improved performance

due to the elimination of falsely labeled data. This process would either require

manual interference—which is not desirable—or an automated assessment. In both

cases, the amount of training samples will decrease. Considering the difficulties

of obtaining audio recordings of rare or endangered species, this limitation holds

considerable weight. Certain strategies to cope with these difficulties have been

proposed. Most notably, triplet loss introduced in [Weinberger and Saul, 2009] helps

to learn feature embeddings in DNN so that similar data points are closer to each

other. Focusing on similarities rather than categories might help to cope with weak

labels and an ever expanding number of classes.
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The effectiveness of this approach has been demonstrated in the domain of person

identification ([Hermans et al., 2017]) but was also successfully applied to scenarios

in the domain of bioacoustics [Thakur et al., 2019]. The potentially reduced need

for large amounts of training samples using this technique is very promising.

Source separation: Dawn chorus recordings often suffer from a cacophony of

sounds that overlap. In the current state, BirdNET is capable to resolve some

overlapping scenarios. Yet, this mostly comes as the result of increased sensitiv-

ity, which itself often leads to high numbers of false positives. Separating sound

sources has become a valuable tool in the field of audio analysis [Ewert et al., 2014],

[Rivet et al., 2014]. Ambient recording with two or more microphones can ease the

difficulties when distinguishing different individuals of birds. The effect of masked

vocalizations might be reducible when processing multi-channel recordings. The

second generation of SWIFT recorders will support stereophonic monitoring and

the current analysis workflow of BirdNET already supports other than one-channel

inputs. The domain shift between mono-species, directional field recordings, and

soundscapes persists in this scenario, however, stereo training samples can be syn-

thesized from mono-channel audio [Orban, 1970].

Visual attention: In 2017, Vaswani et al. proposed that Attention is all you need

[Vaswani et al., 2017]. Intended for sequence transduction, the approach demon-

strated that shifting the attention of a trained DNN to salient parts of the in-

put data can help to achieve significantly better results. Complementary to that,

the concept of visual attention has been applied to solve a variety of tasks in the

past (e.g. [Xu et al., 2015]). This even applies for the domain of acoustic event

recognition—especially bird sounds—as part of the BirdCLEF 2017 and 2018 chal-

lenge [Sevilla and Glotin, 2017], [Schlüter, 2018]. Still, attention mechanisms in the

domain of image recognition are not widely used. Implementing visual attention

would require some modifications to the code base of BirdNET but could potentially

lead to increased performance for extremely noisy data.

Switching back ends: Since the discontinuation of Theano in 2017, other deep

learning frameworks like PyTorch and TensorFlow became increasingly popular.

Both frameworks are widely adopted in the scientific community and provide vast

functionality without the need to implement complex training workflows. Most

importantly, the ability of those frameworks to port trained models to different

target platforms becomes a central advantage compared to older toolkits.

214



Today, model export natively supports mobile devices such as smartphones, Rasp-

berry Pi (and other ARM architectures), web browsers, and even embedded systems.

In the future, tensor processing units (TPU) will accelerate the processes of training

and inference—specialized software however is required. Therefore, future versions

of BirdNET will be based on TensorFlow due to the large community and vast

ecosystem of functionalities.

Expanding the API: Providing researchers with transformative tools for auto-

mated avian monitoring is one of the main goals of BirdNET. With its applications

and demos, the presented system is capable of processing large amounts of data in

real-time. Still, soundscape recordings are often hour-long and need considerable

amounts of computational resources when processed. In the future, BirdNET will

include a cloud computing infrastructure that allows to distribute the audio analysis

workflow across multiple workstations. Similar to the eBird web API, soundscape

analysis will be available to the scientific community through an expanded web

interface. With BirdNET as a service, more researchers will be able to use the tools

created as part of this dissertation.

Improving the smartphone app: The data analysis in Section 6.3 showed that

the density of submitted observations did not yet suffice to derive spatio-temporal

patterns that indicate migrational movements. The smartphone app will gain value

for the scientific community as a tool that provides insights into avian behavioral

patterns on a global scale with an increasing number of users. In order to achieve

that, the app will be maintained and expanded in terms of functionality, supported

devices, and user experience. Future developments will include an iOS version that

hopefully leads to broader usage across North America. On-device recognition is

already technically feasible and will eventually find its way into the app.

Adjusting to South America: The focus of this dissertation was on North Amer-

ican and European species only. The assessment of the system’s performance is

easier when mobile recorders can be maintained regularly and local bird watchers

provide valuable insights into their work. The current monitoring scenario is already

extremely complex and some of the remaining issues (e.g. overlap in soundscapes)

have to be resolved before applying BirdNET to acoustic monitoring scenarios as

part of conservational efforts. Tropical environments are highly endangered and

often contain multiple thousands of bird species. Acoustic monitoring in such en-

vironments requires portable analysis devices that are extremely power efficient,

waterproof, and can communicate over long distances.
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The computational constraints that those devices employ contradict the increased

number of species and vast avian diversity in those areas. Future versions of Bird-

NET will adjust to those circumstances and might be deployed in the South Amer-

ican rain forest in the next few years.

The comprehensive evaluation of deep learning techniques for avian activity mon-

itoring in this thesis only marks the starting point of an expanded ecosystem of

functionalities and applications for the field of bioacoustics. Due to its domain-

agnostic workflow, BirdNET is not just limited to birds but can be applied to almost

any acoustic monitoring scenario. Most prominently, that includes the detection of

marine mammals, insects, or fish in highly endangered habitats. Advances in soft-

and hardware will help to provide highly automated tools to cope with environmental

issues of our future.
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Appendix





A. Year-round Vocal Activity

Visualizations of the correlation between relative normalized vocal activity and nor-

malized eBird frequency for one year recorded between 2018-07-20 and 2019-07-19.

Detections (blue bars) in live stream data represent the normalized percentage mea-

sured against all vocalizations of each of the 365 days. Abundance (dashed line)

is represented by the smoothed, weekly frequency based on percentage of eBird

checklists that contain this species for Ithaca, NY, USA.

The Pearson correlation coefficient was used to measure the correlation between the

two data series.

Visualizations sorted by absolute correlation c.

A1



A. Year-round Vocal Activity

A2



A3



A. Year-round Vocal Activity
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B. AMTiC Detection Plots

Result visualization of bird species detections from soundscapes recorded between

2019-04-26 and 2019-05-15 at Tierpark Chemnitz. Plots show cumulative detections

per hour and location (AMTiC Recorder 1, A1 and AMTiC Recorder 2, A2) and

changes in species abundance over time. All times in Central European (Summer)

Time (CET, UTC+2).

(a) Carrion Crow A1 (b) Carrion Crow A2

(c) Common Chaffinch A1 (d) Common Chaffinch A2

A5



B. AMTiC Detection Plots

(a) Common Firecrest A1 (b) Common Firecrest A2

(c) Common Wood-Pigeon A1 (d) Common Wood-Pigeon A2

(e) Eurasian Blackbird A1 (f) Eurasian Blackbird A2

A6



(a) Eurasian Blackcap A1 (b) Eurasian Blackcap A2

(c) Eurasian Wren A1 (d) Eurasian Wren A2

(e) European Pied Flycatcher A1 (f) European Pied Flycatcher A2

A7



B. AMTiC Detection Plots

(a) European Robin A1 (b) European Robin A2

(c) European Serin A1 (d) European Serin A2

(e) Great Spotted Woodpecker A1 (f) Great Spotted Woodpecker A2
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(a) Great Tit A1 (b) Great Tit A2

(c) Long-tailed Tit A1 (d) Long-tailed Tit A2

(e) Spotted Flycatcher A1 (f) Spotted Flycatcher A2

A9



C. SWAMP Spatial Maps

Spatial maps visualizing normalized absolute vocal activity in May 2017 across

all recorders of the SWAMP monitoring array in Sapsucker Woods Ithaca, NY,

USA. Colors represent high activity (red), medium activity (green) and low activity

(blue).

All maps were generated with Leaflet and OpenStreetMap tiles.

(a) Gray Catbird

A10



(a) American Goldfinch

(b) Tufted Titmouse

A11



C. SWAMP Spatial Maps

(a) Ovenbird

(b) White-throated Sparrow

A12



(a) Mourning Dove

(b) Swamp Sparrow

A13



C. SWAMP Spatial Maps

(a) Northern Cardinal

(b) Blue-headed Vireo

A14



(a) Downy Woodpecker

(b) Hairy Woodpecker

A15



D. Species-specific Results

List of supported species and their individual class results based on the best single

model. The results reflect the scores achieved on all validation samples independent

of their noise level. Despite the lack of a ‘gold standard’, class comparisons in

detection quality allow to estimate which species are expected to perform best.

S2N = Signal-to-noise-ratio based on morphological features, higher is better

TS = Total amount of training samples

AP = Average precision across all validation samples

AUC = Area under ROC Curve across all validation samples

F0.5 = Optimized F0.5-measure across all validation samples

CT = Confidence threshold to achieve the optimal F0.5

SPECIES S2N TS AP AUC F0.5 CT

Abert’s Towhee 0.506 1515 0.621 0.965 0.619 0.13

Acadian Flycatcher 0.38 2093 0.635 0.989 0.716 0.25

Acorn Woodpecker 0.72 3145 0.805 0.992 0.848 0.15

African Blue Tit 0.62 1613 0.709 0.985 0.602 0.12

African Reed Warbler 0.698 1657 0.714 0.993 0.589 0.21

Alder Flycatcher 0.449 2287 0.56 0.98 0.642 0.1

Aleutian Tern 0.919 690 0.924 0.999 0.903 0.07

Alexandrine Parakeet 0.722 848 0.595 0.952 0.627 0.12

Algerian Nuthatch 0.941 1031 0.739 0.981 0.807 0.15

Allen’s Hummingbird 0.391 523 0.679 0.987 0.564 0.07

Alpine Accentor 0.503 472 0.68 0.984 0.403 0.04

Alpine Swift 0.358 564 0.775 0.966 0.77 0.13

Altamira Oriole 0.587 1616 0.473 0.981 0.403 0.09

American Avocet 0.763 1437 0.564 0.952 0.584 0.1

American Bittern 0.555 1362 0.438 0.92 0.457 0.12

American Coot 0.67 2282 0.657 0.971 0.67 0.24

American Crow 0.573 2641 0.696 0.974 0.69 0.13

American Dipper 0.336 752 0.583 0.956 0.593 0.21

American Golden-Plover 0.614 1884 0.654 0.989 0.701 0.21

A16



SPECIES S2N TS AP AUC F0.5 CT

American Goldfinch 0.533 2720 0.708 0.97 0.724 0.19

American Kestrel 0.603 1519 0.692 0.959 0.732 0.16

American Oystercatcher 0.518 1086 0.679 0.972 0.605 0.17

American Pipit 0.553 1370 0.751 0.989 0.758 0.09

American Redstart 0.539 2774 0.6 0.986 0.584 0.15

American Robin 0.585 3661 0.715 0.979 0.681 0.13

American Three-toed Woodpecker 0.645 1943 0.481 0.986 0.399 0.14

American Tree Sparrow 0.549 2498 0.633 0.981 0.678 0.21

American Wigeon 0.561 1429 0.516 0.962 0.464 0.09

American Woodcock 0.356 2501 0.794 0.966 0.806 0.13

Anhinga 0.709 1224 0.478 0.935 0.436 0.1

Anna’s Hummingbird 0.535 1843 0.655 0.967 0.644 0.21

Antillean Nighthawk 0.621 1688 0.692 0.968 0.69 0.1

Aplomado Falcon 0.839 897 0.436 0.834 0.468 0.07

Aquatic Warbler 0.696 1945 0.794 0.991 0.837 0.13

Arctic Loon 0.657 753 0.564 0.933 0.545 0.27

Arctic Tern 0.705 2576 0.718 0.989 0.763 0.18

Arctic Warbler 0.517 2674 0.83 0.987 0.856 0.09

Arizona Woodpecker 0.62 1023 0.476 0.938 0.601 0.11

Ash-throated Flycatcher 0.512 3273 0.738 0.983 0.779 0.16

Asian Desert Warbler 0.598 136 0.198 0.711 0.235 0.1

Atlantic Puffin 0.445 1131 0.759 0.953 0.698 0.07

Atlas Flycatcher 0.745 223 0.594 0.983 0.469 0.1

Audouin’s Gull 0.735 249 0.672 0.988 0.315 0.03

Audubon’s Oriole 0.71 1284 0.55 0.943 0.612 0.1

Azure Tit 0.726 738 0.638 0.95 0.57 0.08

Bachman’s Sparrow 0.538 1873 0.691 0.988 0.682 0.13

Baird’s Sandpiper 0.685 1062 0.59 0.982 0.629 0.21

Baird’s Sparrow 0.67 2382 0.818 0.997 0.691 0.21

Bald Eagle 0.492 790 0.526 0.921 0.558 0.14

Baltimore Oriole 0.508 3406 0.58 0.986 0.546 0.17

Band-rumped Storm-Petrel 0.981 82 0.396 0.971 0.324 0.03

Band-tailed Pigeon 0.515 1965 0.457 0.931 0.516 0.1

Bank Swallow 0.575 1872 0.834 0.993 0.854 0.13

Bar-headed Goose 0.932 249 0.713 0.932 0.63 0.1

Bar-tailed Godwit 0.831 1070 0.469 0.947 0.525 0.13

Bar-tailed Lark 0.479 119 0.198 0.848 0.12 0.04

Barbary Partridge 0.435 97 0.157 0.706 0.097 0.04

Barn Owl 0.674 1816 0.705 0.981 0.686 0.11

Barn Swallow 0.772 2468 0.827 0.983 0.835 0.15

Barnacle Goose 0.551 1587 0.883 0.998 0.818 0.11
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SPECIES S2N TS AP AUC F0.5 CT

Barred Owl 0.496 1965 0.607 0.971 0.609 0.11

Barred Warbler 0.684 2439 0.592 0.993 0.51 0.11

Bay-breasted Warbler 0.501 880 0.397 0.969 0.4 0.15

Bearded Reedling 0.431 1503 0.81 0.989 0.849 0.12

Bell’s Sparrow 0.541 1852 0.754 0.984 0.727 0.11

Bell’s Vireo 0.673 2734 0.701 0.982 0.685 0.12

Belted Kingfisher 0.591 1571 0.732 0.968 0.776 0.14

Bendire’s Thrasher 0.812 1619 0.642 0.969 0.771 0.18

Bewick’s Wren 0.708 2945 0.752 0.987 0.724 0.11

Bicknell’s Thrush 0.55 2695 0.686 0.986 0.725 0.13

Black Francolin 0.652 1238 0.399 0.898 0.493 0.21

Black Grouse 0.701 2204 0.932 0.998 0.909 0.17

Black Guillemot 0.434 571 0.559 0.935 0.513 0.1

Black Kite 0.558 1398 0.522 0.958 0.595 0.19

Black Lark 0.722 94 0.016 0.831 0.003 0.01

Black Oystercatcher 0.644 3115 0.884 0.996 0.872 0.15

Black Phoebe 0.444 2451 0.78 0.984 0.8 0.1

Black Rail 0.514 2187 0.681 0.985 0.713 0.15

Black Redstart 0.654 3177 0.534 0.94 0.559 0.26

Black Rosy-Finch 0.381 451 0.559 0.975 0.42 0.06

Black Skimmer 0.732 1681 0.861 0.996 0.858 0.16

Black Stork 0.8 626 0.589 0.984 0.575 0.12

Black Swan 0.745 216 0.258 0.881 0.2 0.04

Black Tern 0.873 2506 0.813 0.998 0.832 0.15

Black Turnstone 0.733 815 0.947 0.999 0.842 0.01

Black Vulture 0.458 1183 0.369 0.903 0.311 0.05

Black Wheatear 0.597 915 1.0 1.0 0.692 0.02

Black Woodpecker 0.631 2258 0.631 0.988 0.664 0.2

Black-and-white Warbler 0.528 2301 0.518 0.983 0.429 0.09

Black-backed Woodpecker 0.568 2327 0.537 0.99 0.485 0.12

Black-bellied Plover 0.435 1300 0.656 0.976 0.664 0.18

Black-bellied Sandgrouse 0.723 228 1.0 1.0 1.0 0.01

Black-bellied Whistling-Duck 0.553 1333 0.792 0.99 0.771 0.12

Black-billed Cuckoo 0.579 1347 0.621 0.96 0.67 0.13

Black-billed Magpie 0.708 2066 0.597 0.94 0.623 0.16

Black-capped Chickadee 0.531 3129 0.792 0.988 0.751 0.13

Black-capped Vireo 0.869 2270 0.673 0.969 0.717 0.11

Black-chinned Hummingbird 0.508 1097 0.679 0.98 0.638 0.17

Black-chinned Sparrow 0.582 1668 0.639 0.976 0.703 0.12

Black-crested Titmouse 0.608 2108 0.684 0.976 0.656 0.19

Black-crowned Night-Heron 0.461 1801 0.52 0.958 0.516 0.19
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Black-crowned Tchagra 0.612 1690 0.671 0.975 0.69 0.1

Black-eared Wheatear 0.487 959 0.439 0.962 0.385 0.12

Black-footed Albatross 0.672 1726 0.931 0.999 0.92 0.13

Black-headed Bunting 0.603 1098 0.707 0.976 0.676 0.1

Black-headed Grosbeak 0.593 2975 0.711 0.988 0.705 0.19

Black-headed Gull 0.679 2458 0.793 0.996 0.731 0.19

Black-legged Kittiwake 0.383 2695 0.782 0.995 0.727 0.27

Black-necked Stilt 0.841 2774 0.935 0.999 0.871 0.17

Black-shouldered Kite 0.56 1613 0.854 0.991 0.846 0.1

Black-tailed Gnatcatcher 0.776 2433 0.838 0.998 0.785 0.15

Black-tailed Godwit 0.867 1884 0.855 0.995 0.794 0.15

Black-throated Blue Warbler 0.546 1811 0.364 0.976 0.333 0.11

Black-throated Gray Warbler 0.536 2471 0.457 0.975 0.495 0.27

Black-throated Green Warbler 0.565 2684 0.574 0.989 0.621 0.25

Black-throated Sparrow 0.627 3025 0.722 0.988 0.768 0.27

Black-whiskered Vireo 0.592 2754 0.817 0.991 0.839 0.14

Black-winged Pratincole 0.636 80 0.032 0.802 0.028 0.13

Black-winged Stilt 0.695 2688 0.948 0.999 0.915 0.15

Blackburnian Warbler 0.515 1857 0.525 0.99 0.446 0.09

Blackpoll Warbler 0.497 2787 0.506 0.974 0.624 0.22

Blue Grosbeak 0.528 2694 0.595 0.982 0.663 0.21

Blue Jay 0.645 2247 0.631 0.963 0.602 0.16

Blue Rock-Thrush 0.53 1685 0.503 0.969 0.413 0.09

Blue-cheeked Bee-eater 0.488 553 0.631 0.939 0.702 0.11

Blue-gray Gnatcatcher 0.672 2674 0.681 0.975 0.708 0.16

Blue-headed Vireo 0.518 2867 0.828 0.995 0.8 0.22

Blue-throated Hummingbird 0.468 1972 0.64 0.971 0.688 0.12

Blue-winged Teal 0.687 1505 0.727 0.977 0.795 0.14

Blue-winged Warbler 0.554 2210 0.43 0.982 0.441 0.27

Bluethroat 0.637 3448 0.507 0.97 0.371 0.07

Blyth’s Reed Warbler 0.691 3862 0.744 0.994 0.656 0.14

Boat-tailed Grackle 0.649 1514 0.635 0.979 0.578 0.13

Bobolink 0.783 3103 0.822 0.996 0.789 0.14

Bohemian Waxwing 0.461 2262 0.878 0.986 0.883 0.1

Bonaparte’s Gull 0.702 1476 0.666 0.958 0.661 0.14

Booted Eagle 0.379 378 0.387 0.764 0.27 0.03

Booted Warbler 0.72 913 0.522 0.962 0.425 0.12

Boreal Chickadee 0.698 2212 0.744 0.987 0.753 0.14

Boreal Owl 0.501 2682 0.891 0.995 0.912 0.19

Botteri’s Sparrow 0.563 2754 0.718 0.988 0.74 0.13

Brambling 0.468 1890 0.852 0.995 0.865 0.11
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SPECIES S2N TS AP AUC F0.5 CT

Brant 0.581 1777 0.693 0.994 0.656 0.12

Brewer’s Blackbird 0.627 2239 0.789 0.991 0.729 0.11

Brewer’s Sparrow 0.762 3471 0.649 0.986 0.657 0.32

Bridled Titmouse 0.744 2008 0.616 0.973 0.672 0.11

Broad-billed Hummingbird 0.545 574 0.576 0.895 0.525 0.17

Broad-billed Sandpiper 0.471 175 0.013 0.778 0.0 0.0

Broad-tailed Hummingbird 0.506 1527 0.691 0.964 0.711 0.1

Broad-winged Hawk 0.422 2026 0.431 0.958 0.434 0.18

Brown Creeper 0.419 2484 0.649 0.983 0.54 0.05

Brown Fish-Owl 0.373 236 0.008 0.878 0.0 0.0

Brown Jay 1.006 1975 0.833 0.994 0.851 0.12

Brown Pelican 0.87 680 0.469 0.954 0.402 0.19

Brown Thrasher 0.726 3508 0.763 0.993 0.705 0.19

Brown-capped Rosy-Finch 0.607 1267 0.699 0.996 0.532 0.11

Brown-crested Flycatcher 0.578 4152 0.723 0.988 0.747 0.17

Brown-headed Cowbird 0.535 2766 0.447 0.959 0.527 0.19

Brown-headed Nuthatch 0.579 1989 0.744 0.974 0.721 0.09

Brown-necked Raven 0.753 228 0.555 0.945 0.531 0.15

Buff-bellied Hummingbird 0.465 511 0.9 0.997 0.964 0.04

Buff-breasted Flycatcher 0.508 1877 0.73 0.989 0.76 0.18

Bufflehead 0.565 1012 0.15 0.928 0.109 0.05

Bullock’s Oriole 0.663 3390 0.572 0.971 0.634 0.21

Burrowing Owl 0.607 1591 0.587 0.955 0.681 0.19

Bushtit 0.477 1913 0.863 0.988 0.826 0.16

Cackling Goose 0.709 1484 0.695 0.992 0.577 0.14

Cactus Wren 0.684 2874 0.64 0.982 0.666 0.13

Calandra Lark 0.86 2479 0.855 0.999 0.818 0.14

California Gnatcatcher 0.836 1428 0.815 0.991 0.735 0.1

California Gull 0.742 1402 0.535 0.919 0.459 0.11

California Quail 0.591 2545 0.646 0.979 0.681 0.18

California Scrub-Jay 0.69 1757 0.751 0.968 0.738 0.13

California Thrasher 0.718 3433 0.677 0.991 0.628 0.13

California Towhee 0.499 2078 0.754 0.982 0.768 0.07

Calliope Hummingbird 0.796 990 0.443 0.949 0.364 0.07

Canada Goose 0.697 3064 0.748 0.983 0.715 0.16

Canada Jay 0.631 2398 0.473 0.981 0.436 0.16

Canada Warbler 0.594 1742 0.575 0.985 0.643 0.16

Canyon Towhee 0.627 3134 0.555 0.981 0.619 0.16

Canyon Wren 0.559 2505 0.707 0.977 0.754 0.13

Cape May Warbler 0.477 2148 0.568 0.982 0.562 0.2

Carolina Chickadee 0.539 2558 0.747 0.991 0.772 0.21
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Carolina Wren 0.669 2821 0.586 0.98 0.563 0.12

Carrion Crow 0.688 1756 0.533 0.968 0.461 0.15

Caspian Gull 0.81 726 0.527 0.991 0.407 0.11

Caspian Tern 0.63 1991 0.72 0.983 0.716 0.15

Cassia Crossbill 0.479 536 0.764 0.985 0.735 0.09

Cassin’s Finch 0.633 3135 0.629 0.99 0.603 0.14

Cassin’s Kingbird 0.67 2541 0.696 0.984 0.743 0.13

Cassin’s Sparrow 0.541 2447 0.667 0.991 0.667 0.16

Cassin’s Vireo 0.567 2620 0.79 0.994 0.693 0.19

Cattle Egret 0.479 1773 0.749 0.993 0.669 0.12

Cave Swallow 0.621 1218 0.609 0.897 0.597 0.06

Cedar Waxwing 0.461 2217 0.872 0.992 0.903 0.11

Cerulean Warbler 0.67 2852 0.707 0.994 0.644 0.12

Cetti’s Warbler 0.636 1628 0.646 0.98 0.647 0.12

Chestnut-backed Chickadee 0.507 2867 0.803 0.985 0.807 0.13

Chestnut-bellied Sandgrouse 0.951 283 0.505 0.864 0.6 0.08

Chestnut-collared Longspur 0.651 1473 0.517 0.978 0.52 0.25

Chestnut-sided Warbler 0.609 1915 0.42 0.982 0.371 0.08

Chihuahuan Raven 0.577 927 0.485 0.883 0.425 0.08

Chimney Swift 0.424 1110 0.669 0.919 0.731 0.09

Chipping Sparrow 0.567 2695 0.666 0.975 0.638 0.15

Chuck-will’s-widow 0.55 2341 0.949 0.999 0.944 0.07

Chukar 0.669 770 0.433 0.925 0.436 0.12

Cinereous Bunting 0.589 363 0.462 0.862 0.383 0.08

Cirl Bunting 0.581 2578 0.601 0.983 0.686 0.24

Citril Finch 0.569 531 0.712 0.975 0.625 0.11

Citrine Wagtail 0.394 806 0.772 0.964 0.69 0.14

Clapper Rail 0.588 2113 0.565 0.983 0.484 0.12

Clark’s Nutcracker 0.798 1999 0.748 0.996 0.753 0.13

Clay-colored Sparrow 0.629 2834 0.503 0.983 0.484 0.2

Clay-colored Thrush 0.567 3594 0.646 0.973 0.672 0.15

Cliff Swallow 0.686 1669 0.559 0.888 0.643 0.3

Coal Tit 0.661 3195 0.751 0.995 0.726 0.24

Collared Flycatcher 0.545 2766 0.816 0.996 0.804 0.18

Collared Pratincole 0.601 637 0.692 0.953 0.678 0.1

Common Black Hawk 0.547 760 0.274 0.836 0.368 0.11

Common Bulbul 0.653 3062 0.673 0.986 0.629 0.15

Common Buzzard 0.588 2267 0.717 0.984 0.71 0.21

Common Chaffinch 0.651 3360 0.579 0.982 0.603 0.11

Common Chiffchaff 0.477 2925 0.852 0.993 0.847 0.19

Common Crane 0.776 2577 0.855 0.993 0.794 0.1
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Common Cuckoo 0.618 2971 0.768 0.987 0.836 0.17

Common Eider 0.538 1472 0.838 0.995 0.845 0.16

Common Firecrest 0.464 2656 0.639 0.991 0.598 0.12

Common Gallinule 0.621 1901 0.701 0.985 0.629 0.2

Common Goldeneye 0.529 1101 0.417 0.907 0.498 0.11

Common Grackle 0.547 2923 0.723 0.989 0.703 0.12

Common Grasshopper-Warbler 0.52 3134 0.889 0.996 0.904 0.12

Common Greenshank 0.512 1593 0.868 0.997 0.832 0.22

Common Ground-Dove 0.54 1950 0.792 0.989 0.817 0.16

Common House-Martin 0.598 2539 0.716 0.969 0.679 0.16

Common Kingfisher 0.389 1196 0.824 0.979 0.842 0.09

Common Loon 0.671 2720 0.568 0.962 0.648 0.2

Common Merganser 0.519 1050 0.436 0.864 0.489 0.1

Common Murre 0.375 2096 0.645 0.986 0.482 0.08

Common Myna 0.622 2535 0.433 0.934 0.479 0.22

Common Nighthawk 0.447 2244 0.816 0.984 0.829 0.09

Common Nightingale 0.785 4241 0.744 0.993 0.736 0.18

Common Pauraque 0.431 3411 0.96 0.999 0.933 0.05

Common Pochard 0.554 553 0.875 0.994 0.711 0.09

Common Poorwill 0.332 2375 0.914 0.998 0.881 0.09

Common Quail 0.524 2240 0.651 0.984 0.646 0.08

Common Raven 0.621 2617 0.658 0.96 0.674 0.12

Common Redpoll 0.559 2665 0.849 0.993 0.676 0.14

Common Redshank 0.637 1868 0.794 0.986 0.749 0.26

Common Redstart 0.688 3596 0.666 0.99 0.675 0.22

Common Ringed Plover 0.467 1359 0.674 0.963 0.684 0.13

Common Rosefinch 0.534 3050 0.755 0.987 0.787 0.13

Common Sandpiper 0.496 1873 0.76 0.974 0.824 0.22

Common Scoter 0.266 373 0.661 0.973 0.629 0.12

Common Shelduck 0.7 1387 0.828 0.992 0.789 0.16

Common Snipe 0.605 1959 0.65 0.969 0.604 0.09

Common Swift 0.518 2033 0.861 0.991 0.887 0.17

Common Tern 0.721 2473 0.836 0.991 0.819 0.19

Common Waxbill 0.488 1555 0.839 0.985 0.862 0.1

Common Wood-Pigeon 0.515 2123 0.665 0.984 0.656 0.21

Common Yellowthroat 0.534 2908 0.449 0.958 0.483 0.16

Connecticut Warbler 0.614 2247 0.395 0.967 0.44 0.16

Cooper’s Hawk 0.525 1035 0.653 0.972 0.684 0.1

Cordilleran Flycatcher 0.423 1736 0.699 0.981 0.67 0.1

Corn Bunting 0.689 3053 0.694 0.988 0.635 0.13

Corn Crake 1.054 2780 0.809 0.979 0.832 0.18
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Corsican Finch 0.448 195 0.571 0.937 0.456 0.05

Cory’s Shearwater 0.58 324 0.874 0.981 0.86 0.14

Costa’s Hummingbird 0.624 569 0.659 0.913 0.692 0.11

Couch’s Kingbird 0.541 2065 0.788 0.989 0.86 0.16

Crested Caracara 0.638 855 0.398 0.896 0.547 0.15

Crested Lark 0.48 2200 0.608 0.985 0.574 0.23

Crested Tit 0.648 2376 0.843 0.998 0.847 0.18

Cretzschmar’s Bunting 0.412 331 0.563 0.93 0.533 0.12

Crissal Thrasher 0.682 2561 0.742 0.971 0.624 0.18

Crowned Sandgrouse 0.533 72 0.884 0.993 0.843 0.21

Curlew Sandpiper 0.434 113 0.522 0.893 0.365 0.05

Curve-billed Thrasher 0.67 3651 0.708 0.994 0.701 0.31

Dark-eyed Junco 0.571 3115 0.739 0.992 0.676 0.15

Dartford Warbler 0.719 2244 0.958 0.999 0.908 0.09

Dead Sea Sparrow 0.79 274 0.548 0.947 0.587 0.09

Demoiselle Crane 0.588 191 0.981 0.999 0.743 0.03

Desert Finch 0.422 123 0.028 0.895 0.0 0.0

Desert Lark 0.486 125 0.434 0.975 0.272 0.03

Desert Sparrow 0.679 324 0.009 0.795 0.0 0.0

Desert Wheatear 0.514 475 0.32 0.846 0.389 0.12

Dickcissel 0.603 2360 0.788 0.996 0.783 0.14

Double-crested Cormorant 0.562 1303 0.509 0.969 0.433 0.13

Downy Woodpecker 0.557 2278 0.702 0.968 0.675 0.19

Dunlin 0.53 1493 0.547 0.984 0.488 0.1

Dunnock 0.625 2814 0.717 0.988 0.742 0.2

Dupont’s Lark 0.574 1040 0.88 0.999 0.84 0.18

Dusky Flycatcher 0.416 1671 0.712 0.977 0.679 0.07

Dusky Grouse 0.455 804 0.505 0.972 0.476 0.08

Dusky Warbler 0.424 2199 0.627 0.968 0.637 0.14

Dusky-capped Flycatcher 0.471 2766 0.602 0.982 0.672 0.21

Eared Grebe 0.487 683 0.684 0.959 0.657 0.06

Eastern Bluebird 0.546 2713 0.717 0.987 0.776 0.15

Eastern Bonelli’s Warbler 0.617 367 0.801 0.986 0.829 0.16

Eastern Kingbird 0.564 2629 0.701 0.968 0.704 0.08

Eastern Meadowlark 0.467 2875 0.642 0.984 0.699 0.16

Eastern Olivaceous Warbler 0.735 1883 0.649 0.975 0.628 0.17

Eastern Orphean Warbler 0.648 1005 0.51 0.98 0.398 0.12

Eastern Phoebe 0.517 2716 0.771 0.984 0.818 0.18

Eastern Rock Nuthatch 0.518 304 0.337 0.957 0.184 0.03

Eastern Screech-Owl 0.326 1921 0.834 0.995 0.846 0.27

Eastern Towhee 0.527 2884 0.577 0.979 0.578 0.17
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Eastern Whip-poor-will 0.676 2745 0.832 0.993 0.863 0.1

Eastern Wood-Pewee 0.374 2518 0.654 0.986 0.733 0.16

Eastern Yellow Wagtail 0.507 762 0.47 0.888 0.536 0.2

Egyptian Goose 0.71 1300 0.67 0.967 0.705 0.17

Elegant Tern 0.57 1029 0.607 0.955 0.693 0.16

Elegant Trogon 0.654 2979 0.56 0.976 0.622 0.1

Eleonora’s Falcon 0.317 36 0.008 0.779 0.0 0.0

Elf Owl 0.576 2502 0.789 0.991 0.807 0.2

Emperor Goose 0.777 317 0.381 0.971 0.291 0.09

Eurasian Blackbird 0.741 3703 0.658 0.992 0.626 0.21

Eurasian Blackcap 0.748 3682 0.595 0.987 0.552 0.23

Eurasian Blue Tit 0.711 2820 0.645 0.983 0.684 0.19

Eurasian Bullfinch 0.424 2339 0.742 0.996 0.671 0.12

Eurasian Collared-Dove 0.582 2684 0.708 0.952 0.713 0.14

Eurasian Coot 0.6 1735 0.639 0.976 0.609 0.14

Eurasian Crag-Martin 0.396 926 0.394 0.967 0.219 0.02

Eurasian Curlew 0.634 2009 0.86 0.996 0.832 0.16

Eurasian Dotterel 0.297 273 0.35 0.898 0.318 0.06

Eurasian Eagle-Owl 0.381 2305 0.629 0.976 0.673 0.14

Eurasian Golden Oriole 0.577 3420 0.56 0.98 0.593 0.12

Eurasian Green Woodpecker 0.609 1775 0.456 0.953 0.493 0.18

Eurasian Griffon 0.503 266 0.005 0.665 0.0 0.0

Eurasian Hobby 0.596 1195 0.739 0.987 0.777 0.07

Eurasian Hoopoe 0.545 2610 0.758 0.982 0.807 0.15

Eurasian Jackdaw 0.582 2084 0.877 0.99 0.866 0.16

Eurasian Jay 0.729 2872 0.45 0.965 0.411 0.12

Eurasian Kestrel 0.584 1760 0.709 0.972 0.698 0.18

Eurasian Linnet 0.634 2921 0.857 0.994 0.858 0.21

Eurasian Magpie 0.592 2326 0.746 0.986 0.758 0.17

Eurasian Marsh-Harrier 0.438 1307 0.634 0.933 0.57 0.09

Eurasian Moorhen 0.53 1220 0.709 0.971 0.694 0.16

Eurasian Nightjar 0.419 2289 0.888 0.995 0.898 0.09

Eurasian Nutcracker 0.698 1649 0.573 0.975 0.561 0.15

Eurasian Nuthatch 0.634 2870 0.693 0.991 0.753 0.2

Eurasian Oystercatcher 0.548 2113 0.828 0.984 0.806 0.21

Eurasian Penduline-Tit 0.354 1379 0.855 0.993 0.838 0.07

Eurasian Pygmy-Owl 0.497 2320 0.73 0.979 0.732 0.22

Eurasian Reed Warbler 0.948 3764 0.801 0.994 0.723 0.28

Eurasian River Warbler 0.539 3047 0.98 0.999 0.919 0.04

Eurasian Scops-Owl 0.342 2543 0.934 0.998 0.929 0.13

Eurasian Siskin 0.642 2574 0.739 0.972 0.735 0.1
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Eurasian Skylark 0.767 3290 0.843 0.992 0.824 0.21

Eurasian Sparrowhawk 0.509 786 0.374 0.898 0.405 0.17

Eurasian Spoonbill 0.626 136 0.058 0.856 0.069 0.04

Eurasian Thick-knee 0.39 1100 0.889 0.998 0.798 0.09

Eurasian Three-toed Woodpecker 0.68 2676 0.705 0.993 0.54 0.12

Eurasian Tree Sparrow 0.681 2686 0.822 0.992 0.723 0.09

Eurasian Treecreeper 0.478 2478 0.712 0.994 0.631 0.25

Eurasian Wigeon 0.502 1358 0.716 0.971 0.688 0.12

Eurasian Woodcock 0.43 704 0.775 0.977 0.811 0.13

Eurasian Wren 0.711 3476 0.674 0.982 0.693 0.18

Eurasian Wryneck 0.618 2718 0.511 0.967 0.633 0.2

European Bee-eater 0.416 2282 0.839 0.994 0.894 0.13

European Golden-Plover 0.46 1364 0.769 0.989 0.756 0.17

European Goldfinch 0.659 3349 0.825 0.995 0.779 0.08

European Greenfinch 0.674 3237 0.778 0.986 0.782 0.2

European Honey-buzzard 0.447 520 0.569 0.975 0.436 0.15

European Pied Flycatcher 0.657 2776 0.692 0.987 0.704 0.18

European Robin 0.695 3842 0.702 0.989 0.661 0.17

European Roller 0.599 881 0.681 0.983 0.573 0.1

European Serin 0.666 3231 0.862 0.993 0.854 0.12

European Starling 0.707 3934 0.509 0.959 0.426 0.14

European Stonechat 0.476 2288 0.772 0.993 0.74 0.2

European Storm-Petrel 0.548 2049 0.958 0.998 0.944 0.08

European Turtle-Dove 0.582 1793 0.766 0.986 0.773 0.07

Evening Grosbeak 0.48 2524 0.867 0.996 0.879 0.12

Ferruginous Duck 0.464 72 0.023 0.806 0.0 0.0

Field Sparrow 0.457 1886 0.508 0.963 0.495 0.12

Fieldfare 0.642 2723 0.809 0.984 0.801 0.11

Finsch’s Wheatear 0.579 79 0.019 0.939 0.0 0.0

Fire-fronted Serin 0.712 237 0.835 0.972 0.741 0.05

Fish Crow 0.51 1572 0.718 0.97 0.701 0.07

Flammulated Owl 0.284 2116 0.808 0.992 0.827 0.14

Florida Scrub-Jay 0.722 1554 0.773 0.981 0.847 0.13

Forster’s Tern 0.675 1137 0.568 0.968 0.595 0.25

Fox Sparrow 0.505 2704 0.525 0.973 0.513 0.17

Franklin’s Gull 0.925 1201 0.683 0.951 0.707 0.09

Fulvous Chatterer 0.59 162 0.002 0.467 0.0 0.0

Fulvous Whistling-Duck 0.728 559 0.52 0.912 0.566 0.11

Gadwall 0.572 1601 0.546 0.959 0.619 0.15

Gambel’s Quail 0.639 2690 0.637 0.973 0.658 0.15

Garden Warbler 0.951 3995 0.718 0.993 0.658 0.29
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SPECIES S2N TS AP AUC F0.5 CT

Garganey 0.567 497 0.598 0.95 0.573 0.11

Gila Woodpecker 0.741 1696 0.603 0.966 0.7 0.19

Gilded Flicker 0.513 936 0.684 0.959 0.615 0.07

Glaucous Gull 0.932 1085 0.548 0.988 0.46 0.08

Glaucous-winged Gull 0.695 1520 0.723 0.991 0.584 0.1

Glossy Ibis 0.769 659 0.435 0.903 0.387 0.15

Goldcrest 0.498 3040 0.772 0.993 0.714 0.15

Golden Eagle 0.646 898 0.763 0.963 0.78 0.15

Golden-cheeked Warbler 0.64 3516 0.805 0.995 0.836 0.18

Golden-crowned Kinglet 0.363 1725 0.663 0.986 0.536 0.1

Golden-crowned Sparrow 0.521 2545 0.581 0.976 0.65 0.16

Golden-fronted Woodpecker 0.626 1819 0.573 0.957 0.608 0.11

Golden-winged Warbler 0.633 2743 0.437 0.956 0.421 0.11

Grace’s Warbler 0.637 2563 0.485 0.98 0.501 0.12

Graceful Prinia 0.586 877 0.458 0.899 0.322 0.07

Grasshopper Sparrow 0.603 3044 0.546 0.98 0.514 0.14

Gray Catbird 0.679 3591 0.722 0.991 0.701 0.15

Gray Flycatcher 0.571 3077 0.661 0.992 0.69 0.15

Gray Hawk 0.584 1345 0.406 0.936 0.482 0.13

Gray Heron 0.56 1723 0.549 0.949 0.562 0.18

Gray Kingbird 0.539 2181 0.637 0.966 0.725 0.12

Gray Partridge 0.608 2171 0.784 0.985 0.754 0.12

Gray Vireo 0.601 1469 0.849 0.974 0.855 0.18

Gray Wagtail 0.355 1596 0.84 0.995 0.825 0.06

Gray-cheeked Thrush 0.573 981 0.558 0.926 0.528 0.09

Gray-crowned Rosy-Finch 0.572 1074 0.649 0.985 0.646 0.17

Gray-headed Chickadee 0.775 767 0.889 0.997 0.87 0.13

Gray-headed Swamphen 0.703 293 0.21 0.968 0.121 0.02

Gray-headed Woodpecker 0.517 2322 0.51 0.981 0.475 0.11

Gray-necked Bunting 0.534 303 0.44 0.846 0.4 0.04

Graylag Goose 0.792 1980 0.836 0.996 0.749 0.18

Great Bittern 0.479 1797 0.66 0.973 0.612 0.11

Great Black-backed Gull 0.876 1934 0.728 0.99 0.659 0.13

Great Blue Heron 0.703 1739 0.752 0.985 0.75 0.21

Great Cormorant 0.556 1059 0.572 0.958 0.529 0.14

Great Crested Flycatcher 0.437 2677 0.711 0.991 0.765 0.14

Great Crested Grebe 0.605 1025 0.748 0.982 0.69 0.14

Great Egret 0.675 1781 0.612 0.97 0.623 0.28

Great Gray Owl 0.607 1576 0.493 0.939 0.482 0.14

Great Gray Shrike 0.527 1909 0.718 0.989 0.63 0.17

Great Horned Owl 0.364 2405 0.665 0.978 0.716 0.13
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Great Kiskadee 0.709 3051 0.749 0.985 0.769 0.09

Great Reed Warbler 0.835 3717 0.838 0.994 0.832 0.21

Great Skua 0.558 455 0.392 0.95 0.478 0.07

Great Snipe 0.625 1471 0.912 0.998 0.904 0.09

Great Spotted Cuckoo 0.736 722 0.545 0.912 0.532 0.07

Great Spotted Woodpecker 0.639 2970 0.637 0.988 0.587 0.2

Great Tit 0.553 3769 0.61 0.985 0.554 0.1

Great White Pelican 0.646 190 0.317 0.96 0.125 0.03

Great-tailed Grackle 0.56 2838 0.484 0.956 0.47 0.22

Greater Flamingo 0.608 1344 0.781 0.995 0.773 0.16

Greater Hoopoe-Lark 0.466 375 0.646 0.947 0.743 0.09

Greater Pewee 0.518 2190 0.776 0.99 0.709 0.09

Greater Prairie-Chicken 0.866 2137 0.963 0.999 0.94 0.06

Greater Roadrunner 0.577 1758 0.315 0.926 0.327 0.11

Greater Sage-Grouse 0.718 1838 0.944 0.999 0.948 0.05

Greater Scaup 0.717 830 0.621 0.995 0.612 0.1

Greater Short-toed Lark 0.54 1787 0.748 0.993 0.701 0.1

Greater Spotted Eagle 0.552 630 0.816 0.991 0.726 0.14

Greater White-fronted Goose 0.74 2142 0.762 0.982 0.704 0.15

Greater Whitethroat 0.747 3366 0.643 0.986 0.665 0.22

Greater Yellowlegs 0.672 1976 0.732 0.981 0.725 0.09

Green Heron 0.523 1253 0.465 0.95 0.51 0.16

Green Jay 0.634 2129 0.776 0.99 0.823 0.15

Green Kingfisher 0.475 1031 0.459 0.862 0.434 0.07

Green Parakeet 0.793 1025 0.372 0.876 0.452 0.1

Green Sandpiper 0.475 1248 0.724 0.963 0.647 0.07

Green Warbler 0.478 1270 0.831 0.993 0.736 0.08

Green-tailed Towhee 0.708 3555 0.542 0.983 0.609 0.25

Green-winged Teal 0.458 1914 0.594 0.97 0.656 0.18

Greenish Warbler 0.555 2897 0.627 0.976 0.629 0.18

Groove-billed Ani 0.567 1709 0.504 0.963 0.587 0.15

Gull-billed Tern 0.739 1130 0.643 0.976 0.566 0.09

Hairy Woodpecker 0.482 2560 0.673 0.984 0.68 0.16

Hammond’s Flycatcher 0.469 2559 0.698 0.991 0.747 0.15

Harlequin Duck 0.609 376 0.534 0.945 0.629 0.17

Harris’s Hawk 0.637 1001 0.413 0.892 0.46 0.18

Harris’s Sparrow 0.562 1194 0.583 0.938 0.557 0.13

Hawfinch 0.391 1801 0.764 0.992 0.744 0.11

Hazel Grouse 0.413 1867 0.66 0.982 0.706 0.14

Heermann’s Gull 0.424 503 0.757 0.981 0.798 0.09

Henslow’s Sparrow 0.425 2013 0.638 0.984 0.651 0.19
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SPECIES S2N TS AP AUC F0.5 CT

Hepatic Tanager 0.591 2604 0.685 0.992 0.668 0.1

Hermit Thrush 0.52 3071 0.856 0.993 0.866 0.19

Hermit Warbler 0.61 2253 0.541 0.989 0.38 0.07

Herring Gull 0.762 2802 0.683 0.991 0.577 0.25

Hoary Redpoll 0.824 1163 0.749 0.999 0.593 0.11

Hooded Crow 0.698 1616 0.454 0.971 0.463 0.12

Hooded Merganser 0.53 675 0.429 0.86 0.49 0.09

Hooded Oriole 0.594 2934 0.595 0.959 0.588 0.2

Hooded Warbler 0.498 2567 0.559 0.988 0.581 0.22

Horned Grebe 0.869 909 0.279 0.853 0.271 0.11

Horned Lark 0.518 2651 0.764 0.988 0.719 0.09

House Bunting 0.644 731 0.739 0.975 0.68 0.09

House Finch 0.53 2795 0.764 0.978 0.739 0.11

House Sparrow 0.665 3583 0.728 0.99 0.61 0.18

House Wren 0.737 3455 0.576 0.972 0.634 0.28

Hudsonian Godwit 0.695 716 0.171 0.863 0.107 0.04

Hutton’s Vireo 0.537 2768 0.78 0.995 0.777 0.19

Iberian Chiffchaff 0.481 2528 0.691 0.995 0.712 0.16

Iberian Magpie 0.539 1516 0.876 0.997 0.855 0.07

Icterine Warbler 0.924 3601 0.66 0.989 0.63 0.19

Inca Dove 0.491 1834 0.602 0.926 0.62 0.1

Indigo Bunting 0.535 2526 0.558 0.979 0.564 0.1

Isabelline Shrike 0.712 186 0.066 0.785 0.057 0.01

Isabelline Wheatear 0.787 1345 0.652 0.973 0.632 0.14

Island Scrub-Jay 0.554 978 0.799 0.987 0.814 0.06

Italian Sparrow 0.721 1013 0.393 0.984 0.338 0.06

Jack Snipe 0.346 193 0.263 0.948 0.214 0.06

Juniper Titmouse 0.769 1856 0.657 0.982 0.586 0.05

Kentish Plover 0.426 545 0.769 0.983 0.726 0.09

Kentucky Warbler 0.55 2721 0.587 0.989 0.545 0.25

Killdeer 0.536 2246 0.836 0.981 0.83 0.13

King Eider 0.615 816 0.8 0.999 0.62 0.05

King Rail 0.575 2159 0.713 0.985 0.67 0.25

Kirtland’s Warbler 0.676 2663 0.751 0.995 0.8 0.14

Krueper’s Nuthatch 0.555 420 0.474 0.854 0.45 0.13

Ladder-backed Woodpecker 0.475 1848 0.522 0.969 0.593 0.24

Lanceolated Warbler 0.521 977 0.855 0.978 0.853 0.09

Lapland Longspur 0.49 1523 0.541 0.954 0.529 0.18

Lark Bunting 0.802 2354 0.783 0.993 0.804 0.19

Lark Sparrow 0.631 2962 0.611 0.982 0.633 0.13

Laughing Dove 0.582 1594 0.747 0.979 0.792 0.13
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Laughing Gull 0.832 2190 0.814 0.981 0.718 0.1

Lawrence’s Goldfinch 0.687 1923 0.836 0.991 0.808 0.14

Lazuli Bunting 0.617 2753 0.495 0.976 0.513 0.16

LeConte’s Sparrow 0.547 1848 0.691 0.989 0.648 0.21

LeConte’s Thrasher 0.891 2110 0.745 0.993 0.801 0.19

Leach’s Storm-Petrel 0.813 3486 0.911 0.998 0.898 0.11

Least Bittern 0.501 1639 0.445 0.955 0.356 0.1

Least Flycatcher 0.485 2537 0.876 0.997 0.836 0.09

Least Grebe 0.556 957 0.588 0.963 0.566 0.2

Least Sandpiper 0.593 1088 0.621 0.959 0.639 0.1

Least Tern 0.584 1661 0.778 0.969 0.725 0.09

Lesser Black-backed Gull 0.793 1509 0.704 0.995 0.541 0.12

Lesser Goldfinch 0.516 3283 0.668 0.979 0.633 0.11

Lesser Gray Shrike 0.55 268 0.024 0.734 0.013 0.02

Lesser Kestrel 0.581 1571 0.883 0.997 0.866 0.11

Lesser Nighthawk 0.515 1346 0.709 0.95 0.67 0.11

Lesser Prairie-Chicken 0.945 1663 0.801 0.997 0.712 0.14

Lesser Redpoll 0.609 595 0.485 0.985 0.422 0.05

Lesser Short-toed Lark 0.695 1211 0.646 0.97 0.629 0.15

Lesser Spotted Eagle 0.602 737 0.796 0.982 0.665 0.08

Lesser Spotted Woodpecker 0.732 2315 0.513 0.978 0.516 0.17

Lesser White-fronted Goose 0.527 54 1.0 1.0 0.375 0.02

Lesser Whitethroat 0.661 2836 0.504 0.983 0.494 0.15

Lesser Yellowlegs 0.631 2301 0.768 0.991 0.722 0.12

Levaillant’s Woodpecker 0.689 217 0.3 0.775 0.379 0.16

Lewis’s Woodpecker 0.764 1570 0.614 0.96 0.636 0.1

Limpkin 0.73 2705 0.805 0.991 0.793 0.09

Lincoln’s Sparrow 0.548 2575 0.486 0.979 0.455 0.17

Little Bittern 0.415 1222 0.898 0.999 0.782 0.1

Little Blue Heron 0.731 547 0.46 0.957 0.33 0.09

Little Bunting 0.506 745 0.537 0.952 0.542 0.13

Little Bustard 0.399 379 0.362 0.957 0.334 0.09

Little Crake 0.511 1702 0.638 0.971 0.552 0.08

Little Egret 0.732 1313 0.502 0.96 0.48 0.09

Little Grebe 0.594 1666 0.522 0.965 0.505 0.09

Little Gull 0.81 397 0.631 0.941 0.562 0.08

Little Owl 0.554 2658 0.781 0.992 0.783 0.14

Little Ringed Plover 0.516 1830 0.718 0.975 0.714 0.12

Little Stint 0.62 361 0.329 0.906 0.221 0.09

Little Swift 0.613 1248 0.939 0.995 0.94 0.15

Little Tern 0.603 1361 0.902 0.996 0.888 0.06
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SPECIES S2N TS AP AUC F0.5 CT

Loggerhead Shrike 0.486 2701 0.758 0.99 0.683 0.08

Long-billed Curlew 0.756 1464 0.584 0.978 0.569 0.17

Long-billed Dowitcher 0.556 1309 0.45 0.971 0.458 0.17

Long-billed Thrasher 0.822 2170 0.699 0.985 0.709 0.29

Long-eared Owl 0.528 3249 0.725 0.984 0.73 0.21

Long-legged Buzzard 0.598 89 0.01 0.77 0.0 0.0

Long-tailed Duck 0.682 1494 0.705 0.988 0.652 0.08

Long-tailed Jaeger 0.858 1575 0.861 0.997 0.872 0.16

Long-tailed Tit 0.513 3069 0.884 0.994 0.875 0.12

Louisiana Waterthrush 0.507 1886 0.622 0.983 0.645 0.07

Lucy’s Warbler 0.644 2357 0.541 0.973 0.539 0.09

MacGillivray’s Warbler 0.577 2855 0.634 0.987 0.674 0.16

Magnificent Frigatebird 0.513 1382 0.955 0.999 0.948 0.08

Magnolia Warbler 0.535 2244 0.508 0.98 0.567 0.24

Mallard 0.667 2490 0.746 0.976 0.79 0.24

Mandarin Duck 0.472 427 0.086 0.682 0.057 0.02

Mangrove Cuckoo 0.614 730 0.386 0.855 0.458 0.12

Manx Shearwater 0.47 1954 0.845 0.969 0.824 0.13

Marbled Godwit 1.028 1473 0.795 0.975 0.729 0.1

Marbled Murrelet 0.501 2468 0.795 0.993 0.808 0.09

Marmora’s Warbler 0.644 584 0.739 0.914 0.721 0.11

Marsh Sandpiper 0.667 443 0.888 0.999 0.487 0.05

Marsh Tit 0.645 2912 0.687 0.989 0.688 0.13

Marsh Warbler 0.96 4059 0.637 0.978 0.579 0.15

Marsh Wren 0.726 3288 0.789 0.986 0.739 0.09

Masked Shrike 0.534 318 0.241 0.939 0.165 0.14

McCown’s Longspur 0.705 1694 0.773 0.995 0.743 0.13

Meadow Pipit 0.453 1666 0.841 0.993 0.793 0.1

Mediterranean Gull 0.641 435 0.626 0.866 0.678 0.1

Melodious Warbler 0.768 3179 0.678 0.992 0.664 0.2

Menetries’s Warbler 0.769 617 0.581 0.959 0.408 0.1

Merlin 0.566 1744 0.58 0.929 0.64 0.17

Mew Gull 0.836 2945 0.719 0.977 0.681 0.12

Mexican Chickadee 0.678 1649 0.744 0.984 0.734 0.06

Mexican Jay 0.863 1970 0.858 0.993 0.883 0.14

Mexican Whip-poor-will 0.526 2587 0.938 0.997 0.942 0.06

Middle Spotted Woodpecker 0.58 2315 0.771 0.995 0.814 0.13

Mississippi Kite 0.362 483 0.688 0.954 0.72 0.14

Mistle Thrush 0.628 3473 0.799 0.996 0.784 0.17

Moltoni’s Warbler 0.788 860 0.697 0.979 0.625 0.08

Monk Parakeet 0.705 1923 0.799 0.985 0.836 0.15
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Montagu’s Harrier 0.618 479 0.732 0.996 0.591 0.06

Montezuma Quail 0.521 1169 0.459 0.953 0.381 0.05

Mountain Bluebird 0.76 1790 0.683 0.987 0.678 0.11

Mountain Chickadee 0.603 2673 0.761 0.987 0.763 0.12

Mountain Chiffchaff 0.516 442 1.0 1.0 0.9 0.01

Mountain Quail 0.558 2746 0.674 0.99 0.7 0.14

Mourning Dove 0.492 2225 0.522 0.967 0.525 0.08

Mourning Warbler 0.531 2253 0.483 0.982 0.487 0.15

Moussier’s Redstart 0.53 183 0.213 0.84 0.13 0.02

Moustached Warbler 0.637 1670 0.677 0.995 0.568 0.16

Mute Swan 0.502 1483 0.37 0.911 0.409 0.14

Namaqua Dove 0.578 300 0.004 0.546 0.0 0.0

Nashville Warbler 0.575 2512 0.536 0.984 0.538 0.17

Nelson’s Sparrow 0.613 1597 0.529 0.894 0.496 0.08

Neotropic Cormorant 0.544 934 0.802 0.988 0.867 0.13

Northern Bald Ibis 0.585 296 0.652 0.98 0.5 0.04

Northern Beardless-Tyrannulet 0.544 1827 0.67 0.978 0.747 0.11

Northern Bobwhite 0.49 1348 0.53 0.985 0.501 0.1

Northern Cardinal 0.584 3215 0.656 0.986 0.578 0.09

Northern Flicker 0.512 2431 0.464 0.946 0.486 0.14

Northern Fulmar 0.459 1171 0.923 0.999 0.795 0.09

Northern Gannet 0.381 2141 0.975 0.999 0.948 0.18

Northern Goshawk 0.613 2413 0.467 0.975 0.547 0.2

Northern Harrier 0.665 991 0.395 0.825 0.477 0.17

Northern Hawk Owl 0.693 1479 0.51 0.965 0.45 0.09

Northern Lapwing 0.798 2149 0.778 0.988 0.812 0.16

Northern Mockingbird 0.609 3833 0.443 0.962 0.351 0.15

Northern Parula 0.548 2307 0.559 0.993 0.568 0.13

Northern Pintail 0.613 874 0.427 0.96 0.439 0.09

Northern Pygmy-Owl 0.384 1683 0.816 0.988 0.774 0.11

Northern Rough-winged Swallow 0.566 1728 0.673 0.985 0.72 0.13

Northern Saw-whet Owl 0.281 2096 0.778 0.992 0.786 0.15

Northern Shoveler 0.608 1035 0.587 0.964 0.667 0.19

Northern Shrike 0.542 1238 0.548 0.981 0.438 0.14

Northern Waterthrush 0.54 2729 0.655 0.983 0.663 0.11

Northern Wheatear 0.596 2354 0.689 0.987 0.67 0.25

Northwestern Crow 0.715 2128 0.66 0.947 0.679 0.22

Nuttall’s Woodpecker 0.589 1351 0.357 0.947 0.331 0.07

Oak Titmouse 0.646 2765 0.764 0.992 0.795 0.27

Olive Sparrow 0.647 2241 0.711 0.988 0.786 0.16

Olive Warbler 0.581 2210 0.407 0.945 0.42 0.1
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Olive-backed Pipit 0.547 1698 0.72 0.977 0.75 0.13

Olive-sided Flycatcher 0.505 2842 0.534 0.977 0.597 0.12

Olive-tree Warbler 0.702 198 0.454 0.849 0.507 0.06

Orange-crowned Warbler 0.551 2983 0.455 0.966 0.509 0.11

Orchard Oriole 0.525 2414 0.543 0.975 0.512 0.13

Ortolan Bunting 0.484 2355 0.651 0.984 0.641 0.19

Osprey 0.453 2112 0.766 0.985 0.752 0.16

Ovenbird 0.579 2326 0.502 0.982 0.518 0.12

Pacific Golden-Plover 0.61 1074 0.665 0.983 0.695 0.11

Pacific Loon 0.842 895 0.439 0.895 0.449 0.1

Pacific Wren 0.527 2085 0.783 0.988 0.829 0.21

Pacific-slope Flycatcher 0.449 2791 0.676 0.99 0.67 0.22

Paddyfield Warbler 0.689 1504 0.515 0.982 0.479 0.18

Painted Bunting 0.531 2224 0.639 0.98 0.665 0.16

Painted Redstart 0.518 2742 0.596 0.971 0.682 0.19

Pale Rockfinch 0.731 255 0.889 0.989 0.888 0.04

Pallas’s Gull 0.719 49 0.769 0.983 0.67 0.09

Pallas’s Leaf Warbler 0.609 1549 0.864 0.994 0.877 0.22

Pallid Harrier 0.412 131 0.001 0.191 0.0 0.0

Pallid Scops-Owl 0.469 255 0.001 0.266 0.0 0.0

Pallid Swift 0.596 591 0.865 0.984 0.811 0.1

Palm Warbler 0.526 1495 0.309 0.954 0.318 0.14

Parasitic Jaeger 0.83 1023 0.636 0.983 0.657 0.12

Parrot Crossbill 0.464 1407 0.769 0.963 0.675 0.11

Pechora Pipit 0.759 208 0.155 0.967 0.092 0.01

Pectoral Sandpiper 0.604 884 0.434 0.969 0.43 0.1

Peregrine Falcon 0.533 1624 0.775 0.986 0.818 0.13

Phainopepla 0.566 2225 0.678 0.985 0.693 0.13

Pharaoh Eagle-Owl 0.34 191 0.147 0.993 0.081 0.02

Philadelphia Vireo 0.559 2421 0.663 0.988 0.645 0.12

Pied Avocet 0.586 2401 0.811 0.996 0.751 0.15

Pied Kingfisher 0.6 627 0.51 0.881 0.517 0.09

Pied Wheatear 0.586 517 0.483 0.959 0.393 0.07

Pied-billed Grebe 0.643 1786 0.63 0.97 0.63 0.11

Pigeon Guillemot 0.568 1229 0.542 0.974 0.561 0.08

Pileated Woodpecker 0.587 2243 0.709 0.991 0.677 0.14

Pin-tailed Sandgrouse 0.751 282 0.847 0.995 0.789 0.06

Pine Grosbeak 0.516 2071 0.406 0.932 0.421 0.16

Pine Siskin 0.551 2736 0.778 0.98 0.713 0.09

Pine Warbler 0.505 2046 0.532 0.981 0.598 0.19

Pink-footed Goose 0.604 907 0.714 0.969 0.695 0.17
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SPECIES S2N TS AP AUC F0.5 CT

Pinyon Jay 0.797 1886 0.914 0.997 0.901 0.11

Piping Plover 0.451 627 0.609 0.968 0.611 0.15

Plain Chachalaca 0.706 2590 0.763 0.992 0.79 0.11

Plumbeous Vireo 0.549 3361 0.661 0.99 0.571 0.16

Prairie Warbler 0.472 1891 0.459 0.977 0.498 0.13

Prothonotary Warbler 0.554 1850 0.695 0.993 0.698 0.15

Purple Finch 0.481 2756 0.507 0.978 0.513 0.2

Purple Gallinule 0.576 1696 0.805 0.998 0.641 0.09

Purple Heron 0.462 420 0.076 0.637 0.109 0.05

Purple Martin 0.66 2667 0.863 0.988 0.863 0.14

Purple Sandpiper 0.546 938 0.269 0.951 0.176 0.08

Pygmy Nuthatch 0.55 2423 0.749 0.984 0.843 0.13

Pyrrhuloxia 0.618 2461 0.567 0.972 0.572 0.2

Radde’s Accentor 0.635 41 0.146 0.715 0.133 0.02

Razorbill 0.387 1774 0.947 0.999 0.746 0.05

Red Crossbill 0.494 2731 0.779 0.99 0.749 0.21

Red Junglefowl 0.66 1634 0.518 0.968 0.496 0.08

Red Kite 0.56 491 0.714 0.975 0.645 0.1

Red Knot 0.709 1964 0.695 0.993 0.61 0.14

Red Phalarope 0.719 1379 0.739 0.989 0.732 0.08

Red-backed Shrike 0.54 2228 0.53 0.981 0.453 0.12

Red-bellied Woodpecker 0.522 2162 0.575 0.986 0.62 0.19

Red-billed Chough 0.662 1474 0.743 0.984 0.777 0.12

Red-billed Firefinch 0.645 472 0.271 0.711 0.386 0.11

Red-billed Pigeon 0.564 1615 0.582 0.969 0.486 0.12

Red-breasted Flycatcher 0.6 2999 0.729 0.975 0.693 0.15

Red-breasted Merganser 0.575 414 0.028 0.814 0.0 0.0

Red-breasted Nuthatch 0.642 3036 0.874 0.996 0.867 0.21

Red-breasted Sapsucker 0.697 1726 0.277 0.953 0.227 0.06

Red-cockaded Woodpecker 0.504 2368 0.781 0.993 0.806 0.17

Red-crested Pochard 0.342 206 0.751 0.979 0.642 0.04

Red-crowned Parrot 0.681 976 0.934 0.998 0.915 0.05

Red-eyed Vireo 0.586 3737 0.847 0.997 0.779 0.2

Red-faced Warbler 0.633 1973 0.699 0.99 0.663 0.15

Red-flanked Bluetail 0.48 780 0.803 0.985 0.849 0.25

Red-footed Falcon 0.662 273 0.446 0.789 0.545 0.06

Red-headed Bunting 0.571 512 0.47 0.946 0.366 0.11

Red-headed Woodpecker 0.549 2596 0.709 0.988 0.711 0.11

Red-legged Kittiwake 0.376 1646 0.974 0.999 0.923 0.08

Red-legged Partridge 0.706 1930 0.836 0.993 0.832 0.13

Red-naped Sapsucker 0.71 1678 0.402 0.982 0.377 0.07
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SPECIES S2N TS AP AUC F0.5 CT

Red-necked Grebe 0.776 1243 0.732 0.986 0.681 0.09

Red-necked Nightjar 0.393 851 0.913 0.998 0.897 0.05

Red-necked Phalarope 0.711 1618 0.694 0.971 0.669 0.06

Red-rumped Swallow 0.575 1380 0.667 0.968 0.704 0.11

Red-rumped Wheatear 0.418 78 0.295 0.739 0.317 0.12

Red-shouldered Hawk 0.652 1682 0.634 0.971 0.622 0.1

Red-tailed Hawk 0.591 1386 0.483 0.951 0.505 0.12

Red-tailed Shrike 0.424 147 0.007 0.592 0.0 0.0

Red-throated Loon 0.66 1937 0.624 0.986 0.69 0.21

Red-throated Pipit 0.45 592 0.566 0.934 0.597 0.08

Red-wattled Lapwing 0.796 1519 0.691 0.962 0.729 0.15

Red-whiskered Bulbul 0.539 3061 0.674 0.983 0.67 0.24

Red-winged Blackbird 0.592 3396 0.648 0.981 0.587 0.1

Redhead 0.603 796 0.315 0.975 0.23 0.11

Redwing 0.645 2561 0.74 0.986 0.721 0.12

Reed Bunting 0.543 2551 0.711 0.988 0.706 0.15

Richard’s Pipit 0.444 525 0.837 0.984 0.779 0.09

Ridgway’s Rail 0.541 1237 0.608 0.99 0.497 0.1

Ring Ouzel 0.509 2083 0.695 0.987 0.698 0.17

Ring-billed Gull 0.697 1842 0.774 0.982 0.699 0.12

Ring-necked Duck 0.653 1703 0.754 0.994 0.636 0.14

Ring-necked Pheasant 0.595 2144 0.608 0.968 0.664 0.19

Ringed Kingfisher 0.629 1961 0.621 0.975 0.696 0.16

Rivoli’s Hummingbird 0.474 1288 0.862 0.998 0.813 0.04

Rock Bunting 0.527 1809 0.712 0.967 0.779 0.24

Rock Martin 0.627 89 0.007 0.652 0.0 0.0

Rock Partridge 0.519 312 0.696 0.927 0.692 0.11

Rock Pigeon 0.448 1540 0.688 0.98 0.723 0.15

Rock Pipit 0.503 621 0.851 0.988 0.79 0.12

Rock Ptarmigan 0.645 1327 0.336 0.952 0.35 0.12

Rock Sandpiper 0.72 979 0.539 0.966 0.41 0.13

Rock Sparrow 0.682 1403 0.757 0.986 0.762 0.07

Rock Wren 0.583 3039 0.623 0.978 0.701 0.19

Rook 0.583 2734 0.805 0.994 0.755 0.18

Rose-breasted Grosbeak 0.542 2717 0.618 0.985 0.618 0.13

Rose-ringed Parakeet 0.621 2351 0.721 0.978 0.731 0.16

Roseate Spoonbill 0.543 920 0.891 0.999 0.783 0.07

Roseate Tern 0.525 976 0.706 0.99 0.638 0.11

Ross’s Goose 0.631 945 0.789 0.998 0.698 0.09

Ross’s Gull 1.143 699 0.162 0.768 0.176 0.01

Rosy Starling 0.549 799 0.611 0.939 0.645 0.1
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SPECIES S2N TS AP AUC F0.5 CT

Rough-legged Hawk 0.827 1248 0.618 0.981 0.547 0.09

Royal Tern 0.56 1603 0.822 0.994 0.755 0.13

Ruby-crowned Kinglet 0.535 2449 0.806 0.991 0.823 0.13

Ruby-throated Hummingbird 0.392 1307 0.566 0.951 0.57 0.14

Ruddy Duck 0.63 1176 0.471 0.967 0.462 0.13

Ruddy Shelduck 0.654 1224 0.769 0.966 0.702 0.11

Ruddy Turnstone 0.568 1179 0.514 0.969 0.483 0.12

Rueppell’s Warbler 0.694 370 0.893 0.999 0.742 0.06

Ruff 0.413 99 0.004 0.727 0.0 0.0

Ruffed Grouse 0.55 1899 0.507 0.982 0.588 0.11

Rufous Hummingbird 0.478 956 0.534 0.913 0.469 0.07

Rufous-crowned Sparrow 0.643 3010 0.511 0.973 0.658 0.17

Rufous-tailed Rock-Thrush 0.431 638 0.382 0.909 0.4 0.14

Rufous-tailed Scrub-Robin 0.666 2501 0.691 0.989 0.71 0.22

Rufous-winged Sparrow 0.608 2282 0.787 0.993 0.818 0.13

Rustic Bunting 0.523 1017 0.871 0.996 0.806 0.05

Rusty Blackbird 0.454 2118 0.869 0.996 0.856 0.1

Sabine’s Gull 0.735 798 0.569 0.975 0.598 0.15

Sage Thrasher 0.824 3000 0.593 0.99 0.572 0.19

Sagebrush Sparrow 0.648 1850 0.686 0.994 0.665 0.15

Sanderling 0.513 1187 0.59 0.956 0.607 0.12

Sandhill Crane 0.791 2735 0.863 0.992 0.873 0.23

Sandwich Tern 0.6 1183 0.726 0.984 0.698 0.18

Sardinian Warbler 0.694 2710 0.727 0.986 0.707 0.24

Savannah Sparrow 0.539 2659 0.725 0.988 0.705 0.16

Savi’s Warbler 0.407 2440 0.861 0.999 0.817 0.15

Say’s Phoebe 0.476 1979 0.707 0.972 0.761 0.08

Scaled Quail 0.553 1364 0.67 0.977 0.679 0.13

Scarlet Tanager 0.542 3275 0.656 0.985 0.715 0.23

Scissor-tailed Flycatcher 0.682 1281 0.562 0.91 0.613 0.14

Scott’s Oriole 0.559 2992 0.49 0.969 0.501 0.23

Scrub Warbler 0.758 364 0.309 0.866 0.277 0.08

Seaside Sparrow 0.614 2371 0.631 0.986 0.623 0.19

Sedge Warbler 0.943 3700 0.85 0.995 0.839 0.28

Sedge Wren 0.669 3365 0.671 0.982 0.6 0.11

Semicollared Flycatcher 0.42 993 0.302 0.946 0.196 0.05

Semipalmated Plover 0.609 1866 0.745 0.988 0.782 0.16

Semipalmated Sandpiper 0.699 1913 0.581 0.971 0.545 0.13

Sharp-shinned Hawk 0.571 1437 0.144 0.812 0.192 0.11

Sharp-tailed Grouse 0.759 2518 0.782 0.992 0.821 0.2

Short-billed Dowitcher 0.652 758 0.38 0.956 0.279 0.13
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SPECIES S2N TS AP AUC F0.5 CT

Short-eared Owl 0.629 1345 0.382 0.964 0.406 0.09

Short-tailed Hawk 0.495 938 0.328 0.949 0.311 0.07

Short-toed Snake-Eagle 0.409 293 0.273 0.731 0.328 0.14

Short-toed Treecreeper 0.447 2287 0.661 0.982 0.65 0.08

Siberian Jay 0.553 693 0.377 0.944 0.208 0.05

Siberian Rubythroat 0.728 2019 0.653 0.97 0.672 0.25

Siberian Stonechat 0.529 524 0.504 0.959 0.431 0.08

Slender-billed Gull 0.674 1093 0.696 0.994 0.622 0.08

Smith’s Longspur 0.521 1465 0.553 0.991 0.628 0.08

Snail Kite 0.587 901 0.376 0.876 0.409 0.19

Snow Bunting 0.593 1823 0.615 0.975 0.628 0.13

Snow Goose 0.628 2494 0.818 0.993 0.802 0.25

Snowy Egret 0.725 1135 0.53 0.981 0.422 0.17

Snowy Owl 0.623 1235 0.548 0.962 0.332 0.04

Snowy Plover 0.516 974 0.37 0.923 0.451 0.15

Solitary Sandpiper 0.499 1289 0.609 0.923 0.573 0.1

Sombre Tit 0.584 431 0.145 0.843 0.072 0.04

Song Sparrow 0.593 3176 0.542 0.977 0.599 0.28

Song Thrush 0.751 3816 0.541 0.985 0.425 0.18

Sooty Grouse 0.59 1114 0.379 0.963 0.416 0.16

Sooty Shearwater 0.593 337 0.75 0.95 0.468 0.04

Sooty Tern 0.657 1134 0.813 0.988 0.789 0.09

Sora 0.592 2185 0.766 0.993 0.805 0.24

South Polar Skua 0.812 218 0.01 0.875 0.0 0.0

Spanish Sparrow 0.591 1822 0.753 0.981 0.702 0.12

Spectacled Warbler 0.624 1312 0.611 0.924 0.587 0.15

Spotless Starling 0.561 2446 0.575 0.979 0.443 0.13

Spotted Crake 0.589 2240 0.858 0.991 0.855 0.14

Spotted Flycatcher 0.533 2320 0.767 0.984 0.786 0.2

Spotted Owl 0.537 2170 0.67 0.985 0.644 0.07

Spotted Redshank 0.559 553 0.563 0.933 0.495 0.07

Spotted Sandgrouse 0.518 721 0.875 0.999 0.857 0.05

Spotted Sandpiper 0.347 682 0.456 0.831 0.456 0.07

Spotted Towhee 0.658 3163 0.614 0.979 0.59 0.17

Sprague’s Pipit 0.764 1605 0.675 0.992 0.614 0.11

Spruce Grouse 0.776 1096 0.625 0.992 0.715 0.13

Spur-winged Lapwing 0.714 559 0.795 0.994 0.72 0.06

Squacco Heron 0.688 198 0.004 0.534 0.0 0.0

Steller’s Jay 0.727 3022 0.696 0.984 0.722 0.14

Stilt Sandpiper 0.897 845 0.57 0.962 0.54 0.15

Stock Dove 0.518 1305 0.579 0.986 0.515 0.07
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Subalpine Warbler 0.711 2580 0.751 0.993 0.7 0.22

Sulphur-bellied Flycatcher 0.668 2748 0.665 0.971 0.746 0.16

Summer Tanager 0.469 2973 0.74 0.991 0.807 0.21

Surfbird 0.691 1195 0.924 0.998 0.942 0.06

Swainson’s Hawk 0.76 981 0.369 0.899 0.272 0.06

Swainson’s Thrush 0.59 2441 0.728 0.983 0.718 0.17

Swainson’s Warbler 0.552 2424 0.597 0.991 0.625 0.2

Swallow-tailed Kite 0.537 917 0.603 0.966 0.644 0.08

Swamp Sparrow 0.541 1875 0.666 0.982 0.626 0.12

Sykes’s Warbler 0.667 1202 0.698 0.966 0.661 0.18

Syrian Woodpecker 0.492 619 0.455 0.939 0.441 0.13

Taiga Bean-Goose 0.533 370 0.903 0.997 0.781 0.17

Tawny Owl 0.618 3142 0.783 0.991 0.783 0.13

Tawny Pipit 0.488 920 0.518 0.926 0.611 0.23

Temminck’s Stint 0.691 454 0.645 0.968 0.529 0.09

Tennessee Warbler 0.599 2151 0.709 0.991 0.733 0.21

Terek Sandpiper 0.463 546 0.444 0.937 0.444 0.09

Thekla’s Lark 0.593 1764 0.777 0.993 0.664 0.23

Thick-billed Kingbird 0.67 2197 0.643 0.985 0.662 0.15

Thick-billed Murre 0.441 449 0.927 0.999 0.879 0.25

Thrush Nightingale 0.851 3881 0.834 0.997 0.854 0.28

Townsend’s Solitaire 0.563 2610 0.715 0.99 0.69 0.13

Townsend’s Warbler 0.488 2402 0.533 0.977 0.522 0.16

Tree Pipit 0.634 3065 0.64 0.989 0.689 0.21

Tree Swallow 0.685 3038 0.863 0.995 0.87 0.17

Tricolored Blackbird 0.599 1671 0.797 0.975 0.726 0.1

Tricolored Heron 0.726 941 0.617 0.993 0.454 0.12

Tristram’s Warbler 0.57 304 0.58 0.919 0.467 0.09

Tropical Kingbird 0.49 2464 0.733 0.975 0.763 0.13

Tropical Parula 0.584 3019 0.424 0.969 0.477 0.19

Trumpeter Finch 0.487 190 0.027 0.752 0.005 0.01

Trumpeter Swan 0.679 1800 0.662 0.973 0.763 0.27

Tufted Duck 0.71 788 0.718 0.976 0.584 0.08

Tufted Titmouse 0.477 3124 0.66 0.985 0.623 0.11

Tundra Bean-Goose 0.618 183 0.244 0.99 0.255 0.06

Tundra Swan 0.594 2433 0.765 0.994 0.691 0.07

Twite 0.661 1138 0.985 0.999 0.933 0.06

Upcher’s Warbler 0.783 477 0.015 0.857 0.0 0.0

Upland Sandpiper 0.655 1428 0.624 0.979 0.725 0.19

Ural Owl 0.449 1527 0.745 0.993 0.675 0.17

Varied Bunting 0.684 1600 0.606 0.964 0.713 0.19
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SPECIES S2N TS AP AUC F0.5 CT

Varied Thrush 0.474 2507 0.508 0.977 0.502 0.07

Vaux’s Swift 0.455 691 0.697 0.966 0.789 0.08

Veery 0.51 2109 0.759 0.994 0.819 0.22

Verdin 0.488 2610 0.71 0.985 0.706 0.1

Vermilion Flycatcher 0.536 1517 0.492 0.961 0.65 0.15

Vesper Sparrow 0.599 2202 0.595 0.982 0.599 0.23

Violet-green Swallow 0.595 2141 0.747 0.977 0.805 0.19

Virginia Rail 0.519 1982 0.48 0.962 0.472 0.16

Virginia’s Warbler 0.534 1841 0.477 0.977 0.534 0.16

Wallcreeper 0.434 99 0.001 0.166 0.0 0.0

Wandering Tattler 0.457 488 0.713 0.952 0.74 0.06

Warbling Vireo 0.621 3518 0.681 0.987 0.725 0.13

Water Pipit 0.4 972 0.669 0.984 0.5 0.05

Water Rail 0.545 2094 0.637 0.967 0.672 0.31

Western Bluebird 0.666 1986 0.689 0.959 0.687 0.04

Western Bonelli’s Warbler 0.535 2628 0.659 0.991 0.716 0.16

Western Capercaillie 0.593 1767 0.819 0.993 0.877 0.15

Western Grebe 0.65 1284 0.703 0.973 0.734 0.11

Western Gull 0.68 1353 0.575 0.985 0.47 0.16

Western Kingbird 0.598 1749 0.792 0.993 0.837 0.17

Western Meadowlark 0.533 3211 0.598 0.985 0.616 0.16

Western Olivaceous Warbler 0.637 1479 0.485 0.974 0.488 0.1

Western Orphean Warbler 0.582 2021 0.59 0.985 0.64 0.16

Western Rock Nuthatch 0.648 696 0.713 0.978 0.647 0.1

Western Sandpiper 0.849 923 0.482 0.986 0.368 0.08

Western Screech-Owl 0.404 2400 0.885 0.997 0.881 0.1

Western Swamphen 0.597 539 0.669 0.961 0.637 0.1

Western Tanager 0.571 3214 0.599 0.981 0.679 0.18

Western Wood-Pewee 0.515 3421 0.572 0.964 0.599 0.11

Western Yellow Wagtail 0.463 1886 0.762 0.99 0.718 0.15

Whimbrel 0.556 1961 0.655 0.974 0.669 0.11

Whinchat 0.585 3269 0.694 0.987 0.637 0.14

Whiskered Screech-Owl 0.391 1714 0.797 0.991 0.815 0.14

Whiskered Tern 0.48 1190 0.695 0.972 0.678 0.13

White Ibis 0.591 1190 0.69 0.987 0.552 0.09

White Stork 0.578 458 0.35 0.74 0.428 0.16

White Wagtail 0.472 2037 0.668 0.969 0.713 0.18

White-backed Woodpecker 0.534 2127 0.408 0.959 0.421 0.22

White-breasted Nuthatch 0.533 3069 0.743 0.984 0.779 0.19

White-crowned Sparrow 0.519 3059 0.633 0.975 0.644 0.18

White-crowned Wheatear 0.616 308 0.003 0.585 0.0 0.0
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White-eyed Vireo 0.626 2902 0.687 0.988 0.701 0.13

White-faced Ibis 0.682 956 0.555 0.953 0.633 0.13

White-headed Woodpecker 0.77 1910 0.533 0.993 0.593 0.16

White-rumped Sandpiper 0.55 754 0.538 0.971 0.446 0.12

White-spectacled Bulbul 0.521 575 0.595 0.975 0.494 0.11

White-tailed Eagle 0.668 760 0.75 0.975 0.796 0.12

White-tailed Kite 0.597 1126 0.583 0.949 0.603 0.13

White-tailed Lapwing 0.69 222 0.483 0.857 0.558 0.16

White-tailed Ptarmigan 0.612 1117 0.621 0.962 0.677 0.05

White-throated Dipper 0.312 1016 0.667 0.979 0.652 0.12

White-throated Kingfisher 0.577 1840 0.759 0.98 0.697 0.07

White-throated Robin 0.62 213 0.003 0.543 0.0 0.0

White-throated Sparrow 0.425 3234 0.693 0.983 0.684 0.19

White-throated Swift 0.567 1119 0.539 0.909 0.655 0.09

White-tipped Dove 0.477 3568 0.548 0.969 0.563 0.2

White-winged Crossbill 0.547 2674 0.741 0.988 0.746 0.14

White-winged Dove 0.475 1777 0.589 0.982 0.608 0.17

White-winged Lark 0.735 305 0.782 0.998 0.707 0.19

White-winged Snowfinch 0.633 438 0.136 0.615 0.094 0.02

White-winged Tern 0.723 806 0.901 0.978 0.852 0.05

Whooper Swan 0.735 2397 0.901 0.993 0.843 0.08

Wild Turkey 0.558 1825 0.377 0.932 0.395 0.1

Willet 0.741 2254 0.741 0.992 0.765 0.24

Williamson’s Sapsucker 0.672 2318 0.585 0.987 0.495 0.12

Willow Flycatcher 0.508 2782 0.642 0.976 0.673 0.16

Willow Ptarmigan 0.63 1861 0.575 0.978 0.597 0.15

Willow Tit 0.66 2651 0.665 0.985 0.673 0.22

Willow Warbler 0.638 3544 0.594 0.983 0.596 0.17

Wilson’s Plover 0.543 1540 0.614 0.988 0.671 0.1

Wilson’s Snipe 0.655 2473 0.696 0.983 0.719 0.21

Wilson’s Warbler 0.523 2638 0.529 0.974 0.587 0.16

Winter Wren 0.486 2375 0.778 0.992 0.791 0.16

Wood Duck 0.582 2046 0.648 0.971 0.607 0.07

Wood Lark 0.517 3102 0.885 0.998 0.854 0.14

Wood Sandpiper 0.525 1560 0.735 0.967 0.709 0.1

Wood Stork 0.471 1310 0.39 0.883 0.401 0.07

Wood Thrush 0.626 3754 0.862 0.997 0.878 0.18

Wood Warbler 0.641 3531 0.74 0.995 0.816 0.24

Woodchat Shrike 0.659 1616 0.546 0.983 0.399 0.12

Woodhouse’s Scrub-Jay 0.703 1390 0.367 0.851 0.514 0.22

Worm-eating Warbler 0.579 2462 0.584 0.993 0.549 0.17
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SPECIES S2N TS AP AUC F0.5 CT

Wrentit 0.535 1118 0.793 0.985 0.778 0.1

Yellow Rail 0.595 1370 0.948 0.999 0.915 0.03

Yellow Warbler 0.487 1863 0.582 0.979 0.569 0.18

Yellow-bellied Flycatcher 0.456 2604 0.745 0.993 0.767 0.09

Yellow-bellied Sapsucker 0.618 2286 0.403 0.959 0.396 0.25

Yellow-billed Chough 0.67 679 0.926 0.999 0.925 0.05

Yellow-billed Cuckoo 0.472 1802 0.524 0.968 0.591 0.19

Yellow-billed Magpie 0.621 973 0.708 0.956 0.633 0.14

Yellow-breasted Chat 0.543 3741 0.559 0.981 0.455 0.14

Yellow-browed Warbler 0.447 2308 0.891 0.992 0.901 0.06

Yellow-crowned Night-Heron 0.468 249 0.045 0.907 0.002 0.01

Yellow-eyed Junco 0.64 2542 0.494 0.976 0.391 0.05

Yellow-headed Blackbird 0.774 2992 0.647 0.987 0.665 0.21

Yellow-legged Gull 0.763 1638 0.77 0.994 0.638 0.14

Yellow-rumped Warbler 0.458 2312 0.557 0.972 0.541 0.11

Yellow-throated Vireo 0.53 3063 0.787 0.994 0.767 0.12

Yellow-throated Warbler 0.458 2002 0.566 0.971 0.567 0.09

Yellowhammer 0.551 3042 0.74 0.992 0.789 0.15

Zitting Cisticola 0.456 2432 0.841 0.988 0.861 0.14

Zone-tailed Hawk 0.633 768 0.402 0.916 0.483 0.2
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