- AutorIn
- Dipl.-Math. Cornelia Pester
- Titel
- A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities
- Zitierfähige Url:
- https://nbn-resolving.org/urn:nbn:de:swb:ch1-200600805
- Datum der Einreichung
- 25.11.2005
- Datum der Verteidigung
- 21.04.2006
- ISBN
- 3-8325-1249-7
- Abstract (EN)
- This thesis is concerned with the finite element analysis and the a posteriori error estimation for eigenvalue problems for general operator pencils on two-dimensional manifolds. A specific application of the presented theory is the computation of corner singularities. Engineers use the knowledge of the so-called singularity exponents to predict the onset and the propagation of cracks. All results of this thesis are explained for two model problems, the Laplace and the linear elasticity problem, and verified by numerous numerical results.
- Freie Schlagwörter
- Clement-type interpolation
- a posteriori error estimation
- corner singularities
- non-linear eigenvalue problems
- spectral theory
- two-dimensional manifolds
- unit sphere
- Klassifikation (DDC)
- 510
- Normschlagwörter (GND)
- Eigenwertproblem
- Fehlerabschätzung
- Interpolation
- Interpolationsoperator
- Singularität <Mathematik>
- GutachterIn
- Professor Thomas Apel
- Professor Arnd Meyer
- Professor Serge Nicaise
- BetreuerIn
- Professor Thomas Apel
- Verlag
- Logos Verlag Berlin, Chemnitz
- Den akademischen Grad verleihende / prüfende Institution
- Technische Universität Chemnitz, Chemnitz
- URN Qucosa
- urn:nbn:de:swb:ch1-200600805
- Veröffentlichungsdatum Qucosa
- 07.05.2006
- Dokumenttyp
- Dissertation
- Sprache des Dokumentes
- Englisch